WO2013113249A1 - 一种采用激光选区烧结成型制备多孔钽医用植入材料的方法 - Google Patents
一种采用激光选区烧结成型制备多孔钽医用植入材料的方法 Download PDFInfo
- Publication number
- WO2013113249A1 WO2013113249A1 PCT/CN2012/088149 CN2012088149W WO2013113249A1 WO 2013113249 A1 WO2013113249 A1 WO 2013113249A1 CN 2012088149 W CN2012088149 W CN 2012088149W WO 2013113249 A1 WO2013113249 A1 WO 2013113249A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vacuum
- temperature
- sintering
- cooled
- furnace
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/02—Inorganic materials
- A61L27/04—Metals or alloys
- A61L27/047—Other specific metals or alloys not covered by A61L27/042 - A61L27/045 or A61L27/06
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/56—Porous materials, e.g. foams or sponges
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
- B22F10/28—Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/30—Process control
- B22F10/32—Process control of the atmosphere, e.g. composition or pressure in a building chamber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/11—Making porous workpieces or articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/08—Alloys with open or closed pores
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2430/00—Materials or treatment for tissue regeneration
- A61L2430/02—Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/30—Process control
- B22F10/36—Process control of energy beam parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/30—Process control
- B22F10/36—Process control of energy beam parameters
- B22F10/366—Scanning parameters, e.g. hatch distance or scanning strategy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/30—Process control
- B22F10/36—Process control of energy beam parameters
- B22F10/368—Temperature or temperature gradient, e.g. temperature of the melt pool
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/60—Treatment of workpieces or articles after build-up
- B22F10/66—Treatment of workpieces or articles after build-up by mechanical means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/20—Refractory metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y80/00—Products made by additive manufacturing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Definitions
- the present invention relates to the field of preparation of porous medical metal implant materials, and more particularly to a method for preparing porous medical metal implant materials using laser selective sintering techniques.
- the preparation methods of the porous tantalum biomaterial mainly include a powder loose sintering method, a foam impregnation sintering method, a slurry foaming method, and the like, and all of these methods require application of a mold.
- Biological material The most important feature is the complex shape and high requirements for minute details. Therefore, high requirements are placed on the molding technology.
- the conventional molding technology cannot meet the requirements due to the limitation of the mold.
- the formed blank obtained by the above laser selective sintering is sintered and cooled to obtain a porous ⁇ medical implant material with complete three-dimensional pores, which is consistent with the microstructure of the human bone tissue, so that the porous metal implant material biocompatibility, biological Good security.
- the invention can also control the porosity of the final porous crucible by adjusting the process parameters of the sintering selection and sintering of the laser selection region, and at the same time, the mechanical properties thereof are consistent with the corresponding bone tissue of the human body, thereby avoiding the porous crucible and the human body.
- the stress concentration caused by the mismatch of mechanical properties affects the long-term effect of the implant to meet different requirements.
- the control of the corresponding process parameters can be used to prepare porous implant materials such as femur and facial femoral materials.
- porous tantalum implant material that replaces non-load bearing bone tissue of the human body can also be prepared.
- the laser sintering device used in the laser selective sintering method of the present invention is well known, and the laser selective sintering technique (SLS) is A rapid prototyping technology based on laser sintering, which selectively stratifies sintered solid powder by laser and superimposes the solidified layer of sintered forming to form a sample of a desired shape, the whole process including the establishment of a three-dimensional model and Data processing, powder spreading, sintering forming, etc.
- materials that can be successfully processed by SLS include paraffin, polymer, metal, ceramic powder and composite powder materials thereof.
- the shape of the shaped sample can be adjusted as needed.
- the use of the laser selection zone sinter is to input the designed three-dimensional model file into the molding equipment supporting software for laser selective sintering, which is a conventional technique in the art.
- the method of the invention also has a single process equipment, low operating cost, no pollution in the whole preparation process, no side effects on the human body, and is beneficial to ensure the biosafety of the implant material, and the molding speed is fast, which is very advantageous for industrial production applications.
- the preferred process parameters of the laser selective sintering process of the present invention are: laser power of 50 - 65W, scanning speed of 15 - 25mm / s, scanning
- the argon purity is greater than 99.999°/.
- the argon purity is greater than 99.999°/.
- the granule purity is greater than 99.999°/. .
- the preparation method of the porous sputum medical implant material of the present invention is specifically as follows:
- Laser selective sintering The pure tantalum powder with a particle size of 5 ⁇ 1 Q ⁇ m is transported onto the forming platform, rolled and layered, and the UG 3D model file of the designed porous tantalum implant material is input into the molding equipment. Supporting software, and performing laser selective sintering; The process parameters of laser selective sintering are: laser power is 50 - 65W, scanning speed is 15 ⁇ 25 ⁇ / s, scanning pitch is 0. 05 ⁇ 0. 15 ⁇ , each layer is paved The thickness of the layer is 60 ⁇ 80 ⁇ ⁇ , the entire molding process is carried out in an argon atmosphere, and the argon purity is greater than 99.999 ° /. ; 2.
- the first stage is high-temperature vacuum sintering, which is raised to 1200 ⁇ 1250 °C at a rate of 10 ⁇ 15 °C/min, and the temperature is 30 ⁇ 60min, and the vacuum degree is 10- 4 Pa ⁇ 10- 3 Pa; at a rate of 10 ⁇ 20 ° C / min was raised to 1500 ° C, holding 30 ⁇ 60min, the degree of vacuum of 10- 4 Pa ⁇ 10- 3 Pa, to 6 ⁇ 20 ° C / min The rate is increased to 2000 ⁇ 2200 ° C, the temperature is 120 ⁇ 240min, the vacuum is 10 - 4 Pa ⁇ 10 - 3 Pa; the second stage is the slow cooling stage, the vacuum is 10 - 4 Pa ⁇ 10 - 3 Pa; Cool to 1500 ⁇ 1600 °C at 10 ⁇ 20 °C /min, keep warm for 30 ⁇ 60min; cool to 1200 ⁇ 1250 °C at 12 - 20 °C / min
- the obtained porous tantalum implant material has better strength and toughness, and is suitable as a porous tantalum implant material for replacing bone tissues such as femur and facial strands of the human body weight bearing part, and the above sintering process is preferred for the forming blank.
- the vacuum is 10" 4 Pa ⁇ 10" 3 Pa
- the temperature is raised to 1500 ⁇ 1800 °C at 10 ⁇ 20 °C / min
- the temperature is kept for 120 ⁇ 240min
- the furnace is cooled to 200 ⁇ 300 °C.
- the annealing step is a vacuum degree of 10 - 4 Pa - 10 - 3 Pa, and 10 - 20 °C / min to 800 ⁇ 900 °C, heat 240 ⁇ 480min, then cooled to 400 ° C 2 ⁇ 5 ° C / min, heat 120 ⁇ 300min, and then cooled to room temperature with the furnace.
- the working piston is lowered by a layer thickness
- the paving system is coated with new tantalum powder
- the laser beam is controlled and the new layer is scanned, so that the cycle is repeated, and the layers are superimposed until the three-dimensional sample is formed.
- the sintered powder is recovered into a powder cylinder, and the molded part is taken out to obtain a shaped blank, and the entire laser selective zone is sintered in a vacuum environment.
- a method of making a porous tantalum medical implant material is carried out as follows:
- Laser selective sintering The pure tantalum powder with a particle size of 5 ⁇ 1 Q ⁇ m is transported onto the forming platform, rolled and layered, and the UG 3D model file of the designed porous tantalum implant material is input into the molding equipment. Supporting software, and laser selective sintering; The process parameters of laser selective sintering are: laser power of 55 - 60W, scanning speed of 15 ⁇ 25 ⁇ / s, scanning pitch of 0.05 ⁇ 0.15 ⁇ , layer thickness of each layer is 70 ⁇ 75 ⁇ , the entire molding process is carried out in an argon atmosphere, and the purity of argon is greater than 99.999 ° /. ;
- the first stage is a high-temperature vacuum sintering stage, with a vacuum of 10 - 4 Pa to 10 - 3 Pa, and a temperature of 10 to 20 ° C / min to 1500 ° 1800 ° C, insulation 120 ⁇ 240min, with the furnace to 200 ⁇ 300 ° C, then 10 ⁇ 20 ° C / min to 1500 ⁇ 1800 ° C, insulation 180 ⁇ 240min, 5 ⁇ 10 ° C / min To 2000 ⁇ 2200 ° C, heat preservation 120 ⁇ 360min; the second stage is slow cooling stage, the vacuum is 10 - 4 Pa ⁇ 10 - 3 Pa; at a rate of 10 ⁇ 20 ° C / min to 1500 ⁇ 1600 ° C, keep warm for 30 ⁇ 60min; cool to 1200 ⁇ 1250 °C at 12 ⁇ 20 °C / min, keep warm for 60 ⁇ 90min; cool to 800 °C at 10
- the porous tantalum medical implant material prepared by the laser selective sintering process of the invention realizes complete three-dimensional communication of pores, which is consistent with the microstructure of human bone tissue, and has excellent biocompatibility and biosafety, and the method is also realized.
- the shape of the blank sample can be flexibly adjusted as needed.
- the porous tantalum medical implant material prepared by the invention has a density of up to 5.00 ⁇ 7. 00g/cm 3 , a high dispersion of pores and a porosity of 60 to 80%, and pores.
- Fully three-dimensional communication and uniform distribution, good biocompatibility, pore size can be 200 ⁇ ⁇ ⁇ 400 ⁇ ⁇ ; elastic modulus can reach 5.
- the preparation method of the invention has the advantages of simple and easy control; the whole preparation process is harmless, non-polluting and non-toxic, and has no side effects on the human body.
- Fig. 1 is a vertical microscopic analysis of the microstructure of a porous crucible prepared by the preparation method of the present invention; it can be observed from the drawing that the pores of the porous crucible obtained by the present invention are completely three-dimensionally connected and uniformly distributed.
- the present invention is specifically described by the following examples, and the following examples are intended to be illustrative of the invention and are not to be construed as limiting.
- a method for preparing a porous sputum medical implant material which transports pure strontium powder with a particle size of 5 ⁇ ⁇ onto a three-dimensional printing platform, and rolls the laminate, and the sample size to be prepared is ⁇ 10 x 100mm, and input the UG file into the molding equipment for laser selective sintering.
- the computer controls the two-dimensional scanning trajectory of the laser beam according to the prototype slice model, and selectively sinters the pure tantalum powder to form a layer of the part. After the powder is completed, the working piston is lowered by 50 ⁇ m, and the paving system is laid with a new one.
- each layer of the layer is 80 ⁇ thick, and the laser beam is controlled to scan and sinter the new layer, so that the cycle is repeated, and the layers are superimposed until the three-dimensional sample is formed.
- the molded sample is taken out, placed in a vacuum furnace for high-temperature vacuum sintering, and raised from room temperature to 1200 ° C at a rate of 10 to 15 ° C/min, and the temperature is 1.
- Oh, and the degree of vacuum is 1 X 10 - 4 Pa; The temperature is raised to 1500 ° C at 10 ° C / min, the temperature is 1.
- a method for preparing a porous sputum medical implant material which transports pure strontium powder with a particle size of 10 ⁇ onto a three-dimensional printing platform, rolls the laminate, and designs a sample size of ⁇ 10 X 100 mm, and
- the UG file is input into the molding equipment for laser selective sintering.
- the computer controls the two-dimensional scanning trajectory of the laser beam according to the prototype slice model, and selectively sinters the pure tantalum powder to form a layer of the part.
- the working piston is lowered by 50 ⁇ m, and the paving system is laid with a new one. Powder, control laser beam to sweep The new layer is sintered, so that it is reciprocated and layered until the three-dimensional sample is formed.
- the laser power is 65W
- the scanning speed is 15 ⁇ /s
- the scanning pitch is 0.1 ⁇
- the layer thickness of each layer is thick.
- the entire molding process was carried out in an argon atmosphere with an argon purity greater than 99.999 °/. .
- the molded sample was taken out, placed in a vacuum furnace for high-temperature vacuum sintering, raised from room temperature to 1250 ° C at a rate of 13 ° C / min, kept for 0.5 h, and the degree of vacuum was 1 x 10 - 4 Pa; at 20 ° C
- the rate of /min is raised to 1500 ° C, the temperature is 0.5 h, the degree of vacuum is 1 10 - 4 Pa ⁇ 1 10 - 3 Pa; the temperature is raised to 2200 ° C at 20 ° C / min, the temperature is 240 min, the vacuum is 1 ⁇ 10- 3 Pa; sintering is completed, the degree of vacuum of 1 10- 4 Pa ⁇ 1 10 " 3 Pa; at a rate of 15 ° C / min, cooled to 1550 ° C, holding LH; at a rate of 18 ° C / min cooling To 1200 ° C, heat for 1.5 h, cooled to 800 ° C at a rate of 12 ° C / min, and then
- the degree of vacuum is 10" 3 ⁇ 4 ⁇ 10-3 Pa; at 10 °C/min
- Rate is cooled to 1600 ° C, 30 min;
- the degree of vacuum is 10" 3 ⁇ 4 ⁇ 10-3 Pa; at 20 °C/min
- the rate of 10 ° C / min is raised from room temperature to 1800 ° C, the degree of vacuum is 10 - 4 Pa ⁇ 10 - 3 Pa, the temperature is raised to 800 ⁇ 120 min at 10 ° C / min, cooled to 300 ° C with the furnace, vacuum degree
- the degree of vacuum is 10—; to yjoi.
- the degree of vacuum is 10" 3 ⁇ 4 ⁇ 10-3 Pa; at 15 °C/min
- the degree of vacuum is 10—;
- the degree of vacuum is 10" 3 ⁇ 4 ⁇ 10-3 Pa; at 14 °C/min
- the rate is cooled to 1520 ° C, 55 min;
- the degree of vacuum is 10" 3 ⁇ 4 ⁇ 10-3 Pa; at 15 °C/min
- the rate is cooled to 1520 ° C, 45 min;
- the obtained porous tantalum product has three-dimensional complete connectivity, pore-to-hook distribution, and good biocompatibility.
- the test results are as follows:
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Dermatology (AREA)
- Medicinal Chemistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Inorganic Chemistry (AREA)
- Automation & Control Theory (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Materials For Medical Uses (AREA)
- Powder Metallurgy (AREA)
- Prostheses (AREA)
Abstract
一种多孔钽医用植入材料的制备方法,采用粒径≤10μm 纯钽粉为原料,直接进行激光选区烧结成型人骨金属仿生材料,激光选区烧结时的每层铺粉厚度在 60~80μm;再对成型的人骨金属仿生材料进行包括烧结、冷却得到多孔钽医用植入材料。采用上述激光选区烧结制得的成形坯料经烧结、冷却处理得到完全三维连通的多孔钽医用植入材料、与人体骨组织微观结构相一致,使该多孔金属植入材料生物相容性、生物安全性好;本发明方法还具有工艺设备简单、操作成本低,整个制备过程无污染、对人体无任何副作用、利于保证植入材料的生物安全性,同时成型速度快、非常利于工业化生产应用。
Description
说 明 书
一种采用激光选区烧结成型制备多孔钽医用植入材料的方法 技术领域
本发明涉及多孔医用金属植入材料的制备领域,特别涉及一种采 用激光选区烧结技术制备多孔医用金属植入材料的方法。
背景技术
多孔医用金属植入材料具有治疗骨组织创伤和股骨组织坏死等 重要而特殊的用途,现常见的这类材料有金属不锈钢、多孔金属钛等。 作为骨组织创伤和股骨组织坏死治疗使用的多孔植入材料,其孔隙度 应达 30 ~ 80%, 而且孔隙最好全部连通与均匀分布, 或根据需要孔隙 部分连通与均勾分布,使之既与人体的骨组织生长相一致, 又减轻了 材料本身的重量, 以适合人体植入使用。
而难熔金属钽, 由于它具有优秀的生物相容性和力学性能, 其多 孔材料有望作为替代前述等传统医用金属生物材料,成为主要作为骨 组织坏死治疗的生物材料。 由于金属钽对人体的无害、 无毒、 无副作 用, 以及随着国内外医学的飞速发展, 对钽作为人体植入材料认知的 进一步深入, 人们对人体用多孔金属钽材料的需求变得越来越迫切, 对其要求也越来越高。 其中作为多孔医用金属钽, 如果能具有很高的 均匀分布连通孔隙以及与人体相适应的物理机械性能,则是保证新生 骨组织正常生长的重要连接件构成材料。
目前多孔钽生物材料的制备方法主要有粉末松装烧结法、泡沫浸 渍烧结法, 浆料发泡法等等, 这些方法都需要应用模具。 而生物材料
最大特点是形状复杂, 对微小的细节要求高, 因此, 对成型技术提出 了很高的要求,然而传统的成型技术由于受到模具的限制而无法满足 要求。
发明内容
本发明的目的在于提供一种筒便快捷、成本低的多孔钽医用植入 材料的制备方法, 制得的多孔钽医用植入材料生物相容性好。
本发明目的通过如下方案实现:
一种多孔钽医用植入材料的制备方法, 其特征在于: 采用粒径
< 10 μ ηι (优选采用 5 ~ 10 μ m纯钽粉)纯钽粉为原料, 直接进行激光 选区烧结成型人骨金属仿生材料,激光选区烧结时每层的铺粉厚度在 60 ~ 80 μ ηι; 再对成型的人骨金属仿生材料进行包括烧结、 冷却得到 多孔钽医用植入材料。
采用上述激光选区烧结制得的成形坯料经烧结、冷却处理得到孔 隙完全三维连通的多孔钽医用植入材料、与人体骨组织微观结构相一 致, 使该多孔金属植入材料生物相容性、 生物安全性好。 根据相应植 入的需要,本发明还可通过调节激光选区烧结成型及烧结的工艺参数 来控制最终多孔钽的孔隙度、同时使其力学性能与人体相应的骨组织 相一致,避免多孔钽与人体力学性能不匹配而造成的应力集中从而影 响植入体的长期效果, 以此来满足不同的要求; 如调控相应工艺参数 可制备替代人体承重部位骨组织如股骨、 面股等多孔钽植入材料, 也 可制备替代人体非承重骨组织的多孔钽植入材料。本发明激光选区烧 结方法中采用的激光烧结器是公知的, 激光选区烧结技术( SLS )是
一种基于激光烧结的快速成型的技术, 采用激光有选择地分层烧结 固体粉末,并使烧结成型的固化层层层叠加生成所需形状的试样, 其整个工艺过程包括三维模型的建立及数据处理、 铺粉、 烧结成 形等, 目前, 可成功进行 SLS成型加工的材料有石蜡、 高分子、 金属、 陶瓷粉末和它们的复合粉末材料。 可根据需要调整成型样品 的形状,激光选区烧结器的使用是将设计好的三维模型文件输入到成 型设备配套软件中进行激光选区烧结, 这是本领域常规技术。 本发明 方法还具有工艺设备筒单、 操作成本低, 整个制备过程无污染、 对人 体无任何副作用、利于保证植入材料的生物安全性,同时成型速度快、 非常利于工业化生产应用。
进一步, 为了制得适合于替代人体承重骨组织的多孔钽医用植 入材料, 本发明激光选区烧结成型过程优选的工艺参数为: 激光功率 在 50 - 65W, 扫描速度为 15 - 25mm/s , 扫描间距为 0. 05 - 0. 15匪, 每层铺粉层厚为 60 ~ 80 μ ηι, 整个成型过程在氩气保护气氛中进行, 氩气纯度大于 99. 999°/。。
更具体地说, 本发明多孔钽医用植入材料的制备方法具体如下:
1、 激光选区烧结成型: 将粒径为 5 ~ 1 Q μ m纯钽粉输送到成型 平台上, 滚压铺层, 再将设计好的多孔钽植入材料的 UG三维模型文 件输入到成型设备配套软件, 并进行激光选区烧结; 激光选区烧结的 工艺参数为: 激光功率在 50 - 65W, 扫描速度为 15 ~ 25匪 /s , 扫描间 距为 0. 05 ~ 0. 15匪, 每层铺粉层厚为 60 ~ 80 μ ηι, 整个成型过程在氩 气保护气氛中进行, 氩气纯度大于 99. 999°/。;
2、 上述所得成型坯料的真空烧结、 冷却: 第一个阶段是高温真 空烧结阶段, 以 10~ 15°C/min的速率升至 1200 ~ 1250°C, 保温 30~ 60min, 真空度为 10— 4Pa ~ 10— 3Pa; 以 10 ~ 20°C/min的速率升至 1500 °C, 保温 30~60min, 真空度为 10— 4Pa ~ 10— 3Pa, 以 6 ~ 20°C/min的速 率升至 2000 ~ 2200°C, 保温 120~ 240min, 真空度为 10— 4Pa ~ 10— 3Pa; 第二个阶段为緩慢冷却阶段, 真空度为 10— 4Pa~10— 3Pa; 以 10~20°C /min的速率冷却至 1500 ~ 1600°C,保温 30~60min;以 12 - 20°C/min 的速率冷却至 1200 ~ 1250°C, 保温 60~90min; 以 10 ~ 20°C/min的 速率冷却至 800°C , 然后随炉冷却。 为了烧结得更均匀、透彻,使制得的多孔钽植入材料强韧性更好、 适合作为替代人体承重部位骨组织如股骨、 面股等多孔钽植入材料, 上述对成型坯料的烧结工艺优选按如下步骤进行: 在真空度为 10"4Pa~10"3Pa, 以 10 ~ 20°C/min升温至 1500 ~ 1800°C、 保温 120 ~ 240min、随炉冷至 200 ~ 300°C,再以 10 ~ 20°C /min升温至 1500 ~ 1800 °C、 保温 180~ 240min, 以 5 ~ 10°C/min升温至 2000 ~ 2200°C、 保温 120 ~ 360mino 为了更充分地消除多孔钽植入材料的内应力、 使其组织更均匀, 进一步提高韧性, 上述烧结、 冷却后还进行退火处理, 所述退火处理 步骤是真空度为 10— 4Pa~ 10— 3Pa, 以 10 ~ 20°C/min升温至 800 ~ 900 °C、 保温 240 ~ 480min, 再以 2~5°C/min冷至 400°C、 保温 120 ~ 300min, 然后随炉冷却至室温。
本发明所述的激光选区烧结成型过程采用的激光选区烧结装 置由粉末缸和成型缸组成, 工作时粉末缸活塞(送粉活塞)上升, 由铺粉辊将粉末在成型缸活塞(工作活塞)上均勾铺上一层, 计算
机根据原型的切片模型控制激光束的二维扫描轨迹, 有选择地烧 结输送的纯钽粉以形成零件的一个层面。 粉末完成一层后, 工作 活塞下降一个层厚, 铺粉系统铺上新的钽粉, 控制激光束再扫描 烧结新层, 如此循环往复, 层层叠加, 直到三维试样成型, 最后, 将未烧结的粉末回收到粉末缸中, 并取出成型件得到成型坯料, 整个激光选区烧结处于一个真空环境中。 最优选地, 一种制备多孔钽医用植入材料的方法,按以下步骤进 行:
1、 激光选区烧结成型: 将粒径为 5 ~ 1 Q μ m纯钽粉输送到成型 平台上, 滚压铺层, 再将设计好的多孔钽植入材料的 UG三维模型文 件输入到成型设备配套软件, 并进行激光选区烧结; 激光选区烧结的 工艺参数为: 激光功率在 55 - 60W, 扫描速度为 15 ~ 25匪 /s, 扫描间 距为 0.05 ~ 0.15匪, 每层铺粉层厚为 70 ~ 75 μηι, 整个成型过程在氩 气保护气氛中进行, 氩气纯度大于 99.999°/。;
2、 上述所得成型坯料的真空烧结、 冷却、 退火: 第一个阶段 是高温真空烧结阶段, 在真空度为 10— 4Pa~10— 3Pa, 以 10~20°C/min 升温至 1500 ~ 1800°C、 保温 120~ 240min、 随炉冷至 200 ~ 300°C , 再以 10~ 20°C/min升温至 1500 ~ 1800°C、保温 180~ 240min,以 5~ 10°C/min升温至 2000 ~ 2200°C、 保温 120~ 360min; 第二个阶段为 緩慢冷却阶段, 真空度为 10— 4Pa ~ 10— 3Pa; 以 10 ~ 20°C/min的速率冷 却至 1500 ~ 1600°C, 保温 30~60min; 以 12 ~ 20°C/min的速率冷却 至 1200 ~ 1250°C, 保温 60~90min; 以 10 ~ 20°C/min的速率冷却至 800°C, 然后随炉冷却; 第三个阶段为退火,真空度为 10— 4Pa~10— 3Pa, 以 10~20°C/min升温至 800 ~ 900°C、 保温 240 ~ 480min, 再以 2 ~ 5 °C/min冷至 400°C、 保温 120 ~ 300min, 然后随炉冷却至室温。
本发明具有如下的有益效果:
本发明激光选区烧结成型工艺制得的多孔钽医用植入材料实现 了孔隙完全三维连通, 其与人体骨组织微观结构相一致, 材料的生物 相容性、 生物安全性优异, 同时本方法还实现了根据需要灵活调整坯 料样品的形状。 结合优选的烧结后处理等工艺, 本发明制得的多孔钽 医用植入材料密度可达 5. 00 ~ 7. 00g/cm3, 孔隙的分散度高、 孔隙度 可达 60 ~ 80%, 孔隙完全三维连通且分布均勾、 生物相容性好, 孔径 可在 200 μ ηι ~ 400 μ ηι; 弹性模量可达 5. 0 ~ 6. 5Gpa、 弯曲强度可达 125 ~ 145Mpa、 抗压强度可达 80 ~ 90Mpa , 非常适合作为替代人体承 重骨组织的植入材料。 再者, 本发明制备方法工艺筒单、 易控; 整个 制备过程无害、 无污染、 无毒害粉尘, 对人体无任何副作用。
附图说明
图 1 是本发明所述制备方法制得多孔钽的微观结构的立式显微 镜分析图;从附图可观察到:本发明制得的多孔钽孔隙完全三维连通, 且分布均匀。 具体实施方式 下面通过实施例对本发明进行具体的描述,有必要在此指出的是 以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保 作出一些非本质的改进和调整。
实施例 1
一种多孔钽医用植入材料的制备方法, 将粒径为 5 μ ηι的纯钽粉 末输送到三维打印的平台上, 滚压铺层,设计要制备的样品尺寸为 φ
10 x 100mm,并将其 UG文件输入成型设备中,进行激光选区烧结成型。 计算机根据原型的切片模型控制激光束的二维扫描轨迹, 有选择 地烧结输送的纯钽粉以形成零件的一个层面, 粉末完成一层后, 工作活塞下降 50μηι, 铺粉系统铺上新的钽粉、 每层铺粉层厚为 80μηι, 控制激光束再扫描烧结新层, 如此循环往复, 层层叠加, 直到三维试样成型。 然后取出成型样品, 放入真空炉中进行高温 真空烧结, 以 10~ 15°C/min的速率从室温升至 1200°C, 保温 1. Oh, 真空度为 1 X 10— 4Pa; 以 10°C/min的速率升至 1500°C, 保温 1. Oh, 真空度为 1 X 10"4Pa~ 1 10— 3Pa; 以 6°C/min的速率升至 2100°C, 保 温 3h,真空度为 1 X 10— 3Pa;烧结完毕,真空度为 1 χ 10"4Pa~l 10"3Pa; 以 15°C/min的速率冷却至 1250°C, 保温 lh; 以 13°C/min的速率冷 却至 800°C, 保温 1.5h, 然后随炉冷却; 制得的多孔钽医用植入材料 孔隙完全三维连通, 发明人按 GB/T5163- 2006、 GB/T5249- 1985、 GB/T6886-2001等标准测得其密度为 5.31g/cm3, 孔隙度约为 70°/。, 抗 压强度 65.2MPa, 弯曲强度 73.8MPa, 弹性模量 2.6GPa。
实施例 2
一种多孔钽医用植入材料的制备方法,将粒径为 10 μηι的纯钽粉 末输送到三维打印的平台上, 滚压铺层,设计要制备的样品尺寸为 φ 10 X 100mm,并将其 UG文件输入成型设备中,进行激光选区烧结成型。 计算机根据原型的切片模型控制激光束的二维扫描轨迹, 有选择 地烧结输送的纯钽粉以形成零件的一个层面, 粉末完成一层后, 工作活塞下降 50μηι, 铺粉系统铺上新的钽粉, 控制激光束再扫
描烧结新层, 如此循环往复, 层层叠加, 直到三维试样成型; 激 光选区烧结过程中, 激光功率在 65W, 扫描速度为 15匪 /s, 扫描间距 为 0.1匪, 每层铺粉层厚为 70μηι, 整个成型过程在氩气保护气氛中 进行, 氩气纯度大于 99.999°/。。 然后取出成型样品, 放入真空炉中 进行高温真空烧结, 以 13°C/min的速率从室温升至 1250°C, 保温 0.5h, 真空度为 1 x 10— 4Pa; 以 20°C/min的速率升至 1500°C, 保温 0.5h, 真空度为 1 10— 4Pa ~ 1 10— 3Pa; 以 20°C/min的速率升至 2200 °C,保温 240min,真空度为 1 χ 10— 3Pa;烧结完毕,真空度为 1 10— 4Pa ~ 1 10"3Pa; 以 15°C/min的速率冷却至 1550°C,保温 lh; 以 18°C/min 的速率冷却至 1200°C,保温 1.5h,以 12°C/min的速率冷却至 800°C, 然后随炉冷却; 制得的多孔钽医用植入材料孔隙完全三维连通, 发明 人按 GB/T5163- 2006、 GB/T5249- 1985、 GB/T6886- 2001等标准测得其 密度为 5.82g/cm3, 孔隙度约为 65°/。, 抗压强度 70.5MPa, 弯曲强度 82.3MPa, 弹性模量 3.3GPa。
实施例 3 ~ 7: 按以下步骤及工艺参数进行, 其余同实施例 1。
3 18°C/min的速率从室温升至 1580°C, 真空度为 10— 4Pa~10— 3Pa, 保温 195min、 随炉冷至 200°C, 真空 以 12°C/min 升温至 900 度为 10"3Pa; °C、 保温 280min, 再以 3 以 13°C/min的速率升至 1600°C, 保温 °C/min冷至 400°C、 保温
222min, 以 10°C/min升温至 2000 ~ 170min, 然后随炉冷却至
2200°C、 保温 120min; 至 yjoi.
真空度为 10" ¾~10— 3Pa; 以 10°C/min
的速率冷却至 1600°C, 30min;
以 20°C/min的速率冷却至 1250°C, 保
温 60min;
以 20°C/min的速率冷却至 800°C, 然
后随炉冷却
4 20°C/min的速率从室温升至 1500°C, 不进行退火步骤。
SL 240min, 随炉冷至 300°C,真空度
为 10— ;
以 10°C/min的速率升至 1800°C, 保温
180min, 真空度为 10— ;
以 5°C/min的速率升至 2000°C,
360min, 真空度为 l(TPa;
真空度为 10" ¾~10— 3Pa; 以 20°C/min
的速率冷却至 1500°C , 40min;
以 12°C/min的速率冷却至 1220°C, 保
温 70min;
以 10°C/min的速率冷却至 800°C, 然
后随炉冷却
10°C/min的速率从室温升至 1800°C, 真空度为 10— 4Pa~10— 3Pa, 以 10°C/min 升温至 800 ^120min, 随炉冷至 300°C,真空度
°C、 保温 240min, 再以 2 为 10¾; °C/min冷至 400°C、 保温 以 20°C/min的速率升至 1500°C, 保温 300min, 然后随炉冷却至
240min, 真空度为 10— ; 至 yjoi.
以 7°C/min的速率升至 2100°C,
200min, 真空度为 l(TPa;
真空度为 10" ¾~10— 3Pa; 以 15°C/min
的速率冷却至 1550 °C , 50min;
以 18°C/min的速率冷却至 1240°C, 保
温 80min;
以 16°C/min的速率冷却至 800°C, 然
后随炉冷却
14°C/min的速率从室温升至 1600°C, 真空度为 10— 4Pa~10— 3Pa, 显 185min, 随炉冷至 230°C,真空度 以 17°C/min 升温至 820 为 10¾; °C、 保温 480min, 再以 5 以 12°C/min的速率升至 1700°C, 保温 °C/min冷至 400°C、 保温 210min; 120min, 然后随炉冷却至 以 9°C/min的速率升至 2150°C, 至 yjoi.
300min, 真空度为 10— ;
真空度为 10" ¾~10— 3Pa; 以 14°C/min
的速率冷却至 1520 °C , 55min;
以 18°C/min的速率冷却至 1220°C, 保
温 80min;
以 14°C/min的速率冷却至 800°C, 然
后随炉冷却
17°C/min的速率从室温升至 1750°C, 真空度为 10— 4Pa~10— 3Pa, 显 135min, 随炉冷至 260°C,真空度 以 20°C/min 升温至 850 为 10¾; °C、 保温 420min, 再以 4 以 15°C/min的速率升至 1650°C, 保温 °C/min冷至 400°C、 保温
220min; 270min, 然后随炉冷却至 以 7.5°C/min的速率升至 2150°C, 保 至 yjoi.
温 160min, 真空度为 10— 3Pa;
真空度为 10" ¾~10— 3Pa; 以 15°C/min
的速率冷却至 1520 °C , 45min;
以 16°C/min的速率冷却至 1220°C, 保
温 60min;
以 13°C/min的速率冷却至 800°C, 然
后随炉冷却
所得多孔钽成品三维完全连通、 孔隙均勾分布, 生物相容性好, 按前述方法检测结果如下:
Claims
1、 一种采用激光选区烧结成型制备多孔钽医用植入材料的方法, 其特征在于: 采用粒径 10 μηι纯钽粉为原料, 直接进行激光选区烧 结成型人骨金属仿生材料, 激光选区烧结时的每层铺粉厚度在 60 ~ 80μηι; 再对成型的人骨金属仿生材料进行包括烧结、 冷却得到多孔 钽医用植入材料。
2、 如权利要求 1所述的制备方法, 其特征在于: 所述纯钽粉原 料的粒径为 5~10μηι。
3、 如权利要求 1或 2所述的制备方法, 其特征在于: 所述激光 选区烧结过程中, 激光功率在 50 - 65W, 扫描速度为 15~25mm/s, 扫 描间距为 0.05- 0.15匪,每层铺粉层厚为 60~80μηι, 整个成型过程 在氩气保护气氛中进行, 氩气纯度大于 99.999°/。。
4、 如权利要求 1所述的制备方法, 其特征在于, 按如下步骤进 行:
a、 激光选区烧结成型: 将粒径为 5 ~ 10 μηι纯钽粉输送到成型 平台上, 滚压铺层, 再将设计好的多孔钽植入材料的 UG三维模型文 件输入到成型设备配套软件, 并进行激光选区烧结成型; 激光选区烧 结的工艺参数为: 激光功率在 50 - 65W, 扫描速度为 15~25匪 /s, 扫 描间距为 0.05- 0.15匪,每层铺粉层厚为 60~80μηι, 整个成型过程 在氩气保护气氛中进行, 氩气纯度大于 99.999°/。;
b、 将 a步骤所得的成型坯料进行真空烧结、 冷却: 第一个阶 段是高温真空烧结 P介段,以 10 ~ 15 °C /mi n的速率升至 1200 ~ 1250°C ,
保温 30 ~ 60min, 真空度为 10— 4Pa ~ 10— 3Pa; 以 10 ~ 20°C/min的速率 升至 1500°C, 保温 30~60min, 真空度为 10— 4Pa ~ 10— 3Pa, 以 6 ~ 20 °C/min 的速率升至 2000 ~ 2200°C, 保温 120~ 240min, 真空度为 10— 4Pa ~ 10— 3Pa;第二个阶段为緩慢冷却阶段,真空度为 10— 4Pa ~10"3Pa; 以 10~ 20°C/min的速率冷却至 1500 ~ 1600°C, 保温 30~60min; 以 12 ~ 20°C/min的速率冷却至 1200 ~ 1250°C ,保温 60~90min;以 10 ~ 20°C/min的速率冷却至 800°C, 然后随炉冷却。
5、 如权利要求 1或 2所述的制备方法, 其特征在于: 对成型坯 料的烧结工艺按如下步骤进行: 在真空度为 10— 4Pa~10— 3Pa, 以 10~ 20°C/min升温至 1500 ~ 1800°C、保温 120 ~ 240min、 随炉冷至 200 ~ 300°C,再以 10~ 20°C/min升温至 1500 ~ 1800°C、保温 180~ 240min, 以 5 ~ 10°C/min升温至 2000 ~ 2200°C、 保温 120~ 360min。
6、 如权利要求 3所述的制备方法, 其特征在于: 对成型坯料的 烧结工艺按如下步骤进行: 在真空度为 10— 4Pa~10— 3Pa, 以 10~20°C /min升温至 1500 ~ 1800°C、 保温 120 ~ 240min、 随炉冷至 200 ~ 300 °C, 再以 10~20°C/min升温至 1500 ~ 1800°C、 保温 180 ~ 240min, 以 5 ~ 10°C/min升温至 2000 ~ 2200°C、 保温 120~ 360min。
7、 如权利要求 1、 2或 4所述的制备方法, 其特征在于: 对成型 坯料烧结、 冷却后还进行退火处理, 所述退火处理步骤是真空度为 10— 4Pa~ 10— 3Pa, 以 10~20°C/min升温至 800 ~ 900°C、 保温 240 ~ 480min, 再以 2 ~ 5°C/min冷至 400°C、 保温 120 ~ 300min, 然后随炉 冷却至室温。
8、 如权利要求 3所述的制备方法, 其特征在于: 对成型坯料烧 结、 冷却后还进行退火处理, 所述退火处理步骤是真空度为 10— 4Pa~
10— 3Pa, 以 10~20°C/min升温至 800 ~ 900°C、 保温 240 ~ 480min, 再 以 2 ~ 5°C/min冷至 400°C、保温 120 ~ 300min,然后随炉冷却至室温。
9、 如权利要求 5所述的制备方法, 其特征在于: 对成型坯料烧 结、 冷却后还进行退火处理, 所述退火处理步骤是真空度为 10— 4Pa~ 10— 3Pa, 以 10~20°C/min升温至 800 ~ 900°C、 保温 240 ~ 480min, 再 以 2 ~ 5°C/min冷至 400°C、保温 120 ~ 300min,然后随炉冷却至室温。
10、 如权利要求 6所述的制备方法, 其特征在于: 对成型坯料烧 结、 冷却后还进行退火处理, 所述退火处理步骤是真空度为 10— 4Pa~ 10— 3Pa, 以 10~20°C/min升温至 800 ~ 900°C、 保温 240 ~ 480min, 再 以 2 ~ 5°C/min冷至 400°C、保温 120 ~ 300min,然后随炉冷却至室温。
11、 如权利要求 1所述的制备方法, 其特征在于, 按以下步骤进 行: a、 激光选区烧结成型: 将粒径为 5 ~ 10 μηι纯钽粉输送到成型 平台上, 滚压铺层, 再将设计好的多孔钽植入材料的 UG三维模型文 件输入到成型设备配套软件, 并进行激光选区烧结; 激光选区烧结的 工艺参数为: 激光功率在 55 - 60W, 扫描速度为 15 ~ 25匪 /s, 扫描间 距为 0.05 ~ 0.15匪, 每层铺粉层厚为 70 ~ 75 μηι, 整个成型过程在氩 气保护气氛中进行, 氩气纯度大于 99.999°/。; b、 上述所得成型坯料的真空烧结、 冷却、 退火: 第一个阶段 是高温真空烧结阶段, 在真空度为 10— 4Pa~10— 3Pa, 以 10~20°C/min 升温至 1500 ~ 1800°C、 保温 120~ 240min、 随炉冷至 200 ~ 300°C , 再以 10~ 20°C/min升温至 1500 ~ 1800°C、保温 180~ 240min,以 5~ 10°C/min升温至 2000 ~ 2200°C、 保温 120~ 360min; 第二个阶段为 緩慢冷却阶段, 真空度为 10— 4Pa ~ 10— 3Pa; 以 10 ~ 20°C/min的速率冷 却至 1500 ~ 1600°C, 保温 30~60min; 以 12 ~ 20°C/min的速率冷却 至 1200 ~ 1250°C, 保温 60~90min; 以 10 ~ 20°C/min的速率冷却至 800°C, 然后随炉冷却; 第三个阶段为退火,真空度为 10— 4Pa~10— 3Pa, 以 10~20°C/min升温至 800 ~ 900°C、 保温 240 ~ 480min, 再以 2 ~ 5
°C/min冷至 400°C、 保温 120 ~ 300min, 然后随炉冷却至室温。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210022123.6 | 2012-01-31 | ||
CN2012100221236A CN102796910B (zh) | 2012-01-31 | 2012-01-31 | 一种采用激光选区烧结成型制备多孔钽医用植入材料的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013113249A1 true WO2013113249A1 (zh) | 2013-08-08 |
Family
ID=47196202
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/088149 WO2013113249A1 (zh) | 2012-01-31 | 2012-12-31 | 一种采用激光选区烧结成型制备多孔钽医用植入材料的方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102796910B (zh) |
WO (1) | WO2013113249A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108480639A (zh) * | 2018-05-30 | 2018-09-04 | 吉林大学 | 一种电子束钛合金粉末熔融成形的铺粉装置 |
CN113500194A (zh) * | 2021-06-17 | 2021-10-15 | 西安理工大学 | 一种有序多级孔结构钽骨植入体的制备方法 |
CN115488341A (zh) * | 2022-09-26 | 2022-12-20 | 吉林大学 | 一种具有仿生结构的低模量生物医用钛合金一体化制备方法 |
US11589967B2 (en) | 2016-07-15 | 2023-02-28 | Cudeti Sagl | Implant |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102796910B (zh) * | 2012-01-31 | 2013-12-11 | 重庆润泽医药有限公司 | 一种采用激光选区烧结成型制备多孔钽医用植入材料的方法 |
CN105559947A (zh) * | 2015-12-15 | 2016-05-11 | 广州中国科学院先进技术研究所 | 一种由O-intersecting lines单元填充的多孔植入体的制备方法 |
CN105935772B (zh) * | 2016-07-14 | 2017-11-17 | 四川天塬增材制造材料有限公司 | 一种具有仿生表面结构的金属3d打印制备方法 |
CN107598166B (zh) * | 2017-09-13 | 2020-01-24 | 西安赛隆金属材料有限责任公司 | 基于电子束选区熔化技术制备多孔钽医用植入材料的方法 |
CN109261970B (zh) * | 2018-10-23 | 2020-10-16 | 武汉三迪创为科技有限公司 | 3d打印设备及使用该设备制备医用多孔钽金属植入材料的方法 |
CN109771105B (zh) * | 2019-01-22 | 2020-12-08 | 赵德伟 | 一种3d打印多孔钽椎间融合器 |
CN110742711B (zh) * | 2019-06-05 | 2021-12-14 | 湖南普林特医疗器械有限公司 | 一种激光增材制造-高温真空烧结的医用仿骨小樑结构多孔钽骨植入假体制造方法 |
CN110756810A (zh) * | 2019-06-05 | 2020-02-07 | 湖南普林特医疗器械有限公司 | 一种3d打印金属钽后处理及高温真空烧结降低氧含量的方法 |
CN114247883A (zh) * | 2020-09-25 | 2022-03-29 | 安泰科技股份有限公司 | 一种多孔结构难熔金属制件制造方法 |
CN113427022B (zh) * | 2021-07-02 | 2023-09-22 | 长沙理工大学 | 一种3d打印生物医用金属钽的高强高韧后处理方法及金属钽 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2218242C2 (ru) * | 1999-02-11 | 2003-12-10 | Физический институт им. П.Н. Лебедева РАН | Способ изготовления медицинских имплантатов из биосовместимых материалов |
CN101660076A (zh) * | 2009-10-14 | 2010-03-03 | 北京师范大学 | 有机泡沫浸浆烧结法制备宏观网状多孔钽 |
CN102166651A (zh) * | 2011-03-29 | 2011-08-31 | 黑龙江科技学院 | 一种采用激光扫描制造多孔金属零件的方法 |
CN102205144A (zh) * | 2010-03-31 | 2011-10-05 | 重庆润泽医疗器械有限公司 | 医用金属植入材料多孔钽及其制备方法 |
CN102220508A (zh) * | 2011-05-18 | 2011-10-19 | 宝鸡市力诺有色金属材料有限公司 | 医用多孔钽的制备方法及用途 |
CN102796910A (zh) * | 2012-01-31 | 2012-11-28 | 重庆润泽医药有限公司 | 一种采用激光选区烧结成型制备多孔钽医用植入材料的方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5052506B2 (ja) * | 2006-04-13 | 2012-10-17 | 佐川印刷株式会社 | 人工骨の製造方法 |
DE102007041775B3 (de) * | 2007-09-04 | 2008-10-02 | Eads Deutschland Gmbh | Verfahren zum Herstellen eines Formkörpers mit schaumartiger Struktur |
CN101507839B (zh) * | 2009-03-27 | 2012-10-10 | 陕西科技大学 | 一种仿生人骨生物材料的制备方法 |
CN101709419B (zh) * | 2009-12-18 | 2011-09-28 | 北京有色金属研究总院 | 一种泡沫钽及其制备方法 |
CN101856724B (zh) * | 2010-06-13 | 2012-07-18 | 华南理工大学 | 医用镁合金金属零件的选区激光熔化成型装置及方法 |
-
2012
- 2012-01-31 CN CN2012100221236A patent/CN102796910B/zh active Active
- 2012-12-31 WO PCT/CN2012/088149 patent/WO2013113249A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2218242C2 (ru) * | 1999-02-11 | 2003-12-10 | Физический институт им. П.Н. Лебедева РАН | Способ изготовления медицинских имплантатов из биосовместимых материалов |
CN101660076A (zh) * | 2009-10-14 | 2010-03-03 | 北京师范大学 | 有机泡沫浸浆烧结法制备宏观网状多孔钽 |
CN102205144A (zh) * | 2010-03-31 | 2011-10-05 | 重庆润泽医疗器械有限公司 | 医用金属植入材料多孔钽及其制备方法 |
CN102166651A (zh) * | 2011-03-29 | 2011-08-31 | 黑龙江科技学院 | 一种采用激光扫描制造多孔金属零件的方法 |
CN102220508A (zh) * | 2011-05-18 | 2011-10-19 | 宝鸡市力诺有色金属材料有限公司 | 医用多孔钽的制备方法及用途 |
CN102796910A (zh) * | 2012-01-31 | 2012-11-28 | 重庆润泽医药有限公司 | 一种采用激光选区烧结成型制备多孔钽医用植入材料的方法 |
Non-Patent Citations (1)
Title |
---|
NIU, AIJUN ET AL.: "Processing Research on Shaping Porous Metal Material Based on SLS Technology", METALLIC FUNCTIONAL MATERIALS, vol. 16, no. 1, February 2009 (2009-02-01), pages 13 - 15 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11589967B2 (en) | 2016-07-15 | 2023-02-28 | Cudeti Sagl | Implant |
CN108480639A (zh) * | 2018-05-30 | 2018-09-04 | 吉林大学 | 一种电子束钛合金粉末熔融成形的铺粉装置 |
CN108480639B (zh) * | 2018-05-30 | 2023-11-21 | 吉林大学 | 一种电子束钛合金粉末熔融成形的铺粉装置 |
CN113500194A (zh) * | 2021-06-17 | 2021-10-15 | 西安理工大学 | 一种有序多级孔结构钽骨植入体的制备方法 |
CN113500194B (zh) * | 2021-06-17 | 2023-06-20 | 西安理工大学 | 一种有序多级孔结构钽骨植入体的制备方法 |
CN115488341A (zh) * | 2022-09-26 | 2022-12-20 | 吉林大学 | 一种具有仿生结构的低模量生物医用钛合金一体化制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN102796910A (zh) | 2012-11-28 |
CN102796910B (zh) | 2013-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013113249A1 (zh) | 一种采用激光选区烧结成型制备多孔钽医用植入材料的方法 | |
CN103740963B (zh) | 采用激光选区烧结成型制备多孔钽医用植入材料的方法 | |
CN107598166B (zh) | 基于电子束选区熔化技术制备多孔钽医用植入材料的方法 | |
CN102796909B (zh) | 一种采用三维打印成型制备多孔钽医用植入材料的方法 | |
Li et al. | Fabrication and characterization of porous Ti6Al4V parts for biomedical applications using electron beam melting process | |
CN102796907B (zh) | 一种生物医用多孔植入材料的制备方法 | |
CN110508788B (zh) | 一种锌或锌合金或其复合材料组织工程支架的制备方法 | |
CN108380891B (zh) | 一种钛基生物医用梯度复合材料的制备方法 | |
KR101742724B1 (ko) | 동결 성형을 이용한 다공성 Ti 금속 지지체 제조 방법 | |
CN103849792B (zh) | 一种适用于替代人体牙骨组织的多孔钽 | |
CN102796892B (zh) | 一种牙骨替代医用多孔金属材料的制备方法 | |
CN103740964B (zh) | 医用多孔金属植入材料的制备方法 | |
CN102796904B (zh) | 一种替代承重骨组织的医用多孔金属材料及其制备方法 | |
CN102796908B (zh) | 一种多孔钽医用植入材料的制备方法 | |
CN103740962B (zh) | 牙骨替代医用多孔金属材料的制备方法 | |
CN102796899A (zh) | 一种医用多孔金属植入材料的制备方法 | |
CN102793945B (zh) | 一种替代牙骨的医用多孔钽材料及其制备方法 | |
CN102796898A (zh) | 一种医用多孔金属植入材料的制备方法 | |
CN103768655B (zh) | 一种多孔钽骨架的制备方法 | |
CN102796900B (zh) | 一种医用多孔金属材料及其制备方法 | |
CN103691004B (zh) | 医用多孔金属植入材料的制备方法 | |
CN103691003B (zh) | 多孔钽医用植入材料的制备方法 | |
CN103736147B (zh) | 替代承重骨组织的医用多孔金属材料及其制备方法 | |
CN103667763B (zh) | 医用多孔金属植入材料的制备方法 | |
CN104225673B (zh) | 一种替代牙骨的医用多孔金属材料及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12867207 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12867207 Country of ref document: EP Kind code of ref document: A1 |