CN102796909B - 一种采用三维打印成型制备多孔钽医用植入材料的方法 - Google Patents
一种采用三维打印成型制备多孔钽医用植入材料的方法 Download PDFInfo
- Publication number
- CN102796909B CN102796909B CN201210022122.1A CN201210022122A CN102796909B CN 102796909 B CN102796909 B CN 102796909B CN 201210022122 A CN201210022122 A CN 201210022122A CN 102796909 B CN102796909 B CN 102796909B
- Authority
- CN
- China
- Prior art keywords
- insulation
- tantalum
- porous tantalum
- speed
- vacuum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/02—Inorganic materials
- A61L27/04—Metals or alloys
- A61L27/047—Other specific metals or alloys not covered by A61L27/042 - A61L27/045 or A61L27/06
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/56—Porous materials, e.g. foams or sponges
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/10—Formation of a green body
- B22F10/14—Formation of a green body by jetting of binder onto a bed of metal powder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/30—Process control
- B22F10/34—Process control of powder characteristics, e.g. density, oxidation or flowability
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/60—Treatment of workpieces or articles after build-up
- B22F10/64—Treatment of workpieces or articles after build-up by thermal means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/11—Making porous workpieces or articles
- B22F3/1146—After-treatment maintaining the porosity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y80/00—Products made by additive manufacturing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/08—Alloys with open or closed pores
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C27/00—Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
- C22C27/02—Alloys based on vanadium, niobium, or tantalum
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2430/00—Materials or treatment for tissue regeneration
- A61L2430/02—Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/20—Refractory metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/165—Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mechanical Engineering (AREA)
- Public Health (AREA)
- Dermatology (AREA)
- Medicinal Chemistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Epidemiology (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Automation & Control Theory (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Powder Metallurgy (AREA)
- Materials For Medical Uses (AREA)
Abstract
一种制备多孔钽医用植入材料的方法,将纯钽粉与成型剂混合后的混合钽粉送入三维打印机的打印平台滚压铺层,三维打印机的打印头喷射粘结剂将所述混合钽粉粘连形成二维平面,工作台下降80~100μm进行下一层的加工,逐层堆积成型,去除未能粘结的钽粉颗粒得到初成型的样品,然后经包括脱脂、真空烧结及冷却等后处理制得多孔钽医用植入材料;所述纯钽粉与成型剂的体积比为60~80:20~40,所述粘结剂为质量浓度1%的α-氰基丙烯酸乙酯。本发明制备方法制得的多孔钽医用植入材料孔隙完全三维连通、生物相容性好,同时力学性能与人体承重骨组织相一致。
Description
技术领域
本发明涉及多孔医用金属植入材料的制备领域,特别是涉及一种采用三维打印成型技术制备多孔医用金属植入材料的方法。
背景技术
多孔医用金属植入材料具有治疗骨组织创伤和股骨组织坏死等重要而特殊的用途,现常见的这类材料有金属不锈钢、多孔金属钛等。作为骨组织创伤和股骨组织坏死治疗使用的多孔植入材料,其孔隙度应达30~80%,而且孔隙最好全部连通与均匀分布,或根据需要孔隙部分连通与均匀分布,使之既与人体的骨组织生长相一致,又减轻了材料本身的重量,以适合人体植入使用。
而难熔金属钽,由于它具有优秀的生物相容性和力学性能,其多孔材料有望作为替代前述等传统医用金属生物材料,成为主要作为骨组织坏死治疗的生物材料。由于金属钽对人体的无害、无毒、无副作用,以及随着国内外医学的飞速发展,对钽作为人体植入材料认知的进一步深入,人们对人体用多孔金属钽材料的需求变得越来越迫切,对其要求也越来越高。其中作为多孔医用金属钽,如果能具有很高的均匀分布连通孔隙以及与人体相适应的物理机械性能,则是保证新生骨组织正常生长的重要连接件构成材料。
目前多孔钽生物材料的制备方法主要有粉末松装烧结法、泡沫浸渍烧结法,浆料发泡法等等,这些方法都需要应用模具。而生物材料最大特点是形状复杂,对微小的细节要求高,因此,对成型技术提出了很高的要求,然而传统的成型技术由于受到模具的限制而无法满足要求。
发明内容
本发明的目的在于提供一种简便快捷、成本低的多孔钽医用植入材料的制备方法。
本发明目的是这样实现的:
一种制备多孔钽医用植入材料的方法,其特征在于:将纯钽粉与成型剂混合后的混合钽粉送入三维打印机的打印平台滚压铺层,三维打印机的打印头喷射粘结剂将所述混合钽粉粘连形成二维平面,工作台下降80~100μm进行下一层的加工,逐层堆积成型,去除未能粘结的钽粉颗粒得到初成型的样品,然后经包括脱脂、真空烧结及冷却等后处理制得多孔钽医用植入材料;所述纯钽粉与成型剂的体积比为60~80∶20~40,成型剂为聚乙烯醇、硬脂酸、硬脂酸锌、石蜡中的一种或多种,所述粘结剂为质量浓度0.5~1.2%的α-氰基丙烯酸乙酯。
采用上述三维打印制得的坯料经脱脂去除粘结剂、成型剂,再经常规烧结、冷却处理可制得完全三维连通的多孔钽医用植入材料、与人体骨组织微观结构相一致,其孔隙率为50%~75%,使该多孔金属植入材料生物相容性、生物安全性好。上述脱脂、烧结等后处理可按常规后处理进行。可以调节三维打印的成型及烧结的工艺参数来控制最终多孔钽的孔隙度等来满足不同的要求,如调控相应工艺参数可制备替代人体承重部位骨组织如股骨、面股等多孔钽植入材料,也可制备替代人体非承重骨组织的多孔钽植入材料。本发明方法中采用的三维打印机是公知的,可根据需要调整成型样品的形状,三维打印机的使用是将设计好的三维模型文件输入到三维打印设备配套软件中进行三维打印,这是本领域常规技术。本发明方法具有设备简单、精度高(50~80μm),体积小,成本低,工作中无污染,成型速度快等优点。
优选地,上述纯钽粉的粉末粒径为5~20μm,上述成型剂优选为硬脂酸。
具体地说,上述后处理分为以下几个阶段:第一阶段为脱去所加入的成型剂和粘结剂,以1~5℃/min的速率从室温升至400℃,保温30~60min,以0.5~1.5℃/min的速率从400℃升至600~800℃,保温60~120min,真空度保持在10-3Pa左右;第二个阶段,高温真空烧结阶段,以10~15℃/min的速率升至1200~1250℃,保温30~60min,真空度为10-4Pa~10-3Pa;以10~20℃/min的速率升至1500℃,保温30~60min,真空度为10-4Pa~10-3Pa,以6~20℃/min的速率升至2000~2200℃,保温120~240min,真空度为10-4Pa~10-3Pa;第三个阶段为缓慢冷却热处理阶段,真空度为10-4Pa~10-3Pa;以10~20℃/min的速率冷却至1500~1600℃,保温30~60min;以12~20℃/min的速率冷却至1200~1250℃,保温60~90min;以10~20℃/min的速率冷却至800℃,然后随炉冷却。
为了烧结得更均匀、透彻,使制得的多孔钽植入材料强韧性更好、适合作为替代人体承重部位骨组织如股骨、面股等多孔钽植入材料,上述烧结工艺优选按如下步骤进行:在真空度为10-4Pa~10-3Pa,以10~20℃/min升温至1500~1800℃、保温120~240min、随炉冷至200~300℃,再以10~20℃/min升温至1500~1800℃、保温180~240min,以5~10℃/min升温至2000~2200℃、保温120~360min。
为了更充分地消除多孔钽植入材料的内应力、使其组织更均匀,进一步提高韧性,上述烧结、冷却后还进行退火处理,所述退火处理步骤是真空度为10-4Pa~10-3Pa,以10~20℃/min升温至800~900℃、保温240~480min,再以2~5℃/min冷至400℃、保温120~300min,然后随炉冷却至室温。
最优选地,一种制备多孔钽医用植入材料的方法,按以下步骤进行:
1、将粉末粒径为5-20μm的纯钽粉与硬脂酸成型剂按体积比60~80∶20~40混合,充分搅拌均匀,然后研磨,过200目筛,使粉末团聚成较大颗粒,颗粒与颗粒之间不结块;
2、将上述制备好的混合颗粒输送到打印平台上,滚压铺层,再将设计好的多孔钽植入材料的UG三维模型文件输入到三维打印设备配套软件,并进行三维打印;打印头在混合颗粒上喷射质量浓度为1%的α-氰基丙烯酸乙酯粘结剂,每一层粘结剂最好喷3遍以粘结更牢固,将混合颗粒粉末粘连在一起,形成二维平面,加工完一层后,工作台下降80~100μm,进行下一层的加工,逐层堆积成型;成型后放置直至粘结剂完全变干,去除未能粘结的钽粉颗粒得到初成型的样品,然后进行脱脂、真空烧结及冷却等后处理得到多孔钽医用植入材料;所述脱脂为脱去所加入的成型剂和粘结剂,以1~5℃/min的速率从室温升至400℃,保温30~60min,以0.5~1.5℃/min的速率从400℃升至600~800℃,保温60~120min,真空度保持在10-3Pa左右;所述烧结按如下步骤进行:在真空度为10-4Pa~10-3Pa,以10~20℃/min升温至1500~1800℃、保温120~240min、随炉冷至200~300℃,再以10~20℃/min升温至1500~1800℃、保温180~240min,以5~10℃/min升温至2000~2200℃、保温120~360min;所述烧结后的冷却为真空度10-4Pa~10-3Pa;以10~20℃/min的速率冷却至1500~1600℃,保温30~60min;以12~20℃/min的速率冷却至1200~1250℃,保温60~90min;以10~20℃/min的速率冷却至800℃,然后随炉冷却;所述冷却后还进行退火处理,所述退火处理步骤是真空度为10-4Pa~10-3Pa,以10~20℃/min升温至800~900℃、保温240~480min,再以2~5℃/min冷至400℃、保温120~300min,然后随炉冷却至室温。
本发明具有如下有益效果:
本发明成型工艺采用的三维打印技术(Three DimensionalPrinfing)是一种基于喷射的快速成型的技术,可以制备高分子、金属、陶瓷等多种粉末材料;根据三维模型,打印头在薄层粉末上喷射粘结剂形成二维的平面,并逐层堆积成型,然后对形成的模型进行脱脂、烧结等后处理,最终获得所需的样品,三维打印技术结合三维建模是一种真正意义上的数字化、精确化的加工,它具有设备简单,精度高(50~80μm),成本低,体积小,工作中无污染,成型速度快等优点。
本发明制备方法制得的多孔钽医用植入材料孔隙完全三维连通、生物相容性好,同时力学性能与人体承重骨组织相一致,这就避免了多孔钽与人体力学性能不匹配而造成的应力集中,从而影响植入体的长期效果的技术问题。经检测本发明制得的多孔钽医用植入材料密度在5.00~7.00g/cm3,孔隙的分散度高、孔隙度在60~70%,孔隙完全三维连通且分布均匀、生物相容性好,孔径约为200μm~300μm;弹性模量可达5.5~6.5Gpa、弯曲强度可达125~158Mpa、抗压强度可达80~90Mpa。再者,所述的制备方法工艺简单、易控;整个制备过程无害、无污染、无毒害粉尘,对人体无副作用。
附图说明
图1是本发明所述制备方法制得多孔钽的微观结构的立式显微镜分析图;从附图可观察到:本发明制得的多孔钽孔隙完全三维连通,且分布均匀。
具体实施方式
下面通过实施例对本发明进行具体的描述,有必要在此指出的是以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,该领域的技术人员可以根据上述本发明内容对本发明作出一些非本质的改进和调整。
实施例1
一种制备多孔钽医用植入材料的方法,首先将粒径为15μm的纯钽粉末与硬脂酸按体积比70∶30充分混合,然后研磨,过200目筛网,使粉末团聚成较大颗粒,但颗粒与颗粒之间不结块;将上述制备好的混合钽颗粒输送到三维打印的平台上,滚压铺层,设计要制备的样品尺寸为φ10×100mm,并将其UG文件输入三维打印设备中,根据试样每一层截面的信息,打印头在上述混合钽粉颗粒上喷射质量浓度为1%的α-氰基丙烯酸乙酯粘结剂形成二维平面,每一层粘结剂喷3遍,加工完一层后,工作台下降80μm,进行下一层的加工,逐层堆积成型,直至最终试样的完成,试样成型后,去除表面没有粘住的混合钽粉颗粒,放置24小时;然后对试样进行脱脂、高温烧结及冷却等后处理步骤:以3℃/min的速率从室温升至400℃,保温50min,氩气通入速率0.5L/min,以1.5℃/min的速率从400℃升至800℃,保温100min,真空度维持在1×10-3Pa;以10~15℃/min的速率从室温升至1200℃,保温1.0h,真空度为1×10-4Pa;以10℃/min的速率升至1500℃,保温1.0h,真空度为1×10-4Pa~1×10-3Pa;以6℃/min的速率升至2100℃,保温3h,真空度为1×10-3Pa;烧结完毕,真空度为1×10-4Pa~1×10-3Pa;以15℃/min的速率冷却至1250℃,保温1h;以13℃/min的速率冷却至800℃,保温1.5h,然后随炉冷却;发明人按GB/T5163-2006、GB/T5249-1985、GB/T6886-2001等标准对上述多孔钽成品材料密度、孔隙率及各种力学性能进行检测,经测试其密度为5.01g/cm3,孔隙度约为70%,孔径约在300μm,抗压强度62.5MPa,弯曲强度75.3MPa,弹性模量2.1Gpa;其多孔钽材料孔隙完全三维连通且均匀分布。
实施例2
一种制备多孔钽医用植入材料的方法,首先将粒径为20μm的纯钽粉末与硬脂酸锌按体积比60∶40充分混合,然后研磨,过200目筛网,使粉末团聚成较大颗粒,但颗粒与颗粒之间不结块;将上述制备好的混合钽颗粒输送到三维打印的平台上,滚压铺层,设计好要制备的样品,并将其UG文件输入三维打印设备中,根据试样每一层截面的信息,打印头在上述混合钽粉颗粒上喷射质量浓度为0.8%的α-氰基丙烯酸乙酯粘结剂形成二维平面,每一层粘结剂喷3遍,加工完一层后,工作台下降100μm,进行下一层的加工,逐层堆积成型,直至最终试样的完成,试样成型后,去除表面没有粘住的混合钽粉颗粒,放置24小时;然后对试样进行脱脂、高温烧结及冷却等后处理步骤:以1.2℃/min的速率从室温升至400℃,保温60min,氩气通入速率1.0L/min,以0.5℃/min的速率从400℃升至600℃,保温120min,真空度维持在1×10-3Pa;烧结:以12℃/min的速率从室温升至1250℃,保温30min,真空度为1×10-4Pa;以20℃/min的速率升至1500℃,保温30min,真空度为1×10-4Pa~1×10-3Pa;以20℃/min的速率升至2200℃,保温4h,真空度为1×10-4Pa;冷却:真空度为1×10-4Pa~1×10-3Pa;以10℃/min的速率冷却至1500℃,保温30min;以20℃/min的速率冷却至1200℃,保温1.0h;以10℃/min的速率冷却至800℃,然后随炉冷却至室温;退火处理:真空度为10-4Pa,以20℃/min升温至800℃、保温310min,再以3℃/min冷至400℃、保温220min,然后随炉冷却至室温。发明人按GB/T5163-2006、GB/T5249-1985、GB/T6886-2001等标准对上述多孔钽成品材料密度、孔隙率及各种力学性能进行检测,经测试其密度为5.53g/cm3,孔隙度约为66%,孔径约在240μm,抗压强度71MPa,弯曲强度92.5MPa,弹性模量5.6GPa;其多孔钽材料孔隙完全三维连通且均匀分布。
实施例3~8:按以下步骤及工艺参数进行,其余同实施例1。
所得多孔钽成品三维完全连通、孔隙均匀分布,生物相容性好,按前述方法检测结果如下:
实施例 | 3 | 4 | 5 | 6 | 7 | 8 |
密度(g/cm3) | 6.78 | 6.21 | 5.38 | 7.00 | 5.83 | 6.05 |
孔隙率(%) | 55 | 60 | 72 | 50 | 65 | 63 |
弹性模量(GPa) | 2.5 | 5.8 | 6.3 | 2.8 | 3.5 | 4.3 |
弯曲强度(MPa) | 72 | 133 | 148 | 130 | 100 | 116 |
抗压强度(MPa) | 68 | 85 | 82 | 75 | 63 | 70 |
Claims (1)
1.一种制备多孔钽医用植入材料的方法,其特征在于,按以下步骤进行:
a、将粉末粒径为5~20μm的纯钽粉与硬脂酸成型剂按体积比60~80:20~40混合,充分搅拌均匀,然后研磨,过200目筛,使粉末团聚成较大颗粒,颗粒与颗粒之间不结块;
b、将上述制备好的混合颗粒输送到打印平台上,滚压铺层,再将设计好的多孔钽植入材料的UG三维模型文件输入到三维打印设备配套软件,并进行三维打印;打印头在混合颗粒上喷射质量浓度为1%的α-氰基丙烯酸乙酯粘结剂,每一层粘结剂喷3遍,将混合颗粒粉末粘连在一起,形成二维平面,加工完一层后,工作台下降80~100μm,进行下一层的加工,逐层堆积成型;成型后放置直至粘结剂完全变干,去除未能粘结的钽粉颗粒得到初成型的样品,然后进行脱脂、真空烧结、冷却及退火得到多孔钽医用植入材料;所述脱脂为脱去所加入的成型剂和粘结剂,以1~5℃/min的速率从室温升至400℃,保温30~60min,以0.5~1.5℃/min的速率从400℃升至600~800℃,保温60~120min,真空度保持在10-3Pa;所述烧结按如下步骤进行:在真空度为10-4Pa~10-3Pa,以10~20℃/min升温至1500~1800℃、保温120~240min、随炉冷至200~300℃,再以10~20℃/min升温至1500~1800℃、保温180~240min,以5~10℃/min升温至2000~2200℃、保温120~360min;所述烧结后的冷却为真空度10-4Pa~10-3Pa;以10~20℃/min的速率冷却至1500~1600℃,保温30~60min;以12~20℃/min的速率冷却至1200~1250℃,保温60~90min;以10~20℃/min的速率冷却至800℃,然后随炉冷却;所述冷却后还进行退火处理,所述退火处理步骤是真空度为10-4Pa~10-3Pa,以10~20℃/min升温至800~900℃、保温240~480min,再以2~5℃/min冷至400℃、保温120~300min,然后随炉冷却至室温。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210022122.1A CN102796909B (zh) | 2012-01-31 | 2012-01-31 | 一种采用三维打印成型制备多孔钽医用植入材料的方法 |
PCT/CN2012/088143 WO2013113248A1 (zh) | 2012-01-31 | 2012-12-31 | 一种采用三维打印成型制备多孔钽医用植入材料的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210022122.1A CN102796909B (zh) | 2012-01-31 | 2012-01-31 | 一种采用三维打印成型制备多孔钽医用植入材料的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102796909A CN102796909A (zh) | 2012-11-28 |
CN102796909B true CN102796909B (zh) | 2014-05-21 |
Family
ID=47196201
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210022122.1A Active CN102796909B (zh) | 2012-01-31 | 2012-01-31 | 一种采用三维打印成型制备多孔钽医用植入材料的方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102796909B (zh) |
WO (1) | WO2013113248A1 (zh) |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102796909B (zh) * | 2012-01-31 | 2014-05-21 | 重庆润泽医药有限公司 | 一种采用三维打印成型制备多孔钽医用植入材料的方法 |
CN103061194B (zh) * | 2012-12-11 | 2015-06-24 | 金红叶纸业集团有限公司 | 制备纸张的方法及该纸张 |
CN103805972B (zh) * | 2014-01-17 | 2015-12-30 | 北京航空航天大学 | 一种采用模板法构筑超轻空心管微点阵金属材料及其制备方法 |
JP6458416B2 (ja) * | 2014-09-16 | 2019-01-30 | 株式会社リコー | 立体造形装置、立体造形物の製造方法 |
ES2930531T3 (es) | 2016-07-26 | 2022-12-16 | Ppg Ind Ohio Inc | Partículas que tienen superficies funcionalizadas con compuestos de vinilo 1,1-diactivado |
EP3490726B1 (en) | 2016-07-26 | 2022-11-30 | PPG Industries Ohio, Inc. | Multi-layer curable compositions containing 1,1-di-activated vinyl compound products and related processes |
US10961403B2 (en) | 2016-07-26 | 2021-03-30 | Ppg Industries Ohio, Inc. | Electrodepositable coating compositions containing 1,1-di-activated vinyl compounds |
US11634524B2 (en) | 2016-07-26 | 2023-04-25 | Ppg Industries Ohio, Inc. | Acid-catalyzed curable coating compositions containing 1,1 di-activated vinyl compounds and related coatings and processes |
ES2930756T3 (es) | 2016-07-26 | 2022-12-21 | Ppg Ind Ohio Inc | Composiciones de recubrimiento curables catalizadas por ácido que contienen compuestos vinílicos 1,1-diactivado y recubrimientos y procesos relacionados |
EP3490784B1 (en) | 2016-07-26 | 2022-10-12 | PPG Industries Ohio, Inc. | Three-dimensional printing processes using 1,1-di-activated vinyl compounds |
US11130867B2 (en) | 2016-07-26 | 2021-09-28 | Ppg Industries Ohio, Inc. | Curable compositions containing 1,1-di-activated vinyl compounds and related coatings and processes |
WO2018022780A1 (en) | 2016-07-26 | 2018-02-01 | Ppg Industries Ohio, Inc. | Polyurethane coating compositions containing 1,1-di-activated vinyl compounds and related coatings and processes |
US10934411B2 (en) | 2016-09-30 | 2021-03-02 | Ppg Industries Ohio, Inc. | Curable compositions containing 1,1-di-activated vinyl compounds that cure by pericyclic reaction mechanisms |
CN107598166B (zh) * | 2017-09-13 | 2020-01-24 | 西安赛隆金属材料有限责任公司 | 基于电子束选区熔化技术制备多孔钽医用植入材料的方法 |
CN107499047B (zh) * | 2017-09-26 | 2020-05-08 | 北华大学 | 一种用于3d打印雪雕的雪层叠加方法 |
CN107901419B (zh) * | 2017-12-21 | 2019-09-27 | 北京工业大学 | 一种退火处理调控pa3200 3d打印成型件表面润湿性的方法 |
CN109108293B (zh) * | 2018-09-30 | 2021-03-16 | 南京智能高端装备产业研究院有限公司 | 一种高效率金属3dp打印方法 |
CN109261970B (zh) * | 2018-10-23 | 2020-10-16 | 武汉三迪创为科技有限公司 | 3d打印设备及使用该设备制备医用多孔钽金属植入材料的方法 |
CN109626967A (zh) * | 2019-01-25 | 2019-04-16 | 西北工业大学 | 一种光固化3d打印氧化铝陶瓷素坯的真空脱脂方法 |
CN110756810A (zh) * | 2019-06-05 | 2020-02-07 | 湖南普林特医疗器械有限公司 | 一种3d打印金属钽后处理及高温真空烧结降低氧含量的方法 |
CN110742711B (zh) * | 2019-06-05 | 2021-12-14 | 湖南普林特医疗器械有限公司 | 一种激光增材制造-高温真空烧结的医用仿骨小樑结构多孔钽骨植入假体制造方法 |
KR20220127283A (ko) * | 2020-01-16 | 2022-09-19 | 엔테그리스, 아이엔씨. | 다공성 소결 금속 바디 및 다공성 소결 금속 바디를 제조하는 방법 |
CN113894285A (zh) * | 2020-06-22 | 2022-01-07 | 苏州麦斯特医疗科技有限公司 | 一种人工假体及其制备方法 |
CN112359257A (zh) * | 2020-08-18 | 2021-02-12 | 长沙南方钽铌有限责任公司 | 一种钽合金、钽合金无缝管制备方法及钽合金无缝管 |
CN113967743B (zh) * | 2021-03-05 | 2023-08-18 | 暨南大学 | 一种结构形状复杂且耐磨损的316不锈钢件及其制备方法与应用 |
CN114986880B (zh) * | 2022-05-19 | 2024-04-19 | 西北工业大学 | 3d打印氧缺陷含量可控的锌基氧化物前驱体浆料及制备 |
CN118143279B (zh) * | 2024-02-03 | 2024-10-01 | 哈尔滨工业大学(威海) | 一种基于3d打印的多孔钽骨植入物及其制备方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101927346A (zh) * | 2010-09-09 | 2010-12-29 | 上海交通大学医学院附属第九人民医院 | 基于三维打印技术的医用多孔纯钛植入体成型的制备方法 |
CN102205144A (zh) * | 2010-03-31 | 2011-10-05 | 重庆润泽医疗器械有限公司 | 医用金属植入材料多孔钽及其制备方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050281856A1 (en) * | 2004-05-10 | 2005-12-22 | Mcglohorn Jonathan | Implantable biostructure comprising an osteoconductive member and an osteoinductive material |
WO2005117836A2 (en) * | 2004-05-28 | 2005-12-15 | Therics, Inc. | Polymeric microbeads having characteristics favorable for bone growth, and process including three dimensional printing upon such microbeads |
CN101660076A (zh) * | 2009-10-14 | 2010-03-03 | 北京师范大学 | 有机泡沫浸浆烧结法制备宏观网状多孔钽 |
CN102220508B (zh) * | 2011-05-18 | 2012-11-21 | 宝鸡市力诺有色金属材料有限公司 | 医用多孔钽的制备方法 |
CN102796909B (zh) * | 2012-01-31 | 2014-05-21 | 重庆润泽医药有限公司 | 一种采用三维打印成型制备多孔钽医用植入材料的方法 |
-
2012
- 2012-01-31 CN CN201210022122.1A patent/CN102796909B/zh active Active
- 2012-12-31 WO PCT/CN2012/088143 patent/WO2013113248A1/zh active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102205144A (zh) * | 2010-03-31 | 2011-10-05 | 重庆润泽医疗器械有限公司 | 医用金属植入材料多孔钽及其制备方法 |
CN101927346A (zh) * | 2010-09-09 | 2010-12-29 | 上海交通大学医学院附属第九人民医院 | 基于三维打印技术的医用多孔纯钛植入体成型的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN102796909A (zh) | 2012-11-28 |
WO2013113248A1 (zh) | 2013-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102796909B (zh) | 一种采用三维打印成型制备多孔钽医用植入材料的方法 | |
CN102796910B (zh) | 一种采用激光选区烧结成型制备多孔钽医用植入材料的方法 | |
Dewidar et al. | Processing and mechanical properties of porous 316L stainless steel for biomedical applications | |
CN102796907B (zh) | 一种生物医用多孔植入材料的制备方法 | |
CN101927346A (zh) | 基于三维打印技术的医用多孔纯钛植入体成型的制备方法 | |
CN107824784B (zh) | 一种轻质高强高阻尼多孔镍钛形状记忆合金的制备方法 | |
WO2012063904A1 (ja) | 多孔質インプラント素材 | |
Gülsoy et al. | Particle morphology influence on mechanical and biocompatibility properties of injection molded Ti alloy powder | |
CN102796892B (zh) | 一种牙骨替代医用多孔金属材料的制备方法 | |
CN106282625A (zh) | 一种超细晶硬质合金的近净成形方法 | |
CN111375758A (zh) | 一种钛或钛合金粉末的烧结方法 | |
CN102796904B (zh) | 一种替代承重骨组织的医用多孔金属材料及其制备方法 | |
CN102796901B (zh) | 一种医用多孔金属植入材料的制备方法 | |
CN102796908B (zh) | 一种多孔钽医用植入材料的制备方法 | |
CN103740962B (zh) | 牙骨替代医用多孔金属材料的制备方法 | |
CN104940991B (zh) | 一种替代牙骨的医用多孔钽材料及其制备方法 | |
Salleh et al. | Effect of space holders on fabrication of porous titanium alloy-hydroxyapatite composite through powder injection molding | |
WO2012063905A1 (ja) | 多孔質インプラント素材 | |
CN107891152A (zh) | 一种可植入且具有缓冲吸能特性的泡沫钛制备方法 | |
CN102796898A (zh) | 一种医用多孔金属植入材料的制备方法 | |
CN103691003B (zh) | 多孔钽医用植入材料的制备方法 | |
Shao et al. | Near-net shape processing of spherical high Nb-TiAl alloy powder by gelcasting | |
CN103736147B (zh) | 替代承重骨组织的医用多孔金属材料及其制备方法 | |
CN102796900A (zh) | 一种医用多孔金属材料及其制备方法 | |
CN103740966B (zh) | 制备替代承重骨组织的医用多孔金属材料的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CB03 | Change of inventor or designer information |
Inventor after: Ye Lei Inventor after: Lv Furong Inventor before: Ye Lei |
|
COR | Change of bibliographic data |