WO2013044779A1 - 一种医用多孔金属材料的制备方法 - Google Patents

一种医用多孔金属材料的制备方法 Download PDF

Info

Publication number
WO2013044779A1
WO2013044779A1 PCT/CN2012/081865 CN2012081865W WO2013044779A1 WO 2013044779 A1 WO2013044779 A1 WO 2013044779A1 CN 2012081865 W CN2012081865 W CN 2012081865W WO 2013044779 A1 WO2013044779 A1 WO 2013044779A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
cool
vacuum
rate
keep warm
Prior art date
Application number
PCT/CN2012/081865
Other languages
English (en)
French (fr)
Inventor
郝莉娜
叶雷
Original Assignee
重庆润泽医药有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆润泽医药有限公司 filed Critical 重庆润泽医药有限公司
Publication of WO2013044779A1 publication Critical patent/WO2013044779A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1121Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
    • B22F3/1125Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers involving a foaming process
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/047Other specific metals or alloys not covered by A61L27/042 - A61L27/045 or A61L27/06
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/02Alloys based on vanadium, niobium, or tantalum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the invention relates to a method for preparing a medical porous metal implant material, in particular to a method for preparing a medical porous metal implant material which replaces dense bone tissue.
  • Porous medical metal implant materials have important and special applications for treating bone tissue wounds, femoral tissue necrosis, and replacing dense bone tissues such as teeth. Common materials such as porous metal stainless steel and porous metal titanium are common materials.
  • the porosity should be 30 ⁇ 80%, and the pores are preferably all connected and evenly distributed, or as needed to conform to the bone tissue growth of the human body. , and reduce the weight of the material itself, suitable for human implant use.
  • the refractory metal ⁇ / ⁇ due to its excellent biocompatibility, its porous material is expected to replace the traditional medical metal biomaterials mentioned above. Because metal ruthenium/ruthenium is harmless to the human body, non-toxic, no side effects, and with the rapid development of medicine at home and abroad, the understanding of ⁇ / ⁇ as a human implant material is further deepened. The demand for ⁇ / ⁇ materials is becoming more and more urgent, and the requirements for them are getting higher and higher. Among them, as a porous medical implant metal ⁇ / ⁇ , if it can have a high uniform distribution of connected pores and physical and mechanical properties compatible with the human body, it is expected to be a new type of bone tissue replacement material.
  • porous metal material for medical implantation it is basically a powder sintering method as a general porous metal material, in particular, a metal in a powder sintering method for obtaining a porous metal foam structure with pore communication and uniform distribution. Drying of the powder slurry on the organic foam after drying and sintering is referred to as foam impregnation.
  • the porous metal material obtained by powder sintering generally has a very good metal mechanical property, and the main reason is how to arrange the support and elimination relationship of the pore-forming medium and the collapse problem in the sintering process of the metal powder.
  • porous ruthenium/ruthenium by metal powder sintering, and in particular, the porous ruthenium/iridium powder sintering method for the purpose of obtaining medical implant materials has been reported in the literature.
  • the porous metal obtained is either used as a filter material, or used for aerospace and other high temperature applications rather than as a medical metal implant material, and the porous metal processed is also non-porous.
  • porous tantalum US5282861 discloses an open-celled tantalum material for use in cancellous bone implants, cells and tissue receptors and its preparation.
  • the porous crucible is made of pure commercial crucible.
  • the carbon skeleton obtained by thermal degradation of the polyurethane precursor is a scaffold.
  • the carbon skeleton has multiple dodecahedrons, and the inside is a grid-like structure.
  • Hole, high porosity Up to 98%, the commercial pure ruthenium is bonded to the carbon skeleton by chemical vapor deposition and permeation to form a porous metal microstructure, which is simply referred to as a chemical deposition method.
  • the porous tantalum material obtained by this method has a tantalum layer thickness of 40 60 m; in the whole porous material, the helium weight accounts for about 99%, and the carbon skeleton weight accounts for about 1%. Further, the literature further describes that the porous material has a compressive strength of 50 70 MPa, an elastic modulus of 2.5 3.5 GPa, a tensile strength of 63 MPa, and a plastic deformation amount of 15%.
  • a porous crucible for medical implant materials such as teeth, such as teeth, the mechanical properties of the material, such as ductility, are obviously insufficient, and it will affect the subsequent processing of the porous tantalum material itself, such as molded parts. Cutting, etc. Also in the products obtained by the aforementioned metal powder sintering method, there are such deficiencies.
  • An object of the present invention is to provide a method for preparing a medical porous metal material which is excellent in toughness and is suitable for use in replacing dental bone.
  • the invention relates to a method for preparing a medical porous metal material, which is characterized in that: the powder is mixed with polyvinyl alcohol and sodium hydrogencarbonate to form a mixed powder, and the mixed powder is pressed into an organic foam at 50 100 MPa to form, degrease, Sintering, cooling and heat treatment steps to obtain a medical porous tantalum material;
  • the sintering step is a vacuum of 10 - 4 Pa 10 - 3 Pa, a temperature of 10 20 ° C / min to 1500 1800 ° C, insulation 120 240 min, with the furnace Cool to 200 300 ° C, then increase the temperature to 1500 1800 ° C at 10 20 ° C / min, 180 240 min insulation, 5 10 ° C / min to 2000 2200 ° C insulation 120 360min;
  • the heat treatment step is vacuum 10 - 4 Pa 10 - 3 Pa, heat up to 800 900 ° C at 10 20 ° C / min, heat 240 480 min, then cool to 400 ° C at 25
  • the raw material tantalum powder used in the present invention has an average particle diameter of less than 43 ⁇ m and an oxygen content of less than 0.1%, and is a commercially available product; the above polyvinyl alcohol and sodium hydrogencarbonate are also commercially available products.
  • the above polyvinyl alcohol mainly functions as a molding, but at the same time, it also has a function of pore formation, and the above sodium hydrogencarbonate functions as a pore.
  • the vacuum environment of the present invention preferably employs a vacuum condition of a vacuum of 10 - 4 Pa 10 - 3 P a .
  • the above organic foam is preferably a polyurethane foam, further preferably having a pore diameter of 0.48 0.89 mm and a density of 0.015 g/cm 3 0.035 g/cm 3 and a hardness of more than 50° (most preferably a pore diameter of 0.56 0.72). 0. 025g/cm 3 , hardness 50° ⁇ 80°) in polyurethane foam.
  • the inventors further studied and found that if the above-mentioned preparation is not well controlled, although the medical implant material suitable for replacing the dental bone as described above can be obtained, the product qualification rate is not high, and the stability of the process is not ideal. Affecting its industrial scale production: If the powder is pressed and formed, it is easy to be delaminated and uneven after pressing, and some cracks may occur after degreasing.
  • the amount of polyvinyl alcohol in the mixed powder is 5 to 10%, and the amount of sodium hydrogencarbonate is 20 to 30. %
  • the balance is tantalum powder, in terms of volume percent (by volume percent, the unit directly calculated by the final porous tantalum material, in the above mixed powder weighing is still calculated according to the density of the corresponding substance
  • polyvinyl alcohol accounts for 7 to 9%
  • sodium hydrogencarbonate accounts for 26 to 29%
  • the balance is barium powder
  • the pressure in the above press molding process is preferably 70 to 80 MPa.
  • the above degreasing process is 0. 5 ° C / mir! in order to make the body of the degreasing process more stable, reduce the part of the body body deformation, the pore size is not uniform, so as to further improve the yield and quality stability, the above degreasing process is 0. 5 ° C / mir!
  • the temperature is gradually increased to 400 to 800 ° C at a rate of ⁇ 3 ° C / min, argon gas is introduced into a protective atmosphere and held for 60 min to 240 min; further preferably at a rate of 2.5 to 3 ° C / min gradually heated to 400 ⁇
  • argon gas is introduced to form a protective atmosphere and kept for 150 min to 240 min.
  • the temperature is gradually increased to 400 to 800 ° C at a rate of 2.5 ° C / min, and argon gas is introduced to form a protective atmosphere and kept for 220 minutes.
  • the conditions of the above-mentioned degreasing process include: from 1 to TC / min rate from room temperature to 400 ° C, holding 60 to 120 min, at a rate of 1. 5 ⁇ 2. 5 ° C / min from 400 ° C Rise to 600 ⁇ 800 °C, keep warm for 180 ⁇ 240min.
  • the strength of the prepared medical porous tantalum material is higher, and the above sintering step preferably has a vacuum degree of 10 - 4 Pa to 10 - 3 Pa, and is heated at 12 to 15 ° C / min.
  • the heat treatment step is a vacuum degree of 10 - 4 Pa to 10 - 3 Pa, a temperature of 15 ° C / min to 800 to 900 ° C, and a heat retention of 260 to 320 min. Then, it was cooled to 400 ° C at 3 ° C / min, kept for 120 min, and then cooled to room temperature at 18 ° C / min ⁇ 23 ° C / min.
  • the cooling conditions after the above vacuum sintering further include: the degree of vacuum is not lower than 10 - 3 P a , and is not higher than 25 ° C / min, not lower than the lCTC / min decreasing cooling rate mode, segmenting the sintered porous body Cool down to 800 ° C, each holding time is 30 min ⁇ 90 min, and then cooled to room temperature with the furnace.
  • the cooling condition after the above vacuum sintering is: a degree of vacuum of 10 - 4 Pa ⁇ 10 - 3 P a ; at 10 to 20 ° C / m in Cool down to 1500 ⁇ 1600 ° C, keep warm for 30 ⁇ 60min; cool to 1200 ⁇ 1250 °C at 12 ⁇ 20 °C/min, keep warm for 60 ⁇ 90min; cool at 10 ⁇ 20 °C/min to 800 ° C, then cooled with the furnace.
  • metal ruthenium and osmium are very similar, and the above methods are also suitable for the preparation of medical porous ruthenium materials.
  • the porous crucible preparation method of the invention adopts a pure physical molding method, so that the content of impurities in the final porous tantalum material is extremely low, and the biocompatibility and biosafety are effectively improved; the steps of press molding, degreasing, sintering and annealing of the present invention are carried out. Optimization of process conditions, high yield, better uniformity of finished pore size, more stable preparation process, good quality stability, effectively eliminating thermal stress, making the structure of porous tantalum material more uniform, and effectively improving the mechanics of porous tantalum The performance, the toughness is also greatly improved, and the density is also effectively controlled, so that it has good comfort as a substitute material for the bone.
  • the preparation process of the invention makes the finished product high in yield and stable in production, and the product qualification rate can be as high as 96%.
  • the porosity of the porous ruthenium obtained by the present invention is uniform and continuous, and the biocompatibility is good.
  • the impurity content of the porous ruthenium is less than 0.2%, the density can be up to 10. 34 ⁇ 11. 67g/cm 3 , the porosity can be Up to 30 ⁇ 38%, pore diameter up to 30 ⁇ 50 ⁇ m; elastic modulus up to 6. 0 ⁇ 7. 0Gpa, elongation up to 14% ⁇ 15%, bending strength up to 130 ⁇ 140Mpa, compressive strength Up to 150 ⁇ 170 MPa, the porous enamel of the present invention is very suitable for replacing medical bone implant materials.
  • Example 1 Weighing polyvinyl alcohol, an average particle diameter of less than 43 ⁇ m, an oxygen content of less than 0.1%, and a mixture of bismuth powder and sodium hydrogencarbonate are uniformly mixed into a mixed powder, wherein polyvinyl alcohol accounts for 8% and sodium hydrogencarbonate accounts for 27%. ⁇ powder accounts for 65%, both in volume percent. Pressing and forming: The above-mentioned mixed powder is added to an injection molding machine and pressed at a pressure of 81 MPa to a polyurethane foam (pore diameter: 0. 48 to 0. 89 mm, density: 0. 015 g/cm 3 to 0. 035 g/cm 3 , hardness: 50 or more. ) Forming.
  • Dehumidification treatment a vacuum of 10 - 4 Pa, with argon as a protective atmosphere, at a temperature increase rate of 2. 2 ° C / min from room temperature to 400 ° C, holding for 85 min; then heating at 1.8 ° C / min The rate was raised from 400 ° C to 800 ° C and the holding time was 220 min.
  • Vacuum sintering The degree of vacuum is 10 - 4 Pa ⁇ 10 - 3 Pa, the temperature is raised to 1800 ° C at 13 ° C / min, the temperature is kept for 200 min, cooled to 200 ⁇ 300 ° C with the furnace, and then raised to 17 ° C / min to 1800 ° C, holding 230min, heating at 7 ° C / min to 2000 ⁇ 2200 ° C, holding 300min.
  • Cooling treatment after vacuum sintering vacuum degree is 10 - 4 Pa, cooling to 1500 ⁇ 1600 ° C at a rate of 10 ⁇ 20 ° C / min, holding for 30 ⁇ 60min, cooling at a rate of 12 ⁇ 20 ° C / min to 1200 ⁇ 1250 ° C, keep warm for 60 ⁇ 90min, cool to 800 °C at a rate of 10 ⁇ 20 °C / min, and then cool with the furnace.
  • Heat treatment vacuum degree of 10- 4 Pa ⁇ 10- 3 Pa, at 15 ° C / min was heated to 800 ⁇ 900 ° C, insulation 260 ⁇ 320min, then cooled to 400 ° C at 3 ° C / min, incubated 120min, It was further cooled to room temperature at 18 ° C / min to 23 ° C / min.
  • the inventors have finished the above porous concrete according to GB/T5163_2006, GB/T5249_1985, GB/T6886-2001 and other standards.
  • Material density, porosity, pore size and various mechanical properties of porous detected impurity content of less than 0.2%, a uniform pore distribution, density of 11. 52g / Cm 3, a porosity of 35%, an average pore diameter of 40 m , elastic modulus 6Gpa, elongation of 15%, bending strength 138MPa, compressive strength 165MPa
  • Example 2 Weigh polyvinyl alcohol, an average particle size of less than 43 ⁇ m, an oxygen content of less than 0.1%, and a mixture of bismuth powder and sodium bicarbonate to form a mixed powder, wherein polyvinyl alcohol accounts for 7% and sodium hydrogencarbonate accounts for 28%. ⁇ powder accounts for 65%, both in volume percent.
  • Press molding the above mixed powder is added to an injection molding machine and pressed at 66 MPa to a polyurethane foam (pore diameter 0. 48 0. 89 density 0. 015 g/cm 3 0. 035 g/cm 3 , hardness greater than 50°) .
  • Degreasing treatment The temperature was gradually increased to 750 ° C at a rate of 2.5 ° C / min, and argon gas was introduced to form a protective atmosphere and kept for 120 minutes.
  • Vacuum sintering The degree of vacuum is 10 - 4 Pa 10 - 3 Pa, the temperature is raised to 1600 ° C at 12 ° C / min, the temperature is 190 min, cooled to 200 300 ° C with the furnace, and then raised to 1500 ° at 19 ° C / min. C, heat preservation for 220min, heat up to 2000 2200 ° C at 10 ° C / min, heat preservation for 320 min, and then carry out conventional cooling treatment.
  • Heat treatment The degree of vacuum is 10 - 4 Pa 10 - 3 Pa, the temperature is raised to 800 900 ° C at 10 ° C / min, the temperature is kept for 240 min, then cooled to 400 ° C at 2 ° C / min, the temperature is kept for 300 min, and the furnace is cooled to Room temperature.
  • the impurity content is less than 0.2%
  • the impurity content of the porous material is less than 0.2%
  • the impurity content is less than 0.2%
  • the pore distribution is uniform, the density is 11.67g/cm 3 , the porosity is 30%, the elongation is 14.5%, the average pore diameter is 33 m, the elastic modulus is 7. 0GPa, the bending strength is 131MPa, the compressive strength is 150MPa.
  • the 5%, sodium bicarbonate accounted for 8.5%, the sodium sulphate and the sodium bicarbonate were mixed to form a mixed powder, wherein the polyvinyl alcohol accounted for 8.5%, sodium bicarbonate accounted for 29. 5% and bismuth powder account for 62%, both in volume percent.
  • Press molding The above mixed powder is added to an injection molding machine and pressed at a pressure of 55 MPa to a polyurethane foam (pore diameter 0. 48 0. 89 density 0. 015 g/cm 3 0. 035 g/cm 3 , hardness greater than 50°). .
  • Degreasing treatment Vacuum degree 10 - 4 Pa, argon gas was used as a protective atmosphere, and the temperature was gradually increased to 400 ° C at a rate of 2.5 ° C / min, and argon gas was introduced to form a protective atmosphere and kept for 240 minutes.
  • Vacuum sintering The vacuum degree is 10 - 4 Pa, the temperature is raised to 1800 ° C at 15 ° C / min, the temperature is kept for 200 min, the furnace is cooled to 200 300 ° C, and then heated to 1800 ° C at 16 ° C / min, and the temperature is maintained for 240 min. The temperature was raised to 2000 2200 ° C at 5 ° C / min, and kept for 250 min, and subjected to conventional cold treatment.
  • Heat treatment The degree of vacuum is 10 - 3 Pa.
  • the temperature is raised to 800 900 ° C at 20 ° C / min, the temperature is kept for 480 min, then cooled to 400 ° C at 5 ° C / min, kept for 120 min and then cooled to room temperature at 18 ° C / min. .
  • the impurity content is less than 0.2%
  • the impurity content of the porous material is less than 0.2%
  • the impurity content is less than 0.2%
  • the pore distribution is uniform, the density is 10.35g/cm 3 , the porosity is 37%, the average pore diameter is 46 m, the elastic modulus is 6. 3GPa, the elongation is 14%, the bending strength is 135MPa, and the compressive strength is 155MPa.
  • Example 4 Weigh polyvinyl alcohol, an average particle diameter of less than 43 ⁇ m, and an oxygen content of less than 0.1%, and the sodium bicarbonate is mixed uniformly to form a mixed powder, wherein polyvinyl alcohol accounts for 10% and sodium hydrogencarbonate accounts for 20%. , ⁇ powder accounts for 70%, both in volume percent Content meter.
  • Press molding The above mixed powder is added to an injection molding machine and pressed at a pressure of 67 MPa to a polyurethane foam (pore diameter: 0. 48 0. 89 density 0. 015 g/cm 3 0. 035 g/cm 3 , hardness greater than 50°) forming.
  • Degreasing treatment Vacuum degree 10 - 4 Pa, argon gas was used as a protective atmosphere, and the temperature was gradually increased to 800 ° C at a rate of 3 ° C / min, and argon gas was introduced to form a protective atmosphere and kept for 60 minutes.
  • Vacuum sintering The vacuum degree is 10 - 3 Pa, the temperature is raised to 1500 ° C at 14 ° C / min, the temperature is kept for 180 min, the furnace is cooled to 200 300 ° C, and then heated to 1700 ° C at 17 ° C / min, and the temperature is kept for 230 min. , heat up to 2000 2200 ° C at 8 ° C / min, heat 276 min; conventional cooling treatment.
  • Heat treatment The degree of vacuum is 10 - 4 Pa, the temperature is raised to 800 900 ° C at 13 ° C / min, the temperature is kept for 400 min, and then cooled to 400 ° C at 4 ° C / min, held for 175 min, and cooled to room temperature with the furnace.
  • the inventor is tested according to the standard of GB/T5163_2006 GB/T5249_1985 GB/T6886-2001 and other standards for the porous material, the porosity, the porosity, the pore diameter and the various mechanical properties: the impurity content is less than 0.2%, the pores Uniform distribution, density 5.83g/cm 3 , porosity 32%, average pore diameter 46 m, elastic modulus 3. 8GPa, elongation 14.22%, flexural strength 65MPa, compressive strength 72MPa.
  • the preparation process is such that the yield of the finished product is high, the production is stable, and the product qualification rate can be as high as 94.66%.
  • Depressurization temperature sintering atmosphere Pa) / temperature CC) / time (min) Annealing atmosphere (Pa) / liter pressure ( °C) / time temperature or cooling rate (°c (min) / min) (°C ) / holding time (min)
  • the temperature was cooled to 1210 ° C at 220 min and the temperature was kept for 81 min .
  • the obtained porous tantalum or porous tantalum product is inspected as described above.
  • Example 5 6 7 Density (g/cm 3 ) 10.53 5.31 11.09 Porosity (%) 30 38 34 Aperture ( ⁇ ) 31 46 42 Modulus of elasticity (GPa) 6.7 2.4 6.1 Bending strength (MPa) 132 87 138 Compressive strength (MPa) 168 76 160 Elongation (%) 14.8 14.2 15.0

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Materials For Medical Uses (AREA)

Abstract

一种医用多孔金属材料的制备方法,由钽粉与聚乙烯醇、碳酸氢钠混合成混合粉末,再在50〜100Mpa下压制到有机泡沫体中成型、脱脂、烧结、冷却和热处理步骤制得多孔钽材料;所述烧结是真空度为10—4Pa〜10—3Pa,以10〜20°C/min升温至1500〜1800°C、保温120〜240min、随炉冷至200〜300°C,以10〜20°C/min升温至1500〜1800°C、保温180〜240min,以5〜10°C/min升温至2000〜2200°C、保温120〜360min;热处理是真空度为10—4Pa〜10—3Pa,以10〜20°C/min升温至800〜900°C、保温240〜480min,再以2〜5°C/min冷至400°C、保温120〜300min,然后随炉冷却至室温。经过测试其杂质含量可低于0.2%、孔隙度可达30〜38%,孔隙直径可达30〜50μm;弹性模量可达6.0〜7.0Gpa、抗压强度可达150〜170Mpa,非常适合用于替代牙骨的医用植入材料。

Description

一种医用多孔金属材料的制备方法 技术领域
本发明涉及一种医用多孔金属植入材料的制备方法, 特别是涉及一种替代致密骨组织 的医用多孔金属植入材料的制备方法。
背景技术
多孔医用金属植入材料具有治疗骨组织创伤、 股骨组织坏死和替代致密骨组织如牙齿 等重要而特殊的用途, 现常见的这类材料有多孔金属不锈钢、 多孔金属钛等。 作为骨组织 创伤和股骨组织坏死治疗使用的多孔植入材料, 其孔隙度应达 30〜80%, 而且孔隙最好全 部连通与均匀分布, 或根据需要使之既与人体的骨组织生长相一致, 又减轻了材料本身的 重量, 以适合人体植入使用。
而难熔金属钽 /铌, 由于它具有优秀的生物相容性, 其多孔材料有望作为替代前述等 传统医用金属生物材料。 由于金属钽 /铌对人体的无害、 无毒、 无副作用, 以及随着国内 外医学的飞速发展, 对钽 /铌作为人体植入材料认知的进一步深入, 人们对人体植入用多 孔金属钽 /铌材料的需求变得越来越迫切, 对其要求也越来越高。 其中作为多孔医用植入 金属钽 /铌, 如果能具有很高的均匀分布连通孔隙以及与人体相适应的物理机械性能, 则 其有望作为一种新型的骨组织替代材料。
作为医用植入的多孔金属材料就像一般的多孔金属材料那样基本上是以粉末烧结法 为主要的加工方法, 特别是为获取孔隙连通与均匀分布的多孔金属泡沫结构采用粉末烧结 法中的金属粉末浆料在有机泡沫体上的浸渍后干燥再烧结简称泡沫浸渍法居多。 关于粉末 烧结所获得的多孔金属材料通常其金属力学性能并不是很好, 其主要原因是工艺上如何安 排成孔介质的支撑与消除关系、 金属粉末烧结过程中的塌陷问题。 而已知的文献报道中均 没有很好的解决方法而放任自然。
采用金属粉末烧结法制造多孔钽 /铌的文献报道很少, 特别是以获得医用植入材料用 为目的的多孔钽 /铌粉末烧结法文献报道几乎没有。 可以参考的是公开号为 CN200510032174, 名称 "三维通孔或部分孔洞彼此相连多孔金属泡沫及其制备方法" 以及 CN200710152394, 名称 "一种新型多孔泡沫钨及其制备方法" 。 然而其所获得的多孔金属 或是为过滤材料用, 或是为航空航天及其它高温场合用而非作为医用金属植入材料使用, 再者所加工的多孔金属也非多孔钽 /铌。
关于多孔钽, US5282861 公开了一种应用于松质骨植入体、 细胞和组织感受器的开孔 钽材料及其制备。 这种多孔钽由纯商业钽制成, 它以聚亚氨酯前体进行热降解得到的碳骨 架为支架, 该碳骨架呈多重的十二面体, 其内为网格样结构, 整体遍布微孔, 孔隙率可高 达 98%, 再将商业纯钽通过化学蒸气沉积、 渗透的方法结合到碳骨架上以形成多孔金属微 结构, 简称为化学沉积法。 这种方法所获得的多孔钽材料其表面的钽层厚度在 40 60 m 之间; 在整个多孔材料中, 钽重约占 99%, 而碳骨架重量则占 1%左右。 文献进一步记载, 该多孔材料的抗压强度 50 70MPa, 弹性模量 2.5 3.5GPa, 抗拉强度 63MPa, 塑性变形量 15%。 但是将它作为致密骨组织如牙齿等医用植入材料的多孔钽, 其材料的力学性能如延 展性有明显不足之处, 而且会影响到后续的对多孔钽材料本身的加工, 例如成型件的切割 等。 同样在前述的金属粉末烧结法所获得的产品也均存在这样的不足。
发明内容
本发明的目的在于提供一种强韧性优异、 适用于替代牙骨的医用多孔金属材料的制备 方法。
本发明的目的是通过如下技术手段实现的:
一种医用多孔金属材料的制备方法, 其特征在于: 由钽粉与聚乙烯醇、 碳酸氢钠混合 成混合粉末, 再在 50 100Mpa下将所述混合粉末压制到有机泡沫体中成型、 脱脂、 烧结、 冷却和热处理步骤制得医用多孔钽材料;所述烧结步骤是真空度为 10— 4Pa 10— 3Pa, 以 10 20°C/min升温至 1500 1800°C、 保温 120 240min、 随炉冷至 200 300°C, 再以 10 20 °C/min升温至 1500 1800°C、 保温 180 240min, 以 5 10°C/min升温至 2000 2200°C 保温 120 360min; 所述热处理步骤是真空度为 10— 4Pa 10— 3Pa, 以 10 20°C/min升温至 800 900°C、 保温 240 480min, 再以 2 5°C/min冷至 400°C、 保温 120 300min, 然后 随炉冷却至室温。
在医用多孔钽材料的研发过程中, 制备路线众多, 但发明人创造性地提出了采用上述 工艺步骤制备致密医用多孔钽植入材料, 特别是采用的上述热处理工艺, 充分地消除了内 应力、 使多孔钽材料的组织更均匀、 大大提高了所制得的多孔钽材料的韧性; 上述烧结处 理工艺, 使得胚体成为了发热体, 从而烧结得更均匀、 透彻; 经过测试其杂质含量可低于 0.2%、其生物相容性与生物安全性好,密度可达 10.34 11.67g/cm3,孔隙度可达 30 38% 孔隙直径可达 30 50μπι; 弹性模量可达 6.0 7.0Gpa、 延伸率 14 15%、 弯曲强度可达 130 140Mpa、抗压强度可达 150 170MPa, 本发明多孔钽非常适合用于替代牙骨的医用植 入材料。
本发明采用的原料钽粉的平均粒径小于 43微米、 氧含量小于 0.1%, 为市售产品; 上 述聚乙烯醇、 碳酸氢钠也均为市售产品。 上述聚乙烯醇主要起成型作用、 但同时其还具备 造孔的作用, 上述碳酸氢钠起造孔的作用。 本发明真空环境优选采用真空度为 10— 4Pa 10— 3Pa的真空条件。 上述有机泡沫体优选聚氨酯泡沫, 进一步优选为孔径 0.48 0.89mm 密度 0.015 g/cm3 0.035g/cm3, 硬度大于 50° (最优选孔径为 0.56 0.72 密度 0. 025g/cm3, 硬度 50°〜80°) 的聚氨酯泡沫中。
在研发过程中发明人进一步研究发现, 若上述制备中控制不好, 虽可制得如上所述适 合用于替代牙骨的医用植入材料但产品合格率不高, 工艺的稳定性不够理想、 影响其工业 化规模生产: 如粉末压制成型难、 在压制后部分易出现分层、 不均匀, 脱脂后部分会出现 裂纹等技术问题。
为了使粉末压制过程中成型更容易, 从而提高成品率、 成品孔隙均匀性、 使制备过程 更稳定, 上述混合粉末中聚乙烯醇的用量为 5〜10%、 碳酸氢钠的用量为 20〜30%、 余量为 钽粉, 以体积百分含量计 (以体积百分含量计是通过最终多孔钽材料的情况直接推算的单 位, 在上述混合粉末称量中还是根据相应物质的密度计算出其对应的质量称量的), 进一 步优选为聚乙烯醇占 7〜9%、 碳酸氢钠占 26〜29%、 余量为钽粉; 上述压制成型过程中的 压力优选为 70〜80Mpa。
为了使脱脂过程中胚体更稳定、 减少易出现的部分胚体变形、 孔径不均匀, 从而进一 步提高成品率、 质量稳定性, 上述脱脂过程是以 0. 5°C/mir!〜 3°C/min 的速率逐步升温至 400〜800°C,以氩气通入构成保护气氛并保温 60min〜240min;进一步优选以 2. 5〜3°C/min 的速率逐步升温至 400〜800°C, 以氩气通入构成保护气氛并保温 150min〜240min。
更进一步优选以 2. 5°C/min的速率逐步升温至 400〜800°C, 以氩气通入构成保护气氛 并保温 220min。
上述脱脂过程的条件还包括有: 以 1〜; TC/min的速率从室温升至 400°C, 保温 60〜 120min, 以 1. 5〜2. 5°C/min的速率从 400°C升至 600〜800°C, 保温 180〜240min。
为了使得胚体烧结得更均匀、 透彻, 使制得的医用多孔钽材料强度更高, 上述烧结步 骤优选为真空度为 10— 4Pa〜10— 3Pa, 以 12〜15°C/min 升温至 1500〜1800°C、 保温 180〜 200min、 随炉冷至 200〜300°C, 再以 16〜19°C/min 升温至 1500〜1800°C、 保温 220〜 240min, 以 5〜10°C/min升温至 2000〜2200°C、 保温 250〜320min; 更进一步优选为真空 度为 10— 4Pa〜10— 3Pa, 以 13°C/min升温至 1800°C、 保温 200min、 随炉冷至 200〜300°C, 再以 17°C/min升温至 1800°C、保温 230min,以 7°C/min升温至 2000〜2200°C、保温 300min。
为了更充分地消除材料的内应力、 韧性更好, 上述热处理步骤是真空度为 10— 4Pa〜 10— 3Pa, 以 15°C/min升温至 800〜900°C、 保温 260〜320min, 再以 3°C/min冷至 400°C、 保温 120min, 再以 18°C/min〜23°C/min冷却至室温。
上述真空烧结后的冷却条件还包括有: 真空度不低于 10— 3Pa, 以不高于 25°C/min, 不 低于 lCTC/min渐降冷却速率方式, 对烧结多孔体分段降温冷却至 800°C, 各段保温时间 30min〜90min, 然后随炉冷却至常温。
优选地, 上述真空烧结后的冷却条件为: 真空度为 10— 4Pa〜10— 3Pa; 以 10〜20°C/min 的速率冷却至 1500〜1600°C, 保温 30〜60min; 以 12〜20°C/min 的速率冷却至 1200〜 1250°C , 保温 60〜90min; 以 10〜20°C/min的速率冷却至 800°C, 然后随炉冷却。
金属钽和铌的性质极类似, 上述方法同样也适合医用多孔铌材料的制备。
本发明多孔钽制备方法采用了纯物理模压法, 使得最终多孔钽材料中杂质的含量极 低, 有效地提高了生物相容性和生物安全性; 对本发明压制成型、 脱脂、 烧结及退火步骤 的工艺条件优化, 使得成品率高、 成品孔径均匀性更好、 使制备过程更稳定、 质量稳定性 好, 有效地消除了热应力、 使多孔钽材料的组织更均匀, 有效提高了多孔钽的力学性能, 其韧性也得到大大提高, 同时密度还得到有效地控制、使其作为牙骨替代材料的舒适感好, 本发明制备工艺使得成品合格率高、 生产稳定, 产品合格率可高达 96%。 本发明制得的多 孔钽成品孔隙分布均匀且连通, 生物相容性好, 经过测试其杂质含量可低于 0. 2%、 密度可 达 10. 34〜11. 67g/cm3,孔隙度可达 30〜38%,孔隙直径可达 30〜50 μ m;弹性模量可达 6. 0〜 7. 0Gpa、 延伸率可达 14%〜15%、 弯曲强度可达 130〜140Mpa、 抗压强度可达 150〜170Mpa, 本发明多孔钽非常适合用于替代牙骨的医用植入材料。
具体实施方式
下面通过实施例对本发明进行具体的描述, 有必要在此指出的是以下实施例只用于对 本发明进行进一步说明, 不能理解为对本发明保护范围的限制, 该领域的技术人员可以根 据上述本发明内容对本发明作出一些非本质的改进和调整。
实施例 1 : 称取聚乙烯醇、 平均粒径小于 43微米氧含量小于 0. 1%的钽粉和碳酸氢钠 混合均匀成混合粉末, 其中聚乙烯醇占 8%、 碳酸氢钠占 27%、 钽粉占 65%, 均以体积百分 含量计。压制成型:将上述混合粉末加入注塑成型机中在 81Mpa下压制到聚氨酯泡沫体(孔 径 0. 48〜0· 89mm, 密度 0. 015 g/cm3〜0. 035g/cm3, 硬度大于 50。) 中成型。 脱脂处理: 真 空度 10— 4Pa,以氩气为保护气氛、以 2. 2°C/min的升温速率从室温升温至 400°C、保温 85min; 再以 1. 8°C/min的升温速率从 400°C升温至 800°C, 保温时间 220min。 真空烧结: 真空度 为 10— 4Pa〜10— 3Pa, 以 13°C/min升温至 1800°C、 保温 200min、 随炉冷至 200〜300°C, 再 以 17°C/min升温至 1800°C、保温 230min,以 7°C/min升温至 2000〜2200°C、保温 300min。 真空烧结后的冷却处理: 真空度为 10— 4Pa, 以 10〜20°C/min的速率冷却至 1500〜1600°C, 保温 30〜60min, 以 12〜20°C/min的速率冷却至 1200〜1250°C, 保温 60〜90min, 以 10〜 20°C/min的速率冷却至 800°C, 然后随炉冷却。 热处理: 真空度为 10— 4Pa〜10— 3Pa, 以 15 °C/min升温至 800〜900°C、 保温 260〜320min, 再以 3°C/min冷至 400°C、 保温 120min, 再以 18°C/min〜23°C/min冷却至室温。
发明人按 GB/T5163_2006、 GB/T5249_1985、 GB/T6886-2001等标准对上述多孔钽成品 的多孔材料密度、 孔隙率、 孔径及各种力学性能进行检测: 其杂质含量低于 0. 2%, 其孔隙 分布均匀, 密度 11. 52g/Cm 3、 孔隙率 35%、 孔隙平均直径 40 m、 弹性模量 6Gpa、 延伸率 为 15%、 弯曲强度 138MPa、 抗压强度 165MPa
实施例 2: 称取聚乙烯醇、 平均粒径小于 43微米氧含量小于 0. 1%的钽粉和碳酸氢钠 混合均匀成混合粉末, 其中聚乙烯醇占 7%、 碳酸氢钠占 28%、 钽粉占 65%, 均以体积百分 含量计。压制成型:将上述混合粉末加入注塑成型机中在 66Mpa下压制到聚氨酯泡沫体(孔 径 0. 48 0. 89 密度 0. 015 g/cm3 0. 035g/cm3, 硬度大于 50°) 中成型。 脱脂处理: 以 2. 5°C/min的速率逐步升温至 750°C, 以氩气通入构成保护气氛并保温 120min。真空烧结: 真空度为 10— 4Pa 10— 3Pa, 以 12°C/min升温至 1600°C、 保温 190min、 随炉冷至 200 300 °C, 再以 19°C/min升温至 1500°C、 保温 220min, 以 10°C/min升温至 2000 2200°C、 保 温 320min, 再进行常规冷却处理。 热处理: 真空度为 10— 4Pa 10— 3Pa, 以 10°C/min升温至 800 900°C、 保温 240min, 再以 2°C/min冷至 400°C、 保温 300min, 随炉冷至室温。
发明人按 GB/T5163_2006、 GB/T5249_1985、 GB/T6886-2001等标准对上述多孔钽成品 的多孔材料密度、 孔隙率、 孔径及各种力学性能进行检测: 其杂质含量低于 0. 2%, 其孔隙 分布均匀, 密度 11. 67g/cm3, 孔隙率 30%, 延伸率为 14. 5%, 孔隙平均直径 33 m, 弹性模 量 7. 0GPa, 弯曲强度 131MPa, 抗压强度 150MPa
实施例 3: 称取聚乙烯醇、 平均粒径小于 43微米氧含量小于 0. 1%的钽粉和碳酸氢钠 混合均匀成混合粉末, 其中聚乙烯醇占 8. 5%、 碳酸氢钠占 29. 5%、 钽粉占 62%, 均以体积 百分含量计。 压制成型: 将上述混合粉末加入注塑成型机中在 55Mpa下压制到聚氨酯泡沫 体 (孔径 0. 48 0. 89 密度 0. 015 g/cm3 0. 035g/cm3, 硬度大于 50°) 中成型。 脱脂处 理: 真空度 10— 4Pa, 以氩气为保护气氛、 2. 5°C/min的速率逐步升温至 400°C, 以氩气通入 构成保护气氛并保温 240min。 真空烧结: 真空度为 10— 4Pa, 以 15°C/min升温至 1800°C 保温 200min、 随炉冷至 200 300°C, 再以 16°C/min升温至 1800°C、 保温 240min, 以 5 °C/min升温至 2000 2200°C、 保温 250min, 进行常规冷处理。 热处理: 真空度为 10— 3Pa 以 20°C/min升温至 800 900°C、 保温 480min, 再以 5°C/min冷至 400°C、 保温 120min 再以 18°C/min冷却至室温。
发明人按 GB/T5163_2006、 GB/T5249_1985、 GB/T6886-2001等标准对上述多孔钽成品 的多孔材料密度、 孔隙率、 孔径及各种力学性能进行检测: 其杂质含量低于 0. 2%, 其孔隙 分布均匀, 密度 10. 35g/cm3, 孔隙率 37%, 孔隙平均直径 46 m, 弹性模量 6. 3GPa, 延伸 率为 14%, 弯曲强度 135MPa, 抗压强度 155MPa
实施例 4: 称取聚乙烯醇、 平均粒径小于 43微米氧含量小于 0. 1%的铌粉和碳酸氢钠 混合均匀成混合粉末, 其中聚乙烯醇占 10%、 碳酸氢钠占 20%、 铌粉占 70%, 均以体积百分 含量计。加压成型:将上述混合粉末加入注塑成型机中在 67Mpa下压制到聚氨酯泡沫体(孔 径 0. 48 0. 89 密度 0. 015 g/cm3 0. 035g/cm3, 硬度大于 50°) 中成型。 脱脂处理: 真 空度 10— 4Pa, 以氩气为保护气氛、 以 3°C/min的速率逐步升温至 800°C, 以氩气通入构成 保护气氛并保温 60min。 真空烧结: 真空度为 10— 3Pa, 以 14°C/min升温至 1500°C、 保温 180min、 随炉冷至 200 300°C, 再以 17°C/min升温至 1700°C、 保温 230min, 以 8°C/min 升温至 2000 2200°C、 保温 276min; 常规冷却处理。 热处理: 真空度为 10— 4Pa, 以 13°C /min升温至 800 900°C、 保温 400min, 再以 4°C/min冷至 400°C、 保温 175min, 随炉冷 至室温。
发明人按 GB/T5163_2006 GB/T5249_1985 GB/T6886-2001等标准对上述多孔铌成品 的多孔材料密度、 孔隙率、 孔径及各种力学性能进行检测: 其杂质含量低于 0. 2%, 其孔隙 分布均匀, 密度 5. 83g/cm3, 孔隙率 32%, 孔隙平均直径 46 m, 弹性模量 3. 8GPa, 延伸率 为 14. 22%, 弯曲强度 65MPa, 抗压强度 72MPa。 该制备工艺使得成品合格率高、 生产稳定, 产品合格率可高达 94. 66%
在上述实施例 4给出的方法中, 我们还可以对其中的各种条件作其他选择同样能得到 本发明所述的多孔钽或多孔铌。
Figure imgf000007_0001
实 压制成型的 脱脂温度 烧结气氛(Pa) /温度 CC ) /时间 (min) 退火气氛(Pa) /升 施 压力 ( °C ) /时间 温或降温速率 (°c 例 (min) /min)温度 (°C ) / 保温时间 (min)
5 52Mpa 以 1.6°C/min 真空度为 10— 3Pa, 以 12. 5°C/min 真 空 度 为 的速率从室 升温至 1560°C、 保温 195min、 随炉冷 10— 4Pa 10— 3Pa, 以 温升至 400 至 200〜300°C,再以 18. 5°C/min升温 i rC /min 升温至
。C , 保温 至 1550°C、 保温 226min, 以 7°C/min 800〜900°C、保温
0°C
118min; 升温至 2000〜220 、 保温 312min; 425min, 再以 4. 5 真空度为 10— 4Pa; 以 17°C/min的 °C /min 冷至 400 2.2°C/min的
速率冷却至 1600°C, 保温 52min; 以 °C、 保温 133min, 速率从 400°C
18°C/min 的速率冷却至 1200 〜 随炉冷至室温 升至 600°C,
1250°C , 保温 77min; 以 12°C/min的
保温 175min
速率冷却至 800°C, 然后随炉冷却
66Mpa 2. 3°C/min 真空度为 10— 4Pa〜10— 3Pa, 以 14°C 真空度为 10— 4Pa〜 的速率从室 /min升温至 1700°C、保温 183min、随 10— 3Pa, 以 15 °C 温 升 至 炉冷至 200〜300°C, 再以 16. 6°C/min
/min升温至 800〜 400°C,保温 升温至 1570°C、 保温 220〜240min,
900 °C 、 保 温 105min , 以 以 7. 8°C/min升温至 2000〜2200°C、
290min, 再以 3°C 1. 6°C/min 保温 306min;
/min冷至 400 °C、 的速率从 真空度为 10— 4Pa〜 10— 3Pa; 以
保温 120min,再以 400 °C升至 19°C/min 的速率冷却至 1500 〜
22°C/min 冷却至 720°C,保温 1600°C, 保温 44min; 以 17. 6°C/min
、〉曰
220min 的速率冷却至 1210°C , 保温 81min;
以 13. 6°C/min的速率冷却至 800°C,
然后随炉冷却
75Mpa 2. 6°C/min 真空度为 10— 4Pa, 以 15°C/min升 真空度为 10— 4Pa〜 的速率从室 温至 1600°C、 保温 180min、 随炉冷至 10— 3Pa, 以 15 °C
/min 升温至 850 温 升 至 200〜300°C, 再以 18°C /min 升温至
°C、 保温 260min, 400°C,保温 1500°C、 保温 220〜240min, 以 6. 8°C
再以 3°C/min冷至 86min, 以 /min 升温至 2000〜 2200 °C、 保温
400 °C 、 保 温 1. 7°C/min 266min; 120min , 再 以 的速率从 真空度为 10— 3Pa; 以 12°C/min的 18°C/min 冷却至
400 °C升至 速率冷却至 1500〜 160CTC, 保温 、〉曰
650°C,保温 45min ; 以 18°C/min 的速率冷却至
206min 1200〜 1250°C, 保温 67min; 以
16°C/min 的速率冷却至 800°C, 然后
Figure imgf000009_0001
所得多孔钽或多孔铌成品按前述方法检
实施例 5 6 7 密度 (g/cm3) 10.53 5.31 11.09 孔隙率 (%) 30 38 34 孔径 (μηι) 31 46 42 弹性模量 (GPa) 6.7 2.4 6.1 弯曲强度 (MPa) 132 87 138 抗压强度 (MPa) 168 76 160 延伸率 (%) 14.8 14.2 15.0

Claims

权 利 要 求 书
1、 一种医用多孔金属材料的制备方法, 其特征在于: 由钽粉与聚乙烯醇、 碳酸氢钠 混合成混合粉末, 再在 50〜100Mpa下压制到有机泡沫体中成型、 脱脂、 烧结、 冷却和热 处理步骤制得医用多孔钽材料;所述烧结步骤是真空度为 10— 4Pa〜10— 3Pa, 以 10〜20°C/min 升温至 1500〜1800°C、 保温 120〜240min、 随炉冷至 200〜300°C, 再以 10〜20°C/min升 温至 1500〜1800°C、保温 180〜240min,以 5〜10°C/min升温至 2000〜2200°C、保温 120〜 360min;所述热处理步骤是真空度为 10— 4Pa〜10— 3Pa, 以 10〜20°C/min升温至 800〜900°C、 保温 240〜480min, 再以 2〜5°C/min冷至 400°C、 保温 120〜300min, 然后随炉冷却至室 温。
2、如权利要求 1所述的制备方法,其特征在于:所述混合粉末中聚乙烯醇的用量为 5〜 10%、 碳酸氢钠的用量为 20〜30%、 余量为钽粉, 以体积百分含量计; 所述压制成型过程中 的压力为 70〜80Mpa。
3、 如权利要求 2所述的制备方法, 其特征在于: 所述混合粉末中聚乙烯醇占 7〜9%、 碳酸氢钠占 26〜29%、 余量为钽粉, 以体积百分含量计; 所述有机泡沫体为孔径 0. 56〜 0. 72mm, 密度 0. 025g/cm3, 硬度 50°〜80°的聚氨酯泡沫。
4、如权利要求 1、2或 3所述的制备方法,其特征在于:所述脱脂过程是以 0. 5°C/mir!〜 3°C/min的速率逐步升温至 400〜800°C, 以氩气通入构成保护气氛并保温 60min〜240min。
5、 如权利要求 4所述的制备方法, 其特征在于: 所述脱脂过程是以 2. 5°C/min的速 率逐步升温至 400〜800°C, 以氩气通入构成保护气氛并保温 220min。
6、如权利要求 1、 2或 3所述的制备方法,其特征在于:所述脱脂过程是以 1〜; TC/min 的速率从室温升至 400°C,保温 60〜120min,以 1. 5〜2. 5°C/min的速率从 400°C升至 600〜 800 °C , 保温 180〜240min。
7、 如权利要求 6 所述的制备方法, 其特征在于: 所述烧结步骤为真空度为 10— 4Pa〜 10— 3Pa, 以 12〜15°C/min升温至 1500〜1800°C、 保温 180〜200min、 随炉冷至 200〜300 °C, 再以 16〜19°C/min升温至 1500〜1800°C、 保温 220〜240min, 以 5〜10°C/min升温 至 2000〜2200°C、 保温 250〜320min。
8、 如权利要求 7 所述的制备方法, 其特征在于: 所述烧结步骤为真空度为 10— 4Pa〜 10— 3Pa, 以 13°C/min升温至 1800°C、 保温 200min、 随炉冷至 200〜300°C, 再以 17°C/min 升温至 1800°C、 保温 230min, 以 7°C/min升温至 2000〜2200°C、 保温 300min。
9、 如权利要求 7 或 8 所述的制备方法, 其特征在于: 所述热处理步骤是真空度为 10— 4Pa〜10— 3Pa, 以 15°C/min升温至 800〜900°C、 保温 260〜320min, 再以 3°C/min冷至 400°C、 保温 120min, 再以 18°C/mir!〜 23°C/min冷却至室温。
10、 如权利要求 6所述的制备方法, 其特征在于: 所述真空烧结后的冷却条件为: 真 空度为 10— 4Pa〜10— 3Pa; 以 10〜20°C/min的速率冷却至 1500〜1600°C, 保温 30〜60min; 以 12〜20°C/min的速率冷却至 1200〜1250°C, 保温 60〜90min; 以 10〜20°C/min的速率 冷却至 800°C, 然后随炉冷却。
11、 如权利要求 7所述的制备方法, 其特征在于: 所述真空烧结后的冷却条件为: 真 空度为 10— 4Pa〜10— 3Pa; 以 10〜20°C/min的速率冷却至 1500〜1600°C, 保温 30〜60min; 以 12〜20°C/min的速率冷却至 1200〜1250°C, 保温 60〜90min; 以 10〜20°C/min的速率 冷却至 800°C, 然后随炉冷却。
12、 如权利要求 8所述的制备方法, 其特征在于: 所述真空烧结后的冷却条件为: 真 空度为 10— 4Pa〜10— 3Pa; 以 10〜20°C/min的速率冷却至 1500〜1600°C, 保温 30〜60min; 以 12〜20°C/min的速率冷却至 1200〜1250°C, 保温 60〜90min; 以 10〜20°C/min的速率 冷却至 800°C, 然后随炉冷却。
13、 如权利要求 9所述的制备方法, 其特征在于: 所述真空烧结后的冷却条件为: 真 空度为 10— 4Pa〜10— 3Pa; 以 10〜20°C/min的速率冷却至 1500〜1600°C, 保温 30〜60min; 以 12〜20°C/min的速率冷却至 1200〜1250°C, 保温 60〜90min; 以 10〜20°C/min的速率 冷却至 800°C, 然后随炉冷却。
PCT/CN2012/081865 2011-09-29 2012-09-24 一种医用多孔金属材料的制备方法 WO2013044779A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110295830.8A CN102796891B (zh) 2011-09-29 2011-09-29 一种医用多孔金属材料的制备方法
CN201110295830.8 2011-09-29

Publications (1)

Publication Number Publication Date
WO2013044779A1 true WO2013044779A1 (zh) 2013-04-04

Family

ID=47196183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/081865 WO2013044779A1 (zh) 2011-09-29 2012-09-24 一种医用多孔金属材料的制备方法

Country Status (2)

Country Link
CN (1) CN102796891B (zh)
WO (1) WO2013044779A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106119586B (zh) * 2013-04-12 2018-08-31 重庆润泽医药有限公司 一种多孔金属材料的制备方法
CN103805798A (zh) * 2014-02-20 2014-05-21 中南大学 多孔钽铌合金及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060002810A1 (en) * 2004-07-02 2006-01-05 Grohowski Joseph A Jr Porous metal articles having a predetermined pore character
CN101405039A (zh) * 2006-02-17 2009-04-08 拜欧麦特制造公司 用于形成多孔金属植入物的方法和设备
EP2149414A1 (en) * 2008-07-30 2010-02-03 Nederlandse Centrale Organisatie Voor Toegepast Natuurwetenschappelijk Onderzoek TNO Method of manufacturing a porous magnesium, or magnesium alloy, biomedical implant or medical appliance.

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5282861A (en) * 1992-03-11 1994-02-01 Ultramet Open cell tantalum structures for cancellous bone implants and cell and tissue receptors
CN101549175B (zh) * 2009-05-15 2012-07-04 中南大学 一种孔隙非均匀分布仿生骨质材料制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060002810A1 (en) * 2004-07-02 2006-01-05 Grohowski Joseph A Jr Porous metal articles having a predetermined pore character
CN101405039A (zh) * 2006-02-17 2009-04-08 拜欧麦特制造公司 用于形成多孔金属植入物的方法和设备
EP2149414A1 (en) * 2008-07-30 2010-02-03 Nederlandse Centrale Organisatie Voor Toegepast Natuurwetenschappelijk Onderzoek TNO Method of manufacturing a porous magnesium, or magnesium alloy, biomedical implant or medical appliance.

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GUO, QINGWEI ET AL.: "Modern tantalum niobium metallurgy", METALLURGICAL INDUSTRY PRESS, January 2009 (2009-01-01), pages 642 *
LI, ZHONGLI ET AL.: "New 3-D porous Ti manufacture and feature", ORTHOPAEDIC BIOMECHANICS MATERIALS AND CLINICAL STUDY, vol. 4, 1 February 2007 (2007-02-01), pages 1 - 4 *

Also Published As

Publication number Publication date
CN102796891A (zh) 2012-11-28
CN102796891B (zh) 2014-02-19

Similar Documents

Publication Publication Date Title
WO2013044773A1 (zh) 一种牙骨替代医用多孔金属材料的制备方法
WO2013044857A1 (zh) 一种适用于替代人体牙骨组织的多孔钽的制备方法
WO2013044780A1 (zh) 一种替代承重骨组织的医用多孔金属材料及其制备方法
WO2013044852A1 (zh) 一种医用多孔金属植入材料的制备方法
CN103740964B (zh) 医用多孔金属植入材料的制备方法
WO2013044767A1 (zh) 一种替代牙骨的医用多孔钽材料及其制备方法
WO2013044832A1 (zh) 一种制备医用多孔钽植入材料的方法
WO2013044860A1 (zh) 一种医用多孔金属植入材料的制备方法
CN103740962B (zh) 牙骨替代医用多孔金属材料的制备方法
WO2013044779A1 (zh) 一种医用多孔金属材料的制备方法
WO2013044858A1 (zh) 一种医用多孔金属植入材料的制备方法
WO2013044778A1 (zh) 一种医用多孔金属材料及其制备方法
WO2013044781A1 (zh) 一种替代承重骨组织的医用多孔金属材料的制备方法
WO2013044809A1 (zh) 一种制备替代承重骨组织的医用多孔金属材料的方法
WO2013044777A1 (zh) 一种替代牙骨的医用多孔金属材料及其制备方法
WO2013044834A1 (zh) 一种制备医用多孔钽植入材料的方法
WO2013044839A1 (zh) 一种医用植入材料多孔钽的制备方法
CN103736147B (zh) 替代承重骨组织的医用多孔金属材料及其制备方法
CN103740961B (zh) 一种替代承重骨组织的医用多孔金属材料的制备方法
WO2013044835A1 (zh) 一种多孔钽医用植入材料的制备方法
CN103740966B (zh) 制备替代承重骨组织的医用多孔金属材料的方法
WO2013044815A1 (zh) 一种医用多孔钽材料的制备方法
CN104225673B (zh) 一种替代牙骨的医用多孔金属材料及其制备方法
WO2013044813A1 (zh) 一种替代承重骨组织的医用多孔金属材料的制备方法
WO2013044833A1 (zh) 一种医用多孔钽植入材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12835192

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12835192

Country of ref document: EP

Kind code of ref document: A1