WO2013044834A1 - 一种制备医用多孔钽植入材料的方法 - Google Patents

一种制备医用多孔钽植入材料的方法 Download PDF

Info

Publication number
WO2013044834A1
WO2013044834A1 PCT/CN2012/082230 CN2012082230W WO2013044834A1 WO 2013044834 A1 WO2013044834 A1 WO 2013044834A1 CN 2012082230 W CN2012082230 W CN 2012082230W WO 2013044834 A1 WO2013044834 A1 WO 2013044834A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum
temperature
rate
porous
sintering
Prior art date
Application number
PCT/CN2012/082230
Other languages
English (en)
French (fr)
Inventor
叶雷
Original Assignee
重庆润泽医药有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆润泽医药有限公司 filed Critical 重庆润泽医药有限公司
Publication of WO2013044834A1 publication Critical patent/WO2013044834A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1121Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
    • B22F3/1137Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers by coating porous removable preforms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/047Other specific metals or alloys not covered by A61L27/042 - A61L27/045 or A61L27/06
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1017Multiple heating or additional steps
    • B22F3/1021Removal of binder or filler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/02Alloys based on vanadium, niobium, or tantalum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/08Methods for forming porous structures using a negative form which is filled and then removed by pyrolysis or dissolution
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Definitions

  • the present invention relates to a porous medical metal implant material, and more particularly to a method for preparing a medical porous tantalum implant material suitable for replacing weight-bearing bone tissue.
  • Porous medical metal implant materials have important and special applications for the treatment of bone tissue trauma and femoral tissue necrosis.
  • Common materials such as porous metal stainless steel and porous metal titanium are common materials.
  • the porosity should be 30 ⁇ 80%, and the pores are preferably all connected and evenly distributed, or the pores are connected and evenly distributed according to the need, so that The growth of the bone tissue of the human body is consistent, and the weight of the material itself is reduced to be suitable for human implantation.
  • the refractory metal ruthenium due to its excellent biocompatibility and mechanical properties, is expected to be used as a biomaterial for the treatment of bone tissue necrosis as a substitute for the traditional medical metal biomaterials described above. Since metal ruthenium is harmless to the human body, non-toxic, has no side effects, and with the rapid development of medicine at home and abroad, the understanding of sputum as a human implant material is further deepened, and the demand for porous metal ruthenium material for human body implantation is required. It has become more and more urgent, and its requirements are getting higher and higher. Among them, as a porous medical implant metal crucible, if it has a high uniform distribution of connected pores and physical and mechanical properties compatible with the human body, it is an important connecting member constituting material for ensuring the normal growth of new bone tissue.
  • porous metal material for medical implantation it is basically a powder sintering method as a general porous metal material, in particular, a metal in a powder sintering method for obtaining a porous metal foam structure with pore communication and uniform distribution. Drying of the powder slurry on the organic foam after drying and sintering is referred to as foam impregnation.
  • the porous metal materials with pore connectivity and uniform distribution obtained by powder sintering are generally not very good in metal mechanical properties. The main reason is how to arrange the support and elimination relationship of pore-forming medium and the collapse problem in the sintering process of metal powder. . However, there is no good solution in the known literature reports and it is natural.
  • porous tantalum powder sintering for the purpose of obtaining medical implant materials has been reported in the literature.
  • the porous metal obtained is either used as a filter material, or used for aerospace and other high temperature applications rather than as a medical metal implant material, and the porous metal processed is also non-porous.
  • porous tantalum US5282861 discloses an open-celled tantalum material for use in cancellous bone implants, cells and tissue receptors and its preparation.
  • the porous crucible is made of pure commercial crucible.
  • the carbon skeleton obtained by thermal degradation of the polyurethane precursor is a scaffold.
  • the carbon skeleton has multiple dodecahedrons, and the inside is a grid-like structure.
  • Hole, high porosity Up to 98%, the commercial pure ruthenium is bonded to the carbon skeleton by chemical vapor deposition and permeation to form a porous metal microstructure, which is simply referred to as a chemical deposition method.
  • the porous tantalum material obtained by this method has a tantalum layer thickness of 40 to 60 m; in the whole porous material, the helium weight accounts for about 99%, and the carbon skeleton weight accounts for about 1%. 5 ⁇ 3. 5GPa, tensile strength 63MPa, plastic deformation amount of 15%, the compressive strength of the porous material is further described.
  • the mechanical properties of the material such as ductility
  • a method for preparing a medical porous tantalum implant material which is sintered by a foam impregnation method, characterized in that a solution prepared by using an organic binder and a dispersant and a tantalum powder are used to prepare a tantalum powder slurry, and poured into an organic foam.
  • the impregnation is performed until the pores of the organic foam are filled with the powder slurry, and then the dispersant in the organic foam in which the tantalum powder slurry is poured is dried, and degreased under an inert gas atmosphere to remove the organic binder and the organic
  • the foam body is sintered under vacuum to obtain a porous sintered body, cooled, and then annealed under vacuum and subjected to conventional post-treatment to obtain a porous crucible;
  • the sintering step is a vacuum degree of 10 - 4 Pa 10 10 - 3 Pa, 10 to 20 ° C/min is heated to 1500 ⁇ 1800 °C, kept for 120 ⁇ 240min, cooled to 200 ⁇ 300 °C with furnace, then heated to 1500 ⁇ 1800°C at 10 ⁇ 20°C/min, and kept at 180 ⁇ 240min, 5 Warm up to 2000 ⁇ 2200 °C at ⁇ 10 °C / min, keep warm for 120 ⁇ 360min.
  • the porous tantalum produced by the preparation method of the present invention is particularly suitable for use as a joint member for load-bearing bone tissue wounds or bone defects. Furthermore, the preparation method is simple and easy to control; the whole preparation process is harmless, non-polluting, non-toxic and dusty, and has no side effects on the human body. Moreover, in the preparation process, it is preferred to use all of the binders, dispersants, organic foams, etc. during the sintering process, which will ensure the biocompatibility and biosafety of the implant material.
  • the organic binder is preferably polyvinyl alcohol, and may also be a starch, ethyl cellulose or the like; the dispersing agent is usually water, anhydrous ethanol or the like, of which water is preferred.
  • the organic foam is preferably a polyurethane foam, and may also be a polyether ester foam or the like.
  • a further feature of the present invention is that a metal tantalum powder having an average particle diameter of less than 43 ⁇ m and an oxygen content of less than 0.1% is used, and a polyvinyl alcohol aqueous solution is used as a binder and water as a dispersing agent and the tantalum powder.
  • the tantalum powder slurry is prepared, the organic foam is a polyurethane foam, and then the water is removed by vacuum drying to form a porous tantalum having a porosity of 50 to 70% and a pore diameter of 150 to 600 ⁇ M.
  • the polyvinyl alcohol is heated to dissolve with distilled water, and a bismuth powder slurry is prepared by using a polyvinyl alcohol aqueous solution and a metal cerium powder in a weight percentage of 2 to 8% (preferably 4 to 5%), wherein the weight is 6 to 9 parts.
  • the singularity of the material is 0. 48 ⁇ 0. 89mm, the density is selected to be 0. 48 ⁇ 0. 89mm, density 0. 025 g / cm 3 ⁇ 0. 035g / cm 3, hardness of more than 50 ° helps ensure that a polyurethane foam with a porosity of the porous tantalum pore diameter.
  • Such technical processing of the present invention optimizes process conditions and will ensure biocompatibility and biosafety of implanted porous tantalum materials.
  • a further feature of another aspect of the invention is: the degree of vacuum of the drying is maintained at a vacuum of 10 - 2 to 1 Pa, and then under a protective atmosphere, for example, a degree of vacuum of 10 - 4 to 10 - 3 Pa, and a temperature of 400 ° C to 80 (TC)
  • the degreasing treatment for removing the organic binder and the organic foam is carried out under the conditions;
  • the vacuum annealing treatment means that the temperature is maintained at 1000 ⁇ 1250 °C after vacuum sintering, and the holding time is 1 ⁇ 4. In hours, the degree of vacuum is less than 10 - 4 to 10 - 3 Pa.
  • the degreasing treatment conditions further include: gradually increasing the temperature to 400 ⁇ 800 ° C at a rate of 0.5 ° C / min ⁇ 5 ° C / min, argon gas into a protective atmosphere and holding for 30 min ⁇ 120 min;
  • the vacuum sintering conditions are as follows: the degree of vacuum is 10 - 4 Pa ⁇ 10 - 3 Pa, the temperature is raised to 1800 ° C at 13 ° C / min, the temperature is kept for 200 min, and the furnace is cooled to 200 to 300 ° C, and then 17 ° C / min. Heating to 1800 ° C, holding 230min, heating at 7 ° C / min to 2000 ⁇ 2200 ° C, holding 300min;
  • the cooling conditions after vacuum sintering further include: the degree of vacuum is less than 10 - 3 P a , and the sintering porous body is segmented at a temperature not lower than 25 ° C / min and not lower than 10 ° C / min. Cool down to 800 ° C, each period of holding time 30min ⁇ 90min, and then cooled to room temperature with the furnace;
  • the vacuum annealing conditions also include: the vacuum is lower than 10 - 4 Pa, and the temperature is raised to 1000 ⁇ 1250 ° C at a rate of not higher than 30 ° C / m in , and the temperature is kept for 4 h to 6 h; 5 ⁇ 3 ⁇ Select a cooling time at a cooling rate of 5 ° C / min but not higher than 30 ° C / min to room temperature, the holding time of each segment is decreasing and not more than 1. 5 h ⁇ 3h.
  • the drying temperature of the vacuum drying is 60 to 100 ° C, and the drying time is 4 to 8 hours;
  • the degreasing treatment conditions further include: gradually increasing the temperature to 600 to 800 ° C, to be pure 5 ⁇ 1. 5°C/min, the argon gas (99.999%) is used to form a protective atmosphere, and the temperature is raised from room temperature to 400 ° C at a rate of 1 to 5 ° C / min. The rate is increased from 400 ° C to 600 to 800 ° C, and the temperature is maintained for 60 to 120 min.
  • the vacuum sintering conditions are: The degree is 10 - 4 Pa ⁇ 10 - 3 Pa, the temperature is raised to 1800 ° C at 13 ° C / min, the temperature is kept for 200 min, cooled to 200 ⁇ 300 ° C with the furnace, and then raised to 1800 ° C at 17 ° C / min, After heat preservation for 230 min, the temperature is raised to 2000 ⁇ 2200 ° C at 7 ° C / min, and the temperature is kept for 300 min; the cooling conditions after vacuum sintering further include: the degree of vacuum is 10 - 4 Pa ⁇ 10 - 3 P a ; at 10 to 20 ° C / m in the rate of cooling to 1500 ⁇ 1600 ° C, holding 30 ⁇ 60min; cooling at 12 ⁇ 20 ° C / min to 1200 ⁇ 1250 ° C, holding 60 ⁇ 90min; 10 ⁇ 20 ° C / min The rate is cooled to 800 ° C, and then cooled with the furnace; the vacuum annealing conditions further include: raising
  • vacuum drying, degreasing treatment, etc. are helpful to reduce the content of impurities in porous tantalum, improve biocompatibility and biosafety and mechanical properties; optimize the organic foam material to solve the foam skeleton in the sintering process. Collapse problem; optimize the process conditions of the sintering and annealing steps to further improve the mechanical properties of the porous tantalum such as ductility and reduce the fracture rate of the sintered neck.
  • the porosity of the porous tantalum material prepared by the above method is less than 0.5%; the pores of the porous tantalum product are uniformly distributed and connected, and the density is 5 ⁇ 00 ⁇ 8 ⁇ 33g/cm 3 , and the porosity is 50 to 70%. 3% ⁇ 10. 2% ⁇ Having a singularity of 5% to 10. 2%.
  • the porous tantalum material of the invention not only has good biocompatibility and safety, but also has high mechanical strength and high strength, and is very suitable for replacing bone tissue of a human weight bearing part.
  • Fig. 1 is a scanning electron microscopic analysis chart (SEM image) of a porous tantalum structure prepared by the preparation method of the present invention; it can be observed from the drawing that: the porous tantalum of the present invention has high porosity and uniform pore distribution. It can be seen from the drawing that the porous ⁇ -connected pores of the present invention are beneficial to adhesion, differentiation and growth of osteoblasts, promote bone ingrowth, strengthen the connection between the implant and the bone, and facilitate bio-immobilization. . detailed description
  • Example 1 Weighing 12. 5 g of polyvinyl alcohol was placed in a vessel containing 240 ml of distilled water; it was placed on an electric furnace and heated and stirred to make an aqueous polyvinyl alcohol solution. The average particle size is less than 43 microns and the oxygen content is small with a 200g balance. 60 g of niobium powder was added to 0.1%, and 50 ml of a cooled aqueous solution of polyvinyl alcohol was added thereto, and the mixture was stirred and mixed to obtain a niobium powder slurry. Use 10 X 10 X 30mm porous polyurethane foam (average pore diameter of 0. 48mm, density 0.
  • Vacuum sintering The sintering step is a vacuum degree of 10 - 4 Pa ⁇ 10 - 3 Pa, and the temperature is raised to 1800 ° C at 13 ° C / min, the temperature is kept for 200 min, and the furnace is cooled to 200 to 300 ° C, and then 17 °. C/min is heated to 1800 ° C, tempered for 230 min, heated to 2000 ⁇ 2200 ° C at 7 ° C / min, and kept for 300 min .
  • the argon gas is protected during the sintering process, and the surface dust and dirt are removed after the product is removed.
  • the conventional post-treatment is carried out to obtain a porous tantalum product.
  • the 5% of the content of the porous material is less than 0.5%.
  • the inventor is tested according to the standard of GB/T5163_2006, GB/T5249_1985, GB/T6886-2001, etc., the porosity, porosity, pore size and various mechanical properties of the porous material:
  • Example 2 10 g of polyvinyl alcohol was weighed and placed in a vessel containing 200 ml of distilled water; it was placed on an electric furnace and heated and stirred to make an aqueous polyvinyl alcohol solution. 40 g of an anthracene powder having an average particle diameter of less than 43 ⁇ m and an oxygen content of less than 0.1% was weighed by a 200 g balance, and 32 ml of an aqueous polyvinyl alcohol solution was added thereto, and the mixture was stirred and mixed to make it into a tantalum powder slurry. 10 ⁇ 10 X 25mm porous polyurethane foam (average pore diameter of 0. 56mm, density 0.
  • Vacuum sintering is a vacuum degree of 10 - 4 Pa ⁇ 10 - 3 Pa, and the temperature is raised to 1600 ° C at 10 ° C / min, the temperature is maintained for 240 min, and the furnace is cooled to 200 to 300 ° C, and then 20 °. C/min is heated to 1500 ° C, held for 180 min, heated to 2000 ⁇ 2200 ° C at 5 ° C / min, and kept for 360 min.
  • the sintering process is filled with argon gas. After removing the product, the surface dust and dirt are removed.
  • the conventional post-treatment is carried out to obtain a porous tantalum product.
  • the 5% of the content of the porous material is less than 0.5%.
  • the inventor is tested according to the standard of GB/T5163_2006, GB/T5249_1985, GB/T6886-2001, etc., the porosity, porosity, pore size and various mechanical properties of the porous material:
  • Example 3 Polyvinyl alcohol l lg was weighed and placed in a vessel containing 220 ml of distilled water; it was placed on an electric furnace and heated and stirred to make an aqueous polyvinyl alcohol solution.
  • the granules having an average particle diameter of less than 43 ⁇ m and an oxygen content of less than 0.1% were weighed in an amount of 45 g, and 36 ml of an aqueous polyvinyl alcohol solution was added thereto, and the mixture was stirred and mixed to obtain a mash slurry.
  • 8 ⁇ 8 X 25mm porous polyurethane foam average pore diameter of 0. 70mm, density of 0. 035g/cm 3 , hardness of 70° was used.
  • the sintering step is a vacuum degree of 10 - 4 Pa ⁇ 10 - 3 Pa, and the temperature is raised to 1800 ° C at 20 ° C / min, the temperature is kept for 120 min, and the furnace is cooled to 200 to 300 ° C, and then 10 °.
  • C/min is heated to 1800 °C, heat is heated for 240 min, heated to 2000 ⁇ 2200 °C at 10 °C/min, and kept for 120 min.
  • the sintering process is filled with argon gas protection, and the surface dust and dirt are removed after the product is taken out.
  • the conventional post-treatment is carried out to obtain a porous tantalum product.
  • the 5% of the content of the porous material is less than 0.5%.
  • the inventor is tested according to the standard of GB/T5163_2006, GB/T5249_1985, GB/T6886-2001, etc., the porosity, porosity, pore size and various mechanical properties of the porous material:
  • the finished product, the pores are evenly distributed and connected, having a density of 5.0 g / cm 3 , a porosity of 70%, an average pore diameter of 450 m, an elastic modulus of 5. 5 GPa, a flexural strength of 130 MPa, a compressive strength of 86 MPa, an elongation of 9. 5 %.
  • Example 4 12 g of polyvinyl alcohol was weighed and placed in a vessel containing 230 ml of distilled water; it was placed on an electric furnace and heated and stirred to make an aqueous polyvinyl alcohol solution. 50 g of an anthracene powder having an average particle diameter of less than 43 ⁇ m and an oxygen content of less than 0.1% was weighed by a 200 g balance, and 40 ml of an aqueous polyvinyl alcohol solution was added thereto, and the mixture was stirred and mixed to obtain a tantalum powder slurry.
  • Vacuum sintering The sintering step is a vacuum degree of 10 - 4 Pa ⁇ 10 - 3 Pa, and the temperature is raised to 1700 ° C at 13 ° C / min, the temperature is kept for 210 min, and the furnace is cooled to 200 to 300 ° C, and then 15 °. C/min is heated to 1600 ° C, kept for 210 min, heated to 2000 ⁇ 2200 ° C at 8 ° C / min, held for 260 min, argon gas is sealed during the sintering process, and the surface dust and dirt are removed after the product is removed.
  • the conventional post-treatment is carried out to obtain a porous tantalum product.
  • the 5% of the content of the porous material is less than 0.5%.
  • the inventor is tested according to the standard of GB/T5163_2006, GB/T5249_1985, GB/T6886-2001, etc., the porosity, porosity, pore size and various mechanical properties of the porous material:
  • the finished product, the pores are evenly distributed and connected, having a density of 8.33 g / cm 3 , a porosity of 50%, an average pore diameter of 350 m, an elastic modulus of 2. 7 GPa, a flexural strength of 142 MPa, a compressive strength of 81 MPa, an elongation of 9. 8 %.
  • Example 5 a porous crucible, which has a particle size of less than 43 m, an oxygen content of less than 0.1%, and a polyvinyl alcohol solution as a binder solution to prepare a tantalum powder slurry, and is poured. It is prepared in a polyurethane foam carrier; then vacuum drying, degreasing treatment, vacuum sintering, vacuum annealing and conventional post treatment.
  • the urethane foam having a pore size of 0. 72 ⁇ 0. 56 hidden, density 0. 025g/cm 3 , hardness 50. ⁇ 80 °; dried in vacuo: the degree of vacuum holding 10- 2 ⁇ lPa, to remove moisture tantalum slurry filled polyurethane foam; degreasing process: Under an inert gas atmosphere or a vacuum of 10-4 ⁇ 10- 3 Pa, temperature 400 ° C ⁇ 800 ° C, and Paul Heating time 30 ⁇ 120 minutes to remove the polyvinyl alcohol and polyurethane foam therein;
  • Vacuum sintering is a vacuum degree of 10 - 4 Pa ⁇ 10 - 3 Pa, heating up to 1650 ° C at 16 ° C / min, holding for 190 min, cooling with a furnace to 200 to 300 ° C, and then 18 ° C/min is heated to 1800 ° C, kept for 200 min, heated to 2000 ⁇ 2200 ° C at 6 ° C / min, and kept for 270 min;
  • Vacuum annealing After vacuum sintering temperature is maintained 1000 ⁇ 1250 ° C, holding time 1 ⁇ 4 hours, the degree of vacuum of 10- 4 ⁇ 10- 3 Pa, to an annealing treatment for stress relief; prepared sample was subjected to conventional The post-treatment is porous and finished.
  • the 5% of the content of the porous material is less than 0.5%.
  • the inventor is tested according to the standard of GB/T5163_2006, GB/T5249_1985, GB/T6886-2001, etc., the porosity, porosity, pore size and various mechanical properties of the porous material: The finished product, the pore distribution is uniform and connected, the density is 6. 3 g / cm 3 , the porosity is 62%, the average pore diameter is 220 m, the elastic modulus is 3. 3GPa, the bending strength is 136MPa, the compressive strength is 84MPa, the elongation is 10. 2 %.
  • Rate from room temperature to 1580 ° C, holding for 200 min, and cooling with furnace to 15 ° C / min Increase to 400 ° C, 200 ⁇ 300 ° C, then increase the temperature to 1030 ° C at 16 ° C / min, insulation 60min / 1700 ° C, heat 220min, 480min at 5 ° C / min /
  • the temperature of 0.5 ° C / min to 2000 ⁇ 2200 ° C, holding 320min; 5 ° C / min rate rate from 400 ° C vacuum is 10 4 Pa ⁇ 10 - 3 Pa; / ⁇ to 1000 °C, heat up to 600 °C, rate to 1520 °C, keep warm for 60 min; 180 min / hold for 120 min at 13 °C/min) f3 ⁇ 4 to 1200 °C, keep warm at irC/min
  • ° C / min vacuum is 10 - 3 Pa, i rC / min temperature 10" 3 Pa / 17 ° C / min rate from room temperature to 1580 ° C, holding 200min, with furnace cooling The rate rises to 1050 °C, rises to 400 °C, 200 ⁇ 300 °C, then rises to 16 °C/min to 450 min / heat 58 min / 1700 ° C, heats up 220 min, rises 5 ° C / min 6 °C/min rate
  • the temperature of 0.6 ° C / min to 2000 ⁇ 2200 ° C, holding 320min; to 1000 °c, the holding rate from 400 ° C vacuum is 10 4 Pa ⁇ 10 - 3 Pa; 12 ° C / min 150min / rise to 650 ° C, the rate to 1530 ° C, heat 55min; heat the HOmin at a rate of 12 ° C / min at a rate of 14 ° C / min) f3 ⁇ 4 to 1210 ° C, heat to 800 ° C, insulation
  • 0.7 ° C / min temperature to 2000 ⁇ 2200 ° C, holding 320min; to 1000 ° C, holding rate from 400 ° C true 3 ⁇ 4S is 10 4 Pa ⁇ 10 - 3 Pa; 13 ° C / min 130min / rise to The temperature was 680 ° C, and the temperature was kept at 1540 ° C for 50 min. The rate of lOOmin ° C/min was maintained at 12 ° C / min to 1220 ° at a rate of 13 ° C / min.
  • Example 6 7 8 Density (g/cm 3 ) 6.9 7.5 7.8 Porosity (%) 50 64 70 Aperture ( ⁇ ) 170 410 280 Modulus of elasticity (GPa) 2.6 3.5 4.0 Flexural strength (MPa) 140 130 150 Compressive strength (MPa) 80 88 76 Elongation (%) 9.5 9.8 10.0

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dermatology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种制备医用多孔钽植入材料的方法,有机粘结剂与分散剂配制成的溶液和钽粉制成钽粉浆料,浇注于有机泡沫体中,浸渍直至有机泡沫体孔隙注满钽粉浆料,干燥除去浇注有钽粉浆料的有机泡沫体中的分散剂,在惰性气体保护气氛下脱脂处理以除去有机粘结剂和有机泡沫体,真空下烧结制得多孔烧结体、冷却,真空退火及常规后处理制得多孔钽;所述烧结步骤是真空度为 10-4Pa~10-3Pa,以 10~20℃/min 升温至 1500~1800℃、保温 120~240min、随炉冷至 200~300℃,再以 10~20℃/min 升温至 1500~1800℃、保温 180~ 240min,以 5~10℃/min 升温至 2000~2200℃、保温 120~360min。本发明制得的多孔钽材料不仅生物相容性、安全性好,而且力学性能特别强度高,非常适合用于替代人体承重部位的骨组织。

Description

一种制备医用多孔钽植入材料的方法 技术领域
本发明涉及一种多孔医用金属植入材料, 特别是涉及一种适于替代承重骨组织的医用 多孔钽植入材料的制备方法。
背景技术
多孔医用金属植入材料具有治疗骨组织创伤和股骨组织坏死等重要而特殊的用途, 现 常见的这类材料有多孔金属不锈钢、 多孔金属钛等。 作为骨组织创伤和股骨组织坏死治疗 使用的多孔植入材料, 其孔隙度应达 30〜80%, 而且孔隙最好全部连通与均匀分布, 或根 据需要孔隙部分连通与均匀分布, 使之既与人体的骨组织生长相一致, 又减轻了材料本身 的重量, 以适合人体植入使用。
而难熔金属钽, 由于它具有优秀的生物相容性和力学性能, 其多孔材料有望作为替代 前述等传统医用金属生物材料, 成为主要作为骨组织坏死治疗的生物材料。 由于金属钽对 人体的无害、 无毒、 无副作用, 以及随着国内外医学的飞速发展, 对钽作为人体植入材料 认知的进一步深入, 人们对人体植入用多孔金属钽材料的需求变得越来越迫切, 对其要求 也越来越高。 其中作为多孔医用植入金属钽, 如果能具有很高的均匀分布连通孔隙以及与 人体相适应的物理机械性能, 则是保证新生骨组织正常生长的重要连接件构成材料。
作为医用植入的多孔金属材料就像一般的多孔金属材料那样基本上是以粉末烧结法 为主要的加工方法, 特别是为获取孔隙连通与均匀分布的多孔金属泡沫结构采用粉末烧结 法中的金属粉末浆料在有机泡沫体上的浸渍后干燥再烧结简称泡沫浸渍法居多。 关于粉末 烧结所获得的孔隙连通与均匀分布的多孔金属材料通常其金属力学性能并不是很好, 其主 要原因是工艺上如何安排成孔介质的支撑与消除关系、 金属粉末烧结过程中的塌陷问题。 而已知的文献报道中均没有很好的解决方法而放任自然。
采用金属粉末烧结法制造多孔钽的文献报道很少, 特别是以获得医用植入材料用为目 的的多孔钽粉末烧结法文献报道几乎没有。可以参考的是公开号为 CN200510032174, 名称 "三维通孔或部分孔洞彼此相连多孔金属泡沫及其制备方法" 以及 CN200710152394,名称 "一种新型多孔泡沫钨及其制备方法" 。 然而其所获得的多孔金属或是为过滤材料用, 或 是为航空航天及其它高温场合用而非作为医用金属植入材料使用, 再者所加工的多孔金属 也非多孔钽。
关于多孔钽, US5282861 公开了一种应用于松质骨植入体、 细胞和组织感受器的开孔 钽材料及其制备。 这种多孔钽由纯商业钽制成, 它以聚亚氨酯前体进行热降解得到的碳骨 架为支架, 该碳骨架呈多重的十二面体, 其内为网格样结构, 整体遍布微孔, 孔隙率可高 达 98%, 再将商业纯钽通过化学蒸气沉积、 渗透的方法结合到碳骨架上以形成多孔金属微 结构, 简称为化学沉积法。 这种方法所获得的多孔钽材料其表面的钽层厚度在 40〜60 m 之间; 在整个多孔材料中, 钽重约占 99%, 而碳骨架重量则占 1%左右。 文献进一步记载, 该多孔材料的抗压强度 50〜70MPa, 弹性模量 2. 5〜3. 5GPa, 抗拉强度 63MPa, 塑性变形量 15%。 但是将它作为医用植入材料的多孔钽,其材料的力学性能如延展性有明显不足之处, 会影响到后续的对多孔钽材料本身的加工, 例如成型件的切割等。 同样在前述的金属粉末 烧结法所获得的产品也均存在这样的不足。 再由于其制备方法的局限, 获得的成品纯度不 够, 有碳骨架残留物, 导致生物安全性降低。
发明内容
本发明的目的在于提供一种生物相容性好、 力学强度高的医用多孔钽植入材料的制备 方法。
本发明的目的是通过如下技术手段实现的:
一种制备医用多孔钽植入材料的方法, 采用泡沫浸渍法烧结而成, 其特点在于用有机 粘结剂与分散剂配制成的溶液和钽粉制成钽粉浆料, 并浇注于有机泡沫体中, 浸渍直至有 机泡沫体孔隙注满钽粉浆料, 然后干燥除去浇注有钽粉浆料的有机泡沫体中的分散剂, 在 惰性气体保护气氛下脱脂处理以除去有机粘结剂和有机泡沫体, 真空下烧结制得多孔烧结 体、 冷却, 再真空下退火及常规后处理制得多孔钽; 所述烧结步骤是真空度为 10— 4Pa〜 10— 3Pa, 以 10〜20°C/min升温至 1500〜1800°C、 保温 120〜240min、 随炉冷至 200〜300 °C, 再以 10〜20°C/min升温至 1500〜1800°C、 保温 180〜240min, 以 5〜10°C/min升温 至 2000〜2200°C、 保温 120〜360min。
采用本发明所述制备方法制得的多孔钽特别适用于作为承重骨组织创伤或骨缺损处 的连结构件。 再者, 所述的制备方法工艺简单、 易控; 整个制备过程无害、 无污染、 无毒 害粉尘, 对人体无副作用。 而且在制备过程中优先采用在烧结过程中能够全部分解, 没有 残留的粘结剂、 分散剂、 有机泡沫体等, 将有利于保证植入材料的生物相容性和生物安全 性。
所述的有机粘结剂优选聚乙烯醇, 也可以采用淀粉、 乙基纤维素等类似物质; 所述的 分散剂通常采用水、 无水乙醇等, 其中优选水。 所述的有机泡沫体优选聚氨酯泡沫, 也可 以是聚醚酯泡沫等类似物质。
本发明的进一步的特点是:采用其平均粒径小于 43 μ m、氧含量小于 0. 1%的金属钽粉, 采用聚乙烯醇水溶液为粘结剂和水为分散剂与所述的钽粉制成钽粉浆料, 有机泡沫体为聚 氨酯泡沫, 然后真空干燥除去水, 形成的多孔钽的孔隙度介于 50〜70%, 孔隙直径 150〜 600 μ ΐϋ。 其中, 将聚乙烯醇用蒸馏水加热至溶解, 采用重量百分比 2〜8% (优选 4〜5%) 聚乙 烯醇水溶液与金属钽粉制成钽粉浆料, 其中, 将重量为 6〜9份 (优选 7份) 的金属钽粉 加入重量为 1份的所述聚乙烯醇水溶液中, 搅拌均匀制成浆糊状; 并浇注于孔径为 0. 48〜 0. 89mm, 密度 0. 015 g/cm3〜0. 035g/cm3, 硬度大于 50° (优选孔径为 0. 56〜0. 72mm, 密度 0. 025g/cm3, 硬度 50°〜80°) 的聚氨酯泡沫中。
优先选择平均粒径小于 43 μ m、 氧含量小于 0. 1%的金属钽粉有助于减少杂质的含量, 保证材料具有较好的力学性能;选择孔径为 0. 48〜0. 89mm,密度 0. 025 g/cm3〜0. 035g/cm3, 硬度大于 50°的聚氨酯泡沫有助于保证多孔钽的孔隙度与孔隙直径。 本发明这样的技术处 理优化了工艺条件, 将保证植入多孔钽材料的生物相容性和生物安全性。
本发明另一方面的进一步的特点是: 干燥的真空度保持 10— 2〜lPa真空度, 然后在保 护气氛下, 例如真空度 10— 4〜10— 3Pa, 温度 400°C〜80(TC条件下进行除去有机粘结剂和有 机泡沫体的脱脂处理;烧结处理:真空度为 10— 4Pa〜10— 3Pa,以 12〜15°C/min升温至 1600〜 1800°C、保温 180〜200min、随炉冷至 200〜300°C,再以 16〜19°C/min升温至 1500〜1800 °C、 保温 220〜240min, 以 5〜8°C/min升温至 2000〜2200°C、 保温 250〜320min, 烧结过 程保温时可以充惰性气体保护代替真空保护; 最后进行真空退火处理, 其中真空退火处理 是指经过真空烧结后继续保持温度处于 1000〜1250°C, 保温时间 1〜4小时, 真空度为低 于 10— 4〜10— 3Pa。
上述脱脂处理条件还包括有: 以 0. 5°C/min〜5°C/min的速率逐步升温至 400〜800°C, 以氩气通入构成保护气氛并保温 30min〜120min;
真空烧结条件为:真空度为 10— 4Pa〜10— 3Pa, 以 13°C/min升温至 1800°C、保温 200min、 随炉冷至 200〜300°C, 再以 17°C/min升温至 1800°C、 保温 230min, 以 7°C/min升温至 2000〜2200°C、 保温 300min;
真空烧结后的冷却条件还包括有: 真空度低于 10— 3Pa, 以不高于 25°C/min, 不低于 10°C/min渐降冷却速率方式,对烧结多孔体分段降温冷却至 800°C,各段保温时间 30min〜 90min, 然后随炉冷却至常温;
真空退火条件还包括有: 真空度低于 10— 4Pa, 以不高于 30°C/min的速率升至 1000〜 1250°C , 保温 4h〜6h; 再以先慢后快以不低于 5°C/min但不高于 30°C/min的冷却速率分 段冷却至室温, 各段的保温时间呈递减且不超过 1. 5 h〜3h内选择。
在此基础上更进一步的特点是: 所述真空干燥的干燥温度 60〜100°C, 干燥时间 4〜8 小时; 所述脱脂处理条件还包括有: 逐步升温至 600〜800°C, 以纯净氩气 (99. 9999%)通 入构成保护气氛, 以 l〜5°C/min 的速率从室温升至 400°C, 保温 30〜60min, 以 0. 5〜 1. 5°C/min的速率从 400°C升至 600〜800°C, 保温 60〜120min, 所述真空烧结条件为: 空 度为 10— 4Pa〜10— 3Pa, 以 13°C/min升温至 1800°C、 保温 200min、 随炉冷至 200〜300°C, 再以 17°C/min升温至 1800°C、保温 230min,以 7°C/min升温至 2000〜2200°C、保温 300min; 真空烧结后的冷却条件还包括有: 真空度为 10— 4Pa〜10— 3Pa; 以 10〜20°C/min的速率冷却 至 1500〜1600°C, 保温 30〜60min; 以 12〜20°C/min的速率冷却至 1200〜1250°C, 保温 60〜90min; 以 10〜20°C/min的速率冷却至 800°C, 然后随炉冷却; 所述真空退火条件还 包括有:以 15〜30°C/min的速率升至 1000〜1250°C,保温 240〜480min,真空度为 10— 4Pa〜 10— 3Pa,再以 5〜10°C/min的速率冷却至 1000°C,保温 90〜180min,真空度为 10— 4Pa〜10— 3Pa; 以 10〜20°C/min 的速率冷却至 800°C, 保温 60〜120min, 真空度低于 10— 4Pa; 以 20〜 30°C/min的速率冷却至室温, 真空度为 10— 4Pa〜10— 3Pa。
其中对真空干燥、 脱脂处理等是有助于减少多孔钽中杂质的含量, 提高生物相容性和 生物安全性好及力学性能; 对有机泡沫体材料的优化以解决烧结过程中泡沫骨架的不易塌 陷问题; 对烧结及退火步骤的工艺条件优化, 进一步提高多孔钽的力学性能如延展性、 减 小烧结颈的断裂率。
上述方法制得的多孔钽材料, 经过测试其杂质含量低于 0. 5%; 该多孔钽成品孔隙分布 均匀且连通, 密度 5· 00〜8· 33g/cm3, 孔隙度 50〜70%, 孔隙直径 150〜600 μ m, 弹性模量 2. 5〜4. 0GPa, 弯曲强度 130〜150MPa, 抗压强度 75〜88MPa, 延伸率 9. 3%〜10. 2%。 本发 明多孔钽材料不仅生物相容性、 安全性好, 而且力学性能特别强度高, 非常适合用于替代 人体承重部位的骨组织。 附图说明
图 1是本发明所述制备方法制备的多孔钽结构的扫描电子显微镜分析图 (SEM图); 从附图可观察到: 本发明所述多孔钽高孔隙, 孔隙分布均匀连通。 从附图中可看出本 发明所述的多孔钽连通孔隙有利于成骨细胞粘附、 分化和生长, 促进骨的长入, 可加强植 入体与骨之间的连接, 利于实现生物固定。 具体实施方式
下面通过实施例对本发明进行具体的描述, 有必要在此指出的是以下实施例只用于对 本发明进行进一步说明, 不能理解为对本发明保护范围的限制, 该领域的技术人员可以根 据上述本发明内容对本发明作出一些非本质的改进和调整。
实施例 1 : 称取聚乙烯醇 12. 5g, 放入装有 240ml蒸馏水的容器中; 将其放在电炉上 加温并搅拌使之成为聚乙烯醇水溶液。 用 200g天平称量平均粒径小于 43微米、 氧含量小 于 0. 1%的钽粉 60g, 加入 50ml冷却的聚乙烯醇水溶液, 搅拌混合均匀, 使之成为钽粉浆 料。选用 10 X 10 X 30mm多孔聚氨酯泡沫(平均孔径为 0. 48mm,密度 0. 025g/cm3,硬度 50。) 放入其中浇注, 直至聚氨酯泡沫孔隙注满钽粉浆料, 用夹子夹出吸满钽粉浆料的聚氨酯泡 沫放入瓷盘中。在真空干燥箱中干燥, 干燥温度 60°C, 干燥时间 8小时, 真空度保持 lPa。 脱脂处理: 真空度低于 10— 4Pa, 温度 600°C, 保温时间 120分钟。 真空烧结: 所述烧结步 骤是真空度为 10— 4Pa〜10— 3Pa, 以 13°C/min升温至 1800°C、 保温 200min、 随炉冷至 200〜 300 °C , 再以 17°C/min升温至 1800°C、 保温 230min, 以 7°C/min升温至 2000〜2200°C、 保温 300min; 烧结过程充氩气保护, 取出产品后去除表面灰尘及污物, 制得的样品再进行 常规的后处理得多孔钽成品。
发明人按 GB/T5163_2006、 GB/T5249_1985、 GB/T6886-2001等标准对上述多孔钽成品 的多孔材料密度、 孔隙率、 孔径及各种力学性能进行检测: 其杂质含量低于 0. 5%的成品, 其孔隙分布均匀且连通, 密度 6. 7g/cm3, 孔隙率 56%, 孔隙平均直径 300 m, 弹性模量 3. OGPa, 弯曲强度 150MPa, 抗压强度 82MPa, 延伸率 9. 8%。
实施例 2: 称取聚乙烯醇 10g, 放入装有 200ml蒸馏水的容器中; 将其放在电炉上加 温并搅拌使之成为聚乙烯醇水溶液。 用 200g天平称量平均粒径小于 43微米、 氧含量小于 0. 1%的钽粉 40g, 加入 32ml 聚乙烯醇水溶液, 搅拌混合均匀, 使之成为钽粉浆料。 选用 10 X 10 X 25mm多孔聚氨酯泡沫 (平均孔径为 0. 56mm, 密度 0. 030g/cm3, 硬度 60°) 放入其 中浇注, 直至聚氨酯泡沫孔隙注满钽粉浆料, 用夹子夹出吸满钽粉浆料的聚氨酯泡沫放入 瓷盘中。 在真空干燥箱中干燥, 干燥温度 100°C, 干燥时间 4小时, 真空度保持 10— 2Pa。 脱脂处理: 真空度 10— 4Pa, 温度 800°C, 保温时间 120分钟。 真空烧结: 所述烧结步骤是 真空度为 10— 4Pa〜10— 3Pa, 以 10°C/min升温至 1600°C、 保温 240min、 随炉冷至 200〜300 °C, 再以 20°C/min升温至 1500°C、 保温 180min, 以 5°C/min升温至 2000〜2200°C、 保温 360min, 烧结过程充氩气保护, 取出产品后去除表面灰尘及污物, 制得的样品再进行常规 的后处理得多孔钽成品。
发明人按 GB/T5163_2006、 GB/T5249_1985、 GB/T6886-2001等标准对上述多孔钽成品 的多孔材料密度、 孔隙率、 孔径及各种力学性能进行检测: 其杂质含量低于 0. 5%的成品, 其孔隙分布均匀且连通, 密度 8. 0g/cm3, 孔隙率 66%, 孔隙平均直径 400 μ πι, 弹性模量 3. 5GPa, 弯曲强度 140MPa, 抗压强度 75MPa, 延伸率 10. 1%。
实施例 3: 称取聚乙烯醇 l lg, 放入装有 220ml蒸馏水的容器中; 将其放在电炉上加 温并搅拌使之成为聚乙烯醇水溶液。 用 200g天平称量平均粒径小于 43微米、 氧含量小于 0. 1%的钽粉 45g, 加入 36ml 聚乙烯醇水溶液, 搅拌混合均匀, 使之成为钽粉浆料。 选用 8 X 8 X 25mm多孔聚氨酯泡沫 (平均孔径为 0. 70mm, 密度 0. 035g/cm3, 硬度 70°) 放入其中 浇注, 直至聚氨酯泡沫孔隙注满钽粉浆料, 用夹子夹出吸满钽粉浆料的聚氨酯泡沫放入瓷 盘中。 在真空干燥箱中干燥, 干燥温度 80°C, 干燥时间 6小时, 真空度保持 10— ^E 脱脂 处理: 真空度 10— 3Pa, 温度 700°C, 保温时间 90分钟。 真空烧结: 所述烧结步骤是真空度 为 10— 4Pa〜10— 3Pa, 以 20°C/min升温至 1800°C、 保温 120min、 随炉冷至 200〜300°C, 再 以 10°C/min升温至 1800°C、保温 240min,以 10°C/min升温至 2000〜2200°C、保温 120min, 烧结过程充氩气保护, 取出产品后去除表面灰尘及污物, 制得的样品再进行常规的后处理 得多孔钽成品。
发明人按 GB/T5163_2006、 GB/T5249_1985、 GB/T6886-2001等标准对上述多孔钽成品 的多孔材料密度、 孔隙率、 孔径及各种力学性能进行检测: 其杂质含量低于 0. 5%的成品, 其孔隙分布均匀且连通, 密度 5. 0g/cm3, 孔隙率 70%, 孔隙平均直径 450 m, 弹性模量 5. 5GPa, 弯曲强度 130MPa, 抗压强度 86MPa, 延伸率 9. 5%。
实施例 4: 称取聚乙烯醇 12g, 放入装有 230ml蒸馏水的容器中; 将其放在电炉上加 温并搅拌使之成为聚乙烯醇水溶液。 用 200g天平称量平均粒径小于 43微米、 氧含量小于 0. 1%的钽粉 50g, 加入 40ml 聚乙烯醇水溶液, 搅拌混合均匀, 使之成为钽粉浆料。 选用 12 X 12 X 30隱多孔聚氨酯泡沫 (孔径为 0. 60隱, 密度 0. 027g/cm3, 硬度 80。) 放入其中浇 注, 直至聚氨酯泡沫孔隙注满钽粉浆料, 用夹子夹出吸满钽粉浆料的聚氨酯泡沫放入瓷盘 中。 在真空干燥箱中干燥, 干燥温度 90°C, 干燥时间 5小时, 真空度保持 lPa。 脱脂处理: 真空度 10— 4〜10— 3Pa, 温度 500°C, 保温时间 120分钟。 真空烧结: 所述烧结步骤是真空度 为 10— 4Pa〜10— 3Pa, 以 13°C/min升温至 1700°C、 保温 210min、 随炉冷至 200〜300°C, 再 以 15°C/min升温至 1600°C、保温 210min,以 8°C/min升温至 2000〜2200°C、保温 260min, 烧结过程充氩气保护, 取出产品后去除表面灰尘及污物, 制得的样品再进行常规的后处理 得多孔钽成品。
发明人按 GB/T5163_2006、 GB/T5249_1985、 GB/T6886-2001等标准对上述多孔钽成品 的多孔材料密度、 孔隙率、 孔径及各种力学性能进行检测: 其杂质含量低于 0. 5%的成品, 其孔隙分布均匀且连通, 密度 8. 33g/cm3, 孔隙率 50%, 孔隙平均直径 350 m, 弹性模量 2. 7GPa, 弯曲强度 142MPa, 抗压强度 81MPa, 延伸率 9. 8%。
实施例 5: —种多孔钽, 它以粒径小于 43 m、 氧含量小于 0. 1%的金属钽粉为原料, 以聚乙烯醇水溶液为粘结剂溶液制成钽粉浆料, 并浇注于聚氨酯泡沫载体中; 然后真空干 燥、 脱脂处理、 真空烧结、 真空退火及常规后处理制得。
其中, 选用的聚氨酯泡沫, 其孔径为 0. 72〜0. 56隱, 密度 0. 025g/cm3, 硬度 50。〜80°; 真空干燥: 真空度保持 10— 2〜lPa, 以除去注满钽粉浆料的聚氨酯泡沫中的水分; 脱脂处理: 在惰性气体保护气氛下或真空度 10— 4〜10— 3Pa, 温度 400°C〜800°C, 并保 温时间 30〜120分钟以除去其中的聚乙烯醇及聚氨酯泡沫;
真空烧结: 所述烧结步骤是真空度为 10— 4Pa〜10— 3Pa, 以 16°C/min升温至 1650°C、 保 温 190min、随炉冷至 200〜300°C,再以 18°C/min升温至 1800°C、保温 200min,以 6°C/min 升温至 2000〜2200°C、 保温 270min;
真空退火: 经过真空烧结后继续保持温度处于 1000〜1250°C, 保温时间 1〜4小时, 真空度为 10— 4〜10— 3Pa, 以进行去应力退火处理; 制得的样品再进行常规的后处理得多孔钽 成品。
发明人按 GB/T5163_2006、 GB/T5249_1985、 GB/T6886-2001等标准对上述多孔钽成品 的多孔材料密度、 孔隙率、 孔径及各种力学性能进行检测: 其杂质含量低于 0. 5%的成品, 其孔隙分布均匀且连通, 密度 6. 3g/cm3, 孔隙率 62%, 孔隙平均直径 220 m, 弹性模量 3. 3GPa, 弯曲强度 136MPa, 抗压强度 84MPa, 延伸率 10. 2%。
在上述实施例 5给出的方法中, 我们还可以对其中的各种条件作其他选择同样能得到 本发明所述的多孔钽。
Figure imgf000009_0001
实 干燥真空度 脱脂气氛 烧结气氛(Pa) /温度 CC ) /时间 (min) 退火气氛(Pa) /升 施 (Pa) (Pa) /温度 温或降温速率 (°c 例 CO /时间 ( °C ) /时间 /min)温度 (°C ) /
(小时) (min) 保温时间 (min)
6 1/65/6.5 以 rC/min的 真空度为 10— 3Pa,以 i rC/min升温 10 Pa/
速率从室温 至 1580°C、 保温 200min、 随炉冷至 15°C/min 的速率升 升至 400°C, 200〜300°C, 再以 16°C/min 升温至 至 1030 °C, 保温 保温 60min/ 1700°C、 保温 220min, 以 5°C/min升 480min/
0.5°C/min的 温至 2000〜2200°C、 保温 320min; 5°C/min的速率 速率从 400°C 真空度为 104Pa〜10- 3Pa; 以 ΐΓ。/ηώι 至 1000 °C, 保温 升至 600°C, 的速率 至 1520 °C, 保温 60min; 180min/ 保温 120min 以 13°C/min的速率) f¾至 1200 °C, 保温 以 irC/min的速率
90min; 至 800°C,保温 以 13°C/min的速率 至 800°C, 然后随 108min/ 炉 21 °C/min的速率冷 却至室温
1/75/5.5 1.5°C/min的 真空度为 10— 3Pa,以 i rC/min升温 10"3Pa/17 °C/min 的 速率从室温 至 1580°C、 保温 200min、 随炉冷至 速率升至 1050 °C, 升至 400°C, 200〜300°C, 再以 16°C/min 升温至 保温 450min/ 保温 58min/ 1700°C、 保温 220min, 以 5°C/min升 6°C/min的速率
0.6°C/min的 温至 2000〜2200°C、 保温 320min; 至 1000 °c, 保温 速率从 400°C 真空度为 104Pa〜10— 3Pa; 以 12°C/min 150min/ 升至 650°C, 的速率 至 1530 °C, 保温 55min; 以 12°C/min的速率 保温 HOmin 以 14°C/min的速率) f¾至 1210°C, 保温 至 800°C,保温
85min; 102min/ 以 14°C/min的速率 至 800°C, 然后随 22°C/min的速率冷 炉 却至室温
1/55/7 以 2°C/min的 真空度为 10— 3Pa, 以 i rC/min升温 10"3Pa/20 °C/min 的 速率从室温 至 1580°C、 保温 200min、 随炉冷至 速率升至 1励。 C, 升至 400°C, 200〜300°C, 再以 16°C/min 升温至 保温 420min/ 保温 56min/ 1700°C、 保温 220min, 以 5°C/min升 7°C/min的速率
0.7°C/min的 温至 2000〜2200°C、 保温 320min; 至 1000 °C, 保温 速率从 400°C 真 ¾S为 104Pa〜10— 3Pa; 以 13°C/min 130min/ 升至 680°C, 的速率 至 1540 °C,保温 50min; 以 15 以 13°C/min的速率 保温 lOOmin °C/min的速率 至 1220°。,保温 80min; Ρ 800 °C,保温 以 15°C/min的速率) f¾至 800°C, 然后随 96min/ 炉 23°C/min的速率冷
Figure imgf000011_0001
所得多孔钽成品按前述方法检
实施例 6 7 8 密度 (g/cm3) 6.9 7.5 7.8 孔隙率 (%) 50 64 70 孔径 (μηι) 170 410 280 弹性模量 (GPa) 2.6 3.5 4.0 弯曲强度 (MPa) 140 130 150 抗压强度 (MPa) 80 88 76 延伸率 (%) 9.5 9.8 10.0

Claims

权 利 要 求 书
1、 一种制备医用多孔钽植入材料的方法, 采用泡沫浸渍法烧结而成, 其特征在于: 用有机粘结剂与分散剂配制成的溶液和钽粉制成钽粉浆料, 并浇注于有机泡沫体中, 浸渍 直至有机泡沫体孔隙注满钽粉浆料, 然后干燥除去浇注有钽粉浆料的有机泡沫体中的分散 剂, 在惰性气体保护气氛下脱脂处理以除去有机粘结剂和有机泡沫体, 真空下烧结制得多 孔烧结体、 冷却, 再真空下退火及常规后处理制得多孔钽; 所述烧结步骤是真空度为
10— 4Pa 10— 3Pa,以 10 20°C/min升温至 1500 1800°C、保温 120 240min、随炉冷至 200 300 °C, 再以 10 20°C/min升温至 1500 1800°C、 保温 180 240min, 以 5 10°C/min升 温至 2000 2200°C、 保温 120 360min
2、 如权利要求 1所述的方法, 其特征在于: 所述金属钽粉为平均粒径小于 43 μπκ 氧 含量小于 0.1%的金属钽粉; 所述有机粘结剂为聚乙烯醇, 分散剂为水, 配制成聚乙烯醇水 溶液与所述的钽粉制成钽粉浆料; 所述有机泡沫体为孔径 0.48 0.89 密度 0.015 g/cm3 0.035g/cm3, 硬度大于 50°的聚氨酯泡沫。
3、 如权利要求 2 所述的方法, 其特征在于: 所述聚乙烯醇水溶液的重量百分比浓度 为 2 8%; 所述金属钽粉与聚乙烯醇水溶液得重量份比为 6 9份: 1份; 所述聚氨酯泡沫 孔径为 0.56 0.72 密度 0.025g/cm3, 硬度 50° 80°
4、 如权利要求 2 所述的方法, 其特征在于: 所述聚乙烯醇水溶液的重量百分比浓度 为 4 5%; 所述金属钽粉与聚乙烯醇水溶液得重量份比为 7份: 1份; 所述聚氨酯泡沫孔 径为 0.56 0.72mm, 密度 0.025g/cm3, 硬度 50° 80°
5、 如权利要求 1、 2、 3或 4所述的方法, 其特征在于: 所述干燥的真空度保持 10— 2 lPa真空度, 然后在保护气氛下, 例如真空度 10— 4 10— 3Pa, 温度 400°C 800°C条件下进行 除去有机粘结剂和有机泡沫体的脱脂处理; 烧结处理: 真空度为 10— 4Pa 10— 3Pa, 以 12 15°C/min升温至 1600 1800°C、 保温 180 200min、 随炉冷至 200 300°C, 再以 16 19 °C/min升温至 1500 1800°C、 保温 220 240min, 以 5 8°C/min升温至 2000 2200°C、 保温 250 320min, 烧结过程保温时充惰性气体保护代替真空保护; 最后进行真空退火处 理,其中真空退火处理是指经过真空烧结后继续保持温度处于 1000 1250°C,保温时间 1 4小时, 真空度为低于 10— 4 10— 3Pa
6、 如权利要求 5 所述的方法, 其特征在于: 所述脱脂处理条件为: 以 0.5°C/mir 5°C/min的速率逐步升温至 400 800°C, 以氩气通入构成保护气氛并保温 30min 120min; 真空烧结条件为:真空度为 10— 4Pa 10— 3Pa, 以 13°C/min升温至 1800°C、保温 200min、 随炉冷至 200 300°C, 再以 17°C/min升温至 1800°C、 保温 230min, 以 7°C/min升温至 2000〜2200°C、 保温 300min;
真空烧结后的冷却条件还包括有: 真空度低于 10— 3Pa, 以不高于 25°C/min, 不低于 10°C/min渐降冷却速率方式,对烧结多孔体分段降温冷却至 800°C,各段保温时间 30min〜 90min, 然后随炉冷却至常温;
真空退火条件还包括有: 真空度低于 10— 4Pa, 以不高于 30°C/min的速率升至 1000〜 1250°C , 保温 4h〜6h; 再以先慢后快以不低于 5°C/min但不高于 30°C/min的冷却速率分 段冷却至室温, 各段的保温时间呈递减且不超过 1. 5 h〜3h内选择。
7、如权利要求 1、 2 、 3或 4所述的方法,其特征在于:所述真空干燥的干燥温度 60〜 100°C, 干燥时间 4〜8小时; 所述脱脂处理条件还包括有: 逐步升温至 600〜800°C, 以纯 净氩气 (99. 9999%) 通入构成保护气氛, 以 l〜5°C/min 的速率从室温升至 400°C, 保温 30〜60min, 以 0. 5〜1. 5°C/min的速率从 400°C升至 600〜800°C, 保温 60〜120min, 所述 真空烧结条件为: 空度为 10— 4Pa〜10— 3Pa, 以 13°C/min升温至 1800°C、 保温 200min、 随炉 冷至 200〜300°C, 再以 17°C/min升温至 1800°C、保温 230min, 以 7°C/min升温至 2000〜 2200°C、保温 300min; 真空烧结后的冷却条件还包括有: 真空度为 10— 4Pa〜10— 3Pa; 以 10〜 20°C/min的速率冷却至 1500〜1600°C, 保温 30〜60min; 以 12〜20°C/min的速率冷却至 1200〜1250°C, 保温 60〜90min; 以 10〜20°C/min的速率冷却至 800°C, 然后随炉冷却; 所述真空退火条件还包括有: 以 15〜30°C/min 的速率升至 1000〜1250°C, 保温 240〜 480min, 真空度为 10— 4Pa〜10— 3Pa, 再以 5〜10°C/min 的速率冷却至 1000°C, 保温 90〜 180min,真空度为 10— 4Pa〜10— 3Pa;以 10〜20°C/min的速率冷却至 800°C,保温 60〜120min, 真空度低于 10— 4Pa; 以 20〜30°C/min的速率冷却至室温, 真空度为 10— 4Pa〜10— 3Pa。
PCT/CN2012/082230 2011-09-29 2012-09-27 一种制备医用多孔钽植入材料的方法 WO2013044834A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110301063.7A CN102796905B (zh) 2011-09-29 2011-09-29 一种制备医用多孔钽植入材料的方法
CN201110301063.7 2011-09-29

Publications (1)

Publication Number Publication Date
WO2013044834A1 true WO2013044834A1 (zh) 2013-04-04

Family

ID=47196197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/082230 WO2013044834A1 (zh) 2011-09-29 2012-09-27 一种制备医用多孔钽植入材料的方法

Country Status (2)

Country Link
CN (1) CN102796905B (zh)
WO (1) WO2013044834A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111842528B (zh) * 2020-06-28 2023-08-01 得意精密电子(苏州)有限公司 均温板的制作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5282861A (en) * 1992-03-11 1994-02-01 Ultramet Open cell tantalum structures for cancellous bone implants and cell and tissue receptors
CN101405039A (zh) * 2006-02-17 2009-04-08 拜欧麦特制造公司 用于形成多孔金属植入物的方法和设备
CN101660076A (zh) * 2009-10-14 2010-03-03 北京师范大学 有机泡沫浸浆烧结法制备宏观网状多孔钽

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101549175B (zh) * 2009-05-15 2012-07-04 中南大学 一种孔隙非均匀分布仿生骨质材料制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5282861A (en) * 1992-03-11 1994-02-01 Ultramet Open cell tantalum structures for cancellous bone implants and cell and tissue receptors
CN101405039A (zh) * 2006-02-17 2009-04-08 拜欧麦特制造公司 用于形成多孔金属植入物的方法和设备
CN101660076A (zh) * 2009-10-14 2010-03-03 北京师范大学 有机泡沫浸浆烧结法制备宏观网状多孔钽

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JIE, YUNFENG ET AL.: "Fabrication of Porous Niobium-Based Biological Materials via Impregnation and Their Properties", RARE METAL MATERIALS AND ENGINEERING, vol. 39, no. 11, November 2010 (2010-11-01), pages 2015 - 2017, XP008173887 *

Also Published As

Publication number Publication date
CN102796905B (zh) 2014-05-07
CN102796905A (zh) 2012-11-28

Similar Documents

Publication Publication Date Title
EP2554187B1 (en) Metal porous tantalum used as medical implant material and preparation method thereof
WO2013044773A1 (zh) 一种牙骨替代医用多孔金属材料的制备方法
CN103849792B (zh) 一种适用于替代人体牙骨组织的多孔钽
WO2013044832A1 (zh) 一种制备医用多孔钽植入材料的方法
WO2013044780A1 (zh) 一种替代承重骨组织的医用多孔金属材料及其制备方法
WO2013044852A1 (zh) 一种医用多孔金属植入材料的制备方法
WO2013044767A1 (zh) 一种替代牙骨的医用多孔钽材料及其制备方法
CN103740962B (zh) 牙骨替代医用多孔金属材料的制备方法
WO2013044834A1 (zh) 一种制备医用多孔钽植入材料的方法
WO2013044858A1 (zh) 一种医用多孔金属植入材料的制备方法
WO2013044835A1 (zh) 一种多孔钽医用植入材料的制备方法
WO2013044778A1 (zh) 一种医用多孔金属材料及其制备方法
WO2013044779A1 (zh) 一种医用多孔金属材料的制备方法
WO2013044839A1 (zh) 一种医用植入材料多孔钽的制备方法
WO2013044815A1 (zh) 一种医用多孔钽材料的制备方法
WO2013044781A1 (zh) 一种替代承重骨组织的医用多孔金属材料的制备方法
CN103740961B (zh) 一种替代承重骨组织的医用多孔金属材料的制备方法
WO2013044809A1 (zh) 一种制备替代承重骨组织的医用多孔金属材料的方法
WO2013044833A1 (zh) 一种医用多孔钽植入材料的制备方法
WO2013044831A1 (zh) 替代人体承重骨组织的医用多孔钽材料的制备方法
CN102793946B (zh) 一种替代牙骨的医用多孔金属材料及其制备方法
CN103740960B (zh) 医用多孔钽植入材料的制备方法
WO2013044813A1 (zh) 一种替代承重骨组织的医用多孔金属材料的制备方法
CN102465211A (zh) 一种医用金属植入材料多孔钽的制备方法
CN104225673A (zh) 一种替代牙骨的医用多孔金属材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12837166

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12837166

Country of ref document: EP

Kind code of ref document: A1