WO2013044809A1 - 一种制备替代承重骨组织的医用多孔金属材料的方法 - Google Patents

一种制备替代承重骨组织的医用多孔金属材料的方法 Download PDF

Info

Publication number
WO2013044809A1
WO2013044809A1 PCT/CN2012/082084 CN2012082084W WO2013044809A1 WO 2013044809 A1 WO2013044809 A1 WO 2013044809A1 CN 2012082084 W CN2012082084 W CN 2012082084W WO 2013044809 A1 WO2013044809 A1 WO 2013044809A1
Authority
WO
WIPO (PCT)
Prior art keywords
rate
vacuum
cooled
temperature
room temperature
Prior art date
Application number
PCT/CN2012/082084
Other languages
English (en)
French (fr)
Inventor
叶雷
Original Assignee
重庆润泽医药有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆润泽医药有限公司 filed Critical 重庆润泽医药有限公司
Publication of WO2013044809A1 publication Critical patent/WO2013044809A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/047Other specific metals or alloys not covered by A61L27/042 - A61L27/045 or A61L27/06
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1121Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
    • B22F3/1125Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers involving a foaming process
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/02Alloys based on vanadium, niobium, or tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Definitions

  • the invention relates to a preparation method of a porous medical metal implant material, in particular to a preparation method of a porous medical implant metal material suitable for replacing bone tissue of a load-bearing part.
  • Porous medical metal implant materials have important and special applications for treating bone tissue trauma and femoral tissue necrosis. Common materials such as porous metal stainless steel and porous metal titanium are common materials. As a porous implant material for the treatment of bone tissue trauma and femoral tissue necrosis, the porosity should be 30 ⁇ 80%, and the pores are preferably all connected and evenly distributed, or as needed to conform to the bone tissue growth of the human body. , and reduce the weight of the material itself, suitable for human implant use.
  • the refractory metal ⁇ / ⁇ due to its excellent biocompatibility, its porous material is expected to replace the traditional medical metal biomaterials mentioned above. Because metal ruthenium/ruthenium is harmless to the human body, non-toxic, no side effects, and with the rapid development of medicine at home and abroad, the understanding of ⁇ / ⁇ as a human implant material is further deepened. The demand for ⁇ / ⁇ materials is becoming more and more urgent, and the requirements for them are getting higher and higher. Among them, as a porous medical implant metal ⁇ / ⁇ , if it can have a high uniform distribution of connected pores and physical and mechanical properties compatible with the human body, it is expected to be a new type of bone tissue replacement material.
  • porous metal material for medical implantation it is basically a powder sintering method as a general porous metal material, in particular, a metal in a powder sintering method for obtaining a porous metal foam structure with pore communication and uniform distribution. Drying of the powder slurry on the organic foam after drying and sintering is referred to as foam impregnation.
  • the porous metal material obtained by powder sintering generally has a very good metal mechanical property, and the main reason is how to arrange the support and elimination relationship of the pore-forming medium and the collapse problem in the sintering process of the metal powder.
  • porous ruthenium/ruthenium by metal powder sintering, and in particular, the porous ruthenium/iridium powder sintering method for the purpose of obtaining medical implant materials has been reported in the literature.
  • the porous metal obtained is either used as a filter material, or used for aerospace and other high temperature applications rather than as a medical metal implant material, and the porous metal processed is also non-porous.
  • porous tantalum US5282861 discloses an open-celled tantalum material for use in cancellous bone implants, cells and tissue receptors and its preparation.
  • the porous crucible is made of pure commercial crucible.
  • the carbon skeleton obtained by thermal degradation of the polyurethane precursor is a scaffold.
  • the carbon skeleton has multiple dodecahedrons, and the inside is a grid-like structure.
  • Hole, high porosity Up to 98%, the commercial pure ruthenium is bonded to the carbon skeleton by chemical vapor deposition and permeation to form a porous metal microstructure, which is simply referred to as a chemical deposition method.
  • the porous tantalum material obtained by this method has a tantalum layer thickness of 40 to 60 m; in the whole porous material, the helium weight accounts for about 99%, and the carbon skeleton weight accounts for about 1%.
  • 5GPa tensile strength 63MPa.
  • the tensile strength of the porous material is 50 ⁇ 70MPa, the elastic modulus is 2. 5 ⁇ 3.
  • 5GPa the tensile strength is 63MPa.
  • the mechanical properties of the material such as a porous crucible for replacing medical implant materials such as skull and bone, the mechanical properties of the material, such as ductility, have obvious deficiencies, which will affect the subsequent processing of the porous tantalum material itself, such as molded parts. Cutting, etc.
  • An object of the present invention is to provide a method for preparing a porous metal material which is suitable for replacing bone tissue of a load-bearing portion.
  • the invention relates to a method for preparing a medical porous metal material for replacing a weight-bearing bone tissue, which is characterized in that: the porous metal material is prepared by mixing the tantalum powder with a pore forming agent and a molding agent, followed by press molding, degreasing, sintering, cooling and heat treatment.
  • the press molding is to press the mixed powder into the organic foam at a pressure of 50 to 100 MPa, and the degreasing process is gradually heated to a temperature of 400 to 800 at a rate of 0.3 ° C / min to 2 ° C / min. °C, with argon gas to form a protective atmosphere and keep 300mir!
  • the pore former is ammonium hydrogencarbonate or hydrogen peroxide
  • the molding agent is one or more of stearic acid, zinc stearate, paraffin, synthetic resin (preferably styrene butadiene rubber or isoprene rubber)
  • the heat treatment is a vacuum degree of 10 - 4 Pa to 10 - 3 Pa, and the temperature is raised to 800 to 900 ° C at 10 to 20 ° C / min, the temperature is maintained for 240 to 480 minutes, and then cooled at 2 to 5 ° C / min. Heat to 400 ° C for 120 to 300 min, then cool to room temperature with the furnace.
  • medical porous metal materials as materials for replacing weight-bearing bone tissue require a large porosity, so that human tissue can easily grow in, and biocompatibility is sufficient to fully exert its function, but
  • There are many preparation routes for medical porous tantalum but the inventors have creatively proposed to use the above steps and processes to prepare medical porous tantalum implant materials, which effectively prevent the use of the soaking method, which is easy to block, and the dipping process is difficult to control and obtain.
  • the bioavailability and biosafety of the porous bismuth material can be less than 0.2%.
  • the raw material tantalum powder used in the present invention has an average particle diameter of less than 43 ⁇ m and an oxygen content of less than 0.1%, which is a commercially available product; the above pore-forming agent and molding agent are also commercially available products.
  • the vacuum environment of the present invention preferably employs a vacuum condition of a vacuum of 10 - 4 Pa to 10 - 3 Pa. ⁇ 0.
  • the above-mentioned organic foam is preferably a polyurethane foam, further preferably having a pore diameter of 0. 48 ⁇ 0. 89mm, a density of 0. 015 g / cm 3 ⁇ 0. 035g / cm 3 , a hardness of more than 50 ° (most preferably a pore size of 0. 56 ⁇ 0 . 72mm, density 0. 025g / cm 3 , hardness 50 ° ⁇ 80 °) in polyurethane foam.
  • the inventors further studied and found that if the above-mentioned preparation is not well controlled, the medical implant material suitable for replacing the weight-bearing bone tissue as described above can be obtained, but the product quality stability is not satisfactory, and the qualification rate is not high: For example, it is difficult to form a powder, and it is prone to delamination and unevenness after pressing, and some problems such as cracks may occur after degreasing.
  • the amount of the above-mentioned pore-forming agent is 15 to 25%
  • the amount of the molding agent is 7 to 12%
  • the balance is
  • the tantalum powder in terms of volume percent (by volume percent, the unit directly calculated by the final porous tantalum material, in the weighing of the above pore former, molding agent, solid powder or according to the corresponding substance The density is calculated by the corresponding mass weighing, of course, if it is a liquid substance, it is directly weighed by volume), and further preferably, the pore forming agent is 18% of hydrogen peroxide, the molding agent is 11% of zinc stearate, and the balance is Yttrium powder, in terms of volume percent; the pressure during the above press molding process is preferably 75 to 87 MPa.
  • the above degreasing process is 0. 3 ° C / mir!
  • the rate of ⁇ rC / min is gradually increased to 400 ⁇ 800 ° C, argon gas is introduced into a protective atmosphere and held for 330min ⁇ 350min; further preferably gradually heated to 400 ⁇ 800 ° C at a rate of 0.8 ° C / min, The argon gas was introduced to form a protective atmosphere and held for 340 minutes.
  • the heat treatment step is a vacuum degree of 10 - 4 Pa to 10 - 3 Pa, a temperature of 15 ° C / min to 800 to 900 ° C, and a heat retention of 260 to 320 min. Then, it was cooled to 400 ° C at 3 ° C / min, kept for 120 min, and then cooled to room temperature at 18 ° C / min ⁇ 23 ° C / min.
  • the vacuum sintering conditions of the present invention include: a vacuum degree of 10 - 3 P a , rising from room temperature to 1200 ° C to 1500 ° C at a heating rate of 10 to 20 ° C / m in, after holding for 1 h to 2 h; The temperature is raised to 2000 ⁇ 2200 ° C at a heating rate of 20 ° C / min, and at least 2 h to 4 h.
  • the cooling conditions after vacuum sintering further include: a vacuum degree of not less than 10 - 3 P a , a cooling capacity of not less than 25 ° C / min, not less than 10 ° C / min, and a sintered porous body
  • the section is cooled to 800 ° C, and the holding time of each section is 30 min to 90 min, and then cooled to room temperature with the furnace.
  • the singularity of the singularity is from 0 to 2 ° C / min.
  • the rate of 8 ° C / min is increased from 400 ° C to 600 ⁇ 800 ° C, and the temperature is maintained for 340 to 360 min; the vacuum sintering conditions further include: increasing from room temperature to 1200 at a rate of 10 to 15 ° C / min.
  • vacuum degree is 10 - 4 Pa ⁇ 10 - 3 Pa
  • cooling conditions after the vacuum sintering further comprises: a degree of vacuum of 10- 4 Pa ⁇ 10- 3 Pa; a rate of 10 ⁇ 20 ° C / min, cooled to 1500 ⁇ 1600 ° C, insulation 30 ⁇ 60min; cooled to 1200 ⁇ 1250°C at a rate of 12 ⁇ 20°C/min, kept at 60 ⁇ 90min; cooled to 800°C at a rate of 10 ⁇ 20°C/min, and then cooled with the furnace;
  • the vacuum annealing conditions are as follows: the degree of vacuum is 10 - 4 Pa ⁇ 10 - 3 Pa, the temperature is raised
  • metal ruthenium and osmium are very similar, and the above methods are also suitable for the preparation of medical porous ruthenium materials.
  • the porous crucible preparation method of the invention adopts a pure physical molding method, so that the content of impurities in the final porous tantalum material is extremely low, and the biocompatibility and biosafety are effectively improved; the steps of press molding, degreasing, sintering and annealing of the present invention are carried out.
  • the porosity may be 5 ⁇ 11. 7%, bending strength up to 100 ⁇ 120Mpa, resistance, up to 50 ⁇ 60%, the modulus of the pores up to 150 ⁇ 450 ⁇ m, the modulus of elasticity up to 4. 5 ⁇ 6.
  • the compressive strength can reach 60 ⁇ 70Mpa, which effectively solves the contradiction that the medical porous tantalum material as the substitute bearing part requires both large porosity and good mechanical properties.
  • the porous tantalum of the present invention is very suitable for use as an alternative load-bearing bone tissue. Medical implant materials.
  • Example 1 Weighing zinc stearate, an average particle size of less than 43 ⁇ m, an oxygen content of less than 0.1%, and a mixture of bismuth powder and hydrogen peroxide, wherein zinc stearate accounts for 11%, hydrogen peroxide accounts for 18%, and strontium powder accounts for 71%. %, all in volume percent. Pressing and forming: The above mixed powder is added to an injection molding machine and pressed at a pressure of 80 MPa to a polyurethane foam (pore diameter 0. 48 to 0. 89 mm, density 0. 015 g/cm 3 to 0. 035 g/cm 3 , hardness greater than 50 °) Forming.
  • a polyurethane foam pore diameter 0. 48 to 0. 89 mm, density 0. 015 g/cm 3 to 0. 035 g/cm 3 , hardness greater than 50 °
  • Degreasing treatment The vacuum degree is 10 - 4 Pa, the temperature is raised from room temperature to 400 ° C at a heating rate of 1.3 ° C / min, the temperature is 324 min; and the temperature is raised from 400 ° C at a heating rate of 0.7 ° C / min to 650 ° C, holding time 340 minutes.
  • Vacuum sintering sintering in a vacuum furnace, sintering temperature 2000 ° C, heat preservation for 2 hours, vacuum degree 10 - 4 Pa, sintering process is filled with argon gas protection, remove the product and remove surface dust and dirt, then Perform a conventional cooling process.
  • Heat treatment The degree of vacuum is 10 - 4 Pa 10 - 3 Pa, the temperature is raised to 800 900 ° C at 15 ° C / min, the temperature is 260 320 min, and then cooled to 400 ° C at 3 ° C / min, and kept for 120 min, to 18 Cool to room temperature at 23 ° C / min.
  • the impurity content is less than 0.2%
  • the impurity content of the porous material is less than 0.2%
  • the impurity content is less than 0.2%
  • the pore distribution is uniform, the density is 6.69g/cm 3 , the porosity is 57%, the average pore diameter is 330 m, the elastic modulus is 6. 0Gpa, the elongation is 11.33%, the bending strength is 20MPa, the compressive strength is 67MPa.
  • the styrene-butadiene rubber accounted for 11.5%, ammonium bicarbonate accounted for 11.5% of the styrene-butadiene rubber, and the average particle size of less than 43 ⁇ m. 17% and yttrium powder accounted for 71.5%, both in volume percent.
  • Press molding The above mixed powder is added to an injection molding machine and pressed at a pressure of 64 MPa to a polyurethane foam (pore size 0. 48 0. 89 density 0. 015 g/cm 3 0. 035 g/cm 3 , hardness greater than 50°) forming.
  • Degreasing treatment The vacuum degree was 10 - 4 Pa, and the temperature was raised from room temperature to 700 ° C at a heating rate of 1.2 ° C / min, and the temperature was maintained for 332 min.
  • Vacuum sintering Sintering in a vacuum furnace, sintering temperature 2100 ° C, heat preservation for 4 hours, vacuum degree 10 - 4 Pa, sintering process is filled with argon gas protection, remove the product, remove surface dust and dirt, and then carry out conventional cooling treatment.
  • Heat treatment The vacuum is 10 - 3 Pa, the temperature is raised to 800 900 ° C at 14 ° C / min, the temperature is kept for 400 min, then cooled to 400 ° C at 4 ° C / min, the temperature is kept for 200 min, and the temperature is cooled to room temperature at 21 ° C / min. .
  • the impurity content is less than 0.2%
  • the impurity content of the porous material is less than 0.2%
  • the impurity content is less than 0.2%
  • the pore distribution is uniform, the density is 7. 3g/cm 3 , the porosity is 53%, the average pore diameter is 209 m, the elastic modulus is 5. 3Gpa, the elongation is 11.54%, the bending strength is HOMPa, the compressive strength is 66MPa.
  • Example 3 Weighing paraffin, the average particle size is less than 43 micrometers, and the oxygen content is less than 0.1%.
  • the tantalum powder and the hydrogen peroxide are uniformly mixed, wherein paraffin accounts for 7%, hydrogen peroxide accounts for 15%, and tantalum powder accounts for 78%. Sub-content meter.
  • Press molding The above mixed powder was placed in an injection molding machine and pressed at a pressure of 52 MPa to a polyurethane foam (pore diameter 0. 48 0. 89 mm, density 0. 015 g/cm 3 0. 035 g/cm 3 , hardness greater than 50°) Forming in the middle.
  • Degreasing treatment The vacuum degree is 10 - 3 Pa, and the temperature is raised from room temperature to 800 ° C at a heating rate of 2 ° C / min, and the temperature is maintained for 300 min.
  • Vacuum sintering sintering in a vacuum furnace, sintering temperature 2200 ° C, insulation 2. 5 hours, vacuum 10 - 3 Pa, sintering process is filled with argon gas protection, cooling out of the furnace, removing dust and dirt on the surface of the product, and then performing conventional cooling deal with.
  • Heat treatment the vacuum is 10 - 4 Pa, the temperature is raised to 800 900 ° C at 20 ° C / min, the heat is heated for 240 min, then cooled to 400 ° C at 5 ° C / min, kept for 300 min, cooled at 23 ° C / min To room temperature.
  • the impurity content is less than 0.2%
  • the impurity content of the porous material is less than 0.2%
  • the impurity content is less than 0.2%
  • the pore distribution is uniform, the density is 6.67g/cm 3 , the porosity is 51%, the average pore diameter is 430 m, the elastic modulus is 4. 7Gpa, the elongation is 10.6%, the bending strength is 102MPa, the compressive strength is 60MPa.
  • 96 MPa pore diameter 0. 48 ⁇ 0. 89 mm, density 0. 015 g/cm 3 to 0. 035 g/cm 3 , hardness greater than 50 .
  • Degreasing treatment The degree of vacuum was 10 - 4 Pa, and the temperature was raised from room temperature to 740 ° C at a heating rate of 0.8 ° C / min, and the temperature was maintained for 340 min.
  • Vacuum sintering Sintering in a vacuum furnace, sintering temperature 2150 ° C, holding for 2 hours, vacuum degree 10 - 4 Pa, sintering process is filled with argon gas protection, cooling out of the furnace, removing dust and dirt on the surface of the product, and then performing conventional cooling treatment.
  • Heat treatment The vacuum is 10 - 3 Pa, the temperature is raised to 800 ⁇ 900 ° C at lCTC / min, the temperature is 480 min, then cooled to 400 ° C at 2 ° C / min, held for 120 min, cooled to 18 ° C / min to Room temperature.
  • the impurity content is less than 0.2%
  • the impurity content of the porous material is less than 0.2%
  • the impurity content is less than 0.2%
  • the pore distribution is uniform, the density is 3.86 g/cm 3 , the porosity is 55%, the average pore diameter is 450 m, the elastic modulus is 3. 0 Gpa, the elongation is 11.6%, the bending strength is 78 MPa, and the compressive strength is 52 MPa.
  • Example 5 a porous crucible, which has a particle size of less than 43 m, an oxygen content of less than 0.1%, a mixture of metal stearate, zinc stearate and ammonium bicarbonate as raw materials, followed by compression molding, degreasing treatment, It is obtained by vacuum sintering, vacuum annealing and conventional post treatment.
  • press molding the raw material mixed powder was injected into an injection molding machine and pressed at 95 Mpa to polyurethane foam Body (pore diameter 0. 48 ⁇ 0. 89mm, density 0. 015 g/cm 3 ⁇ 0. 035g/cm 3 , hardness greater than 50.) Forming;
  • the mixed powder is placed in a non-oxidizing atmosphere furnace at a certain heating rate to a temperature of 800 ° C, and the protective atmosphere is 99.999% argon gas for degreasing treatment, which is first introduced into pure argon gas for at least 30 minutes before the temperature rise. exclude air furnace, temperature control process: a rate of 1. 5 ° C / min from room temperature to the 400 ° C, 300min incubation, the amount of argon passed into 0. 5L / min; to 0.
  • the tungsten is placed in a high-vacuum high-temperature sintering furnace and heated to 220 CTC at a certain heating rate for vacuum sintering.
  • the vacuum of the sintering furnace should be at least 10 - 4 Pa, 10 to 15 ° before the temperature rise.
  • the rate of C/min is raised from room temperature to 1200 ° C, kept for 30 min, the degree of vacuum is 10 - 4 Pa; at a rate of 10 ° C / min, it is raised to 1500 ° C, kept for 30 min, and the degree of vacuum is 10 - 4 Pa ⁇ 10- 3 Pa; at a rate of 6 ° C / min was raised to 2200 ° C, 120min incubation, the degree of vacuum of 10- 3 Pa; sintering is completed, the degree of vacuum of 10- 3 Pa, to 10 ⁇ 15 ° C / min to The rate is cooled to 1600 ° C, kept for 30 min ; cooled to 1200 ° C at a rate of 12 ° C / min, held for 60 min; cooled to 800 ° C at a rate of 10 ° C / min, and then cooled with the furnace;
  • the sample after cooling is placed in a vacuum annealing furnace with a certain heating rate to increase the temperature of the annealing furnace.
  • the vacuum in the annealing furnace should be at least 10 - 4 Pa before the temperature rise, and the vacuum is 10 - 4 Pa ⁇ 10- 3 Pa, at 17 ° C / min was heated to 800 ⁇ 900 ° C, insulation 300min, then to 4. 5 ° C / min and cooled to 400 ° C, insulation 220min, in 19 ⁇ 2rC / min was cooled to room temperature.
  • a conventional post-treatment is carried out to obtain a porous crucible.
  • the impurity content is less than 0.2%
  • the impurity content of the porous material is less than 0.2%
  • the impurity content is less than 0.2%
  • the pore distribution is uniform, the density is 7. 5g/cm 3 , the porosity is 67%, the average pore diameter is 300 m, the elastic modulus is 5.25Gpa, the elongation is 11.32%, the bending strength is l lOMPa, and the compressive strength is 65MPa.
  • 4% ⁇ The pass rate of the preparation process product was 92.4%.
  • Depressurization temperature sintering atmosphere Pa) / temperature CC) / time (min) Annealing atmosphere (Pa) / liter pressure ( °C) / time temperature or cooling rate (°c (min) / min) (°C ) / holding time (min)
  • the rate is raised from the chamber at 12 ° C / min to 13 ° C / min to 1300 ° C, insulation
  • vacuum is 10 - 3 Pa; ° C / min cold to 400 vacuum 10 4 Pa ⁇ 10 - 3 Pa; at 15 ° C / min
  • the rate is from 400 ° C ° C, the temperature is 230 min, the rate is up to 1560 ° C, and the temperature is kept for 40 min;
  • the insulation vacuum is 10 - 3 Pa, the rate from the chamber 45min, really 10 4 Pa; the temperature rises to 400 at 13 ° C / min to increase to 1500 ° C at 17 ° C / min, keep warm to 800 °C, insulation
  • vacuum degree is 10 - 3 Pa; heat preservation for 150 min, then the rate from 400 ° C vacuum is 10 4 Pa ⁇ 10 - 3 Pa; at 18 ° C / min speed 20 ° C / Min Cool down to 780 ° C, ⁇
  • the rate is up to 1580 °C, and the temperature is kept for 30 minutes;
  • the obtained porous tantalum or porous tantalum product is inspected as described above.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Transplantation (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种制备替代承重骨组织的医用多孔金属材料的制备方法,钽粉与造孔剂、成型剂混合,再将混合粉末压制到有机泡沫体中成型、脱脂、烧结、冷却和热处理;压制成型压力 50~100Mpa,脱脂过程以 0.3℃/min~2℃/min 的速率逐步升温至 400~800℃,以氩气通入构成保护气氛并保温 300min~360min;造孔剂为碳酸氢铵或双氧水,所述成型剂为硬脂酸、硬脂酸锌、石蜡、合成树脂中的一种或多种;在 10-4Pa~10-3Pa 下,以 10~20℃/min 升温至 800~900℃、保温 240~480min,再以 2~5℃/min 冷至 400℃、保温 120~300min,然后随炉冷却至室温。经过测试其杂质含量低于 0.2%、密度达 6.67~8.34g/cm3,孔隙度达 50~60%,孔隙直径达 150~450μm,弹性模量可达 4.5~6.0Gpa,弯曲强度可达 100~ 120Mpa。

Description

一种制备替代承重骨组织的医用多孔金属材料的方法 技术领域
本发明涉及一种多孔医用金属植入材料的制备方法, 特别是涉及一种适用于替代承重 部位骨组织的多孔医用植入金属材料的制备方法。
背景技术
多孔医用金属植入材料具有治疗骨组织创伤、 股骨组织坏死等重要而特殊的用途, 现 常见的这类材料有多孔金属不锈钢、 多孔金属钛等。 作为骨组织创伤和股骨组织坏死治疗 使用的多孔植入材料, 其孔隙度应达 30〜80%, 而且孔隙最好全部连通与均匀分布, 或根 据需要使之既与人体的骨组织生长相一致, 又减轻了材料本身的重量, 以适合人体植入使 用。
而难熔金属钽 /铌, 由于它具有优秀的生物相容性, 其多孔材料有望作为替代前述等 传统医用金属生物材料。 由于金属钽 /铌对人体的无害、 无毒、 无副作用, 以及随着国内 外医学的飞速发展, 对钽 /铌作为人体植入材料认知的进一步深入, 人们对人体植入用多 孔金属钽 /铌材料的需求变得越来越迫切, 对其要求也越来越高。 其中作为多孔医用植入 金属钽 /铌, 如果能具有很高的均匀分布连通孔隙以及与人体相适应的物理机械性能, 则 其有望作为一种新型的骨组织替代材料。
作为医用植入的多孔金属材料就像一般的多孔金属材料那样基本上是以粉末烧结法 为主要的加工方法, 特别是为获取孔隙连通与均匀分布的多孔金属泡沫结构采用粉末烧结 法中的金属粉末浆料在有机泡沫体上的浸渍后干燥再烧结简称泡沫浸渍法居多。 关于粉末 烧结所获得的多孔金属材料通常其金属力学性能并不是很好, 其主要原因是工艺上如何安 排成孔介质的支撑与消除关系、 金属粉末烧结过程中的塌陷问题。 而已知的文献报道中均 没有很好的解决方法而放任自然。
采用金属粉末烧结法制造多孔钽 /铌的文献报道很少, 特别是以获得医用植入材料用 为目的的多孔钽 /铌粉末烧结法文献报道几乎没有。 可以参考的是公开号为 CN200510032174, 名称 "三维通孔或部分孔洞彼此相连多孔金属泡沫及其制备方法" 以及 CN200710152394, 名称 "一种新型多孔泡沫钨及其制备方法" 。 然而其所获得的多孔金属 或是为过滤材料用, 或是为航空航天及其它高温场合用而非作为医用金属植入材料使用, 再者所加工的多孔金属也非多孔钽 /铌。
关于多孔钽, US5282861 公开了一种应用于松质骨植入体、 细胞和组织感受器的开孔 钽材料及其制备。 这种多孔钽由纯商业钽制成, 它以聚亚氨酯前体进行热降解得到的碳骨 架为支架, 该碳骨架呈多重的十二面体, 其内为网格样结构, 整体遍布微孔, 孔隙率可高 达 98%, 再将商业纯钽通过化学蒸气沉积、 渗透的方法结合到碳骨架上以形成多孔金属微 结构, 简称为化学沉积法。 这种方法所获得的多孔钽材料其表面的钽层厚度在 40〜60 m 之间; 在整个多孔材料中, 钽重约占 99%, 而碳骨架重量则占 1%左右。 文献进一步记载, 该多孔材料的抗压强度 50〜70MPa, 弹性模量 2. 5〜3. 5GPa, 抗拉强度 63MPa。 但是将它作 为替代承重骨组织如颅骨等医用植入材料的多孔钽, 其材料的力学性能如延展性有明显不 足之处, 会影响到后续的对多孔钽材料本身的加工, 例如成型件的切割等。 同样在前述的 金属粉末烧结法所获得的产品也均存在这样的不足。 再由于其制备方法的局限, 获得的成 品纯度不够, 有碳骨架残留物, 导致生物安全性降低。
发明内容
本发明的目的在于提供一种韧性好的适用于替代承重部位骨组织的多孔金属材料的 制备方法。
本发明的目的是通过如下技术手段实现的:
一种制备替代承重骨组织的医用多孔金属材料的制备方法, 其特征在于: 由钽粉与造 孔剂、 成型剂混合, 再经压制成型、 脱脂、 烧结、 冷却和热处理制得该多孔金属材料; 所 述压制成型是将混合粉末压制到有机泡沫体中, 其压力为 50〜100Mpa, 所述脱脂过程是以 0. 3°C/min〜2°C/min 的速率逐步升温至 400〜800°C, 以氩气通入构成保护气氛并保温 300mir!〜 360min; 所述造孔剂为碳酸氢铵或双氧水, 所述成型剂为硬脂酸、 硬脂酸锌、 石 蜡、 合成树脂 (优选为丁苯橡胶或异戊橡胶) 中的一种或多种; 所述热处理是真空度为 10— 4Pa〜10— 3Pa, 以 10〜20°C/min升温至 800〜900°C、保温 240〜480min,再以 2〜5°C/min 冷至 400°C、 保温 120〜300min, 然后随炉冷却至室温。
在医用多孔金属材料的研发过程中, 医用多孔金属材料作为替代承重骨组织的材料, 要求其孔隙率较大、 这样人体组织才易长入、 生物相容性好从而充分地发挥其作用, 但孔 隙率越大、 孔径越大, 力学性能如强度、 韧性就得不到保证; 反之, 力学性能好了又易使 孔隙率过小、 生物相容性不好、 密度也过大引起不舒适感; 医用多孔钽的制备路线众多, 但发明人创造性地提出了采用上述步骤、 工艺制备医用多孔钽植入材料, 有效防止了采用 浸浆法易出现的堵孔、 浸浆过程难控制、 制得的产品质量不均匀等问题; 特别是采用的上 述热处理工艺, 充分地消除了内应力、 使多孔钽材料的组织更均匀、 大大提高了所制得的 多孔钽材料的韧性、 且工艺快捷简单; 其制得的多孔钽材料经过测试其杂质含量可低于 0. 2%、 其生物相容性与生物安全性好, 密度可达 6. 67〜8. 34g/cm3, 孔隙度可达 50〜60%, 孔隙直径可达 150〜450 μ m; 弹性模量可达 4. 5〜6. 0Gpa、 延伸率达 10. 5〜11. 7%、 弯曲强 度可达 100〜120Mpa、 抗压强度可达 60〜70Mpa, 其生物相容性、 强韧性均优异, 接近人 体承重骨组织, 本发明多孔钽非常适合用于替代承重骨组织的医用植入材料。 本发明采用的原料钽粉的平均粒径小于 43微米、 氧含量小于 0. 1%, 为市售产品; 上 述造孔剂、 成型剂也均为市售产品。 本发明真空环境优选采用真空度为 10— 4Pa〜10— 3Pa 的 真空条件。上述有机泡沫体优选聚氨酯泡沫,进一步优选为孔径 0. 48〜0. 89mm,密度 0. 015 g/cm3〜0. 035g/cm3, 硬度大于 50° (最优选孔径为 0. 56〜0. 72mm, 密度 0. 025g/cm3, 硬度 50°〜80°) 的聚氨酯泡沫中。
在研发过程中发明人进一步研究发现, 若上述制备中控制不好, 虽可制得如上所述适 合用于替代承重骨组织的医用植入材料但产品质量稳定性不理想、 合格率不高: 如粉末压 制成型难、 在压制后部分易出现分层、 不均匀, 脱脂后部分会出现裂纹等技术问题。
为了使粉末压制过程中成型更容易, 从而提高成品率、 成品孔隙均匀性、 使制备过程 更稳定, 上述造孔剂的用量为 15〜25%、 成型剂的用量为 7〜12%、 余量为钽粉, 均以体积 百分含量计 (以体积百分含量计是通过最终多孔钽材料的情况直接推算的单位, 在上述造 孔剂、 成型剂的称量中固体粉末还是根据相应物质的密度计算出其对应的质量称量的、 当 然若为液体物质则直接采用体积称量), 进一步优选为造孔剂为双氧水占 18%、成型剂为硬 脂酸锌占 11%、 余量为钽粉、 以体积百分含量计; 上述压制成型过程中的压力优选为 75〜 87Mpa。
为了使脱脂过程中胚体更稳定、 减少易出现的部分胚体变形、 孔径不均匀, 从而进一 步提高成品率、 质量稳定性, 上述脱脂过程是以 0. 3°C/mir!〜 rC/min 的速率逐步升温至 400〜800°C, 以氩气通入构成保护气氛并保温 330min〜350min; 进一步优选以 0. 8°C/min 的速率逐步升温至 400〜800°C, 以氩气通入构成保护气氛并保温 340min。
为了更充分地消除材料的内应力、 韧性更好, 上述热处理步骤是真空度为 10— 4Pa〜 10— 3Pa, 以 15°C/min升温至 800〜900°C、 保温 260〜320min, 再以 3°C/min冷至 400°C、 保温 120min, 再以 18°C/min〜23°C/min冷却至室温。
本发明真空烧结条件包括有: 真空度 10— 3Pa, 以 10〜20°C/min的升温速率从室温升至 1200°C〜1500°C, 保温 lh〜2h后; 再以低于 20°C/min的升温速率升温至 2000〜2200°C, 至少保温 2h〜4h。
真空烧结后的冷却条件还包括有: 真空度不低于 10— 3Pa, 以不高于 25°C/min, 不低于 10°C/min渐降冷却速率方式,对烧结多孔体分段降温冷却至 800°C,各段保温时间 30min〜 90min, 然后随炉冷却至常温。
在此基础上更进一步的特点是: 所述脱脂处理条件还包括有: 以 l〜2°C/min 的速率 从室温升至 400°C,保温 300〜330min,以 0. 3〜0. 8°C/min的速率从 400°C升至 600〜800°C, 保温 340〜360min ; 所述真空烧结条件还包括有: 以 10〜15°C/min 的速率从室温升至 1200〜1250°C, 保温 30〜60min, 真空度为 10— 4Pa〜10— 3Pa; 以 10〜20°C/min的速率升至 1500°C, 保温 30〜60min, 真空度为 10— 4Pa〜10— 3Pa, 以 6〜20°C/min的速率升至 2000〜 2200 °C , 保温 120〜240min, 真空度为 10— 4Pa〜10— 3Pa; 真空烧结后的冷却条件还包括有: 真空度为 10— 4Pa〜10— 3Pa; 以 10〜20°C/min的速率冷却至 1500〜1600°C, 保温 30〜60min; 以 12〜20°C/min的速率冷却至 1200〜1250°C, 保温 60〜90min; 以 10〜20°C/min的速率 冷却至 800°C,然后随炉冷却;所述真空退火条件为:真空度为 10— 4Pa〜10— 3Pa,以 15°C/min 升温至 800〜900°C、 保温 260〜320min, 再以 3°C/min冷至 400°C、 保温 120min, 再以 18°C/min〜23°C/min冷却至室温。
金属钽和铌的性质极类似, 上述方法同样也适合医用多孔铌材料的制备。
本发明多孔钽制备方法采用了纯物理模压法, 使得最终多孔钽材料中杂质的含量极 低, 有效地提高了生物相容性和生物安全性; 对本发明压制成型、 脱脂、 烧结及退火步骤 的工艺条件优化, 使得成品率高、 成品孔径均匀性更好、 使制备过程更稳定、 质量稳定性 好, 有效地消除了热应力、 使多孔钽材料的组织更均匀, 以进一步提高多孔钽的力学性能 如强度、韧性同时都得到提高, 特别是其韧性得到大大提高, 同时密度还得到有效地控制、 使其作为人体承重骨组织替代材料的舒适感好,本发明制备工艺使得成品合格率高、 生产 稳定, 产品合格率可高达 94%。 本发明制得的多孔钽成品孔隙分布均匀且连通, 生物相容 性好,经过测试其杂质含量可低于 0. 2%、密度可达 6. 67〜8. 34g/cm3,孔隙度可达 50〜60%, 孔隙直径可达 150〜450 μ m, 弹性模量可达 4. 5〜6. 0Gpa、 延伸率达 10. 5〜11. 7%, 弯曲强 度可达 100〜120Mpa、 抗压强度可达 60〜70Mpa, 有效解决了作为替代承重部位的医用多 孔钽材料既要求其孔隙率较大、 又要求力学性能好的矛盾, 本发明多孔钽非常适合用于作 为替代承重骨组织的医用植入材料。
具体实施方式
下面通过实施例对本发明进行具体的描述, 有必要在此指出的是以下实施例只用于对 本发明进行进一步说明, 不能理解为对本发明保护范围的限制, 该领域的技术人员可以根 据上述本发明内容对本发明作出一些非本质的改进和调整。
实施例 1 : 称量硬脂酸锌、 平均粒径小于 43微米氧含量小于 0. 1%的钽粉和双氧水混 合均匀, 其中硬脂酸锌占 11%, 双氧水占 18%、 钽粉占 71%, 均以体积百分含量计。 加压成 型: 将上述混合粉末加入注塑成型机中在 80Mpa 下压制到聚氨酯泡沫体 (孔径 0. 48〜 0. 89mm, 密度 0. 015 g/cm3〜0. 035g/cm3, 硬度大于 50°)中成型。脱脂处理: 真空度 10— 4Pa, 以 1. 3°C/min的升温速率从室温升温至 400°C、 保温 324min; 再以 0. 7°C/min的升温速率 从 400°C升温至 650°C,保温时间 340分钟。真空烧结:在真空炉中烧结,烧结温度 2000°C, 保温 2小时, 真空度 10— 4Pa, 烧结过程充氩气保护, 取出产品后去除表面灰尘及污物, 再 进行常规冷却处理。热处理: 是真空度为 10— 4Pa 10— 3Pa, 以 15°C/min升温至 800 900°C、 保温 260 320min,再以 3°C/min冷至 400°C、保温 120min, 以 18 23°C/min冷却至室温。
发明人按 GB/T5163_2006、 GB/T5249_1985、 GB/T6886-2001等标准对上述多孔钽成品 的多孔材料密度、 孔隙率、 孔径及各种力学性能进行检测: 其杂质含量低于 0. 2%, 其孔隙 分布均匀, 密度 6. 69g/cm3, 孔隙率 57%, 孔隙平均直径 330 m, 弹性模量 6. 0Gpa、 延伸 率 11. 33%, 弯曲强度 20MPa, 抗压强度 67MPa
实施例 2: 称取丁苯橡胶、 平均粒径小于 43微米氧含量小于 0. 1%的钽粉和碳酸氢铵 混合均匀成混合粉末, 其中丁苯橡胶占 11. 5%、 碳酸氢铵占 17%、 钽粉占 71. 5%, 均以体积 百分含量计。 加压成型: 将上述混合粉末加入注塑成型机中在 64Mpa下压制到聚氨酯泡沫 体 (孔径 0. 48 0. 89 密度 0. 015 g/cm3 0. 035g/cm3, 硬度大于 50°) 中成型。 脱脂处 理: 真空度 10— 4Pa, 以 1. 2°C/min的升温速率从室温升温至 700°C、 保温 332min。 真空烧 结: 在真空炉中烧结, 烧结温度 2100°C, 保温 4小时, 真空度 10— 4Pa, 烧结过程充氩气保 护, 取出产品后去除表面灰尘及污物, 再进行常规冷却处理。 热处理: 是真空度为 10— 3Pa 以 14°C/min升温至 800 900°C、 保温 400min, 再以 4°C/min冷至 400°C、 保温 200min 以 21 °C/min冷却至室温。
发明人按 GB/T5163_2006、 GB/T5249_1985、 GB/T6886-2001等标准对上述多孔钽成品 的多孔材料密度、 孔隙率、 孔径及各种力学性能进行检测: 其杂质含量低于 0. 2%, 其孔隙 分布均匀, 密度 7. 3g/cm3, 孔隙率 53%, 孔隙平均直径 209 m, 弹性模量 5. 3Gpa、 延伸率 11. 54%, 弯曲强度 HOMPa, 抗压强度 66MPa
实施例 3: 称取石蜡、 平均粒径小于 43微米氧含量小于 0. 1%的钽粉和双氧水混合均 匀, 其中石蜡占 7%、 双氧水占 15%、 钽粉占 78%, 均以体积百分含量计。 加压成型: 将上 述混合粉末加入注塑成型机中在 52Mpa下压制到聚氨酯泡沫体(孔径 0. 48 0. 89mm, 密度 0. 015 g/cm3 0. 035g/cm3, 硬度大于 50°) 中成型。 脱脂处理: 真空度 10— 3Pa, 以 2°C/min 的升温速率从室温升温至 800°C、 保温 300min。 真空烧结: 在真空炉中烧结, 烧结温度 2200 °C , 保温 2. 5小时, 真空度 10— 3Pa, 烧结过程充氩气保护, 冷却出炉, 去除产品表面 灰尘及污物,再进行常规冷却处理。热处理:是真空度为 10— 4Pa, 以 20°C/min升温至 800 900°C、 保温 240min, 再以 5°C/min冷至 400°C、 保温 300min, 以 23°C/min冷却至室温。
发明人按 GB/T5163_2006、 GB/T5249_1985、 GB/T6886-2001等标准对上述多孔钽成品 的多孔材料密度、 孔隙率、 孔径及各种力学性能进行检测: 其杂质含量低于 0. 2%, 其孔隙 分布均匀, 密度 6. 67g/cm3, 孔隙率 51%, 孔隙平均直径 430 m, 弹性模量 4. 7Gpa、 延伸 率 10. 6%, 弯曲强度 102MPa, 抗压强度 60MPa
实施例 4: 称取硬脂酸、 平均粒径小于 43微米氧含量小于 0. 1%的铌粉和碳酸氢铵混 合均匀, 其中硬脂酸占 12%、 碳酸氢铵占 25%、 铌粉占 63%, 均以体积百分含量计。 加压成 型: 将上述混合粉末加入注塑成型机中在 96Mpa 下压制到聚氨酯泡沫体 (孔径 0. 48〜 0. 89mm, 密度 0. 015 g/cm3〜0. 035g/cm3, 硬度大于 50。)中成型。脱脂处理: 真空度 10— 4Pa, 以 0. 8°C/min的升温速率从室温升温至 740°C、保温 340min。真空烧结: 在真空炉中烧结, 烧结温度 2150°C, 保温 2小时, 真空度 10— 4Pa, 烧结过程充氩气保护, 冷却出炉, 去除产 品表面灰尘及污物, 再进行常规冷却处理。 热处理: 是真空度为 10— 3Pa, 以 lCTC/min升温 至 800〜900°C、 保温 480min, 再以 2°C/min冷至 400°C、 保温 120min, 以 18°C/min冷却 至室温。
发明人按 GB/T5163_2006、 GB/T5249_1985、 GB/T6886-2001等标准对上述多孔铌成品 的多孔材料密度、 孔隙率、 孔径及各种力学性能进行检测: 其杂质含量低于 0. 2%, 其孔隙 分布均匀, 密度 3. 86g/cm3, 孔隙率 55%, 孔隙平均直径 450 m, 弹性模量 3. 0Gpa、 延伸 率 11. 6%, 弯曲强度 78MPa, 抗压强度 52MPa。
实施例 5: —种多孔钽, 它以粒径小于 43 m、 氧含量小于 0. 1%的金属钽粉, 硬脂酸 锌和碳酸氢铵混合粉为原料, 再经压制成型、 脱脂处理、 真空烧结、 真空退火及常规后处 理制得。
其中, 硬脂酸锌占 9%、 碳酸氢铵占 20%、 金属钽粉占 71%, 以体积百分含量计; 压制成型: 将原料混合粉末加入注塑成型机中在 69Mpa下压制到聚氨酯泡沫体 (孔径 0. 48〜0. 89mm, 密度 0. 015 g/cm3〜0. 035g/cm3, 硬度大于 50。) 中成型;
压制成型后将混合粉末放入非氧化气氛炉中以一定的升温速率升温至 800°C, 保护气 氛为 99. 999%氩气进行脱脂处理, 其在升温之前先通入纯净氩气至少 30min以排除炉内空 气,控温过程:以 1. 5°C/min的速率从室温升至 400°C,保温 300min,氩气通入量 0. 5L/min; 以 0. 6°C/min的速率从 400°C升至 800°C, 保温 340min, 氩气通入量 lL/min; 再关闭电源, 脱脂后的样品随炉冷却, 氩气通入量 lL/min, 直至冷却至室温时关闭氩气;
对于脱脂处理后的样品随钨器置于高真空高温烧结炉内以一定的升温速率升温至 220CTC进行真空烧结, 在升温之前烧结炉的真空度至少要达到 10— 4Pa, 以 10〜15°C/min的 速率从室温升至 1200°C, 保温 30min, 真空度为 10— 4Pa; 以 10°C/min的速率升至 1500°C, 保温 30min, 真空度为 10— 4Pa〜10— 3Pa; 以 6°C/min的速率升至 2200°C, 保温 120min, 真 空度为 10— 3Pa; 烧结完毕, 真空度为 10— 3Pa, 以 10〜15°C/min的速率冷却至 1600°C, 保温 30min; 以 12°C/min的速率冷却至 1200°C ,保温 60min; 以 10°C/min的速率冷却至 800 °C , 然后随炉冷却;
对于真空烧结冷却后的样品随刚玉容器置于真空退火炉中以一定的升温速率升温去 应力退火处理, 在升温之前退火炉内的真空度至少要达到 10— 4Pa, 是真空度为 10— 4Pa〜 10— 3Pa, 以 17°C/min升温至 800〜900°C、 保温 300min, 再以 4. 5°C/min冷至 400°C、 保温 220min, 以 19〜2rC/min冷却至室温。 最后进行常规后处理制得多孔钽。
发明人按 GB/T5163_2006、 GB/T5249_1985、 GB/T6886-2001等标准对上述多孔钽成品 的多孔材料密度、 孔隙率、 孔径及各种力学性能进行检测: 其杂质含量低于 0. 2%, 其孔隙 分布均匀, 密度 7. 5g/cm3, 孔隙率 67%, 孔隙平均直径 300 m, 弹性模量 5. 25Gpa、 延伸 率 11. 32%, 弯曲强度 l lOMPa, 抗压强度 65MPa。 经计算该制备工艺产品合格率达 92. 4%。
在上述实施例 5给出的方法中, 我们还可以对其中的各种条件作其他选择同样能得到 本发明所述的多孔钽或多孔铌。
Figure imgf000008_0001
实 压制成型的 脱脂温度 烧结气氛(Pa) /温度 CC ) /时间 (min) 退火气氛(Pa) /升 施 压力 ( °C ) /时间 温或降温速率 (°c 例 (min) /min)温度 (°C ) / 保温时间 (min)
6 56Mpa 以 1.8°C/min 12°C/min的速率 至 1220°C,保温 真空度为 10— 4Pa,
55min, 真 为 104Pa;
的速率从室 以 12°C/min升温 以 13 °C/min 的速率升至 1300 °C, 保温
温升至 400 至 870 °C、 保温
50min;
。C , 保温 以 10°C/min 的速率升至 2100 °C, 保温 250min, 再以 5°C
330min; 200min, 真空度为 10- 3Pa; /min冷至 400 °C、 真空度为 104Pa〜10— 3Pa;以 13°C/min的速
0.7°C/min的 保温 250min,再以 率 至 1540 °C, 保温 50min;
速率从 400°C 20°C/min 冷却至 以 15°C/min的速率) f¾至 1220 °C, 保温
升至 600°C, 、〉曰
80min;
保温 360min 以 15°C/min的速率 至 800°C, 然后随
炉 7 83Mpa 1.2°C/min的 14°C/min的速率 至 1240°C,保温 真空度为 10— 4Pa,
40min, 真 ¾g为 104Pa;
速率从室温 以 20°C/min升温 以 15 °C/min的速率升至 1400 °C, 保温
升至 400°C, 至 900 °C、 保温
40min;
保温 300min/ 以 14°C/min的速率升至 2160 °C, 保温 290min, 再以 2. 5
0.4°C/min的 160min, 真空度为 10- 3Pa; °C /min 冷至 400 真空度为 104Pa〜10— 3Pa;以 15°C/min的速
速率从 400°C °C、 保温 230min, 率 至 1560 °C, 保温 40min;
升至 700°C, 再以 18°C/min冷 以 17°C/min的速率) f¾至 1240 °C, 保温
保温 340min 70min; 却至室温
以 17°C/min的速率 至 800 °C,然后
随炉
8 67Mpa 以 1.0°C/min 13°C/min的速率 至 1225°。,保温 真空度为 10— 3Pa, 的速率从室 45min, 真 为 104Pa; 以 13°C/min升温 温升至 400 以 17°C/min的速率升至 1500 °C, 保温 至 800 °C、 保温
。C , 保温 30min; 270min, 再以 2°C
310min/ 以 18 °C/min的速率升至 2180°C, 保温 /min冷至 400 °C、
0.3°C/min的 120min, 真空度为 10- 3Pa; 保温 150min,再以 速率从 400°C 真空度为 104Pa〜10— 3Pa;以 18°C/min的速 20°C/min 冷却至 升至 780°C, 、〉曰
率 至 1580 °C, 保温 30min;
保温 355min 以 19°C/min的速率) f¾至 1250 °C, 保温
60min;
以 19°C/min的速率 至 800°C, 然后随
所得多孔钽或多孔铌成品按前述方法检
实施例 6 7 8
密度 (g/cm3 ) 6.91 3.94 8.34
孔隙率 (%) 60 54 57
孔径 (μηι) 169 360 436
弹性模量 ( GPa) 4.9 3.6 6.0 延伸率 (%) 11.39 10.52 11.52 弯曲强度 (MPa) 104 95 111 抗压强度 (MPa) 65 71 70

Claims

权 利 要 求 书
1、 一种制备替代承重骨组织的医用多孔金属材料的制备方法, 其特征在于: 由钽粉 与造孔剂、成型剂混合, 再经压制成型、 脱脂、烧结、冷却和热处理制得该多孔金属材料; 所述压制成型是将混合粉末压制到有机泡沫体中成型, 其压力为 50〜100Mpa, 所述脱脂过 程是以 0. 3°C/min〜2°C/min的速率逐步升温至 400〜800°C, 以氩气通入构成保护气氛并 保温 300mir!〜 360min;所述造孔剂为碳酸氢铵或双氧水,所述成型剂为硬脂酸、硬脂酸锌、 石蜡、合成树脂中的一种或多种; 所述热处理是真空度为 10— 4Pa〜10— 3Pa, 以 10〜20°C/min 升温至 800〜900°C、保温 240〜480min, 再以 2〜5°C/min冷至 400°C、保温 120〜300min, 然后随炉冷却至室温。
2、 如权利要求 1所述的制备方法, 其特征在于: 所述原料钽粉的平均粒径小于 43微 米、 氧含量小于 0. 1%; 所述成型剂合成树脂为丁苯橡胶或异戊橡胶; 所述有机泡沫体为 孔径 0. 56〜0. 72mm, 密度 0. 025g/cm3, 硬度 50。〜80。的聚氨酯泡沫。
3、 如权利要求 1或 2所述的制备方法, 其特征在于: 所述造孔剂的用量为 15〜25%、 成型剂的用量为 7〜12%、 余量为钽粉, 均以体积百分含量计; 所述压制成型过程中的压力 为 75〜87Mpa。
4、 如权利要求 3所述的制备方法, 其特征在于: 所述造孔剂为双氧水占 18%、 成型剂 为硬脂酸锌占 11%、 余量为钽粉、 以体积百分含量计。
5、 如权利要求 1或 2所述的制备方法, 其特征在于: 所述脱脂过程是以 0. 3°C/mir!〜 l °C/min的速率逐步升温至 400〜800°C,以氩气通入构成保护气氛并保温 330min〜350min。
6、如权利要求 3所述的制备方法,其特征在于:所述脱脂过程是以 0. 3°C/mir!〜 rC/min 的速率逐步升温至 400〜800°C, 以氩气通入构成保护气氛并保温 330min〜350min。
7、如权利要求 4所述的制备方法,其特征在于:所述脱脂过程是以 0. 3°C/mir!〜 rC/min 的速率逐步升温至 400〜800°C, 以氩气通入构成保护气氛并保温 330min〜350min。
8、 如权利要求 7所述的制备方法, 其特征在于: 所述脱脂过程是以 0. 8°C/min的速率 逐步升温至 400〜800°C, 以氩气通入构成保护气氛并保温 340min。
9、如权利要求 1或 2所述的制备方法,其特征在于:所述热处理步骤是真空度为 10— 4Pa〜 10— 3Pa, 以 15°C/min升温至 800〜900°C、 保温 260〜320min, 再以 3°C/min冷至 400°C、 保温 120min, 再以 18°C/min〜23°C/min冷却至室温。
10、 如权利要求 3所述的制备方法, 其特征在于: 所述热处理步骤是真空度为 10— 4Pa〜 10— 3Pa, 以 15°C/min升温至 800〜900°C、 保温 260〜320min, 再以 3°C/min冷至 400°C、 保温 120min, 再以 18°C/min〜23°C/min冷却至室温。
11、 如权利要求 4所述的制备方法, 其特征在于: 所述热处理步骤是真空度为 10— 4Pa〜 10— 3Pa, 以 15°C/min升温至 800〜900°C、 保温 260〜320min, 再以 3°C/min冷至 400°C、 保温 120min, 再以 18°C/min〜23°C/min冷却至室温。
12、 如权利要求 5所述的制备方法, 其特征在于: 所述热处理步骤是真空度为 10— 4Pa〜 10— 3Pa, 以 15°C/min升温至 800〜900°C、 保温 260〜320min, 再以 3°C/min冷至 400°C、 保温 120min, 再以 18°C/min〜23°C/min冷却至室温。
13、 如权利要求 6所述的制备方法, 其特征在于: 所述热处理步骤是真空度为 10— 4Pa〜 10— 3Pa, 以 15°C/min升温至 800〜900°C、 保温 260〜320min, 再以 3°C/min冷至 400°C、 保温 120min, 再以 18°C/min〜23°C/min冷却至室温。
14、 如权利要求 7所述的制备方法, 其特征在于: 所述热处理步骤是真空度为 10— 4Pa〜 10— 3Pa, 以 15°C/min升温至 800〜900°C、 保温 260〜320min, 再以 3°C/min冷至 400°C、 保温 120min, 再以 18°C/min〜23°C/min冷却至室温。
15、 如权利要求 8所述的制备方法, 其特征在于: 所述热处理步骤是真空度为 10— 4Pa〜 10— 3Pa, 以 15°C/min升温至 800〜900°C、 保温 260〜320min, 再以 3°C/min冷至 400°C、 保温 120min, 再以 18°C/min〜23°C/min冷却至室温。
16、 如权利要求 1或 2所述的制备方法, 其特征在于: 所述脱脂处理条件还包括有: 以 l〜2°C/min的速率从室温升至 400°C, 保温 300〜330min, 以 0. 3〜0. 8°C/min的速率 从 400°C升至 600〜800°C, 保温 340〜360min ; 所述真空烧结条件还包括有: 以 10〜 15°C/min的速率从室温升至 1200〜1250°C, 保温 30〜60min, 真空度为 10— 4Pa〜10— 3Pa; 以 10〜20°C/min的速率升至 1500°C, 保温 30〜60min, 真空度为 10— 4Pa〜10— 3Pa, 以 6〜 20°C/min的速率升至 2000〜2200°C, 保温 120〜240min, 真空度为 10— 4Pa〜10— 3Pa; 真空 烧结后的冷却条件还包括有: 真空度为 10— 4Pa〜10— 3Pa; 以 10〜20°C/min 的速率冷却至 1500〜1600°C,保温 30〜60min; 以 12〜20°C/min的速率冷却至 1200〜1250°C,保温 60〜 90min; 以 10〜20°C/min的速率冷却至 800°C, 然后随炉冷却; 所述真空退火条件为: 真 空度为 10— 4Pa〜10— 3Pa, 以 15°C/min升温至 800〜900°C、保温 260〜320min, 再以 3°C/min 冷至 400°C、 保温 120min, 再以 18°C/min〜23°C/min冷却至室温。
17、如权利要求 3所述的制备方法, 其特征在于: 所述脱脂处理条件还包括有: 以 1〜 2°C/min的速率从室温升至 400°C,保温 300〜330min, 以 0. 3〜0. 8°C/min的速率从 400°C 升至 600〜800°C, 保温 340〜360min; 所述真空烧结条件还包括有: 以 10〜15°C/min的 速率从室温升至 1200〜1250°C,保温 30〜60min,真空度为 10— 4Pa〜10— 3Pa;以 10〜20°C/min 的速率升至 1500°C, 保温 30〜60min, 真空度为 10— 4Pa〜10— 3Pa, 以 6〜20°C/min的速率升 至 2000〜2200°C, 保温 120〜240min, 真空度为 10— 4Pa〜10— 3Pa; 真空烧结后的冷却条件还 包括有:真空度为 10— 4Pa〜10— 3Pa;以 10〜20°C/min的速率冷却至 1500〜1600°C,保温 30〜 60min; 以 12〜20°C/min的速率冷却至 1200〜1250°C, 保温 60〜90min; 以 10〜20°C/min 的速率冷却至 800°C, 然后随炉冷却; 所述真空退火条件为: 真空度为 10— 4Pa〜10— 3Pa, 以 15°C/min升温至 800〜900°C、保温 260〜320min,再以 3°C/min冷至 400°C、保温 120min, 再以 18°C/min〜23°C/min冷却至室温。
18、如权利要求 4所述的制备方法,其特征在于: 所述脱脂处理条件还包括有: 以 1〜 2°C/min的速率从室温升至 400°C,保温 300〜330min, 以 0. 3〜0. 8°C/min的速率从 400°C 升至 600〜800°C, 保温 340〜360min; 所述真空烧结条件还包括有: 以 10〜15°C/min的 速率从室温升至 1200〜1250°C,保温 30〜60min,真空度为 10— 4Pa〜10— 3Pa;以 10〜20°C/min 的速率升至 1500°C, 保温 30〜60min, 真空度为 10— 4Pa〜10— 3Pa, 以 6〜20°C/min的速率升 至 2000〜2200°C, 保温 120〜240min, 真空度为 10— 4Pa〜10— 3Pa; 真空烧结后的冷却条件还 包括有:真空度为 10— 4Pa〜10— 3Pa;以 10〜20°C/min的速率冷却至 1500〜1600°C,保温 30〜 60min; 以 12〜20°C/min的速率冷却至 1200〜1250°C, 保温 60〜90min; 以 10〜20°C/min 的速率冷却至 800°C, 然后随炉冷却; 所述真空退火条件为: 真空度为 10— 4Pa〜10— 3Pa, 以 15°C/min升温至 800〜900°C、保温 260〜320min,再以 3°C/min冷至 400°C、保温 120min, 再以 18°C/min〜23°C/min冷却至室温。
PCT/CN2012/082084 2011-09-29 2012-09-26 一种制备替代承重骨组织的医用多孔金属材料的方法 WO2013044809A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110300386.4A CN102796903B (zh) 2011-09-29 2011-09-29 一种制备替代承重骨组织的医用多孔金属材料的方法
CN201110300386.4 2011-09-29

Publications (1)

Publication Number Publication Date
WO2013044809A1 true WO2013044809A1 (zh) 2013-04-04

Family

ID=47196195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/082084 WO2013044809A1 (zh) 2011-09-29 2012-09-26 一种制备替代承重骨组织的医用多孔金属材料的方法

Country Status (2)

Country Link
CN (1) CN102796903B (zh)
WO (1) WO2013044809A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112940342B (zh) * 2021-02-24 2022-08-12 四川大学 一种利用固相剪切碾磨技术制备开孔zif-8/聚合物复合泡沫材料的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060002810A1 (en) * 2004-07-02 2006-01-05 Grohowski Joseph A Jr Porous metal articles having a predetermined pore character
CN101405039A (zh) * 2006-02-17 2009-04-08 拜欧麦特制造公司 用于形成多孔金属植入物的方法和设备
EP2149414A1 (en) * 2008-07-30 2010-02-03 Nederlandse Centrale Organisatie Voor Toegepast Natuurwetenschappelijk Onderzoek TNO Method of manufacturing a porous magnesium, or magnesium alloy, biomedical implant or medical appliance.

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5282861A (en) * 1992-03-11 1994-02-01 Ultramet Open cell tantalum structures for cancellous bone implants and cell and tissue receptors
CN101549175B (zh) * 2009-05-15 2012-07-04 中南大学 一种孔隙非均匀分布仿生骨质材料制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060002810A1 (en) * 2004-07-02 2006-01-05 Grohowski Joseph A Jr Porous metal articles having a predetermined pore character
CN101405039A (zh) * 2006-02-17 2009-04-08 拜欧麦特制造公司 用于形成多孔金属植入物的方法和设备
EP2149414A1 (en) * 2008-07-30 2010-02-03 Nederlandse Centrale Organisatie Voor Toegepast Natuurwetenschappelijk Onderzoek TNO Method of manufacturing a porous magnesium, or magnesium alloy, biomedical implant or medical appliance.

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GUO, QINGWEI ET AL.: "Modern Niobium and Titanium Metallurgy", METALLURGICAL INDUSTRY PRESS, January 2009 (2009-01-01), pages 642 *
LI, ZHONGLI ET AL.: "New 3-D porous Ti manufacture and feature", ORTHOPAEDIC BIOMECHANICS MATERIALS AND CLINICAL STUDY, vol. 4, no. 1, February 2007 (2007-02-01), pages 1 - 4 *

Also Published As

Publication number Publication date
CN102796903B (zh) 2014-01-08
CN102796903A (zh) 2012-11-28

Similar Documents

Publication Publication Date Title
WO2013044773A1 (zh) 一种牙骨替代医用多孔金属材料的制备方法
CN103849792B (zh) 一种适用于替代人体牙骨组织的多孔钽
WO2013044780A1 (zh) 一种替代承重骨组织的医用多孔金属材料及其制备方法
WO2013044852A1 (zh) 一种医用多孔金属植入材料的制备方法
WO2013044832A1 (zh) 一种制备医用多孔钽植入材料的方法
WO2013044767A1 (zh) 一种替代牙骨的医用多孔钽材料及其制备方法
CN103740962B (zh) 牙骨替代医用多孔金属材料的制备方法
CN103740964B (zh) 医用多孔金属植入材料的制备方法
WO2013044860A1 (zh) 一种医用多孔金属植入材料的制备方法
WO2013044858A1 (zh) 一种医用多孔金属植入材料的制备方法
WO2013044778A1 (zh) 一种医用多孔金属材料及其制备方法
WO2013044809A1 (zh) 一种制备替代承重骨组织的医用多孔金属材料的方法
WO2013044779A1 (zh) 一种医用多孔金属材料的制备方法
WO2013044781A1 (zh) 一种替代承重骨组织的医用多孔金属材料的制备方法
CN103736147B (zh) 替代承重骨组织的医用多孔金属材料及其制备方法
CN103740961B (zh) 一种替代承重骨组织的医用多孔金属材料的制备方法
CN103740966B (zh) 制备替代承重骨组织的医用多孔金属材料的方法
WO2013044813A1 (zh) 一种替代承重骨组织的医用多孔金属材料的制备方法
WO2013044815A1 (zh) 一种医用多孔钽材料的制备方法
WO2013044834A1 (zh) 一种制备医用多孔钽植入材料的方法
WO2013044835A1 (zh) 一种多孔钽医用植入材料的制备方法
CN102793946B (zh) 一种替代牙骨的医用多孔金属材料及其制备方法
WO2013044833A1 (zh) 一种医用多孔钽植入材料的制备方法
WO2013044831A1 (zh) 替代人体承重骨组织的医用多孔钽材料的制备方法
WO2013044839A1 (zh) 一种医用植入材料多孔钽的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12834794

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12834794

Country of ref document: EP

Kind code of ref document: A1