WO2013044780A1 - 一种替代承重骨组织的医用多孔金属材料及其制备方法 - Google Patents

一种替代承重骨组织的医用多孔金属材料及其制备方法 Download PDF

Info

Publication number
WO2013044780A1
WO2013044780A1 PCT/CN2012/081866 CN2012081866W WO2013044780A1 WO 2013044780 A1 WO2013044780 A1 WO 2013044780A1 CN 2012081866 W CN2012081866 W CN 2012081866W WO 2013044780 A1 WO2013044780 A1 WO 2013044780A1
Authority
WO
WIPO (PCT)
Prior art keywords
rate
vacuum
temperature
pore
sintering
Prior art date
Application number
PCT/CN2012/081866
Other languages
English (en)
French (fr)
Inventor
叶雷
Original Assignee
重庆润泽医药有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆润泽医药有限公司 filed Critical 重庆润泽医药有限公司
Publication of WO2013044780A1 publication Critical patent/WO2013044780A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/047Other specific metals or alloys not covered by A61L27/042 - A61L27/045 or A61L27/06
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1017Multiple heating or additional steps
    • B22F3/1021Removal of binder or filler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1121Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
    • B22F3/1125Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers involving a foaming process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1121Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
    • B22F3/1137Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers by coating porous removable preforms
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/02Alloys based on vanadium, niobium, or tantalum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Definitions

  • the invention relates to a porous medical metal implant material and a preparation method thereof, in particular to a medical implanted porous metal material for replacing bone tissue of a weight bearing part and a preparation method thereof.
  • Porous medical metal implant materials have important and special applications for treating bone tissue trauma and femoral tissue necrosis. Common materials such as porous metal stainless steel and porous metal titanium are common materials. As a porous implant material for the treatment of bone tissue trauma and femoral tissue necrosis, the porosity should be 30 ⁇ 80%, and the pores are preferably all connected and evenly distributed, or as needed to conform to the bone tissue growth of the human body. , and reduce the weight of the material itself, suitable for human implant use.
  • the refractory metal ⁇ / ⁇ due to its excellent biocompatibility, its porous material is expected to replace the traditional medical metal biomaterials mentioned above. Because metal ruthenium/ruthenium is harmless to the human body, non-toxic, no side effects, and with the rapid development of medicine at home and abroad, the understanding of ⁇ / ⁇ as a human implant material is further deepened. The demand for ⁇ / ⁇ materials is becoming more and more urgent, and the requirements for them are getting higher and higher. Among them, as a porous medical implant metal ⁇ / ⁇ , if it can have a high uniform distribution of connected pores and physical and mechanical properties compatible with the human body, it is expected to be a new type of bone tissue replacement material.
  • porous metal material for medical implantation it is basically a powder sintering method as a general porous metal material, in particular, a metal in a powder sintering method for obtaining a porous metal foam structure with pore communication and uniform distribution. Drying of the powder slurry on the organic foam after drying and sintering is referred to as foam impregnation.
  • the porous metal material obtained by powder sintering generally has a very good metal mechanical property, and the main reason is how to arrange the support and elimination relationship of the pore-forming medium and the collapse problem in the sintering process of the metal powder.
  • porous ruthenium/ruthenium by metal powder sintering, and in particular, the porous ruthenium/iridium powder sintering method for the purpose of obtaining medical implant materials has been reported in the literature.
  • the porous metal obtained is either used as a filter material, or used for aerospace and other high temperature applications rather than as a medical metal implant material, and the porous metal processed is also non-porous.
  • porous tantalum US5282861 discloses an open-celled tantalum material for use in cancellous bone implants, cells and tissue receptors and its preparation.
  • This porous tantalum is made of pure commercial niobium, which is carbon-deposited by thermal degradation of a polyurethane precursor.
  • the scaffold is a scaffold.
  • the carbon skeleton has multiple dodecahedrons.
  • the inside of the carbon skeleton is a grid-like structure. The whole is distributed in micropores and the porosity can be as high as 98%.
  • the commercial pure rhodium is combined with carbon by chemical vapor deposition and permeation.
  • the skeleton is formed to form a porous metal microstructure, which is simply referred to as a chemical deposition method.
  • the porous tantalum material obtained by this method has a tantalum layer thickness of 40 to 60 m; in the whole porous material, the helium weight accounts for about 99%, and the carbon skeleton weight accounts for about 1%.
  • 5GPa tensile strength 63MPa.
  • the tensile strength of the porous material is 50 ⁇ 70MPa, the elastic modulus is 2. 5 ⁇ 3.
  • 5GPa the tensile strength is 63MPa.
  • the mechanical properties of the material such as a porous crucible for replacing medical implant materials such as skull and bone, the mechanical properties of the material, such as ductility, have obvious deficiencies, which will affect the subsequent processing of the porous tantalum material itself, such as molded parts. Cutting, etc.
  • Another object of the present invention is to provide a method of producing the above medical porous metal material.
  • the utility model relates to a medical porous metal material for replacing weight-bearing bone tissue, which is characterized in that: the tantalum powder is mixed with a pore-forming agent and a molding agent, and then is obtained by press molding, degreasing, sintering, cooling and heat treatment; 3 ⁇ C/mir! The degreasing process is 0. 3 ° C / mir! The temperature is gradually increased to 400 ⁇ 800 ° C at a rate of ⁇ 2 ° C / min, and the argon gas is introduced into a protective atmosphere and kept for 300 min to 360 min; the pore former is ammonium hydrogencarbonate or hydrogen peroxide, and the molding agent is hard fat.
  • the medical porous tantalum material is formed to have a pore diameter of 100 to 500 m and a porosity of 55 to 6 ⁇ 10. 7% ⁇ The elastic modulus is 3. 3 ⁇ 10. 7%.
  • medical porous metal materials as materials for replacing weight-bearing bone tissue require a large porosity, so that human tissue can easily grow in, and biocompatibility is sufficient to fully exert its function, but
  • There are many preparation routes for medical porous tantalum but the inventors have creatively proposed to use the above steps and processes to prepare medical porous tantalum implant materials, which effectively prevent the use of the soaking method, which is easy to block, and the dipping process is difficult to control and obtain.
  • the product has a high degree of biocompatibility and biosafety, and the density can reach 5.83 ⁇ 7. 50g/ cm 3, a porosity of up to 55 ⁇ 65%, a pore diameter of up to 100 ⁇ 500 ⁇ m; elastic modulus of up to 3. 8 ⁇ 4 2Gpa, extending rate of 3 ⁇ 10 9. 7%, the bending strength may be. Up to 100 ⁇ 120Mpa, The compressive strength can reach 60 ⁇ 70Mpa, and its biocompatibility, toughness and toughness are excellent, and it is close to human body-bearing bone tissue.
  • the porous crucible of the invention is very suitable for replacing medical implant materials for bearing bone tissue.
  • the raw material tantalum powder used in the present invention has an average particle diameter of less than 43 ⁇ m and an oxygen content of less than 0.1%, which is a commercially available product; the above pore-forming agent and molding agent are also commercially available products.
  • the vacuum environment of the present invention preferably employs a vacuum condition of a vacuum of 10 - 4 Pa to 10 - 3 Pa. ⁇ 0. 56 ⁇ 0 ⁇
  • the above-mentioned organic foam is preferably a polyurethane foam, further preferably having a pore diameter of 0. 48 ⁇ 0. 89mm, a density of 0. 015 g / cm 3 ⁇ 0. 035g / cm 3 , a hardness of more than 50 ° (most preferably a pore size of 0. 56 ⁇ 0 . 72mm, density 0. 025g / cm 3 , hardness 50 ° ⁇ 80 °) in polyurethane foam.
  • the inventors further studied and found that if the above-mentioned preparation is not well controlled, the medical implant material suitable for replacing the weight-bearing bone tissue as described above can be obtained, but the product quality stability is not satisfactory, and the qualification rate is not high: For example, it is difficult to form a powder, and it is prone to delamination and unevenness after pressing, and some problems such as cracks may occur after degreasing.
  • the amount of the above-mentioned pore-forming agent is 15 to 25%
  • the amount of the molding agent is 7 to 12%
  • the balance is
  • the tantalum powder in terms of volume percent (by volume percent, the unit directly calculated by the final porous tantalum material, in the weighing of the above pore former, molding agent, solid powder or according to the corresponding substance The density is calculated by the corresponding mass weighing, of course, if it is a liquid substance, it is directly weighed by volume), and further preferably, the pore forming agent is 18% of hydrogen peroxide, the molding agent is 11% of zinc stearate, and the balance is Yttrium powder, in terms of volume percent; the pressure during the above press molding process is preferably 75 to 87 MPa.
  • the above degreasing process is 0. 3 ° C / mir!
  • the rate of ⁇ rC / min is gradually increased to 400 ⁇ 800 ° C, argon gas is introduced into a protective atmosphere and held for 330min ⁇ 350min; further preferably gradually heated to 400 ⁇ 800 ° C at a rate of 0.8 ° C / min, The argon gas was introduced to form a protective atmosphere and held for 340 minutes.
  • the invention discloses a preparation method of a medical porous metal material for replacing weight-bearing bone tissue, which is sintered by a molding method, and is characterized in that: the tantalum powder is mixed with a pore-forming agent and a molding agent, and the mixed powder is pressed at 50 to 100 MPa. Forming, degreasing, sintering, cooling and heat-treating into an organic foam to produce a medical porous metal material replacing the weight-bearing bone structure; the pore-forming agent is ammonium hydrogencarbonate or hydrogen peroxide, and the molding agent is stearic acid or stearic acid.
  • One or more of zinc, paraffin, synthetic resin preferably styrene-butadiene rubber or isoprene rubber
  • the amount of the pore-forming agent is 15 to 25%
  • the amount of the molding agent is 7 to 12%
  • the balance is 3 ⁇ C/mir!
  • the defattting process is 0. 3 ° C / mir!
  • the temperature is gradually increased to 400 ⁇ 800 °C at a rate of ⁇ 2 °C/min, and argon gas is introduced to form a protective atmosphere and kept for 300 min to 360 min.
  • the above raw material ⁇ powder has an average particle diameter of less than 43 ⁇ m and an oxygen content of less than 0.1%; the pore former further preferably accounts for 18% of hydrogen peroxide, the molding agent is 11% of zinc stearate, and the balance is ⁇ powder, Volume percent. ⁇ 0. 56 ⁇ 0
  • the hardness is greater than 50° (most preferably the pore diameter is 0. 56 ⁇ 0).
  • the above-mentioned organic foam is preferably a polyurethane foam, further preferably having a pore diameter of 0. 48 ⁇ 0. 89mm, a density of 0. 015 g/cm 3 ⁇ 0. 035g/cm 3 , a hardness of more than 50°. . 72mm, density 0. 025g / cm 3 , hardness 50 ° ⁇ 80 °) in polyurethane foam.
  • the pore distribution of the final porous crucible is more uniform,
  • the pressure is more stable, and the pressure used in the above pressing process is preferably 75 to 87 MPa.
  • the temperature is gradually increased to 400 to 800 ° C at a rate of 0.3 ° C / min to 1 ° C / min, with argon.
  • the gas is introduced into a protective atmosphere and kept at a temperature of 330 min to 350 min, and further preferably gradually heated to a temperature of 400 to 800 ° C at a rate of 0.8 ° C / min, and argon gas is introduced to form a protective atmosphere and held for 340 min.
  • a further feature of another aspect of the present invention is that a porous sintered body is obtained by vacuum sintering treatment at a vacuum of not less than 10 - 4 to 10 - 3 P a , a temperature of 2000 to 2200 ° C, and a holding time of 1 to 5 hours.
  • the inert gas protection can be used instead of the vacuum protection; finally, the vacuum annealing treatment is performed, wherein the vacuum annealing treatment means that the temperature is maintained at 1000 ⁇ 1250 ° C after the vacuum sintering, the holding time is 1 to 4 hours, and the vacuum degree is not low. to 10- 4 ⁇ 10- 3 Pa.
  • the vacuum sintering conditions further include: a vacuum degree of not less than 10 - 3 P a , rising from room temperature to 1200 ° C to 1500 ° C at a heating rate of 10 to 20 ° C / m in after holding for 1 h to 2 h; The temperature is raised to 2000 ⁇ 2200 ° C at a temperature increase rate lower than 20 ° C / min, and at least 2 h to 4 h.
  • the cooling conditions after vacuum sintering further include: a vacuum degree of not less than 10 - 3 P a , a cooling capacity of not less than 25 ° C / min, not less than 10 ° C / min, and a sintered porous body
  • the section is cooled to 800 ° C, and the holding time of each section is 30 min to 90 min, and then cooled to room temperature with the furnace.
  • the vacuum annealing conditions also include: the vacuum degree is not lower than 10 - 4 Pa, and the temperature is raised to 1000 to 1250 ° C at a rate of not higher than 30 ° C / m in , and the temperature is kept for 4 h to 6 h; 5 ⁇ 3 ⁇ Select a cooling rate of less than 5 ° C / min but not more than 30 ° C / min.
  • the singularity of the singularity is from 0 to 2 ° C / min.
  • the rate of 8 ° C / min is increased from 400 ° C to 600 ⁇ 800 ° C, and the temperature is maintained for 340 to 360 min; the vacuum sintering conditions further include: increasing from room temperature to 1200 at a rate of 10 to 15 ° C / min.
  • vacuum degree is 10 - 4 Pa ⁇ 10 - 3 Pa, increase to 1500 °C at 10 ⁇ 20 °C / min, keep warm for 30 ⁇ 60min, vacuum degree is 10 - 4 Pa ⁇ 10- 3 Pa, at a rate of 6 ⁇ 20 ° C / min was raised 2000 ⁇ 2200 ° C, holding 120 ⁇ 240min, the degree of vacuum of 10- 4 Pa ⁇ 10- 3 Pa; cooling conditions after the vacuum sintering further comprises There are: the degree of vacuum is 10 - 4 Pa ⁇ 10 - 3 Pa; cooled at a rate of 10 ⁇ 20 ° C / min to 1500 ⁇ 1600 ° C, kept for 30 ⁇ 60min; cooled at a rate of 12 ⁇ 20 ° C / min to 1200 ⁇ 1250 ° C, heat preservation 60 ⁇ 90min; cooling to 800 ° C at a rate of 10 ⁇ 20 ° C / min, and then cooling with the furnace; the vacuum annealing conditions also include: at 15 ⁇ 30
  • metal ruthenium and osmium are very similar, and the above methods are also suitable for the preparation of medical porous ruthenium materials.
  • the porous crucible preparation method of the invention adopts a pure physical molding method, so that the content of impurities in the final porous tantalum material is extremely high. Low, effectively improving biocompatibility and biosafety; optimizing the process conditions of the press forming, degreasing, sintering and annealing steps of the present invention, resulting in high yield, better uniformity of finished pore size, and more stable and quality preparation process
  • the invention has good stability, effectively eliminates thermal stress, and makes the structure of the porous tantalum material more uniform, so as to further improve the mechanical properties such as strength and toughness of the porous tantalum, and the preparation process of the invention has high yield and stable production.
  • Product qualification rate can be as high as 92%.
  • the porosity of the porous ruthenium obtained by the present invention is uniform and continuous, and the biocompatibility is good.
  • the impurity content may be less than 0.2%, the density may be 5.83 ⁇ 7. 50g/cm 3 , the porosity may be 5 ⁇ 10. 7%, bending strength up to 100-120Mpa, resistance
  • the compressive strength can reach 60 ⁇ 70Mpa, which effectively solves the contradiction that the medical porous tantalum material as the substitute bearing part requires both large porosity and good mechanical properties.
  • the porous tantalum of the present invention is very suitable for use as an alternative load-bearing bone tissue. Medical implant materials. detailed description
  • the medical porous tantalum material for replacing the weight-bearing bone tissue is specifically selected from one or more of stearic acid, zinc stearate, paraffin wax and synthetic rubber as a forming agent, ammonium hydrogencarbonate or hydrogen peroxide as a pore former, and an average
  • the powder having a particle size of less than 43 ⁇ m and having an oxygen content of less than 0.1% is mixed, and the mixed powder is pressed into an organic foam at 50 to 100 MPa, and then degreased, sintered, cooled, and heat-treated; The degreasing process is 0. 3 ° C / mir!
  • the temperature was gradually increased to 400 to 800 ° C at a rate of ⁇ 2 ° C / min, and argon gas was introduced to form a protective atmosphere and kept for 300 min to 360 min.
  • the medical porous material has a pore diameter of 100 to 500 m, a porosity of 55 to 65%, a modulus of elasticity of 3. 8 to 4. 2 Gpa, and an elongation of 9. 3 to 10.7%.
  • the above porous ruthenium is 7 to 12% by volume of the above-mentioned molding agent, 15 to 25% by volume of the above-mentioned pore-forming agent, and the balance of cerium powder.
  • an inert gas may be used as a protective atmosphere.
  • the sample after cooling is corundum
  • the container is placed in a vacuum annealing furnace to gradually heat up and heat-treat to perform stress relief annealing. Before annealing, the furnace maintains a certain degree of vacuum.
  • the vacuum annealed sample is cooled with the furnace, and a certain degree of vacuum is maintained during the cooling process.
  • the cooling is carried out in stages at a certain cooling rate to maintain a certain temperature for a suitable period of time.
  • an inert gas can be used as a protective atmosphere, and finally a conventional post-treatment is performed to obtain a porous crucible.
  • the degreasing process is gradually heated to a temperature of 400 to 800 ° ⁇ at a rate of 0.3 ° 111 / 111 ⁇ 1 ° ⁇ / 1 ⁇ 1 , argon gas is introduced into a protective atmosphere and incubated for 330 min to 350 min; further preferred The temperature was gradually increased to 400 to 800 ° C at a rate of 0.8 ° C / min, and argon gas was introduced to form a protective atmosphere and held for 340 minutes.
  • the vacuum sintering treatment is carried out on the degreased sample in a high-vacuum high-temperature sintering furnace, and the temperature is raised to the highest sintering temperature of the crucible at a certain heating rate for vacuum sintering, and the sintering furnace maintains a certain vacuum before the temperature rises.
  • a temperature of, for example, 1200 ° C to 1250 ° C maintaining the vacuum, maintaining the vacuum; heating the temperature to a temperature of, for example, 1250 ° C to 1500 ° C at a certain temperature increase rate, maintaining the temperature, and then raising the temperature to a certain temperature increase rate.
  • the highest sintering temperature of bismuth, heat preservation, maintaining vacuum after sintering, maintaining vacuum, cooling to a temperature of, for example, 1500 ° C to 1600 ° C at a certain cooling rate, keeping warm, and then cooling to a temperature of, for example, 1200 ° C to 1250 at a certain cooling rate.
  • heat preservation also cooled to, for example, 800 ° C at a certain cooling rate, and then cooled with the furnace.
  • the vacuum annealing treatment is performed on the vacuum-sintered sample, and the corundum container is placed in a vacuum annealing furnace at a certain heating rate to a temperature of, for example, 1000 ° C to 1250 ° C for stress relief annealing, and the annealing furnace is heated before the temperature rise.
  • Maintain the vacuum inside increase from room temperature to 1000 °C ⁇ 1250 °C at a certain heating rate, keep warm, keep vacuum; then cool to a temperature of 1000 °C at a certain cooling rate, keep warm; then at a certain cooling rate Cool to, for example, 800 ° C, keep warm; also cool at room temperature with a certain rate of cooling.
  • a conventional post-treatment is carried out to obtain a porous crucible.
  • the density of the material is less than 0.2%, the density can reach 5.
  • the strength can reach 100 ⁇ 120Mpa, and the compressive strength can reach 60 ⁇ 70Mpa.
  • Example 1 Weighing zinc stearate, an average particle size of less than 43 ⁇ m, an oxygen content of less than 0.1%, and a mixture of bismuth powder and hydrogen peroxide, wherein zinc stearate accounts for 11%, hydrogen peroxide accounts for 18%, and strontium powder accounts for 71%. %, all in volume percent. Pressing and forming: The above mixed powder is added to an injection molding machine and pressed at a pressure of 82 MPa to a polyurethane foam (pore diameter 0. 48 ⁇ 0. 89 mm, density 0. 015 g/cm 3 to 0. 035 g/cm 3 , hardness greater than 50 .) Forming.
  • a polyurethane foam pore diameter 0. 48 ⁇ 0. 89 mm, density 0. 015 g/cm 3 to 0. 035 g/cm 3 , hardness greater than 50 .
  • Degreasing treatment vacuum degree 10 - 4 Pa, from 0 ° C / min heating rate from room temperature to 400 ° C, holding 320min; and then heating at a temperature of 0.5 ° C / min from 400 ° C to 700 ° C, holding time 350 minutes.
  • Vacuum sintering sintering in vacuum furnace, sintering temperature 2000 ° C, heat preservation for 2 hours, vacuum degree 10 - 4 Pa, sintering process is filled with argon gas protection, remove the product and remove surface dust and dirt, and the prepared sample is then routinely
  • the post-treatment is porous and finished.
  • the impurity content is less than 0.2%
  • the impurity content of the porous material is less than 0.2%
  • the impurity content is less than 0.2%
  • Porosity The distribution is uniform, the density is 6.24g/cm 3 , the porosity is 60%, the average pore diameter is 200 m, the elastic modulus is 4. 0Gpa, the elongation is 10.02%, the bending strength is 115MPa, and the compressive strength is 66MPa.
  • Example 2 Weighing stearic acid, an average particle size of less than 43 ⁇ m, an oxygen content of less than 0.1%, and a mixture of bismuth and ammonium bicarbonate, wherein stearic acid accounts for 7%, ammonium bicarbonate accounts for 25%, and bismuth powder. 68%, both in volume percent. Pressing and forming: The above mixed powder is added to an injection molding machine and pressed at a pressure of 87 MPa to a polyurethane foam (pore diameter 0. 48 ⁇ 0. 89 mm, density 0. 015 g/cm 3 to 0. 035 g/cm 3 , hardness greater than 50 .) Forming.
  • a polyurethane foam pore diameter 0. 48 ⁇ 0. 89 mm, density 0. 015 g/cm 3 to 0. 035 g/cm 3 , hardness greater than 50 .
  • Degreasing treatment The vacuum degree is 10 - 4 Pa, and the temperature is raised from room temperature to 400 ° C at a heating rate of 2 ° C / min, and the temperature is maintained for 300 min.
  • Vacuum sintering Sintering in a vacuum furnace, sintering temperature 2100 ° C, holding for 4 hours, vacuum degree 10 - 4 Pa, argon gas protection during sintering, removing surface dust and dirt after removing the product, and preparing the sample for routine The post-treatment is porous and finished.
  • the impurity content is less than 0.2%
  • the impurity content of the porous material is less than 0.2%
  • the impurity content is less than 0.2%
  • the pore distribution is uniform, the density is 6. 05g/cm 3 , the porosity is 65%, the average pore diameter is 400 m, the elastic modulus is 3. 8Gpa, the elongation is 9.5%, the bending strength is 100MPa, and the compressive strength is 60MPa.
  • Example 3 Weighing styrene-butadiene rubber, the average particle size of less than 43 microns, the oxygen content of less than 0.1% of the bismuth powder and hydrogen peroxide mixed uniformly, wherein styrene-butadiene rubber accounted for 12%, hydrogen peroxide accounted for 15%, and strontium powder accounted for 73%. All are based on volume percent. Pressing and forming: The above mixed powder is added to an injection molding machine and pressed at a pressure of 52 MPa to a polyurethane foam (pore diameter of 0. 48 to 0. 89 mm, density of 0. 015 g/cm 3 to 0. 035 g/cm 3 , hardness of more than 50 .) Forming.
  • Degreasing treatment The degree of vacuum is 10 - 4 Pa, and the temperature is raised from room temperature to 400 ° C at a heating rate of 0.3 ° C / min, and the temperature is maintained for 360 minutes.
  • Vacuum sintering sintering in a vacuum furnace, sintering temperature 2200 ° C, insulation 2. 5 hours, vacuum 10 - 3 Pa, sintering process is filled with argon gas protection, cooling out of the furnace, removing dust and dirt on the surface of the product, the prepared sample The conventional post-treatment is carried out to obtain a porous tantalum product.
  • the impurity content is less than 0.2%
  • the impurity content of the porous material is less than 0.2%
  • the impurity content is less than 0.2%
  • the pore distribution is uniform, the density is 6.31g/cm 3 , the porosity is 55%, the average pore diameter is 100 m, the elastic modulus is 3. 9Gpa, the elongation is 9.3%, the bending strength is 105MPa, and the compressive strength is 63MPa.
  • Example 4 Weighing paraffin, an average particle size of less than 43 ⁇ m, an oxygen content of less than 0.1%, and a mixture of bismuth and ammonium bicarbonate, wherein paraffin accounted for 10%, ammonium bicarbonate accounted for 20%, and strontium powder accounted for 70%. All are based on volume percent. Pressing and forming: The above-mentioned mixed powder is added to an injection molding machine and pressed to a polyurethane foam at a particle size of 96 MPa (pore diameter 0. 48 ⁇ 0. 89 mm, density 0. 015 g/cm 3 to 0. 035 g/cm 3 , hardness greater than 50 .) Forming.
  • 96 MPa pore diameter 0. 48 ⁇ 0. 89 mm, density 0. 015 g/cm 3 to 0. 035 g/cm 3 , hardness greater than 50 .
  • Degreasing treatment The vacuum degree is 10 - 4 Pa, and the temperature is raised from room temperature to 400 ° C at a heating rate of 0.8 ° C / min, and the temperature is maintained for 340 min.
  • Vacuum sintering Sintering in a vacuum furnace, sintering temperature 2150 ° C, holding for 2 hours, vacuum degree 10 - 4 Pa, sintering process is filled with argon gas protection, cooling out of the furnace, removing dust and dirt on the surface of the product, and the prepared sample is further processed. Conventional post-treatment results in a porous tantalum product.
  • the inventors have finished the above porous concrete according to GB/T5163_2006, GB/T5249_1985, GB/T6886-2001 and other standards.
  • the density, porosity, pore size and various mechanical properties of the porous material were tested: the impurity content was less than 0.2%, the pore distribution was uniform, the density was 3.77 g/cm 3 , the porosity was 56%, and the average pore diameter was 108 m. , elastic modulus 3. 0Gpa, elongation 9.8%, bending strength 67MPa, compressive strength 54MPa.
  • Example 5 a porous crucible having a particle size of less than 43 m, an oxygen content of less than 0.1%, a mixture of stearic acid and hydrogen peroxide as a raw material, followed by compression molding, degreasing treatment, vacuum sintering, Vacuum annealing and conventional post-treatment are obtained.
  • press molding the raw material mixed powder was added to the injection molding machine and pressed at 900 MPa to the polyurethane foam (pore diameter) 0. 48 ⁇ 0. 89mm, density 0. 015 g / cm 3 ⁇ 0. 035g / cm 3 , hardness greater than 50.)
  • press molding the raw material mixed powder was added to the injection molding machine and pressed at 900 MPa to the polyurethane foam (pore diameter) 0. 48 ⁇ 0. 89mm, density 0. 015 g / cm 3 ⁇ 0. 035g / cm 3 , hardness greater than 50.)
  • press molding the raw material mixed powder was added to the injection molding machine and pressed at 900 MPa to the polyurethane foam (pore diameter) 0. 48 ⁇ 0. 89mm, density 0. 015 g / cm 3 ⁇ 0. 035g / cm 3 , hardness greater than 50.)
  • press molding the raw material mixed powder was added to the injection molding machine and pressed at 900 MPa to the polyurethane foam (pore diameter) 0. 48
  • the mixed powder is placed in a non-oxidizing atmosphere furnace at a certain heating rate to a temperature of 800 ° C, and the protective atmosphere is 99.999% argon gas for degreasing treatment, which is first introduced into pure argon gas for at least 30 minutes before the temperature rise. exclude air furnace, temperature control process: a rate of 1. 5 ° C / min from room temperature to the 400 ° C, 300min incubation, the amount of argon passed into 0. 5L / min; to 0.
  • the tungsten is placed in a high-vacuum high-temperature sintering furnace and heated to 220 CTC at a certain heating rate for vacuum sintering.
  • the vacuum of the sintering furnace should be at least 10 - 4 Pa, 10 to 15 ° before the temperature rise.
  • the rate of C/min is raised from room temperature to 1200 ° C, kept for 30 min, the degree of vacuum is 10 - 4 Pa; at a rate of 10 ° C / min, it is raised to 1500 ° C, kept for 30 min, and the degree of vacuum is 10 - 4 Pa ⁇ 10- 3 Pa; at a rate of 6 ° C / min was raised to 2200 ° C, 120min incubation, the degree of vacuum of 10- 3 Pa; sintering is completed, the degree of vacuum of 10- 3 Pa, to 10 ⁇ 15 ° C / min to The rate is cooled to 1600 ° C, kept for 30 min ; cooled to 1200 ° C at a rate of 12 ° C / min, held for 60 min; cooled to 800 ° C at a rate of 10 ° C / min, and then cooled with the furnace;
  • the sample after vacuum sintering is cooled in a vacuum annealing furnace with a corundum container at a certain heating rate to 125 CTC for stress relief annealing.
  • the vacuum in the annealing furnace should be at least 10 -4 Pa to 15 ° before the temperature rise.
  • the rate of C/min is raised from room temperature to 1250 ° C, heat preservation for 240 min, vacuum degree is 10 - 4 Pa ⁇ 10 - 3 Pa; then cooled to 1000 ° C at a rate of 5 ° C / min, heat preservation for 180 min, vacuum degree to 10- 4 Pa ⁇ 10- 3 Pa; cooling at a rate of 10 ° C / min to 800 ° C, 120min incubation, the degree of vacuum of 10- 4 Pa; at a rate of 20 ° C / min cooling to room temperature, the degree of vacuum It is 10 - 4 Pa.
  • a conventional post-treatment is carried out to obtain a porous crucible.
  • the impurity content is less than 0.2%
  • the impurity content of the porous material is less than 0.2%
  • the impurity content is less than 0.2%
  • the pore distribution is uniform, the density is 6. 8g/cm 3 , the porosity is 62%, the average pore diameter is 250 m, the elastic modulus is 4.15 Gpa, the elongation is 10.32%, the bending strength is 118 MPa, and the compressive strength is 65 MPa.
  • vacuum degree is 10 - 3 Pa; 130min / rate from 400 vacuum degree is 10 4 Pa ⁇ 10 - 3 Pa; at a rate of 13 ° C / min at a rate of 13 ° C / min
  • the obtained porous tantalum or porous tantalum product is inspected as described above.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Dermatology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Materials For Medical Uses (AREA)

Abstract

一种替代承重骨组织的医用多孔金属材料及其制备方法,由钽粉与造孔剂、成型剂混合,再将混合粉末压制到有机泡沫体中成型、脱脂、烧结、冷却和热处理制得的;所述压制成型采用的压力为50~100Mpa,所述脱脂过程是以0.3℃/min~2℃/min的速率逐步升温至400~800℃,以氩气通入构成保护气氛并保温300min~360min;所述造孔剂为碳酸氢铵或双氧水,所述成型剂为硬脂酸、硬脂酸锌、石蜡、合成树脂中的一种或多种,形成的医用多孔钽材料孔隙直径为100~500μm、孔隙度介于55~65%、弹性模量为3.8~4.2Gpa、延伸率为9.3~10.7%。本发明多孔钽制备方法使得最终多孔钽材料中杂质的含量极低,同时有效解决了作为替代承重部位的医用多孔钽材料既要求其孔隙率较大、又要求力学性能好的矛盾。

Description

一种替代承重骨组织的医用多孔金属材料及其制备方法 技术领域
本发明涉及一种多孔医用金属植入材料及其制备方法, 特别是涉及一种替代承重部位 骨组织的医用植入多孔金属材料及其制备方法。
背景技术
多孔医用金属植入材料具有治疗骨组织创伤、 股骨组织坏死等重要而特殊的用途, 现 常见的这类材料有多孔金属不锈钢、 多孔金属钛等。 作为骨组织创伤和股骨组织坏死治疗 使用的多孔植入材料, 其孔隙度应达 30〜80%, 而且孔隙最好全部连通与均匀分布, 或根 据需要使之既与人体的骨组织生长相一致, 又减轻了材料本身的重量, 以适合人体植入使 用。
而难熔金属钽 /铌, 由于它具有优秀的生物相容性, 其多孔材料有望作为替代前述等 传统医用金属生物材料。 由于金属钽 /铌对人体的无害、 无毒、 无副作用, 以及随着国内 外医学的飞速发展, 对钽 /铌作为人体植入材料认知的进一步深入, 人们对人体植入用多 孔金属钽 /铌材料的需求变得越来越迫切, 对其要求也越来越高。 其中作为多孔医用植入 金属钽 /铌, 如果能具有很高的均匀分布连通孔隙以及与人体相适应的物理机械性能, 则 其有望作为一种新型的骨组织替代材料。
作为医用植入的多孔金属材料就像一般的多孔金属材料那样基本上是以粉末烧结法 为主要的加工方法, 特别是为获取孔隙连通与均匀分布的多孔金属泡沫结构采用粉末烧结 法中的金属粉末浆料在有机泡沫体上的浸渍后干燥再烧结简称泡沫浸渍法居多。 关于粉末 烧结所获得的多孔金属材料通常其金属力学性能并不是很好, 其主要原因是工艺上如何安 排成孔介质的支撑与消除关系、 金属粉末烧结过程中的塌陷问题。 而已知的文献报道中均 没有很好的解决方法而放任自然。
采用金属粉末烧结法制造多孔钽 /铌的文献报道很少, 特别是以获得医用植入材料用 为目的的多孔钽 /铌粉末烧结法文献报道几乎没有。 可以参考的是公开号为 CN200510032174, 名称 "三维通孔或部分孔洞彼此相连多孔金属泡沫及其制备方法" 以及 CN200710152394, 名称 "一种新型多孔泡沫钨及其制备方法" 。 然而其所获得的多孔金属 或是为过滤材料用, 或是为航空航天及其它高温场合用而非作为医用金属植入材料使用, 再者所加工的多孔金属也非多孔钽 /铌。
关于多孔钽, US5282861 公开了一种应用于松质骨植入体、 细胞和组织感受器的开孔 钽材料及其制备。 这种多孔钽由纯商业钽制成, 它以聚亚氨酯前体进行热降解得到的碳骨 架为支架, 该碳骨架呈多重的十二面体, 其内为网格样结构, 整体遍布微孔, 孔隙率可高 达 98%, 再将商业纯钽通过化学蒸气沉积、 渗透的方法结合到碳骨架上以形成多孔金属微 结构, 简称为化学沉积法。 这种方法所获得的多孔钽材料其表面的钽层厚度在 40〜60 m 之间; 在整个多孔材料中, 钽重约占 99%, 而碳骨架重量则占 1%左右。 文献进一步记载, 该多孔材料的抗压强度 50〜70MPa, 弹性模量 2. 5〜3. 5GPa, 抗拉强度 63MPa。 但是将它作 为替代承重骨组织如颅骨等医用植入材料的多孔钽, 其材料的力学性能如延展性有明显不 足之处, 会影响到后续的对多孔钽材料本身的加工, 例如成型件的切割等。 同样在前述的 金属粉末烧结法所获得的产品也均存在这样的不足。 再由于其制备方法的局限, 获得的成 品纯度不够, 有碳骨架残留物, 导致生物安全性降低。
发明内容
本发明的目的在于提供一种产品纯度高的适用于替代承重骨组织的医用多孔金属材 料。
本发明的另一目的在于提供上述医用多孔金属材料的制备方法。
本发明的目的是通过如下技术手段实现的:
一种替代承重骨组织的医用多孔金属材料, 其特征在于: 由钽粉与造孔剂、 成型剂混 合, 再经压制成型、 脱脂、 烧结、 冷却和热处理制得的; 所述压制成型是将所述的混合粉 末压制到有机泡沫体中, 其压力为 50〜100Mpa, 所述脱脂过程是以 0. 3°C/mir!〜 2°C/min 的速率逐步升温至 400〜800°C, 以氩气通入构成保护气氛并保温 300min〜360min; 所述 造孔剂为碳酸氢铵或双氧水, 所述成型剂为硬脂酸、 硬脂酸锌、 石蜡、 合成树脂 (优选为 丁苯橡胶或异戊橡胶)中的一种或多种,形成的医用多孔钽材料孔隙直径为 100〜500 m、 孔隙度介于 55〜65%、 弹性模量为 3. 8〜4. 2Gpa、 延伸率为 9. 3〜10. 7%。
在医用多孔金属材料的研发过程中, 医用多孔金属材料作为替代承重骨组织的材料, 要求其孔隙率较大、 这样人体组织才易长入、 生物相容性好从而充分地发挥其作用, 但孔 隙率越大、 孔径越大, 力学性能如强度、 韧性就得不到保证; 反之, 力学性能好了又易使 孔隙率过小、 生物相容性不好、 密度也过大引起不舒适感; 医用多孔钽的制备路线众多, 但发明人创造性地提出了采用上述步骤、 工艺制备医用多孔钽植入材料, 有效防止了采用 浸浆法易出现的堵孔、 浸浆过程难控制、 制得的产品质量不均匀等问题; 其制得的多孔钽 材料经过测试其杂质含量可低于 0. 2%、 其生物相容性与生物安全性好, 密度可达 5. 83〜 7. 50g/cm3,孔隙度可达 55〜65%,孔隙直径可达 100〜500 μ m;弹性模量可达 3. 8〜4. 2Gpa、 延伸率达 9. 3〜10. 7%、 弯曲强度可达 100〜120Mpa、 抗压强度可达 60〜70Mpa, 其生物相 容性、 强韧性均优异, 接近人体承重骨组织, 本发明多孔钽非常适合用于替代承重骨组织 的医用植入材料。 本发明采用的原料钽粉的平均粒径小于 43微米、 氧含量小于 0. 1%, 为市售产品; 上 述造孔剂、 成型剂也均为市售产品。 本发明真空环境优选采用真空度为 10— 4Pa〜10— 3Pa 的 真空条件。上述有机泡沫体优选聚氨酯泡沫,进一步优选为孔径 0. 48〜0. 89mm,密度 0. 015 g/cm3〜0. 035g/cm3, 硬度大于 50° (最优选孔径为 0. 56〜0. 72mm, 密度 0. 025g/cm3, 硬度 50°〜80°) 的聚氨酯泡沫中。
在研发过程中发明人进一步研究发现, 若上述制备中控制不好, 虽可制得如上所述适 合用于替代承重骨组织的医用植入材料但产品质量稳定性不理想、 合格率不高: 如粉末压 制成型难、 在压制后部分易出现分层、 不均匀, 脱脂后部分会出现裂纹等技术问题。
为了使粉末压制过程中成型更容易, 从而提高成品率、 成品孔隙均匀性、 使制备过程 更稳定, 上述造孔剂的用量为 15〜25%、 成型剂的用量为 7〜12%、 余量为钽粉, 均以体积 百分含量计 (以体积百分含量计是通过最终多孔钽材料的情况直接推算的单位, 在上述造 孔剂、 成型剂的称量中固体粉末还是根据相应物质的密度计算出其对应的质量称量的、 当 然若为液体物质则直接采用体积称量), 进一步优选为造孔剂为双氧水占 18%、成型剂为硬 脂酸锌占 11%、 余量为钽粉、 以体积百分含量计; 上述压制成型过程中的压力优选为 75〜 87Mpa。
为了使脱脂过程中胚体更稳定、 减少易出现的部分胚体变形、 孔径不均匀, 从而进一 步提高成品率、 质量稳定性, 上述脱脂过程是以 0. 3°C/mir!〜 rC/min 的速率逐步升温至 400〜800°C, 以氩气通入构成保护气氛并保温 330min〜350min; 进一步优选以 0. 8°C/min 的速率逐步升温至 400〜800°C, 以氩气通入构成保护气氛并保温 340min。
一种替代承重骨组织的医用多孔金属材料的制备方法, 采用模压法烧结而成, 其特点 在于: 将钽粉与造孔剂、 成型剂混合, 再在 50〜100Mpa下将所述混合粉末压制到有机泡 沫体中成型、 脱脂、 烧结、 冷却和热处理制得替代承重骨组织的医用多孔金属材料; 所述 造孔剂为碳酸氢铵或双氧水, 所述成型剂为硬脂酸、 硬脂酸锌、 石蜡、 合成树脂 (优选为 丁苯橡胶或异戊橡胶)中的一种或多种, 其中造孔剂的用量为 15〜25%、成型剂的用量为 7〜12%、 余量为钽粉, 均以体积百分含量计; 所述脱脂过程是以 0. 3°C/mir!〜 2°C/min 的 速率逐步升温至 400〜800°C, 以氩气通入构成保护气氛并保温 300min〜360min。
上述原料钽粉的平均粒径小于 43微米、 氧含量小于 0. 1%; 上述造孔剂进一步优选为 双氧水占 18%、 成型剂为硬脂酸锌占 11%、 余量为钽粉、 以体积百分含量计。 上述有机泡 沫体优选聚氨酯泡沫, 进一步优选为孔径 0. 48〜0. 89mm, 密度 0. 015 g/cm3〜0. 035g/cm3, 硬度大于 50° (最优选孔径为 0. 56〜0. 72mm, 密度 0. 025g/cm3, 硬度 50°〜80°) 的聚氨酯 泡沫中。
为了使压制制胚过程中压制压力均匀、 不分层, 从而使最终多孔钽孔隙分布更均匀、 质量更稳定, 上述压制过程中采用的压力优选为 75〜87Mpa, 上述脱脂过程中优选为以 0. 3°C/min〜l °C/min 的速率逐步升温至 400〜800°C, 以氩气通入构成保护气氛并保温 330min〜350min, 进一步优选以 0. 8°C/min的速率逐步升温至 400〜800°C, 以氩气通入构 成保护气氛并保温 340min。
本发明另一方面的进一步的特点是:在真空度不低于 10— 4〜10— 3Pa,温度 2000〜2200°C, 保温时间 1〜5 小时的真空烧结处理制得多孔烧结体。 烧结过程保温时可以充惰性气体保 护代替真空保护; 最后进行真空退火处理, 其中真空退火处理是指经过真空烧结后继续保 持温度处于 1000〜1250°C, 保温时间 1〜4小时, 真空度不低于 10— 4〜10— 3Pa。
真空烧结条件还包括有: 真空度不低于 10— 3Pa, 以 10〜20°C/min的升温速率从室温升 至 1200 °C〜 1500 °C,保温 lh〜2h后;再以低于 20°C/min的升温速率升温至 2000〜2200°C, 至少保温 2h〜4h。
真空烧结后的冷却条件还包括有: 真空度不低于 10— 3Pa, 以不高于 25°C/min, 不低于 10°C/min渐降冷却速率方式,对烧结多孔体分段降温冷却至 800°C,各段保温时间 30min〜 90min, 然后随炉冷却至常温。
真空退火条件还包括有:真空度不低于 10— 4Pa, 以不高于 30°C/min的速率升至 1000〜 1250°C , 保温 4h〜6h; 再以先慢后快以不低于 5°C/min但不高于 30°C/min的冷却速率分 段冷却至室温, 各段的保温时间呈递减且不超过 1. 5 h〜3h内选择。
在此基础上更进一步的特点是: 所述脱脂处理条件还包括有: 以 l〜2°C/min 的速率 从室温升至 400°C,保温 300〜330min,以 0. 3〜0. 8°C/min的速率从 400°C升至 600〜800°C, 保温 340〜360min ; 所述真空烧结条件还包括有: 以 10〜15°C/min 的速率从室温升至 1200〜1250°C, 保温 30〜60min, 真空度为 10— 4Pa〜10— 3Pa, 以 10〜20°C/min的速率升至 1500°C, 保温 30〜60min, 真空度为 10— 4Pa〜10— 3Pa, 以 6〜20°C/min的速率升至 2000〜 2200 °C , 保温 120〜240min, 真空度为 10— 4Pa〜10— 3Pa; 真空烧结后的冷却条件还包括有: 真空度为 10— 4Pa〜10— 3Pa; 以 10〜20°C/min的速率冷却至 1500〜1600°C, 保温 30〜60min; 以 12〜20°C/min的速率冷却至 1200〜1250°C, 保温 60〜90min; 以 10〜20°C/min的速率 冷却至 800°C, 然后随炉冷却; 所述真空退火条件还包括有: 以 15〜30°C/min的速率升至 1000〜1250°C, 保温 240〜480min, 真空度为 10— 4Pa〜10— 3Pa, 再以 5〜10°C/min的速率冷 却至 1000°C, 保温 90〜180min, 真空度为 10— 4Pa〜10— 3Pa; 以 10〜20°C/min的速率冷却至 800°C, 保温 60〜120min, 真空度为 10— 4Pa; 以 20〜30°C/min的速率冷却至室温, 真空度 为 10— 4Pa〜10— 3Pa。
金属钽和铌的性质极类似, 上述方法同样也适合医用多孔铌材料的制备。
本发明多孔钽制备方法采用了纯物理模压法, 使得最终多孔钽材料中杂质的含量极 低, 有效地提高了生物相容性和生物安全性; 对本发明压制成型、 脱脂、 烧结及退火步骤 的工艺条件优化, 使得成品率高、 成品孔径均匀性更好、 使制备过程更稳定、 质量稳定性 好, 有效地消除了热应力、 使多孔钽材料的组织更均匀, 以进一步提高多孔钽的力学性能 如强度、 韧性同时都得到提高,本发明制备工艺使得成品合格率高、 生产稳定, 产品合格 率可高达 92%。 本发明制得的多孔钽成品孔隙分布均匀且连通, 生物相容性好, 经过测试 其杂质含量可低于 0. 2%、 密度可达 5. 83〜7. 50g/cm3, 孔隙度可达 55〜65%, 孔隙直径可 达 100〜500 μ m; 弹性模量可达 3. 8〜4. 2Gpa、延伸率达 9. 3〜10· 7%, 弯曲强度可达 100— 120Mpa、 抗压强度可达 60〜70Mpa, 有效解决了作为替代承重部位的医用多孔钽材料既要 求其孔隙率较大、 又要求力学性能好的矛盾, 本发明多孔钽非常适合用于作为替代承重骨 组织的医用植入材料。 具体实施方式
下面通过实施例对本发明进行具体的描述, 有必要在此指出的是以下实施例只用于对 本发明进行进一步说明, 不能理解为对本发明保护范围的限制, 该领域的技术人员可以根 据上述本发明内容对本发明作出一些非本质的改进和调整。
一种替代承重骨组织的医用多孔钽材料具体是选用硬脂酸、 硬脂酸锌、 石蜡、 合成橡 胶中的一种或多种为成型剂、 碳酸氢铵或双氧水为造孔剂, 与平均粒径小于 43 微米、 氧 含量小于 0. 1%的钽粉混合, 在 50〜100Mpa下将所述混合粉末压制到有机泡沫体中成型, 再经脱脂、 烧结、 冷却和热处理而得; 所述脱脂过程是以 0. 3°C/mir!〜 2°C/min 的速率逐 步升温至 400〜800°C, 以氩气通入构成保护气氛并保温 300min〜360min。 形成的医用多 孔钽材料孔隙直径为 100〜500 m、 孔隙度介于 55〜65%、 弹性模量为 3. 8〜4. 2Gpa、 延伸 率为 9. 3〜10· 7%。
更具体地说, 上述多孔钽是将 7〜12% (以体积百分含量计) 的上述成型剂、 15〜25% (以体积百分含量计) 的上述造孔剂以及余量的钽粉混合, 将其放入注塑成型机中加压压 制到聚氨酯泡沫体中成型; 再置于钨器中放入纯净氩气 (99. 9999%) 通入构成的保护气氛 炉中逐步升温至一定温度, 并保温进行脱脂处理以除去造孔剂、 成型剂和聚氨酯泡沫, 其 中在升温之前先通入氩气以排除炉内空气, 脱脂后的样品随炉冷却; 对于脱脂处理后的样 品随钨器置于高真空高温烧结炉内逐步升温至 2000〜2200°C, 保温时间 1〜5小时进行真 空烧结, 在升温之前烧结炉的真空度至少要达到合适水平, 真空烧结后的样品随炉冷却, 冷却过程中保持一定的真空度或按一定的冷却速率分段冷却以保持一定温度于适当的时 间, 在保温过程中可以采用充惰性气体作为保护气氛。 对于真空烧结冷却后的样品随刚玉 容器置于真空退火炉中逐步升温、 保温进行去应力退火处理, 在升温之前退火炉内的保持 一定的真空度, 真空退火处理后的样品随炉冷却, 冷却过程中也保持一定的真空度或按一 定的冷却速率分段冷却以保持一定温度于适当的时间, 在保温过程中可以采用充惰性气体 作为保护气氛, 最后进行常规后处理制得多孔钽。
对于脱脂处理, 脱脂过程是以0. 3°〇/111 〜1 °〇/1^1 的速率逐步升温至400〜800°〇, 以 氩气通入构成保护气氛并保温 330min〜350min;进一步优选以 0. 8°C /min的速率逐步升温 至 400〜800°C, 以氩气通入构成保护气氛并保温 340min。 对于脱脂处理后的样品进行真 空烧结处理, 是将其随钨器置于高真空高温烧结炉内以一定的升温速率升温至钽的最高烧 结温度进行真空烧结, 在升温之前烧结炉保持一定的真空度, 以一定的升温速率升温至例 如 1200°C〜1250°C, 保温, 保持真空; 以一定的升温速率再升温至例如 1250°C〜1500°C, 保温, 再以一定的升温速率升温至例如钽的最高烧结温度, 保温、 保持真空; 烧结完毕, 保持真空, 以一定的降温速率冷却至例如 1500°C〜1600°C, 保温, 再以一定的降温速率冷 却至例如 1200°C〜1250°C, 保温, 还以一定的降温速率冷却至例如 800°C, 然后随炉冷却。 对于真空烧结冷却后的样品进行真空退火处理, 是将其随刚玉容器置于真空退火炉中以一 定的升温速率升温至例如 1000°C〜1250°C进行去应力退火处理,在升温之前退火炉内的保 持真空度, 以一定的升温速率从室温升至 1000°C〜1250°C, 保温, 保持真空; 再以一定的 降温速率冷却至例如 1000°C, 保温; 再以一定的降温速率冷却至例如 800°C, 保温; 还以 一定的降温速率冷却室温。 最后进行常规后处理制得多孔钽。
发明人采用金属粉末烧结法主要以物理模压法为主, 做了大量的理论分析和实验验 证, 得到多孔钽产品经过测试其杂质含量可低于 0. 2%、 密度可达 5. 83〜7. 50g/cm3, 孔隙 度可达 55〜65%,孔隙直径可达 100〜500 μ m;弹性模量可达 3. 8〜4. 2Gpa 延伸率达 9. 3〜 10. 7%, 弯曲强度可达 100〜120Mpa、 抗压强度可达 60〜70Mpa。
实施例 1 : 称量硬脂酸锌、 平均粒径小于 43微米氧含量小于 0. 1%的钽粉和双氧水混 合均匀, 其中硬脂酸锌占 11%, 双氧水占 18%、 钽粉占 71%, 均以体积百分含量计。 加压成 型: 将上述混合粉末加入注塑成型机中在 82Mpa 下压制到聚氨酯泡沫体 (孔径 0. 48〜 0. 89mm, 密度 0. 015 g/cm3〜0. 035g/cm3, 硬度大于 50。)中成型。脱脂处理: 真空度 10— 4Pa, 以 2. 0°C/min的升温速率从室温升温至 400°C、 保温 320min; 再以 0. 5°C/min的升温速率 从 400°C升温至 700°C,保温时间 350分钟。真空烧结:在真空炉中烧结,烧结温度 2000°C, 保温 2小时, 真空度 10— 4Pa, 烧结过程充氩气保护, 取出产品后去除表面灰尘及污物, 制 得的样品再进行常规的后处理得多孔钽成品。
发明人按 GB/T5163_2006、 GB/T5249_1985、 GB/T6886-2001等标准对上述多孔钽成品 的多孔材料密度、 孔隙率、 孔径及各种力学性能进行检测: 其杂质含量低于 0. 2%, 其孔隙 分布均匀, 密度 6. 24g/cm3, 孔隙率 60%, 孔隙平均直径 200 m, 弹性模量 4. 0Gpa、 延伸 率 10. 02%, 弯曲强度 115MPa, 抗压强度 66MPa。
实施例 2 : 称取硬脂酸、 平均粒径小于 43微米氧含量小于 0. 1%的钽粉和碳酸氢铵混 合均匀, 其中硬脂酸占 7%、 碳酸氢铵占 25%、 钽粉占 68%, 均以体积百分含量计。 加压成 型: 将上述混合粉末加入注塑成型机中在 87Mpa 下压制到聚氨酯泡沫体 (孔径 0. 48〜 0. 89mm, 密度 0. 015 g/cm3〜0. 035g/cm3, 硬度大于 50。)中成型。脱脂处理: 真空度 10— 4Pa, 以 2 °C /min的升温速率从室温升温至 400°C、 保温 300min。 真空烧结: 在真空炉中烧结, 烧结温度 2100°C, 保温 4小时, 真空度 10— 4Pa, 烧结过程充氩气保护, 取出产品后去除表 面灰尘及污物, 制得的样品再进行常规的后处理得多孔钽成品。
发明人按 GB/T5163_2006、 GB/T5249_1985、 GB/T6886-2001等标准对上述多孔钽成品 的多孔材料密度、 孔隙率、 孔径及各种力学性能进行检测: 其杂质含量低于 0. 2%, 其孔隙 分布均匀, 密度 6. 05g/cm3, 孔隙率 65%, 孔隙平均直径 400 m, 弹性模量 3. 8Gpa、 延伸 率 9. 5%, 弯曲强度 100MPa, 抗压强度 60MPa。
实施例 3 : 称取丁苯橡胶、 平均粒径小于 43微米氧含量小于 0. 1%的钽粉和双氧水混 合均匀, 其中丁苯橡胶占 12%、 双氧水占 15%、 钽粉占 73%, 均以体积百分含量计。 加压成 型: 将上述混合粉末加入注塑成型机中在 52Mpa 下压制到聚氨酯泡沫体 (孔径 0. 48〜 0. 89mm, 密度 0. 015 g/cm3〜0. 035g/cm3, 硬度大于 50。)中成型。脱脂处理: 真空度 10— 4Pa, 以 0. 3 °C /min的升温速率从室温升温至 400°C、保温 360min。真空烧结: 在真空炉中烧结, 烧结温度 2200°C, 保温 2. 5小时, 真空度 10— 3Pa, 烧结过程充氩气保护, 冷却出炉, 去除 产品表面灰尘及污物, 制得的样品再进行常规的后处理得多孔钽成品。
发明人按 GB/T5163_2006、 GB/T5249_1985、 GB/T6886-2001等标准对上述多孔钽成品 的多孔材料密度、 孔隙率、 孔径及各种力学性能进行检测: 其杂质含量低于 0. 2%, 其孔隙 分布均匀, 密度 6. 31g/cm3, 孔隙率 55%, 孔隙平均直径 100 m, 弹性模量 3. 9Gpa、 延伸 率 9. 3%, 弯曲强度 105MPa, 抗压强度 63MPa。
实施例 4: 称取石蜡、 平均粒径小于 43微米氧含量小于 0. 1%的铌粉和碳酸氢铵混合 均匀, 其中石蜡占 10%、 碳酸氢铵占 20%、 铌粉占 70%, 均以体积百分含量计。 加压成型: 将上述混合粉末加入注塑成型机中在 96Mpa下压制到聚氨酯泡沫体 (孔径 0. 48〜0. 89mm, 密度 0. 015 g/cm3〜0. 035g/cm3, 硬度大于 50。) 中成型。 脱脂处理: 真空度 10— 4Pa, 以 0. 8 °C /min的升温速率从室温升温至 400°C、 保温 340min。 真空烧结: 在真空炉中烧结, 烧结温度 2150°C, 保温 2小时, 真空度 10— 4Pa, 烧结过程充氩气保护, 冷却出炉, 去除产 品表面灰尘及污物, 制得的样品再进行常规的后处理得多孔铌成品。
发明人按 GB/T5163_2006、 GB/T5249_1985、 GB/T6886-2001等标准对上述多孔铌成品 的多孔材料密度、 孔隙率、 孔径及各种力学性能进行检测: 其杂质含量低于 0. 2%, 其孔隙 分布均匀, 密度 3. 77g/cm3, 孔隙率 56%, 孔隙平均直径 108 m, 弹性模量 3. 0Gpa、 延伸 率 9. 8%, 弯曲强度 67MPa, 抗压强度 54MPa。
实施例 5: —种多孔钽, 它以粒径小于 43 m、 氧含量小于 0. 1%的金属钽粉, 硬脂酸 和双氧水混合粉为原料, 再经压制成型、 脱脂处理、 真空烧结、 真空退火及常规后处理制 得。
其中, 硬脂酸占 11%、 双氧水占 22%、 金属钽粉占 67%, 以体积百分含量计; 压制成型: 将原料混合粉末加入注塑成型机中在 78Mpa下压制到聚氨酯泡沫体 (孔径 0. 48〜0. 89mm, 密度 0. 015 g/cm3〜0. 035g/cm3, 硬度大于 50。) 中成型;
压制成型后将混合粉末放入非氧化气氛炉中以一定的升温速率升温至 800°C, 保护气 氛为 99. 999%氩气进行脱脂处理, 其在升温之前先通入纯净氩气至少 30min以排除炉内空 气,控温过程:以 1. 5°C/min的速率从室温升至 400°C,保温 300min,氩气通入量 0. 5L/min; 以 0. 6°C/min的速率从 400°C升至 800°C, 保温 340min, 氩气通入量 lL/min; 再关闭电源, 脱脂后的样品随炉冷却, 氩气通入量 lL/min, 直至冷却至室温时关闭氩气;
对于脱脂处理后的样品随钨器置于高真空高温烧结炉内以一定的升温速率升温至 220CTC进行真空烧结, 在升温之前烧结炉的真空度至少要达到 10— 4Pa, 以 10〜15°C/min的 速率从室温升至 1200°C, 保温 30min, 真空度为 10— 4Pa; 以 10°C/min的速率升至 1500°C, 保温 30min, 真空度为 10— 4Pa〜10— 3Pa; 以 6°C/min的速率升至 2200°C, 保温 120min, 真 空度为 10— 3Pa; 烧结完毕, 真空度为 10— 3Pa, 以 10〜15°C/min的速率冷却至 1600°C, 保温 30min; 以 12°C/min的速率冷却至 1200°C ,保温 60min; 以 10°C/min的速率冷却至 800 °C , 然后随炉冷却;
对于真空烧结冷却后的样品随刚玉容器置于真空退火炉中以一定的升温速率升温至 125CTC进行去应力退火处理,在升温之前退火炉内的真空度至少要达到 10— 4Pa,以 15°C/min 的速率从室温升至 1250°C, 保温 240min, 真空度为 10— 4Pa〜10— 3Pa; 再以 5°C/min的速率 冷却至 1000°C, 保温 180min, 真空度为 10— 4Pa〜10— 3Pa; 以 10°C/min的速率冷却至 800°C, 保温 120min, 真空度为 10— 4Pa; 以 20°C/min的速率冷却至室温, 真空度为 10— 4Pa。 最后进 行常规后处理制得多孔钽。
发明人按 GB/T5163_2006、 GB/T5249_1985、 GB/T6886-2001等标准对上述多孔钽成品 的多孔材料密度、 孔隙率、 孔径及各种力学性能进行检测: 其杂质含量低于 0. 2%, 其孔隙 分布均匀, 密度 6. 8g/cm3, 孔隙率 62%, 孔隙平均直径 250 m, 弹性模量 4. 15Gpa、 延伸 率 10. 32%, 弯曲强度 118MPa, 抗压强度 65MPa。 经计算该制备工艺产品合格率达 90. 3%。 在上述实施例 5给出的方法中, 我们还可以对其中的各种条件作其他选择同样能得到 本发明所述的多孔钽或多孔铌。
Figure imgf000010_0001
Figure imgf000010_0002
0.4°C/min的 以 8 °C/min 的速率升至 2050°C, 保温 至 1000 °C, 保温 速率从 400°C 220min, 真空度为 10- 3Pa; 150min/ 升至 700°C, 真空度为 104Pa〜10— 3Pa;以 12°C/min的速 以 12°C/min的速率 保温 340min 率 至 1530 °C, 保温 55min; 至 800°C,保温 以 14°C/min的速率) f¾至 1210°C, 保温 102min/
85min; 22°C/min的速率冷 以 14°C/min的速率 至 800°C, 然后随 却至室温 炉
8 60Mpa 以 1.5 °C/min 12°C/min的速率 至 1220°。,保温 10"3Pa/20 °C /min 的 的速率从室 55min, 真空度为 104Pa; 速率升至 1励。 C, 温升至 400 以 13 °C/min的速率升至 1300 °C, 保温 保温 420min/
。C , 保温 50min; 7°C/min的速率
310min/ 以 10°C/min的速率升至 2100 °C, 保温 至 1000 °C, 保温
0.55 °C /min 200min, 真空度为 10- 3Pa; 130min/ 的速率从 400 真空度为 104Pa〜10— 3Pa;以 13°C/min的速 以 13°C/min的速率
°C升至 780 率 至 1540 °C, 保温 50min; Ρ 800 °C,保温
。C , 保温 以 15°C/min的速率) f¾至 1220 °C, 保温 96min/
355min 80min; 23 °C/min的速率冷 以 15°C/min的速率 至 800°C, 然后随 却至室温 炉
所得多孔钽或多孔铌成品按前述方法检
Figure imgf000011_0001

Claims

1、 一种替代承重骨组织的医用多孔金属材料, 其特征在于: 由钽粉与造孔剂、 成型剂 混合, 再经压制成型、 脱脂、 烧结、 冷却和热处理制得的; 所述压制成型是将所述的混合 粉末压制到有机泡沫体中成型, 其压力为 50〜100Mpa, 所述脱脂过程是以 0. 3°C/mir!〜 2°C/min的速率逐步升温至 400〜800°C,以氩气通入构成保护气氛并保温 300min〜360min; 所述造孔剂为碳酸氢铵或双氧水, 所述成型剂为硬脂酸、 硬脂酸锌、 石蜡、 合成树脂中的 一种或多种, 形成的医用多孔钽材料孔隙直径为 100〜500 m、 孔隙度介于 55〜65%、 弹 性模量为 3. 8〜4. 2Gpa 延伸率为 9. 3〜10· 7%。
2、 如权利要求 1 所述的医用多孔金属材料, 其特征在于: 所述原料钽粉的平均粒径 小于 43微米、氧含量小于 0. 1%; 所述成型剂合成树脂为丁苯橡胶或异戊橡胶; 所述有机 泡沫体为孔径 0. 56〜0. 72mm, 密度 0. 025g/cm3, 硬度 50°〜80°的聚氨酯泡沫。
3、如权利要求 1或 2所述的医用多孔金属材料,其特征在于:所述造孔剂的用量为 15〜 25%、 成型剂的用量为 7〜12%、 余量为钽粉, 均以体积百分含量计; 所述压制成型过程中 的压力为 75〜87Mpa。
4、 如权利要求 3所述的医用多孔金属材料, 其特征在于: 所述为双氧水占 18%、 成型 剂为硬脂酸锌占 11%、 余量为钽粉, 以体积百分含量计。
5、 如权利要求 1〜4 任一项所述的医用多孔金属材料, 其特征在于: 所述脱脂过程是 以 0. 3°C/min〜l °C/min的速率逐步升温至 400〜800°C, 以氩气通入构成保护气氛并保温 330mir!〜 350miri。
6、如权利要求 5所述的医用多孔金属材料,其特征在于:所述脱脂过程是以 0. 8°C/min 的速率逐步升温至 400〜800°C, 以氩气通入构成保护气氛并保温 340min。
7、 一种替代承重骨组织的医用多孔金属材料的制备方法, 采用模压法烧结而成, 其 特点在于:将钽粉与造孔剂、成型剂混合,再在 50〜100Mpa下压制到孔径为 0. 56〜0. 72mm, 密度 0. 025g/cm3, 硬度 50°〜80°的聚氨酯泡沫中成型、 脱脂、 烧结、 冷却和热处理制得替 代承重骨组织的医用多孔金属材料; 所述造孔剂为碳酸氢铵或双氧水, 所述成型剂为硬脂 酸、 硬脂酸锌、 石蜡、 合成树脂中的一种或多种, 其中造孔剂的用量为 15〜25%、 成型剂 的用量为 7〜12%、 余量为钽粉, 均以体积百分含量计; 所述脱脂过程是以 0. 3°C/mir!〜 2°C/min的速率逐步升温至 400〜800°C,以氩气通入构成保护气氛并保温 300min〜360min。
8、 如权利要求 7所述的制备方法, 其特征在于: 所述原料钽粉的平均粒径小于 43微 米、 氧含量小于 0. 1%; 所述造孔剂为双氧水占 18%、 成型剂为硬脂酸锌占 11%、 余量为钽 粉、 以体积百分含量计; 所述压制过程中采用的压力为 75〜87Mpa。
9、如权利要求 8所述的制备方法,其特征在于:所述脱脂过程中以 0. 3°C/mir!〜 rC/min 的速率逐步升温至 400〜800°C, 以氩气通入构成保护气氛并保温 330min〜350min。
10、 如权利要求 9所述的制备方法, 其特征在于: 所述脱脂过程中以 0. 8°C/min的速 率逐步升温至 400〜800°C, 以氩气通入构成保护气氛并保温 340min。
11、 如权利要求 7或 8所述的制备方法, 其特征在于: 所述脱脂处理条件还包括有: 以 l〜2°C/min的速率从室温升至 400°C, 保温 300〜330min, 以 0. 3〜0. 8°C/min的速率 从 400°C升至 600〜800°C, 保温 340〜360min ; 所述真空烧结条件还包括有: 以 10〜 15°C/min的速率从室温升至 1200〜1250°C, 保温 30〜60min, 真空度为 10— 4Pa〜10— 3Pa, 以 10〜20°C/min的速率升至 1500°C, 保温 30〜60min, 真空度为 10— 4Pa〜10— 3Pa, 以 6〜 20°C/min的速率升至 2000〜2200°C, 保温 120〜240min, 真空度为 10— 4Pa〜10— 3Pa; 真空 烧结后的冷却条件还包括有: 真空度为 10— 4Pa〜10— 3Pa; 以 10〜20°C/min 的速率冷却至 1500〜1600°C,保温 30〜60min; 以 12〜20°C/min的速率冷却至 1200〜1250°C,保温 60〜 90min; 以 10〜20°C/min的速率冷却至 800°C, 然后随炉冷却; 所述真空退火条件还包括 有: 以 15〜30°C/min的速率升至 1000〜1250°C, 保温 240〜480min, 真空度为 10— 4Pa〜 10— 3Pa,再以 5〜10°C/min的速率冷却至 1000°C,保温 90〜180min,真空度为 10— 4Pa〜10— 3Pa; 以 10〜20°C/min的速率冷却至 800°C,保温 60〜120min,真空度为 10— 4Pa;以 20〜30°C/min 的速率冷却至室温, 真空度为 10— 4Pa〜10— 3Pa。
PCT/CN2012/081866 2011-09-29 2012-09-24 一种替代承重骨组织的医用多孔金属材料及其制备方法 WO2013044780A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110301039.3 2011-09-29
CN 201110301039 CN102796904B (zh) 2011-09-29 2011-09-29 一种替代承重骨组织的医用多孔金属材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2013044780A1 true WO2013044780A1 (zh) 2013-04-04

Family

ID=47196196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/081866 WO2013044780A1 (zh) 2011-09-29 2012-09-24 一种替代承重骨组织的医用多孔金属材料及其制备方法

Country Status (2)

Country Link
CN (1) CN102796904B (zh)
WO (1) WO2013044780A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104498761A (zh) * 2014-12-17 2015-04-08 北京科技大学 一种制备多孔金属铁的方法
CN104593659A (zh) * 2014-12-17 2015-05-06 北京科技大学 一种制备多孔金属铁的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103436726B (zh) * 2013-06-18 2015-11-25 宁海县大雅精密机械有限公司 一种多孔金属材料的制作方法
CN106474554B (zh) * 2015-08-31 2020-09-15 重庆润泽医药有限公司 一种多孔金属材料及其制备方法
CN113263179B (zh) * 2021-05-25 2022-10-25 矿冶科技集团有限公司 一种医用多孔骨架用钽粉及其制备方法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1936045A (zh) * 2005-09-22 2007-03-28 中南大学 三维通孔或部分孔洞彼此相连多孔金属泡沫及其制备方法
CN101405039A (zh) * 2006-02-17 2009-04-08 拜欧麦特制造公司 用于形成多孔金属植入物的方法和设备
EP2149414A1 (en) * 2008-07-30 2010-02-03 Nederlandse Centrale Organisatie Voor Toegepast Natuurwetenschappelijk Onderzoek TNO Method of manufacturing a porous magnesium, or magnesium alloy, biomedical implant or medical appliance.
CN101660076A (zh) * 2009-10-14 2010-03-03 北京师范大学 有机泡沫浸浆烧结法制备宏观网状多孔钽

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5282861A (en) * 1992-03-11 1994-02-01 Ultramet Open cell tantalum structures for cancellous bone implants and cell and tissue receptors
CN101549175B (zh) * 2009-05-15 2012-07-04 中南大学 一种孔隙非均匀分布仿生骨质材料制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1936045A (zh) * 2005-09-22 2007-03-28 中南大学 三维通孔或部分孔洞彼此相连多孔金属泡沫及其制备方法
CN101405039A (zh) * 2006-02-17 2009-04-08 拜欧麦特制造公司 用于形成多孔金属植入物的方法和设备
EP2149414A1 (en) * 2008-07-30 2010-02-03 Nederlandse Centrale Organisatie Voor Toegepast Natuurwetenschappelijk Onderzoek TNO Method of manufacturing a porous magnesium, or magnesium alloy, biomedical implant or medical appliance.
CN101660076A (zh) * 2009-10-14 2010-03-03 北京师范大学 有机泡沫浸浆烧结法制备宏观网状多孔钽

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI, ZHONGLI ET AL.: "New 3-D Porous Ti Manufacture and Feature", ORTHOPAEDIC BIOMECHANICS MATERIALS AND CLINICAL STUDY, vol. 4, no. 1, February 2007 (2007-02-01), pages 1 - 2 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104498761A (zh) * 2014-12-17 2015-04-08 北京科技大学 一种制备多孔金属铁的方法
CN104593659A (zh) * 2014-12-17 2015-05-06 北京科技大学 一种制备多孔金属铁的方法

Also Published As

Publication number Publication date
CN102796904B (zh) 2013-12-25
CN102796904A (zh) 2012-11-28

Similar Documents

Publication Publication Date Title
WO2013044780A1 (zh) 一种替代承重骨组织的医用多孔金属材料及其制备方法
WO2013044773A1 (zh) 一种牙骨替代医用多孔金属材料的制备方法
WO2013044857A1 (zh) 一种适用于替代人体牙骨组织的多孔钽的制备方法
WO2013044852A1 (zh) 一种医用多孔金属植入材料的制备方法
WO2013044832A1 (zh) 一种制备医用多孔钽植入材料的方法
WO2013044767A1 (zh) 一种替代牙骨的医用多孔钽材料及其制备方法
CN103740962B (zh) 牙骨替代医用多孔金属材料的制备方法
WO2013044860A1 (zh) 一种医用多孔金属植入材料的制备方法
WO2013044858A1 (zh) 一种医用多孔金属植入材料的制备方法
WO2013044778A1 (zh) 一种医用多孔金属材料及其制备方法
WO2013044781A1 (zh) 一种替代承重骨组织的医用多孔金属材料的制备方法
WO2013044809A1 (zh) 一种制备替代承重骨组织的医用多孔金属材料的方法
WO2013044779A1 (zh) 一种医用多孔金属材料的制备方法
CN103736147B (zh) 替代承重骨组织的医用多孔金属材料及其制备方法
CN103740961B (zh) 一种替代承重骨组织的医用多孔金属材料的制备方法
CN103740966B (zh) 制备替代承重骨组织的医用多孔金属材料的方法
WO2013044815A1 (zh) 一种医用多孔钽材料的制备方法
WO2013044813A1 (zh) 一种替代承重骨组织的医用多孔金属材料的制备方法
WO2013044834A1 (zh) 一种制备医用多孔钽植入材料的方法
WO2013044835A1 (zh) 一种多孔钽医用植入材料的制备方法
WO2013044777A1 (zh) 一种替代牙骨的医用多孔金属材料及其制备方法
WO2013044833A1 (zh) 一种医用多孔钽植入材料的制备方法
WO2013044831A1 (zh) 替代人体承重骨组织的医用多孔钽材料的制备方法
WO2013044839A1 (zh) 一种医用植入材料多孔钽的制备方法
CN104225673A (zh) 一种替代牙骨的医用多孔金属材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12835831

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12835831

Country of ref document: EP

Kind code of ref document: A1