WO2013044833A1 - 一种医用多孔钽植入材料的制备方法 - Google Patents
一种医用多孔钽植入材料的制备方法 Download PDFInfo
- Publication number
- WO2013044833A1 WO2013044833A1 PCT/CN2012/082225 CN2012082225W WO2013044833A1 WO 2013044833 A1 WO2013044833 A1 WO 2013044833A1 CN 2012082225 W CN2012082225 W CN 2012082225W WO 2013044833 A1 WO2013044833 A1 WO 2013044833A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- temperature
- vacuum
- cooled
- rate
- furnace
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/02—Inorganic materials
- A61L27/04—Metals or alloys
- A61L27/047—Other specific metals or alloys not covered by A61L27/042 - A61L27/045 or A61L27/06
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/56—Porous materials, e.g. foams or sponges
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/1017—Multiple heating or additional steps
- B22F3/1021—Removal of binder or filler
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/11—Making porous workpieces or articles
- B22F3/1121—Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
- B22F3/1137—Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers by coating porous removable preforms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/24—After-treatment of workpieces or articles
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C27/00—Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
- C22C27/02—Alloys based on vanadium, niobium, or tantalum
Definitions
- the invention relates to a preparation method of a porous medical metal implant material, in particular to a preparation method of a medical porous tantalum implant material suitable for replacing weight-bearing bone tissue.
- Porous medical metal implant materials have important and special applications for treating bone tissue wounds, femoral tissue necrosis, and replacing dense bone tissues such as teeth. Common materials such as porous metal stainless steel and porous metal titanium are common materials.
- the porosity should be 30 ⁇ 80%, and the pores are preferably all connected and evenly distributed, or as needed to conform to the bone tissue growth of the human body. , and reduce the weight of the material itself, suitable for human implant use.
- the refractory metal ruthenium due to its excellent biocompatibility, is expected to be a substitute for the conventional medical metal biomaterials described above. Since metal ruthenium is harmless to the human body, non-toxic, has no side effects, and with the rapid development of medicine at home and abroad, the understanding of sputum as a human implant material is further deepened, and the demand for porous metal ruthenium material for human body implantation is required. It has become more and more urgent, and its requirements are getting higher and higher. Among them, as a porous medical implanted metal crucible, it is expected to be a novel substitute for bone tissue if it has a high uniform distribution of interconnected pores and physical and mechanical properties compatible with the human body.
- porous metal material for medical implantation it is basically a powder sintering method as a general porous metal material, in particular, a metal in a powder sintering method for obtaining a porous metal foam structure with pore communication and uniform distribution. Drying of the powder slurry on the organic foam after drying and sintering is referred to as foam impregnation.
- the porous metal material obtained by powder sintering generally has a very good metal mechanical property, and the main reason is how to arrange the support and elimination relationship of the pore-forming medium and the collapse problem in the sintering process of the metal powder.
- porous tantalum powder sintering for the purpose of obtaining medical implant materials has been reported in the literature.
- the porous metal obtained is either used as a filter material, or used for aerospace and other high temperature applications rather than as a medical metal implant material, and the porous metal processed is also non-porous.
- porous tantalum US5282861 discloses an open-celled tantalum material for use in cancellous bone implants, cells and tissue receptors and its preparation.
- the porous crucible is made of pure commercial crucible.
- the carbon skeleton obtained by thermal degradation of the polyurethane precursor is a scaffold.
- the carbon skeleton has multiple dodecahedrons, and the inside is a grid-like structure.
- Hole, high porosity Up to 98%, the commercial pure ruthenium is bonded to the carbon skeleton by chemical vapor deposition and permeation to form a porous metal microstructure, which is simply referred to as a chemical deposition method.
- the porous tantalum material obtained by this method has a tantalum layer thickness of 40 to 60 m; in the whole porous material, the helium weight accounts for about 99%, and the carbon skeleton weight accounts for about 1%. 5 ⁇ 3. 5GPa, tensile strength 63MPa, plastic deformation amount of 15%, the compressive strength of the porous material is further described.
- a porous crucible for medical implant materials such as teeth, such as teeth
- the mechanical properties of the material, such as ductility are obviously insufficient, and it will affect the subsequent processing of the porous tantalum material itself, such as molded parts. Cutting, etc.
- the object of the present invention is to provide a method for preparing a medical porous tantalum implant material which has good biocompatibility and excellent mechanical strength and toughness, and the preparation method is simple and convenient for industrial scale production.
- the invention relates to a method for preparing a medical porous tantalum implant material, which comprises: mixing a polyhydric aqueous solution with a tantalum powder into a slurry, injecting the slurry into an organic foam by vibration and pressure, drying, degreasing, sintering, Cooling and heat treatment steps to obtain a medical porous tantalum material;
- the polyvinyl alcohol aqueous solution has a mass concentration of 2 to 8%, the vibration frequency is 20 to 80 times/min;
- the sintering step is a vacuum degree of 10 to 4 Pa ⁇ 10- 3 Pa, to 10 ⁇ 20 ° C / min was heated to 1500 ⁇ 1800 ° C, insulation 120 ⁇ 240min, with furnace cooling to 200 ⁇ 300 ° C, and then to 10 ⁇ 20 ° C / min was heated to 1500 ⁇ 1800 ° C, holding 180 ⁇ 240min, 5 ⁇ 10 ° C / min to 2000 ⁇ 2200 ° C, holding 120 ⁇ 360min;
- the vibration and pressure method of the present invention effectively avoids the poor dispersibility which is easy to occur in the addition of tantalum powder to the sponge, which makes the distribution uneven and thus seriously affects the mechanical properties of the final porous tantalum material. The problem.
- the internal stress is eliminated, the structure of the porous tantalum material is more uniform, and the toughness of the obtained porous tantalum material is greatly improved; the above sintering treatment process makes the embryo body become a heating element, so that the sintering is more uniform and thorough;
- the biocompatibility and biological properties of the porous ruthenium material may be less than 0.2%.
- the porous tantalum produced by the present invention is very suitable for replacing medical implant materials for load-bearing bone tissue.
- the preparation method is simple and easy to control; the whole preparation process is harmless, non-polluting, non-toxic dust, has no side effects on the human body, and is suitable for industrial scale production.
- it is preferred to use all the decomposition during the sintering process, and there are no residual reagents and organic foams, etc., which will ensure the biocompatibility and biosafety of the implant material.
- a further feature of the present invention is that a metal tantalum powder having an average particle diameter of less than 43 ⁇ m and an oxygen content of less than 0.1% is used, and a polyvinyl alcohol aqueous solution is used as a binder and water as a dispersing agent and the tantalum powder.
- a tantalum powder slurry was prepared, and the organic foam was a polyurethane foam, which was then vacuum dried to remove water.
- the polyvinyl alcohol is heated to dissolve with distilled water, and a slurry of polyvinyl alcohol having a mass concentration of 45% and a metal cerium powder is used to prepare a tantalum powder slurry, wherein the weight is 6 9 parts (preferably 7 parts).
- the metal niobium powder is added to the aqueous solution of the polyvinyl alcohol in a weight of 1 part, and uniformly stirred to form a paste; and the vibration is applied by vibration (the vibration frequency is preferably 60 times/min, and the pressure is preferably 0. IMPa). to 0. 48 0. 89mm, density 0. 015 g / cm 3 0. 035g / cm 3, hardness of more than 50 ° (preferably 0.56 to 0.72 pore density of 0. 025g / cm 3, hardness of 50 ° 80 ° ) in the polyurethane foam.
- the above-mentioned polyvinyl alcohol aqueous solution is uniformly sprayed on the surface, and the ratio of the spray amount to the metal tantalum powder is 1 : 6
- the preferred pore size is 0. 48 0. 89mm, density 0.
- the preferred material size is less than 43 ⁇ m, and the oxygen content is less than 0.1%. . 025 g / cm 3 0. 035g / cm 3, hardness of more than 50 ° helps ensure that a polyurethane foam with a porosity of the porous tantalum pore diameter.
- a further feature of another aspect of the invention is that the degree of vacuum of the drying is maintained at a vacuum of 10 - 2 lPa, and then under a protective atmosphere, such as a vacuum of 10 - 4 10 - 3 Pa, and a temperature of 400 ° C and 800 ° C.
- a protective atmosphere such as a vacuum of 10 - 4 10 - 3 Pa, and a temperature of 400 ° C and 800 ° C.
- the degreasing treatment of the polyvinyl alcohol and the organic foam is removed; sintering, cooling and heat treatment are further performed.
- the degreasing treatment conditions further include: gradually increasing the temperature to 400 800 ° C at a rate of 0.5 ° C / min 5 ° C / min, argon gas into a protective atmosphere and holding for 30 min 120 min;
- the above vacuum sintering conditions are: 10 - 4 Pa 10 - 3 Pa, the temperature is raised to 1500 1800 ° C at 12 15 ° C / min, the temperature is maintained for 180 200 min, cooled to 200 300 ° C with the furnace, and then 16 19 ° C / min The temperature is raised to 1500 1800 ° C, the temperature is 220 240 min, and the temperature is raised to 2000 2200 ° C at 5 8 ° C / min, and the temperature is maintained for 250 320 min;
- the cooling condition after the above vacuum sintering is: the degree of vacuum is not lower than 10 - 3 P a , and the sintered porous body is segmented at a temperature not lower than 25 ° C / min and not lower than 10 ° C / min. Cool down to 800 ° C, each holding time 30 min 90 min, and then cool to room temperature with the furnace;
- the heat treatment conditions are as follows: the heat treatment step is a vacuum degree of 10 - 4 Pa 10 - 3 Pa, a temperature rise to 800 900 ° C at 15 ° C / min, a heat retention of 260 320 min, and then a cold to 400 ° at 3 ° C / min C, keep warm for 120min, then take 18 23 Cool to room temperature at °C/min.
- a degree of vacuum of the vacuum drying is 10- 2 ⁇ lPa, the drying temperature is 60 ⁇ 100 ° C, drying time of 4 to 8 hours; the degreased condition further comprising: gradually heating To 600 ⁇ 800 °C, the pure argon gas (99.9999%) is introduced into the protective atmosphere, and the temperature is raised from room temperature to 400 °C at a rate of l ⁇ 5 °C/min, and the temperature is kept for 30 ⁇ 60min, to 0. 5 ⁇ 1.
- the rate of 5 ° C / min is increased from 400 ° C to 600 ⁇ 800 ° C, and the temperature is maintained for 60 to 120 min;
- the sintering step is a vacuum of 10 - 4 Pa to 10 - 3 Pa, to 10 to 20 °C / min to 1500 ⁇ 1800 ° C, heat 120 ⁇ 240min, with the furnace cooled to 200 ⁇ 300 ° C, then 10 ⁇ 20 ° C / min to 1500 ⁇ 1800 ° C, 180 ⁇ 240min, to 5 ⁇ 10 °C / min, the temperature is raised to 2000 ⁇ 2200 °C, and the temperature is kept for 120 ⁇ 360min;
- the cooling conditions after vacuum sintering further include: the degree of vacuum is 10 - 4 Pa ⁇ 10 - 3 Pa; at 10 ⁇ 20 °C /
- the rate of min is cooled to 1500 ⁇ 1600 °C, kept at 30 ⁇ 60min; cooled to 1200 ⁇ 1250 °C at a rate of 12 ⁇ 20 °C/min
- vacuum drying, degreasing treatment, etc. are helpful to reduce the content of impurities in porous tantalum, improve biocompatibility and biosafety and mechanical properties; optimize the organic foam material to solve the foam skeleton in the sintering process. Collapse problem; optimization of the process conditions of the sintering and annealing steps to further improve the mechanical properties of the porous tantalum such as ductility.
- Example 1 12 g of polyvinyl alcohol was weighed and placed in a vessel containing 240 ml of distilled water; it was placed on an electric furnace and heated and stirred to make an aqueous polyvinyl alcohol solution. 60 g of an anthracene powder having an average particle diameter of less than 43 ⁇ m and an oxygen content of less than 0.1% was weighed using a 200 g balance, and 50 ml of a cooled aqueous solution of polyvinyl alcohol was added thereto, and the mixture was stirred and mixed to obtain a tantalum powder slurry. 10 10 10 10 X 30 mm porous polyurethane foam (average pore diameter of 0. 48 mm, density of 0.
- the mortar slurry was shaken at 55 times / min, 0. IMpa
- the material is poured into it. It was dried in a vacuum oven, dried at 60 ° C, dried for 8 hours, and maintained at a vacuum of 1 Pa.
- Degreasing treatment The vacuum is less than 10 - 4 Pa, the temperature is 600 ° C, and the holding time is 120 minutes.
- Vacuum sintering The vacuum degree is 10 - 3 Pa, the temperature is raised to 1800 ° C at 13 ° C / min, the temperature is kept for 200 min, the furnace is cooled to 200 ⁇ 300 ° C, and then heated to 1800 ° C at 17 ° C / min, and the temperature is kept.
- the finished product is inspected according to the standard of GB/T5163_2006 GB/T5249_1985 GB/T6886-2001 and the like, the porous material density, the porosity, the pore diameter and the various mechanical properties of the porous material: the impurity content is less than 0.5% of the finished product, The pore distribution is uniform and connected, the density is 6. 8 g / cm 3 , the porosity is 70%, the average pore diameter is 220 m, the elastic modulus is 6. OGPa, the bending strength is 140 MPa, the compressive strength is 90 MPa, and the elongation is 10.5%.
- Example 2 10 g of polyvinyl alcohol was weighed and placed in a vessel containing 200 ml of distilled water; it was placed on an electric furnace and heated and stirred to make an aqueous polyvinyl alcohol solution. 40 g of an anthracene powder having an average particle diameter of less than 43 ⁇ m and an oxygen content of less than 0.1% was weighed by a 200 g balance, and 32 ml of an aqueous polyvinyl alcohol solution was added thereto, and the mixture was stirred and mixed to make it into a tantalum powder slurry. The 10 10 10 X 25 mm porous polyurethane foam (average pore diameter of 0. 56 density 0.
- Vacuum sintering the degree of vacuum is 10 - 4 Pa, the temperature is raised to 160 CTC at 10 ° C / min, the temperature is kept for 180 min, cooled to 200 300 ° C with the furnace, and then heated to 1600 ° C at 20 ° C / min, held for 180 min, to 5 °C/min is heated to 2000 2200 °C, and kept for 120 minutes.
- the sintering process is filled with argon gas to remove the surface dust and dirt after the product is removed.
- the sample is prepared.
- Conventional cooling and heat treatment The vacuum degree is 10 - 4 Pa.
- the finished product is inspected according to the standard of GB/T5163_2006 GB/T5249_1985 GB/T6886-2001 and the like, the porous material density, the porosity, the pore diameter and the various mechanical properties of the porous material: the impurity content is less than 0.5% of the finished product, 2% ⁇
- the pore distribution is uniform and connected, the density of 6. 5 g / cm 3 , the porosity of 56%, the average pore diameter of 280 m, the elastic modulus of 4. 6GPa, bending strength of 132MPa, compressive strength of 86Mpa, elongation of 11.2%
- Example 3 Polyvinyl alcohol l lg was weighed and placed in a vessel containing 220 ml of distilled water; it was placed on an electric furnace and heated and stirred to make an aqueous polyvinyl alcohol solution. The granules having an average particle diameter of less than 43 ⁇ m and an oxygen content of less than 0.1% were weighed in an amount of 45 g, and 36 ml of an aqueous polyvinyl alcohol solution was added thereto, and the mixture was stirred and mixed to obtain a mash slurry. 88 8 X 25mm porous polyurethane foam (average pore diameter of 0. 70mm, density 0. 035g / cm 3 , hardness 70 °), the pressure powder method at 80 times / min 0.
- the temperature is raised to 2000 2200 ° C at 10 ° C / min, the temperature is kept for 360 min, the argon gas is protected during the sintering process, and the surface dust and dirt are removed after the product is taken out, and the prepared sample is obtained; the conventional cooling and the heat treatment are performed: the vacuum degree is 10 — 4 Pa 10— 3 Pa, heated to 800 900 ° C at 10 ° C / min After heat preservation for 480 min, it was cooled to 400 ° C at 2 ° C / min, kept for 120 min, and then cooled to room temperature at 23 ° C / min, and then processed to obtain a porous tantalum product.
- the finished product is inspected according to the standard of GB/T5163_2006 GB/T5249_1985 GB/T6886-2001 and the like, the porous material density, the porosity, the pore diameter and the various mechanical properties of the porous material: the impurity content is less than 0.5% of the finished product, 5% ⁇
- the pore distribution is uniform and connected, the density of 7. 50 g / cm 3 , the porosity of 66%, the average pore diameter of 167 ⁇ ⁇ , the elastic modulus of 5. 5GPa, the bending strength of 136MPa, the compressive strength of 82Mpa, the elongation of 11.4%
- Example 4 12 g of polyvinyl alcohol was weighed and placed in a vessel containing 230 ml of distilled water; it was placed on an electric furnace and heated and stirred to make an aqueous polyvinyl alcohol solution. 50 g of an anthracene powder having an average particle diameter of less than 43 ⁇ m and an oxygen content of less than 0.1% was weighed by a 200 g balance, and 40 ml of an aqueous polyvinyl alcohol solution was added thereto, and the mixture was stirred and mixed to obtain a tantalum powder slurry. The 12 12 12 X 30 mm porous polyurethane foam (pore diameter 0. 60 mm, density 0.
- Vacuum sintering The vacuum degree is 10 - 3 Pa, the temperature is raised to 1500 ° C at 10 ° C / min, the temperature is kept for 120 min, the furnace is cooled to 200 300 ° C, and then heated to 1600 ° C at 20 ° C / min, and the temperature is maintained for 180 min. The temperature is raised to 2000 2200 ° C at 5 ° C / min, and the temperature is kept for 120 min.
- the sintering process is filled with argon gas to remove the surface dust and dirt after the product is taken out, and the prepared sample is sampled; conventional cooling and heat treatment: vacuum degree is 10 — 4 Pa 10— 3 Pa, heat up to 800 900 ° C at 20 ° C / min for 240 min, then cool to 400 ° C at 5 ° C / min, heat for 300 min, then cool to room temperature at 18 ° C / min, After treatment, the porous product is finished.
- the finished product is inspected according to the standard of GB/T5163_2006 GB/T5249_1985 GB/T6886-2001 and the like, the porous material density, the porosity, the pore diameter and the various mechanical properties of the porous material: the impurity content is less than 0.5% of the finished product, 6% ⁇
- the pore distribution is uniform and connected, the density is 7. 0 g / cm 3 , the porosity is 58%, the average pore diameter is 350 m, the elastic modulus is 5. 5GPa, the bending strength is 124MPa, the compressive strength is 84Mpa, the elongation is 10.6%.
- Example 5 a porous crucible, which has a particle size of less than 43 m, an oxygen content of less than 0.1%, and a polyvinyl alcohol aqueous solution as a binder solution, and is vibrated. Pressurization is applied to the polyurethane foam carrier, and then the above aqueous polyvinyl alcohol solution is sprayed on the surface; and vacuum drying, degreasing treatment, vacuum sintering, vacuum annealing and conventional post treatment are carried out.
- the urethane foam having a pore diameter of 0. 72 0. 56 density 0. 025g/cm 3 , hardness 50 80° shock pressure: frequency 33 times / min 0. 07Mpa ;
- Vacuum drying Maintain a vacuum of 10 - 2 lPa to remove moisture from the polyurethane foam filled with the powder slurry;
- Degreasing treatment Under an inert gas atmosphere or a vacuum of 10 - 4 10 - 3 Pa, temperature 400 ° C 800 ° C, and holding time of 30 120 minutes to remove the polyvinyl alcohol and polyurethane foam;
- Vacuum sintering the vacuum degree is 10 - 4 Pa, the temperature is raised to 170 CTC at 15 ° C / min, the temperature is kept for 180 min, and the furnace is cooled to 200 300 ° C, and then heated to 1750 ° C at 16 ° C / min, heat for 220 min, at 8 ° C / min to 2000 ⁇ 2200 ° C, holding 120min;
- Heat treatment The degree of vacuum is 10 - 4 Pa ⁇ 10 - 3 Pa, the temperature is raised to 800 ⁇ 900 ° C at 13 ° C / min, the temperature is kept for 300 min, and then cooled to 400 ° C at 2. 5 ° C / min, and the temperature is maintained for 180 min. It was then cooled to room temperature at 22 ° C/min and worked up to obtain a porous tantalum product.
- the 5% of the content of the porous material is less than 0.5%.
- the inventor is tested according to the standard of GB/T5163_2006, GB/T5249_1985, GB/T6886-2001, etc., the porosity, porosity, pore size and various mechanical properties of the porous material:
- O.lMPa is raised to 208min at room temperature, cooled to 200 ⁇ 300°C with furnace, /min is heated to
- O.lMPa is raised to 195min at room temperature, cooled to 200 ⁇ 300°C with furnace, /min is heated to
- the temperature is raised to 2. 5 ° C / min to 6 ° C / min.
- the rate is from 2000 to 2200 ° C, insulation for 130 min; 400 ° C, insulation
- the rate is up to 1550 °C, and the temperature is kept for 45 minutes;
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Medicinal Chemistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Veterinary Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Dermatology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Powder Metallurgy (AREA)
Abstract
一种医用多孔钽材料的制备方法,将聚乙醇水溶液与钽粉配成浆料,采用震动加压将所述浆料注入有机泡沫体中,再经干燥、脱脂、烧结、冷却和热处理步骤;聚乙烯醇水溶液的质量浓度为2〜8%,所述震动频率为20〜80次/分钟;烧结步骤是真空度为10—4Pa〜10—3Pa,以10〜20°C/min升温至1500〜1800°C、保温120〜240min、随炉冷至200〜300°C,再以10〜20°C/min升温至1500〜1800°C、保温180〜240min,以5〜10°C/min升温至2000〜2200°C、保温120〜360min;所述热处理步骤是真空度为10—4Pa〜10—3Pa,以10〜20°C/min升温至800〜900°C、保温240〜480min,再以2〜5°C/min冷至400°C、保温120〜300min,然后随炉冷却至室温。该方法制备的多孔钽适合用作替代承重骨组织的医用植入材料,同时保证了生物相容性与力学性能。
Description
一种医用多孔钽植入材料的制备方法 技术领域
本发明涉及一种多孔医用金属植入材料的制备方法, 尤其涉及一种适合于替代承重骨 组织的医用多孔钽植入材料的制备方法。
背景技术
多孔医用金属植入材料具有治疗骨组织创伤、 股骨组织坏死和替代致密骨组织如牙齿 等重要而特殊的用途, 现常见的这类材料有多孔金属不锈钢、 多孔金属钛等。 作为骨组织 创伤和股骨组织坏死治疗使用的多孔植入材料, 其孔隙度应达 30〜80%, 而且孔隙最好全 部连通与均匀分布, 或根据需要使之既与人体的骨组织生长相一致, 又减轻了材料本身的 重量, 以适合人体植入使用。
而难熔金属钽, 由于它具有优秀的生物相容性, 其多孔材料有望作为替代前述等传统 医用金属生物材料。 由于金属钽对人体的无害、 无毒、 无副作用, 以及随着国内外医学的 飞速发展, 对钽作为人体植入材料认知的进一步深入, 人们对人体植入用多孔金属钽材料 的需求变得越来越迫切, 对其要求也越来越高。 其中作为多孔医用植入金属钽, 如果能具 有很高的均匀分布连通孔隙以及与人体相适应的物理机械性能, 则其有望作为一种新型的 骨组织替代材料。
作为医用植入的多孔金属材料就像一般的多孔金属材料那样基本上是以粉末烧结法 为主要的加工方法, 特别是为获取孔隙连通与均匀分布的多孔金属泡沫结构采用粉末烧结 法中的金属粉末浆料在有机泡沫体上的浸渍后干燥再烧结简称泡沫浸渍法居多。 关于粉末 烧结所获得的多孔金属材料通常其金属力学性能并不是很好, 其主要原因是工艺上如何安 排成孔介质的支撑与消除关系、 金属粉末烧结过程中的塌陷问题。 而已知的文献报道中均 没有很好的解决方法而放任自然。
采用金属粉末烧结法制造多孔钽的文献报道很少, 特别是以获得医用植入材料用为目 的的多孔钽粉末烧结法文献报道几乎没有。可以参考的是公开号为 CN200510032174, 名称 "三维通孔或部分孔洞彼此相连多孔金属泡沫及其制备方法" 以及 CN200710152394,名称 "一种新型多孔泡沫钨及其制备方法" 。 然而其所获得的多孔金属或是为过滤材料用, 或 是为航空航天及其它高温场合用而非作为医用金属植入材料使用, 再者所加工的多孔金属 也非多孔钽。
关于多孔钽, US5282861 公开了一种应用于松质骨植入体、 细胞和组织感受器的开孔 钽材料及其制备。 这种多孔钽由纯商业钽制成, 它以聚亚氨酯前体进行热降解得到的碳骨 架为支架, 该碳骨架呈多重的十二面体, 其内为网格样结构, 整体遍布微孔, 孔隙率可高
达 98%, 再将商业纯钽通过化学蒸气沉积、 渗透的方法结合到碳骨架上以形成多孔金属微 结构, 简称为化学沉积法。 这种方法所获得的多孔钽材料其表面的钽层厚度在 40〜60 m 之间; 在整个多孔材料中, 钽重约占 99%, 而碳骨架重量则占 1%左右。 文献进一步记载, 该多孔材料的抗压强度 50〜70MPa, 弹性模量 2. 5〜3. 5GPa, 抗拉强度 63MPa, 塑性变形量 15%。 但是将它作为致密骨组织如牙齿等医用植入材料的多孔钽, 其材料的力学性能如延 展性有明显不足之处, 而且会影响到后续的对多孔钽材料本身的加工, 例如成型件的切割 等。 同样在前述的金属粉末烧结法所获得的产品也均存在这样的不足。
发明内容
本发明的目的在于提供一种生物相容性好、 力学强韧性均优异的医用多孔钽植入材料 的制备方法, 该制备方法操作简便、 适合于工业化规模生产。
本发明的目的是通过如下技术手段实现的:
一种医用多孔钽植入材料的制备方法,其特征在于:将聚乙醇水溶液与钽粉配成浆料, 震动加压将所述浆料注入有机泡沫体中, 再经干燥、 脱脂、 烧结、 冷却和热处理步骤制得 医用多孔钽材料; 所述聚乙烯醇水溶液的质量浓度为 2〜8%, 所述震动频率为 20〜80次 / 分钟; 所述烧结步骤是真空度为 10— 4Pa〜10— 3Pa, 以 10〜20°C/min升温至 1500〜1800°C、 保温 120〜240min、 随炉冷至 200〜300°C, 再以 10〜20°C/min升温至 1500〜1800°C、 保 温 180〜240min, 以 5〜10°C/min升温至 2000〜2200°C、 保温 120〜360min; 所述热处理 步骤是真空度为 10— 4Pa〜10— 3Pa, 以 10〜20°C/min升温至 800〜900°C、保温 240〜480min, 再以 2〜5°C/min冷至 400°C、 保温 120〜300min, 然后随炉冷却至室温。
发明人在长期研发过程中发现, 采用本发明的震动加压法有效避免了钽粉加入海绵体 中容易出现的分散性不好, 使得其分布不均匀从而严重影响最终的多孔钽材料的力学性能 的问题。 在医用多孔金属材料的研发过程中, 医用多孔金属材料作为替代承重骨组织的材 料, 要求其孔隙率较大、 这样人体组织才易长入、 生物相容性好从而充分地发挥其作用, 但孔隙率越大、 孔径越大, 力学性能如强度、 韧性就得不到保证; 反之, 力学性能好了又 易使孔隙率过小、 生物相容性不好、 密度也过大引起不舒适感; 医用多孔钽的制备路线众 多, 但发明人创造性地提出了采用上述步骤、 工艺制备医用多孔钽植入材料, 特别是采用 的上述热处理工艺, 发明人在长期研究过程中发现该热处理工艺充分地消除了内应力、 使 多孔钽材料的组织更均匀、 大大提高了所制得的多孔钽材料的韧性; 上述烧结处理工艺, 使得胚体成为了发热体, 从而烧结得更均匀、 透彻; 其制得的多孔钽材料经过测试其杂质 含量可低于 0. 2%、 其生物相容性与生物安全性好, 密度可达 5. 00〜7. 50g/cm3, 孔隙度可 达 55〜70%, 孔隙直径可达 150〜500 m; 弹性模量可达 4. 5〜6. 0Gpa、 延伸率达 10. 5〜 11. 7%、 弯曲强度可达 120〜150Mpa、 抗压强度可达 80〜90Mpa, 其生物相容性、 强韧性接
近于人体承重骨组织的特性, 本发明制得的多孔钽非常适合用于替代承重骨组织的医用植 入材料。 同时, 所述的制备方法工艺简单、 易控; 整个制备过程无害、 无污染、 无毒害粉 尘, 对人体无副作用, 适于工业化规模生产。 再者, 在制备过程中优先采用在烧结过程中 能够全部分解, 没有残留的试剂及有机泡沫体等, 将有利于保证植入材料的生物相容性和 生物安全性。
本发明的进一步的特点是:采用其平均粒径小于 43 μ m、氧含量小于 0. 1%的金属钽粉, 采用聚乙烯醇水溶液为粘结剂和水为分散剂与所述的钽粉制成钽粉浆料, 有机泡沫体为聚 氨酯泡沫, 然后真空干燥除去水。
其中, 将聚乙烯醇用蒸馏水加热至溶解, 采用质量百分比浓度为 4 5%的聚乙烯醇水 溶液与金属钽粉制成钽粉浆料, 其中, 将重量为 6 9份 (优选 7份) 的金属钽粉加入重 量为 1份的所述聚乙烯醇水溶液中, 搅拌均匀制成浆糊状; 并采用震动加压 (震动频率优 选为 60 次 /min、 压力优选为 0. IMPa) 注于孔径为 0. 48 0. 89mm, 密度 0. 015 g/cm3 0. 035g/cm3, 硬度大于 50° (优选孔径为 0. 56 0. 72 密度 0. 025g/cm3, 硬度 50° 80°) 的聚氨酯泡沫中。
进一步优选地, 将上述钽粉浆料震动加压注入有机泡沫体后, 还在表面均匀地喷涂上 述的聚乙烯醇水溶液, 喷涂量与上述金属钽粉的重量份比为 1 : 6
优先选择平均粒径小于 43 μ m、 氧含量小于 0. 1%的金属钽粉有助于减少杂质的含量, 保证材料具有较好的力学性能;选择孔径为 0. 48 0. 89mm,密度 0. 025 g/cm3 0. 035g/cm3, 硬度大于 50°的聚氨酯泡沫有助于保证多孔钽的孔隙度与孔隙直径。
本发明另一方面的进一步的特点是: 干燥的真空度保持 10— 2 lPa真空度, 然后在保 护气氛下, 例如真空度 10— 4 10— 3Pa, 温度 400°C 800°C条件下进行除去聚乙烯醇和有机 泡沫体的脱脂处理; 再进行烧结、 冷却和热处理。
上述脱脂处理条件还包括有: 以 0. 5°C/min 5°C/min的速率逐步升温至 400 800°C 以氩气通入构成保护气氛并保温 30min 120min;
上述真空烧结条件为: 10— 4Pa 10— 3Pa, 以 12 15°C/min升温至 1500 1800°C、 保温 180 200min、随炉冷至 200 300°C,再以 16 19°C/min升温至 1500 1800°C、保温 220 240min, 以 5 8°C/min升温至 2000 2200°C、 保温 250 320min;
上述真空烧结后的冷却条件为: 真空度不低于 10— 3Pa, 以不高于 25°C/min, 不低于 10°C/min渐降冷却速率方式,对烧结多孔体分段降温冷却至 800°C,各段保温时间 30min 90min, 然后随炉冷却至常温;
上述热处理条件为: 所述热处理步骤是真空度为 10— 4Pa 10— 3Pa, 以 15°C/min升温至 800 900°C、 保温 260 320min, 再以 3°C/min冷至 400°C、 保温 120min, 然后以 18 23
°C/min冷却至室温。
在此基础上更进一步的特点是: 所述真空干燥的真空度为 10— 2〜lPa, 干燥温度 60〜 100°C, 干燥时间 4〜8小时; 所述脱脂处理条件还包括有: 逐步升温至 600〜800°C, 以纯 净氩气 (99. 9999%) 通入构成保护气氛, 以 l〜5°C/min 的速率从室温升至 400°C, 保温 30〜60min, 以 0. 5〜1. 5°C/min的速率从 400°C升至 600〜800°C, 保温 60〜120min; 所述 烧结步骤是真空度为 10— 4Pa〜10— 3Pa, 以 10〜20°C/min升温至 1500〜1800°C、 保温 120〜 240min、 随炉冷至 200〜300°C, 再以 10〜20°C/min 升温至 1500〜1800°C、 保温 180〜 240min, 以 5〜10°C/min升温至 2000〜2200°C、 保温 120〜360min; 真空烧结后的冷却条 件还包括有: 真空度为 10— 4Pa〜10— 3Pa; 以 10〜20°C/min的速率冷却至 1500〜1600°C, 保 温 30〜60min; 以 12〜20°C/min的速率冷却至 1200〜1250°C, 保温 60〜90min; 以 10〜 20°C/min的速率冷却至 800°C, 然后随炉冷却; 所述所述热处理步骤为: 10— 4Pa〜10— 3Pa, 以 10〜20°C/min升温至 800〜900°C、 保温 240〜480min, 再以 2〜5°C/min冷至 400°C、 保温 120〜300min, 然后以 18〜23°C/min冷却至室温。
其中对真空干燥、 脱脂处理等是有助于减少多孔钽中杂质的含量, 提高生物相容性和 生物安全性好及力学性能; 对有机泡沫体材料的优化以解决烧结过程中泡沫骨架的不易塌 陷问题;对烧结及退火步骤的工艺条件优化, 以进一步提高多孔钽的力学性能如延展性等。 具体实施方式
下面通过实施例对本发明进行具体的描述, 有必要在此指出的是以下实施例只用于对 本发明进行进一步说明, 不能理解为对本发明保护范围的限制, 该领域的技术人员可以根 据上述本发明内容对本发明作出一些非本质的改进和调整。
实施例 1 : 称取聚乙烯醇 12. 2g, 放入装有 240ml蒸馏水的容器中; 将其放在电炉上 加温并搅拌使之成为聚乙烯醇水溶液。 用 200g天平称量平均粒径小于 43微米、 氧含量小 于 0. 1%的钽粉 60g, 加入 50ml冷却的聚乙烯醇水溶液, 搅拌混合均匀, 使之成为钽粉浆 料。选用 10 X 10 X 30mm多孔聚氨酯泡沫(平均孔径为 0. 48mm,密度 0. 025g/cm3,硬度 50。), 在 55次 /min、 0. IMpa下震动加压法将所述钽粉浆料浇注入其中。 在真空干燥箱中干燥, 干燥温度 60°C, 干燥时间 8小时, 真空度保持 lPa。 脱脂处理: 真空度低于 10— 4Pa, 温度 600°C, 保温时间 120分钟。 真空烧结: 真空度为 10— 3Pa, 以 13°C/min升温至 1800°C、 保 温 200min、随炉冷至 200〜300°C,再以 17°C/min升温至 1800°C、保温 230min,以 7°C/min 升温至 2000〜2200°C、 保温 300min, 烧结过程充氩气保护, 取出产品后去除表面灰尘及 污物, 制得的样品; 常规冷却、 再进行热处理: 真空度为 10— 4Pa〜10— 3Pa, 以 15°C/min升
温至 800 900°C、 保温 260 320min, 再以 3°C/min冷至 400°C、 保温 120min, 然后以 20 °C/min冷却至室温, 后处理得多孔钽成品。
发明人按 GB/T5163_2006 GB/T5249_1985 GB/T6886-2001等标准对上述多孔钽成品 的多孔材料密度、 孔隙率、 孔径及各种力学性能进行检测: 其杂质含量低于 0. 5%的成品, 其孔隙分布均匀且连通, 密度 6. 8g/cm3, 孔隙率 70%, 孔隙平均直径 220 m, 弹性模量 6. OGPa, 弯曲强度 140MPa, 抗压强度 90Mpa, 延伸率 10. 5%
实施例 2: 称取聚乙烯醇 10g, 放入装有 200ml蒸馏水的容器中; 将其放在电炉上加 温并搅拌使之成为聚乙烯醇水溶液。 用 200g天平称量平均粒径小于 43微米、 氧含量小于 0. 1%的钽粉 40g, 加入 32ml 聚乙烯醇水溶液, 搅拌混合均匀, 使之成为钽粉浆料。 选用 10 X 10 X 25mm多孔聚氨酯泡沫 (平均孔径为 0. 56 密度 0. 030g/cm3, 硬度 60。), 在 60 次 /min 0. 08Mpa下震动加压法将所述钽粉浆料浇注入其中。 在真空干燥箱中干燥, 干燥 温度 100°C, 干燥时间 4小时, 真空度保持 10— 2Pa。 脱脂处理: 真空度 10— 4Pa, 温度 800°C 保温时间 120分钟。真空烧结:真空度为 10— 4Pa,以 10°C/min升温至 160CTC、保温 180min 随炉冷至 200 300°C, 再以 20°C/min升温至 1600°C、 保温 180min, 以 5°C/min升温至 2000 2200°C、 保温 120min, 烧结过程充氩气保护, 取出产品后去除表面灰尘及污物, 制 得的样品; 常规冷却、 再进行热处理: 真空度为 10— 4Pa 10— 3Pa, 以 20°C/min升温至 800 900°C、 保温 240min, 再以 5°C/min冷至 400°C、 保温 300min, 然后以 18°C/min冷却至室 温, 后处理得多孔钽成品。
发明人按 GB/T5163_2006 GB/T5249_1985 GB/T6886-2001等标准对上述多孔钽成品 的多孔材料密度、 孔隙率、 孔径及各种力学性能进行检测: 其杂质含量低于 0. 5%的成品, 其孔隙分布均匀且连通, 密度 6. 5g/cm3, 孔隙率 56%, 孔隙平均直径 280 m, 弹性模量 4. 6GPa, 弯曲强度 132MPa, 抗压强度 86Mpa, 延伸率 11. 2%
实施例 3: 称取聚乙烯醇 l lg, 放入装有 220ml蒸馏水的容器中; 将其放在电炉上加 温并搅拌使之成为聚乙烯醇水溶液。 用 200g天平称量平均粒径小于 43微米、 氧含量小于 0. 1%的钽粉 45g, 加入 36ml 聚乙烯醇水溶液, 搅拌混合均匀, 使之成为钽粉浆料。 选用 8 X 8 X 25mm多孔聚氨酯泡沫 (平均孔径为 0. 70mm, 密度 0. 035g/cm3, 硬度 70°), 在 80次 /min 0. 2Mpa下震动加压法将所述钽粉浆料浇注入其中。 在真空干燥箱中干燥, 干燥温度 80°C, 干燥时间 6小时, 真空度保持 10— ^£1。 脱脂处理: 真空度 10— 3Pa, 温度 700°C, 保温 时间 90分钟。 真空烧结: 真空度为 10— 3Pa, 以 20°C/min升温至 1700°C、 保温 240min、 随 炉冷至 200 300°C,再以 10°C/min升温至 1500°C、保温 240min,以 10°C/min升温至 2000 2200°C、 保温 360min, 烧结过程充氩气保护, 取出产品后去除表面灰尘及污物, 制得的样 品; 常规冷却、 再进行热处理: 真空度为 10— 4Pa 10— 3Pa, 以 10°C/min升温至 800 900°C
保温 480min, 再以 2°C/min冷至 400°C、 保温 120min, 然后以 23°C/min冷却至室温, 后 处理得多孔钽成品。
发明人按 GB/T5163_2006 GB/T5249_1985 GB/T6886-2001等标准对上述多孔钽成品 的多孔材料密度、 孔隙率、 孔径及各种力学性能进行检测: 其杂质含量低于 0. 5%的成品, 其孔隙分布均匀且连通, 密度 7. 50g/cm3, 孔隙率 66%, 孔隙平均直径 167 μ πι, 弹性模量 5. 5GPa, 弯曲强度 136MPa, 抗压强度 82Mpa, 延伸率 11. 4%
实施例 4: 称取聚乙烯醇 12g, 放入装有 230ml蒸馏水的容器中; 将其放在电炉上加 温并搅拌使之成为聚乙烯醇水溶液。 用 200g天平称量平均粒径小于 43微米、 氧含量小于 0. 1%的钽粉 50g, 加入 40ml 聚乙烯醇水溶液, 搅拌混合均匀, 使之成为钽粉浆料。 选用 12 X 12 X 30mm多孔聚氨酯泡沫(孔径为 0. 60mm,密度 0. 027g/cm3,硬度 80。),在 23次 /min O. lMpa下震动加压法将所述钽粉浆料浇注入其中。 在真空干燥箱中干燥, 干燥温度 90°C 干燥时间 5小时, 真空度保持 lPa。 脱脂处理: 真空度 10— 4 10— 3Pa, 温度 500°C, 保温时 间 120分钟。 真空烧结: 真空度为 10— 3Pa, 以 10°C/min升温至 1500°C、 保温 120min、 随 炉冷至 200 300°C,再以 20°C/min升温至 1600°C、保温 180min,以 5°C/min升温至 2000 2200°C、 保温 120min, 烧结过程充氩气保护, 取出产品后去除表面灰尘及污物, 制得的样 品; 常规冷却、 再进行热处理: 真空度为 10— 4Pa 10— 3Pa, 以 20°C/min升温至 800 900°C 保温 240min, 再以 5°C/min冷至 400°C、 保温 300min, 然后以 18°C/min冷却至室温, 后 处理得多孔钽成品。
发明人按 GB/T5163_2006 GB/T5249_1985 GB/T6886-2001等标准对上述多孔钽成品 的多孔材料密度、 孔隙率、 孔径及各种力学性能进行检测: 其杂质含量低于 0. 5%的成品, 其孔隙分布均匀且连通, 密度 7. 0g/cm3, 孔隙率 58%, 孔隙平均直径 350 m, 弹性模量 5. 5GPa, 弯曲强度 124MPa, 抗压强度 84Mpa, 延伸率 10. 6%
实施例 5: —种多孔钽, 它以粒径小于 43 m、 氧含量小于 0. 1%的金属钽粉为原料, 以聚乙烯醇水溶液为粘结剂溶液制成钽粉浆料, 并震动加压注于聚氨酯泡沫载体中, 然后 在表面喷涂上述聚乙烯醇水溶液; 再进行真空干燥、 脱脂处理、 真空烧结、 真空退火及常 规后处理制得。
其中, 选用的聚氨酯泡沫, 其孔径为 0. 72 0. 56 密度 0. 025g/cm3, 硬度 50 80° 震动加压: 频率 33次 /min 0. 07Mpa;
真空干燥: 真空度保持 10— 2 lPa, 以除去注满钽粉浆料的聚氨酯泡沫中的水分; 脱脂处理: 在惰性气体保护气氛下或真空度 10— 4 10— 3Pa, 温度 400°C 800°C, 并保 温时间 30 120分钟以除去其中的聚乙烯醇及聚氨酯泡沫;
真空烧结:真空度为 10— 4Pa,以 15°C/min升温至 170CTC、保温 180min、随炉冷至 200
300 °C , 再以 16°C/min升温至 1750°C、 保温 220min, 以 8°C/min升温至 2000〜2200°C、 保温 120min;
热处理: 真空度为 10— 4Pa〜10— 3Pa, 以 13°C/min升温至 800〜900°C、 保温 300min, 再 以 2. 5°C/min冷至 400°C、 保温 180min, 然后以 22°C/min冷却至室温, 后处理得多孔钽 成品。
发明人按 GB/T5163_2006、 GB/T5249_1985、 GB/T6886-2001等标准对上述多孔钽成品 的多孔材料密度、 孔隙率、 孔径及各种力学性能进行检测: 其杂质含量低于 0. 5%的成品, 其孔隙分布均匀且连通, 密度 5. 0g/cm3, 孔隙率 63%, 孔隙平均直径 350 m, 弹性模量 5. 2GPa, 弯曲强度 135MPa, 抗压强度 82Mpa, 延伸率 11. 0%。
在上述实施例 5给出的方法中, 我们还可以对其中的各种条件作其他选择同样能得到 本发明所述的多孔钽。
实 震动频率 干燥真空 脱脂气氛 烧结气氛 (Pa)/温度 ( °C )/时间(min) 退火气氛 (Pa) 1 施 及压力 度 (Pa) 1 ( Pa ) /温 升温或降温速率 例 、 CO 度 (°C ) / ( °C/min) 温度
/时间 (小 时间(min) (°C ) /保温时间 时) (min)
70 次 1/65/6.5 以 rC/min 真空度为 104Pa〜10— 3Pa, 以 真 空 度 为
/min , 的速率从 17/min 升温至 1600 °C、 保温 10— 3Pa, 以 13°C
O.lMPa 室温升至 208min、 随炉冷至 200〜300°C, /min 升温至
400 °C, 保 再以 12°C/min升温至 1720°C、 800 °C、 保温 温 60min/ 保温 190min, 以 6°C/min升温至 270min, 再以 2
0.5 °C /min 2000〜2200°C、 保温 300min; °C /min 冷至 的速率从 真空度为 104Pa〜10— 3Pa;以 irC/min 400 °C、 保温
400 °C升至 的速率 至 1520 °C, 保温 60min; 150min, 再以
600 °C, 保 以 13°C/min的速率) f¾至 1200°C, 20°C/min 冷却 温 120min 保温 90min; 至室温
以 13°C/min的速率) f¾至 800°C,然
后随炉
80 次 1/75/5.5 1.5 °C /min 真空度为 104Pa〜10— 3Pa, 以 14 °C 真 空 度 为
/min , 的速率从 /min 升温至 1750 °C、 保温 10— 4Pa, 以 12°C
O.lMPa 室温升至 195min、 随炉冷至 200〜300°C, /min 升温至
400 °C, 保 再以 18°C/min升温至 1620°C、 870 °C、 保温 温 58min/ 保温 240min, 以 7. 5°C/min升温 250min, 再以 5
0.6 °C /min 至 2000〜2200°C、 保温 266min; °C /min 冷至 的速率从 真空度为 104Pa〜10— 3Pa;以 12°C/min 400 °C、 保温
400 °C升至 的速率 至 1530 °C, 保温 55min; 250min, 再以
650 °C, 保 以 14°C/min的速率) f¾至 1210°C, 20°C/min 冷却 温 llOmin 保温 85min; 至室温
以 14°C/min的速率) f¾至 800°C,然
后随炉
20 次 1/55/7 以 2°C/min 真空度为 104Pa〜10— 3Pa, 以 13°C 真 空 度 为
/min ; 的速率从 10— 4Pa, 以 20 °C
/min 升温至 1750 °C、 保温
室温升至 /min 升温至 0.08MPa 240min、 随炉冷至 200〜300°C,
400 °C, 保 900 °C、 保温 温 56min/ 再以 17°C/min升温至 1600°C、 290min, 再以
0.7 °C /min 保温 200min, 以 6°C/min升温至 2. 5 °C /min冷至
的速率从 2000〜2200°C、 保温 130min; 400 °C、 保温
400 °C升至 真空度为 104Pa〜10— 3Pa;以 13°C/min 230min , 再以
680 °C, 保 的速率 至 1540 °C, 保温 50min; 18°C/min 冷却 温 lOOmin 以 15°C/min的速率) f¾至 1220°C, 至室温
保温 80min;
以 15°C/min的速率) f¾至 800°C,然
后随炉
9 55 次 1/45/7.5 2.5 °C /min 真空度为 104Pa〜10— 3Pa, 以 19°C 真 空 度 为
/min ; 的速率从 10— 4Pa, 以 14°C
/min 升温至 1650 °C、 保温
室温升至 /min 升温至
O.lMPa 150min、 随炉冷至 200〜300°C,
400 °C, 保 860 °C 、 保温 温 55min/ 再以 13°C/min升温至 1600°C、 276min , 再以
0.8 °C /min 保温 190min, 以 9°C/min升温至 4. 5 °C /min冷至 的速率从 400 。C
2000〜2200°C、 保温 180min; 、 保温
400 °C升至 175min , 再以 真空度为 104Pa〜10— 3Pa;以 14°C/min
700 °C, 保
的速率 至 1550 °C, 保温 45min;
温 90min 至室温
以 16°C/min的速率) f¾至 1230°C,
保温 75min;
以 16°C/min的速率) f¾至 800°C,然
后随炉 c 貪 所得多孔钽成品按前述方法检 实施例 6 7 8 9 密度 (g/cm3 ) 6.2 7.5 5.3 6.5 孔隙率 (%) 56 70 62 67 孔径 (μηι) 150 287 370 460 弹性模量 ( GPa) 4.6 5.8 5.0 5.3 弯曲强度 (MPa) 133 147 155 121 抗压强度 (MPa) 80 83 90 86 延伸率 (%) 10.5 11.5 10.9 11.0
Claims
1、 一种医用多孔钽材料的制备方法, 其特征在于: 将聚乙醇水溶液与钽粉配成浆料, 采用震动加压将所述浆料注入有机泡沫体中, 再经干燥、 脱脂、 烧结、 冷却和热处理步骤 制得医用多孔钽材料; 所述聚乙烯醇水溶液的质量浓度为 2〜8%, 所述震动频率为 20〜80 次 /分钟; 所述烧结步骤是真空度为 10— 4Pa〜10— 3Pa, 以 10〜20°C/min升温至 1500〜1800 °C、 保温 120〜240min、 随炉冷至 200〜300°C, 再以 10〜20°C/min升温至 1500〜1800°C、 保温 180〜240min, 以 5〜10°C/min升温至 2000〜2200°C、 保温 120〜360min; 所述热处 理步骤是真空度为 10— 4Pa〜10— 3Pa,以 10〜20°C/min升温至 800〜900°C、保温 240〜480min, 再以 2〜5°C/min冷至 400°C、 保温 120〜300min, 然后随炉冷却至室温。
2、 如权利要求 1所述的制备方法, 其特征在于: 所述钽粉为平均粒径小于 43 μ πκ 氧 含量小于 0. 1%的金属钽粉, 所述有机泡沫体为孔径 0. 48〜0. 89mm, 密度 0. 015 g/cm3〜 0. 035g/cm3, 硬度大于 50°的聚氨酯泡沫。
3、 如权利要求 1或 2所述的制备方法, 其特征在于: 所述聚乙烯醇水溶液的质量百 分比浓度为 4〜5%, 金属钽粉与所述聚乙烯醇水溶液的重量份比为 6〜9: 1。
4、 如权利要求 3所述的制备方法, 其特征在于: 所述震动频率为 60次 /min、 压力为 0. IMpa; 所述聚氨酯泡沫为孔径 0. 56〜0. 72mm, 密度 0. 025g/cm3, 硬度 50。〜80。; 金属钽 粉与所述聚乙烯醇水溶液的重量份比为 7: 1。
5、 如权利要求 1或 2所述的制备方法, 其特征在于: 将上述钽粉浆料震动加压注入 有机泡沫体后, 还在表面均匀地喷涂所述的聚乙烯醇水溶液, 喷涂量与所述金属钽粉的重 量份比为 1 : 6。
6、 如权利要求 3 所述的制备方法, 其特征在于: 将上述钽粉浆料震动加压注入有机 泡沫体后, 还在表面均匀地喷涂所述的聚乙烯醇水溶液, 喷涂量与所述金属钽粉的重量份 比为 1: 6。
7、 如权利要求 4 所述的制备方法, 其特征在于: 将上述钽粉浆料震动加压注入有机 泡沫体后, 还在表面均匀地喷涂所述的聚乙烯醇水溶液, 喷涂量与所述金属钽粉的重量份 比为 1: 6。
8、如权利要求 1或 2所述的制备方法,其特征在于:所述干燥的真空度保持 10— 2〜lPa 真空度, 然后在保护气氛下, 例如真空度 10— 4〜10— 3Pa, 温度 400°C〜800°C条件下进行除 去聚乙烯醇和有机泡沫体的脱脂处理; 再进行烧结、 冷却和热处理步骤;
所述脱脂处理条件还包括有: 以 0. 5°C/min〜5°C/min的速率逐步升温至 400〜800°C, 以氩气通入构成保护气氛并保温 30min〜120min; 所述真空烧结为: 10— 4Pa〜10— 3Pa, 以 12〜15°C /min升温至 1500〜1800°C、保温 180〜 200min、 随炉冷至 200〜300°C, 再以 16〜19°C/min 升温至 1500〜1800°C、 保温 220〜 240min, 以 5〜8°C/min升温至 2000〜2200°C、 保温 250〜320min;
真空烧结后的冷却条件还包括有: 真空度不低于 10— 3Pa, 以不高于 25°C/min, 不低于 10°C/min渐降冷却速率方式,对烧结多孔体分段降温冷却至 800°C,各段保温时间 30min〜 90min, 然后随炉冷却至常温;
所述热处理步骤:真空度为 10— 4Pa〜10— 3Pa,以 15°C/min升温至 800〜900°C、保温 260〜 320min, 再以 3°C/min冷至 400°C、 保温 120min, 然后以 18〜23°C/min冷却至室温。
9、 如权利要求 1或 2所述的制备方法, 其特征在于: 所述真空干燥的真空度为 10— 2〜 lPa, 干燥温度 60〜100°C, 干燥时间 4〜8小时; 所述脱脂处理条件还包括有: 逐步升温 至 600〜800°C, 以纯净氩气 (99. 9999%) 通入构成保护气氛, 以 l〜5°C/min的速率从室 温升至 400°C, 保温 30〜60min, 以 0. 5〜1. 5°C/min的速率从 400°C升至 600〜800°C, 保 温 60〜120min;所述真空烧结为: 10— 4Pa〜10— 3Pa,以 13°C/min升温至 1800°C、保温 200min、 随炉冷至 200〜300°C, 再以 17°C/min升温至 1800°C、 保温 230min, 以 7°C/min升温至 2000〜2200°C、 保温 300min; 真空烧结后的冷却条件还包括有: 真空度为 10— 4Pa〜10— 3Pa; 以 10〜20°C/min的速率冷却至 1500〜1600°C, 保温 30〜60min; 以 12〜20°C/min的速率 冷却至 1200〜1250°C, 保温 60〜90min; 以 10〜20°C/min的速率冷却至 800°C, 然后随炉 冷却; 所述热处理步骤是真空度为 10— 4Pa〜10— 3Pa, 以 15°C/min升温至 800〜900°C、 保温 260〜320min, 再以 3°C /min冷至 400°C、保温 120min,然后以 18〜23 °C/min冷却至室温。
10、如权利要求 7所述的制备方法,其特征在于:所述真空干燥的真空度为 10— 2〜lPa, 干燥温度 60〜100°C,干燥时间 4〜8小时;所述脱脂处理条件还包括有:逐步升温至 600〜 800°C,以纯净氩气(99. 9999%)通入构成保护气氛,以 l〜5°C/min的速率从室温升至 400°C, 保温 30〜60min, 以 0. 5〜1. 5°C/min的速率从 400°C升至 600〜800°C, 保温 60〜120min; 所述真空烧结为: 10— 4Pa〜10— 3Pa,以 13°C/min升温至 1800°C、保温 200min、随炉冷至 200〜 300 °C , 再以 17°C/min升温至 1800°C、 保温 230min, 以 7°C/min升温至 2000〜2200°C、 保温 300min;真空烧结后的冷却条件还包括有:真空度为 10— 4Pa〜10— 3Pa; 以 10〜20°C/min 的速率冷却至 1500〜1600°C, 保温 30〜60min; 以 12〜20°C/min 的速率冷却至 1200〜 1250°C , 保温 60〜90min; 以 10〜20°C/min的速率冷却至 800°C, 然后随炉冷却; 所述热 处理步骤是真空度为 10— 4Pa〜10— 3Pa, 以 15°C/min升温至 800〜900°C、保温 260〜320min, 再以 3°C/min冷至 400°C、 保温 120min, 然后以 18〜23°C/min冷却至室温。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110296515.7 | 2011-09-29 | ||
CN2011102965157A CN102796894B (zh) | 2011-09-29 | 2011-09-29 | 一种医用多孔钽植入材料的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013044833A1 true WO2013044833A1 (zh) | 2013-04-04 |
Family
ID=47196186
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/082225 WO2013044833A1 (zh) | 2011-09-29 | 2012-09-27 | 一种医用多孔钽植入材料的制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102796894B (zh) |
WO (1) | WO2013044833A1 (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1936045A (zh) * | 2005-09-22 | 2007-03-28 | 中南大学 | 三维通孔或部分孔洞彼此相连多孔金属泡沫及其制备方法 |
WO2008078164A2 (en) * | 2006-12-21 | 2008-07-03 | Numat As | Metal oxide scaffolds |
EP2149414A1 (en) * | 2008-07-30 | 2010-02-03 | Nederlandse Centrale Organisatie Voor Toegepast Natuurwetenschappelijk Onderzoek TNO | Method of manufacturing a porous magnesium, or magnesium alloy, biomedical implant or medical appliance. |
CN101660076A (zh) * | 2009-10-14 | 2010-03-03 | 北京师范大学 | 有机泡沫浸浆烧结法制备宏观网状多孔钽 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002066693A1 (en) * | 2001-02-19 | 2002-08-29 | Isotis N.V. | Porous metals and metal coatings for implants |
CN100503862C (zh) * | 2007-09-30 | 2009-06-24 | 北京师范大学 | 一种新型多孔泡沫钨及其制备方法 |
CN101709419B (zh) * | 2009-12-18 | 2011-09-28 | 北京有色金属研究总院 | 一种泡沫钽及其制备方法 |
-
2011
- 2011-09-29 CN CN2011102965157A patent/CN102796894B/zh active Active
-
2012
- 2012-09-27 WO PCT/CN2012/082225 patent/WO2013044833A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1936045A (zh) * | 2005-09-22 | 2007-03-28 | 中南大学 | 三维通孔或部分孔洞彼此相连多孔金属泡沫及其制备方法 |
WO2008078164A2 (en) * | 2006-12-21 | 2008-07-03 | Numat As | Metal oxide scaffolds |
EP2149414A1 (en) * | 2008-07-30 | 2010-02-03 | Nederlandse Centrale Organisatie Voor Toegepast Natuurwetenschappelijk Onderzoek TNO | Method of manufacturing a porous magnesium, or magnesium alloy, biomedical implant or medical appliance. |
CN101660076A (zh) * | 2009-10-14 | 2010-03-03 | 北京师范大学 | 有机泡沫浸浆烧结法制备宏观网状多孔钽 |
Non-Patent Citations (1)
Title |
---|
JIE, YUNFENG ET AL.: "Fabrication of Porous Niobium-Based Biological Materials via Impregnation and Their Properties", RARE METAL MATERIALS AND ENGINEERING, vol. 39, no. 11, November 2010 (2010-11-01), pages 2015 - 2017, XP008173887 * |
Also Published As
Publication number | Publication date |
---|---|
CN102796894B (zh) | 2013-12-11 |
CN102796894A (zh) | 2012-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013044857A1 (zh) | 一种适用于替代人体牙骨组织的多孔钽的制备方法 | |
WO2013044832A1 (zh) | 一种制备医用多孔钽植入材料的方法 | |
WO2013044773A1 (zh) | 一种牙骨替代医用多孔金属材料的制备方法 | |
WO2013044852A1 (zh) | 一种医用多孔金属植入材料的制备方法 | |
WO2013044780A1 (zh) | 一种替代承重骨组织的医用多孔金属材料及其制备方法 | |
WO2013044860A1 (zh) | 一种医用多孔金属植入材料的制备方法 | |
WO2013044767A1 (zh) | 一种替代牙骨的医用多孔钽材料及其制备方法 | |
CN103740962B (zh) | 牙骨替代医用多孔金属材料的制备方法 | |
WO2013044858A1 (zh) | 一种医用多孔金属植入材料的制备方法 | |
WO2013044778A1 (zh) | 一种医用多孔金属材料及其制备方法 | |
WO2013044815A1 (zh) | 一种医用多孔钽材料的制备方法 | |
CN103740967B (zh) | 制备医用多孔钽植入材料的方法 | |
WO2013044779A1 (zh) | 一种医用多孔金属材料的制备方法 | |
WO2013044833A1 (zh) | 一种医用多孔钽植入材料的制备方法 | |
WO2013044835A1 (zh) | 一种多孔钽医用植入材料的制备方法 | |
WO2013044834A1 (zh) | 一种制备医用多孔钽植入材料的方法 | |
WO2013044839A1 (zh) | 一种医用植入材料多孔钽的制备方法 | |
WO2013044781A1 (zh) | 一种替代承重骨组织的医用多孔金属材料的制备方法 | |
WO2013044831A1 (zh) | 替代人体承重骨组织的医用多孔钽材料的制备方法 | |
WO2013044809A1 (zh) | 一种制备替代承重骨组织的医用多孔金属材料的方法 | |
CN103740960B (zh) | 医用多孔钽植入材料的制备方法 | |
WO2013044777A1 (zh) | 一种替代牙骨的医用多孔金属材料及其制备方法 | |
WO2013044813A1 (zh) | 一种替代承重骨组织的医用多孔金属材料的制备方法 | |
CN103736147A (zh) | 替代承重骨组织的医用多孔金属材料及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12834626 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12834626 Country of ref document: EP Kind code of ref document: A1 |