WO2013044813A1 - 一种替代承重骨组织的医用多孔金属材料的制备方法 - Google Patents

一种替代承重骨组织的医用多孔金属材料的制备方法 Download PDF

Info

Publication number
WO2013044813A1
WO2013044813A1 PCT/CN2012/082094 CN2012082094W WO2013044813A1 WO 2013044813 A1 WO2013044813 A1 WO 2013044813A1 CN 2012082094 W CN2012082094 W CN 2012082094W WO 2013044813 A1 WO2013044813 A1 WO 2013044813A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
cool
vacuum
preparation
keep warm
Prior art date
Application number
PCT/CN2012/082094
Other languages
English (en)
French (fr)
Inventor
节云峰
叶雷
Original Assignee
重庆润泽医药有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆润泽医药有限公司 filed Critical 重庆润泽医药有限公司
Publication of WO2013044813A1 publication Critical patent/WO2013044813A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/047Other specific metals or alloys not covered by A61L27/042 - A61L27/045 or A61L27/06
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1121Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
    • B22F3/1125Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers involving a foaming process
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/02Alloys based on vanadium, niobium, or tantalum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the invention relates to a preparation method of a porous medical metal implant material, in particular to a preparation method of a medical porous metal implant material for replacing bone tissue of a load-bearing part.
  • Porous medical metal implant materials have important and special applications for treating bone tissue trauma and femoral tissue necrosis. Common materials such as porous metal stainless steel and porous metal titanium are common materials. As a porous implant material for the treatment of bone tissue trauma and femoral tissue necrosis, the porosity should be 30 ⁇ 80%, and the pores are preferably all connected and evenly distributed, or as needed to conform to the bone tissue growth of the human body. , and reduce the weight of the material itself, suitable for human implant use.
  • the refractory metal ⁇ / ⁇ due to its excellent biocompatibility, its porous material is expected to replace the traditional medical metal biomaterials mentioned above. Because metal ruthenium/ruthenium is harmless to the human body, non-toxic, no side effects, and with the rapid development of medicine at home and abroad, the understanding of ⁇ / ⁇ as a human implant material is further deepened. The demand for ⁇ / ⁇ materials is becoming more and more urgent, and the requirements for them are getting higher and higher. Among them, as a porous medical implant metal ⁇ / ⁇ , if it can have a high uniform distribution of connected pores and physical and mechanical properties compatible with the human body, it is expected to be a new type of bone tissue replacement material.
  • porous metal material for medical implantation it is basically a powder sintering method as a general porous metal material, in particular, a metal in a powder sintering method for obtaining a porous metal foam structure with pore communication and uniform distribution. Drying of the powder slurry on the organic foam after drying and sintering is referred to as foam impregnation.
  • the porous metal material obtained by powder sintering generally has a very good metal mechanical property, and the main reason is how to arrange the support and elimination relationship of the pore-forming medium and the collapse problem in the sintering process of the metal powder.
  • porous ruthenium/ruthenium by metal powder sintering, and in particular, the porous ruthenium/iridium powder sintering method for the purpose of obtaining medical implant materials has been reported in the literature.
  • the porous metal obtained is either used as a filter material, or used for aerospace and other high temperature applications rather than as a medical metal implant material, and the porous metal processed is also non-porous.
  • porous tantalum US5282861 discloses an open-celled tantalum material for use in cancellous bone implants, cells and tissue receptors and its preparation.
  • the porous crucible is made of pure commercial crucible.
  • the carbon skeleton obtained by thermal degradation of the polyurethane precursor is a scaffold.
  • the carbon skeleton has multiple dodecahedrons, and the inside is a grid-like structure.
  • Hole, high porosity Up to 98%, the commercial pure ruthenium is bonded to the carbon skeleton by chemical vapor deposition and permeation to form a porous metal microstructure, which is simply referred to as a chemical deposition method.
  • the porous tantalum material obtained by this method has a tantalum layer thickness of 40 to 60 m; in the whole porous material, the helium weight accounts for about 99%, and the carbon skeleton weight accounts for about 1%.
  • 5GPa tensile strength 63MPa.
  • the tensile strength of the porous material is 50 ⁇ 70MPa, the elastic modulus is 2. 5 ⁇ 3.
  • 5GPa the tensile strength is 63MPa.
  • the mechanical properties of the material such as a porous crucible for replacing medical implant materials such as skull and bone, the mechanical properties of the material, such as ductility, have obvious deficiencies, which will affect the subsequent processing of the porous tantalum material itself, such as molded parts. Cutting, etc.
  • An object of the present invention is to provide a method for preparing a medical porous metal implant material which is excellent in toughness and is suitable for replacing bone tissue of a load bearing portion.
  • the invention relates to a method for preparing a medical porous metal material for replacing weight-bearing bone tissue, which is characterized in that: the porous metal material is prepared by mixing the tantalum powder with a pore-forming agent and a molding agent, and then press-forming, degreasing, sintering, cooling and heat-treating;
  • the press molding is to press the mixed powder into the organic foam at a pressure of 50 to 100 MPa, and the degreasing process is gradually heated to a temperature of 400 to 800 ° at a rate of 0.3 ° C / min to 2 ° C / min. C, argon gas to form a protective atmosphere and keep 300mir!
  • the pore former is ammonium hydrogencarbonate or hydrogen peroxide
  • the molding agent is one or more of stearic acid, zinc stearate, paraffin, synthetic resin (preferably styrene butadiene rubber or isoprene rubber)
  • the sintering step is a vacuum degree of 10 - 4 Pa to 10 - 3 Pa, and the temperature is raised to 1500 to 1800 ° C at 10 to 20 ° C / min, the temperature is maintained for 120 to 240 minutes, and the furnace is cooled to 200 to 300 ° C.
  • the temperature is raised to 1500 ⁇ 1800 ° C at 10 ⁇ 20 ° C / min, the temperature is maintained for 180 ⁇ 240 min, the temperature is raised to 2000 ⁇ 2200 ° C at 5 ⁇ 10 ° C / min, and the temperature is maintained for 120 ⁇ 360 min; the heat treatment step is vacuum degree of 10- 4 Pa ⁇ 10- 3 Pa, to 10 ⁇ 20 ° C / min was heated to 800 ⁇ 900 ° C, insulation 240 ⁇ 480min, then cooled to 400 ° C at 2 ⁇ 5 ° C / min, holding 120 ⁇ 300min, then cool to room temperature with the furnace.
  • medical porous metal materials as materials for replacing weight-bearing bone tissue require a large porosity, so that human tissue can easily grow in, and biocompatibility is sufficient to fully exert its function, but
  • There are many preparation routes for medical porous tantalum but the inventors have creatively proposed to use the above steps and processes to prepare medical porous tantalum implant materials, which effectively prevent the use of the soaking method, which is easy to block, and the dipping process is difficult to control and obtain.
  • the porous crucible of the present invention is very suitable for replacing medical implant materials for bearing bone tissue.
  • the raw material tantalum powder used in the present invention has an average particle diameter of less than 43 ⁇ m and an oxygen content of less than 0.1%, which is a commercially available product; the above pore-forming agent and molding agent are also commercially available products.
  • the vacuum environment of the present invention preferably employs a vacuum condition of a vacuum of 10 - 4 Pa to 10 - 3 Pa. ⁇ 0. 56 ⁇ 0 ⁇
  • the above-mentioned organic foam is preferably a polyurethane foam, further preferably having a pore diameter of 0. 48 ⁇ 0. 89mm, a density of 0. 015 g / cm 3 ⁇ 0. 035g / cm 3 , a hardness of more than 50 ° (most preferably a pore size of 0. 56 ⁇ 0 . 72mm, density 0. 025g / cm 3 , hardness 50 ° ⁇ 80 °) in polyurethane foam.
  • the inventors further studied and found that if the above-mentioned preparation is not well controlled, the medical implant material suitable for replacing the weight-bearing bone tissue as described above can be obtained, but the product quality stability is not satisfactory, and the qualification rate is not high: For example, it is difficult to form a powder, and it is prone to delamination and unevenness after pressing, and some problems such as cracks may occur after degreasing.
  • the amount of the above-mentioned pore-forming agent is 15 to 25%
  • the amount of the molding agent is 7 to 12%
  • the balance is
  • the tantalum powder in terms of volume percent (by volume percent, the unit directly calculated by the final porous tantalum material, in the weighing of the above pore former, molding agent, solid powder or according to the corresponding substance The density is calculated by the corresponding mass weighing, of course, if it is a liquid substance, it is directly weighed by volume), and further preferably, the pore forming agent is 18% of hydrogen peroxide, the molding agent is 11% of zinc stearate, and the balance is Yttrium powder, in terms of volume percent; the pressure during the above press molding process is preferably 75 to 87 MPa.
  • the above degreasing process is 0. 3 ° C / mir!
  • the rate of ⁇ rC / min is gradually increased to 400 ⁇ 800 ° C, argon gas is introduced into a protective atmosphere and held for 330min ⁇ 350min; further preferably gradually heated to 400 ⁇ 800 ° C at a rate of 0.8 ° C / min, The argon gas was introduced to form a protective atmosphere and held for 340 minutes.
  • the strength of the prepared medical porous tantalum material is higher, and the above sintering step preferably has a vacuum degree of 10 - 4 Pa to 10 - 3 Pa, and is heated at 12 to 15 ° C / min.
  • the above heat treatment step is a vacuum degree of 10 - 4 Pa ⁇ 10- 3 Pa, at 15 ° C / min was heated to 800 ⁇ 900 ° C, insulation 260 ⁇ 320min, then at 3 ° C / min and cooled to 400 ° C, insulation 120min, then to 18 ° C / min ⁇ 23 ° C/min was cooled to room temperature.
  • the cooling conditions after the above vacuum sintering further include: the degree of vacuum is not lower than 10 - 3 P a , and is not higher than 25 ° C / min, not lower than the lCTC / min decreasing cooling rate mode, segmenting the sintered porous body Cool down to 800 ° C, each holding time is 30 min ⁇ 90 min, and then cooled to room temperature with the furnace.
  • the cooling condition after the vacuum sintering is: a vacuum degree of 10 - 4 Pa ⁇ 10 - 3 P a; cooled at a rate of 10 to 20 ° C / m in to 1500 ⁇ 1600 ° C, holding 30 ⁇ 60min; Cool to 1200 to 1250 ° C at a rate of 12 to 20 ° C / min, keep warm for 60 to 90 min; cool to 800 ° C at a rate of 10 to 20 ° C / min, and then cool with the furnace.
  • metal ruthenium and osmium are very similar, and the above methods are also suitable for the preparation of medical porous ruthenium materials.
  • the porous crucible preparation method of the invention adopts a pure physical molding method, so that the content of impurities in the final porous tantalum material is extremely low, and the biocompatibility and biosafety are effectively improved; the steps of press molding, degreasing, sintering and annealing of the present invention are carried out. Optimization of process conditions, high yield, better uniformity of finished pore size, more stable preparation process, good quality stability, effectively eliminating thermal stress, making the structure of porous tantalum material more uniform, and further improving the mechanics of porous tantalum 5% ⁇ Performance, such as strength and toughness are also improved, the preparation process of the present invention, the yield of the finished product is high, the production is stable, the product qualification rate can be as high as 95.5%.
  • the porosity of the porous ruthenium obtained by the present invention is uniform and continuous, and the biocompatibility is good.
  • the impurity content may be less than 0.2%, the density may be 5.83 ⁇ 7. 50g/cm 3 , the porosity may be 5 ⁇ 6. 0Gpa, elongation rate of 10. 5 ⁇ 11. 7%, bending strength up to 125 ⁇ 150Mpa, compression resistance up to 55 ⁇ 65%, elastic modulus up to 4. 5 ⁇ 6.
  • the strength can reach 72 ⁇ 90Mpa, which effectively solves the contradiction that the medical porous tantalum material as a substitute bearing part requires both a large porosity and a good mechanical property.
  • the porous tantalum of the present invention is very suitable for use as a medical alternative to load-bearing bone tissue. Implant material.
  • Example 1 Weighing zinc stearate, an average particle size of less than 43 ⁇ m, an oxygen content of less than 0.1%, and a mixture of bismuth powder and hydrogen peroxide, wherein zinc stearate accounts for 11%, hydrogen peroxide accounts for 18%, and strontium powder accounts for 71%. %, all in volume percent. Pressing and forming: The above mixed powder is added to an injection molding machine and pressed at a pressure of 87 MPa to a polyurethane foam (pore diameter 0. 48 ⁇ 0. 89 mm, density 0. 015 g/cm 3 to 0. 035 g/cm 3 , hardness greater than 50 .) Forming.
  • a polyurethane foam pore diameter 0. 48 ⁇ 0. 89 mm, density 0. 015 g/cm 3 to 0. 035 g/cm 3 , hardness greater than 50 .
  • Degreasing treatment The vacuum degree is 10 - 3 Pa, the temperature is raised from room temperature to 400 ° C at a heating rate of 1.4 ° C / min, and the temperature is maintained for 311 min; and the temperature is raised from 400 ° C at a heating rate of 0.4 ° C / min to 750 ° C, holding time 350 minutes.
  • Vacuum sintering The vacuum degree is 10 - 3 Pa, the temperature is raised to 1800 ° C at 13 ° C / min, the temperature is kept for 200 min, the furnace is cooled to 200 ⁇ 300 ° C, and then heated to 1800 ° C at 17 ° C / min, heat preservation At 230 min, the temperature was raised to 2000 2200 ° C at 7 ° C / min, and the temperature was kept for 300 min.
  • Cooling treatment after vacuum sintering The vacuum is 10 - 4 Pa, cooled to 1500 1600 ° C at a rate of 10 20 ° C / min, held for 30 60 min, cooled to 1200 1250 ° C at a rate of 12 20 ° C / min , keep warm for 60 90min, cool to 800 °C at a rate of 10 20 ° C / min, and then cool with the furnace.
  • Heat treatment The degree of vacuum is 10 - 4 Pa 10 - 3 Pa, the temperature is raised to 800 900 °C at 15 °C / min, the temperature is 260 320 min, and then cooled to 400 ° C at 3 ° C / min, held for 120 min, and then 18 °C/min 23 ° C / min After cooling to room temperature, a medical porous tantalum implant material was prepared conventionally.
  • the impurity content is less than 0.2%
  • the impurity content of the porous material is less than 0.2%
  • the impurity content is less than 0.2%
  • the pore distribution is uniform, the density is 6.55g/cm 3 , the porosity is 60%, the average pore diameter is 350 m, the elastic modulus is 6. 0Gpa, the elongation is 11.02%, the bending strength is 145MPa, and the compressive strength is 83Pa.
  • Example 2 Weighing stearic acid and paraffin, the average particle size of less than 43 microns, the oxygen content is less than 0.1%, and the mixed powder and hydrogen peroxide are evenly mixed, wherein stearic acid accounts for 9%, paraffin accounts for 3%, and hydrogen peroxide accounts for 25%. ⁇ powder accounts for 63%, both in volume percent.
  • Press molding The above mixed powder is added to an injection molding machine and pressed at 75 MPa to a polyurethane foam (pore size 0. 48 0. 89 density 0. 015 g/cm 3 0. 035 g/cm 3 , hardness greater than 50°) forming.
  • Degreasing treatment The degree of vacuum was 10 - 4 Pa, and the temperature was raised from room temperature to 600 ° C at a heating rate of 0.3 ° C / min, and the temperature was maintained for 360 minutes.
  • Vacuum sintering The vacuum degree is 10 - 4 Pa, the temperature is raised to 1500 ° C at 10 ° C / min, the temperature is kept for 240 min, the furnace is cooled to 200 300 ° C, and then heated to 1500 ° C at 20 ° C / min, and the temperature is maintained for 180 min. , The temperature was raised to 2000 2200 ° C at 10 ° C / min, and the temperature was kept for 120 min.
  • Heat treatment The degree of vacuum is 10 - 3 Pa, the temperature is raised to 800 900 ° C at 20 ° C / min, the temperature is kept for 240 min, then cooled to 400 ° C at 5 ° C / min, held for 300 min, cooled to room temperature with the furnace, and often A medical porous tantalum implant material is regulated.
  • the impurity content is less than 0.2%
  • the impurity content of the porous material is less than 0.2%
  • the impurity content is less than 0.2%
  • the pore distribution is uniform, the density is 6.67g/cm 3 , the porosity is 55%, the average pore diameter is 300 m, the elastic modulus is 4. 5Gpa, the elongation is 10.7%, the bending strength is 143MPa, and the compressive strength is 74MPa.
  • Example 3 Weighing isoprene rubber, the average particle size is less than 43 ⁇ m, and the oxygen content is less than 0.1%.
  • the niobium powder and the ammonium bicarbonate are uniformly mixed, wherein the isoprene rubber accounts for 7%, the ammonium bicarbonate accounts for 15%, and the niobium powder 78%, both in volume percent.
  • Press molding The above mixed powder was placed in an injection molding machine and pressed at 96 MPa to a polyurethane foam (pore size 0. 48 0. 89 mm, density 0. 015 g/cm 3 0. 035 g/cm 3 , hardness greater than 50.) Forming in the middle.
  • Degreasing treatment Vacuum degree 10 - 4 Pa The temperature was raised from room temperature to 400 ° C at a heating rate of 2 ° C / min, and the temperature was maintained for 300 min.
  • Vacuum sintering The vacuum degree is 10 - 3 Pa. The temperature is raised to 1700 ° C at 20 ° C / min, the temperature is kept for 120 min, the furnace is cooled to 200 300 ° C, and then heated to 1670 ° C at 10 ° C / min, and the temperature is maintained for 240 min. The temperature was raised to 2000 2200 ° C at 5 ° C / min, held for 360 min, and cooled.
  • the degree of vacuum is 10 - 4 Pa
  • the temperature is raised to 800 900 ° C at 10 ° C / min
  • the temperature is 480 min
  • 0% the impurity content is less than 0.2%
  • the impurity content of the porous material is less than 0.2%
  • the impurity content is less than 0.2%
  • the pore distribution is uniform, the density is 6.13g/cm 3 , the porosity is 65%, the average pore diameter is 456 ⁇ m
  • the elastic modulus is 5. 2Gpa
  • the elongation is 11.
  • the bending strength is 126MPa
  • the compressive strength is 88MPa.
  • Example 4 Weighing stearic acid, the average particle size of less than 43 microns, the oxygen content of less than 0.1% of the tantalum powder and hydrogen peroxide mixed uniformly, wherein stearic acid accounted for 8%, hydrogen peroxide accounted for 21%, and tantalum powder accounted for 71%. All are based on volume percent. Pressing and forming: The above mixed powder is added to an injection molding machine and pressed to a polyurethane foam at 76 MPa (pore diameter 0. 48 ⁇ 0. 89 mm, density 0. 015 g/cm 3 to 0. 035 g/cm 3 , hardness greater than 50 .) Forming.
  • Degreasing treatment The degree of vacuum was 10 - 4 Pa, and the temperature was raised from room temperature to 400 ° C at a heating rate of 0.8 ° C / min, and the temperature was maintained for 340 min.
  • Vacuum sintering The degree of vacuum is 10 - 4 Pa, the temperature is raised to 1650 ° C at 12 ° C / min, the temperature is kept for 180 min, cooled to 200 ⁇ 300 ° C with the furnace, and then heated to 1700 ° C at 16 ° C / min, heat preservation At 220 min, the temperature was raised to 2000 to 2200 ° C at 8 ° C / min, and the temperature was kept for 320 min, and the treatment was cooled.
  • Heat treatment The degree of vacuum is 10 - 4 Pa, the temperature is raised to 800 ⁇ 900 ° C at 13 ° C / min, the temperature is 275 min, then cooled to 400 ° C at 4 ° C / min, held for 220 min, cooled to room temperature with the furnace, and then Medical porous tantalum implant materials are conventionally prepared.
  • the impurity content is less than 0.2%
  • the impurity content of the porous material is less than 0.2%
  • the impurity content is less than 0.2%
  • the pores have a uniform distribution, a density of 3.51 g/cm 3 , a porosity of 59%, an average pore diameter of 344 ⁇ ⁇ , an elastic modulus of 2. 8 Gpa, an elongation of 10.8%, a bending strength of 100 MPa, and a compressive strength of 65 MPa.
  • Example 5 a porous crucible, which has a particle size of less than 43 m, an oxygen content of less than 0.1%, a mixture of paraffin wax and ammonium hydrogencarbonate as a raw material, followed by compression molding, degreasing treatment, vacuum sintering, vacuum Annealed and conventional post-treatment.
  • the mixed powder is placed in a non-oxidizing atmosphere furnace at a certain heating rate to a temperature of 800 ° C, and the protective atmosphere is 99.999% argon gas for degreasing treatment, which is first introduced into pure argon gas for at least 30 minutes before the temperature rise. 5°C/min ; 0. 5°C/min ; 5°C/min ; 0. 5°C/min The rate is increased from 400 ° C to 800 ° C, holding for 350 min, argon gas flow rate lL / min; then turn off the power, the degreased sample is cooled with the furnace, argon gas flow rate lL / min, until cooling to room temperature Turn off argon;
  • the degreased sample is vacuum sintered at a certain heating rate with the tungsten device placed in a high-vacuum high-temperature sintering furnace.
  • the vacuum degree of the sintering furnace before the temperature rise is at least 10 - 4 Pa, at 12 to 15 ° C /
  • the rate of min is raised from room temperature to 1500 ° C, kept for 200 min, cooled to 200 ⁇ 300 ° C with furnace, vacuum degree is 10 - 4 Pa; then increased to 1500 ° C at 17 ° C / min, heat preservation for 180 min , the degree of vacuum is 10 - 4 Pa ⁇ 10 - 3 Pa; at a rate of 8 ° C / min rose to 2200 ° C, Insulation for 320 min, vacuum degree is 10 - 3 Pa; After sintering, the degree of vacuum is 10 - 3 Pa, cooled to 1600 ° C at a rate of 10 to 15 ° C / min, kept for 30 min; cooled at a rate of 12 ° C / min He
  • the sample after vacuum sintering is cooled in a vacuum annealing furnace with a corundum container at a certain heating rate to 125 CTC for stress relief annealing.
  • the vacuum in the annealing furnace should be at least 10 -4 Pa to 15 ° before the temperature rise.
  • the rate of C/min is raised from room temperature to 880 ° C, 340 min, vacuum is 10 - 4 Pa ⁇ 10 - 3 Pa; then cooled to 400 ° C at a rate of 3 ° C / min, held for 180 min, vacuum It is 10 - 4 Pa to 10 - 3 Pa; it is cooled to room temperature at a rate of 22 ° C / min.
  • a conventional post-treatment is carried out to obtain a porous crucible.
  • the impurity content is less than 0.2%
  • the impurity content of the porous material is less than 0.2%
  • the impurity content is less than 0.2%
  • the pore distribution is uniform, the density is 6. 2 g / cm 3 , the porosity is 64%, the average pore diameter is 350 ⁇ ⁇ , the elastic modulus is 4. 8 Gpa, the elongation is 11.32%, the bending strength is 138 MPa, and the compressive strength is 85 MPa.
  • the preparation process has a high yield of finished products and stable production, and the product qualification rate is about 94.6%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Materials For Medical Uses (AREA)

Abstract

一种替代承重骨组织的医用多孔金属材料的制备方法,钽粉与碳酸氢铵或双氧水、成型剂(硬脂酸、硬脂酸锌、石蜡、合成树脂中的一种或多种)混合,再经压制成型、脱脂、烧结、冷却和热处理;压制成型是将混合物压制到有机泡沫体中,其压力为 50~100Mpa,脱脂是以 0.3℃/min~2℃/min 的速率逐步升温至 400~800℃,氩气为保护气氛并保温 300min~360min;烧结是真空度 10-4Pa~10-3Pa,以 10~20℃/min 升温至 1500~1800℃、保温 120~240min、随炉冷至 200~300℃,再以 10~20℃/min 升温至 1500~1800℃、保温 180~240min,以 5~10℃/min 升温至 2000~2200℃、保温 120~360min。有效解决了作为替代承重部位的医用多孔钽材料既要求其孔隙率较大、又要求力学性能好的矛盾,非常适合用于作为替代承重骨组织的医用植入材料。

Description

一种替代承重骨组织的医用多孔金属材料的制备方法 技术领域
本发明涉及一种多孔医用金属植入材料的制备方法, 特别是涉及一种替代承重部位骨 组织的医用多孔金属植入材料的制备方法。
背景技术
多孔医用金属植入材料具有治疗骨组织创伤、 股骨组织坏死等重要而特殊的用途, 现 常见的这类材料有多孔金属不锈钢、 多孔金属钛等。 作为骨组织创伤和股骨组织坏死治疗 使用的多孔植入材料, 其孔隙度应达 30〜80%, 而且孔隙最好全部连通与均匀分布, 或根 据需要使之既与人体的骨组织生长相一致, 又减轻了材料本身的重量, 以适合人体植入使 用。
而难熔金属钽 /铌, 由于它具有优秀的生物相容性, 其多孔材料有望作为替代前述等 传统医用金属生物材料。 由于金属钽 /铌对人体的无害、 无毒、 无副作用, 以及随着国内 外医学的飞速发展, 对钽 /铌作为人体植入材料认知的进一步深入, 人们对人体植入用多 孔金属钽 /铌材料的需求变得越来越迫切, 对其要求也越来越高。 其中作为多孔医用植入 金属钽 /铌, 如果能具有很高的均匀分布连通孔隙以及与人体相适应的物理机械性能, 则 其有望作为一种新型的骨组织替代材料。
作为医用植入的多孔金属材料就像一般的多孔金属材料那样基本上是以粉末烧结法 为主要的加工方法, 特别是为获取孔隙连通与均匀分布的多孔金属泡沫结构采用粉末烧结 法中的金属粉末浆料在有机泡沫体上的浸渍后干燥再烧结简称泡沫浸渍法居多。 关于粉末 烧结所获得的多孔金属材料通常其金属力学性能并不是很好, 其主要原因是工艺上如何安 排成孔介质的支撑与消除关系、 金属粉末烧结过程中的塌陷问题。 而已知的文献报道中均 没有很好的解决方法而放任自然。
采用金属粉末烧结法制造多孔钽 /铌的文献报道很少, 特别是以获得医用植入材料用 为目的的多孔钽 /铌粉末烧结法文献报道几乎没有。 可以参考的是公开号为 CN200510032174, 名称 "三维通孔或部分孔洞彼此相连多孔金属泡沫及其制备方法" 以及 CN200710152394, 名称 "一种新型多孔泡沫钨及其制备方法" 。 然而其所获得的多孔金属 或是为过滤材料用, 或是为航空航天及其它高温场合用而非作为医用金属植入材料使用, 再者所加工的多孔金属也非多孔钽 /铌。
关于多孔钽, US5282861 公开了一种应用于松质骨植入体、 细胞和组织感受器的开孔 钽材料及其制备。 这种多孔钽由纯商业钽制成, 它以聚亚氨酯前体进行热降解得到的碳骨 架为支架, 该碳骨架呈多重的十二面体, 其内为网格样结构, 整体遍布微孔, 孔隙率可高 达 98%, 再将商业纯钽通过化学蒸气沉积、 渗透的方法结合到碳骨架上以形成多孔金属微 结构, 简称为化学沉积法。 这种方法所获得的多孔钽材料其表面的钽层厚度在 40〜60 m 之间; 在整个多孔材料中, 钽重约占 99%, 而碳骨架重量则占 1%左右。 文献进一步记载, 该多孔材料的抗压强度 50〜70MPa, 弹性模量 2. 5〜3. 5GPa, 抗拉强度 63MPa。 但是将它作 为替代承重骨组织如颅骨等医用植入材料的多孔钽, 其材料的力学性能如延展性有明显不 足之处, 会影响到后续的对多孔钽材料本身的加工, 例如成型件的切割等。 同样在前述的 金属粉末烧结法所获得的产品也均存在这样的不足。 再由于其制备方法的局限, 获得的成 品纯度不够, 有碳骨架残留物, 导致生物安全性降低。
发明内容
本发明的目的在于提供一种强韧性优异、 适用于替代承重部位骨组织的医用多孔金属 植入材料的制备方法。
本发明的目的是通过如下技术手段实现的:
一种替代承重骨组织的医用多孔金属材料的制备方法,其特征在于: 由钽粉与造孔剂、 成型剂混合, 再经压制成型、 脱脂、 烧结、 冷却和热处理制得该多孔金属材料; 所述压制 成型是将混合粉末压制到有机泡沫体中, 其压力为 50〜100Mpa, 所述脱脂过程是以 0. 3°C/min〜2°C/min 的速率逐步升温至 400〜800°C, 以氩气通入构成保护气氛并保温 300mir!〜 360min; 所述造孔剂为碳酸氢铵或双氧水, 所述成型剂为硬脂酸、 硬脂酸锌、 石 蜡、 合成树脂 (优选为丁苯橡胶或异戊橡胶) 中的一种或多种; 所述烧结步骤是真空度 为 10— 4Pa〜10— 3Pa, 以 10〜20°C/min升温至 1500〜1800°C、 保温 120〜240min、 随炉冷至 200〜300°C,再以 10〜20°C/min升温至 1500〜1800°C、保温 180〜240min,以 5〜10°C/min 升温至 2000〜2200°C、 保温 120〜360min; 所述热处理步骤是真空度为 10— 4Pa〜10— 3Pa, 以 10〜20°C/min升温至 800〜900°C、 保温 240〜480min, 再以 2〜5°C/min冷至 400°C、 保 温 120〜300min, 然后随炉冷却至室温。
在医用多孔金属材料的研发过程中, 医用多孔金属材料作为替代承重骨组织的材料, 要求其孔隙率较大、 这样人体组织才易长入、 生物相容性好从而充分地发挥其作用, 但孔 隙率越大、 孔径越大, 力学性能如强度、 韧性就得不到保证; 反之, 力学性能好了又易使 孔隙率过小、 生物相容性不好、 密度也过大引起不舒适感; 医用多孔钽的制备路线众多, 但发明人创造性地提出了采用上述步骤、 工艺制备医用多孔钽植入材料, 有效防止了采用 浸浆法易出现的堵孔、 浸浆过程难控制、 制得的产品质量不均匀等问题; 特别是采用的上 述热处理工艺, 发明人在长期研究过程中发现该热处理工艺充分地消除了内应力、 使多孔 钽材料的组织更均匀、 大大提高了所制得的多孔钽材料的韧性; 上述烧结处理工艺, 使得 胚体成为了发热体, 从而烧结得更均匀、 透彻; 其制得的多孔钽材料经过测试其杂质含量 可低于 0. 2%、其生物相容性与生物安全性好,密度可达 5. 83〜7. 50g/cm3,孔隙度可达 55〜 65%, 孔隙直径可达 300〜500 μ m; 弹性模量可达 4. 5〜6. 0Gpa、 延伸率达 10. 5〜11. 7%、 弯曲强度可达 125〜150Mpa、 抗压强度可达 72〜90Mpa, 其生物相容性、 强韧性均优异, 接近人体承重骨组织, 本发明多孔钽非常适合用于替代承重骨组织的医用植入材料。
本发明采用的原料钽粉的平均粒径小于 43微米、 氧含量小于 0. 1%, 为市售产品; 上 述造孔剂、 成型剂也均为市售产品。 本发明真空环境优选采用真空度为 10— 4Pa〜10— 3Pa 的 真空条件。上述有机泡沫体优选聚氨酯泡沫,进一步优选为孔径 0. 48〜0. 89mm,密度 0. 015 g/cm3〜0. 035g/cm3, 硬度大于 50° (最优选孔径为 0. 56〜0. 72mm, 密度 0. 025g/cm3, 硬度 50°〜80°) 的聚氨酯泡沫中。
在研发过程中发明人进一步研究发现, 若上述制备中控制不好, 虽可制得如上所述适 合用于替代承重骨组织的医用植入材料但产品质量稳定性不理想、 合格率不高: 如粉末压 制成型难、 在压制后部分易出现分层、 不均匀, 脱脂后部分会出现裂纹等技术问题。
为了使粉末压制过程中成型更容易, 从而提高成品率、 成品孔隙均匀性、 使制备过程 更稳定, 上述造孔剂的用量为 15〜25%、 成型剂的用量为 7〜12%、 余量为钽粉, 均以体积 百分含量计 (以体积百分含量计是通过最终多孔钽材料的情况直接推算的单位, 在上述造 孔剂、 成型剂的称量中固体粉末还是根据相应物质的密度计算出其对应的质量称量的、 当 然若为液体物质则直接采用体积称量), 进一步优选为造孔剂为双氧水占 18%、成型剂为硬 脂酸锌占 11%、 余量为钽粉、 以体积百分含量计; 上述压制成型过程中的压力优选为 75〜 87Mpa。
为了使脱脂过程中胚体更稳定、 减少易出现的部分胚体变形、 孔径不均匀, 从而进一 步提高成品率、 质量稳定性, 上述脱脂过程是以 0. 3°C/mir!〜 rC/min 的速率逐步升温至 400〜800°C, 以氩气通入构成保护气氛并保温 330min〜350min; 进一步优选以 0. 8°C/min 的速率逐步升温至 400〜800°C, 以氩气通入构成保护气氛并保温 340min。
更优选地, 上述脱脂过程的条件为: 以 l〜2°C/min 的速率从室温升至 400°C, 保温 300〜330min, 以 1. 5〜2. 5°C/min的速率从 400°C升至 600〜800°C, 保温 180〜240min。
为了使得胚体烧结得更均匀、 透彻, 使制得的医用多孔钽材料强度更高, 上述烧结步 骤优选为真空度为 10— 4Pa〜10— 3Pa, 以 12〜15°C/min 升温至 1500〜1800°C、 保温 180〜 200min、 随炉冷至 200〜300°C, 再以 16〜19°C/min 升温至 1500〜1800°C、 保温 220〜 240min, 以 5〜8°C/min升温至 2000〜2200°C、 保温 250〜320min; 更进一步优选为真空 度为 10— 4Pa〜10— 3Pa, 以 13°C/min升温至 1800°C、 保温 200min、 随炉冷至 200〜300°C, 再以 17°C/min升温至 1800°C、保温 230min,以 7°C/min升温至 2000〜2200°C、保温 300min。
为了更充分地消除材料的内应力、 韧性更好, 上述热处理步骤是真空度为 10— 4Pa〜 10— 3Pa, 以 15°C/min升温至 800〜900°C、 保温 260〜320min, 再以 3°C/min冷至 400°C、 保温 120min, 再以 18°C/min〜23°C/min冷却至室温。
上述真空烧结后的冷却条件还包括有: 真空度不低于 10— 3Pa, 以不高于 25°C/min, 不 低于 lCTC/min渐降冷却速率方式, 对烧结多孔体分段降温冷却至 800°C, 各段保温时间 30min〜90min, 然后随炉冷却至常温。
优选地, 上述真空烧结后的冷却条件为: 真空度为 10— 4Pa〜10— 3Pa; 以 10〜20°C/min 的速率冷却至 1500〜1600°C, 保温 30〜60min; 以 12〜20°C/min 的速率冷却至 1200〜 1250°C , 保温 60〜90min; 以 10〜20°C/min的速率冷却至 800°C, 然后随炉冷却。
金属钽和铌的性质极类似, 上述方法同样也适合医用多孔铌材料的制备。
本发明多孔钽制备方法采用了纯物理模压法, 使得最终多孔钽材料中杂质的含量极 低, 有效地提高了生物相容性和生物安全性; 对本发明压制成型、 脱脂、 烧结及退火步骤 的工艺条件优化, 使得成品率高、 成品孔径均匀性更好、 使制备过程更稳定、 质量稳定性 好, 有效地消除了热应力、 使多孔钽材料的组织更均匀, 以进一步提高多孔钽的力学性能 如强度、 韧性同时都得到提高,本发明制备工艺使得成品合格率高、 生产稳定, 产品合格 率可高达 95. 5%。 本发明制得的多孔钽成品孔隙分布均匀且连通, 生物相容性好, 经过测 试其杂质含量可低于 0. 2%、 密度可达 5. 83〜7. 50g/cm3, 孔隙度可达 55〜65%, 孔隙直径 可达 300〜500 m; 弹性模量可达 4. 5〜6. 0Gpa、 延伸率达 10. 5〜11. 7%, 弯曲强度可达 125〜150Mpa、抗压强度可达 72〜90Mpa, 有效解决了作为替代承重部位的医用多孔钽材料 既要求其孔隙率较大、 又要求力学性能好的矛盾, 本发明多孔钽非常适合用于作为替代承 重骨组织的医用植入材料。
具体实施方式
下面通过实施例对本发明进行具体的描述, 有必要在此指出的是以下实施例只用于对 本发明进行进一步说明, 不能理解为对本发明保护范围的限制, 该领域的技术人员可以根 据上述本发明内容对本发明作出一些非本质的改进和调整。
实施例 1 : 称量硬脂酸锌、 平均粒径小于 43微米氧含量小于 0. 1%的钽粉和双氧水混 合均匀, 其中硬脂酸锌占 11%, 双氧水占 18%、 钽粉占 71%, 均以体积百分含量计。 加压成 型: 将上述混合粉末加入注塑成型机中在 87Mpa 下压制到聚氨酯泡沫体 (孔径 0. 48〜 0. 89mm, 密度 0. 015 g/cm3〜0. 035g/cm3, 硬度大于 50。)中成型。脱脂处理: 真空度 10— 3Pa, 以 1. 4°C/min的升温速率从室温升温至 400°C、 保温 311min; 再以 0. 4°C/min的升温速率 从 400°C升温至 750°C, 保温时间 350分钟。 真空烧结: 真空度为 10— 3Pa, 以 13°C/min升 温至 1800°C、 保温 200min、 随炉冷至 200〜300°C, 再以 17°C/min升温至 1800°C、 保温 230min, 以 7°C/min升温至 2000 2200°C、 保温 300min。 真空烧结后的冷却处理: 真空 度为 10— 4Pa, 以 10 20°C/min 的速率冷却至 1500 1600°C, 保温 30 60min, 以 12 20°C/min的速率冷却至 1200 1250°C, 保温 60 90min, 以 10 20°C/min的速率冷却至 800 °C , 然后随炉冷却。 热处理: 真空度为 10— 4Pa 10— 3Pa, 以 15°C/min升温至 800 900 °C、保温 260 320min,再以 3°C/min冷至 400°C、保温 120min,再以 18°C/min 23°C/min 冷却至室温, 再经常规制得医用多孔钽植入材料。
发明人按 GB/T5163_2006、 GB/T5249_1985、 GB/T6886-2001等标准对上述多孔钽成品 的多孔材料密度、 孔隙率、 孔径及各种力学性能进行检测: 其杂质含量低于 0. 2%, 其孔隙 分布均匀, 密度 6. 55g/cm3, 孔隙率 60%, 孔隙平均直径 350 m, 弹性模量 6. 0Gpa、 延伸 率 11. 02%, 弯曲强度 145MPa, 抗压强度 83Pa
实施例 2: 称取硬脂酸和石蜡、 平均粒径小于 43微米氧含量小于 0. 1%的钽粉和双氧 水混合均匀, 其中硬脂酸占 9%、 石蜡占 3%、 双氧水占 25%、 钽粉占 63%, 均以体积百分含 量计。 加压成型: 将上述混合粉末加入注塑成型机中在 75Mpa下压制到聚氨酯泡沫体 (孔 径 0. 48 0. 89 密度 0. 015 g/cm3 0. 035g/cm3, 硬度大于 50°) 中成型。 脱脂处理: 真 空度 10— 4Pa, 以 0. 3°C/min的升温速率从室温升温至 600°C、 保温 360min。 真空烧结: 真 空度为 10— 4Pa, 以 10°C/min升温至 1500°C、 保温 240min、 随炉冷至 200 300°C, 再以 20 °C/min升温至 1500°C、 保温 180min, 以 10°C/min升温至 2000 2200°C、 保温 120min 冷却处理。 热处理: 真空度为 10— 3Pa, 以 20°C/min升温至 800 900°C、 保温 240min, 再 以 5°C/min冷至 400°C、 保温 300min, 随炉冷却至室温, 再经常规制得医用多孔钽植入材 料。
发明人按 GB/T5163_2006、 GB/T5249_1985、 GB/T6886-2001等标准对上述多孔钽成品 的多孔材料密度、 孔隙率、 孔径及各种力学性能进行检测: 其杂质含量低于 0. 2%, 其孔隙 分布均匀, 密度 6. 67g/cm3, 孔隙率 55%, 孔隙平均直径 300 m, 弹性模量 4. 5Gpa、 延伸 率 10. 7%, 弯曲强度 143MPa, 抗压强度 74MPa
实施例 3: 称取异戊橡胶、 平均粒径小于 43微米氧含量小于 0. 1%的钽粉和碳酸氢铵 混合均匀, 其中异戊橡胶占 7%、 碳酸氢铵占 15%、 钽粉占 78%, 均以体积百分含量计。 加 压成型: 将上述混合粉末加入注塑成型机中在 96Mpa下压制到聚氨酯泡沫体(孔径 0. 48 0. 89mm, 密度 0. 015 g/cm3 0. 035g/cm3, 硬度大于 50。)中成型。脱脂处理: 真空度 10— 4Pa 以 2°C/min的升温速率从室温升温至 400°C、 保温 300min。 真空烧结: 真空度为 10— 3Pa 以 20°C/min升温至 1700°C、 保温 120min、 随炉冷至 200 300°C, 再以 10°C/min升温至 1670°C、 保温 240min, 以 5°C/min升温至 2000 2200°C、 保温 360min, 冷却处理。 热处 理: 真空度为 10— 4Pa, 以 10°C/min升温至 800 900°C、 保温 480min, 再以 2°C/min冷至 400°C、 保温 120min, 随炉冷却至室温, 再经常规制得医用多孔钽植入材料。 发明人按 GB/T5163_2006、 GB/T5249_1985、 GB/T6886-2001等标准对上述多孔钽成品 的多孔材料密度、 孔隙率、 孔径及各种力学性能进行检测: 其杂质含量低于 0. 2%, 其孔隙 分布均匀, 密度 6. 13g/cm3, 孔隙率 65%, 孔隙平均直径 456 μ m, 弹性模量 5. 2Gpa、 延伸 率 11. 0%, 弯曲强度 126MPa, 抗压强度 88MPa。
实施例 4: 称取硬脂酸、 平均粒径小于 43微米氧含量小于 0. 1%的铌粉和双氧水混合 均匀, 其中硬脂酸占 8%、 双氧水占 21%、 铌粉占 71%, 均以体积百分含量计。 加压成型: 将上述混合粉末加入注塑成型机中在 76Mpa下压制到聚氨酯泡沫体 (孔径 0. 48〜0. 89mm, 密度 0. 015 g/cm3〜0. 035g/cm3, 硬度大于 50。) 中成型。 脱脂处理: 真空度 10— 4Pa, 以 0. 8°C/min的升温速率从室温升温至 400°C、 保温 340min。 真空烧结: 真空度为 10— 4Pa, 以 12°C/min升温至 1650°C、 保温 180min、 随炉冷至 200〜300°C, 再以 16°C/min升温至 1700°C、 保温 220min, 以 8°C/min升温至 2000〜2200°C、 保温 320min, 冷却处理。 热处 理: 真空度为 10— 4Pa, 以 13°C/min升温至 800〜900°C、 保温 275min, 再以 4°C/min冷至 400°C、 保温 220min, 随炉冷却至室温, 再经常规制得医用多孔钽植入材料。
发明人按 GB/T5163_2006、 GB/T5249_1985、 GB/T6886-2001等标准对上述多孔铌成品 的多孔材料密度、 孔隙率、 孔径及各种力学性能进行检测: 其杂质含量低于 0. 2%, 其孔隙 分布均匀, 密度 3. 51g/cm3, 孔隙率 59%, 孔隙平均直径 344 μ ιιι, 弹性模量 2. 8Gpa、 延伸 率 10. 8%, 弯曲强度 lOOMPa, 抗压强度 65MPa。
实施例 5: —种多孔钽, 它以粒径小于 43 m、 氧含量小于 0. 1%的金属钽粉, 石蜡和 碳酸氢铵混合为原料, 再经压制成型、脱脂处理、真空烧结、真空退火及常规后处理制得。
其中, 石蜡占 10%、 碳酸氢铵占 23%、 金属钽粉占 67%, 以体积百分含量计; 压制成型: 将原料混合粉末加入注塑成型机中在 60Mpa下压制到聚氨酯泡沫体 (孔径 0. 48〜0. 89mm, 密度 0. 015 g/cm3〜0. 035g/cm3, 硬度大于 50。) 中成型;
压制成型后将混合粉末放入非氧化气氛炉中以一定的升温速率升温至 800°C, 保护气 氛为 99. 999%氩气进行脱脂处理, 其在升温之前先通入纯净氩气至少 30min以排除炉内空 气,控温过程:以 1. 8°C/min的速率从室温升至 400°C,保温 323min,氩气通入量 0. 5L/min; 以 0. 5°C/min的速率从 400°C升至 800°C, 保温 350min, 氩气通入量 lL/min; 再关闭电源, 脱脂后的样品随炉冷却, 氩气通入量 lL/min, 直至冷却至室温时关闭氩气;
对于脱脂处理后的样品随钨器置于高真空高温烧结炉内以一定的升温速率升温进行 真空烧结, 在升温之前烧结炉的真空度至少要达到 10— 4Pa, 以 12〜15°C/min的速率从室温 升至 1500°C, 保温 200min、 随炉冷至 200〜300°C, 真空度为 10— 4Pa; 再以 17°C/min的速 率升至 1500°C, 保温 180min, 真空度为 10— 4Pa〜10— 3Pa; 以 8°C/min的速率升至 2200°C, 保温 320min, 真空度为 10— 3Pa; 烧结完毕, 真空度为 10— 3Pa, 以 10〜15°C/min的速率冷却 至 1600°C, 保温 30min; 以 12°C/min的速率冷却至 1200°C, 保温 60min; 以 10°C/min的 速率冷却至 800°C, 然后随炉冷却;
对于真空烧结冷却后的样品随刚玉容器置于真空退火炉中以一定的升温速率升温至 125CTC进行去应力退火处理,在升温之前退火炉内的真空度至少要达到 10— 4Pa,以 15°C/min 的速率从室温升至 880°C, 保温 340min, 真空度为 10— 4Pa〜10— 3Pa; 再以 3°C/min的速率冷 却至 400°C, 保温 180min, 真空度为 10— 4Pa〜10— 3Pa; 以 22°C/min的速率冷却至室温。 最 后进行常规后处理制得多孔钽。
发明人按 GB/T5163_2006、 GB/T5249_1985、 GB/T6886-2001等标准对上述多孔钽成品 的多孔材料密度、 孔隙率、 孔径及各种力学性能进行检测: 其杂质含量低于 0. 2%, 其孔隙 分布均匀, 密度 6. 2g/cm3, 孔隙率 64%, 孔隙平均直径 350 μ ιιι, 弹性模量 4. 8Gpa、 延伸率 11. 32%, 弯曲强度 138MPa, 抗压强度 85MPa。 经计算该制备工艺使得成品合格率高、 生产 稳定, 产品合格率达 94. 6%左右。

Claims

权 利 要 求 书
1、 一种替代承重骨组织的医用多孔金属材料的制备方法, 其特征在于: 由钽粉与造 孔剂、 成型剂混合, 再经压制成型、 脱脂、 烧结、 冷却和热处理制得该多孔金属材料; 所 述压制成型是将混合粉末压制到有机泡沫体中成型, 其压力为 50〜100Mpa, 所述脱脂过程 是以 0. 3°C/min〜2°C/min的速率逐步升温至 400〜800°C, 以氩气通入构成保护气氛并保 温 300mir!〜 360min; 所述造孔剂为碳酸氢铵或双氧水, 所述成型剂为硬脂酸、 硬脂酸锌、 石蜡、 合成树脂中的一种或多种; 所述烧结步骤是真空度为 10— 4Pa〜10— 3Pa, 以 10〜20°C /min升温至 1500〜1800°C、保温 120〜240min、随炉冷至 200〜300°C,再以 10〜20°C/min 升温至 1500〜1800°C、 保温 180〜240min, 以 5〜10°C/min升温至 2000〜2200°C、 保温 120〜360min; 所述热处理步骤是真空度为 10— 4Pa〜10— 3Pa, 以 10〜20°C/min升温至 800〜 900°C、 保温 240〜480min, 再以 2〜5°C/min冷至 400°C、 保温 120〜300min, 然后随炉冷 却至室温。
2、 如权利要求 1所述的制备方法, 其特征在于: 所述原料钽粉的平均粒径小于 43微 米、 氧含量小于 0. 1%; 所述成型剂合成树脂为丁苯橡胶或异戊橡胶; 所述有机泡沫体为 孔径 0. 56〜0. 72mm, 密度 0. 025g/cm3, 硬度 50。〜80。的聚氨酯泡沫。
3、 如权利要求 1或 2所述的制备方法, 其特征在于: 所述造孔剂的用量为 15〜25%、 成型剂的用量为 7〜12%、 余量为钽粉, 均以体积百分含量计; 所述压制成型过程中的压力 为 75〜87Mpa。
4、 如权利要求 3所述的制备方法, 其特征在于: 所述为造孔剂为双氧水占 18%、 成型 剂为硬脂酸锌占 11%、 余量为钽粉、 以体积百分含量计。
5、 如权利要求 1或 2所述的制备方法, 其特征在于: 所述脱脂过程是以 0. 3°C/mir!〜 l °C/min的速率逐步升温至 400〜800°C,以氩气通入构成保护气氛并保温 330min〜350min。
6、 如权利要求 5所述的制备方法, 其特征在于: 所述脱脂过程是以 0. 8°C/min的速 率逐步升温至 400〜800°C, 以氩气通入构成保护气氛并保温 340min。
7、如权利要求 3所述的制备方法,其特征在于:所述脱脂过程的条件为:以 l〜2°C/min 的速率从室温升至 400°C,保温 300〜330min,以 1. 5〜2. 5°C/min的速率从 400°C升至 600〜 800 °C , 保温 180〜240min。
8、 如权利要求 1 所述的制备方法, 其特征在于: 所述烧结步骤为真空度为 10— 4Pa〜 10— 3Pa, 以 12〜15°C/min升温至 1500〜1800°C、 保温 180〜200min、 随炉冷至 200〜300 °C, 再以 16〜19°C/min升温至 1500〜1800°C、 保温 220〜240min, 以 5〜8°C/min升温至 2000〜2200°C、 保温 250〜320min。
9、 如权利要求 8 所述的制备方法, 其特征在于: 所述烧结步骤为真空度为 10— 4Pa〜 10— 3Pa, 以 13°C/min升温至 1800°C、 保温 200min、 随炉冷至 200〜300°C, 再以 17°C/min 升温至 1800°C、 保温 230min, 以 7°C/min升温至 2000〜2200°C、 保温 300min。
10、 如权利要求 3所述的制备方法, 其特征在于: 所述烧结步骤为真空度为 10— 4Pa〜 10— 3Pa, 以 12〜15°C/min升温至 1500〜1800°C、 保温 180〜200min、 随炉冷至 200〜300 °C, 再以 16〜19°C/min升温至 1500〜1800°C、 保温 220〜240min, 以 5〜8°C/min升温至 2000〜2200°C、 保温 250〜320min。
11、 如权利要求 10所述的制备方法, 其特征在于: 所述烧结步骤为真空度为 10— 4Pa〜 10— 3Pa, 以 13°C/min升温至 1800°C、 保温 200min、 随炉冷至 200〜300°C, 再以 17°C/min 升温至 1800°C、 保温 230min, 以 7°C/min升温至 2000〜2200°C、 保温 300min。
12、 如权利要求 1 或 2 所述的制备方法, 其特征在于: 所述热处理步骤是真空度为 10— 4Pa〜10— 3Pa, 以 15°C/min升温至 800〜900°C、 保温 260〜320min, 再以 3°C/min冷至 400°C、 保温 120min, 再以 18°C/mir!〜 23°C/min冷却至室温。
13、 如权利要求 8 或 9 所述的制备方法, 其特征在于: 所述热处理步骤是真空度为 10— 4Pa〜10— 3Pa, 以 15°C/min升温至 800〜900°C、 保温 260〜320min, 再以 3°C/min冷至 400°C、 保温 120min, 再以 18°C/mir!〜 23°C/min冷却至室温。
14、 如权利要求 1所述的制备方法, 其特征在于: 所述真空烧结后的冷却条件还包括 有: 真空度不低于 10— 3Pa, 以不高于 25°C/min, 不低于 10°C/min渐降冷却速率方式, 对 烧结多孔体分段降温冷却至 800°C, 各段保温时间 30mir!〜 90min, 然后随炉冷却至常温。
15、 如权利要求 12 所述的制备方法, 其特征在于: 所述真空烧结后的冷却条件为: 真空度为 10— 4Pa〜10— 3Pa; 以 10〜20°C/min的速率冷却至 1500〜1600°C, 保温 30〜60min; 以 12〜20°C/min的速率冷却至 1200〜1250°C, 保温 60〜90min; 以 10〜20°C/min的速率 冷却至 800°C, 然后随炉冷却。
16、 如权利要求 13 所述的制备方法, 其特征在于: 所述真空烧结后的冷却条件为: 真空度为 10— 4Pa〜10— 3Pa; 以 10〜20°C/min的速率冷却至 1500〜1600°C, 保温 30〜60min; 以 12〜20°C/min的速率冷却至 1200〜1250°C, 保温 60〜90min; 以 10〜20°C/min的速率 冷却至 800°C, 然后随炉冷却。
PCT/CN2012/082094 2011-09-29 2012-09-26 一种替代承重骨组织的医用多孔金属材料的制备方法 WO2013044813A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110296535.4 2011-09-29
CN 201110296535 CN102796895B (zh) 2011-09-29 2011-09-29 一种替代承重骨组织的医用多孔金属材料的制备方法

Publications (1)

Publication Number Publication Date
WO2013044813A1 true WO2013044813A1 (zh) 2013-04-04

Family

ID=47196187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/082094 WO2013044813A1 (zh) 2011-09-29 2012-09-26 一种替代承重骨组织的医用多孔金属材料的制备方法

Country Status (2)

Country Link
CN (1) CN102796895B (zh)
WO (1) WO2013044813A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060002810A1 (en) * 2004-07-02 2006-01-05 Grohowski Joseph A Jr Porous metal articles having a predetermined pore character
CN101405039A (zh) * 2006-02-17 2009-04-08 拜欧麦特制造公司 用于形成多孔金属植入物的方法和设备
EP2149414A1 (en) * 2008-07-30 2010-02-03 Nederlandse Centrale Organisatie Voor Toegepast Natuurwetenschappelijk Onderzoek TNO Method of manufacturing a porous magnesium, or magnesium alloy, biomedical implant or medical appliance.

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5282861A (en) * 1992-03-11 1994-02-01 Ultramet Open cell tantalum structures for cancellous bone implants and cell and tissue receptors
CN101549175B (zh) * 2009-05-15 2012-07-04 中南大学 一种孔隙非均匀分布仿生骨质材料制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060002810A1 (en) * 2004-07-02 2006-01-05 Grohowski Joseph A Jr Porous metal articles having a predetermined pore character
CN101405039A (zh) * 2006-02-17 2009-04-08 拜欧麦特制造公司 用于形成多孔金属植入物的方法和设备
EP2149414A1 (en) * 2008-07-30 2010-02-03 Nederlandse Centrale Organisatie Voor Toegepast Natuurwetenschappelijk Onderzoek TNO Method of manufacturing a porous magnesium, or magnesium alloy, biomedical implant or medical appliance.

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Modern Niobium and Titanium Metallurgy", January 2009, article GUO, QINGWEI ET AL., pages: 642 *
LI, ZHONGLI ET AL.: "New 3-D porous Ti manufacture and feature", ORTHOPAEDIC BIOMECHANICS MATERIALS AND CLINICAL STUDY, vol. 4, no. 1, February 2007 (2007-02-01), pages 1 - 4 *

Also Published As

Publication number Publication date
CN102796895B (zh) 2013-12-25
CN102796895A (zh) 2012-11-28

Similar Documents

Publication Publication Date Title
WO2013044773A1 (zh) 一种牙骨替代医用多孔金属材料的制备方法
CN103849792B (zh) 一种适用于替代人体牙骨组织的多孔钽
WO2013044780A1 (zh) 一种替代承重骨组织的医用多孔金属材料及其制备方法
WO2013044852A1 (zh) 一种医用多孔金属植入材料的制备方法
WO2013044832A1 (zh) 一种制备医用多孔钽植入材料的方法
CN103740962B (zh) 牙骨替代医用多孔金属材料的制备方法
WO2013044767A1 (zh) 一种替代牙骨的医用多孔钽材料及其制备方法
CN103740964B (zh) 医用多孔金属植入材料的制备方法
WO2013044860A1 (zh) 一种医用多孔金属植入材料的制备方法
WO2013044858A1 (zh) 一种医用多孔金属植入材料的制备方法
WO2013044778A1 (zh) 一种医用多孔金属材料及其制备方法
WO2013044779A1 (zh) 一种医用多孔金属材料的制备方法
WO2013044809A1 (zh) 一种制备替代承重骨组织的医用多孔金属材料的方法
WO2013044781A1 (zh) 一种替代承重骨组织的医用多孔金属材料的制备方法
WO2013044813A1 (zh) 一种替代承重骨组织的医用多孔金属材料的制备方法
CN103736147B (zh) 替代承重骨组织的医用多孔金属材料及其制备方法
CN103740961B (zh) 一种替代承重骨组织的医用多孔金属材料的制备方法
CN103740966B (zh) 制备替代承重骨组织的医用多孔金属材料的方法
WO2013044834A1 (zh) 一种制备医用多孔钽植入材料的方法
WO2013044815A1 (zh) 一种医用多孔钽材料的制备方法
CN103736151B (zh) 替代承重骨组织的医用多孔金属材料的制备方法
WO2013044835A1 (zh) 一种多孔钽医用植入材料的制备方法
CN102793946B (zh) 一种替代牙骨的医用多孔金属材料及其制备方法
WO2013044833A1 (zh) 一种医用多孔钽植入材料的制备方法
WO2013044839A1 (zh) 一种医用植入材料多孔钽的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12834732

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12834732

Country of ref document: EP

Kind code of ref document: A1