CN102796894B - 一种医用多孔钽植入材料的制备方法 - Google Patents
一种医用多孔钽植入材料的制备方法 Download PDFInfo
- Publication number
- CN102796894B CN102796894B CN2011102965157A CN201110296515A CN102796894B CN 102796894 B CN102796894 B CN 102796894B CN 2011102965157 A CN2011102965157 A CN 2011102965157A CN 201110296515 A CN201110296515 A CN 201110296515A CN 102796894 B CN102796894 B CN 102796894B
- Authority
- CN
- China
- Prior art keywords
- warming
- incubated
- vacuum
- speed
- drying
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/02—Inorganic materials
- A61L27/04—Metals or alloys
- A61L27/047—Other specific metals or alloys not covered by A61L27/042 - A61L27/045 or A61L27/06
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/56—Porous materials, e.g. foams or sponges
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/1017—Multiple heating or additional steps
- B22F3/1021—Removal of binder or filler
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/11—Making porous workpieces or articles
- B22F3/1121—Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
- B22F3/1137—Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers by coating porous removable preforms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/24—After-treatment of workpieces or articles
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C27/00—Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
- C22C27/02—Alloys based on vanadium, niobium, or tantalum
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Medicinal Chemistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Veterinary Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Dermatology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Powder Metallurgy (AREA)
Abstract
一种医用多孔钽材料的制备方法,将聚乙醇水溶液与钽粉配成浆料,采用震动加压将所述浆料注入有机泡沫体中,再经干燥、脱脂、烧结、冷却和热处理步骤;聚乙烯醇水溶液的质量浓度为2~8%,所述震动频率为20~80次/分钟;烧结步骤是真空度为10-4Pa~10-3Pa,以10~20℃/min升温至1500~1800℃、保温120~240min、随炉冷至200~300℃,再以10~20℃/min升温至1500~1800℃、保温180~240min,以5~10℃/min升温至2000~2200℃、保温120~360min;所述热处理步骤是真空度为10-4Pa~10-3Pa,以10~20℃/min升温至800~900℃、保温240~480min,再以2~5℃/min冷至400℃、保温120~300min,然后随炉冷却至室温。本发明制得的多孔钽非常适合用于替代承重骨组织的医用植入材料,同时保证了生物相容性与力学性能。
Description
技术领域
本发明涉及一种多孔医用金属植入材料的制备方法,尤其涉及一种适合于替代承重骨组织的医用多孔钽植入材料的制备方法。
背景技术
多孔医用金属植入材料具有治疗骨组织创伤、股骨组织坏死和替代致密骨组织如牙齿等重要而特殊的用途,现常见的这类材料有多孔金属不锈钢、多孔金属钛等。作为骨组织创伤和股骨组织坏死治疗使用的多孔植入材料,其孔隙度应达30~80%,而且孔隙最好全部连通与均匀分布,或根据需要使之既与人体的骨组织生长相一致,又减轻了材料本身的重量,以适合人体植入使用。
而难熔金属钽,由于它具有优秀的生物相容性,其多孔材料有望作为替代前述等传统医用金属生物材料。由于金属钽对人体的无害、无毒、无副作用,以及随着国内外医学的飞速发展,对钽作为人体植入材料认知的进一步深入,人们对人体植入用多孔金属钽材料的需求变得越来越迫切,对其要求也越来越高。其中作为多孔医用植入金属钽,如果能具有很高的均匀分布连通孔隙以及与人体相适应的物理机械性能,则其有望作为一种新型的骨组织替代材料。
作为医用植入的多孔金属材料就像一般的多孔金属材料那样基本上是以粉末烧结法为主要的加工方法,特别是为获取孔隙连通与均匀分布的多孔金属泡沫结构采用粉末烧结法中的金属粉末浆料在有机泡沫体上的浸渍后干燥再烧结简称泡沫浸渍法居多。关于粉末烧结所获得的多孔金属材料通常其金属力学性能并不是很好,其主要原因是工艺上如何安排成孔介质的支撑与消除关系、金属粉末烧结过程中的塌陷问题。而已知的文献报道中均没有很好的解决方法而放任自然。
采用金属粉末烧结法制造多孔钽的文献报道很少,特别是以获得医用植入材料用为目的的多孔钽粉末烧结法文献报道几乎没有。可以参考的是公开号为CN200510032174,名称“三维通孔或部分孔洞彼此相连多孔金属泡沫及其制备方法”以及CN200710152394,名称“一种新型多孔泡沫钨及其制备方法”。然而其所获得的多孔金属或是为过滤材料用,或是为航空航天及其它高温场合用而非作为医用金属植入材料使用,再者所加工的多孔金属也非多孔钽。
关于多孔钽,US5282861公开了一种应用于松质骨植入体、细胞和组织感受器的开孔钽材料及其制备。这种多孔钽由纯商业钽制成,它以聚亚氨酯前体进行热降解得到的碳骨架为支架,该碳骨架呈多重的十二面体,其内为网格样结构,整体遍布微孔,孔隙率可高达98%,再将商业纯钽通过化学蒸气沉积、渗透的方法结合到碳骨架上以形成多孔金属微结构,简称为化学沉积法。这种方法所获得的多孔钽材料其表面的钽层厚度在40~60μm之间;在整个多孔材料中,钽重约占99%,而碳骨架重量则占1%左右。文献进一步记载,该多孔材料的抗压强度50~70MPa,弹性模量2.5~3.5GPa,抗拉强度63MPa,塑性变形量15%。但是将它作为致密骨组织如牙齿等医用植入材料的多孔钽,其材料的力学性能如延展性有明显不足之处,而且会影响到后续的对多孔钽材料本身的加工,例如成型件的切割等。同样在前述的金属粉末烧结法所获得的产品也均存在这样的不足。
发明内容
本发明的目的在于提供一种生物相容性好、力学强韧性均优异的医用多孔钽植入材料的制备方法,该制备方法操作简便、适合于工业化规模生产。
本发明的目的是通过如下技术手段实现的:
一种医用多孔钽植入材料的制备方法,其特征在于:将聚乙醇水溶液与钽粉配成浆料,震动加压将所述浆料注入有机泡沫体中,再经干燥、脱脂、烧结、冷却和热处理步骤制得医用多孔钽材料;所述聚乙烯醇水溶液的质量浓度为2~8%,所述震动频率为20~80次/分钟;所述烧结步骤是真空度为10-4Pa~10-3Pa,以10~20℃/min升温至1500~1800℃、保温120~240min、随炉冷至200~300℃,再以10~20℃/min升温至1500~1800℃、保温180~240min,以5~10℃/min升温至2000~2200℃、保温120~360min;所述热处理步骤是真空度为10-4Pa~10-3Pa,以10~20℃/min升温至800~900℃、保温240~480min,再以2~5℃/min冷至400℃、保温120~300min,然后随炉冷却至室温。
发明人在长期研发过程中发现,采用本发明的震动加压法有效避免了钽粉加入海绵体中容易出现的分散性不好,使得其分布不均匀从而严重影响最终的多孔钽材料的力学性能的问题。在医用多孔金属材料的研发过程中,医用多孔金属材料作为替代承重骨组织的材料,要求其孔隙率较大、这样人体组织才易长入、生物相容性好从而充分地发挥其作用,但孔隙率越大、孔径越大,力学性能如强度、韧性就得不到保证;反之,力学性能好了又易使孔隙率过小、生物相容性不好、密度也过大引起不舒适感;医用多孔钽的制备路线众多,但发明人创造性地提出了采用上述步骤、工艺制备医用多孔钽植入材料,特别是采用的上述热处理工艺,发明人在长期研究过程中发现该热处理工艺充分地消除了内应力、使多孔钽材料的组织更均匀、大大提高了所制得的多孔钽材料的韧性;上述烧结处理工艺,使得胚体成为了发热体,从而烧结得更均匀、透彻;其制得的多孔钽材料经过测试其杂质含量可低于0.2%、其生物相容性与生物安全性好,密度可达5.00~7.50g/cm3,孔隙度可达55~70%,孔隙直径可达150~500μm;弹性模量可达4.5~6.0Gpa、延伸率达10.5~11.7%、弯曲强度可达120~150Mpa、抗压强度可达80~90Mpa,其生物相容性、强韧性接近于人体承重骨组织的特性,本发明制得的多孔钽非常适合用于替代承重骨组织的医用植入材料。同时,所述的制备方法工艺简单、易控;整个制备过程无害、无污染、无毒害粉尘,对人体无副作用,适于工业化规模生产。再者,在制备过程中优先采用在烧结过程中能够全部分解,没有残留的试剂及有机泡沫体等,将有利于保证植入材料的生物相容性和生物安全性。
本发明的进一步的特点是:采用其平均粒径小于43μm、氧含量小于0.1%的金属钽粉,采用聚乙烯醇水溶液为粘结剂和水为分散剂与所述的钽粉制成钽粉浆料,有机泡沫体为聚氨酯泡沫,然后真空干燥除去水。
其中,将聚乙烯醇用蒸馏水加热至溶解,采用质量百分比浓度为4~5%的聚乙烯醇水溶液与金属钽粉制成钽粉浆料,其中,将重量为6~9份(优选7份)的金属钽粉加入重量为1份的所述聚乙烯醇水溶液中,搅拌均匀制成浆糊状;并采用震动加压(震动频率优选为60次/min、压力优选为0.1MPa)注于孔径为0.48~0.89mm,密度0.015g/cm3~0.035g/cm3,硬度大于50°(优选孔径为0.56~0.72mm,密度0.025g/cm3,硬度50°~80°)的聚氨酯泡沫中。
进一步优选地,将上述钽粉浆料震动加压注入有机泡沫体后,还在表面均匀地喷涂上述的聚乙烯醇水溶液,喷涂量与上述金属钽粉的重量份比为1∶6。
优先选择平均粒径小于43μm、氧含量小于0.1%的金属钽粉有助于减少杂质的含量,保证材料具有较好的力学性能;选择孔径为0.48~0.89mm,密度0.025g/cm3~0.035g/cm3,硬度大于50°的聚氨酯泡沫有助于保证多孔钽的孔隙度与孔隙直径。
本发明另一方面的进一步的特点是:干燥的真空度保持10-2~1Pa真空度,然后在保护气氛下,例如真空度10-4~10-3Pa,温度400℃~800℃条件下进行除去聚乙烯醇和有机泡沫体的脱脂处理;再进行烧结、冷却和热处理。
上述脱脂处理条件还包括有:以0.5℃/min~5℃/min的速率逐步升温至400~800℃,以氩气通入构成保护气氛并保温30min~120min;
上述真空烧结条件为:10-4Pa~10-3Pa,以12~15℃/min升温至1500~1800℃、保温180~200min、随炉冷至200~300℃,再以16~19℃/min升温至1500~1800℃、保温220~240min,以5~8℃/min升温至2000~2200℃、保温250~320min;
上述真空烧结后的冷却条件为:真空度不低于10-3Pa,以不高于25℃/min,不低于10℃/min渐降冷却速率方式,对烧结多孔体分段降温冷却至800℃,各段保温时间30min~90min,然后随炉冷却至常温;
上述热处理条件为:所述热处理步骤是真空度为10-4Pa~10-3Pa,以15℃/min升温至800~900℃、保温260~320min,再以3℃/min冷至400℃、保温120min,然后以18~23℃/min冷却至室温。
在此基础上更进一步的特点是:所述真空干燥的真空度为10-2~1Pa,干燥温度60~100℃,干燥时间4~8小时;所述脱脂处理条件还包括有:逐步升温至600~800℃,以纯净氩气(99.9999%)通入构成保护气氛,以1~5℃/min的速率从室温升至400℃,保温30~60min,以0.5~1.5℃/min的速率从400℃升至600~800℃,保温60~120min;所述烧结步骤是真空度为10-4Pa~10-3Pa,以10~20℃/min升温至1500~1800℃、保温120~240min、随炉冷至200~300℃,再以10~20℃/min升温至1500~1800℃、保温180~240min,以5~10℃/min升温至2000~2200℃、保温120~360min;真空烧结后的冷却条件还包括有:真空度为10-4Pa~10-3Pa;以10~20℃/min的速率冷却至1500~1600℃,保温30~60min;以12~20℃/min的速率冷却至1200~1250℃,保温60~90min;以10~20℃/min的速率冷却至800℃,然后随炉冷却;所述所述热处理步骤为:10-4Pa~10-3Pa,以10~20℃/min升温至800~900℃、保温240~480min,再以2~5℃/min冷至400℃、保温120~300min,然后以18~23℃/min冷却至室温。
其中对真空干燥、脱脂处理等是有助于减少多孔钽中杂质的含量,提高生物相容性和生物安全性好及力学性能;对有机泡沫体材料的优化以解决烧结过程中泡沫骨架的不易塌陷问题;对烧结及退火步骤的工艺条件优化,以进一步提高多孔钽的力学性能如延展性等。
具体实施方式
下面通过实施例对本发明进行具体的描述,有必要在此指出的是以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,该领域的技术人员可以根据上述本发明内容对本发明作出一些非本质的改进和调整。
实施例1:称取聚乙烯醇12.2g,放入装有240ml蒸馏水的容器中;将其放在电炉上加温并搅拌使之成为聚乙烯醇水溶液。用200g天平称量平均粒径小于43微米、氧含量小于0.1%的钽粉60g,加入50ml冷却的聚乙烯醇水溶液,搅拌混合均匀,使之成为钽粉浆料。选用10×10×30mm多孔聚氨酯泡沫(平均孔径为0.48mm,密度0.025g/cm3,硬度50°),在55次/min、0.1Mpa下震动加压法将所述钽粉浆料浇注入其中。在真空干燥箱中干燥,干燥温度60℃,干燥时间8小时,真空度保持1Pa。脱脂处理:真空度低于10-4Pa,温度600℃,保温时间120分钟。真空烧结:真空度为10-3Pa,以13℃/min升温至1800℃、保温200min、随炉冷至200~300℃,再以17℃/min升温至1800℃、保温230min,以7℃/min升温至2000~2200℃、保温300min,烧结过程充氩气保护,取出产品后去除表面灰尘及污物,制得的样品;常规冷却、再进行热处理:真空度为10-4Pa~10-3Pa,以15℃/min升温至800~900℃、保温260~320min,再以3℃/min冷至400℃、保温120min,然后以20℃/min冷却至室温,后处理得多孔钽成品。
发明人按GB/T5163-2006、GB/T5249-1985、GB/T6886-2001等标准对上述多孔钽成品的多孔材料密度、孔隙率、孔径及各种力学性能进行检测:其杂质含量低于0.5%的成品,其孔隙分布均匀且连通,密度6.8g/cm3,孔隙率70%,孔隙平均直径220μm,弹性模量6.0GPa,弯曲强度140MPa,抗压强度90Mpa,延伸率10.5%。
实施例2:称取聚乙烯醇10g,放入装有200ml蒸馏水的容器中;将其放在电炉上加温并搅拌使之成为聚乙烯醇水溶液。用200g天平称量平均粒径小于43微米、氧含量小于0.1%的钽粉40g,加入32ml聚乙烯醇水溶液,搅拌混合均匀,使之成为钽粉浆料。选用10×10×25mm多孔聚氨酯泡沫(平均孔径为0.56mm,密度0.030g/cm3,硬度60°),在60次/min、0.08Mpa下震动加压法将所述钽粉浆料浇注入其中。在真空干燥箱中干燥,干燥温度100℃,干燥时间4小时,真空度保持10-2Pa。脱脂处理:真空度10-4Pa,温度800℃,保温时间120分钟。真空烧结:真空度为10-4Pa,以10℃/min升温至1600℃、保温180min、随炉冷至200~300℃,再以20℃/min升温至1600℃、保温180min,以5℃/min升温至2000~2200℃、保温120min,烧结过程充氩气保护,取出产品后去除表面灰尘及污物,制得的样品;常规冷却、再进行热处理:真空度为10-4Pa~10-3Pa,以20℃/min升温至800~900℃、保温240min,再以5℃/min冷至400℃、保温300min,然后以18℃/min冷却至室温,后处理得多孔钽成品。
发明人按GB/T5163-2006、GB/T5249-1985、GB/T6886-2001等标准对上述多孔钽成品的多孔材料密度、孔隙率、孔径及各种力学性能进行检测:其杂质含量低于0.5%的成品,其孔隙分布均匀且连通,密度6.5g/cm3,孔隙率56%,孔隙平均直径280μm,弹性模量4.6GPa,弯曲强度132MPa,抗压强度86Mpa,延伸率11.2%。
实施例3:称取聚乙烯醇11g,放入装有220ml蒸馏水的容器中;将其放在电炉上加温并搅拌使之成为聚乙烯醇水溶液。用200g天平称量平均粒径小于43微米、氧含量小于0.1%的钽粉45g,加入36ml聚乙烯醇水溶液,搅拌混合均匀,使之成为钽粉浆料。选用8×8×25mm多孔聚氨酯泡沫(平均孔径为0.70mm,密度0.035g/cm3,硬度70°),在80次/min、0.2Mpa下震动加压法将所述钽粉浆料浇注入其中。在真空干燥箱中干燥,干燥温度80℃,干燥时间6小时,真空度保持10-1Pa。脱脂处理:真空度10-3Pa,温度700℃,保温时间90分钟。真空烧结:真空度为10-3Pa,以20℃/min升温至1700℃、保温240min、随炉冷至200~300℃,再以10℃/min升温至1500℃、保温240min,以10℃/min升温至2000~2200℃、保温360min,烧结过程充氩气保护,取出产品后去除表面灰尘及污物,制得的样品;常规冷却、再进行热处理:真空度为10-4Pa~10-3Pa,以10℃/min升温至800~900℃、保温480min,再以2℃/min冷至400℃、保温120min,然后以23℃/min冷却至室温,后处理得多孔钽成品。
发明人按GB/T5163-2006、GB/T5249-1985、GB/T6886-2001等标准对上述多孔钽成品的多孔材料密度、孔隙率、孔径及各种力学性能进行检测:其杂质含量低于0.5%的成品,其孔隙分布均匀且连通,密度7.50g/cm3,孔隙率66%,孔隙平均直径167μm,弹性模量5.5GPa,弯曲强度136MPa,抗压强度82Mpa,延伸率11.4%。
实施例4:称取聚乙烯醇12g,放入装有230ml蒸馏水的容器中;将其放在电炉上加温并搅拌使之成为聚乙烯醇水溶液。用200g天平称量平均粒径小于43微米、氧含量小于0.1%的钽粉50g,加入40ml聚乙烯醇水溶液,搅拌混合均匀,使之成为钽粉浆料。选用12×12×30mm多孔聚氨酯泡沫(孔径为0.60mm,密度0.027g/cm3,硬度80°),在23次/min、0.1Mpa下震动加压法将所述钽粉浆料浇注入其中。在真空干燥箱中干燥,干燥温度90℃,干燥时间5小时,真空度保持1Pa。脱脂处理:真空度10-4~10-3Pa,温度500℃,保温时间120分钟。真空烧结:真空度为10-3Pa,以10℃/min升温至1500℃、保温120min、随炉冷至200~300℃,再以20℃/min升温至1600℃、保温180min,以5℃/min升温至2000~2200℃、保温120min,烧结过程充氩气保护,取出产品后去除表面灰尘及污物,制得的样品;常规冷却、再进行热处理:真空度为10-4Pa~10-3Pa,以20℃/min升温至800~900℃、保温240min,再以5℃/min冷至400℃、保温300min,然后以18℃/min冷却至室温,后处理得多孔钽成品。
发明人按GB/T5163-2006、GB/T5249-1985、GB/T6886-2001等标准对上述多孔钽成品的多孔材料密度、孔隙率、孔径及各种力学性能进行检测:其杂质含量低于0.5%的成品,其孔隙分布均匀且连通,密度7.0g/cm3,孔隙率58%,孔隙平均直径350μm,弹性模量5.5GPa,弯曲强度124MPa,抗压强度84Mpa,延伸率10.6%。
实施例5:一种多孔钽,它以粒径小于43μm、氧含量小于0.1%的金属钽粉为原料,以聚乙烯醇水溶液为粘结剂溶液制成钽粉浆料,并震动加压注于聚氨酯泡沫载体中,然后在表面喷涂上述聚乙烯醇水溶液;再进行真空干燥、脱脂处理、真空烧结、真空退火及常规后处理制得。
其中,选用的聚氨酯泡沫,其孔径为0.72~0.56mm,密度0.025g/cm3,硬度50°~80°;
震动加压:频率33次/min、0.07Mpa;
真空干燥:真空度保持10-2~1Pa,以除去注满钽粉浆料的聚氨酯泡沫中的水分;
脱脂处理:在惰性气体保护气氛下或真空度10-4~10-3Pa,温度400℃~800℃,并保温时间30~120分钟以除去其中的聚乙烯醇及聚氨酯泡沫;
真空烧结:真空度为10-4Pa,以15℃/min升温至1700℃、保温180min、随炉冷至200~300℃,再以16℃/min升温至1750℃、保温220min,以8℃/min升温至2000~2200℃、保温120min;
热处理:真空度为10-4Pa~10-3Pa,以13℃/min升温至800~900℃、保温300min,再以2.5℃/min冷至400℃、保温180min,然后以22℃/min冷却至室温,后处理得多孔钽成品。
发明人按GB/T5163-2006、GB/T5249-1985、GB/T6886-2001等标准对上述多孔钽成品的多孔材料密度、孔隙率、孔径及各种力学性能进行检测:其杂质含量低于0.5%的成品,其孔隙分布均匀且连通,密度5.0g/cm3,孔隙率63%,孔隙平均直径350μm,弹性模量5.2GPa,弯曲强度135MPa,抗压强度82Mpa,延伸率11.0%。
在上述实施例5给出的方法中,我们还可以对其中的各种条件作其他选择同样能得到本发明所述的多孔钽。
所得多孔钽成品按前述方法检测:
实施例 | 6 | 7 | 8 | 9 |
密度(g/cm3) | 6.2 | 7.5 | 5.3 | 6.5 |
孔隙率(%) | 56 | 70 | 62 | 67 |
孔径(μm) | 150 | 287 | 370 | 460 |
弹性模量(GPa) | 4.6 | 5.8 | 5.0 | 5.3 |
弯曲强度(MPa) | 133 | 147 | 155 | 121 |
抗压强度(MPa) | 80 | 83 | 90 | 86 |
延伸率(%) | 10.5 | 11.5 | 10.9 | 11.0 |
Claims (12)
1.一种医用多孔钽材料的制备方法,其特征在于:将聚乙烯醇水溶液与钽粉配成浆料,采用震动加压将所述浆料注入有机泡沫体中,再经干燥、脱脂、烧结、冷却和热处理步骤制得医用多孔钽材料;所述聚乙烯醇水溶液的质量浓度为2~8%,所述震动频率为20~80次/分钟;所述烧结步骤是真空度为10-4Pa~10-3Pa,以10~20℃/min升温至1500~1800℃、保温120~240min、随炉冷至200~300℃,再以10~20℃/min升温至1500~1800℃、保温180~240min,以5~10℃/min升温至2000~2200℃、保温120~360min;所述热处理步骤是真空度为10-4Pa~10-3Pa,以10~20℃/min升温至800~900℃、保温240~480min,再以2~5℃/min冷至400℃、保温120~300min,然后随炉冷却至室温。
2.如权利要求1所述的制备方法,其特征在于:所述钽粉为平均粒径小于43μm、氧含量小于0.1%的金属钽粉,所述有机泡沫体为孔径0.48~0.89mm,密度0.015 g/cm3~0.035g/cm3,硬度大于500的聚氨酯泡沫。
3.如权利要求1或2所述的制备方法,其特征在于:所述聚乙烯醇水溶液的质量百分比浓度为4~5%,金属钽粉与所述聚乙烯醇水溶液的重量份比为6~9:1。
4.如权利要求3所述的制备方法,其特征在于:所述震动频率为60次/min、压力为0.1Mpa;所述有机泡沫体为孔径0.56~0.72mm,密度0.025g/cm3,硬度500~800的聚氨酯泡沫;金属钽粉与所述聚乙烯醇水溶液的重量份比为7:1。
5.如权利要求1或2所述的制备方法,其特征在于:将上述钽粉浆料震动加压注入有机泡沫体后,还在表面均匀地喷涂所述的聚乙烯醇水溶液,喷涂量与所述金属钽粉的重量份比为1:6。
6.如权利要求3所述的制备方法,其特征在于:将上述钽粉浆料震动加压注入有机泡沫体后,还在表面均匀地喷涂所述的聚乙烯醇水溶液,喷涂量与所述金属钽粉的重量份比为1:6。
7.如权利要求4所述的制备方法,其特征在于:将上述钽粉浆料震动加压注入有机泡沫体后,还在表面均匀地喷涂所述的聚乙烯醇水溶液,喷涂量与所述金属钽粉的重量份比为1:6。
8.如权利要求1或2所述的制备方法,其特征在于:所述干燥的真空度保持10-2~1Pa真空度,然后在保护气氛下,真空度10-4~10-3Pa,温度400℃~800℃条件下进行除去聚乙烯醇和有机泡沫体的脱脂处理;再进行烧结、冷却和热处理步骤;
所述脱脂处理条件还包括有:以0.5℃/min~5℃/min的速率逐步升温至400~800℃,以氩气通入构成保护气氛并保温30min~120min;
所述真空烧结为:10-4Pa~10-3Pa,以12~15℃/min升温至1500~1800℃、保温180~200min、随炉冷至200~300℃,再以16~19℃/min升温至1500~1800℃、保温220~240min,以5~8℃/min升温至2000~2200℃、保温250~320min;
真空烧结后的冷却条件还包括有:真空度不低于10-3Pa,以不高于25℃/min,不低于10℃/min渐降冷却速率方式,对烧结多孔体分段降温冷却至800℃,各段保温时间30min~90min,然后随炉冷却至常温;
所述热处理步骤:真空度为10-4Pa~10-3Pa,以15℃/min升温至800~900℃、保温260~320min,再以3℃/min冷至400℃、保温120min,然后以18~23℃/min冷却至室温。
9.如权利要求1、2、4、6或7所述的制备方法,其特征在于:所述干燥为真空干燥,真空干燥的真空度为10-2~1Pa,干燥温度60~100℃,干燥时间4~8小时;所述脱脂处理条件还包括有:逐步升温至600~800℃,以99.9999%的纯净氩气通入构成保护气氛,以1~5℃/min的速率从室温升至400℃,保温30~60min,以0.5~1.5℃/min的速率从400℃升至600~800℃,保温60~120min;所述真空烧结为:10-4Pa~10-3Pa,以13℃/min升温至1800℃、保温200min、随炉冷至200~300℃,再以17℃/min升温至1800℃、保温230min,以7℃/min升温至2000~2200℃、保温300min;真空烧结后的冷却条件还包括有:真空度为10-4Pa~10-3Pa;以10~20℃/min的速率冷却至1500~1600℃,保温30~60min;以12~20℃/min的速率冷却至1200~1250℃,保温60~90min;以10~20℃/min的速率冷却至800℃,然后随炉冷却;所述热处理步骤是真空度为10-4Pa~10-3Pa,以15℃/min升温至800~900℃、保温260~320min,再以3℃/min冷至400℃、保温120min,然后以18~23℃/min冷却至室温。
10.如权利要求3所述的制备方法,其特征在于:所述干燥为真空干燥,真空干燥的真空度为10-2~1Pa,干燥温度60~100℃,干燥时间4~8小时;所述脱脂处理条件还包括有:逐步升温至600~800℃,以99.9999%的纯净氩气通入构成保护气氛,以1~5℃/min的速率从室温升至400℃,保温30~60min,以0.5~1.5℃/min的速率从400℃升至600~800℃,保温60~120min;所述真空烧结为:10-4Pa~10-3Pa,以13℃/min升温至1800℃、保温200min、随炉冷至200~300℃,再以17℃/min升温至1800℃、保温230min,以7℃/min升温至2000~2200℃、保温300min;真空烧结后的冷却条件还包括有:真空度为10-4Pa~10-3Pa;以10~20℃/min的速率冷却至1500~1600℃,保温30~60min;以12~20℃/min的速率冷却至1200~1250℃,保温60~90min;以10~20℃/min的速率冷却至800℃,然后随炉冷却;所述热处理步骤是真空度为10-4Pa~10-3Pa,以15℃/min升温至800~900℃、保温260~320min,再以3℃/min冷至400℃、保温120min,然后以18~23℃/min冷却至室温。
11.如权利要求5所述的制备方法,其特征在于:所述干燥为真空干燥,真空干燥的真空度为10-2~1Pa,干燥温度60~100℃,干燥时间4~8小时;所述脱脂处理条件还包括有:逐步升温至600~800℃,以99.9999%的纯净氩气通入构成保护气氛,以1~5℃/min的速率从室温升至400℃,保温30~60min,以0.5~1.5℃/min的速率从400℃升至600~800℃,保温60~120min;所述真空烧结为:10-4Pa~10-3Pa,以13℃/min升温至1800℃、保温200min、随炉冷至200~300℃,再以17℃/min升温至1800℃、保温230min,以7℃/min升温至2000~2200℃、保温300min;真空烧结后的冷却条件还包括有:真空度为10-4Pa~10-3Pa;以10~20℃/min的速率冷却至1500~1600℃,保温30~60min;以12~20℃/min的速率冷却至1200~1250℃,保温60~90min;以10~20℃/min的速率冷却至800℃,然后随炉冷却;所述热处理步骤是真空度为10-4Pa~10-3Pa,以15℃/min升温至800~900℃、保温260~320min,再以3℃/min冷至400℃、保温120min,然后以18~23℃/min冷却至室温。
12.如权利要求8所述的制备方法,其特征在于:所述干燥为真空干燥,真空干燥的真空度为10-2~1Pa,干燥温度60~100℃,干燥时间4~8小时;所述脱脂处理条件还包括有:逐步升温至600~800℃,以99.9999%的纯净氩气通入构成保护气氛,以1~5℃/min的速率从室温升至400℃,保温30~60min,以0.5~1.5℃/min的速率从400℃升至600~800℃,保温60~120min;所述真空烧结为:10-4Pa~10-3Pa,以13℃/min升温至1800℃、保温200min、随炉冷至200~300℃,再以17℃/min升温至1800℃、保温230min,以7℃/min升温至2000~2200℃、保温300min;真空烧结后的冷却条件还包括有:真空度为10-4Pa~10-3Pa;以10~20℃/min的速率冷却至1500~1600℃,保温30~60min;以12~20℃/min的速率冷却至1200~1250℃,保温60~90min;以10~20℃/min的速率冷却至800℃,然后随炉冷却;所述热处理步骤是真空度为10-4Pa~10-3Pa,以15℃/min升温至800~900℃、保温260~320min,再以3℃/min冷至400℃、保温120min,然后以18~23℃/min冷却至室温。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011102965157A CN102796894B (zh) | 2011-09-29 | 2011-09-29 | 一种医用多孔钽植入材料的制备方法 |
PCT/CN2012/082225 WO2013044833A1 (zh) | 2011-09-29 | 2012-09-27 | 一种医用多孔钽植入材料的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011102965157A CN102796894B (zh) | 2011-09-29 | 2011-09-29 | 一种医用多孔钽植入材料的制备方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310692177.8A Division CN103740960B (zh) | 2011-09-29 | 2011-09-29 | 医用多孔钽植入材料的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102796894A CN102796894A (zh) | 2012-11-28 |
CN102796894B true CN102796894B (zh) | 2013-12-11 |
Family
ID=47196186
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011102965157A Active CN102796894B (zh) | 2011-09-29 | 2011-09-29 | 一种医用多孔钽植入材料的制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102796894B (zh) |
WO (1) | WO2013044833A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002066693A1 (en) * | 2001-02-19 | 2002-08-29 | Isotis N.V. | Porous metals and metal coatings for implants |
CN101121982A (zh) * | 2007-09-30 | 2008-02-13 | 北京师范大学 | 一种新型多孔泡沫钨及其制备方法 |
EP2149414A1 (en) * | 2008-07-30 | 2010-02-03 | Nederlandse Centrale Organisatie Voor Toegepast Natuurwetenschappelijk Onderzoek TNO | Method of manufacturing a porous magnesium, or magnesium alloy, biomedical implant or medical appliance. |
CN101660076A (zh) * | 2009-10-14 | 2010-03-03 | 北京师范大学 | 有机泡沫浸浆烧结法制备宏观网状多孔钽 |
CN101709419A (zh) * | 2009-12-18 | 2010-05-19 | 北京有色金属研究总院 | 一种泡沫钽及其制备方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1936045A (zh) * | 2005-09-22 | 2007-03-28 | 中南大学 | 三维通孔或部分孔洞彼此相连多孔金属泡沫及其制备方法 |
JP5371772B2 (ja) * | 2006-12-21 | 2013-12-18 | コルティカリス・アクスイェ・セルスカプ | 金属酸化物製足場 |
-
2011
- 2011-09-29 CN CN2011102965157A patent/CN102796894B/zh active Active
-
2012
- 2012-09-27 WO PCT/CN2012/082225 patent/WO2013044833A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002066693A1 (en) * | 2001-02-19 | 2002-08-29 | Isotis N.V. | Porous metals and metal coatings for implants |
CN101121982A (zh) * | 2007-09-30 | 2008-02-13 | 北京师范大学 | 一种新型多孔泡沫钨及其制备方法 |
EP2149414A1 (en) * | 2008-07-30 | 2010-02-03 | Nederlandse Centrale Organisatie Voor Toegepast Natuurwetenschappelijk Onderzoek TNO | Method of manufacturing a porous magnesium, or magnesium alloy, biomedical implant or medical appliance. |
CN101660076A (zh) * | 2009-10-14 | 2010-03-03 | 北京师范大学 | 有机泡沫浸浆烧结法制备宏观网状多孔钽 |
CN101709419A (zh) * | 2009-12-18 | 2010-05-19 | 北京有色金属研究总院 | 一种泡沫钽及其制备方法 |
Non-Patent Citations (2)
Title |
---|
泡沫浸渍法制备的多孔妮基生物材料及l性能;节云峰等;《稀有金属材料与工程》;20101130;第39卷(第11期);全文 * |
节云峰等.泡沫浸渍法制备的多孔妮基生物材料及l性能.《稀有金属材料与工程》.2010,第39卷(第11期), |
Also Published As
Publication number | Publication date |
---|---|
WO2013044833A1 (zh) | 2013-04-04 |
CN102796894A (zh) | 2012-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102205144B (zh) | 医用金属植入材料多孔钽及其制备方法 | |
CN102796892B (zh) | 一种牙骨替代医用多孔金属材料的制备方法 | |
CN102796902B (zh) | 一种制备医用多孔钽植入材料的方法 | |
CN102796893B (zh) | 一种适用于替代人体牙骨组织的多孔钽的制备方法 | |
CN102796899B (zh) | 一种医用多孔金属植入材料的制备方法 | |
CN102796904B (zh) | 一种替代承重骨组织的医用多孔金属材料及其制备方法 | |
CN102796901A (zh) | 一种医用多孔金属植入材料的制备方法 | |
CN103740964A (zh) | 医用多孔金属植入材料的制备方法 | |
CN103740962B (zh) | 牙骨替代医用多孔金属材料的制备方法 | |
CN102793945B (zh) | 一种替代牙骨的医用多孔钽材料及其制备方法 | |
CN103740967B (zh) | 制备医用多孔钽植入材料的方法 | |
CN102796898B (zh) | 一种医用多孔金属植入材料的制备方法 | |
CN102796894B (zh) | 一种医用多孔钽植入材料的制备方法 | |
CN102796906B (zh) | 一种医用多孔钽材料的制备方法 | |
CN103740965A (zh) | 医用金属植入材料多孔钽的制备方法 | |
CN103740960B (zh) | 医用多孔钽植入材料的制备方法 | |
CN102796900B (zh) | 一种医用多孔金属材料及其制备方法 | |
CN102796889B (zh) | 替代人体承重骨组织的医用多孔钽材料的制备方法 | |
CN102796896B (zh) | 一种多孔钽医用植入材料的制备方法 | |
CN102796897B (zh) | 一种医用植入材料多孔钽的制备方法 | |
CN102796905B (zh) | 一种制备医用多孔钽植入材料的方法 | |
CN102796891A (zh) | 一种医用多孔金属材料的制备方法 | |
CN102796903B (zh) | 一种制备替代承重骨组织的医用多孔金属材料的方法 | |
CN102796895B (zh) | 一种替代承重骨组织的医用多孔金属材料的制备方法 | |
CN102796890A (zh) | 一种替代承重骨组织的医用多孔金属材料的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |