WO2013111847A1 - 液面レベル検知装置及び方法 - Google Patents

液面レベル検知装置及び方法 Download PDF

Info

Publication number
WO2013111847A1
WO2013111847A1 PCT/JP2013/051560 JP2013051560W WO2013111847A1 WO 2013111847 A1 WO2013111847 A1 WO 2013111847A1 JP 2013051560 W JP2013051560 W JP 2013051560W WO 2013111847 A1 WO2013111847 A1 WO 2013111847A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
liquid
liquid level
unit
probe
Prior art date
Application number
PCT/JP2013/051560
Other languages
English (en)
French (fr)
Inventor
堅太郎 西村
克基 長瀬
藤雄 白石
夕佳 高田
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Priority to EP13741506.3A priority Critical patent/EP2808658A4/en
Priority to US14/374,272 priority patent/US9423286B2/en
Publication of WO2013111847A1 publication Critical patent/WO2013111847A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/24Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of resistance of resistors due to contact with conductor fluid
    • G01F23/241Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of resistance of resistors due to contact with conductor fluid for discrete levels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/24Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of resistance of resistors due to contact with conductor fluid
    • G01F23/241Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of resistance of resistors due to contact with conductor fluid for discrete levels
    • G01F23/243Schematic arrangements of probes combined with measuring circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/24Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of resistance of resistors due to contact with conductor fluid
    • G01F23/246Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of resistance of resistors due to contact with conductor fluid thermal devices
    • G01F23/247Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of resistance of resistors due to contact with conductor fluid thermal devices for discrete levels
    • G01F23/248Constructional details; Mounting of probes
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/02Devices or arrangements for monitoring coolant or moderator
    • G21C17/035Moderator- or coolant-level detecting devices
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/02Details of handling arrangements
    • G21C19/06Magazines for holding fuel elements or control elements
    • G21C19/07Storage racks; Storage pools
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to a technique for detecting a liquid level of a liquid held in a container.
  • the spent fuel storage pool is monitored and operated so as not to drop below a reference level, for example, a liquid level that is slightly more than twice the length of the spent fuel assembly, in order to ensure the shielding effect of radiation by water.
  • a reference level for example, a liquid level that is slightly more than twice the length of the spent fuel assembly.
  • the liquid level of a spent fuel storage pool in the past has been measured by installing a float type level switch at the upper end of the pool. Moreover, the temperature of pool water was measured with the thermometer installed separately from this float type level switch.
  • the spent fuel storage pool has a refueling crane at the top and moves the entire upper surface, so the installation space for the liquid level gauge and thermometer is very limited.
  • a through hole cannot be provided in the pool wall surface, and a general differential pressure method cannot be employed as a liquid level meter.
  • measures for preventing foreign matter from entering the pool must be taken into consideration.
  • the present invention has been made in consideration of such circumstances, and even when the liquid held in the container boils and the liquid level falls, the liquid level can be reliably detected only by analog processing. It aims at providing the technology to do.
  • a plurality of probes in which a temperature sensor and a heater arranged in the vicinity of the detection point are enclosed in the liquid holding container are arranged at regular intervals in the vertical direction of the liquid holding container, and based on the temperature signal from the probe
  • a liquid level detecting device for measuring a liquid level of a liquid holding container, wherein a probe selection unit for selecting a probe to be energized to a heater from the plurality of probes, and a temperature of the probe selected by the probe selection unit
  • a calculation unit that outputs a result, and a gas-liquid identification unit that identifies whether the detection point exists in a gas phase or a liquid phase based on an output result of the calculation process
  • the present invention provides a technique for reliably detecting the liquid level only by analog processing even when the liquid held in the container boils and the liquid level is lowered.
  • FIG. 1 The conceptual diagram which shows the spent fuel storage pool to which the liquid level detection apparatus which concerns on embodiment of this invention was applied
  • FIG. 1A shows a spent fuel pool 1 to which the liquid level detection device 20 according to each embodiment is applied.
  • a rack 2 that houses a plurality of spent fuel assemblies 3 is arranged.
  • the spent fuel pool 1 is provided with a circulation cooler (not shown) for cooling the pool water 4 that is heated by the decay heat of the spent fuel assembly 3.
  • the probe 10 k includes an enclosing tube 11 enclosing a temperature sensor 12 and a heater 14 disposed in the vicinity of the detection point 15.
  • the temperature sensor 12 includes a copper-constantan thermocouple wire 13 housed in a sheath tube whose tip is closed. And between this strand 13 and a sheath pipe
  • thermocouple element 13 In order to detect the level of the pool water 4 at a deep position of the liquid holding container 1, it is necessary to install the thermocouple element 13 in a long state. However, in this case, since a large load is applied to the strand 13 of the thermocouple, excellent mechanical characteristics are required for the strand 13 itself. Furthermore, since the noise of the detected thermoelectromotive force increases as the wire 13 of the thermocouple becomes longer, it is necessary to employ a thermocouple having a large thermoelectromotive force in order to increase the S / N ratio.
  • the copper-constantan thermocouple wire 13 is superior to a commonly used chromel alumel thermocouple in that it has a large thermoelectromotive force and is suitable for low temperature measurement, but is inferior in mechanical properties. Therefore, a sheath-type copper-constantan thermocouple is used as the temperature sensor 12 to ensure mechanical strength.
  • This sheath-type copper-constantan temperature sensor 12 is manufactured by simultaneously pulling both the strands of the copper-constantan thermocouple before the tensile processing in the sheath tube before the tensile processing. . Since it is housed in the sheath tube, it is possible to create a long temperature sensor 12 in which an excessive load is not applied to the strand 13 of the copper-constantan thermocouple.
  • the enclosing tube 11 accommodates the temperature sensor 12 and the heater 14 inside, is filled with magnesium oxide having a high thermal conductivity, and the outside contacts the pool water 4 (liquid phase) and the atmosphere (gas phase).
  • the temperature sensor 12 measures the temperature of the pool water 4 (liquid phase) and the atmosphere (gas phase) through the enclosed tube 11 and magnesium oxide, and the thermal energy from the heater 14 causes the magnesium oxide and the enclosed tube 11 to pass through. It passes through and is discharged into the pool water 4 (liquid phase) and the atmosphere (gas phase).
  • the start point and period t of the heat supply are controlled by the determination unit 30.
  • a signal processing unit 34 for outputting a processing signal V B (k) of A (k), a calculation unit 35 for calculating the temperature signal V A (k) and the processing signal V B (k) and outputting a result,
  • a gas-liquid identification unit 37 for identifying whether the detection point 15 exists in the gas phase or the liquid phase based on the output result of the arithmetic processing, and a display unit 38 indicating the identification result of the gas-liquid identification unit 37 Have.
  • the heat supply control unit 32 supplies a constant flow of thermal energy to the heater 14 of the selected probe 10 k for a period t, and starts processing of the signal processing unit 34 in synchronization with the start point of the heat supply. . That is, the heat supply control unit 32 outputs a voltage signal for turning on / off the heater to the heat supply unit 22 to define the heat supply period t, and also outputs a voltage signal of the same level to the signal processing unit 34. To do.
  • the input unit 33 branches the input temperature signal V A (k) into two as an analog amount, inputs one directly to the calculation unit 35, and inputs the other to the signal processing unit 34.
  • the signal processing unit (hold circuit) 34A receives the synchronization signal from the heat supply control unit 32, the signal processing unit (hold circuit) 34A outputs the processing signal V B (k) held in the temperature signal V A (k) at the time of the input.
  • the signal processing unit 34A outputs the input temperature signal V A (k) as it is when the synchronization signal from the heat supply control unit 32 is set to OFF.
  • the processing signal V B (k) in which the input voltage level of the temperature signal V A (k) input at that time is held is continuously output until the setting is switched to the OFF setting again.
  • Such a signal processing unit 34A includes, for example, a hold circuit that combines a switch contact and a capacitor.
  • the graph of FIG. 3 shows that when the detection point 15 of the probe 10 k is exposed to the gas phase, the temperature signal V A when the synchronization signal of the heat supply control unit 32 is switched from the OFF setting to the ON setting. It shows the time change of the processed signal V B.
  • the thermal energy supplied from the heater 14 does not diffuse into the gas phase having a low thermal diffusivity. Raise.
  • the temperature signal V A (k) of the temperature sensor 12 rises with a time constant on the order of several minutes, and greatly deviates from the processing signal V B held in the temperature signal V A at the time of ON switching.
  • the graph of FIG. 4 shows that when the detection point 15 of the probe 10 k is immersed in the liquid phase, the temperature signal V A when the synchronization signal of the heat supply control unit 32 is switched from the OFF setting to the ON setting. It shows the time change of the processed signal V B.
  • the thermal energy supplied from the heater 14 diffuses into the liquid phase having a large thermal diffusivity, so that the ambient temperature of the detection point 15 is not so much. Does not rise. For this reason, the temperature signal V A (k) of the temperature sensor 12 reaches an equilibrium state without greatly deviating from the processing signal V B held in the temperature signal V A at the time of ON switching.
  • the computing unit 35 subtracts the temperature signal V A (k) and the processed signal V B (k) from each other and outputs the result to the threshold comparing unit 36.
  • the threshold comparison unit 36 outputs to the gas-liquid identification unit 37 a determination signal as to whether or not the relationship between the output of the calculation unit 35 and the threshold ⁇ satisfies the following determination formula (1) during the heat supply period t. .
  • the threshold ⁇ is set to an optimum value experimentally. ⁇ ⁇ V A (k) ⁇ V B (k) (1)
  • the gas-liquid identification unit 37 identifies that the tip of the probe 10 k is exposed to the gas phase if the determination formula (1) is satisfied, and if the determination formula (1) is not satisfied, the tip of the probe 10 k is the liquid phase. Identify as immersed in.
  • the display unit 38 indicates to the operator the result of identifying whether the tip of the probe 10 k is in the liquid phase or the gas phase, and is realized by a function of turning on or off the lamp, for example.
  • the calculation unit 35 (FIG. 2) divides the temperature signal V A (k) and the processing signal V B (k) from each other and outputs the result to the threshold comparison unit 36.
  • the threshold comparison unit 36 outputs a determination signal as to whether the relationship between the output of the calculation unit 35 and the threshold ⁇ satisfies the following determination formula (2) during the heat supply period t to the gas-liquid identification unit 37 .
  • the threshold value ⁇ is experimentally set to an optimum value. ⁇ ⁇ V A (k) / V B (k) (2)
  • the gas-liquid identification unit 37 identifies that the tip of the probe 10 k is exposed to the gas phase if the determination formula (2) is satisfied, and if not satisfied, the tip of the probe 10 k is the liquid phase. Identify as immersed in.
  • the signal processing unit 34B (34) in the determination unit 30 is a first-order lag circuit that outputs a first-order lag response of a temperature signal. 5 that are the same as or correspond to those in FIG. 2 are denoted by the same reference numerals, and redundant description is omitted.
  • the signal processing unit 34B is configured by a first-order lag circuit
  • the processing signal V B (k) used for gas-liquid identification is not generated without the need for the synchronization signal from the heat supply control unit 32. It can output to the calculating part 35 synchronizing with supply.
  • such a first-order lag circuit can be realized only with a resistor and a capacitor, and the threshold comparison unit 36 does not need to recognize the start point of the heat supply period t, so it is not conscious of time. Determination based on the above-described determination formula (1) or (2) can be performed. For this reason, in 2nd Embodiment, the structure of the determination part 30 can be simplified.
  • the graph of FIG. 6 shows the temperature signal V when the heat supply control unit 32 switches from the OFF setting to the ON setting when the detection point 15 of the probe 10 k in the second embodiment is exposed to the gas phase. It shows the time variations of the a and processing signals V B.
  • the processing signal V B converges to the temperature signal V A (k).
  • the temperature signal V A (k) from the gas phase rises greatly and shifts to a transient state.
  • the processing signal V B (k) indicating the first-order lag response in this transient state also increases following the temperature signal V A (k), but the change speed cannot follow and the two are greatly deviated.
  • the graph of FIG. 7 shows the temperature signal when the heat supply control unit 32 is switched from the OFF setting to the ON setting when the detection point 15 of the probe 10 k in the second embodiment is immersed in the liquid phase. It shows the time variations of the V a and its processed signal V B.
  • the processing signal V B converges to the temperature signal V A (k).
  • the temperature signal V A (k) from the liquid phase rises and transitions to a transient state, but the rate of change is small.
  • the processing signal V B (k) indicating the first order lag response in this transient state increases following the temperature signal V A (k), and the difference between the two is small.
  • the time constant of the first-order delay is about 60 seconds.
  • a processing signal V B (k) (hold value or first-order lag response) of the temperature signal V A (k) is output in synchronization with this heat supply (S15), and the temperature signal is output until the heat supply period t elapses.
  • V A (k) and its processed signal V B (k) are processed and output (S16; No, Yes). If the output result of the arithmetic processing satisfies the above-described determination formula (1) or (2), the gas phase is determined (S17; Yes, S18), and if it is not satisfied, the liquid phase is determined (S17). No, S19).
  • the liquid level of the liquid holding container 1 is determined (S20; Yes, S21).
  • liquid level detection device since it can be configured only with an analog circuit, it has toughness against unforeseen circumstances in nuclear facilities.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

 容器に保持した液体が沸騰して液面レベルが低下するような事態になっても、アナログ処理のみで液面レベルを確実に検知する技術を提供する。 液面レベル検知装置において、複数のプローブの中からヒータに通電するプローブを選定するプローブ選定部31と、このプローブ選定部31で選定したプローブの温度センサの出力をアナログ量のまま温度信号VA(k)として入力する入力部と、ヒータへの通電に同期して温度信号VA(k)の処理信号VB(k)を出力する信号処理部34と、温度信号VA(k)及び処理信号VB(k)を演算処理して結果を出力する演算部35と、演算処理の出力結果に基づいて検出点が気相又は液相のいずれに存在するかを識別する気液識別部37と、気液識別部37の識別結果を示す表示部38とを、備える。

Description

液面レベル検知装置及び方法
 本発明は、容器に保持されている液体の液面レベルを検知する技術に関する。
 使用済み燃料貯蔵プールでは、水による放射線の遮へい効果を確保するため、基準レベル、例えば使用済み燃料集合体の長さの2倍強程度の液面レベルよりも低下しないように監視運用している。
 従来における使用済み燃料貯蔵プールの液面レベルは、プール上端部にフロート式レベルスイッチを設置して計測していた。また、このフロート式レベルスイッチとは別個に設置された温度計により、プール水の温度計測をしていた。
 使用済み燃料貯蔵プールは、その上部に燃料交換用のクレーンが配置され、上面全体を移動するために、液面レベル計及び温度計の設置スペースが非常に限られている。また、プール水の漏えい防止の観点から、プール壁面部に貫通孔を設けることができず、液面レベル計として一般的な差圧方式を採用することができない。さらに燃料貯蔵プール内に異物が落下すると取り出しが困難であるため、プール内への異物混入防止対策も考慮しなければならない。
 このような事情の下、熱電対における二つのうち一方の接合点の近傍にヒータを配置して液面レベルを検知するセンサが提案されている(例えば、特許文献1)。この技術によれば、水相と気相の熱拡散率が相違するために、二つの接合点の温度差(起電力差)に基づいて、センサ部が水相又は気相のいずれに位置しているかを判断する。
特開平10-153681号公報
 ところで、使用済み燃料貯蔵プールにおいて、冷却機能が長期間停止して給水ができなくなると、使用済み燃料の放熱で水温が上昇して沸騰し、蒸発により液面レベルが低下する。このように液面レベルが低下すると、放射線の遮へい効果が減少して放射線環境が悪化する。そこで、液面レベルが所定の基準レベルより下がった場合は、この液面レベルを正確に把握して放射線環境の安全性を評価することが求められている。
 しかし、特許文献1の技術では、水温が沸騰温度まで上昇した場合、熱電対の二つの接合点の温度差(起電力差)を安定的に計測することが困難になる。このために、使用済み燃料貯蔵プールの液面レベルの検知精度の低下が懸念される。
 また、各種センサの出力信号をデジタル処理することは、システムがソフト制御されることになるために、原子力設備における不測の事態に対する脆弱性が懸念される。
 本発明はこのような事情を考慮してなされたもので、容器に保持した液体が沸騰して液面レベルが低下するような事態になっても、アナログ処理のみで液面レベルを確実に検知する技術を提供することを目的とする。
 液体保持容器内に、温度センサ及びその検出点の近傍に配置されるヒータを封入したプローブを前記液体保持容器の鉛直方向に一定間隔に複数配置して、前記プローブからの温度信号に基づいて前記液体保持容器の液面レベルを測定する液面レベル検知装置であって、前記複数のプローブの中からヒータに通電するプローブを選定するプローブ選定部と、前記プローブ選定部で選定した前記プローブの温度センサの出力をアナログ量のまま温度信号として入力する入力部と、前記ヒータへの通電に同期して前記温度信号の処理信号を出力する信号処理部と、前記温度信号及び前記処理信号を演算処理して結果を出力する演算部と、前記演算処理の出力結果に基づいて前記検出点が気相又は液相のいずれに存在するかを識別する気液識別部と、前記気液識別部の識別結果を示す表示部とを、備える。
 本発明により、容器に保持した液体が沸騰して液面レベルが低下するような事態になっても、アナログ処理のみで液面レベルを確実に検知する技術が提供される。
(A)本発明の実施形態に係る液面レベル検知装置が適用された使用済み燃料貯蔵プールを示す概念図、(B)温度センサの先端部分の断面図。 第1実施形態に係る液面レベル検知装置を示すブロック図。 第1実施形態に係る液面レベル検知装置で気相判定となる場合の温度信号VA及びその処理信号VBの時間変化を示すグラフ。 第1実施形態に係る液面レベル検知装置で液相判定となる場合の温度信号VA及びその処理信号VBの時間変化を示すグラフ。 第2実施形態に係る液面レベル検知装置を示すブロック図。 第2実施形態に係る液面レベル検知装置で気相判定となる場合の温度信号VA及びその処理信号VBの時間変化を示すグラフ。 第2実施形態に係る液面レベル検知装置で液相判定となる場合の温度信号VA及びその処理信号VBの時間変化を示すグラフ。 各実施形態に係る液面レベル検知装置の動作を示すフローチャート。
(第1実施形態)
 以下、本発明の実施形態を添付図面に基づいて説明する。
 図1(A)は、各実施形態に係る液面レベル検知装置20が適用された使用済み燃料プール1を示している。
 使用済み燃料プール1(以下「液体保持容器1」ともいう)には、複数の使用済み燃料集合体3を収納するラック2が配置されている。さらに、使用済み燃料プール1には、使用済み燃料集合体3の崩壊熱により昇温するプール水4を冷却する循環冷却器(図示略)が配置されている。
 そして、例えば、使用済み燃料集合体3の長さa=約4.5m、ラック2の高さb=約5mの場合、深さd=約12m程度の液体保持容器1が必要となり、基準水位c=約11mとなるようにプール水4の液面レベルが維持されている。
 これにより、使用済み燃料集合体3から放出される高レベルの放射線は、プール水4に遮られ、液体保持容器1から外部漏洩することが抑制される。
 液体保持容器1には、複数のプローブ10k[k=0~n]が、その先端部分を高さ方向に間隔を空けて配置されている。
 図1(B)に示すようにプローブ10kは、温度センサ12及びその検出点15の近傍に配置されるヒータ14を封入した封入管11で構成されている。
 温度センサ12は、銅-コンスタンタン熱電対の素線13を、先端が閉じられているシース管に収容したものである。そして、この素線13とシース管の間には、絶縁材として酸化マグネシウムが充填されている。
 検出点15において、銅の素線とコンスタンタンの素線とが溶接されている。そして、これら素線13の反対端は温度検出部21に導かれ、この反対端で検出される熱起電力に基づいて検出点15の周辺温度が計測される。
 液体保持容器1の深い位置におけるプール水4の液面レベルを検出するためには、熱電対の素線13を長い状態で施設する必要がある。しかし、この場合、熱電対の素線13に大きな負荷がかかるために、素線13そのものに優れた機械的特性が求められる。さらに、熱電対の素線13が長くなる程に、検出される熱起電力のノイズも大きくなるために、S/N比を稼ぐために熱起電力の大きな熱電対を採用する必要がある。
 銅-コンスタンタン熱電対の素線13は、一般的に使用されているクロメルアルメル熱電対と比較して、大きな熱起電力が得られ、低温測定に適する点において優れるが、機械的特性において劣る。そこで、温度センサ12としてシース式の銅-コンスタンタン熱電対を採用して、機械的強度を確保することとした。
 このシース式の銅-コンスタンタンの温度センサ12は、引張加工前の銅-コンスタンタン熱電対の素線を、引張加工前のシース管に挿入した状態で、両者を同時に引張加工することにより製造される。シース管に収納されているため、銅-コンスタンタン熱電対の素線13に過剰な負荷が付与されることのない、長尺の温度センサ12を作成することができる。
 封入管11は、内部に温度センサ12及びヒータ14を収容し、さらに熱伝導度の高い酸化マグネシウムで充填され、外側はプール水4(液相)や大気(気相)に接する。温度センサ12は、この封入管11及び酸化マグネシウムを介してプール水4(液相)や大気(気相)の温度を計測し、ヒータ14からの熱エネルギーは、この酸化マグネシウム及び封入管11を通過してプール水4(液相)や大気(気相)に放出される。
 このように構成されるプローブ10kの温度センサ12からmVオーダーの電圧出力Vk[k=0~n]が出力される。ヒータ14に電流を流して発生させたジュール熱は、プローブ10k[k=0~n]の検出点15の周囲が気相であるか液相であるかによって熱拡散率が異なるために、温度センサ12の電圧出力Vkに違いを生じさせる。
 温度検出部21は、プローブ10k[k=0~n]から出力される微弱な電圧出力Vkをアナログ回路で処理可能な電圧レベルの温度信号VA(k)に変換して判定部30に出力する。具体的には、プローブ10kの測温範囲0~100℃に対応する電圧出力Vkの電圧範囲を、1~5Vの電圧範囲に対応させた温度信号VA(k)に変換する。
 熱供給部22は、選定されたプローブ10k[k=0~n]のヒータ14に通電してジュール熱を発生させ、検出点15の周辺に一定流量の熱エネルギーを供給する。なお、この熱供給の開始時点及び期間tは、判定部30から制御される。
 判定部30は、図2に示すように(適宜、図1参照)、複数のプローブ10k[k=0~n]の中からヒータ14に通電するプローブ10を選定するプローブ選定部31と、このプローブ選定部31で選定したセンサ12(図1)の電圧出力Vkをアナログ量のまま温度信号VA(k)として入力する入力部33と、ヒータへの通電に同期して温度信号VA(k)の処理信号VB(k)を出力する信号処理部34と、温度信号VA(k)及び処理信号VB(k)を演算処理して結果を出力する演算部35と、この演算処理の出力結果に基づいて検出点15が気相又は液相のいずれに存在するかを識別する気液識別部37と、この気液識別部37の識別結果を示す表示部38とを、備えている。
 プローブ選定部31は、液体保持容器1(図1)の気液識別を実施するプローブ10k[k=0~n]を複数の中から選定する。
 熱供給制御部32は、選定されたプローブ10kのヒータ14に対し一定流量の熱エネルギーを期間tだけ供給させるとともに、この熱供給の開始時点に同期して信号処理部34の処理を開始させる。
 つまり、熱供給制御部32は、ヒータ通電をON/OFFさせる電圧信号を熱供給部22に出力して熱供給の期間tを規定するとともに、信号処理部34にも同レベルの電圧信号を出力する。
 入力部33は、入力した温度信号VA(k)をアナログ量のまま2つに分岐し、一方を演算部35に直接入力し、他方を信号処理部34に入力する。
 信号処理部(ホールド回路)34Aは、熱供給制御部32からの同期信号を入力すると、この入力時点の温度信号VA(k)にホールドした処理信号VB(k)を出力する。
 つまり、信号処理部34Aは、熱供給制御部32からの同期信号がOFF設定の時は、入力した温度信号VA(k)をそのまま出力する。そして、ON設定に切り替わった時、その時点で入力した温度信号VA(k)の入力電圧レベルが保持された処理信号VB(k)を、再びOFF設定に切り替わるまで出力し続ける。
 このような信号処理部34Aは、例えばスイッチ接点とコンデンサを組み合わせたホールド回路などで構成される。
 ここで図3のグラフは、プローブ10kの検出点15が気相に露出している場合に、熱供給制御部32の同期信号がOFF設定からON設定に切り替わった時の温度信号VA及びその処理信号VBの時間変化を示している。
 このように、プローブ10kの先端が気相に露出している場合、ヒータ14から供給された熱エネルギーは、熱拡散率が小さい気相に拡散しないために、検出点15の周辺温度を大きく上昇させる。
 このために、温度センサ12の温度信号VA(k)は、数分オーダーの時定数で上昇するとともに、ON切替時の温度信号VAに保持されている処理信号VBから大きく乖離する。
 次に図4のグラフは、プローブ10kの検出点15が液相に浸漬している場合に、熱供給制御部32の同期信号がOFF設定からON設定に切り替わった時の温度信号VA及びその処理信号VBの時間変化を示している。
 このように、プローブ10kの先端が液相に浸漬している場合、ヒータ14から供給された熱エネルギーは、熱拡散率が大きい液相に拡散するために、検出点15の周辺温度はあまり上昇しない。
 このために、温度センサ12の温度信号VA(k)は、ON切替時の温度信号VAに保持されている処理信号VBからあまり乖離せずに平衡状態に達する。
 演算部35(図2)は、温度信号VA(k)及びその処理信号VB(k)を互いに減算処理して閾値比較部36に出力する。
 閾値比較部36は、熱供給の期間tにおいて演算部35の出力と閾値αとの関係が次の判定式(1)を満たすか否かについての判定信号を、気液識別部37に出力する。なお閾値αは、実験的に最適値が設定される。
   α<VA(k)-VB(k)  (1)
 そして気液識別部37は、この判定式(1)が充足されていればプローブ10kの先端は気相に露出していると識別し、非充足であればプローブ10kの先端は液相に浸漬していると識別する。
 表示部38は、オペレータに対し、プローブ10kの先端部分が液相にあるか気相にあるかの識別結果を示すもので、例えばランプを点灯したり消灯したりする機能により実現される。
 また、他の動作例として演算部35(図2)は、温度信号VA(k)及びその処理信号VB(k)を互いに除算処理して閾値比較部36に出力する。
 閾値比較部36は、熱供給の期間tにおいて演算部35の出力と閾値βとの関係が次の判定式(2)を満たすか否かについての判定信号を、気液識別部37に出力する。なお閾値βは、実験的に最適値が設定される。
   β<VA(k)/VB(k)  (2)
 そして気液識別部37は、この判定式(2)が充足されていればプローブ10kの先端は気相に露出していると識別し、非充足であればプローブ10kの先端は液相に浸漬していると識別する。
(第2実施形態)
 次に図5を参照して本発明における第2実施形態について説明する。
 第2実施形態では、判定部30において、信号処理部34B(34)が、温度信号の一次遅れ応答を出力する一次遅れ回路である点において、第1実施形態と相違する。なお、図5において図2と同一又は相当する部分は、同一符号で示し、重複する説明を省略する。
 このように、信号処理部34Bが、一次遅れ回路で構成されることにより、熱供給制御部32からの同期信号を必要とせずに、気液識別に利用する処理信号VB(k)を熱供給に同期して演算部35に出力することができる。
 また、このような一次遅れ回路は、抵抗器とコンデンサのみで実現することができ、閾値比較部36は、熱供給の期間tの開始時点を認識する必要がないので、時間を意識することなく前記した判定式(1)又は(2)に基づく判定ができる。
 このために、第2実施形態では、判定部30の構成を簡素化することができる。
 ここで図6のグラフは、第2実施形態におけるプローブ10kの検出点15が気相に露出している場合に、熱供給制御部32がOFF設定からON設定に切り替わった時の温度信号VA及びその処理信号VBの時間変化を示している。
 熱供給制御部32がOFF設定である期間は、温度信号VA(k)が定常状態であるために、処理信号VBは温度信号VA(k)に収束している。
 しかし、熱供給制御部32がON設定に切り替わると、気相からの温度信号VA(k)は大きく立ち上がって過渡状態に移行する。そして、この過渡状態の一次遅れ応答を示す処理信号VB(k)も、温度信号VA(k)に追従して増加するが、変化速度が付いていけず両者は大きく乖離することになる。
 次に、図7のグラフは、第2実施形態におけるプローブ10kの検出点15が液相に浸漬している場合に、熱供給制御部32がOFF設定からON設定に切り替わった時の温度信号VA及びその処理信号VBの時間変化を示している。
 熱供給制御部32がOFF設定である期間において、温度信号VA(k)が定常状態であるために、この温度信号VA(k)に処理信号VBは収束している。
 そして、熱供給制御部32がON設定に切り替わると、液相からの温度信号VA(k)は立ち上がって過渡状態に移行するが、その変化速度が小さい。このために、この過渡状態の一次遅れ応答を示す処理信号VB(k)は、温度信号VA(k)に追従して増加し、両者の乖離は小さい。なお、一次遅れの時定数は例として60秒程度とする。
 図8のフローチャートに基づいて各実施形態に係る液面レベル検知装置の動作を説明する(適宜、図1参照)。
 液体保持容器1の高さ方向に先端位置を変化させて配置されている複数のプローブ10k[k=0~n]を上から順番に選定する(S11,S12)。そして、選定されたプローブ10kの温度センサ12の出力Vkをアナログ量のまま温度信号VA(k)として入力しつつヒータ14へ熱供給を開始する(S13,S14)。
 そして、この熱供給に同期して温度信号VA(k)の処理信号VB(k)(ホールド値又は一次遅れ応答)が出力され(S15)、熱供給の期間tが経過するまで温度信号VA(k)及びその処理信号VB(k)を演算処理して出力する(S16;No、Yes)。
 そして演算処理の出力結果が、前記した判定式(1)又は判定式(2)を充足すれば気相と判定し(S17;Yes、S18)、未充足であれば液相と判定する(S17;No、S19)。
 さらに、次のプローブ10kに対して、気相/液相の判定を実施し(S20;No)、全てのプローブ10k[k=0~n]における、気相/液相の判定結果から液体保持容器1の液面レベルを判定する(S20;Yes、S21)。
 以上述べた少なくともひとつの実施形態の液面レベル検知装置によれば、アナログ回路のみで構成することができるために、原子力設備における不測の事態に対する強靭性が備わる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更、組み合わせを行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
 例えば、実施形態において、複数のプローブ10k[k=0~n]を固定して、液面レベルを検知しているが、プローブを上下方向に移動させながら液面レベルを検知することもできる。

Claims (5)

  1.  液体保持容器内に、温度センサ及びその検出点の近傍に配置されるヒータを封入したプローブを前記液体保持容器の鉛直方向に一定間隔に複数配置して、前記プローブからの温度信号に基づいて前記液体保持容器の液面レベルを測定する液面レベル検知装置であって、
     前記複数のプローブの中からヒータに通電するプローブを選定するプローブ選定部と、
     前記プローブ選定部で選定した前記プローブの温度センサの出力をアナログ量のまま温度信号として入力する入力部と、
     前記ヒータへの通電に同期して前記温度信号の処理信号を出力する信号処理部と、
     前記温度信号及び前記処理信号を演算処理して結果を出力する演算部と、
     前記演算処理の出力結果に基づいて前記検出点が気相又は液相のいずれに存在するかを識別する気液識別部と、
     前記気液識別部の識別結果を示す表示部とを、備えることを特徴とする液面レベル検知装置。
  2.  請求項1に記載の液面レベル検知装置において、
     前記気液識別部の識別結果に基づいて前記液面レベルを判定する液面レベル判定部を、さらに備えることを特徴とする液面レベル検知装置。
  3.  請求項1に記載の液面レベル検知装置において、
     前記演算部は、前記温度信号及び前記処理信号を互いに減算するか又は除算した結果を出力することを特徴とする液面レベル検知装置。
  4.  請求項1に記載の液面レベル検知装置において、
     前記信号処理部は、前記熱供給の開始時点の前記温度信号にホールドするホールド回路であるか、又は前記温度信号の一次遅れ応答を出力する一次遅れ回路であることを特徴とする液面レベル検知装置。
  5.  液体保持容器内に、温度センサ及びその検出点の近傍に配置されるヒータを封入したプローブを前記液体保持容器の鉛直方向に一定間隔に複数配置して、前記プローブからの温度信号に基づいて前記液体保持容器の液面レベルを測定する液面レベル検知方法であって、
     前記複数のプローブの中からヒータに通電するプローブを選定するステップと、
     前記選定された前記プローブの温度センサの出力をアナログ量のまま温度信号として入力するステップと、
     前記ヒータへの通電に同期して前記温度信号の処理信号を出力するステップと、
     前記温度信号及び前記処理信号を演算処理して結果を出力するステップと、
     前記演算処理の出力結果に基づいて前記検出点が気相又は液相のいずれに存在するかを識別するステップと、
     選定された前記プローブの少なくとも一つに基づく前記識別結果を表示するステップとを、含むことを特徴とする液面レベル検知方法。
PCT/JP2013/051560 2012-01-26 2013-01-25 液面レベル検知装置及び方法 WO2013111847A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13741506.3A EP2808658A4 (en) 2012-01-26 2013-01-25 DEVICE AND METHOD FOR LIQUID LEVEL DETECTION
US14/374,272 US9423286B2 (en) 2012-01-26 2013-01-25 Liquid level sensing apparatus and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012014554A JP5583153B2 (ja) 2012-01-26 2012-01-26 液面レベル検知装置及び方法
JP2012-014554 2012-01-26

Publications (1)

Publication Number Publication Date
WO2013111847A1 true WO2013111847A1 (ja) 2013-08-01

Family

ID=48873559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051560 WO2013111847A1 (ja) 2012-01-26 2013-01-25 液面レベル検知装置及び方法

Country Status (4)

Country Link
US (1) US9423286B2 (ja)
EP (1) EP2808658A4 (ja)
JP (1) JP5583153B2 (ja)
WO (1) WO2013111847A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014055945A (ja) * 2012-09-11 2014-03-27 Ge-Hitachi Nuclear Energy Americas Llc 外部電力を用いずに使用済み燃料プールの温度および液面を測定する方法およびシステム
JP2017090253A (ja) * 2015-11-10 2017-05-25 日立Geニュークリア・エナジー株式会社 水位計測システム

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11017907B2 (en) 2013-12-31 2021-05-25 Nuscale Power, Llc Nuclear reactor protection systems and methods
US20150323938A1 (en) * 2014-05-09 2015-11-12 Honeywell International Inc. Temperature-based level detection and control method and apparatus
JP6401584B2 (ja) * 2014-11-25 2018-10-10 住友精密工業株式会社 液面検出装置および液面検出システム
CN110366760B (zh) * 2016-12-30 2024-05-07 纽斯高动力有限责任公司 核反应堆保护系统和方法
JP6752169B2 (ja) * 2017-03-14 2020-09-09 日立Geニュークリア・エナジー株式会社 熱電対式液位計測システム
RU175490U1 (ru) * 2017-05-15 2017-12-06 Общество с ограниченной ответственностью Научно-производственное объединение (ООО НПО "ИНКОР") Зонд контроля температуры и уровня жидкости
US10760937B2 (en) * 2017-09-08 2020-09-01 RV Whisper LLC System and method for measuring the level of fluid in a container
EP4053516A1 (en) * 2021-03-05 2022-09-07 HORIBA STEC, Co., Ltd. Material supply system, program for a material supply system and material supply method
CN113280887A (zh) * 2021-05-14 2021-08-20 山西天泽煤化工集团股份公司 一种特殊算法液位计

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56114718A (en) * 1980-02-14 1981-09-09 Toshiba Corp Liquid level indicator
JPS59107213A (ja) * 1982-12-10 1984-06-21 Mitsubishi Electric Corp 液面検出装置
JPH01140134U (ja) * 1988-03-18 1989-09-26
JPH10153681A (ja) 1996-11-22 1998-06-09 Mitsubishi Heavy Ind Ltd 圧力抑制プールの水位測定装置
JP2005134230A (ja) * 2003-10-30 2005-05-26 Fuji Electric Retail Systems Co Ltd 液位検知装置
JP2013007721A (ja) * 2011-06-27 2013-01-10 Toshiba Corp 原子力発電所の水位温度検出装置

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2246563A (en) * 1940-06-13 1941-06-24 Universal Oil Prod Co Liquid level indication and control
US3280627A (en) * 1963-05-27 1966-10-25 American Radiator & Standard Liquid level sensor
US3905243A (en) * 1973-09-11 1975-09-16 Us Energy Liquid-level sensing device
US4016758A (en) * 1975-09-09 1977-04-12 Taylor Julian S Thermal gauge probe
JPS5593025A (en) * 1979-01-08 1980-07-15 Mitsubishi Electric Corp Superconductive liquid level indicator
JPS5673320A (en) * 1979-11-20 1981-06-18 Toshiba Corp Water level detecting device
JPS5676014A (en) * 1979-11-28 1981-06-23 Hitachi Ltd Measuring device for liquid level at extreme low temperature
DE3022398A1 (de) * 1980-06-14 1982-01-07 Vdo Adolf Schindling Ag, 6000 Frankfurt Einrichtung zum elektrischen ueberwachen des niveaus einer in einem behaelter enthaltenen fluessigkeit
US4356480A (en) * 1980-09-11 1982-10-26 Minnesota Mining And Manufacturing Company Liquid level sensing circuitry
JPS5764115A (en) * 1980-10-07 1982-04-19 Japan Atom Energy Res Inst Method and apparatus detecting liquid level
US4367462A (en) * 1981-01-05 1983-01-04 Minnesota Mining And Manufacturing Company Liquid level sensing circuitry
DE3148383A1 (de) * 1981-12-07 1983-06-16 Siemens AG, 1000 Berlin und 8000 München Vorrichtung zur messung des fuellstandes
DE3408824A1 (de) * 1984-03-10 1985-09-12 Vdo Adolf Schindling Ag, 6000 Frankfurt Schaltungsanordnung zur elektrothermischen, umgebungstemperatur-kompensierten fuellstandsmessung
DE3423802A1 (de) * 1984-06-28 1986-01-02 Vdo Adolf Schindling Ag, 6000 Frankfurt Verfahren und einrichtung zur elektrothermischen, umgebungstemperatur-kompensierten fuellstandsmessung
JPS6176913A (ja) * 1984-09-25 1986-04-19 Hitachi Ltd 熱電対式液面計
US4609913A (en) * 1985-02-22 1986-09-02 Wickes Manufacturing Company Fluid level sensor
US4929930A (en) * 1988-10-24 1990-05-29 Process Technology Inc. Liquid level controller utilizing the rate of change of a thermocouple
US5111692A (en) * 1990-03-27 1992-05-12 Fluid Components, Inc. Temperature compensated liquid level and fluid flow sensor
US5211904A (en) * 1990-12-10 1993-05-18 General Electric Company In-vessel water level monitor for boiling water reactors
US5209115A (en) * 1991-09-11 1993-05-11 Intelsat Liquid detector for thin-walled tanks operating in zero gravity
JPH05107099A (ja) * 1991-10-18 1993-04-27 Chichibu Cement Co Ltd 液面レベル計
JPH078729U (ja) * 1993-07-20 1995-02-07 清彦 三嘴 水位センサー
DE4434559C2 (de) * 1994-09-28 1999-09-02 Mannesmann Vdo Ag Verfahren und Anordnung zum Betrieb eines Füllstandssensors
US5730026A (en) * 1995-03-31 1998-03-24 Josef Maatuk Microprocessor-based liquid sensor and ice detector
US5782131A (en) * 1996-06-28 1998-07-21 Lord; Richard G. Flooded cooler with liquid level sensor
JPH10332458A (ja) * 1997-05-27 1998-12-18 Furukawa Electric Co Ltd:The 極低温冷媒液面計
US6615658B2 (en) * 1999-08-03 2003-09-09 Charles Darwin Snelling Method and apparatus for detecting the internal liquid level in a vessel
JP2002214020A (ja) * 2001-01-15 2002-07-31 Erumekku Denshi Kogyo Kk 液位測定装置
US6536276B2 (en) * 2001-02-27 2003-03-25 Rosemont Aerospace Inc. Apparatus and method to non-intrusively measure the level of liquid in a sealed container
US6546796B2 (en) * 2001-03-15 2003-04-15 Therm-O-Disc, Incorporated Liquid level sensor
AUPR689601A0 (en) * 2001-08-08 2001-08-30 Refrigerant Monitoring Systems Pty Ltd Liquid level sensor
US20050126282A1 (en) * 2003-12-16 2005-06-16 Josef Maatuk Liquid sensor and ice detector
EP2009431A1 (en) * 2006-03-28 2008-12-31 Mitsui Mining and Smelting Co., Ltd Fluid identifying device and fluid identifying method
US7828960B1 (en) * 2007-05-16 2010-11-09 Thermaco, Inc. F.O.G. separator control
WO2013003891A1 (en) * 2011-07-01 2013-01-10 Breville Pty Limited Method and apparatus for water level sensing
US9091583B2 (en) * 2012-11-16 2015-07-28 Amphenol Thermometrics, Inc. Fluid level sensor system and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56114718A (en) * 1980-02-14 1981-09-09 Toshiba Corp Liquid level indicator
JPS59107213A (ja) * 1982-12-10 1984-06-21 Mitsubishi Electric Corp 液面検出装置
JPH01140134U (ja) * 1988-03-18 1989-09-26
JPH10153681A (ja) 1996-11-22 1998-06-09 Mitsubishi Heavy Ind Ltd 圧力抑制プールの水位測定装置
JP2005134230A (ja) * 2003-10-30 2005-05-26 Fuji Electric Retail Systems Co Ltd 液位検知装置
JP2013007721A (ja) * 2011-06-27 2013-01-10 Toshiba Corp 原子力発電所の水位温度検出装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2808658A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014055945A (ja) * 2012-09-11 2014-03-27 Ge-Hitachi Nuclear Energy Americas Llc 外部電力を用いずに使用済み燃料プールの温度および液面を測定する方法およびシステム
JP2017090253A (ja) * 2015-11-10 2017-05-25 日立Geニュークリア・エナジー株式会社 水位計測システム

Also Published As

Publication number Publication date
EP2808658A4 (en) 2015-12-23
US9423286B2 (en) 2016-08-23
JP2013156036A (ja) 2013-08-15
JP5583153B2 (ja) 2014-09-03
US20150040660A1 (en) 2015-02-12
EP2808658A1 (en) 2014-12-03

Similar Documents

Publication Publication Date Title
JP5583153B2 (ja) 液面レベル検知装置及び方法
JP5787729B2 (ja) 水位温度測定装置
US4590797A (en) Thermal system for measuring liquid levels
US10443529B2 (en) Vehicular liquid containment system and method for verifying integrity of same
US20130177122A1 (en) Reactor Water-Level/Temperature Measurement Apparatus
JP5826605B2 (ja) 使用済み燃料貯蔵プールの水位検出装置及び方法
JP5865614B2 (ja) 原子力発電所の水位温度検出装置
JP6529401B2 (ja) 放射性物質密封容器のガス漏洩検知装置及び方法並びにプログラム
EP0066516B1 (fr) Dispositif de surveillance de l'état du réfrigérant d'un réacteur nucléaire de puissance
US9810566B2 (en) Robust dynamical method and device for detecting the level of a liquid using resistance temperature detectors
WO2018123854A1 (ja) 液面計、それを備えた気化器、及び液面検知方法
US20090234596A1 (en) Apparatus for detecting position of liquid surface and determining liquid volume
JP2013108905A (ja) 原子炉水位計測システム
JP2015522816A (ja) 容器に収容されている液体の液位を検出する装置
JP6819784B2 (ja) 温度測定装置、温度測定方法および温度測定プログラム
US4781469A (en) Detecting proximity or occurrence of change of phase within a fluid
JP6382609B2 (ja) 液面レベル計測システム及び方法
JP6383276B2 (ja) 水位計測装置および水位計測方法ならびに原子力プラント
JP2013113808A (ja) 液面レベル計測装置、方法、及びプログラム
US20240044723A1 (en) Noninvasive thermometer
JPH11125690A (ja) 多重シース型ナトリウム漏洩検出装置
JP6637738B2 (ja) 原子炉水位推定装置
RU2755841C1 (ru) Устройство для измерения параметров среды
JP2018025503A (ja) 液面レベル計測装置及び液面レベル計測の評価方法
WO2018185927A1 (ja) 液漏れ検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13741506

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14374272

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013741506

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013741506

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE