WO2013111604A1 - 光走査型観察装置 - Google Patents

光走査型観察装置 Download PDF

Info

Publication number
WO2013111604A1
WO2013111604A1 PCT/JP2013/000394 JP2013000394W WO2013111604A1 WO 2013111604 A1 WO2013111604 A1 WO 2013111604A1 JP 2013000394 W JP2013000394 W JP 2013000394W WO 2013111604 A1 WO2013111604 A1 WO 2013111604A1
Authority
WO
WIPO (PCT)
Prior art keywords
scanning
sampling
scanning speed
observation
observation object
Prior art date
Application number
PCT/JP2013/000394
Other languages
English (en)
French (fr)
Inventor
藤原 真人
篤義 嶋本
西村 淳一
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to CN201380006683.5A priority Critical patent/CN104081250B/zh
Priority to EP13741514.7A priority patent/EP2808718B1/en
Publication of WO2013111604A1 publication Critical patent/WO2013111604A1/ja
Priority to US14/340,740 priority patent/US9651774B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00006Operational features of endoscopes characterised by electronic signal processing of control signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00172Optical arrangements with means for scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/063Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements for monochromatic or narrow-band illumination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4257Photometry, e.g. photographic exposure meter using electric radiation detectors applied to monitoring the characteristics of a beam, e.g. laser beam, headlamp beam
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2461Illumination
    • G02B23/2469Illumination using optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/26Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes using light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/103Scanning systems having movable or deformable optical fibres, light guides or waveguides as scanning elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/74Circuitry for compensating brightness variation in the scene by influencing the scene brightness using illuminating means

Definitions

  • the present invention relates to an optical scanning observation apparatus that reduces non-uniformity of resolution within an observation range due to a difference in scanning speed.
  • signal light such as transmitted light, reflected light, or fluorescence obtained from the observation target is converted into an electrical signal by a photoelectric conversion means.
  • An optical scanning observation apparatus that forms image data is known. For example, a laser scanning microscope using a galvanometer scanner as a scanning mechanism or a laser beam emitted from a fiber is irradiated so as to form a spot on the observation object, and the fiber is vibrated to cause an observation on the observation object.
  • An optical scanning endoscope that scans laser light to acquire signal light and form an image can be given.
  • the scanning speed (linear velocity) of the irradiation position on the observation object is not always constant depending on the control method and scanning shape.
  • the scanning mechanism is oscillated in the uniaxial direction at a resonance frequency
  • the movement of the scanning mechanism in the oscillating direction is controlled approximately sinusoidally with respect to time, so the scanning speed on the observation object is not constant.
  • the scanning speed becomes faster as the distance from the scanning center becomes longer, that is, the peripheral part of the screen.
  • the scanning speed is made constant by adjusting the rotational speed of the disk according to the distance from the center of the disk.
  • the scanning mechanism is operated at high speed using the resonance frequency in a laser scanning microscope or an optical scanning endoscope, it is not possible to adjust the frequency according to the scanning position to make the scanning speed constant. Often difficult.
  • the detection time for each sampling is a constant value, and when the scanning speed changes, the scanning distance for each sampling point varies depending on the scanning speed. For this reason, when the scanning speed is high, the scanning point extends over a plurality of pixels, and blurring occurs in a detectable image. As a result, there is a concern that the resolution of the observed image is lowered. In particular, in the case of an endoscope, since the observation range is wide, these effects are remarkable.
  • an object of the present invention which has been made paying attention to these points, is to provide an optical scanning observation apparatus in which non-uniformity in resolution due to a change in scanning speed for each sampling is reduced.
  • the invention of the optical scanning observation apparatus A light source that outputs laser light; A scanning mechanism that scans an observation object on a condensing position of the laser beam output from the light source; A detection unit that samples the signal light obtained by scanning the laser beam and converts it into an electrical signal; A sampling time for detecting the signal light per sampling is changed in accordance with a change in scanning speed on the observation object by the scanning mechanism.
  • the invention according to a second aspect is the optical scanning observation device according to the first aspect, In the scanning range on the observation object, when tvmin and tvmax are the sampling times when the scanning speed becomes the minimum value and the maximum value, respectively, conditional expression (1) is satisfied, To do. t vmin > t vmax (1)
  • the invention according to a third aspect is the optical scanning observation device according to the second aspect, In the scanning range on the observation object, when v max and v min are the maximum value and the minimum value of the scanning speed, respectively, tv min and tv max satisfy the conditional expression (2). Is.
  • the invention according to a fourth aspect is the optical scanning observation device according to any one of the first to third aspects.
  • v is the scanning speed
  • t is the sampling time
  • max (v ⁇ t) and min (v ⁇ t) are the products of the scanning speed and the sampling time, respectively.
  • An invention according to a fifth aspect is the optical scanning observation device according to the first aspect, In the scanning range on the observation object, the sampling time is changed so that a product of the scanning speed becomes a substantially constant value.
  • An invention according to a sixth aspect is the optical scanning observation device according to any one of the first to fifth aspects,
  • the sampling time is defined by at least one of a detection time of the detection unit per sampling and an irradiation time of the laser light by the light source per sampling. .
  • An invention according to a seventh aspect is the optical scanning observation device according to any one of the first to sixth aspects, The power of the laser beam output from the light source is changed in accordance with the change in the scanning speed on the observation object by the scanning mechanism.
  • the invention according to an eighth aspect is the optical scanning observation device according to the seventh aspect,
  • p vmin and p vmax are the power of the laser beam when the scanning speed becomes the minimum value and the maximum value, respectively, in the scanning range on the observation object, the conditional expression (4) is satisfied. It is a feature. p vmin ⁇ p vmax (4)
  • the invention according to a ninth aspect is the optical scanning observation device according to the seventh aspect, In the scanning range on the observation object, when v max and v min are the maximum value and the minimum value of the scanning speed, respectively, the p vmin and p vmax satisfy the conditional expression (5). Is.
  • An invention according to a tenth aspect is the optical scanning observation device according to any one of the first to sixth aspects,
  • the detection sensitivity of the signal light of the detection unit is changed according to a change in the scanning speed on the observation object by the scanning mechanism.
  • the invention according to an eleventh aspect is the optical scanning observation device according to the tenth aspect,
  • s vmin and s vmax are the detection sensitivities when the scanning speed becomes the minimum value and the maximum value, respectively, in the scanning range on the observation object, the conditional expression (6) is satisfied, To do. s vmin ⁇ s vmax (6)
  • the invention according to a twelfth aspect is the optical scanning observation device according to the eleventh aspect, In the scanning range on the object to be observed, when v max and v min are the maximum value and the minimum value of the scanning speed, respectively, the s vmin and s vmax satisfy the conditional expression (7). Is.
  • An invention according to a thirteenth aspect is the optical scanning observation device according to any one of the first to twelfth aspects, The sampling period is changed according to a change in the scanning speed on the observation object by the scanning mechanism.
  • An invention according to a fourteenth aspect is the optical scanning observation device according to the thirteenth aspect, Conditional expression (8) is satisfied when t s-vmin and t s-vmax are set as sampling periods when the scanning speed becomes the minimum value and the maximum value in the scanning range on the observation object, respectively. It is characterized by. t s ⁇ vmax ⁇ t s ⁇ vmin (8)
  • An invention according to a fifteenth aspect is the optical scanning observation device according to any one of the first to fourteenth aspects,
  • the scanning mechanism scans the observation object in a spiral shape.
  • the sampling time for detecting the signal light per sampling is changed in accordance with the change in the scanning speed on the observation object by the scanning mechanism, the change in the scanning speed for each sampling. Can reduce the non-uniformity of the resolution of the image.
  • FIG. 1 is a block diagram illustrating a schematic configuration of an optical scanning endoscope apparatus that is an example of an optical scanning observation apparatus according to a first embodiment.
  • FIG. FIG. 2 is a schematic view schematically showing the optical scanning endoscope (main body) of FIG. 1.
  • FIG. 3 is an enlarged cross-sectional view of a distal end portion of the optical scanning endoscope (main body) in FIG. 2. It is a figure which shows schematic structure of the light source unit of the optical scanning type endoscope apparatus of FIG. It is a figure which shows schematic structure of the detection unit of the optical scanning endoscope apparatus of FIG. It is a graph which shows an example of the time change of the amplitude by the helical scan on an observation object.
  • FIG. 1 It is a figure which shows the helical sampling scan by a prior art example. It is a figure which shows an example of the helical sampling scan (part) based on this Embodiment. It is a figure which shows an example of the time change of a scanning speed and sampling time. It is a figure which shows an example of the time change of the power of the laser beam output from a scanning speed and a light source unit. It is a figure which shows another example of the helical sampling scan (part) based on this Embodiment. It is a figure which shows an example of the time change of a scanning speed and a sampling period.
  • FIG. 1 is a block diagram showing a schematic configuration of an optical scanning endoscope apparatus 10 which is an example of an optical scanning observation apparatus according to the first embodiment.
  • the optical scanning endoscope apparatus 10 includes an optical scanning endoscope (main body) 20, a light source unit 30 (light source), a detection unit 40 (detection unit), a computer 50, and a display device 60. Composed.
  • the light source unit 30 and the optical scanning endoscope 20 are optically connected by an SMF (single mode fiber) 21, and a plurality of MMFs (multimode) are connected between the detection unit 40 and the optical scanning endoscope 20.
  • Optical fiber) 22 are examples of SMF (single mode fiber) 22.
  • FIG. 2 is a schematic view schematically showing the optical scanning endoscope (main body) 20.
  • the optical scanning endoscope (main body) 20 includes an operation unit 24, an insertion unit 25, and a distal end unit 26.
  • the light source unit 30 to the SMF 21 and the detection unit 40 to the MMF 22 are respectively connected to the operation unit 24, and these SMF 21 and MMF 22 are guided to the distal end portion 26 through the insertion portion 25.
  • FIG. 3 is an enlarged cross-sectional view of the distal end portion 26 of the optical scanning endoscope (main body) 20 of FIG.
  • the SMF 21 is disposed so as to pass through the central portion of the distal end portion 26, and the MMF 22 is disposed so as to pass through the outer peripheral portion of the distal end portion 26.
  • the tip of the SMF 21 is not fixed and is held movably within a small range.
  • Two lenses 27 a and 27 b are arranged at the tip of the emission end, and the laser light output from the SMF 21 is placed on the observation object 70. It is configured to form a small spot.
  • the lenses 27a and 27b are two lenses. However, these lenses may be composed of one or a plurality of lenses.
  • the incident end of the MMF 22 faces the side on which the observation object 70 is disposed, and the light obtained by irradiating the observation object 70 with the laser light output from the SMF 21 is incident as signal light. It is configured.
  • the light obtained by irradiating the observation object is reflected light of the laser beam output from the SMF 21 or fluorescence generated by the irradiation of the laser beam.
  • a scanning unit 23 (scanning mechanism) having a piezoelectric element 23 a is provided at the tip of the SMF 21.
  • the piezoelectric element 23a includes two sets of piezoelectric elements arranged opposite to each other with the SMF 21 interposed therebetween. By applying a voltage to each piezoelectric element, the first direction and the second direction that are the radial directions of the SMF 21 and are perpendicular to each other.
  • the SMF 21 can be inclined in two directions.
  • the scanning unit 23 is electrically connected to a scanning control unit 53 of the computer 50 in FIG. *
  • FIG. 4 is a diagram showing a schematic configuration of the light source unit 30 of the optical scanning endoscope apparatus 10 of FIG.
  • the light source unit 30 includes laser light sources 31R, 31G, and 31B that emit CW (continuous oscillation) laser lights of three primary colors of red, green, and blue, dichroic mirrors 32a and 32b, and an AOM (acousto-optic modulator) 33, respectively.
  • a lens 34 for example, an LD (semiconductor laser) can be used as the red laser light source 31R.
  • the green laser light source 31G for example, a DPSS laser (semiconductor excitation solid-state laser) can be used.
  • the blue laser light source 31B for example, an LD can be used.
  • the optical path of the laser light emitted from the laser light source 31R and the optical path of the laser light emitted from the laser light source 31G are arranged so as to intersect at a predetermined point, and a dichroic mirror 32a is provided at the intersecting position.
  • the dichroic mirror 32a has an optical characteristic of transmitting light in the red wavelength band and reflecting light in the green wavelength band.
  • the green laser light emitted from 31G and reflected by the dichroic mirror 32a is arranged at an angle to be combined.
  • the optical path of the laser beam obtained by combining the red laser beam and the green laser beam and the optical path of the blue laser beam emitted from the laser light source 31B are arranged so as to intersect at a predetermined point.
  • a dichroic mirror 32b is provided at the intersecting position.
  • the dichroic mirror 32b has optical characteristics of transmitting light in the red wavelength band and light in the green wavelength band and reflecting light in the blue wavelength band, and is combined by the dichroic mirror 32a and transmitted through the dichroic mirror 32b.
  • the blue laser light emitted from the laser light source 31B and reflected by the dichroic mirror 32b are arranged at an angle to be combined. In this way, the laser light of the three primary colors of red, green, and blue emitted from the laser light sources 31R, 31G, and 31B are combined to become white laser light.
  • the AOM 33 is an element that modulates the intensity of incident light, and can switch between a light shielding state and a light transmitting state at high speed.
  • the white laser light combined by the dichroic mirrors 32 a and 32 b is transmitted through the AOM 33 when the AOM 33 is in the light transmitting state, and is incident on the incident end of the SMF 21 by the lens 34.
  • the AOM 33 is electrically connected to a light source control unit 51 of the computer 50 in FIG.
  • the arrangement of the laser light sources 31R, 31G, and 31B and the dichroic mirrors 32a and 32b is not limited to this. For example, after combining green and blue laser beams, the red laser beams are combined. Also good.
  • FIG. 5 is a diagram showing a schematic configuration of the detection unit 40 of the optical scanning endoscope apparatus 10 of FIG.
  • the detection unit 40 includes light receivers 41R, 41G, and 41B, dichroic mirrors 42a and 42b, and a lens 43 that use photodiodes for detecting light corresponding to red, green, and blue colors.
  • a plurality of MMFs 22 are bundled and connected to the detection unit 40.
  • the signal light that is reflected by the observation object 70 or emitted from the observation object 70 and emitted from the emission end through the MMF 22 becomes a substantially parallel light beam by the lens 43.
  • Dichroic mirrors 42a and 42b are disposed on the optical path of the signal light that has become a substantially parallel light beam so as to be inclined with respect to the direction of the optical path.
  • the dichroic mirror 42b has an optical characteristic of reflecting light in the blue wavelength band and transmitting light in the red and green wavelength bands, and separates the blue signal light from the signal light that has become a parallel light flux by the lens 43. .
  • the separated blue signal light is detected by the light receiver 41B and converted into an electric signal.
  • the dichroic mirror 42a has an optical characteristic of reflecting light in the green wavelength band and transmitting light in the red wavelength band, and separates the signal light transmitted through the dichroic mirror 42b into red and green signal lights. To do. The separated red and green signal lights are detected and converted into electrical signals by the light receiver 41R and the light receiver 41G, respectively.
  • the light receivers 41R, 41G, and 41B are electrically connected to a detection control unit 52 and a signal processing unit 54 of the computer 50 in FIG.
  • the arrangement of the light receivers 41R, 41G, and 41B and the dichroic mirrors 42a and 42b is not limited to this. For example, after the red light is separated from the signal light, the green and blue signal lights are further separated. It is good also as arrangement.
  • the computer 50 in FIG. 1 controls driving of the scanning unit 23, the light source unit 30, and the detection unit 40 of the optical scanning endoscope (main body) 20, and processes an electrical signal output from the detection unit 40 to generate an image.
  • the computer 50 includes a light source control unit 51, a detection control unit 52, a scanning control unit 53, a signal processing unit 54, a control unit 55, a storage unit 56, and an input unit 57.
  • the light source control unit 51 can control the AOM 33 of the light source unit 30 and adjust the intensity of the laser light incident on the SMF 21.
  • the light source control unit 51 can also switch the AOM 33 alternately between a light shielding state and a light transmitting state. In this case, when irradiating the observation target 70 with laser light, the AOM 33 is controlled to transmit light, and when not irradiated with laser light, the AOM 33 is controlled to be blocked.
  • the detection control unit 52 can control the detection timing, detection time, and detection sensitivity of the signal light by the light receivers 41R, 41G, and 41B of the detection unit 40.
  • the scanning control unit 53 drives and controls the scanning unit 23 of the optical scanning endoscope (main body) 20 to scan the spot of the laser beam emitted from the SMF 21 spirally on the observation target.
  • the piezoelectric element 23a of the scanning unit 23 is shifted in phase by 90 degrees in two directions perpendicular to the optical axis of the lenses 27a and 27b at the resonance frequency f of the tip of the SMF 21.
  • AC voltage is applied so as to vibrate.
  • the amplitude is changed by changing the magnitude of the AC voltage in a predetermined pattern, and the amplitude is changed as shown in an example in FIG. FIG.
  • the amplitude is substantially 0 to a predetermined maximum amplitude.
  • the sampling is stopped, the amplitude is attenuated to near 0, and the sampling scan is started again. Thereby, it is possible to scan the observation target object along a spiral path.
  • the signal processing unit 54 generates image data corresponding to each sampling point based on the electrical signal output from each of the light receivers 41R, 41G, 41B of the detection unit 40, and stores it in the storage unit 56 as corresponding pixel data.
  • the signal processing unit 54 estimates the position of the sampling point based on the elapsed time from the start of the spiral scan by the signal indicating the scan start from the control unit 55.
  • the signal processing unit 54 stores pixel data corresponding to the position of each sampling point of the observation object 70 in the storage unit 56 by one helical sampling scan. Further, the signal processing unit 54 estimates pixel data that has not been acquired by performing interpolation processing after sampling scanning, generates an image of the observation object 70, and displays the image on the display device 60.
  • the control unit 55 controls the whole of the light source control unit 51, the detection control unit 52, the scanning control unit 53, and the signal processing unit 54 of the optical scanning endoscope apparatus 10 by the laser light from the light source unit 30.
  • the observation object 70 is spirally scanned, the detection unit 40 converts the signal light obtained from the observation object 70 into an electrical signal at a predetermined timing and detection time, and the signal processing unit 54 generates image data.
  • the detection time of the detection unit 40 per sampling and / or the irradiation time per sampling of the laser light emitted from the light source unit 30 under the control of the AOM 33 is constant during the helical sampling scan. Instead, it can be changed according to the change in the scanning speed on the observation object 70 by the scanning unit 23.
  • One or both of the detection time of the detection unit 40 per sampling and the irradiation time of the laser light by the light source unit 30 per sampling is the sampling time per sampling in the sampling scan. Stipulate. For example, when the light source unit 30 is always in a translucent state, the detection time of the detection unit 40 is the sampling time. Further, when the irradiation time of the laser light from the light source unit 30 is changed within the detection time of the detection unit 40, the sampling time becomes the irradiation time of the laser light.
  • the power of the laser light output from the light source unit 30 or the detection sensitivity of the signal light by the detection unit 40 is not a constant value during the helical sampling scan, but the scanning speed on the observation object 70 by the scanning unit 23. It can be changed according to the change of.
  • the intensity of the laser beam from the light source 30 is adjusted by the control of the AOM 33.
  • sampling period of the sampling scan is not a constant value during the helical sampling scan, but can be changed according to the change in the scanning speed on the observation object 70 by the scanning unit 23.
  • the sampling period is a period for irradiating the laser light, that is, a period for switching the laser light output from the light source unit 30 between the light shielding state and the light transmitting state by the control of the AOM 33, and / or the signal light by the detection unit 40. This can be changed by changing the period of detecting the current.
  • the control of the detection time, detection sensitivity, and detection period of the detection unit 40, the irradiation time of the laser light output from the light source unit 30, the power of the laser light, and the irradiation period of the laser light are controlled in a spiral shape.
  • a predetermined pattern according to the elapsed time after the start of scanning may be stored in the light source control unit 51 and the detection control unit 52, or the control unit 55, or the optical scanning endoscope apparatus 10
  • a parameter to be changed by the user via the input unit 57 and a profile of the change may be set and controlled by the control unit 55.
  • the detection time, detection interval, and detection sensitivity of the light receivers 41R, 41G, and 41B, the irradiation time of the laser light emitted from the light source unit 30 under the control of the AOM 33, the power of the laser light, and the irradiation interval are determined by helical sampling scanning. While performing, it is not a fixed value, but can be changed according to a change in scanning speed on the observation object 70 by the scanning unit 23. These changes may be performed by storing a predetermined pattern in the light source control unit 51 and the detection control unit 52, and the user of the optical scanning endoscope apparatus 10 changes the input pattern via the input unit 57. Parameters may be set and performed under the control of the control unit 55.
  • the optical scanning endoscope apparatus 10 can be operated as follows.
  • the observation object 70 is rotationally scanned at the resonance frequency f of the distal end portion of the SMF 21.
  • the scanning speed v is expressed by Equation (9).
  • FIG. 7 is a diagram showing a helical sampling scan with such a constant sampling time and sampling period. Black dots represent sampling points.
  • Scanning distance d s at one sampling is longer as the distance r c from the scan center is large. For this reason, if the sampling time is set in accordance with the size of the pixel at a position close to the scanning center, the sampling point region obtained by one sampling in the outer peripheral portion spans a plurality of pixels in the circumferential direction, and the image blurs. And the resolution is reduced. On the other hand, if the sampling time and sampling period are set according to the outer periphery, sampling is performed at a higher density than the pixel density at a position close to the scanning center, and many unnecessary detections that are not used for image generation are performed. It becomes.
  • the sampling time t is changed according to the change in the scanning speed. More specifically, when the scanning speed is high, the sampling time t is changed in the direction of shortening.
  • tvmin and tvmax are sampling times when the scanning speed becomes the minimum value and the maximum value, respectively, by satisfying the conditional expression (1), at least the scanning speed As compared with the resolution when the scanning speed is minimum, the decrease in resolution when the scanning speed is maximum can be suppressed as compared with the case where the sampling time t is constant.
  • tv min and tv max may satisfy the conditional expression (2). preferable.
  • the difference in the scanning distance when the scanning speed is the maximum can be kept within twice the scanning distance when the scanning speed is the minimum.
  • the difference in scanning distance is more than twice, the sampling resolution deteriorates near the outer periphery of the scanning range, particularly when the observation object 70 is scanned spirally. Considering aberrations of an optical system such as a lens, the resolution is further deteriorated near the outer periphery of the screen, which is not preferable.
  • the difference in scanning distance is 0.5 or more, tvmax becomes very short, a high-performance detector is required, and furthermore, the amount of light is reduced, so that the sensitivity is higher. -The need for a high image magnification detector can be avoided.
  • v is the scanning speed
  • t is the sampling time
  • max (v ⁇ t) and min (v ⁇ t) are the maximum values of the products of the scanning speed and the sampling time, respectively. And when it is set as the minimum value, it is more preferable to satisfy the conditional expression (3).
  • the product of the scanning speed and the sampling time (v ⁇ t) over the entire spiral scanning range, that is, the change in the scanning distance scanned by one sampling is 2 It can fit within twice. If the difference in scanning distance is this level, the resulting image will not be so blurred.
  • FIG. 8 is an example of a helical sampling scan according to the present embodiment, and is a diagram illustrating a portion corresponding to the broken line portion of FIG. Since shorter the sampling time at the outer portion a distance r c is large from the scanning center, scanning distance by one sampling has substantially closer to a constant value in the scanning range of the observation object 70.
  • the sampling time t is adjusted so that the product of the scanning speed v becomes a substantially constant value, so that the scanning distance d s becomes substantially constant and the variation in resolution is eliminated.
  • the substantially constant value means to change within a range of about 30%, for example.
  • FIG. 9 is a diagram illustrating an example of a temporal change in the scanning speed and the sampling time, in which a change in the product (v ⁇ t) of the scanning speed and the sampling time is reduced.
  • the scanning speed v becomes the smallest value v min in the vicinity of the scanning center at the start of the spiral scanning, and becomes the largest value v max at the outer periphery of the scanning range at the end of the scanning.
  • the sampling time t at the beginning of the scan, i.e. the sampling time t vmin corresponding to the slowest scanning speed v min, shortened with the progress of the scan, when the scan end, i.e. the fastest scanning speed v becomes the minimum value at the sampling time t vmax corresponding to the max.
  • conditional expression (2) If t vmax is greater than t vmin as the conditional expression (2), at the position of the sampling points where the scanning speed is the maximum, because the sampling time is shortened, the detection signal detected by the detection unit 40 is lowered one The amount of light per pixel decreases.
  • conditional expression (4) brightness non-uniformity per pixel when the scanning speed is maximum is compared with brightness per pixel when the scanning speed is minimum. This can be reduced as compared with the case where the power of the laser beam emitted from the light source is constant.
  • p vmin and p vmax satisfy the conditional expression (5) in the scanning range on the observation object.
  • p is the laser beam power
  • p / v represents the laser beam irradiation power per unit length of each sampling. If the range satisfies the conditional expression (5), at least the change in the amount of light per unit length of sampling when the scanning speed is maximum may be within twice as much as when the scanning speed is minimum. it can. If the change in the laser beam irradiation power per unit length is 0.5 or less, the laser beam irradiation power becomes excessively large in the region where the scanning speed is high. There is a possibility of connection. On the other hand, when the number is 2 or more, the brightness of the region with the slowest scanning speed is less than half that of the fast region, which is not preferable.
  • conditional expression (10) it is possible to keep p / v, that is, the irradiation power of the laser beam per unit length within twice over the entire spiral scanning range.
  • the laser beam power p is adjusted to be proportional to the scanning speed v, the irradiation power of the laser beam per unit length during the sampling scan becomes substantially constant.
  • the substantially constant value means to change within a range of about 30%, for example.
  • FIG. 10 is a diagram illustrating an example of temporal changes in the scanning speed and the laser beam irradiation power when the change in the laser beam irradiation power per unit length is reduced.
  • the laser beam power p increases with the progress of scanning from the laser beam power p vmin corresponding to the slowest scanning speed v min at the start of scanning, and at the end of scanning, that is, the fastest scanning speed v.
  • the laser beam power p vmax corresponding to max is the highest value.
  • the detection sensitivity of each of the light receivers 41R, 41G, and 41B of the detection unit 40 can be adjusted.
  • s vmin and s vmax are set as the detection sensitivities of the light receivers 41R, 41G, and 41B when the scanning speed v becomes the minimum value and the maximum value in the scanning range on the observation object 70, respectively, the conditional expression (6 ) s vmin ⁇ s vmax (6)
  • conditional expression (6) At least non-uniformity between the intensity of the detection signal per pixel when the scanning speed is minimum and the intensity of the detection signal per pixel when the scanning speed is maximum, This can be reduced compared to the case where the detection sensitivity of the detection unit 40 is constant.
  • s vmin and s vmax satisfy the following conditional expression (7).
  • the intensity of the detection signal can be adjusted by changing the detection sensitivity s in the same manner as changing the power p of the laser beam. it can.
  • the change in the detection signal per unit length of sampling when the scanning speed is maximum is within twice as much as the detection signal when the scanning speed is minimum Can fit in.
  • the value of 0.5 is 0.5 or less, a highly sensitive detector is required, which is inconvenient from the viewpoint of detector cost.
  • the number is 2 or more, as in the case of the conditional expression (5), the brightness is significantly reduced near the outer periphery of the scanning range.
  • max (s / v) and min (s / v) are set to the maximum value and the minimum value of the detection sensitivity of the detection unit 40 with respect to the scanning speed in the scanning range on the observation object 70, the following conditions are satisfied. It is more preferable that the expression (11) is satisfied.
  • the level of the detection signal during sampling scanning is substantially constant. It can be. Note that “substantially 1” means, for example, within a range of about 1 to 1.3.
  • sampling interval distance the interval between the center positions of the respective sampling points.
  • the sampling interval distance can be expressed by the following equation. r c ⁇ ⁇ ⁇ t s Therefore, the closer to the scanning center, the higher the density of sampling points, and the lower the vicinity of the outer periphery of the scanning range (see FIG. 8). In such a case, there are many sampling points per unit area in the region where the scanning speed is low, so sampling points are overlapped and unnecessary sampling is performed, or in the region where the scanning speed is high, sampling is performed per unit area. Since the number of points is small, there may be a case where there is no sampling point in the pixel, or both of the disadvantages may occur.
  • the sampling period in addition to the above-described adjustment of the sampling time, the sampling period can be adjusted according to the change in the scanning speed on the observation object 70 as follows.
  • t s-vmin and t s-vmax satisfy the following conditional expression (12).
  • At least the sampling interval distance when the scanning speed is the maximum can be within twice the sampling interval distance when the scanning speed is the minimum. If the difference in sampling interval is more than twice, sampling points overlap in the vicinity of the scanning center of the observation target, or sampling points decrease in the outer periphery of the scanning range, so that unnecessary scanning and resolution degradation may occur. .
  • the product of the scanning range on the observed object 70, v the scanning speed, the t s is the sampling period, and max (v ⁇ t s) and min (v ⁇ t s), respectively, the scanning speed and the sampling period
  • max (v ⁇ t s) and min (v ⁇ t s) respectively, the scanning speed and the sampling period
  • v ⁇ t s that is, the change in the sampling interval distance can be kept within twice over the entire spiral scanning range, and the change in the resolution of the obtained image Can be reduced.
  • FIG. 11 is an example of a spiral sampling scan (part) according to the present embodiment, and shows a case where the sampling period is changed in addition to making the scanning distance substantially constant. And to shorten the sampling cycle at a distance r c is larger outer periphery from the scanning center C.
  • the sampling period t s the product of the scanning speed v when adjusted to be substantially constant value, thus substantially constant sampling interval distance (d i) becomes particularly preferred.
  • the substantially constant value means to change within a range of about 30%, for example.
  • FIG. 12 is a diagram illustrating an example of temporal changes in scanning speed and sampling period.
  • Sampling period t s is the start of the scan, i.e. the sampling period t s-vmin corresponding to the slowest scanning speed v min, shortened with the progress of the scan, at the end of the scan, i.e. the fastest scanning speed v max Becomes the minimum value at the sampling period t s-vmax corresponding to.
  • the sampling time for detecting the signal light per sampling is changed according to the change in the scanning speed on the observation object 70 by the scanning unit 23. Therefore, the change in the scanning distance due to the change in the scanning speed for each sampling can be suppressed. Accordingly, it is possible to reduce a decrease in resolution caused by image blur due to an increase in scanning distance.
  • the detection signal of the signal light detected by the detection unit 40 is prevented from becoming small. Since the power of the laser beam of the light source unit 30 or the detection sensitivity of the detection unit 40 can be changed, it is possible to suppress the signal detected near the outer periphery from being weakened (the image is darkened). be able to.
  • the sampling period can be increased in a region where the scanning speed is faster, so that unnecessary sampling is performed near the center of the scanning range where the scanning speed is slow, or near the outer periphery where the scanning speed is fast. It is possible to suppress the sampling points from becoming too small.
  • the scanning distance is shortened by shortening the sampling time. Therefore, if the sampling period is shortened, the sampling points can be arranged at the same density as the central portion.
  • a helical sampling scan was performed.
  • the scanning speed is greatly different near the center and the outer periphery of the scan range compared to the raster scan, so the resolution of each sampling, brightness uniformity, and sampling density within the scan range. The change is large.
  • the difference between the scanning speeds can be reduced by not using the left and right end regions where the scanning speed is the slowest. Therefore, the solution of the present invention that changes the sampling time, the laser beam power, and the sampling frequency is particularly effective for spiral scanning.
  • Example 1 An example of the optical scanning endoscope apparatus 10 according to the first embodiment will be described with specific parameters.
  • the radius of the spiral scanning range (r c : distance from the scanning center C) is 200 ⁇ m
  • the sampling time t is defined by the detection time of the detection unit 40, and t changes so as to be proportional to 1 / v.
  • sampling period t s is also changed in proportion to 1 / v.
  • the power of the laser beam is 3.2E-10 [J / ⁇ m] in the vicinity of the scanning center, and decreases as it scans toward the outer peripheral portion and decreases to 1.6E-10 [J / ⁇ m]. Further, the detection sensitivity of the detection unit 40 is not adjusted during sampling scanning.
  • the blurring of the image generated when the scanning distance when the scanning speed is the maximum is longer than the resolution when the scanning speed is the minimum when the conditional expression (1) is satisfied.
  • the resulting resolution degradation can be suppressed compared to the case where the sampling time t is constant.
  • the conditional expressions (2) and (3) are satisfied. By doing so, the scanning distance of each sampling becomes a substantially constant value, and it is possible to eliminate the variation in resolution caused by the blurring of the image due to the change of the scanning distance.
  • the deterioration of the resolution due to the increase in the sampling interval distance when the scanning speed is the maximum is compared with the sampling interval distance when the conditional expression (8) is satisfied and at least the scanning speed is the minimum. This can be reduced as compared with the case where s is constant.
  • the sampling period t s is the product of the scanning speed v, is always changing so as to be substantially 1 [[mu] m], the conditional expression (12) and (13) are also satisfied. By doing so, the sampling interval distance becomes substantially constant, and it is possible to reduce unnecessary sampling in the vicinity of the scanning center and reduction in resolution caused by a decrease in the density of sampling points in the vicinity of the outer periphery.
  • the brightness per pixel when the scanning speed is maximum is compared with at least the brightness per pixel when the scanning speed is minimum.
  • the non-uniformity can be suppressed within a predetermined range as compared with the case where the power of the laser light emitted from the light source is constant.
  • the detection time of the light receivers 41R, 41G, and 41B of the detection unit 40 is changed in order to make the product of the scanning speed v and the sampling time t constant. If it is possible to adjust, the scanning speed may be changed.
  • optical scanning endoscope apparatus that is another example of the optical scanning observation apparatus according to the second embodiment will be described below.
  • the second embodiment is configured to scan the observation object 70 in a raster shape instead of a spiral shape.
  • the configuration of the distal end portion 26 of the optical scanning endoscope (main body) 20 is different from that of the first embodiment.
  • the configuration of the light source unit 30 is also different.
  • FIG. 13 is a cross-sectional view of the distal end portion 26 of the optical scanning endoscope (main body) 20 of the optical scanning endoscope apparatus 10 according to the second embodiment
  • FIG. 14 illustrates the scanning unit 23 ( It is a figure explaining the structure of a scanning mechanism.
  • the distal end portion of the SMF 21 is inserted through the cylindrical tube 81, and the distal end portion protrudes from the cylindrical tube 23.
  • On the outer periphery of the cylindrical tube 81 for example, four electrodes 82 such as electromagnetic coils are equally spaced apart in the circumferential direction.
  • magnets 83 are arranged at positions facing the electrode 82 on the outer periphery of the SMF 21.
  • Each of the two sets of electrodes 82 and magnets 83 constitutes a vibration mechanism, and vibrates the SMF 21 in directions orthogonal to each other (hereinafter referred to as X direction and Y direction) by electromagnetic force.
  • FIG. 15 is a diagram showing a schematic configuration of the light source unit 30 of the optical scanning endoscope apparatus 10 according to the second embodiment.
  • an LD light source is used as the red laser light source 86R and the blue laser light source 86B
  • a DPSS laser is used as the green laser light source 86.
  • the AOM 33 is not provided as in the first embodiment, but the laser light irradiation per sampling is performed by directly modulating the semiconductor lasers constituting the laser light sources 86R, 86G, 86B.
  • the time can be adjusted.
  • the laser light irradiation time can also be adjusted by providing an acousto-optic tunable filter (AOTF) between the dichroic mirror 32 b and the lens 34.
  • AOTF acousto-optic tunable filter
  • Tip of SMF21 is by the scanning unit 23, is vibrated at the resonance frequency f x in the X direction.
  • the scanning unit 23, in the y direction SMF21 vibrate with a small frequency f y than f x.
  • the laser light irradiated onto the observation object 70 is sequentially scanned in a raster shape in accordance with the vibration of the SMF 21. Therefore, by detecting and processing the signal light thereby, a two-dimensional image can be obtained. Can be generated.
  • FIG. 16 is a diagram showing a sampling path by raster-like scanning.
  • FIG. 17 is a graph showing an example of a temporal change in the scanning position in the X direction due to the raster-like scanning on the observation object 70.
  • the exit end of the SMF 21 is oscillated at the resonance frequency fx in the X direction, but its scanning position is displaced in a sine wave shape with time.
  • the scanning speed is slow at both ends of scanning in the X direction, and the scanning speed is fast near the center.
  • the distance scanned by one sampling is v
  • the sampling time is t.
  • v ⁇ t It is represented by FIG.
  • the laser irradiation time by the light source unit 30 is adjusted, the sampling time t per sampling is shortened in the central region where the scanning speed is fast, and the image is blurred due to the long scanning distance. Reduce the resolution degradation caused.
  • the sampling time t can be controlled so as to satisfy the conditional expressions (1) to (3), and the same effects as those described in the first embodiment can be obtained.
  • the sampling time t is a laser irradiation time per sampling.
  • the scanning distance d s can be made substantially constant over the scanning range on the observation object 70 as shown in FIG. .
  • the sampling period is adjusted in addition to the sampling time.
  • the amplitude (distance from the amplitude center) r x in the X direction of the raster scan range is 200 ⁇ m
  • the X direction average scanning speed v x is 8.0E + 6 ⁇ m / s.
  • the power of the laser beam is set in consideration of biological damage of the observation object 70.
  • conditional expressions (1) and (2) are satisfied, and at least the scanning distance when the scanning speed is maximum is longer than the resolution when the scanning speed is minimum. Degradation of resolution due to image blur can be reduced.
  • conditional expressions (4) and (5) are satisfied, at least the brightness per pixel of the sampling point where the scanning speed is minimum and the brightness per pixel of the sampling point where the scanning speed is maximum This non-uniformity is suppressed within a predetermined range as compared with the case where the power of the laser beam emitted from the light source is constant.
  • the product of the scanning speed and the sampling time (v ⁇ t), the product of the scanning speed and the sampling period (v ⁇ t s ), and the power of the laser light are adjusted so that the ratio (p / v) to the scanning s speed becomes a substantially constant value, the scanning distance for each sampling, the sampling interval distance, and one The brightness per pixel can be made uniform.
  • FIG. 20 is a block diagram showing a schematic configuration of a laser scanning microscope apparatus 110 which is an example of an optical scanning observation apparatus according to the third embodiment.
  • the laser scanning microscope apparatus 110 includes a laser scanning microscope (main body) 120, a light source unit 130 (light source), a detection unit 140 (detection unit), a computer 150, and a display device 160.
  • the light source unit 130 and the laser scanning microscope (main body) 120 are optically connected by the SMF 121, and the detection unit 140 and the laser scanning microscope (main body) 120 are directly connected to each other. Alternatively, they are provided in the same casing.
  • the computer 150 is electrically connected to the laser scanning microscope (main body) 120, the light source unit 130, the detection unit 140, and the display device 160.
  • the light source unit 130 includes red, green, and blue LDs (semiconductor lasers) 131R, 131G, and 131B, dichroic mirrors 132a and 132b, an AOTF 133, and a lens 134. Since the arrangement of the LDs 131R, 131G, and 131B and the optical characteristics and arrangement of the dichroic mirrors 132a and 132b are the same as those in the first embodiment, description thereof is omitted.
  • the AOTF 133 is an optical element capable of wavelength-selecting and intensity-modulating the laser beam combined with the laser beams from the LDs 131R, 131G, and 131B.
  • the AOTF 133 performs high-speed red, blue, and green laser beams at each sampling point. Switch to and irradiate.
  • the AOTF 133 is controlled by a light source control unit (not shown) of the computer 150.
  • the laser light transmitted through the AOTF 133 is incident on the incident end of the SMF 121 through the lens 134.
  • the laser scanning microscope (main body) 120 includes a lens 122, a dichroic mirror 123, a galvanometer scanner 124 (scanning mechanism), a mirror 125, a pupil projection lens 126, an imaging lens 127, and an objective lens 128.
  • the galvanometer scanner 124 is provided at a position conjugate with the pupil position of the objective lens 128.
  • the lens 122 is a lens that collimates the laser light emitted from the emission end of the SMF 121.
  • the dichroic mirror 123 has an optical characteristic of transmitting the laser light incident from the light source unit 130 and reflecting the fluorescence emitted from the observation object 170 by the irradiation of the laser light.
  • the galvanometer scanner 124 includes galvanometer mirrors 124a and 124b, and deflects the laser light emitted from the SMF 121 and transmitted through the dichroic mirror 123 in two mutually perpendicular directions (X direction and Y direction).
  • the laser light deflected by the galvanometer mirrors 124a and 124b is reflected by the mirror 125, passes through the pupil projection lens 126, the imaging lens 127, and the objective lens 128 having a magnification of 25 times, for example, and is condensed on the observation object 170.
  • the spot is scanned and the spot is scanned on the observation object 170 by driving the galvanometer scanner 124.
  • the observation object 170 is excited with the respective laser beams of the three colors LD 131R, 131G, and 131B of the light source unit 130, and is dyed with three color dyes that emit fluorescence of different wavelengths.
  • the fluorescence emitted from the observation object 170 by the scanning of the laser light travels in the opposite direction along the optical path through which the laser light has propagated, and is separated by the dichroic mirror 123 and then enters the detection unit 140.
  • the detection unit 140 includes PMTs (photomultiplier tubes) 141R, 141G, 141B for detecting each fluorescence generated by the laser beams of the three color LDs 131R, 131G, 131B, and dichroic mirrors 142a, 142b. Similar to the first embodiment, the two dichroic mirrors 142a and 142b separate the three different wavelengths of fluorescence and make them enter the corresponding PMTs 141R, 141G, and 141B, respectively. Each PMT 141R, 141G, 141B is controlled in multiplication factor by a detection control unit (not shown) of the computer 150. The output signals of the PMTs 141R, 141G, and 141B are transmitted to a signal processing unit (not shown) of the computer 150, and an image of the observation object 170 is generated and displayed on the display device 160.
  • PMTs photomultiplier tubes
  • the computer 150 includes a light source control unit, a detection control unit, a scanning control unit, a signal processing unit, a storage unit, and an input unit, as in the computer 50 of the first embodiment, and controls corresponding to raster scanning. Except for the above, the same processing as in the first embodiment is performed, and details are omitted.
  • the laser scanning microscope apparatus 110 can be operated as follows.
  • the laser scanning microscope apparatus 110 sequentially scans the observation object 170 by the galvanometer scanner 124 with the laser light output from the light source unit 130.
  • the galvanometer scanner 124 oscillates the laser beam in the X direction in the plane perpendicular to the optical axis of the objective lens 128 at the resonance frequency f X of the galvanometer mirror 124a, and in the Y direction, the frequency f Y is generated by the galvanometer mirror 124b. Vibrate with.
  • the vibration due to the resonance frequency in the X direction is a substantially sinusoidal vibration.
  • the distance scanned by one sampling is as follows.
  • the scanning speed is v and the sampling time is t
  • v ⁇ t It is represented by
  • the sampling time is defined by one or both of the detection time by the PMTs 141R, 141G, and 141B and the irradiation time of the laser light controlled by the AOTF 133.
  • the scanning by the galvanometer scanner 124 is sinusoidal in the X direction, the scanning speed is faster toward the center in the X direction within the scanning range of the observation object 170. Therefore, similarly to the optical scanning endoscope according to the second embodiment, in the central region where the scanning speed is high, the sampling time t per sampling is shortened and the scanning distance becomes long, resulting in image blurring. Reduce degradation of resolution. Further, since the resolution deteriorates in the periphery of the scanning range due to the aberration of the optical system, the sampling time t may be further shortened near both ends in the Y direction to reduce the resolution deterioration.
  • the sampling time t is controlled so as to satisfy the conditional expressions (1) to (3), and the same operations and effects as in the first embodiment can be obtained.
  • the sampling time t is the time during which the laser light of each color is transmitted by the AOTF 133.
  • the light-transmitting state of each color of laser light by AOTF133 by changing the repetition period of the light-shielding state, by changing the sampling period t s in accordance with a change in the scanning speed, a more uniform state density of the sampling points Can be approached.
  • the intensity of the detection signal can be made uniform by adjusting the power p of the laser light from the light source unit 130 or the detection sensitivity s of the detection unit 140.
  • the image magnification can be changed in a wide range. Thereby, the nonuniformity of the brightness for every pixel can be suppressed.
  • conditional expressions (4) to (8) and (10) to (13) are appropriately satisfied. By doing so, the same effects as those described in the first embodiment can be obtained for each conditional expression.
  • the sampling time for detecting the signal light per sampling is changed according to the change in the scanning speed on the observation object 170 by the galvanometer scanner 124.
  • the change in the scanning distance due to the change in the scanning speed for each sampling can be suppressed. Accordingly, it is possible to reduce a change in resolution caused by image blur due to an increase in scanning distance.
  • the signal light signal detected by the detection unit 140 is prevented from being reduced.
  • the detection sensitivity of the detection unit 140 since it can change so that the detection sensitivity of the detection unit 140 may be raised, it can suppress that the signal detected in the center part of a X direction becomes weak (an image becomes dark).
  • PMT is used for the detection unit 140, the detection sensitivity can be adjusted over a wide range.
  • the sampling period can be changed so as to increase in the region where the scanning speed is faster with the change in the scanning speed, it is possible to perform useless sampling at both ends in the X direction where the scanning speed is slow, It is possible to prevent the sampling points from becoming too small at the center in the fast X direction.
  • the amplitude in the X direction of the galvanometer scanner 124 is changed in a sine wave shape with respect to time.
  • PSD Position Sensitive Detector: position detector
  • the velocity at each sampling point is measured in advance, and an inclination sensor for detecting the arrangement angle of each galvanometer mirror 124a and 124b of the galvanometer scanner in real time is provided, and the angle signal is output from these sensors to the computer 150. May be transmitted in real time and used to control each unit or generate an image.
  • Example 3 An example of the optical endoscope apparatus 110 according to the present embodiment will be described with specific parameters.
  • the average scanning speed v x in the X direction is 11.2E + 6 ⁇ m / s.
  • the power of the laser beam is set in consideration of biological damage of the observation object 170.
  • conditional expressions (1) and (2) are satisfied, and at least the scanning distance when the scanning speed is maximum is longer than the resolution when the scanning speed is minimum. Degradation of resolution caused by image blur can be suppressed within a predetermined range.
  • the non-uniformity in resolution due to the difference in density between the sampling point when the conditional expressions (8) and (12) are satisfied and at least the scanning speed is minimum and the sampling speed when the scanning speed is maximum is represented by the sampling period. Can be reduced as compared with the case of constant.
  • conditional expressions (6) and (7) are satisfied, at least the brightness per pixel (intensity of the detection signal) when the scanning speed is minimum and the per pixel when the scanning speed is maximum. Can be reduced within a predetermined range as compared to the case where the detection sensitivities of the PMTs 141R, 141G, and 141B of the detection unit 40 are constant.
  • the sampling scan is not limited to the spiral scan or the raster scan.
  • the same effect as in the first to third embodiments can be obtained even if the Lissajous scan is performed.
  • the laser light of the light source unit emits red, green, and blue laser colors.
  • the laser included in the light source unit is not limited to the combination of these three colors.
  • Various wavelengths and various numbers of lasers can be used.
  • the optical characteristics and arrangement of the dichroic mirror for combining the laser beams can be determined as appropriate.
  • the computer, the light source unit, the detection unit, and the optical scanning endoscope do not need to be configured separately, and can be combined in various ways.
  • the computer, the light source unit, and the detection unit can be stored in one housing. The same applies to the third embodiment.
  • a part of the optical system for irradiating laser light and a part of the optical system for detecting fluorescence are shared, but a configuration in which these are not shared is also possible.
  • the optical scanning observation apparatus of the present invention may be configured to irradiate the observation target with laser light from the light source and detect the transmitted light.
  • Optical Scanning Endoscope Device 20 Optical Scanning Endoscope 21 SMF (Single Mode Fiber) 22 MMF (multimode fiber) DESCRIPTION OF SYMBOLS 23 Scan part 23a Piezoelectric element 24 Operation part 25 Insertion part 26 Tip part 27a, 27b Lens 30
  • Light source unit 31R, 31B LD (semiconductor laser) 31G DPSS laser (semiconductor pumped solid-state laser) 32a, 32b Dichroic mirror 33 AOM (acousto-optic modulator) 34 Lens 40 Detection unit 41R, 41G, 41B Light receiver 42a, 42b Dichroic mirror 43 Lens 50 Computer 51 Light source control unit 52 Detection control unit 53 Scan control unit 54 Signal processing unit 55 Control unit 56 Storage unit 60 Display device 70 Observation object 81 Cylindrical tube 82 Electrode 83 Magnet 86R, 86B LD (semiconductor laser) 86G DPSS laser (semiconduct

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Astronomy & Astrophysics (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Microscoopes, Condenser (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

 光走査型観察装置は、レーザ光を出力する光源ユニット30と、光源から出力されたレーザ光の集光位置を観察対象物70上で走査する走査部23と、レーザ光の走査により得られる信号光をサンプリングして、電気信号に変換する検出ユニット40とを備え、走査部24による観察対象物70上の走査速度の変化に応じて、1回のサンプリング当たりの信号光を検出するサンプリング時間を変化させる。これにより、サンプリングごとの走査速度の変化による画像の分解能の変化を低減した光走査型観察装置を提供する。

Description

光走査型観察装置 関連出願の相互参照
 本出願は、2012年1月26日に出願された日本国特許出願2012-14326号の優先権を主張するものであり、この先の出願の開示全体をここに参照のために取り込む。
 本発明は、走査速度の違いによる観察範囲内の分解能の不均一性を軽減した光走査型観察装置に関する。
 従来、レーザ光を観察対象物上に照射し、その照射位置を走査させることによって、観察対象物から得られる透過光、反射光、または、蛍光等の信号光を光電変換手段により電気信号に変換して、画像データを形成する光走査型観察装置が知られている。その例として、走査機構にガルバノメータスキャナを用いたレーザ走査型顕微鏡や、ファイバから出射したレーザ光を観察対象物上にスポットを形成するように照射し、ファイバを振動させることで観察対象物上でレーザ光を走査して、信号光を取得し画像を形成する光走査型内視鏡を挙げることができる。
 これらの光走査型観察装置に用いられる走査機構においては、その制御方法や走査形状によって観察対象物上の照射位置の走査速度(線速度)は一定であるとは限らない。例えば、一軸方向に共振周波数で走査機構を振動させている場合、走査機構の振動方向への動きは時間に関して略正弦関数的に制御されるため、観察対象物上の走査速度は一定とはならない。また、観察対象物を螺旋形状に走査する場合、走査中心からの距離が長くなるほど、つまり画面の周辺部ほど、走査速度が速くなるという特性がある。
 一般に、CDやDVDなどの光学ディスクにおいては、その記録密度を一定にするために、ディスク中心からの距離に応じてディスクの回転速度を調節して、走査速度を一定にしている。しかし、レーザ走査型顕微鏡や光走査型内視鏡などで、走査機構を共振周波数を用いて高速に動作させている場合、走査位置に応じて周波数を調節して走査速度を一定にすることは困難である場合が多い。
 走査速度が変化すると、他の条件が変わらなければ、走査範囲内の明るさが不均一になる。このため、走査速度が異なる場合、レーザ光の照射パワーを調整して走査範囲内の照射密度を均一化することで、明るさの不均一性を低減することが提案されている(例えば、特許文献1参照)。
 また、走査速度が変化しサンプリング周波数が一定の場合、走査速度が遅い領域では単位面積あたりのサンプリング点の数が多く、無駄なサンプリングをしていることになる。逆に、走査速度が速い領域では単位面積あたりのサンプリング点の数が少ないため、画素内に1つもサンプリング点が無くなってしまうなどの不都合が生じる。そこで、走査範囲内のサンプリング密度をほぼ一定にすることで、これらを回避することが開示されている(例えば、特許文献2参照)。
特開2008- 15030号公報 特開2010-142482号公報
 しかしながら、引用文献1および引用文献2に記載の方法では、1回のサンプリングごとの検出時間は一定値であり、走査速度が変化すると走査速度の違いによりサンプリング点ごとの走査距離が異なってしまう。このため、走査速度が速いと走査点は複数の画素にまたがってしまい、検出できる画像にボケが生じてしまう。その結果、観察される画像の分解能が低下することが懸念される。特に内視鏡の場合には観察範囲が広いため、これらの影響は顕著である。
 したがって、これらの点に着目してなされた本発明の目的は、サンプリングごとの走査速度の変化による分解能の不均一性を低減した光走査型観察装置を提供することにある。
 上記目的を達成する第1の観点に係る光走査型観察装置の発明は、
 レーザ光を出力する光源と、
 前記光源から出力された前記レーザ光の集光位置を観察対象物上で走査する走査機構と、
 前記レーザ光の走査により得られる信号光をサンプリングして、電気信号に変換する検出部とを備え、
 前記走査機構による前記観察対象物上の走査速度の変化に応じて、1回のサンプリング当たりの前記信号光を検出するサンプリング時間を変化させることを特徴とするものである。
 第2の観点に係る発明は、第1の観点に係る光走査型観察装置において、
 前記観察対象物上の走査範囲において、tvminおよびtvmaxを、それぞれ、前記走査速度が最小値および最大値となる際の前記サンプリング時間とするとき、条件式(1)を満たすことを特徴とするものである。
   tvmin>tvmax   ・・・(1)
 第3の観点に係る発明は、第2の観点に係る光走査型観察装置において、
 前記観察対象物上の走査範囲において、vmaxおよびvminをそれぞれ前記走査速度の最大値および最小値としたとき、前記tvminおよびtvmaxは、条件式(2)を満たすことを特徴とするものである。
Figure JPOXMLDOC01-appb-M000001
 第4の観点に係る発明は、第1~3の何れかの観点に係る光走査型観察装置において、
 前記観察対象物上の走査範囲において、vを前記走査速度、tを前記サンプリング時間とし、max(v×t)およびmin(v×t)をそれぞれ、前記走査速度と前記サンプリング時間との積の最大値および最小値とするとき、条件式(3)を満たすことを特徴とするものである。
Figure JPOXMLDOC01-appb-M000002
 第5の観点に係る発明は、第1の観点に係る光走査型観察装置において、
 前記観察対象物上の走査範囲において、前記サンプリング時間は、前記走査速度との積が略一定値となるように変化されることを特徴とするものである。
 第6の観点に係る発明は、第1~5の観点の何れかに係る光走査型観察装置において、
 前記サンプリング時間は、1回のサンプリング当たりの前記検出部の検出時間、および、1回のサンプリング当たりの前記光源による前記レーザ光の照射時間の少なくとも一方により規定されることを特徴とするものである。
 第7の観点に係る発明は、第1~6の観点の何れかに係る光走査型観察装置において、
 前記走査機構による前記観察対象物上の前記走査速度の変化に応じて、前記光源から出力されるレーザ光のパワーを変化させることを特徴とするものである。
 第8の観点に係る発明は、第7の観点に係る光走査型観察装置において、
 前記観察対象物上の走査範囲において、pvminおよびpvmaxを、それぞれ、前記走査速度が最小値および最大値となる際の前記レーザ光のパワーとするとき、条件式(4)を満たすことを特徴とするものである。
   pvmin<pvmax   ・・・(4)
 第9の観点に係る発明は、第7の観点に係る光走査型観察装置において、
 前記観察対象物上の走査範囲において、vmaxおよびvminをそれぞれ前記走査速度の最大値および最小値としたとき、前記pvminおよびpvmaxは、条件式(5)を満たすことを特徴とするものである。
Figure JPOXMLDOC01-appb-M000003
 第10の観点に係る発明は、第1~6の観点の何れかに係る光走査型観察装置において、
 前記走査機構による前記観察対象物上の前記走査速度の変化に応じて、前記検出部の前記信号光の検出感度を変化させることを特徴とするものである。
 第11の観点に係る発明は、第10の観点に係る光走査型観察装置において、
 前記観察対象物上の走査範囲において、svminおよびsvmaxを、それぞれ、前記走査速度が最小値および最大値となる際の前記検出感度とするとき、条件式(6)を満たすことを特徴とするものである。
   svmin<svmax   ・・・(6)
 第12の観点に係る発明は、第11の観点に係る光走査型観察装置において、
 前記観察対象物上の走査範囲において、vmaxおよびvminをそれぞれ前記走査速度の最大値および最小値としたとき、前記svminおよびsvmaxは、条件式(7)を満たすことを特徴とするものである。
Figure JPOXMLDOC01-appb-M000004
 第13の観点に係る発明は、第1~12の観点の何れかに係る光走査型観察装置において、
 前記走査機構による前記観察対象物上の前記走査速度の変化に応じて、サンプリング周期を変化させることを特徴とするものである。
 第14の観点に係る発明は、第13の観点に係る光走査型観察装置において、
 前記観察対象物上の走査範囲において、ts-vminおよびts-vmaxを、それぞれ、前記走査速度が最小値および最大値となる際のサンプリング周期とするとき、条件式(8)を満たすことを特徴とするものである。
   ts-vmax<ts-vmin   ・・・(8)
 第15の観点に係る発明は、第1~14の観点の何れかに係る光走査型観察装置において、
 前記走査機構は、前記観察対象物上を螺旋状に走査することを特徴とするものである。
 本発明によれば、走査機構による観察対象物上の走査速度の変化に応じて、1回のサンプリング当たりの信号光を検出するサンプリング時間を変化させるようにしたので、サンプリングごとの走査速度の変化による画像の分解能の不均一性を低減することができる。
第1実施の形態に係る光走査型観察装置の一例である光走査型内視鏡装置の概略構成を示すブロック図である。 図1の光走査型内視鏡(本体)を概略的に示す概観図である。 図2の光走査型内視鏡(本体)の先端部を拡大して示す断面図である。 図1の光走査型内視鏡装置の光源ユニットの概略構成を示す図である。 図1の光走査型内視鏡装置の検出ユニットの概略構成を示す図である。 観察対象物上での螺旋状の走査による振幅の時間変化の一例を示すグラフである。 従来例による螺旋状のサンプリング走査を示す図である。 本実施の形態に係る螺旋状のサンプリング走査(一部)の一例を示す図である。 走査速度およびサンプリング時間の時間変化の一例を示す図である。 走査速度および光源ユニットから出力されるレーザ光のパワーの時間変化の一例を示す図である。 本実施の形態に係る螺旋状のサンプリング走査(一部)の他の一例を示す図である。 走査速度およびサンプリング周期の時間変化の一例を示す図である。 第2実施の形態に係る光走査型観察装置の一例である光走査型内視鏡装置の光走査型内視鏡(本体)の先端部の断面図である。 図13の走査部の構成を説明する図である。 第2実施の形態に係る光走査型内視鏡装置の光源ユニットの概略構成を示す図である。 ラスター状の走査によるサンプリングの経路を示す図である。 観察対象物上でのラスター状の走査による一方向の走査位置の時間変化の一例を示すグラフである。 従来例によるラスターライン上のサンプリングの一例を示す図である。 本実施の形態に係るラスターライン上のサンプリングの一例を示す図である。 第3実施の形態に係る光走査型観察装置の一例であるレーザ走査型顕微鏡装置の概略構成を示すブロック図である。
 以下、本発明の実施の形態について、図面を参照して説明する。
(第1実施の形態)
 図1は、第1実施の形態に係る光走査型観察装置の一例である光走査型内視鏡装置10の概略構成を示すブロック図である。光走査型内視鏡装置10は、光走査型内視鏡(本体)20と、光源ユニット30(光源)と、検出ユニット40(検出部)と、コンピュータ50と、表示装置60とを含んで構成される。光源ユニット30と光走査型内視鏡20との間はSMF(シングルモードファイバ)21により光学的に接続され、検出ユニット40と光走査型内視鏡20との間は複数のMMF(マルチモードファイバ)22により光学的に接続されている。
 図2は、光走査型内視鏡(本体)20を概略的に示す概観図である。光走査型内視鏡(本体)20は、操作部24、挿入部25および先端部26を備える。操作部24には光源ユニット30からSMF21と検出ユニット40からMMF22とのそれぞれが接続されており、これらSMF21およびMMF22は挿入部25を通って、先端部26まで導かれている。
 図3は、図2の光走査型内視鏡(本体)20の先端部26を拡大して示す断面図である。SMF21は、先端部26の中心部を通り、MMF22は先端部26の外周部を通るように配置されている。SMF21の先端部は固定されず僅かな範囲で可動に保持され、その出射端の先には2枚のレンズ27aおよび27bが配置され、SMF21から出力されたレーザ光が、観察対象物70上に小さいスポットを形成するように構成されている。なお、図3においてレンズ27a,27bは2枚のレンズとなっているが、これらを一枚もしくは複数枚のレンズで構成しても良い。一方、MMF22の入射端は、観察対象物70が配置される側に面しており、SMF21から出力されたレーザ光が観察対象物70に照射されて得られる光を、信号光として入射させるように構成されている。ここで、観察対象物に照射されて得られる光とは、SMF21から出力されたレーザ光の反射光やレーザ光の照射により発生する蛍光などである。
 SMF21の先端部分には、圧電素子23aを有する走査部23(走査機構)が設けられている。圧電素子23aは、SMF21を挟んで対向配置された圧電素子を2組含み、それぞれの圧電素子に電圧を印加することによって、SMF21の径方向であって、互いに垂直な第1の方向と第2の方向の2方向にSMF21を傾斜させることができる。走査部23は、後述する図1のコンピュータ50の走査制御部53に電気的に接続されている。 
 図4は、図1の光走査型内視鏡装置10の光源ユニット30の概略構成を示す図である。光源ユニット30は、それぞれ、赤、緑および青の三原色のCW(連続発振)レーザ光を射出するレーザ光源31R,31G,31Bと、ダイクロイックミラー32a,32bと、AOM(音響光学モジュレータ)33と、レンズ34とを備える。赤色のレーザ光源31Rとしては、例えば、LD(半導体レーザ)を使用することができる。また、緑色のレーザ光源31Gとしては、例えば、DPSSレーザ(半導体励起固体レーザ)を使用することができる。さらに、青色のレーザ光源31Bとしては、例えば、LDを使用することができる。
 レーザ光源31Rを出射したレーザ光の光路と、レーザ光源31Gを出射したレーザ光の光路とは、所定の点で交差するように配置され、それらの交差する位置にダイクロイックミラー32aが設けられる。ダイクロイックミラー32aは、赤色の波長帯域の光を透過させ、緑色の波長帯域の光を反射させる光学特性を有し、レーザ光源31Rから出射しダイクロイックミラー32aを透過した赤色のレーザ光と、レーザ光源31Gから出射してダイクロイックミラー32aにより反射される緑色のレーザ光とが、合波される角度で配置される。
 さらに、赤色のレーザ光と緑色のレーザ光とを合波したレーザ光の光路と、レーザ光源31Bを出射した青色のレーザ光の光路とは、所定の点で交差するように配置され、それらの交差する位置にダイクロイックミラー32bが設けられる。ダイクロイックミラー32bは、赤色の波長帯域の光と緑色の波長帯域の光とを透過させ、青色の波長帯域の光を反射させる光学特性を有し、ダイクロイックミラー32aで合波されダイクロイックミラー32bを透過したレーザ光と、レーザ光源31Bから出射してダイクロイックミラー32bにより反射される青色のレーザ光とが、合波される角度で配置される。このようにして、それぞれのレーザ光源31R,31G,31Bを出射した赤、緑、青の3原色のレーザ光が合波されることにより白色のレーザ光となる。
 AOM33は入射する光を強度変調する素子であり、遮光状態と透光状態とを高速に切り替えることができる。ダイクロイックミラー32a,32bにより合波された白色のレーザ光は、AOM33が透光状態の場合AOM33を透過し、レンズ34によりSMF21の入射端に入射される。AOM33は、後述する図1のコンピュータ50の光源制御部51と電気的に接続されている。なお、レーザ光源31R,31G,および31B並びにダイクロイックミラー32aおよび32bの配置は、これに限られず、例えば、緑色および青色のレーザ光を合波した後、赤色のレーザ光を合波するようにしても良い。
 図5は、図1の光走査型内視鏡装置10の検出ユニット40の概略構成を示す図である。検出ユニット40は、赤、緑および青の各色に対応する光を検出するためのフォトダイオードを用いた受光器41R,41G,41B、ダイクロイックミラー42a,42bおよびレンズ43を備える。検出ユニット40には、複数のMMF22が束ねられて接続されている。
 レーザ光の照射により観察物70により反射されあるいは観察物70で発生し、MMF22を通りその出射端から出射した信号光は、レンズ43により略平行な光束となる。略平行光束となった信号光の光路上には、ダイクロイックミラー42aおよび42bが、光路の方向に対して傾いて配置されている。ダイクロイックミラー42bは、青色の波長帯域の光を反射させ、赤色および緑色の波長帯域の光を透過させる光学特性を有し、レンズ43で平行光束となった信号光から青色の信号光を分離する。分離された青色の信号光は、受光器41Bにより検出され、電気信号に変換される。また、ダイクロイックミラー42aは、緑色の波長帯域の光を反射させ、赤色の波長帯域の光を透過させる光学特性を有し、ダイクロイックミラー42bを透過した信号光を赤色と緑色の信号光とに分離する。分離された赤色および緑色の信号光は、それぞれ受光器41Rおよび受光器41Gにより検出され電気信号に変換される。
 なお、受光器41R,41Gおよび41Bは、後述する図1のコンピュータ50の検出制御部52および信号処理部54に電気的に接続されている。また、受光器41R,41G,および41B並びにダイクロイックミラー42aおよび42bの配置は、これに限られず、例えば、信号光から赤色の光を分離した後、さらに緑色と青色の信号光を分離するような配置としても良い。
 図1のコンピュータ50は、光走査型内視鏡(本体)20の走査部23、光源ユニット30および検出ユニット40を駆動制御するとともに、検出ユニット40により出力された電気信号を処理して、画像を合成し表示装置60に表示する。このためコンピュータ50は、光源制御部51と、検出制御部52と、走査制御部53と、信号処理部54と、制御部55と、記憶部56と、入力部57とを備える。
 光源制御部51は、光源ユニット30のAOM33を制御し、SMF21に入射するレーザ光の強度を調整することができる。また、光源制御部51は、AOM33を遮光状態と透光状態との間で交互に切り替えることもできる。この場合、観察対象物70にレーザ光を照射するときは、AOM33を透光状態とし、レーザ光を照射しないときはAOM33を遮光状態とするように制御する。
 検出制御部52は、検出ユニット40の受光器41R,41G,41Bによる信号光の検出タイミング、検出時間および検出感度を制御することができる。
 走査制御部53は、光走査型内視鏡(本体)20の走査部23を駆動制御して、SMF21から出射したレーザ光のスポットを、観察対象物上で螺旋状に走査させる。具体的には、走査部23の圧電素子23aには、SMF21の先端部の共振周波数fで、レンズ27a,27bの光軸に対して垂直な互いに直交する2方向に、互いに位相を90度ずらして振動するように、交流電圧が加えられる。この交流電圧の大きさを、所定のパターンで変化させることによって、振幅を変化させ、図6に一例を示すように、振幅を変化させる。図6は、上記互いに直交する2方向のうち一方向のレーザ光のスポットの径方向の動き(a)と、螺旋状の経路の径の大きさ(b)とを示している。螺旋状のサンプリング走査は、振幅が略0から所定の最大振幅まで行い、最大振幅になるとサンプリングを停止し、振幅を0近くまで減衰させて、再びサンプリング走査を開始する動作を繰り返す。これによって、観察対象物上で螺旋状の経路で走査させることができる。
 信号処理部54は、検出ユニット40の各受光器41R,41G,41Bから出力された電気信号に基づいて、各サンプリング点に対応する画像データを生成し、対応する画素データとして、記憶部56に記憶する。ここで、信号処理部54は、制御部55からの走査開始を示す信号により、螺旋状の走査を開始してからの経過時間に基づいてサンプリング点の位置を推定する。
 信号処理部54は、1回の螺旋状のサンプリング走査により、観察対象物70の各サンプリング点の位置に対応する画素データを記憶部56に格納する。さらに、信号処理部54は、取得されなかった画素のデータを、サンプリング走査後に補間処理を行うことによって推定し、観察対象物70の画像を生成し、表示装置60に表示する。
 制御部55は、光走査型内視鏡装置10の光源制御部51、検出制御部52、走査制御部53および信号処理部54の全体を同期制御することにより、光源ユニット30からのレーザ光により観察対象物70を螺旋状に走査させ、検出ユニット40に観察対象物70から得られる信号光を所定のタイミングと検出時間で電気信号に変換させ、信号処理部54により画像データを生成させる。
 1回のサンプリング当たりの検出ユニット40の検出時間、および/または、AOM33の制御による光源ユニット30から出射するレーザ光の1回のサンプリング当たりの照射時間は、螺旋状のサンプリング走査を行う間一定値ではなく、走査部23による観察対象物70上の走査速度の変化に応じて変化させることができる。これら、1回のサンプリング当たりの検出ユニット40の検出時間、および、1回のサンプリング当たりの光源ユニット30によるレーザ光の照射時間の一方または双方は、サンプリング走査における1回のサンプリング当たりのサンプリング時間を規定する。たとえば、光源ユニット30を常に透光状態とした場合、検出ユニット40の検出時間がサンプリング時間となる。また、検出ユニット40の検出時間内で、光源ユニット30によるレーザ光の照射時間を変化させた場合は、サンプリング時間はレーザ光の照射時間となる。
 また、光源ユニット30から出力されるレーザ光のパワーまたは検出ユニット40による信号光の検出感度も、螺旋状のサンプリング走査を行う間一定値ではなく、走査部23による観察対象物70上の走査速度の変化に応じて変化させることができる。光源30からのレーザ光の強度は、AOM33の制御により調整される。
 さらに、サンプリング走査のサンプリング周期も、螺旋状のサンプリング走査を行う間一定値ではなく、走査部23による観察対象物70上の走査速度の変化に応じて変化させることができる。サンプリング周期は、レーザ光を照射する周期、すなわち、光源ユニット30から出力されるレーザ光をAOM33の制御により遮光状態と透光状態との間で切り替える周期、および/または、検出ユニット40により信号光の検出を行う周期を変えることによって、変えることができる。
 これら、検出ユニット40の検出時間、検出感度、および、検出周期、並びに、光源ユニット30により出力されるレーザ光の照射時間、レーザ光のパワー、レーザ光を照射する周期の制御は、螺旋状の走査の開始後の経過時間に従ってあらかじめ決められたパターンを光源制御部51および検出制御部52、または、制御部55に記憶させることにより行っても良く、あるいは、光走査型内視鏡装置10の使用者が入力部57を介して変化させるパラメータとその変化のプロファイルを設定して、制御部55の制御により行うようにしても良い。
 受光器41R,41G,41Bの検出時間、検出間隔および検出感度、並びに、AOM33の制御による光源ユニット30から出射するレーザ光の照射時間、レーザ光のパワーおよび照射間隔は、螺旋状のサンプリング走査を行う間一定値ではなく、走査部23による観察対象物70上の走査速度の変化に応じて変化させることができる。これらの変化は、あらかじめ決められたパターンを光源制御部51および検出制御部52に記憶させることにより行っても良く、光走査型内視鏡装置10の使用者が入力部57を介して変化させるパラメータを設定して、制御部55の制御の下で行うようにしても良い。
 以上のような構成により本実施の形態に係る光走査型内視鏡装置10は、以下のように動作させることができる。
(サンプリング時間の調整)
 まず、光走査型内視鏡装置10では、観察対象物70上をSMF21の先端部の共振周波数fで回転走査する。走査中心Cからの距離をr、角共振周波数をω(ω=2πf)とすると、走査速度vは式(9)により表される。共振周波数を用いることにより、高い振動周波数で走査させることが可能となる。
   v=r×ω   (9)
 共振周波数fは走査位置によらず一定値であるから、走査中心からの距離rが大きくなるほど、走査速度が速くなる。ここで、仮にサンプリング時間tとサンプリング周期tとを一定値に制御すると、1回のサンプリングで走査される走査距離(d)は、
   r×ω×t
サンプリングの間の距離(サンプリング間隔距離:d)は、
   r×ω×t
となる。図7は、このような一定のサンプリング時間およびサンプリング周期による螺旋状のサンプリング走査を示す図である。黒い点はサンプリング点を表す。1回のサンプリングで走査距離d(サンプリング点の周方向の長さ)は、走査中心からの距離rが大きいほど長くなっている。このため、サンプリング時間を走査中心に近い位置における画素の大きさに合わせて設定すると、外周部では1回のサンプリングによるサンプリング点の領域が円周方向に複数の画素にまたがってしまい、画像のボケを生じさせ分解能が低下する。一方、外周部に合せてサンプリング時間とサンプリング周期を設定すると、走査中心に近い位置では、画素密度以上に高い密度でサンプリングを行うことなり、画像の生成に用いられない不要な検出を多数行うこととなる。
 そこで、本実施の形態では、走査速度の変化に応じてサンプリング時間tを変化させる。より具体的には、走査速度が速い場合はサンプリング時間tを短くする方向に変化させる。観察対象物70上の走査範囲において、tvminおよびtvmaxを、それぞれ、走査速度が最小値および最大値となる際のサンプリング時間とするとき、条件式(1)を満たすことにより、少なくとも走査速度が最小のときの分解能と比較して、走査速度が最大のときの分解能の低下を、サンプリング時間tを一定とした場合と比べて抑制することができる。
   tvmin>tvmax   ・・・(1)
 また、観察対象物70上の走査範囲において、vmaxおよびvminをそれぞれ走査速度の最大値および最小値としたとき、tvminおよびtvmaxを、条件式(2)を満たすようにすることが好ましい。
Figure JPOXMLDOC01-appb-M000005
 条件式(2)を満たす範囲であれば、少なくとも走査速度が最小のときの走査距離と比較して、走査速度が最大のときの走査距離の違いを、2倍以内に収めることができる。走査距離の違いが2倍以上であると、特に、観察対象物70を螺旋状に走査する場合において、走査範囲の外周付近でサンプリングの分解能が劣化する。レンズなどの光学系の収差も考慮すると、画面の外周付近においてさらに分解能の劣化が顕著となり好ましくない。また、走査距離の違いを0.5以上としたことにより、tvmaxが非常に短くなり過ぎて、高性能の検出器が必要となること、さらには、光量が少なくなるために、より高感度・高像倍率の検出器が必要となることを避けることができる。
 さらに、観察対象物70上の走査範囲において、vを走査速度、tをサンプリング時間とし、max(v×t)およびmin(v×t)をそれぞれ、走査速度とサンプリング時間との積の最大値および最小値とするとき、条件式(3)を満たすようにするとさらに好ましい。
Figure JPOXMLDOC01-appb-M000006
 条件式(3)を満たすことによって、螺旋状の走査範囲全てに渡って、走査速度とサンプリング時間の積(v×t)、すなわち、1回のサンプリングで走査される走査距離の変化を、2倍以内に収めることができる。走査距離の違いがこの程度であれば、得られる画像にそれほどボケは生じない。
 図8は、本実施の形態に係る螺旋状のサンプリング走査の一例であって、図7の破線部に対応する部分を示す図である。走査中心からの距離rが大きい外周部でサンプリング時間を短くしたので、1回のサンプリングによる走査距離が、観察対象物70上の走査範囲でほぼ一定値に近くなっている。特に、サンプリング時間tを、走査速度vとの積が略一定値となるよう調整すると、略一定の走査距離dとなり、分解能のばらつきが無くなり特に好ましい。なお、ここで略一定値とは、例えば30%程度の範囲内で変化することを意味するものとする。
 図9は、走査速度とサンプリング時間の積(v×t)の変化を小さくした、走査速度およびサンプリング時間の時間変化の一例を示す図である。走査速度vは、螺旋状の走査の開始時に走査中心付近において一番小さい値vminとなり、走査終了時に走査範囲の外周部で一番大きい値vmaxとなる。これに対して、サンプリング時間tは、走査の開始時、すなわち一番遅い走査速度vminに対応するサンプリング時間tvminから、走査の進行とともに短くなり、走査の終了時、すなわち一番速い走査速度vmaxに対応するサンプリング時間tvmaxで最小値となる。
(レーザ光のパワーの調整)
 サンプリング時間を変えると、各サンプリング点での明るさ(一回のサンプリングで検出できる信号の強度)が変化する。そこで、走査部23による観察対象物70上の走査速度vの変化に応じて、光源ユニット30から出力されるレーザ光のパワーを変化させることが好ましい。観察対象物70上の走査範囲において、pvminおよびpvmaxを、それぞれ、走査速度vが最小値および最大値となる際のレーザ光のパワーとするとき、条件式(4)を満たすようにする。
   pvmin<pvmax   ・・・(4)
 
 条件式(2)のようにtvmaxがtvminより大きい場合、走査速度が最大となるサンプリング点の位置では、サンプリング時間が短くなるため、検出ユニット40で検出される検出信号が低下し、一画素当たりの光量が低下する。条件式(4)を満たすようにすることにより、少なくとも走査速度が最小のときの一画素当たりの明るさと比較して、走査速度が最大のときの一画素当たりの明るさの不均一性を、光源から出射されるレーザ光のパワーを一定とした場合と比べて低減させることができる。
 また、観察対象物上の走査範囲において、pvminおよびpvmaxを、条件式(5)を満たすようにすることが好ましい。
Figure JPOXMLDOC01-appb-M000007
 pをレーザ光のパワーとすれば、p/vは、各サンプリングの単位長さ当たりのレーザ光の照射パワーを示す。条件式(5)を満たす範囲であれば、少なくとも走査速度が最小のときと比較して、走査速度が最大のときのサンプリングの単位長さ当たりの光量の変化を、2倍以内に収めることができる。なお、単位長さ当たりのレーザ光の照射パワーの変化を0.5以下とした場合、走査速度が速い領域においてレーザ光照射パワーが過剰に大きくなるため、被写体が生体である場合、生体損傷に繋がる可能性がある。また、2以上とした場合、最も走査速度が遅い領域の明るさは、速い領域と比較して、半分以下の明るさになってしまうので好ましくない。
 さらに、観察対象物70上の走査範囲において、max(p/v)およびmin(p/v)をそれぞれ、走査速度に対するレーザ光のパワーの比の最大値および最小値とするとき、条件式(10)を満たすようにするとさらに好ましい。
Figure JPOXMLDOC01-appb-M000008
 条件式(10)を満たすことによって、螺旋状の走査範囲全てに渡って、p/v、すなわち、単位長さ当たりのレーザ光の照射パワーを、2倍以内に収めることができる。特に、
Figure JPOXMLDOC01-appb-M000009
が略1となるように、すなわち、レーザ光のパワーpを、走査速度vに比例するように調整すると、サンプリング走査中の単位長さ当たりのレーザ光の照射パワーが略一定となる。なお、ここで略一定値とは、例えば30%程度の範囲内で変化することを意味するものとする。
 図10は、単位長さ当たりのレーザ光の照射パワーの変化を小さくした場合の、走査速度およびレーザ光の照射パワーの時間変化の一例を示す図である。レーザ光のパワーpは、走査の開始時、すなわち一番遅い走査速度vminに対応するレーザ光のパワーpvminから、走査の進行とともに高くなり、走査の終了時、すなわち一番速い走査速度vmaxに対応するレーザ光のパワーpvmaxで最高値となる。
(検出感度の調整)
 上述のレーザ光のパワーの調整に代えて、検出ユニット40の各受光器41R,41G,41Bの検出感度を調整することもできる。観察対象物70上の走査範囲において、svminおよびsvmaxを、それぞれ、走査速度vが最小値および最大値となる際の受光器41R,41G,41Bの検出感度とするとき、条件式(6)を満たすようにする。
   svmin<svmax   ・・・(6)
 条件式(6)を満たすことにより、少なくとも走査速度が最小のときの一画素当たりの検出信号の強度と、走査速度が最大のときの一画素当たりの検出信号の強度との不均一性を、検出ユニット40の検出感度を一定とした場合と比べて低減することができる。
 また、観察対象物上の走査範囲において、svminおよびsvmaxを、次の条件式(7)を満たすようにすることが好ましい。
Figure JPOXMLDOC01-appb-M000010
 sを検出ユニット40の各受光器41R,41G,41Bの検出感度とすれば、検出感度sを変えることによって、レーザ光のパワーpを変えるのと同様に、検出信号の強度を調整することができる。条件式(7)を満たす範囲であれば、少なくとも走査速度が最小のときの検出信号と比較して、走査速度が最大のときのサンプリングの単位長さ当たりの検出信号の変化を、2倍以内に収めることができる。
Figure JPOXMLDOC01-appb-M000011
の値を0.5以下とした場合、高感度の検出器が必要となるため、検出器のコストの観点などから不都合である。また、2以上とした場合、条件式(5)の場合と同様、走査範囲の外周付近において明るさの低下が顕著となる。
 さらに、観察対象物70上の走査範囲において、max(s/v)およびmin(s/v)をそれぞれ、走査速度に対する検出ユニット40の検出感度の最大値および最小値とするとき、次の条件式(11)を満たすようにするとさらに好ましい。
Figure JPOXMLDOC01-appb-M000012
 特に、
Figure JPOXMLDOC01-appb-M000013
が略1となるように、すなわち、検出ユニット40の各受光器41R,41G,41Bの検出感度sを、走査速度vに比例するように調整すると、サンプリング走査中の検出信号のレベルを略一定とすることができる。なお、略1とは、例えば1~1.3程度の範囲内であることを意味するものとする。
(サンプリング周期の調整)
 サンプリング周期が一定で、走査速度が変化すると、各サンプリング点の中心位置の間の間隔(以下、サンプリング間隔距離と呼ぶ)が異なる。サンプリング間隔距離は、次の式で表すことができる。
   r×ω×t
したがって、走査中心に近いほどサンプリング点の密度が高く、走査範囲の外周付近ほど低くなる(図8参照)。このような場合、走査速度が遅い領域では単位面積当たりのサンプリングの点数が多いためサンプリング点が重なり無駄なサンプリングをしていることになるか、または、走査速度が速い領域では単位面積当たりのサンプリング点数が少ないため、画素内に1つもサンプリング点が無い場合が多くなるかの何れか、あるいはその双方の不都合が発生し得る。
 このため、本実施の形態では、上述のサンプリング時間の調整に加えて、以下のように観察対象物70上の走査速度の変化に応じてサンプリング周期を調整することができる。
 観察対象物70上の走査範囲において、ts-vminおよびts-vmaxを、それぞれ、走査速度が最小値および最大値となる際のサンプリング周期とするとき、条件式(8)を満たすように、サンプリング周期を変化させる。
   ts-vmax<ts-vmin   ・・・(8)
このようにすることにより、少なくとも走査速度が最小のときの分解能と比較して、走査速度が最大のときの分解能の劣化を、サンプリング周期tを一定とした場合と比べて低減することができる。
 また、ts-vminおよびts-vmaxを、次の条件式(12)を満たすようにすることが好ましい。
Figure JPOXMLDOC01-appb-M000014
 条件式(12)を満たす範囲であれば、少なくとも走査速度が最小のときのサンプリング間隔距離と比較して、走査速度が最大のときのサンプリング間隔距離を、2倍以内に収めることができる。サンプリング間隔距離の違いが2倍以上であると、観察対象の走査中心付近でサンプリング点が重なり、あるいは、走査範囲の外周部でサンプリング点が少なくなるため、無駄な走査や分解能の劣化が生じ得る。
 さらに、観察対象物70上の走査範囲において、vを走査速度、tをサンプリング周期とし、max(v×t)およびmin(v×t)をそれぞれ、走査速度とサンプリング周期との積の最大値および最小値とするとき、次の条件式(13)を満たすようにするとさらに好ましい。
Figure JPOXMLDOC01-appb-M000015
 条件式(13)を満たすことによって、螺旋状の走査範囲全てに渡って、v×t、すなわち、サンプリング間隔距離の変化を、2倍以内に収めることができ、得られる画像の分解能の変化を低減することができる。
 図11は、本実施の形態に係る螺旋状のサンプリング走査(一部)の一例であって、走査距離を略一定とすることに加え、サンプリング周期を変化させた場合を示す図である。走査中心Cからの距離rが大きい外周部でサンプリング周期を短くしている。特に、サンプリング周期tを、走査速度vとの積が略一定値となるよう調整すると、このように略一定のサンプリング間隔距離(d)となり特に好ましい。なお、ここで略一定値とは、例えば30%程度の範囲内で変化することを意味するものとする。
 図12は、走査速度およびサンプリング周期の時間変化の一例を示す図である。サンプリング周期tは、走査の開始時、すなわち一番遅い走査速度vminに対応するサンプリング周期ts-vminから、走査の進行とともに短くなり、走査の終了時、すなわち一番速い走査速度vmaxに対応するサンプリング周期ts-vmaxで最小値となる。
 以上説明したように本実施の形態によれば、走査部23による観察対象物70上の走査速度の変化に応じて、1回のサンプリング当たりの信号光を検出するサンプリング時間を変化させるようにしたので、サンプリングごとの走査速度の変化による走査距離の変化を抑制することができる。したがって、走査距離が長くなることによる画像のボケに起因する分解能の低下を低減することができる。
 また、走査速度の変化に伴い走査速度の速い走査範囲の外周付近でサンプリング時間を短くした場合であっても、検出ユニット40で検出される信号光の検出信号が小さくなることを抑制するように、光源ユニット30のレーザ光のパワー、または、検出ユニット40の検出感度を高めるように変化させることができるので、外周付近で検出される信号が弱くなること(画像が暗くなること)を抑制することができる。
 さらに、走査速度の変化に伴い走査速度のより速い領域でサンプリング周期を、高めるようにできるので、走査速度の遅い走査範囲の中心付近で無駄なサンプリングを行うことや、走査速度の速い外周付近でサンプリング点が少なくなり過ぎることを抑制することができる。特に、走査速度の速い外周部において、サンプリング時間を短くすることにより、走査距離が小さくなるので、サンプリング周期を短くすれば、中心部と同等の密度でサンプリング点を配置することが可能になる。
 また、本実施の形態に係る光走査型内視鏡装置10では、螺旋状のサンプリング走査を行った。螺旋状の走査では、ラスター状の走査と比較して、走査範囲の中心付近と外周付近では走査速度が大きく異なるため、走査範囲内で各サンプリングの分解能、明るさの均一性、および、サンプリング密度の変化が大きい。それに対して、ラスター状走査では、最も走査速度が遅い左右端の領域は使用しないことで、走査速度の差を軽減することができる。よって、サンプリング時間、レーザ光のパワーおよびサンプリング周波数を変化させる本発明の解決方法は、螺旋形状走査に特に有効である。
(実施例1)
 第1実施の形態に係る光走査型内視鏡装置10の一実施例について、具体的なパラメータを示して説明する。実施例1では、螺旋状の走査範囲の半径(r:走査中心Cからの距離)を200μm、共振周波数fを10kHz(>30fps×256line=7.5KHz)とする。サンプリング時間tは、検出ユニット40の検出時間により規定され、tは1/vに比例するように変化する。同様にサンプリング周期tも、1/vに比例するように変化する。また、レーザ光のパワーは走査中心付近で、3.2E-10[J/μm]であり、外周部に向けて走査するに従い低下し、1.6E-10[J/μm]まで低下する。また、サンプリング走査中に検出ユニット40の検出感度の調整は行わない。
Figure JPOXMLDOC01-appb-T000001
 実施例1によれば、条件式(1)が満たされ、少なくとも走査速度が最小のときの分解能と比較して、走査速度が最大のときの走査距離が長くなることにより発生する画像のボケに起因する分解能の劣化を、サンプリング時間tを一定とした場合と比べて抑制することができる。
 また、サンプリング時間tは走査速度vとの積が、常に略1[μm]となるように変化するので、条件式(2)および(3)が満たされる。このようにすることによって、各サンプリングの走査距離が略一定値となり、走査距離が変化することによる画像のボケに起因する分解能のばらつきを無くすことができる。
 さらに、条件式(8)が満たされ、少なくとも走査速度が最小のときのサンプリング間隔距離と比較して、走査速度が最大のときのサンプリング間隔距離が長くなることによる分解能の劣化を、サンプリング周期tを一定とした場合と比べて、低減することができる。
 また、サンプリング周期tは走査速度vとの積が、常に略1[μm]となるように変化するので、条件式(12)および(13)も満たされる。このようにすることによって、サンプリング間隔距離が略一定となり、走査中心付近での不要なサンプリングや、外周付近におけるサンプリング点の密度の低下に起因する分解能低下を低減することができる。
 さらに、条件式(4)および(5)が満たされているので、少なくとも走査速度が最小のときの一画素当たりの明るさと比較して、走査速度が最大のときの一画素当たりの明るさの不均一性を、光源から出射されるレーザ光のパワーを一定とした場合と比べて所定の範囲内に抑制することができる。
 なお、本実施例では、走査速度vとサンプリング時間tとの積を一定とするために、検出ユニット40の受光器41R,41G,41Bの検出時間を変化させているが、仮に走査速度vを調節することが可能な場合は、走査速度を変化させても良い。
(第2実施の形態)
 以下に、第2実施の形態に係る光走査型観察装置の他の一例である光走査型内視鏡装置について説明する。第2実施の形態は、第1実施の形態に係る光走査型内視鏡装置において、観察対象物70上を、螺旋状ではなくラスター状に走査させるように構成している。このため、第1実施の形態とは、光走査型内視鏡(本体)20の先端部26の構成が異なっている。また、光源ユニット30の構成も異なっている。
 図13は、第2実施の形態の光走査型内視鏡装置10の光走査型内視鏡(本体)20の先端部26の断面図であり、図14は、図13の走査部23(走査機構)の構成を説明する図である。SMF21の先端部は、円筒チューブ81内を挿通され、先端部がこの円筒チューブ23から突出している。円筒チューブ81の外周には例えば電磁コイルなどの4つの電極82が、周方向に離間して均等に配置されている。また、SMF21の外周の電極82に対向する位置には、それぞれ磁石83が配置されている。それぞれ2組ずつの電極82および磁石83は振動機構を構成し、電磁力により互いに直交する方向(以下、X方向およびY方向とする)にSMF21を振動させる。
 図15は、第2実施の形態に係る光走査型内視鏡装置10の光源ユニット30の概略構成を示す図である。第2実施の形態では、赤色のレーザ光源86Rおよび青色のレーザ光源86BとしてLD光源を用い、緑色のレーザ光源86としてDPSSレーザを使用する。この光源ユニット30では、第1実施の形態のようにAOM33を設けていないが、各レーザ光源86R,86G,86Bを構成する半導体レーザを直接変調することによって、1回のサンプリング当たりのレーザ光照射時間を調整することができる。なお、音響光学チューナブルフィルタ(AOTF)をダイクロイックミラー32bとレンズ34との間に設けることによっても、レーザ光の照射時間を調節することができる。
 その他の構成は、第1実施の形態と同様であるので、同一構成要素には同一参照符号を付して説明を省略する。
 次に第2実施の形態に係る光走査型内視鏡装置10の動作について説明する。SMF21の先端部は、走査部23により、X方向に共振周波数fで振動される。また、走査部23は、SMF21をy方向にはfよりも小さい周波数fで振動させる。このようにすることで、観察対象物70上に照射されたレーザ光が、SMF21の振動に合せてラスター状に順次走査されるため、これによる信号光を検出し処理することにより2次元画像を生成することができる。
 図16は、ラスター状の走査によるサンプリングの経路を示す図である。また、図17は、観察対象物70上でのラスター状の走査によるX方向の走査位置の時間変化の一例を示すグラフである。SMF21の出射端部は、X方向に共振周波数fxで振動されているが、その走査位置は時間とともに正弦波状に変位する。この場合、観察対象物70上の走査範囲内で、X方向の走査の両端部で走査速度が遅くなり、中心付近で走査速度が速くなる。ここで、1回のサンプリングで走査される距離は、走査速度をv、サンプリング時間をtとすると、
   v×t
で表される。図18は、X方向に走査する際のサンプリング時間tを一定とする場合の1サンプリング当たりの走査距離dの変化を示している。この場合、ラスターは走査のX方向の中央付近で1サンプリング当たりの走査距離が長くなり、画像にボケが生じ分解能が低下してしまうことが懸念される。
 このため、本実施の形態では、光源ユニット30によるレーザ照射時間を調整して、走査速度の速い中心領域では1サンプリング当たりのサンプリング時間tを短くし、走査距離が長くなることによる画像のボケに起因する分解能の劣化を低減する。本実施の形態でもサンプリング時間tを条件式(1)~(3)を満足するように制御することができ、第1実施の形態に記載したものと同様の効果が得られる。ここで、サンプリング時間tは、1サンプリング当たりのレーザ照射時間である。特に、走査速度とサンプリング時間との積を略一定値とすることによって、図19に示すように、観察対象物70上の走査範囲に渡って、走査距離dを略一定にすることができる。
 さらに、第1実施の形態と同様に、走査速度vに応じてサンプリング時間tを変化させることに加えて、レーザ光のパワーp、受光器41R,41G,41Bの検出感度sおよびサンプリング周期tを調整し、条件式(4)~(8),(10)~(13)を適宜満たすようにすることによって、各条件式について第1実施の形態に記載されたものと同様の効果が得られる。上記図19は、サンプリング時間に加え、サンプリング周期の調整も行ったものである。
(実施例2)
 第2実施の形態に係る光内視鏡装置10の一実施例について、具体的なパラメータを示して説明する。実施例2は、ラスター状の走査範囲のX方向の振幅(振幅中心からの距離)rを200μm、共振周波数(f)を10kHz(>30fps×256line=7.5KHz)とする。X方向平均走査速度vは8.0E+6μm/sである。レーザ光のパワーは、観察対象物70の生体損傷を考慮して設定したものである。
Figure JPOXMLDOC01-appb-T000002
 実施例2によれば、条件式(1)および(2)が満たされ、少なくとも走査速度が最小のときの分解能と比較して、走査速度が最大のときの走査距離が長くなることにより発生する画像のボケに起因する分解能の劣化を低減することができる。
 また、条件式(8)および(12)が満たされ、少なくとも走査速度が最小のときのサンプリング点の密度と比較して、走査速度が最大のときのサンプリング点の密度が低いことによる分解能の劣化を、低減することができる。
 さらに、条件式(4)および(5)が満たされているので、少なくとも走査速度が最小となるサンプリング点の一画素当たりの明るさと、走査速度が最大となるサンプリング点の一画素当たりの明るさとの不均一性を、光源から出射されるレーザ光のパワーを一定とした場合と比べて所定の範囲内に抑制している。
 上記に加え、観察対象物70上の走査範囲に渡って、走査速度とサンプリング時間の積(v×t),走査速度とサンプリング周期の積(v×t)、および、レーザ光のパワーと走査s速度との比(p/v)を略一定値となるように、サンプリング時間t,サンプリング周期t、レーザ光パワーpを調整すると、サンプリングごとの走査距離、サンプリング間隔距離、および、一画素当たりの明るさを均一にすることができる。
(第3実施の形態)
 図20は、第3実施の形態に係る光走査型観察装置の一例であるレーザ走査型顕微鏡装置110の概略構成を示すブロック図である。レーザ走査型顕微鏡装置110は、レーザ走査型顕微鏡(本体)120と、光源ユニット130(光源)と、検出ユニット140(検出部)と、コンピュータ150と、表示装置160とを含んで構成される。光源ユニット130とレーザ走査型顕微鏡(本体)120との間は、SMF121により光学的に接続され、検出ユニット140とレーザ走査型顕微鏡(本体)120とは、筐体どうしが直接連結されているか、あるいは同一の筐体内に設けられている。また、コンピュータ150は、レーザ走査型顕微鏡(本体)120、光源ユニット130、検出ユニット140および表示装置160と電気的に接続されている。
 光源ユニット130は、赤色、緑色および青色のLD(半導体レーザ)131R,131G,131Bと、ダイクロイックミラー132a,132bとAOTF133と、レンズ134とを備える。LD131R,131G,131Bの配置、および、ダイクロイックミラー132a,132bの光学特性および配置は、第1実施の形態と同様なので説明を省略する。AOTF133は、LD131R,131G,131Bからのレーザ光が合波されたレーザ光を波長選択および強度変調することができる光学素子であり、サンプリング点ごとに、赤色、青色、緑色の各レーザ光を高速に切り替えて照射する。AOTF133は、コンピュータ150の光源制御部(図示せず)によって制御される。AOTF133を透過したレーザ光は、レンズ134によりSMF121の入射端に入射する。
 レーザ走査型顕微鏡(本体)120は、レンズ122、ダイクロイックミラー123、ガルバノメータスキャナ124(走査機構)、ミラー125、瞳投影レンズ126、結像レンズ127、および、対物レンズ128を備える。ここで、ガルバノメータスキャナ124は、対物レンズ128の瞳位置と共役な位置に設けられる。
 レンズ122は、SMF121の出射端から出射されるレーザ光をコリメートするレンズである。ダイクロイックミラー123は、光源ユニット130から入射するレーザ光を透過させ、レーザ光の照射により観察対象物170から発した蛍光を反射させる光学特性を有する。また、ガルバノメータスキャナ124は、ガルバノミラー124aおよび124bを備え、SMF121から出射されダイクロイックミラー123を透過したレーザ光を、互いに直交する2軸方向(X方向およびY方向とする)に偏向させる。
 ガルバノミラー124a,124bで偏向されたレーザ光は、ミラー125で反射され、瞳投影レンズ126、結像レンズ127、および、例えば倍率25倍の対物レンズ128を通り、観察対象物170上に集光されスポットを形成すると共に、このスポットは、上記ガルバノメータスキャナ124を駆動することによって、観察対象物170上で走査される。
 観察対象物170は、光源ユニット130の赤、青、緑の3色のLD131R,131G,および131Bのそれぞれのレーザ光で励起され、異なる波長の蛍光を発する3色の染料で染色されている。レーザ光の走査により観察対象物170から発した蛍光は、レーザ光が伝播してきた光路を逆向きに進み、ダイクロイックミラー123によって分光された後、検出ユニット140に入射する。
 検出ユニット140は、3色のLD131R,131G,131Bのレーザ光により発生する各蛍光を検出するためのPMT(光電子増倍管)141R,141G,141Bと、ダイクロイックミラー142a,142bとを備える。2つのダイクロイックミラー142aおよび142bは、第1実施の形態と同様に、3つの波長の異なる蛍光を分光して、それぞれ対応するPMT141R,141G,141Bに入射させる。それぞれのPMT141R,141G,141Bは、コンピュータ150の図示しない検出制御部により増倍率が制御される。また、PMT141R,141G,141Bの出力信号は、コンピュータ150の図示しない信号処理部に送信され、観察対象物170の画像が生成され、表示装置160に表示される。
 なお、コンピュータ150は、第1実施の形態のコンピュータ50と同様に、光源制御部、検出制御部、走査制御部、信号処理部、記憶部、入力部を備え、ラスター状の走査に対応した制御をすることを除き、第1実施の形態と同様の処理を行うものとし、詳細を省略する。
 以上のような構成により本実施の形態に係るレーザ走査型顕微鏡装置110は、以下のように動作させることができる。
 レーザ走査型顕微鏡装置110は、光源ユニット130から出力されるレーザ光により、観察対象物170上を、ガルバノメータスキャナ124により順次走査する。ここで、ガルバノメータスキャナ124は、レーザ光をガルバノミラー124aの共振周波数fで、対物レンズ128の光軸に垂直な面内のX方向に振動させ、Y方向にはガルバノミラー124bにより周波数fで振動させる。このときX方向の共振周波数による振動は、略正弦波状の振動となっている。
 1回のサンプリングで走査される距離は、走査速度をv、サンプリング時間をtとすると、
   v×t
で表される。サンプリング時間は、PMT141R,141G,141Bによる検出時間、および、AOTF133の制御によるレーザ光の照射時間の一方または双方により規定される。
 ガルバノメータスキャナ124による走査は、X方向に正弦波状なので、観察対象物170の走査範囲内のX方向における中心ほど走査速度が速い。したがって、第2実施の形態に係る光走査型内視鏡と同様に、走査速度の速い中心領域では1サンプリング当たりのサンプリング時間tを短くし、走査距離が長くなることによる画像のボケに起因する分解能の劣化を低減する。また、走査範囲の周辺部では、光学系の収差により分解能が劣化するので、Y方向の両端付近では、サンプリング時間tをさらに短くして、分解能の劣化を軽減しても良い。本実施の形態でも、サンプリング時間tを条件式(1)~(3)を満足するように制御し、第1実施の形態と同様の作用、効果が得られる。ここで、サンプリング時間tは、AOTF133により各色のレーザ光が透光される時間である。
 さらに、AOTF133による各色のレーザ光の透光状態、遮光状態の繰り返しの周期を変えることにより、走査速度の変化に応じてサンプリング周期tを変化させることで、サンプリング点の密度をより均一な状態に近づけることができる。
 また、第1および第2実施の形態と同様に、光源ユニット130からのレーザ光のパワーpまたは検出ユニット140の検出感度sを調整することにより、検出信号の強度を均一にすることができる。とくに、本実施の形態では、検出ユニット140にPMTを用いているので、広い範囲で像倍率を変化させることができる。これにより、画素ごとの明るさの不均一性を抑制することができる。
 したがって、第1実施の形態と同様に、走査速度vに応じてサンプリング時間tを変化させることに加えて、条件式(4)~(8),(10)~(13)を適宜満たすようにすることによって、各条件式について第1実施の形態に記載されたものと同様の効果が得られる。
 以上のように本実施の形態によれば、ガルバノメータスキャナ124による観察対象物170上の走査速度の変化に応じて、1回のサンプリング当たりの信号光を検出するサンプリング時間を変化させるようにしたので、サンプリングごとの走査速度の変化による走査距離の変化を抑制することができる。したがって、走査距離が長くなることによる画像のボケに起因する分解能の変化を低減することができる。
 また、走査速度の変化に伴い走査速度の速い走査範囲のX方向の中心部でサンプリング時間を短くした場合であっても、検出ユニット140で検出される信号光の信号が小さくなることを抑制するように、検出ユニット140の検出感度を高めるように変化させることができるので、X方向の中心部で検出される信号が弱くなること(画像が暗くなること)を抑制することができる。特に、検出ユニット140にPMTを用いたので検出感度を広範囲に調整することができる。
 さらに、走査速度の変化に伴い走査速度のより速い領域でサンプリング周期を、高めるように変化させることができるので、走査速度の遅いX方向の両端部で無駄なサンプリングを行うことや、走査速度の速いX方向の中心部でサンプリング点が少なくなり過ぎることを抑制することができる。
 なお、本実施の形態では、ガルバノメータスキャナ124のX方向の振幅は時間に対して正弦波状に変化させているが、より複雑に変化するような場合、PSD(Position Sensitive Detector:位置検出器)などで、あらかじめ各サンプリング点での速度を測定しておくことや、ガルバノメータスキャナのそれぞれのガルバノミラー124aおよび124bの配置角度をリアルタイムで検出する傾きセンサを設け、これらのセンサから、角度信号をコンピュータ150にリアルタイムに送信し、これを用いて各部の制御や画像の生成を行うようにしても良い。
(実施例3)
 本実施の形態に係る光内視鏡装置110の一実施例について、具体的なパラメータを示して説明する。対物レンズ128には、25倍対物レンズを用い、標本面上でのX方向の振幅(振幅中心からの距離)rを280μm、共振周波数(f)を10kHzとする。X方向の平均走査速度vは11.2E+6μm/sである。レーザ光のパワーは、観察対象物170の生体損傷を考慮して設定したものである。
Figure JPOXMLDOC01-appb-T000003
 実施例3によれば、条件式(1)および(2)が満たされ、少なくとも走査速度が最小のときの分解能と比較して走査速度が最大のときの走査距離が、長くなることにより発生する画像のボケに起因する分解能の劣化を、所定の範囲内に抑制することができる。
 また、条件式(8)および(12)が満たされ、少なくとも走査速度が最小のときのサンプリング点と、走査速度が最大のときのサンプリング点の密度の違いによる分解能の不均一性を、サンプリング周期が一定の場合と比べ低減することができる。
 さらに、条件式(6)および(7)が満たされているので、少なくとも走査速度が最小のときの一画素当たりの明るさ(検出信号の強度)と、走査速度が最大のときの一画素当たりの明るさとの不均一性を、検出ユニット40の各PMT141R,141G,141Bの検出感度を一定とした場合と比べて所定の範囲内に低減することができる。
 なお、本発明は、上記実施の形態にのみ限定されるものではなく、幾多の変形または変更が可能である。たとえば、サンプリング走査は、螺旋状の走査やラスター状の走査に限られず、例えば、リサジュー形状の走査をしても、第1~第3実施の形態と同様の効果を得ることができる。
 また、上記各実施の形態で、光源ユニットのレーザ光は、赤色、緑色、青色の各色のレーザ色を出射するものとしたが、光源ユニットに含まれるレーザはこれらの3色の組み合わせに限られず、種々の波長および種々の個数のレーザを用いることができる。また、使用するレーザ光源に応じて、レーザ光を合波するダイクロイックミラーの光学特性や配置は、適宜決定することができる。
 さらに、第1および第2実施の形態において、コンピュータ、光源ユニット、検出ユニットおよび光走査型内視鏡(本体)は、それぞれ別体で構成される必要は無く、様々に組み合わせることが可能である。例えば、コンピュータ、光源ユニットおよび検出ユニットを一つの筐体内に格納することもできる。第3実施の形態についても同様である。
 第3実施の形態では、レーザ光を照射する光学系の一部と蛍光を検出する光学系の一部とが共用されているが、これらを共用しない構成も可能である。また、本発明の光走査型観察装置は、光源からのレーザ光を観察対象物に照射して、その透過光を検出する構成としても良い。
 10  光走査型内視鏡装置
 20  光走査型内視鏡
 21  SMF(シングルモードファイバ)
 22  MMF(マルチモードファイバ)
 23  走査部
 23a  圧電素子
 24  操作部
 25  挿入部
 26  先端部
 27a,27b  レンズ
 30  光源ユニット
 31R,31B  LD(半導体レーザ)
 31G  DPSSレーザ(半導体励起固体レーザ)
 32a,32b  ダイクロイックミラー
 33  AOM(音響光学モジュレータ)
 34  レンズ
 40  検出ユニット
 41R,41G,41B  受光器
 42a,42b  ダイクロイックミラー
 43  レンズ
 50  コンピュータ
 51  光源制御部
 52  検出制御部
 53  走査制御部
 54  信号処理部
 55  制御部
 56  記憶部
 60  表示装置
 70  観察対象物
 81  円筒チューブ
 82  電極
 83  磁石
 86R,86B  LD(半導体レーザ)
 86G  DPSSレーザ(半導体励起固体レーザ)
 110  レーザ走査型顕微鏡装置
 120  レーザ走査型顕微鏡(本体)
 121  SMF(シングルモードファイバ)
 122  レンズ
 123  DM(ダイクロイックミラー)
 124  ガルバノメータスキャナ
 124a,124b  ガルバノミラー
 125  ミラー
 126  瞳投影レンズ
 127  結像レンズ
 128  対物レンズ
 130  光源ユニット
 131R,131G,131B  LD(半導体レーザ)
 132a,132b  ダイクロイックミラー
 133  AOTF(音響光学チューナブルフィルタ)
 134  レンズ
 140  検出ユニット
 141R,141G,141B  PMT(光電子増倍管)
 142a,142b  DM(ダイクロイックミラー)
 150  コンピュータ
 160  表示装置

Claims (15)

  1.  レーザ光を出力する光源と、
     前記光源から出力された前記レーザ光の集光位置を観察対象物上で走査する走査機構と、
     前記レーザ光の走査により得られる信号光をサンプリングして、電気信号に変換する検出部とを備え、
     前記走査機構による前記観察対象物上の走査速度の変化に応じて、1回のサンプリング当たりの前記信号光を検出するサンプリング時間を変化させることを特徴とする光走査型観察装置。
  2.  前記観察対象物上の走査範囲において、tvminおよびtvmaxを、それぞれ、前記走査速度が最小値および最大値となる際の前記サンプリング時間とするとき、条件式(1)を満たすことを特徴とする請求項1に記載の光走査型観察装置。
       tvmin>tvmax   ・・・(1)
  3.  前記観察対象物上の走査範囲において、vmaxおよびvminをそれぞれ前記走査速度の最大値および最小値としたとき、前記tvminおよびtvmaxは、条件式(2)を満たすことを特徴とする請求項2に記載の光走査型観察装置。
    Figure JPOXMLDOC01-appb-M000016
  4.  前記観察対象物上の走査範囲において、vを前記走査速度、tを前記サンプリング時間とし、max(v×t)およびmin(v×t)をそれぞれ、前記走査速度と前記サンプリング時間との積の最大値および最小値とするとき、条件式(3)を満たすことを特徴とする請求項1~3の何れか一項に記載の光走査型観察装置。
    Figure JPOXMLDOC01-appb-M000017
  5.  前記観察対象物上の走査範囲において、前記サンプリング時間は、前記走査速度との積が略一定値となるように変化されることを特徴とする請求項1に記載の光走査型観察装置。
  6.  前記サンプリング時間は、1回のサンプリング当たりの前記検出部の検出時間、および、1回のサンプリング当たりの前記光源による前記レーザ光の照射時間の少なくとも一方により規定されることを特徴とする請求項1~5の何れか一項に記載の光走査型観察装置。
  7.  前記走査機構による前記観察対象物上の前記走査速度の変化に応じて、前記光源から出力されるレーザ光のパワーを変化させることを特徴とする請求項1~6の何れか一項に記載の光走査型観察装置。
  8.  前記観察対象物上の走査範囲において、pvminおよびpvmaxを、それぞれ、前記走査速度が最小値および最大値となる際の前記レーザ光のパワーとするとき、条件式(4)を満たすことを特徴とする請求項7に記載の光走査型観察装置。
       pvmin<pvmax   ・・・(4)
  9.  前記観察対象物上の走査範囲において、vmaxおよびvminをそれぞれ前記走査速度の最大値および最小値としたとき、前記pvminおよびpvmaxは、条件式(5)を満たすことを特徴とする請求項7に記載の光走査型観察装置。
    Figure JPOXMLDOC01-appb-M000018
  10.  前記走査機構による前記観察対象物上の前記走査速度の変化に応じて、前記検出部の前記信号光の検出感度を変化させることを特徴とする請求項1~6の何れか一項に記載の光走査型観察装置。
  11.  前記観察対象物上の走査範囲において、svminおよびsvmaxを、それぞれ、前記走査速度が最小値および最大値となる際の前記検出感度とするとき、条件式(6)を満たすことを特徴とする請求項10に記載の光走査型観察装置。
       svmin<svmax   ・・・(6)
  12.  前記観察対象物上の走査範囲において、vmaxおよびvminをそれぞれ前記走査速度の最大値および最小値としたとき、前記svminおよびsvmaxは、条件式(7)を満たすことを特徴とする請求項11に記載の光走査型観察装置。
    Figure JPOXMLDOC01-appb-M000019
  13.  前記走査機構による前記観察対象物上の前記走査速度の変化に応じて、サンプリング周期を変化させることを特徴とする請求項1~12の何れか一項に記載の光走査型観察装置。
  14.  前記観察対象物上の走査範囲において、ts-vminおよびts-vmaxを、それぞれ、前記走査速度が最小値および最大値となる際のサンプリング周期とするとき、条件式(8)を満たすことを特徴とする請求項13に記載の光走査型観察装置。
       ts-vmax<ts-vmin   ・・・(8)
  15.  前記走査機構は、前記観察対象物上を螺旋状に走査することを特徴とする請求項1~14の何れか一項に記載の光走査型観察装置。
PCT/JP2013/000394 2012-01-26 2013-01-25 光走査型観察装置 WO2013111604A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380006683.5A CN104081250B (zh) 2012-01-26 2013-01-25 光扫描型观察装置
EP13741514.7A EP2808718B1 (en) 2012-01-26 2013-01-25 Optical scanning observation apparatus
US14/340,740 US9651774B2 (en) 2012-01-26 2014-07-25 Optical scanning observation apparatus having variable sampling time, and method and computer readable storage device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-014326 2012-01-26
JP2012014326 2012-01-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/340,740 Continuation US9651774B2 (en) 2012-01-26 2014-07-25 Optical scanning observation apparatus having variable sampling time, and method and computer readable storage device

Publications (1)

Publication Number Publication Date
WO2013111604A1 true WO2013111604A1 (ja) 2013-08-01

Family

ID=48873328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000394 WO2013111604A1 (ja) 2012-01-26 2013-01-25 光走査型観察装置

Country Status (5)

Country Link
US (1) US9651774B2 (ja)
EP (1) EP2808718B1 (ja)
JP (1) JPWO2013111604A1 (ja)
CN (1) CN104081250B (ja)
WO (1) WO2013111604A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015141180A (ja) * 2014-01-30 2015-08-03 Jfeスチール株式会社 金属板の静止摩擦係数取得方法
WO2015145826A1 (ja) * 2014-03-28 2015-10-01 オリンパス株式会社 走査型内視鏡装置
JP2015210517A (ja) * 2014-09-09 2015-11-24 株式会社ニコン パターン描画装置、パターン描画方法、および、デバイス製造方法
JP2016045427A (ja) * 2014-08-25 2016-04-04 オリンパス株式会社 顕微鏡装置
WO2016117162A1 (ja) * 2015-01-20 2016-07-28 オリンパス株式会社 光走査型観察システム
CN105848554A (zh) * 2013-12-26 2016-08-10 奥林巴斯株式会社 光扫描型图像形成装置和光扫描型图像形成方法
CN105899120A (zh) * 2014-02-21 2016-08-24 奥林巴斯株式会社 光的扫描轨迹的计算方法以及光扫描装置
JP2016178965A (ja) * 2015-03-23 2016-10-13 オリンパス株式会社 走査型内視鏡システム
WO2016189591A1 (ja) * 2015-05-22 2016-12-01 オリンパス株式会社 走査型内視鏡およびその制御方法
JP2017000379A (ja) * 2015-06-09 2017-01-05 オリンパス株式会社 走査型内視鏡システム及び走査型内視鏡の較正方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9373352B2 (en) * 2012-12-10 2016-06-21 Hitachi Consumer Electronics Co., Ltd. Optical information reproduction apparatus and optical information reproduction method
WO2016116968A1 (ja) * 2015-01-23 2016-07-28 オリンパス株式会社 光走査装置
CN107427184A (zh) * 2015-03-18 2017-12-01 奥林巴斯株式会社 光扫描装置的校准方法和校准装置
DE102015224963B3 (de) * 2015-12-11 2017-04-13 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Verfahren zur Bestimmung der Referenz-Fokuslage eines Laserstrahls
WO2017109815A1 (ja) * 2015-12-21 2017-06-29 オリンパス株式会社 光走査型観察装置、及び、パルス状レーザ光の照射パラメータ調整方法
JP6728236B2 (ja) * 2015-12-25 2020-07-22 オリンパス株式会社 光走査型内視鏡および光走査型内視鏡の作動方法
DE102016215177A1 (de) * 2016-08-15 2018-02-15 Carl Zeiss Microscopy Gmbh Verfahren und Anordnung zur Erfassung von Bilddaten
WO2018109799A1 (ja) * 2016-12-12 2018-06-21 オリンパス株式会社 光走査型内視鏡装置
CN106949961B (zh) * 2017-03-22 2018-07-31 精微视达医疗科技(武汉)有限公司 光功率实时监测与反馈方法及装置
KR102074593B1 (ko) * 2018-11-09 2020-02-06 한국기초과학지원연구원 레이저 스캐닝 기반 현미경 장치 및 이의 동작 방법
CN109407328A (zh) * 2018-11-26 2019-03-01 武汉华工激光工程有限责任公司 多路振镜独立加工分光光路装置以及激光加工设备
DE102019213130A1 (de) * 2019-08-30 2021-03-04 Leica Microsystems Cms Gmbh Verfahren zur Beleuchtung, Beleuchtungssteuervorrichtung, Mikroskop und nichtflüchtiges computerlesbares Speichermedium zur Ausführung des Verfahrens
CN110976439B (zh) * 2019-12-24 2020-10-20 中国科学院半导体研究所 提高激光清洗表面均匀程度的激光清洗方式和设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS625791A (ja) * 1985-07-02 1987-01-12 Les-The- Tec Kk カラ−撮像装置
JP2005215357A (ja) * 2004-01-29 2005-08-11 Olympus Corp 走査型レーザ顕微鏡
JP2005321531A (ja) * 2004-05-07 2005-11-17 Olympus Corp 走査型レーザ顕微鏡装置
JP2007034052A (ja) * 2005-07-28 2007-02-08 Olympus Corp レーザ顕微鏡、レーザ顕微鏡の制御方法
JP2007114505A (ja) * 2005-10-20 2007-05-10 Olympus Corp 画像取得装置及びその制御方法
JP2008015030A (ja) 2006-07-03 2008-01-24 Nikon Corp レーザ走査顕微鏡
JP2010142482A (ja) 2008-12-19 2010-07-01 Hoya Corp 光走査型内視鏡プロセッサおよび光走査型内視鏡装置
JP2010142597A (ja) * 2008-12-22 2010-07-01 Hoya Corp 内視鏡装置
JP2010284189A (ja) * 2009-06-09 2010-12-24 Hoya Corp 医療用観察システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4736110A (en) * 1984-09-28 1988-04-05 Nippon Jidoseigyo, Ltd. Image pick-up apparatus
US6294775B1 (en) * 1999-06-08 2001-09-25 University Of Washington Miniature image acquistion system using a scanning resonant waveguide
JP5059637B2 (ja) * 2008-01-18 2012-10-24 オリンパス株式会社 顕微鏡用撮像装置
JP5342869B2 (ja) * 2008-12-22 2013-11-13 Hoya株式会社 内視鏡装置、内視鏡照明装置、画像形成装置、内視鏡照明装置の作動方法および画像形成装置の作動方法
JP2011036462A (ja) * 2009-08-12 2011-02-24 Hoya Corp 医療用観察システム
JP5596569B2 (ja) * 2011-01-07 2014-09-24 オリンパス株式会社 撮像装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS625791A (ja) * 1985-07-02 1987-01-12 Les-The- Tec Kk カラ−撮像装置
JP2005215357A (ja) * 2004-01-29 2005-08-11 Olympus Corp 走査型レーザ顕微鏡
JP2005321531A (ja) * 2004-05-07 2005-11-17 Olympus Corp 走査型レーザ顕微鏡装置
JP2007034052A (ja) * 2005-07-28 2007-02-08 Olympus Corp レーザ顕微鏡、レーザ顕微鏡の制御方法
JP2007114505A (ja) * 2005-10-20 2007-05-10 Olympus Corp 画像取得装置及びその制御方法
JP2008015030A (ja) 2006-07-03 2008-01-24 Nikon Corp レーザ走査顕微鏡
JP2010142482A (ja) 2008-12-19 2010-07-01 Hoya Corp 光走査型内視鏡プロセッサおよび光走査型内視鏡装置
JP2010142597A (ja) * 2008-12-22 2010-07-01 Hoya Corp 内視鏡装置
JP2010284189A (ja) * 2009-06-09 2010-12-24 Hoya Corp 医療用観察システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2808718A4

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105848554A (zh) * 2013-12-26 2016-08-10 奥林巴斯株式会社 光扫描型图像形成装置和光扫描型图像形成方法
JP2015141180A (ja) * 2014-01-30 2015-08-03 Jfeスチール株式会社 金属板の静止摩擦係数取得方法
CN105899120A (zh) * 2014-02-21 2016-08-24 奥林巴斯株式会社 光的扫描轨迹的计算方法以及光扫描装置
JP5865562B1 (ja) * 2014-03-28 2016-02-17 オリンパス株式会社 走査型内視鏡用画像処理装置
WO2015145826A1 (ja) * 2014-03-28 2015-10-01 オリンパス株式会社 走査型内視鏡装置
US9820639B2 (en) 2014-03-28 2017-11-21 Olympus Corporation Image processing apparatus for scanning endoscope
JP2016045427A (ja) * 2014-08-25 2016-04-04 オリンパス株式会社 顕微鏡装置
JP2015210517A (ja) * 2014-09-09 2015-11-24 株式会社ニコン パターン描画装置、パターン描画方法、および、デバイス製造方法
WO2016117162A1 (ja) * 2015-01-20 2016-07-28 オリンパス株式会社 光走査型観察システム
JP2016178965A (ja) * 2015-03-23 2016-10-13 オリンパス株式会社 走査型内視鏡システム
WO2016189591A1 (ja) * 2015-05-22 2016-12-01 オリンパス株式会社 走査型内視鏡およびその制御方法
JPWO2016189591A1 (ja) * 2015-05-22 2018-03-08 オリンパス株式会社 走査型内視鏡およびその制御方法
US10758112B2 (en) 2015-05-22 2020-09-01 Olympus Corporation Scanning endoscope and method for controlling the same
JP2017000379A (ja) * 2015-06-09 2017-01-05 オリンパス株式会社 走査型内視鏡システム及び走査型内視鏡の較正方法

Also Published As

Publication number Publication date
CN104081250A (zh) 2014-10-01
EP2808718A1 (en) 2014-12-03
EP2808718A4 (en) 2015-11-11
CN104081250B (zh) 2017-10-03
US20140332677A1 (en) 2014-11-13
EP2808718B1 (en) 2018-05-16
US9651774B2 (en) 2017-05-16
JPWO2013111604A1 (ja) 2015-05-11

Similar Documents

Publication Publication Date Title
WO2013111604A1 (ja) 光走査型観察装置
US20150338646A1 (en) Optical scanning observation apparatus
US10151914B2 (en) Optical scanning observation apparatus
JP6086674B2 (ja) 光走査装置
JP6226730B2 (ja) 光走査装置および光走査型観察装置
JP6071591B2 (ja) 光走査型内視鏡
US10151916B2 (en) Optical scanning observation apparatus
JP2014145937A (ja) 光走査装置
JPWO2015182137A1 (ja) 光走査型内視鏡装置
JP2015206981A (ja) 光走査型画像形成装置及び光走査型画像形成方法
JP5745922B2 (ja) 光走査型観察装置
JPWO2016116963A1 (ja) 光走査方法及び光走査装置
JP2016002406A (ja) 光走査型内視鏡装置
JP6180335B2 (ja) 光走査型内視鏡装置
US10754143B2 (en) Optical scanning method and optical scanning apparatus
US9977236B2 (en) Optical scanning method and optical scanning apparatus
US20170311779A1 (en) Optical scanning endoscope apparatus
US20170311776A1 (en) Optical scanning apparatus
JP6218596B2 (ja) 走査型観察装置
WO2016035265A1 (ja) 光走査型観察装置
JPWO2017195256A1 (ja) 光走査型観察装置および光走査型観察方法
JP6192611B2 (ja) 光走査型観察システム
JP2015123086A (ja) 走査型照明装置および走査型観察装置
JP2014228627A (ja) 光走査デバイス、光走査型観察装置および光走査型画像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13741514

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013555210

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013741514

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE