WO2013111368A1 - 発泡性ポリスチレン系樹脂粒子とその製造方法及び発泡成形体 - Google Patents

発泡性ポリスチレン系樹脂粒子とその製造方法及び発泡成形体 Download PDF

Info

Publication number
WO2013111368A1
WO2013111368A1 PCT/JP2012/068823 JP2012068823W WO2013111368A1 WO 2013111368 A1 WO2013111368 A1 WO 2013111368A1 JP 2012068823 W JP2012068823 W JP 2012068823W WO 2013111368 A1 WO2013111368 A1 WO 2013111368A1
Authority
WO
WIPO (PCT)
Prior art keywords
polystyrene resin
resin particles
expandable polystyrene
foaming agent
particles
Prior art date
Application number
PCT/JP2012/068823
Other languages
English (en)
French (fr)
Inventor
良輔 地海
樽本 裕之
Original Assignee
積水化成品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化成品工業株式会社 filed Critical 積水化成品工業株式会社
Priority to CN201280067988.2A priority Critical patent/CN104080847B/zh
Publication of WO2013111368A1 publication Critical patent/WO2013111368A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene

Definitions

  • the present invention relates to an expandable polystyrene resin particle obtained by a melt extrusion method, a production method thereof, and an expanded molded body manufactured from the expandable polystyrene resin particle.
  • a foaming agent is press-fitted and kneaded into the polystyrene resin melted in the extruder, and the molten resin containing the foaming agent is extruded directly into the cooling liquid from a small hole in a die attached to the tip of the extruder. Simultaneously with extrusion, the extrudate is cut with a high-speed rotary blade, and the extrudate is cooled and solidified by contact with a liquid to obtain expandable polystyrene resin particles.
  • a method for producing expandable polystyrene resin particles by a melt extrusion method for example, techniques disclosed in Patent Literatures 1 and 2 have been proposed.
  • Patent Document 1 a melt-kneaded product of a thermoplastic resin containing a foaming agent is introduced into a pelletizing die, and the flow path flows toward the extrusion hole of the die.
  • Production of foamable thermoplastic resin particles characterized by passing through an extrusion hole after passing through a flow channel with a large area, extruding into a pressurized liquid from the outlet, immediately cutting into particles, and then cooling. The law is disclosed.
  • thermoplastic resin (A), a foaming agent (B), and 1.5 parts by weight or less of inorganic powder (C) with respect to 100 parts by weight of the thermoplastic resin (A) are melt-kneaded.
  • a process for producing expandable thermoplastic resin particles is disclosed, which is extruded into a pressurized liquid from an extrusion hole of a die head, immediately cut, and then cooled.
  • the present invention has been made in view of the above circumstances, can use recycled raw materials when producing expandable polystyrene resin particles by a melt extrusion method, has excellent foamability, has a short molding cycle, has a good appearance,
  • An object of the present invention is to provide expandable polystyrene resin particles capable of producing a well-balanced foamed molded article having excellent mechanical strength.
  • the expandable polystyrene resin particles according to the first aspect of the present invention are made of a polystyrene resin containing a foaming agent in the form of particles.
  • the polystyrene-based resin has a weight average molecular weight Mw in the range of 120,000 to 320,000.
  • the foaming agent contains 2 to 8 parts by mass of butane with respect to 100 parts by mass of the polystyrene resin.
  • the polystyrene resin in the first aspect, preferably has a weight average molecular weight Mw in the range of 140,000 to 270,000.
  • the polystyrene resin in the first aspect, preferably has a weight average molecular weight Mw in the range of 140,000 to 215,000.
  • the weight average molecular weight Mw of the polystyrene resin is preferably in the range of 140,000 to 185,000.
  • the foaming agent is press-fitted and kneaded into the polystyrene resin melted in the extruder.
  • the molten resin containing is extruded directly into the cooling liquid through a small hole in the die attached to the tip of the extruder.
  • the extrudate is cut with a high-speed rotary blade, and the extrudate is cooled and solidified by contact with the liquid. And preferably obtained by a melt extrusion method.
  • the foamed molded product according to a sixth aspect of the present invention is the foamed molded body according to any one of the first to fifth aspects, wherein the expandable polystyrene resin particles are heated to form pre-expanded particles, and the pre-expanded particles are contained in a mold. Obtained by foam molding.
  • the average cell diameter of the foamed particles in the foam molded article is preferably in the range of 50 ⁇ m to 300 ⁇ m.
  • a foaming agent is press-fitted and kneaded into the polystyrene resin melted in the extruder, and a molten resin containing the foaming agent is attached to the tip of the extruder. It is extruded directly into the cooling liquid through the small holes in the die. Simultaneously with extrusion, the extrudate is cut with a high-speed rotary blade, and the extrudate is cooled and solidified by contact with a liquid to obtain expandable polystyrene resin particles.
  • the polystyrene-based resin has a weight average molecular weight Mw in the range of 120,000 to 320,000.
  • a foaming agent is press-fitted and kneaded into a polystyrene resin melted in an extruder, and a molten resin containing the foaming agent is attached to the tip of the extruder. Extrude directly into the cooling liquid through a small hole. Simultaneously with extrusion, the extrudate is cut with a high-speed rotary blade, and the extrudate is cooled and solidified by contact with a liquid to obtain expandable polystyrene resin particles.
  • the expandable polystyrene resin particles are heated to form pre-expanded particles, and the pre-expanded particles are formed into a foam-molded product by in-mold foam molding.
  • the polystyrene-based resin has a weight average molecular weight Mw in the range of 120,000 to 320,000.
  • the foam molded article according to the tenth aspect of the present invention is obtained by heating expandable polystyrene resin particles to form pre-expanded particles and in-mold foam molding the pre-expanded particles.
  • the polystyrene-based resin has a weight average molecular weight Mw in the range of 120,000 to 320,000.
  • the foaming agent contains isobutane and normal butane in a total amount of 0.1 to 3.0 parts by mass with respect to 100 parts by mass of the polystyrene resin.
  • the expandable polystyrene resin particle is the expandable polystyrene according to the present invention described above. It is preferable that the resin particle.
  • the expandable polystyrene resin particles of the present invention contain an appropriate ratio of isobutane and normal butane as a foaming agent, and are contained in the expandable polystyrene resin particles.
  • the foaming molding which is excellent in foamability, has a short molding cycle, and has sufficient mechanical strength can be manufactured.
  • the weight-average molecular weight Mw of the polystyrene-based resin is in the range of 120,000 to 320,000, a foamed molded article having excellent foamability, a short molding cycle, and sufficient mechanical strength can be produced.
  • a recycled raw material can be utilized as a polystyrene resin.
  • the foam-molded article of the present invention is obtained by heating the expandable polystyrene resin particles to form pre-expanded particles and in-mold foam-molding the pre-expanded particles. Thereby, a foamed molded product having a high expansion ratio can be produced, and a foamed molded product having excellent strength and a good appearance can be provided.
  • expandable polystyrene resin particles capable of producing a foamed molded article having a high expansion ratio, excellent in strength, and capable of producing a foamed molded article having a good appearance. It can be manufactured easily.
  • FIG. 1 It is a block diagram which shows an example of the manufacturing apparatus used for the manufacturing method of the expandable polystyrene-type resin particle of this invention.
  • the expandable polystyrene resin particles of the present embodiment are expandable polystyrene resin particles having a polystyrene resin containing a foaming agent as particles.
  • the weight average molecular weight Mw of the polystyrene resin is in the range of 120,000 to 320,000.
  • the polystyrene resin is not particularly limited.
  • the polystyrene resin include homopolymers of styrene monomers such as styrene, ⁇ -methylstyrene, vinyltoluene, chlorostyrene, ethylstyrene, i-propylstyrene, dimethylstyrene, and bromostyrene, Examples include coalescence.
  • a polystyrene resin containing 50% by mass or more of styrene is preferable, and polystyrene is more preferable.
  • the polystyrene resin may be a copolymer of the styrene monomer mainly composed of the styrene monomer and a vinyl monomer copolymerizable with the styrene monomer.
  • the vinyl monomer include alkyl (meth) acrylates such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, and cetyl (meth) acrylate, (meth) acrylonitrile, dimethyl maleate, and dimethyl fumarate.
  • diethyl fumarate, and ethyl fumarate bifunctional monomers such as divinylbenzene or alkylene glycol dimethacrylate can be used.
  • a polystyrene resin is a main component, you may add another resin.
  • the resin to be added include, for example, a polyene, a styrene-butadiene copolymer, or a diene rubber such as an ethylene-propylene-nonconjugated diene three-dimensional copolymer in order to improve the impact resistance of the foam molded article.
  • examples thereof include rubber-modified polystyrene resin (so-called high impact polystyrene) to which a polymer is added.
  • examples of the resin to be added include polyethylene resins, polypropylene resins, acrylic resins, acrylonitrile-styrene copolymers, and acrylonitrile-butadiene-styrene copolymers.
  • the polystyrene resin used as a raw material is recycled, such as a commercially available ordinary polystyrene resin, a polystyrene resin newly produced by a method such as a suspension polymerization method, or the like.
  • a polystyrene resin that is not a raw material (hereinafter referred to as virgin polystyrene) can be used.
  • virgin polystyrene a polystyrene resin that is not a raw material
  • a recycled raw material obtained by regenerating a used polystyrene-based resin foam molded product or a non-foamed polystyrene resin molded product can also be used.
  • recycled polystyrene resin foam moldings for example, fish boxes, household appliance cushioning materials, or food packaging trays
  • Recycled materials include non-foamed polystyrene resins that are separated and collected from household electrical appliances (for example, televisions, refrigerators, washing machines, or air conditioners) and office equipment (for example, copiers, facsimiles, or printers).
  • Examples include recycled raw materials obtained by pulverizing, kneading, re-pelletizing, and remolding the compact.
  • materials having a weight average molecular weight Mw in the range of 120,000 to 320,000 can be appropriately selected, or a plurality of recycled materials having different weight average molecular weights Mw can be used in appropriate combination.
  • the weight average molecular weight Mw of the polystyrene resin constituting the expandable polystyrene resin particles is in the range of 120,000 to 320,000, preferably in the range of 140,000 to 270,000. The range of 140,000 to 215,000 is more preferable.
  • the weight average molecular weight Mw of the polystyrene resin is less than the above range, the high pressure moldability of the expandable polystyrene resin particles may be deteriorated, and the mechanical strength of the obtained foamed molded product may be decreased.
  • the weight average molecular weight Mw of the polystyrene-based resin exceeds the above range, the low-pressure moldability is deteriorated, and it is difficult to shorten the heating time for foam molding.
  • the foaming agent contained in the polystyrene resin contains 2 to 8 parts by mass of butane with respect to 100 parts by mass of the expandable styrene resin particles.
  • the butane (butane composition) may be contained alone in a polystyrene resin. You may add another volatile foaming agent, a solvent, or a plasticizer as an auxiliary
  • volatile blowing agent examples include aliphatic hydrocarbons such as propane, normal pentane, and isopentane, or halogenated hydrocarbons.
  • Solvents and plasticizers as auxiliary components that can be added to the butane include terpene hydrocarbons such as limonene and pinene, aromatic hydrocarbons such as styrene, toluene, ethylbenzene, and xylene, and alicyclic groups such as cyclopentane and cyclohexane.
  • ester compounds such as hydrocarbons, adipic acid esters such as diisobutyl adipate and diisononyl adipate, or sebacic acid esters such as dibutyl sebacate and dioctyl sebacate.
  • the ratio of isobutane and normal butane in the blowing agent may be more isobutane than the range of the mass ratio, or only isobutane may be used.
  • the amount of the foaming agent contained in the polystyrene resin ranges from 2 to 8 parts by mass of the butane (butane composition) with respect to 100 parts by mass of the polystyrene resin. Preferably, it is in the range of 3 to 7 parts by mass, more preferably in the range of 4 to 6 parts by mass.
  • the amount of butane is less than the above range, a sufficient expansion ratio may not be reached when the expandable polystyrene resin particles are foam-molded.
  • the amount of butane exceeds the above range, the foaming performance cannot be improved.
  • the time which the cooling process in the manufacturing process of the styrene-type resin foam molding using the expandable styrene-type resin particle requires becomes long. Therefore, productivity is reduced.
  • additives generally used in the production of expandable polystyrene resin particles can be used for the expandable polystyrene resin particles of the present embodiment, if necessary.
  • the additive include talc, calcium silicate, synthetic or naturally produced silicon dioxide, ethylene bis-stearic acid amide, methacrylic acid ester copolymer and the like, nucleating agent, hexabromocyclododecane, tetrabromobisphenol Add flame retardants such as A-bis (2,3-dibromo-2-methylpropyl ether), triallyl isocyanurate hexabromide, or colorants such as carbon black, iron oxide, graphite, etc. to polystyrene resin can do.
  • the surface of the expandable polystyrene resin particles of this embodiment is coated with a surface treatment agent such as a fatty acid metal salt, a fatty acid ester, or an antistatic agent, as is usually done for conventional expanded styrene resin particles. can do.
  • a surface treatment agent such as a fatty acid metal salt, a fatty acid ester, or an antistatic agent, as is usually done for conventional expanded styrene resin particles. can do.
  • a surface treatment agent such as a fatty acid metal salt, a fatty acid ester, or an antistatic agent, as is usually done for conventional expanded styrene resin particles. can do.
  • the total amount of the surface treatment agent is preferably about 0.01 to 2.0 parts by mass with respect to 100 parts by mass of the expandable polystyrene resin particles.
  • the particle size of the expandable polystyrene resin particles of the present embodiment is not particularly limited, but usually the average particle size is preferably in the range of 0.3 to 2.0 mm, and in the range of 0.5 to 1.4 mm. It is more preferable that
  • the shape of the expandable polystyrene resin particles of the present embodiment is not particularly limited, but a spherical shape or a shape close to a sphere is preferable.
  • the expandable polystyrene resin particles of the present embodiment are excellent in foaming performance, can be pre-foamed by heating to a high expansion ratio, and a low-density foamed molded product can be produced.
  • it can be carried out by a normal in-mold foam molding method using expandable polystyrene resin particles. That is, the expandable polystyrene resin particles are heated to form pre-expanded particles.
  • the foamed molded body is filled by filling the cavity of the mold having a cavity shaped to mold the pre-expanded particles, heated by blowing water vapor, molded in-mold, and taken out the foamed molded body after cooling the mold. Can be manufactured.
  • the average cell diameter of the foamed particles is preferably in the range of 50 ⁇ m to 300 ⁇ m, and more preferably in the range of 80 ⁇ m to 250 ⁇ m.
  • the average cell diameter of the foamed particles is less than the above range, there is a possibility that the resulting foam molded article has a larger particle gap during the foam molding in the mold and the appearance is impaired.
  • the average cell diameter of the foamed particles exceeds the above range, the strength of the obtained foamed molded product may be lowered.
  • the above-mentioned foamed molded article usually has a density of 0.015 to 0.2 g / cm 3 .
  • the density of the foam molded article is in the range of 0.0166 to 0.05 g / cm 3 , and more preferably, the density of the foam molded article is in the range of 0.02 to 0.033 g / cm 3 .
  • the strength of the foamed molded product obtained by foaming the pre-foamed particles is not preferable.
  • the foamed molded product of the present embodiment is obtained by heating the expandable polystyrene resin particles to be prefoamed particles, and molding the prefoamed particles in-mold.
  • the weight average molecular weight Mw of the polystyrene resin is in the range of 120,000 to 320,000.
  • the foaming agent contains isobutane and normal butane in an amount of 0.1 to 3.0 parts by mass in total with respect to 100 parts by mass of polystyrene resin as an essential component.
  • the weight-average molecular weight Mw of the polystyrene resin constituting the foamed molded product is in the range of 120,000 to 320,000, preferably in the range of 140,000 to 270,000, and 140,000 to 21.20. A range of 50,000 is more preferred.
  • the weight average molecular weight Mw of the polystyrene-based resin is less than the above range, the high-pressure moldability may be deteriorated, and the mechanical strength of the foamed molded product may be lowered.
  • the weight average molecular weight Mw of the polystyrene resin exceeds the above range, the low-pressure moldability is deteriorated, and it is difficult to shorten the heating time of the foam molding.
  • isobutane and normal butane are mentioned as the foaming agent to be contained in the polystyrene-based resin constituting the foamed molded product.
  • the total amount of isobutane and normal butane is in the range of 0.1 to 3.0 parts by weight, preferably in the range of 0.1 to 2.0 parts by weight, based on 100 parts by weight of the polystyrene resin particles.
  • the range is preferably 0.3 to 1.0 part by mass.
  • the expandable polystyrene resin particles of the present embodiment can be manufactured by well-known methods for manufacturing expandable polystyrene resin particles (for example, suspension polymerization method, melt extrusion method, etc.). Since the expandable polystyrene resin particles can be easily manufactured from recycled raw materials, it is preferable to manufacture them by a melt extrusion method.
  • a foaming agent is press-fitted and kneaded into a polystyrene resin melted in an extruder, and the molten resin containing the foaming agent is directly extruded into a cooling liquid from a small hole in a die attached to the tip of the extruder. .
  • the extrudate is cut with a high-speed rotary blade, and the extrudate is cooled and solidified by contact with a liquid to obtain expandable polystyrene resin particles.
  • FIG. 1 is a configuration diagram showing an example of a manufacturing apparatus used in the method for manufacturing expandable polystyrene resin particles in the present embodiment.
  • the manufacturing apparatus includes an extruder 1, a die 2 having a large number of small holes attached to the tip of the extruder 1, and a raw material supply hopper 3 that inputs a resin raw material into the extruder 1.
  • a high-pressure pump 4 that press-fits the foaming agent into the molten resin in the extruder 1 through the foaming agent supply port 5.
  • the manufacturing apparatus is provided so that the cooling water is brought into contact with the resin discharge surface in which the small holes of the die 2 are formed, and the cooling water is circulated and supplied into the chamber, and is pushed out from the small holes of the die 2.
  • the cutter 6 provided rotatably in the cutting chamber 7 so that the cut resin can be cut off, and the foamable particles carried by the cooling water flow from the cutting chamber 7 are separated from the cooling water, dehydrated and dried to be foamable.
  • a dehydrating dryer 10 with a solid-liquid separation function for obtaining particles.
  • the manufacturing apparatus also includes a water tank 8 for storing cooling water separated from the foamable particles by the dehydrating dryer 10 with a solid-liquid separation function, a high-pressure pump 9 for sending the cooling water in the water tank 8 to the cutting chamber 7, and a solid-liquid And a storage container 11 for storing expandable particles dehydrated and dried by the dehydrating dryer 10 with a separation function.
  • any of an extruder using a screw or an extruder not using a screw can be used.
  • the extruder using a screw include a single-screw extruder, a multi-screw extruder, a vent-type extruder, and a tandem extruder.
  • a plunger type extruder, a gear pump type extruder, etc. are mentioned, for example.
  • a static mixer can be used for any extruder.
  • raw material polystyrene-based resin and desired additives such as a foam nucleating agent are weighed and introduced into the extruder 1 from the raw material supply hopper 3.
  • the raw material polystyrene-based resin may be pelletized or granulated and mixed well in advance, and then charged from one raw material supply hopper.
  • the raw polystyrene resin may be introduced from a plurality of raw material supply hoppers whose supply amount is adjusted for each lot and mixed in an extruder.
  • sorting means such as magnetic sorting, sieving, specific gravity sorting, and air sorting. It is preferable to remove it.
  • the die 2 is attached to the tip of the extruder 1 by moving the melt to the tip side while further kneading through a foreign matter removing screen provided in the extruder 1 as necessary. Extrude through small hole.
  • the resin discharge surface in which the small holes of the die 2 are drilled is disposed in the cutting chamber 7 into which cooling water is circulated and supplied.
  • a cutter 6 is rotatably provided in the cutting chamber 7 so that the resin extruded from the small hole of the die 2 can be cut.
  • the expandable polystyrene resin particles formed by the above method are transported from the cutting chamber 7 to the dehydrating dryer 10 with a solid-liquid separation function by the flow of cooling water.
  • the dehydration dryer 10 with a solid-liquid separation function the expandable polystyrene resin particles are separated from the cooling water and dehydrated and dried.
  • the dried expandable polystyrene resin particles are stored in the storage container 11.
  • the expandable polystyrene resin particles of the present embodiment an appropriate ratio of isobutane and normal butane is used as a foaming agent and is contained in the expandable polystyrene resin particles.
  • the foaming molding which is excellent in foamability, has a short molding cycle, and has sufficient mechanical strength can be manufactured.
  • the weight average molecular weight Mw of the polystyrene resin is in the range of 120,000 to 320,000, it is possible to produce a foam molded article having excellent foamability, a short molding cycle, and sufficient mechanical strength. Recycled raw materials can be used as the resin.
  • Example 1 Manufacture of expandable polystyrene resin particles
  • 0.3 parts by mass of fine powder talc was added to 100 parts by mass of a recycled raw material having a weight average molecular weight of 18,000, and these were continuously supplied to a single screw extruder having a diameter of 90 mm at 130 kg per hour.
  • the temperature inside the extruder was set to a maximum temperature of 210 ° C., and the resin was melted.
  • the resin and foaming agent are kneaded and cooled in the extruder, the resin temperature at the tip of the extruder is maintained at 170 ° C., the pressure at the resin introduction part of the die is maintained at 15 MPa, the diameter is 0.6 mm, and the land length is 3
  • a molten resin containing a foaming agent was extruded from a die having 200 small holes of 0.0 mm into a cutting chamber connected to the discharge side of this die and circulating water at 30 ° C. Simultaneously with the extrusion, the extrudate was cut with a high-speed rotary cutter having 10 blades in the circumferential direction.
  • the cut particles were conveyed to a particle separator while being cooled with circulating water, and the particles were separated from the circulating water. Next, the collected particles were dehydrated and dried to obtain expandable polystyrene resin particles.
  • the obtained expandable polystyrene resin particles were almost perfect spheres without the occurrence of deformation or beard, and the average particle size was about 1.1 mm.
  • the expandable polystyrene resin particles produced by the method described above were placed in a 15 ° C. cool box and left for 72 hours. Then, it supplied to the cylindrical batch type preliminary
  • the obtained pre-expanded particles had a bulk density of 0.02 g / cm 3 (bulk expansion ratio: 50 times). Subsequently, the obtained pre-expanded particles were left in a room temperature atmosphere for 24 hours. Thereafter, pre-expanded particles were filled into a mold having a rectangular cavity of length 400 mm ⁇ width 300 mm ⁇ height 50 mm.
  • the inside of the mold cavity was heated with water vapor at a gauge pressure of 0.08 MPa for 20 seconds. Then, it cooled until the pressure in the cavity of a shaping
  • the obtained foamed molded article had a density of 0.02 g / cm 3 (foaming factor: 50 times).
  • Example 1 The following evaluation tests were conducted on the polystyrene resin, the expandable polystyrene resin particles, the pre-expanded particles, and the foamed molded product of Example 1 produced by the method described above.
  • the measurement conditions were two TOSOH TSKgel SuperMultipores HZ-H ( ⁇ 4.6 ⁇ 150 mm) manufactured by Tosoh Corporation, and one TOSOH TSKguardSuperMP (HZ) -H ( ⁇ 4.6 ⁇ 20 mm) guard column manufactured by Tosoh Corporation. Used, column temperature (40 ° C.), mobile phase (THF), mobile phase flow rate (0.2 ml / min), pump temperature and detector (40 ° C.), detection (RI), injection volume (20 ⁇ L), for calibration curve Standard PS (Shodex) molecular weight Mw of 5,620,000, 3,120,000, 1,250,000, 442,000, 131,000, 54,000, 20,000 and 7,590 And 3,450 and 1,320).
  • GC -Gas chromatography
  • GC-14B manufactured by Shimadzu Corporation
  • Detector FID -Heating furnace: PYR-1A manufactured by Shimadzu Corporation Column: manufactured by Shinwa Kako Co., Ltd. (diameter 3 mm x length 3 m), liquid phase 1 squalane 25%, carrier lShimalite 60-80 NAW -Heating furnace temperature: 180 ° C -Column temperature: 70 ° C
  • ⁇ Bulk expansion ratio of pre-expanded particles The mass (a) of about 5 g of pre-expanded particles was weighed in the second decimal place. Next, the pre-expanded particles weighed in a 500 cm 3 graduated cylinder having a minimum scale unit of 5 cm 3 are placed on a circular resin plate slightly smaller than the caliber of the graduated cylinder. The volume (b) of the pre-expanded particles was read by applying a pressing tool in which a rod-shaped resin plate having a length of about 30 cm was fixed upright. The bulk expansion ratio of the pre-expanded particles was determined from the formula (b) / (a).
  • ⁇ Evaluation of molding cycle> Pre-expanded particles are filled into a mold having a rectangular cavity of length 400 mm ⁇ width 300 mm ⁇ height 50 mm, and then the inside of the mold cavity is steamed with water at a gauge pressure of 0.08 MPa for 20 seconds. Then, the cooling time until the pressure in the mold cavity reaches 0.01 MPa was measured, and the molding cycle was evaluated based on the following evaluation criteria: Particularly good ( ⁇ ): less than 210 seconds Good ( ⁇ ): 210 seconds or more and less than 300 seconds Poor (x): 300 seconds or more
  • Bending strength (MPa) 3FL / 2bh 2 (F represents the maximum bending load (N), L represents the distance between supporting points (mm), b represents the width (mm) of the test piece, and h represents the thickness (mm) of the test piece.)
  • F represents the maximum bending load (N)
  • L represents the distance between supporting points (mm)
  • b represents the width (mm) of the test piece
  • h represents the thickness (mm) of the test piece.)
  • Example 1 For Example 1, the aforementioned weight average molecular weight measurement, foaming agent content measurement, molding cycle evaluation, average bubble diameter measurement and strength evaluation, and comprehensive evaluation were performed. The results are shown in Table 1.
  • Example 2 In place of the recycled material having a weight average molecular weight of 1870,000 used in Example 1, a recycled material having a weight average molecular weight of 208,000 was used in the same manner as in Example 1 except that An evaluation test was conducted. The results are shown in Table 1.
  • Example 3 In place of the recycled raw material having a weight average molecular weight of 1870,000 used in Example 1, a recycled raw material having a weight average molecular weight of 250,000 was used in the same manner as in Example 1, and each of the items described above was used. An evaluation test was conducted. The results are shown in Table 1.
  • Example 4 In place of the recycled material having a weight average molecular weight of 1870,000 used in Example 1, a recycled material having a weight average molecular weight of 283,000 was used in the same manner as in Example 1 except that An evaluation test was conducted. The results are shown in Table 1.
  • Example 1 was used except that virgin polystyrene having a weight average molecular weight of 340,000 (brand name: G9305) was used instead of the recycled material having a weight average molecular weight of 1870,000 used in Example 1. Similarly, the evaluation test of each item mentioned above was conducted. The results are shown in Table 1.
  • Example 2 In place of the recycled material having a weight average molecular weight of 1870,000 used in Example 1, a recycled material having a weight average molecular weight of 106,000 was used in the same manner as in Example 1 except that An evaluation test was conducted. The results are shown in Table 1.
  • the expandable polystyrene resin particles obtained in Examples 1 to 7 used as the above have excellent foaming performance, and can be produced in a short time when producing a foam molded product by in-mold foam molding. The evaluation of the cycle was particularly good or good. In addition, the foamed molded products obtained in Examples 1 to 7 were particularly good with a bending strength of 0.28 MPa or more.
  • the foamed molded products obtained in Examples 1 to 8 had good particle appearance and good appearance.
  • Comparative Example 1 using a polystyrene-based resin having a weight average molecular weight Mw exceeding the range of the present invention is difficult to produce in a short time when producing a foamed molded article by in-mold foam molding, and evaluation of the molding cycle. Became defective.
  • the comparative example 2 using the polystyrene-type resin whose weight average molecular weight Mw is less than the range of this invention became weak in the intensity
  • Comparative Example 3 using only isobutane as a foaming agent, it was difficult to produce in a short time when producing a foamed molded article by in-mold foam molding, and the evaluation of the molding cycle was poor. Further, in Comparative Example 4 in which only normal butane was used as the foaming agent, the strength of the obtained foamed molded article was weak and the bending strength was poor.
  • Example 9 The foam-molded product obtained in Example 1 was left in a room at 23 ° C. ⁇ 5 ° C. for 30 days and 90 days. Thereafter, the foaming agent content and composition are analyzed according to the following ⁇ Measurement of foaming agent content and foaming agent composition in the foamed molded product>, and the strength of the foamed molded product is measured and evaluated according to the above ⁇ Evaluation of strength>. did.
  • a rectangular parallelepiped having a size of 35 mm in the length direction, 5 mm in the width direction, and 5 mm in the thickness direction is cut out from the substantially center part of the foamed molding obtained in the examples, and the weight of the test piece is measured. And the said test piece is supplied to a 180 degreeC heating furnace, foaming agent content (total content of isobutane and normal butane, unit: mass%) in a foaming molding, and a foaming agent composition (isobutane and normal butane). (Mass ratio) was measured using gas chromatography under the following conditions.
  • GC -Gas chromatography
  • GC-14B manufactured by Shimadzu Corporation
  • Detector FID -Heating furnace: PYR-1A manufactured by Shimadzu Corporation Column: manufactured by Shinwa Kako Co., Ltd. (diameter 3 mm x length 3 m), liquid phase 1 squalane 25%, carrier lShimalite 60-80 NAW -Column temperature: 70 ° C -Heating furnace temperature: 180 ° C
  • Example 10 The foaming agent content was measured and the strength was evaluated in the same manner as in Example 9 except that the foamed molded product obtained in Example 6 was used as the foamed molded product.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 発泡剤を含有するポリスチレン系樹脂を粒子状としてなる発泡性ポリスチレン系樹脂粒子であって、ポリスチレン系樹脂の重量平均分子量Mwが12万~32万の範囲であり、発泡剤は、ポリスチレン系樹脂100質量部に対し、ブタンを2~8質量部の比率で含有し、かつ前記ブタンの組成が、質量比でイソブタン:ノルマルブタン=10:90~80:20の範囲である。

Description

発泡性ポリスチレン系樹脂粒子とその製造方法及び発泡成形体
 本発明は、溶融押出法により得られた発泡性ポリスチレン系樹脂粒子と、その製造方法、及び前記発泡性ポリスチレン系樹脂粒子から製造される発泡成形体に関する。本願は、2012年1月26日に、日本に出願された特願2012-014055号に基づき優先権を主張し、それらの内容をここに援用する。
 押出機内で溶融されたポリスチレン系樹脂に発泡剤を圧入及び混練し、発泡剤を含有する溶融樹脂を押出機先端に付設されたダイの小孔から直接冷却用液体中に押し出す。押し出すと同時に押出物を高速回転刃で切断し、押出物を液体との接触により冷却固化して、発泡性ポリスチレン系樹脂粒子を得る。溶融押出法により発泡性ポリスチレン系樹脂粒子を製造する方法としては、例えば、特許文献1,2に開示された技術が提案されている。
 特許文献1には、発泡剤を含有する熱可塑性樹脂の溶融混練物を、ペレタイズ用ダイス内に導入してダイスの押出孔に向けて流路を流動させ、次いでこの流路よりも流路断面積の大きい流路に流入させた後、押出孔を通過させ、その出口から加圧液中に押出し、即時切断して粒子とし、次いで冷却することを特徴とする発泡性熱可塑性樹脂粒子の製造法が開示されている。
 特許文献2には、熱可塑性樹脂(A)と、発泡剤(B)と、熱可塑性樹脂(A)100重量部に対して1.5重量部以下の無機質粉末(C)とを溶融混練する。次いで、これをダイヘッドの押出孔から加圧液中に押出し、即時切断した後、冷却することを特徴とする発泡性熱可塑性樹脂粒子の製造法が開示されている。
日本国特開平6-136176号公報 日本国特開平6-298983号公報
 特許文献1,2に記載された製造方法では、発泡性ポリスチレン系樹脂粒子を製造した場合、得られる発泡性ポリスチレン系樹脂粒子は、発泡能力が低く、高発泡倍数の発泡成形体を製造することが困難であるという問題がある。また、前記樹脂粒子から製造された発泡成形体は、機械強度が劣るという問題もある。さらに、前記樹脂粒子から製造された発泡成形体は、外観に劣り、外観美麗な発泡成形体を得ることが難しいという問題もある。
 また、ポリスチレン系樹脂としてリサイクル原料を用いた場合には、前述した各問題が大きく影響する。従って、発泡性ポリスチレン系樹脂粒子を製造する際に、リサイクル原料を利用することは難しい。
 本発明は、前記事情に鑑みてなされ、溶融押出法により発泡性ポリスチレン系樹脂粒子を製造する際にリサイクル原料を利用でき、発泡性に優れ、成形サイクルが短く、良好な外観を有し、十分な機械強度を有するバランスのとれた発泡成形体を製造可能な発泡性ポリスチレン系樹脂粒子の提供を目的とする。
 本発明の第1態様に係る発泡性ポリスチレン系樹脂粒子は、発泡剤を含有するポリスチレン系樹脂を粒子状としてなる。前記ポリスチレン系樹脂の重量平均分子量Mwが12万~32万の範囲である。前記発泡剤は、ポリスチレン系樹脂100質量部に対し、ブタンを2~8質量部の比率で含有する。また、前記ブタンの組成が、質量比でイソブタン:ノルマルブタン=10:90~80:20の範囲である。
 本発明の第2態様に係る発泡性ポリスチレン系樹脂粒子では、上記第1態様において、前記ポリスチレン系樹脂の重量平均分子量Mwが14万~27万の範囲であることが好ましい。
 本発明の第3態様に係る発泡性ポリスチレン系樹脂粒子では、上記第1態様において、前記ポリスチレン系樹脂の重量平均分子量Mwが14万~21.5万の範囲であることが好ましい。
 本発明の第4態様に係る発泡性ポリスチレン系樹脂粒子では、上記第1態様において、前記ポリスチレン系樹脂の重量平均分子量Mwが14万~18.5万の範囲であることが好ましい。
 本発明の第5態様に係る発泡性ポリスチレン系樹脂粒子は、上記第1から第4の何れか1つの態様において、押出機内で溶融されたポリスチレン系樹脂に発泡剤を圧入及び混練し、発泡剤を含有する溶融樹脂を押出機先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を高速回転刃で切断し、押出物を液体との接触により冷却固化して、溶融押出法により得られることが好ましい。
 本発明の第6態様に係る発泡成形体は、上記第1から第5の何れか1つの態様において、前記発泡性ポリスチレン系樹脂粒子を加熱して予備発泡粒子とし、前記予備発泡粒子を型内発泡成形して得られる。
 本発明の第7態様に係る発泡成形体では、上記第6態様において、発泡成形体中の発泡粒の平均気泡径が50μm~300μmの範囲であることが好ましい。
 本発明の第8態様に係る発泡性ポリスチレン系樹脂粒子の製造方法では、押出機内で溶融されたポリスチレン系樹脂に発泡剤を圧入及び混練し、発泡剤を含有する溶融樹脂を押出機先端に付設されたダイの小孔から直接冷却用液体中に押し出す。押し出すと同時に押出物を高速回転刃で切断し、押出物を液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を得る。前記ポリスチレン系樹脂の重量平均分子量Mwが12万~32万の範囲である。前記発泡剤は、必須成分としてポリスチレン系樹脂100質量部に対し、ブタンを2~8質量部の比率で含有し、かつ前記ブタンの組成が、質量比でイソブタン:ノルマルブタン=10:90~80:20の範囲である。
 本発明の第9態様に係る発泡成形体の製造方法では、押出機内で溶融されたポリスチレン系樹脂に発泡剤を圧入及び混練し、発泡剤を含有する溶融樹脂を押出機先端に付設されたダイの小孔から直接冷却用液体中に押し出す。押し出すと同時に押出物を高速回転刃で切断し、押出物を液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を得る。この発泡性ポリスチレン系樹脂粒子を加熱して予備発泡粒子とし、前記予備発泡粒子を型内発泡成形して発泡成形体とする。前記ポリスチレン系樹脂の重量平均分子量Mwが12万~32万の範囲である。前記発泡剤は、ポリスチレン系樹脂100質量部に対し、ブタンを2~8質量部の比率で含有し、かつ前記ブタンの組成が、質量比でイソブタン:ノルマルブタン=10:90~80:20の範囲である。
 本発明の第10態様に係る発泡成形体は、発泡性ポリスチレン系樹脂粒子を加熱して予備発泡粒子とし、前記予備発泡粒子を型内発泡成形して得られる。前記ポリスチレン系樹脂の重量平均分子量Mwが12万~32万の範囲である。前記発泡剤は、ポリスチレン系樹脂100質量部に対し、イソブタンとノルマルブタンをその合計量0.1~3.0質量部の範囲で含有している。
 本発明の第11態様に係る発泡成形体では、上記第10態様において、前記発泡成形体において、前記イソブタンとノルマルブタンの組成が、質量比でイソブタン:ノルマルブタン=30:70~99:1の範囲であることが好ましい。
 本発明の第12態様に係る発泡成形体では、上記第1から第5の何れか1つの態様において、前記発泡成形体において、前記発泡性ポリスチレン系樹脂粒子が前述した本発明に係る発泡性ポリスチレン系樹脂粒子であることが好ましい。
 本発明の発泡性ポリスチレン系樹脂粒子は、適正な比率のイソブタンとノルマルブタンを発泡剤として使用し、発泡性ポリスチレン系樹脂粒子中に含有させる。これにより、発泡性に優れ、かつ成形サイクルが短く、十分な機械的強度を有する発泡成形体を製造できる。 
 また、ポリスチレン系樹脂の重量平均分子量Mwが12万~32万の範囲であれば、発泡性に優れ、かつ成形サイクルが短く、十分な機械的強度を有する発泡成形体を製造できる。また、ポリスチレン系樹脂としてリサイクル原料を利用することができる。
 本発明の発泡成形体は、前記発泡性ポリスチレン系樹脂粒子を加熱して予備発泡粒子とし、前記予備発泡粒子を型内発泡成形して得られる。これにより、高発泡倍数の発泡成形体を製造でき、強度に優れ、良好な外観を有する発泡成形体を提供できる。
 本発明の発泡性ポリスチレン系樹脂粒子の製造方法によれば、高発泡倍数の発泡成形体を製造でき、強度に優れ、良好な外観を有する発泡成形体を製造可能な発泡性ポリスチレン系樹脂粒子を容易に製造することができる。
 また、本発明の発泡性ポリスチレン系樹脂粒子の製造方法によれば、ポリスチレン系樹脂のリサイクル原料を利用して、バージン原料に近い強度が得られ、良好な外観を有する発泡成形体を製造可能な発泡性ポリスチレン系樹脂粒子を製造することができる。
本発明の発泡性ポリスチレン系樹脂粒子の製造方法に用いられる製造装置の一例を示す構成図である。
 以下に本発明の好適な実施形態について詳細に説明する。
 本実施形態の発泡性ポリスチレン系樹脂粒子は、発泡剤を含有するポリスチレン系樹脂を粒子状としてなる発泡性ポリスチレン系樹脂粒子である。ポリスチレン系樹脂の重量平均分子量Mwが12万~32万の範囲である。発泡剤は、必須成分としてポリスチレン系樹脂100質量部に対し、ブタンを2~8質量部の比率で含有し、かつ前記ブタンの組成が、質量比でイソブタン:ノルマルブタン=10:90~80:20の範囲である。
 本実施形態の発泡性ポリスチレン系樹脂粒子において、ポリスチレン系樹脂としては、特に限定されない。ポリスチレン系樹脂としては、例えば、スチレン、α-メチルスチレン、ビニルトルエン、クロロスチレン、エチルスチレン、i-プロピルスチレン、ジメチルスチレン、又はブロモスチレン等のスチレン系モノマーの単独重合体、又はこれらの共重合体等が挙げられる。ポリスチレン系樹脂としては、スチレンを50質量%以上含有するポリスチレン系樹脂が好ましく、ポリスチレンがより好ましい。
 また、前記ポリスチレン系樹脂としては、前記スチレンモノマーを主成分とする前記スチレン系モノマーと、このスチレン系モノマーと共重合可能なビニルモノマーとの共重合体でもよい。前記ビニルモノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、セチル(メタ)アクリレート等のアルキル(メタ)アクリレート、(メタ)アクリロニトリル、ジメチルマレエート、ジメチルフマレート、ジエチルフマレート、エチルフマレートの他、ジビニルベンゼン、又はアルキレングリコールジメタクリレートなどの二官能性モノマーなどが挙げられる。
 また、ポリスチレン系樹脂が主成分であれば、他の樹脂を添加してもよい。添加する樹脂としては、例えば、発泡成形体の耐衝撃性を向上させるために、ポリブタジエン、スチレン-ブタジエン共重合体、又はエチレン-プロピレン-非共役ジエン三次元共重合体などのジエン系のゴム状重合体を添加したゴム変性ポリスチレン系樹脂(いわゆるハイインパクトポリスチレン)が挙げられる。あるいは、添加する樹脂として、ポリエチレン系樹脂、ポリプロピレン系樹脂、アクリル系樹脂、アクリロニトリル-スチレン共重合体、又はアクリロニトリル-ブタジエン-スチレン共重合体などが挙げられる。
 本実施形態の発泡性ポリスチレン系樹脂粒子において、原料となるポリスチレン系樹脂としては、市販されている通常のポリスチレン系樹脂、懸濁重合法などの方法で新たに作製したポリスチレン系樹脂などの、リサイクル原料でないポリスチレン系樹脂(以下、バージンポリスチレンと記す。)を使用することができる。また、原料となるポリスチレン系樹脂として、使用済みのポリスチレン系樹脂発泡成形体、あるいは非発泡のポリスチレン系樹脂成形体を再生処理して得られたリサイクル原料も使用することができる。このリサイクル原料としては、使用済みのポリスチレン系樹脂発泡成形体(例えば、魚箱、家電緩衝材、又は食品包装用トレー)などを回収し、リモネン溶解方式や加熱減容方式によって再生したリサイクル原料が挙げられる。また、リサイクル原料としては、家電製品(例えば、テレビ、冷蔵庫、洗濯機、又はエアコンなど)や事務用機器(例えば、複写機、ファクシミリ、又はプリンターなど)から分別回収された非発泡のポリスチレン系樹脂成形体を粉砕し、溶融混錬してリペレットしたリサイクル原料が挙げられる。これらリサイクル原料の中から、重量平均分子量Mwが12万~32万の範囲となる原料を適宜選択して、又は重量平均分子量Mwが異なる複数のリサイクル原料を適宜組み合わせて、用いることができる。
 本実施形態の発泡性ポリスチレン系樹脂粒子において、発泡性ポリスチレン系樹脂粒子を構成するポリスチレン系樹脂の重量平均分子量Mwは、12万~32万の範囲であり、14万~27万の範囲が好ましく、14万~21.5万の範囲がより好ましい。ポリスチレン系樹脂の重量平均分子量Mwが前記範囲未満である場合、発泡性ポリスチレン系樹脂粒子の高圧成形性が悪化し、また得られる発泡成形体の機械的強度が低下する可能性がある。ポリスチレン系樹脂の重量平均分子量Mwが前記範囲を超える場合、低圧成形性が悪くなり、発泡成形の加熱時間を短縮することが困難になる。
 本実施形態の発泡性ポリスチレン系樹脂粒子において、ポリスチレン系樹脂に含有させる発泡剤としては、発泡性スチレン系樹脂粒子100質量部に対しブタンを2~8質量部含有する。また、前記ブタンの組成が、質量比でイソブタン:ノルマルブタン=10:90~80:20の範囲である。前記ブタン(ブタン組成物)は、単独でポリスチレン系樹脂に含有させてもよい。前記ブタン(ブタン組成物)には、補助成分として他の揮発性発泡剤、溶剤、又は可塑剤を添加しても良い。前記ブタンに添加可能な補助成分となる揮発性発泡剤としては、プロパン、ノルマルペンタン、又はイソペンタンなどの脂肪族炭化水素、又はハロゲン化炭化水素などが挙げられる。
 前記ブタンに添加可能な補助成分となる溶剤及び可塑剤としては、リモネン、ピネンなどのテルペン系炭化水素、スチレン、トルエン、エチルベンゼン、キシレンなどの芳香族炭化水素、シクロペンタン、シクロヘキサンなどの脂環族炭化水素、アジピン酸ジイソブチル、アジピン酸ジイソノニルなどのアジピン酸エステル、又はセバシン酸ジブチル、セバシン酸ジオクチルなどのセバシン酸エステルなどのエステル化合物などが挙げられる。 
 上記した発泡剤のイソブタンとノルマルブタンとの比率は、質量比でイソブタン:ノルマルブタン=10:90~80:20の範囲であり、イソブタン:ノルマルブタン=20:80~70:30の範囲が好ましく、イソブタン:ノルマルブタン=30:70~50:50の範囲がより好ましい。この発泡剤のイソブタンとノルマルブタンとの比率が、前記質量比の範囲よりもイソブタンが多い場合、又はイソブタンのみを使用した場合がある。上記した場合、発泡性ポリスチレン系樹脂粒子から発泡成形体を製造する際、キャビティ内に予備発泡粒子を充填した成形型のキャビティ内に加熱用水蒸気を吹き込んで加熱した後、発泡成形体を取り出し可能な温度まで冷却するための冷却時間が著しく長くなる。従って、生産性が悪くなってしまう。一方、前記質量比の範囲よりもノルマルブタンが多い場合、又はノルマルブタンのみを使用した場合は、得られる発泡成形体の機械強度が低下してしまう。
 本実施形態の発泡性ポリスチレン系樹脂粒子において、ポリスチレン系樹脂に含有させる前記発泡剤の量は、ポリスチレン系樹脂100質量部に対し、前記のブタン(ブタン組成物)を2~8質量部の範囲であり、好ましくは3~7質量部の範囲であり、より好ましくは4~6質量部の範囲である。ブタンの量が前記範囲未満である場合、その発泡性ポリスチレン系樹脂粒子を発泡成形する際に、十分な発泡倍数に到達することができない可能性がある。一方、ブタンの量が前記範囲を超える場合、発泡性能を改善することができなくなる。また、発泡性スチレン系樹脂粒子を用いたスチレン系樹脂発泡成形体の製造工程における冷却工程に要する時間が長くなる。従って、生産性が低下する。
 本実施形態の発泡性ポリスチレン系樹脂粒子には、必要に応じて前記発泡剤以外にも、発泡性ポリスチレン系樹脂粒子の製造において一般的に使用されている他の添加剤を用いることができる。前記添加剤としては、例えば、タルク、珪酸カルシウム、合成あるいは天然に産出される二酸化ケイ素、エチレンビスステアリン酸アミド、メタクリル酸エステル系共重合体等の発泡核剤、ヘキサブロモシクロドデカン、テトラブロモビスフェノールA-ビス(2,3-ジブロモ-2-メチルプロピルエーテル)、トリアリルイソシアヌレート6臭素化物等の難燃剤、又はカーボンブラック、酸化鉄、グラファイト等の着色剤などを、ポリスチレン系樹脂中に添加することができる。
 本実施形態の発泡性ポリスチレン系樹脂粒子の表面には、従来の発泡スチレン系樹脂粒子に対して通常行われているように、脂肪酸金属塩、脂肪酸エステル、帯電防止剤などの表面処理剤をコーティングすることができる。表面処理剤のコーティングを行うことで、樹脂粒子(ビーズ)の流動性、予備発泡特性などを改善することもできる。前記表面処理剤の総添加量は、発泡性ポリスチレン系樹脂粒子100質量部に対して0.01~2.0質量部程度の量が好ましい。
 本実施形態の発泡性ポリスチレン系樹脂粒子の粒径は、特に限定されないが、通常は平均粒径が0.3~2.0mmの範囲であることが好ましく、0.5~1.4mmの範囲であることがより好ましい。
 また、本実施形態の発泡性ポリスチレン系樹脂粒子の形状は特に限定されないが、球状であるか、或いは球に近い形状が好ましい。
 本実施形態の発泡性ポリスチレン系樹脂粒子は、発泡性能に優れており、加熱して高い発泡倍数に予備発泡させることができ、低密度の発泡成形体を製造することができる。
 本実施形態の発泡性ポリスチレン系樹脂粒子から発泡成形体を製造するには、発泡性ポリスチレン系樹脂粒子を用いた通常の型内発泡成形方法によって実施できる。即ち、発泡性ポリスチレン系樹脂粒子を加熱して予備発泡粒子とする。前記予備発泡粒子を成形する形状のキャビティを有する成形型の前記キャビティ内に充填し、水蒸気を吹き込んで加熱し、型内発泡成形し、成形型を冷却後に発泡成形体を取り出すことによって発泡成形体を製造可能である。
 本実施形態の発泡成形体は、発泡粒の平均気泡径が50μm~300μmの範囲であることが好ましく、80μm~250μmの範囲であることがより好ましい。発泡粒の平均気泡径が前記範囲未満であると、型内発泡成形時に、得られる発泡成形体の粒子間隙が多くなり外観が損なわれる可能性がある。発泡粒の平均気泡径が前記範囲を超えると、得られる発泡成形体の強度が低下する可能性がある。
 また、上記した発泡成形体は、通常、0.015~0.2g/cmの密度を有する。好ましくは、発泡成形体の密度が0.0166~0.05g/cmの範囲であり、より好ましくは、発泡成形体の密度が0.02~0.033g/cmの範囲である。前記発泡成形体の密度が0.015g/cmより小さい場合、予備発泡粒子を発泡させて得られる発泡成形体の強度が低下するため好ましくない。一方、発泡成形体の密度が0.2g/cmより大きい場合、予備発泡粒子を発泡させて得られる発泡成形体の質量が増加するので好ましくない。また、この密度を発泡倍数で示すと、発泡倍数(倍)=1/密度(g/cm)である。従って、この発泡成形体は5~67(倍)の発泡倍数を有し、好ましい発泡倍数は20~60(倍)であり、より好ましい発泡倍数は30~50(倍)である。
 本実施形態の発泡成形体は、発泡性ポリスチレン系樹脂粒子を加熱して予備発泡粒子とし、前記予備発泡粒子を型内発泡成形して得られる。ポリスチレン系樹脂の重量平均分子量Mwが12万~32万の範囲である。発泡剤は、必須成分としてポリスチレン系樹脂100質量部に対し、イソブタンとノルマルブタンをその合計量0.1~3.0質量部の範囲で含有している。
 本実施形態の発泡成形体において、発泡成形体を構成するポリスチレン系樹脂の重量平均分子量Mwは、12万~32万の範囲であり、14万~27万の範囲が好ましく、14万~21.5万の範囲がより好ましい。ポリスチレン系樹脂の重量平均分子量Mwが前記範囲未満であると、高圧成形性が悪化し、発泡成形体の機械的強度が低下する可能性がある。ポリスチレン系樹脂の重量平均分子量Mwが前記範囲を超えると、低圧成形性が悪くなり、発泡成形の加熱時間を短縮することが困難になる。
 本実施形態の発泡成形体において、発泡成形体を構成するポリスチレン系樹脂に含有させる発泡剤としては、イソブタンとノルマルブタンが挙げられる。ポリスチレン系樹脂粒子100質量部に対し、イソブタンとノルマルブタンとの合計量は0.1~3.0質量部の範囲であり、好ましくは0.1~2.0質量部の範囲であり、より好ましくは0.3~1.0質量部の範囲である。イソブタンとノルマルブタンの合計量が前記範囲未満であると、型内発泡成形によって発泡成形体を製造する際に十分な発泡倍数に到達することができない可能性がある。一方、イソブタンとノルマルブタンの合計量が前記範囲を超えると、型内発泡成形によって発泡成形体を製造する際に、製造工程における冷却工程に要する時間が長くなって生産性が低下する可能性がある。
 本実施形態の発泡成形体において、発泡剤のイソブタンとノルマルブタンの組成が、質量比でイソブタン:ノルマルブタン=30:70~99:1の範囲であることが好ましく、60:40~99:1の範囲であることがより好ましく、90:10~99:1の範囲であることが最も好ましい。この発泡剤のイソブタンとノルマルブタンとの比率が、前記質量比の範囲よりもイソブタンが多い場合、又はイソブタンのみを使用した場合は、型内発泡成形によって発泡成形体を製造する際に短時間での製造が難しくなる可能性がある。一方、前記質量比の範囲よりもノルマルブタンが多い場合、又はノルマルブタンのみを使用した場合は、発泡成形体の機械強度が低下してしまう可能性がある。
 本実施形態の発泡性ポリスチレン系樹脂粒子は、よく知られている発泡性ポリスチレン系樹脂粒子の製造方法(例えば、懸濁重合法、溶融押出法など)によって製造することができる。前記発泡性ポリスチレン系樹脂粒子は、リサイクル原料から容易に製造できることから、溶融押出法によって製造することが好ましい。溶融押出法では、押出機内で溶融されたポリスチレン系樹脂に発泡剤を圧入及び混練し、発泡剤を含有する溶融樹脂を押出機先端に付設されたダイの小孔から直接冷却用液体中に押し出す。押し出すと同時に押出物を高速回転刃で切断し、押出物を液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を得る。
 図1は、本実施形態において、発泡性ポリスチレン系樹脂粒子の製造方法に用いられる製造装置の一例を示す構成図である。図1に示すように、製造装置は、押出機1と、押出機1の先端に取り付けられた多数の小孔を有するダイ2と、押出機1内に樹脂原料等を投入する原料供給ホッパー3と、押出機1内の溶融樹脂に発泡剤供給口5を通して発泡剤を圧入する高圧ポンプ4と、を備えている。製造装置は、ダイ2の小孔が穿設された樹脂吐出面に冷却水を接触させるように設けられ、室内に冷却水が循環供給されるカッティング室7と、ダイ2の小孔から押し出された樹脂を切断できるようにカッティング室7内に回転可能に設けられたカッター6と、カッティング室7から冷却水の流れによって運ばれる発泡性粒子を、冷却水から分離し、脱水乾燥して発泡性粒子を得る固液分離機能付き脱水乾燥機10と、を備えている。また製造装置は、固液分離機能付き脱水乾燥機10にて発泡性粒子から分離された冷却水を溜める水槽8と、水槽8内の冷却水をカッティング室7に送る高圧ポンプ9と、固液分離機能付き脱水乾燥機10にて脱水乾燥された発泡性粒子を貯留する貯留容器11とを備えている。
 押出機としては、スクリュを用いる押出機またはスクリュを用いない押出機のいずれの押出機も用いることができる。スクリュを用いる押出機としては、例えば、単軸式押出機、多軸式押出機、ベント式押出機、又はタンデム式押出機などが挙げられる。スクリュを用いない押出機としては、例えば、プランジャ式押出機、又はギアポンプ式押出機などが挙げられる。また、いずれの押出機にも、スタティックミキサーを用いることができる。これら押出機のうち、生産性の利点を考慮すると、スクリュを用いた押出機を用いることが好ましい。
 上記した製造装置を用いて、本実施形態の発泡性ポリスチレン系樹脂粒子を製造する方法を説明する。最初に、原料のポリスチレン系樹脂、及び発泡核剤などの所望の添加剤を秤量して、それらを原料供給ホッパー3から押出機1内に投入する。原料のポリスチレン系樹脂は、ペレット状や顆粒状にして事前に良く混合してから1つの原料供給ホッパーから投入してもよい。また、例えば、複数のロットを用いる場合には、原料のポリスチレン樹脂は、各ロットごとに供給量を調整した複数の原料供給ホッパーから投入し、押出機内でそれらを混合してもよい。また、複数のロットのリサイクル原料を組み合わせて使用する場合には、複数のロットの原料を事前に良く混合し、磁気選別や篩分け、比重選別、送風選別などの選別手段により、原料から異物を除去しておくことが好ましい。
 押出機1内にポリスチレン系樹脂を供給した後、この樹脂を加熱溶融し、発泡剤供給口5から高圧ポンプ4によって発泡剤を圧入し、加熱溶融された溶融物に発泡剤を混合する。押出機1内に必要に応じて設けられる異物除去用のスクリーンを通して、溶融物をさらに混練しながら先端側に移動させ、発泡剤を添加した溶融物を押出機1の先端に付設したダイ2の小孔から押し出す。
 ダイ2の小孔が穿設された樹脂吐出面は、室内に冷却水が循環供給されるカッティング室7内に配置されている。また、カッティング室7内には、ダイ2の小孔から押し出された樹脂を切断できるようにカッター6が回転可能に設けられている。発泡剤添加済みの溶融物を押出機1の先端に付設したダイ2の小孔から押し出すと、溶融物は、回転するカッター6により、粒状に切断される。切断された粒状の溶融物は、冷却水と接触して急冷され、発泡が抑えられたまま固化して発泡性ポリスチレン系樹脂粒子となる。
 上記方法により形成された発泡性ポリスチレン系樹脂粒子は、カッティング室7から冷却水の流れによって固液分離機能付き脱水乾燥機10に運ばれる。固液分離機能付き脱水乾燥機10内で、発泡性ポリスチレン系樹脂粒子は、冷却水から分離され、脱水乾燥される。乾燥された発泡性ポリスチレン系樹脂粒子は、貯留容器11に貯留される。
 本実施形態の発泡性ポリスチレン系樹脂粒子においては、適正な比率のイソブタンとノルマルブタンを発泡剤として使用し、発泡性ポリスチレン系樹脂粒子中に含有させる。これにより、発泡性に優れ、かつ成形サイクルが短く、十分な機械的強度を有する発泡成形体を製造することができる。また、ポリスチレン系樹脂の重量平均分子量Mwが12万~32万の範囲内であれば、発泡性に優れ、かつ成形サイクルが短く、十分な機械的強度を有する発泡成形体を製造でき、ポリスチレン系樹脂としてリサイクル原料を利用することができる。
[実施例1]
(発泡性ポリスチレン系樹脂粒子の製造)
 重量平均分子量18.3万のリサイクル原料100質量部に対し、微粉末タルク0.3質量部を加え、これらを口径90mmの単軸押出機に、時間当たり130kgで連続して供給した。押出機内温度としては、最高温度210℃に設定し、樹脂を溶融させた。その後、発泡剤として樹脂100質量部に対して6質量部のブタン(イソブタン:ノルマルブタン=30:70(質量比))を押出機の途中から圧入した。押出機内で樹脂と発泡剤を混練するとともに冷却し、押出機先端部での樹脂温度を170℃、ダイの樹脂導入部の圧力を15MPaに保持して、直径0.6mmでランド長さが3.0mmの小孔が200個配置されたダイより、このダイの吐出側に連結され30℃の水が循環するカッティング室内に、発泡剤を含有する溶融樹脂を押し出した。押し出すと同時に、円周方向に10枚の刃を有する高速回転カッターにて押出物を切断した。切断した粒子を、循環水で冷却しながら、粒子分離器に搬送し、粒子を循環水から分離した。次いで、捕集した粒子を脱水及び乾燥して発泡性ポリスチレン系樹脂粒子を得た。得られた発泡性ポリスチレン系樹脂粒子は、変形、ヒゲ等の発生もなく、ほぼ完全な球体であり、平均粒径は約1.1mmであった。
 得られた発泡性ポリスチレン系樹脂粒子100質量部に対して、0.03質量部のポリエチレングリコール、0.15質量部のステアリン酸亜鉛、0.05質量部のステアリン酸モノグリセライド、及び0.05質量部のヒドロキシステアリン酸トリグリセライドを、発泡性ポリスチレン系樹脂粒子の表面全面に均一に被覆した。
(発泡成形体の製造)
 前述した方法により製造した発泡性ポリスチレン系樹脂粒子を、15℃の保冷庫中に入れ、72時間に亘って放置した。その後、円筒型バッチ式予備発泡機に供給して、吹き込み圧0.05MPaの水蒸気により加熱し、予備発泡粒子を得た。得られた予備発泡粒子は、嵩密度0.02g/cm(嵩発泡倍数50倍)であった。
 続いて、得られた予備発泡粒子を室温雰囲気下、24時間に亘って放置した。その後、長さ400mm×幅300mm×高さ50mmの長方形状のキャビティを有する成形型内に予備発泡粒子を充填した。その後、成形型のキャビティ内を水蒸気でゲージ圧0.08MPaの圧力で20秒間に亘って加熱した。その後、成形型のキャビティ内の圧力が0.01MPaになるまで冷却した。その後、成形型を開き、長さ400mm×幅300mm×高さ50mmの長方形状の発泡成形体を取り出した。得られた発泡成形体は、密度0.02g/cm(発泡倍数50倍)であった。
 前述した方法で製造した実施例1のポリスチレン系樹脂、発泡性ポリスチレン系樹脂粒子、予備発泡粒子、及び発泡成形体について、以下の評価試験を行った。
<重量平均分子量の測定>
 押出機に投入する原料となるポリスチレン系樹脂、及び溶融押出法によって作製した発泡性ポリスチレン系樹脂粒子を構成するポリスチレン系樹脂について、それぞれの樹脂約4mgをTHF(テトラヒドロフラン)4mLに溶解し、非水系0.45μmクロマトディスクで濾過後、東ソー社製 HLC-8320GPC(RI検出器内臓)を用いてポリスチレン換算分子量を測定した。その測定条件は、カラムが東ソー社製TOSOH TSKgel SuperMultiporeHZ-H(Φ4.6×150mm)2本を用い、ガードカラムが東ソー社製TOSOH TSKguardSuperMP(HZ)-H(φ4.6×20mm)1本を用い、カラム温度(40℃)、移動相(THF)、移動相流量(0.2ml/min)、ポンプ温度及び検出器(40℃)、検出(RI)、注入量(20μL)、検量線用標準PS(昭和電工社製(Shodex)分子量Mwが5,620,000と3,120,000と1,250,000と442,000と131,000と54,000と20,000と7,590と3,450と1,320)とした。
<発泡剤含有量と発泡剤組成の測定>
 実施例(及び比較例)で得られた発泡性ポリスチレン系樹脂粒子を15℃の保冷庫に72時間に亘って放置した後、発泡性ポリスチレン系樹脂粒子中の発泡剤量(イソブタンとノルマルブタンの合計の含有量、単位:質量%)と発泡剤組成(イソブタンとノルマルブタンの質量比)を、ガスクロマトグラフィーを用い、下記の条件で測定した。
・ガスクロマトグラフィー(GC):島津製作所社製GC-14B
・検出器:FID
・加熱炉:島津製作所社製PYR-1A
・カラム:信和化工社製(直径3mm×長さ3m)液相1スクワラン25%、担体lShimalite60~80NAW
・加熱炉温度:180℃
・カラム温度:70℃
<予備発泡粒子の嵩発泡倍数>
 約5gの予備発泡粒子の質量(a)を小数以下2位で秤量した。次に、最小目盛り単位が5cmである500cmメスシリンダーに秤量した予備発泡粒子を入れ、これに、メスシリンダーの口径よりやや小さい円形の樹脂板上で、その中心に幅約1.5cm、長さ約30cmの棒状の樹脂板が直立して固定された押圧具をあてて、予備発泡粒子の体積(b)を読み取った。式(b)/(a)により予備発泡粒子の嵩発泡倍数を求めた。
<成形サイクルの評価>
 長さ400mm×幅300mm×高さ50mmの長方形状のキャビティを有する成形型内に予備発泡粒子を充填し、その後、成形型のキャビティ内を水蒸気でゲージ圧0.08MPaの圧力で20秒間に亘って加熱し、その後、成形型のキャビティ内の圧力が0.01MPaになるまでの冷却時間を測定し、下記の評価基準基づき、成形サイクルを評価した:
 特に良好(◎):210秒未満
 良好(○):210秒以上300秒未満
 不良(×):300秒以上
<平均気泡径の測定>
 実施例(及び比較例)で得られた発泡成形体を剃刀刃で切断し、その切断面を走査型電子顕微鏡(日立製作所社製:S-3000N)で30倍に拡大して撮影した。撮影した画像をA4用紙上に印刷し、任意の一直線上(長さ60mm)にある気泡数から気泡の平均弦長(t)を下記式により算出した。但し、任意の直線はできる限り気泡が接点でのみ接しないようにした(接してしまう場合は気泡数に含める)。計測は10ヶ所で行った。その平均弦長を求めた後、気泡径を算出し、平均気泡径D(μm)とした。
 平均弦長t=60/(気泡数×写真の倍率)
 気泡径D=t/0.616×1000
<強度の評価>
 実施例(及び比較例)で得られた発泡成形体について、日本工業規格JISA9511:2006「発泡プラスチック保温材」記載の方法に準じて曲げ強度を測定した。すなわち、テンシロン万能試験機UCT-10T(オリエンテック社製)を用い、試験体サイズは75mm×300mm×50mmとし、圧縮速度を10mm/min、先端治具は加圧くさび10R、支持台10Rで、支点間距離200mmの条件として測定し、次式にて曲げ強度を算出した。試験片の数は3個とし、その平均値を求めた。
 曲げ強度(MPa)=3FL/2bh
(Fは曲げ最大荷重(N)を表し、Lは支点間距離(mm)を表し、bは試験片の幅(mm)を表し、hは試験片の厚み(mm)を表す。)
 上記方法を用いて曲げ強度の平均値を求め、下記の評価基準に基づき、強度を評価した:
 特に良好(◎):曲げ強度が0.28MPa以上
 良好(○):曲げ強度が0.25MPa以上0.28MPa未満
 不良(×):曲げ強度が0.25MPa未満
<総合評価>
 前記<成形サイクルの評価>及び<強度の評価>の評価結果について、下記の評価基準に基づき、総合評価した:
 特に良好(◎):両評価とも特に良好(◎)
 良好(○):一方の評価が特に良好(◎)、他方の評価が良好(○)
 不良(×):両評価のいずれか一方又は両方が不良(×)
 実施例1について、前述した重量平均分子量の測定、発泡剤含有量の測定、成形サイクルの評価、平均気泡径の測定及び強度の評価、並びに総合評価を行った。その結果を表1に記す。
[実施例2]
 実施例1で用いた重量平均分子量18.7万のリサイクル原料に代えて、重量平均分子量20.8万のリサイクル原料を用いたこと以外は、実施例1と同様にして、前述した各項目の評価試験を行った。その結果を表1に記す。
[実施例3]
 実施例1で用いた重量平均分子量18.7万のリサイクル原料に代えて、重量平均分子量25.4万のリサイクル原料を用いたこと以外は、実施例1と同様にして、前述した各項目の評価試験を行った。その結果を表1に記す。
[実施例4]
 実施例1で用いた重量平均分子量18.7万のリサイクル原料に代えて、重量平均分子量28.3万のリサイクル原料を用いたこと以外は、実施例1と同様にして、前述した各項目の評価試験を行った。その結果を表1に記す。
[実施例5]
 発泡剤として、イソブタン:ノルマルブタン=50:50(質量比)の組成としたこと以外は、実施例1と同様にして、前述した各項目の評価試験を行った。その結果を表1に記す。
[実施例6]
 発泡剤として、イソブタン:ノルマルブタン=70:30(質量比)の組成としたこと以外は、実施例1と同様にして、前述した各項目の評価試験を行った。その結果を表1に記す。
[実施例7]
 発泡剤として4質量部のブタン(イソブタン:ノルマルブタン=30:70(質量比))と2質量部のペンタン(イソペンタン:ノルマルペンタン=30:70(質量比))の組成としたこと以外は実施例1同様にして、前述した各項目の評価試験を行った。その結果を表1に記す。
[実施例8]
 発泡剤として6質量部のブタン(イソブタン:ノルマルブタン=30:70(質量比))と溶剤及び可塑剤として1質量部のアジピン酸ジイソブチル(DIBA)の組成としたこと以外は実施例1と同様にして、前述した各項目の評価試験を行った。その結果を表1に記す。
[比較例1]
 実施例1で用いた重量平均分子量18.7万のリサイクル原料に代えて、重量平均分子量34万のバージンポリスチレン(PSジャパン社製、銘柄名:G9305)を用いたこと以外は、実施例1と同様にして、前述した各項目の評価試験を行った。その結果を表1に記す。
[比較例2]
 実施例1で用いた重量平均分子量18.7万のリサイクル原料に代えて、重量平均分子量10.6万のリサイクル原料を用いたこと以外は、実施例1と同様にして、前述した各項目の評価試験を行った。その結果を表1に記す。
[比較例3]
 発泡剤としてイソブタンのみ(イソブタン:ノルマルブタン=100:0)を用いたこと以外は、実施例1と同様にして、前述した各項目の評価試験を行った。その結果を表1に記す。
[比較例4]
 発泡剤としてノルマルブタンのみ(イソブタン:ノルマルブタン=0:100)を用いたこと以外は、実施例1と同様にして、前述した各項目の評価試験を行った。その結果を表1に記す。
Figure JPOXMLDOC01-appb-T000001
 表1の結果より、重量平均分子量Mwが12万~32万の範囲であるポリスチレン系樹脂を用い、発泡剤として、イソブタン:ノルマルブタン=10:90~80:20の範囲であるブタンを主成分として用いた実施例1~7で得られた発泡性ポリスチレン系樹脂粒子は、優れた発泡性能を有し、型内発泡成形によって発泡成形体を製造する際に短時間で製造が可能となり、成形サイクルの評価が特に良好又は良好であった。
 また、実施例1~7で得られた発泡成形体は、曲げ強度が0.28MPa以上であり、特に良好であった。
 また、実施例1~8で得られた発泡成形体は、粒子間隙が少なく、外観美麗で良好であった。
 一方、重量平均分子量Mwが本発明の範囲を超えるポリスチレン系樹脂を用いた比較例1は、型内発泡成形によって発泡成形体を製造する際に短時間での製造が難しくなり、成形サイクルの評価が不良となった。
 また、重量平均分子量Mwが本発明の範囲未満であるポリスチレン系樹脂を用いた比較例2は、得られた発泡成形体の強度が弱くなり、曲げ強度が不良となった。また、発泡剤としてイソブタンのみを使用した比較例3は、型内発泡成形によって発泡成形体を製造する際に短時間での製造が難しくなり、成形サイクルの評価が不良となった。
 また、発泡剤としてノルマルブタンのみを使用した比較例4は、得られた発泡成形体の強度が弱くなり、曲げ強度が不良となった。
[実施例9]
 実施例1で得られた発泡成形体を23℃±5℃の室内に30日、及び90日に亘って放置した。その後、以下の<発泡成形体中の発泡剤含有量と発泡剤組成の測定>に従って発泡剤含有量と組成を分析し、また前記<強度の評価>に従って発泡成形体の強度を、測定及び評価した。
<発泡成形体中の発泡剤含有量と発泡剤組成の測定>
 実施例で得られた発泡成形体の略中心部から長さ方向に35mm、幅方向に5mm、厚み方向に5mmの大きさを有する直方体を切り出し、この試験片の重量を測定する。そして上記試験片を180℃の加熱炉に供給して、発泡成形体中の発泡剤含有量(イソブタンとノルマルブタンの合計の含有量、単位:質量%)と発泡剤組成(イソブタンとノルマルブタンの質量比)を、ガスクロマトグラフィーを用い、下記の条件で測定した。
・ガスクロマトグラフィー(GC):島津製作所社製GC-14B
・検出器:FID
・加熱炉:島津製作所社製PYR-1A
・カラム:信和化工社製(直径3mm×長さ3m)液相1スクワラン25%、担体lShimalite60~80NAW
・カラム温度:70℃
・加熱炉温度:180℃
 30日後の発泡剤量(イソブタンとノルマルブタンの合計の含有量)は0.4質量%、イソブタンとノルマルブタンの比率はイソブタン:ノルマルブタン=98:2、強度の評価は特に良好(◎)であった。
 90日後の発泡剤量(イソブタンとノルマルブタンの合計の含有量)は0.4質量%、イソブタンとノルマルブタンの比率はイソブタン:ノルマルブタン=98:2、強度の評価は特に良好(◎)であった。
[実施例10]
 発泡成形体として実施例6で得られた発泡成形体を用いたこと以外は実施例9と同様にして発泡剤含有量の測定及び強度の評価を行なった。
 30日後の発泡剤量(イソブタンとノルマルブタンの合計の含有量)は0.6質量%、イソブタンとノルマルブタンの比率はイソブタン:ノルマルブタン=98:2、強度の評価は特に良好(◎)であった。
 90日後の発泡剤量(イソブタンとノルマルブタンの合計の含有量)は0.6質量%、イソブタンとノルマルブタンの比率はイソブタン:ノルマルブタン=98:2、強度の評価は特に良好(◎)であった。
 前記実施例9,10の結果から、本発明に係る発泡性ポリスチレン系樹脂粒子を用いて製造された発泡成形体において、発泡剤として加えたブタン(イソブタン+ノルマルブタン)の組成は、発泡成形体製造後30日以上経過した場合、イソブタンが大部分を占めていた。
 本発明によれば、発泡性ポリスチレン系樹脂粒子を製造する際にリサイクル原料を利用でき、発泡性に優れ、成形サイクルが短く、良好な外観を有し、十分な機械強度を有する発泡成形体を製造可能な発泡性ポリスチレン系樹脂粒子とその製造方法を得ることができる。
 1…押出機(樹脂供給装置)、2…ダイ、3…原料供給ホッパー、4…高圧ポンプ、5…発泡剤供給口、6…カッター、7…カッティング室、8…水槽、9…高圧ポンプ、10…固液分離機能付き脱水乾燥機、11…貯留容器。

Claims (16)

  1.  発泡剤を含有するポリスチレン系樹脂を粒子状としてなる発泡性ポリスチレン系樹脂粒子であって、
     ポリスチレン系樹脂の重量平均分子量Mwが12万~32万の範囲であり、発泡剤は、ポリスチレン系樹脂100質量部に対し、ブタンを2~8質量部の比率で含有し、かつ前記ブタンの組成が、質量比でイソブタン:ノルマルブタン=10:90~80:20の範囲である発泡性ポリスチレン系樹脂粒子。
  2.  前記ポリスチレン系樹脂の重量平均分子量Mwが14万~27万の範囲である請求項1に記載の発泡性ポリスチレン系樹脂粒子。
  3.  前記ポリスチレン系樹脂の重量平均分子量Mwが14万~21.5万の範囲である請求項1に記載の発泡性ポリスチレン系樹脂粒子。
  4.  前記ポリスチレン系樹脂の重量平均分子量Mwが14万~18.5万の範囲である請求項1に記載の発泡性ポリスチレン系樹脂粒子。
  5.  押出機内で溶融されたポリスチレン系樹脂に発泡剤を圧入及び混練し、発泡剤を含有する溶融樹脂を押出機先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を高速回転刃で切断するとともに、押出物を液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を得る溶融押出法により得られた請求項1に記載の発泡性ポリスチレン系樹脂粒子。
  6.  押出機内で溶融されたポリスチレン系樹脂に発泡剤を圧入及び混練し、発泡剤を含有する溶融樹脂を押出機先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を高速回転刃で切断するとともに、押出物を液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を得る溶融押出法により得られた請求項2に記載の発泡性ポリスチレン系樹脂粒子。
  7.  押出機内で溶融されたポリスチレン系樹脂に発泡剤を圧入及び混練し、発泡剤を含有する溶融樹脂を押出機先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を高速回転刃で切断するとともに、押出物を液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を得る溶融押出法により得られた請求項3に記載の発泡性ポリスチレン系樹脂粒子。
  8.  押出機内で溶融されたポリスチレン系樹脂に発泡剤を圧入及び混練し、発泡剤を含有する溶融樹脂を押出機先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を高速回転刃で切断するとともに、押出物を液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を得る溶融押出法により得られた請求項4に記載の発泡性ポリスチレン系樹脂粒子。
  9.  請求項1~8のいずれか1項に記載の発泡性ポリスチレン系樹脂粒子を加熱して予備発泡粒子とし、前記予備発泡粒子を型内発泡成形して得られた発泡成形体。
  10.  発泡成形体中の発泡粒の平均気泡径が50μm~300μmの範囲である請求項9に記載の発泡成形体。
  11.  押出機内で溶融されたポリスチレン系樹脂に発泡剤を圧入及び混練し、発泡剤を含有する溶融樹脂を押出機先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を高速回転刃で切断するとともに、押出物を液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を得る製造方法において、
     ポリスチレン系樹脂の重量平均分子量Mwが12万~32万の範囲であり、発泡剤は、必須成分としてポリスチレン系樹脂100質量部に対し、ブタンを2~8質量部の比率で含有し、かつ前記ブタンの組成が、質量比でイソブタン:ノルマルブタン=10:90~80:20の範囲である発泡性ポリスチレン系樹脂粒子の製造方法。
  12.  押出機内で溶融されたポリスチレン系樹脂に発泡剤を圧入及び混練し、発泡剤を含有する溶融樹脂を押出機先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を高速回転刃で切断するとともに、押出物を液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を得て、この発泡性ポリスチレン系樹脂粒子を加熱して予備発泡粒子とし、前記予備発泡粒子を型内発泡成形して発泡成形体とする発泡成形体の製造方法において、
     ポリスチレン系樹脂の重量平均分子量Mwが12万~32万の範囲であり、発泡剤は、必須成分としてポリスチレン系樹脂100質量部に対し、ブタンを2~8質量部の比率で含有し、かつ前記ブタンの組成が、質量比でイソブタン:ノルマルブタン=10:90~80:20の範囲である発泡成形体の製造方法。
  13.  発泡性ポリスチレン系樹脂粒子を加熱して予備発泡粒子とし、前記予備発泡粒子を型内発泡成形して得られた発泡成形体において、ポリスチレン系樹脂の重量平均分子量Mwが12万~32万の範囲であり、発泡剤は、必須成分としてポリスチレン系樹脂100質量部に対し、イソブタンとノルマルブタンをその合計量0.1~3.0質量部の範囲で含有している発泡成形体。
  14.  前記イソブタンとノルマルブタンの組成が、質量比でイソブタン:ノルマルブタン=30:70~99:1の範囲である請求項13に記載の発泡成形体。
  15.  前記発泡性ポリスチレン系樹脂粒子が請求項1~8のいずれか1項に記載の発泡性ポリスチレン系樹脂粒子である請求項13に記載の発泡成形体。
  16.  前記発泡性ポリスチレン系樹脂粒子が請求項1~8のいずれか1項に記載の発泡性ポリスチレン系樹脂粒子である請求項14に記載の発泡成形体。
PCT/JP2012/068823 2012-01-26 2012-07-25 発泡性ポリスチレン系樹脂粒子とその製造方法及び発泡成形体 WO2013111368A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280067988.2A CN104080847B (zh) 2012-01-26 2012-07-25 发泡性聚苯乙烯系树脂颗粒与其制造方法及发泡成型体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012014055A JP5882070B2 (ja) 2011-01-26 2012-01-26 発泡性ポリスチレン系樹脂粒子とその製造方法及び発泡成形体
JP2012-014055 2012-01-26

Publications (1)

Publication Number Publication Date
WO2013111368A1 true WO2013111368A1 (ja) 2013-08-01

Family

ID=48874600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068823 WO2013111368A1 (ja) 2012-01-26 2012-07-25 発泡性ポリスチレン系樹脂粒子とその製造方法及び発泡成形体

Country Status (4)

Country Link
JP (1) JP5882070B2 (ja)
CN (1) CN104080847B (ja)
TW (1) TWI596118B (ja)
WO (1) WO2013111368A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016130282A (ja) * 2015-01-13 2016-07-21 株式会社カネカ 発泡性熱可塑性樹脂粒子、その予備発泡粒子及び発泡体
CN113004572A (zh) * 2019-12-19 2021-06-22 波音公司 用于回收膨胀的聚合物工具的方法
US11298892B2 (en) 2019-07-01 2022-04-12 The Boeing Company Expandable tooling systems and methods

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6424037B2 (ja) * 2014-07-25 2018-11-14 株式会社カネカ 発泡性熱可塑性樹脂粒子、その予備発泡粒子及び発泡成形体
JP6473675B2 (ja) * 2014-07-31 2019-02-20 積水化成品工業株式会社 スチレン系樹脂発泡性粒子及びその製造方法、発泡粒子、発泡成形体並びにその用途

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06100723A (ja) * 1992-09-21 1994-04-12 Mitsubishi Yuka Badische Co Ltd 高発泡可能な発泡性スチレン系樹脂粒子
JPH09100366A (ja) * 1995-10-03 1997-04-15 Mitsubishi Chem Basf Co Ltd 高発泡可能な発泡性スチレン系樹脂粒子
JP2000309659A (ja) * 1999-04-26 2000-11-07 Hitachi Chem Co Ltd 再生発泡性スチレン系樹脂粒子の製造法、この製造法により得られる再生発泡性スチレン系樹脂粒子及び発泡スチレン系樹脂成形品
JP2002348400A (ja) * 2001-05-24 2002-12-04 Hitachi Chem Co Ltd 再生発泡性スチレン系樹脂粒子、その製造方法及び成形品
JP2003306571A (ja) * 2002-04-15 2003-10-31 Sekisui Plastics Co Ltd 再生スチレン系樹脂からなる発泡性粒子及びその製造方法
JP2004018782A (ja) * 2002-06-19 2004-01-22 Jsp Corp 発泡性ポリスチレン系樹脂粒子
JP2005008822A (ja) * 2003-06-20 2005-01-13 Jsp Corp アルミニウム粉を含有するスチレン系樹脂発泡体

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06298983A (ja) * 1993-04-16 1994-10-25 Dainippon Ink & Chem Inc 発泡性熱可塑性樹脂粒子の製造法
JP2004307729A (ja) * 2003-04-09 2004-11-04 Kanegafuchi Chem Ind Co Ltd 発泡性ポリスチレン系樹脂粒子およびポリスチレン系樹脂発泡成形体
CN1852797B (zh) * 2003-09-17 2010-04-28 积水化成品工业株式会社 热塑性树脂发泡性粒子的制造方法
JP5372783B2 (ja) * 2008-01-30 2013-12-18 積水化成品工業株式会社 発泡性ポリスチレン系樹脂粒子とその製造方法及び発泡成形体
KR101477124B1 (ko) * 2010-03-26 2014-12-29 세키스이가세이힝코교가부시키가이샤 발포성 폴리스티렌계 수지 입자와 그 제조 방법, 폴리스티렌계 수지 예비 발포 입자, 폴리스티렌계 수지 발포 성형체, 열가소성 수지 예비 발포 입자와 그 제조 방법, 및 열가소성 수지 발포 성형체

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06100723A (ja) * 1992-09-21 1994-04-12 Mitsubishi Yuka Badische Co Ltd 高発泡可能な発泡性スチレン系樹脂粒子
JPH09100366A (ja) * 1995-10-03 1997-04-15 Mitsubishi Chem Basf Co Ltd 高発泡可能な発泡性スチレン系樹脂粒子
JP2000309659A (ja) * 1999-04-26 2000-11-07 Hitachi Chem Co Ltd 再生発泡性スチレン系樹脂粒子の製造法、この製造法により得られる再生発泡性スチレン系樹脂粒子及び発泡スチレン系樹脂成形品
JP2002348400A (ja) * 2001-05-24 2002-12-04 Hitachi Chem Co Ltd 再生発泡性スチレン系樹脂粒子、その製造方法及び成形品
JP2003306571A (ja) * 2002-04-15 2003-10-31 Sekisui Plastics Co Ltd 再生スチレン系樹脂からなる発泡性粒子及びその製造方法
JP2004018782A (ja) * 2002-06-19 2004-01-22 Jsp Corp 発泡性ポリスチレン系樹脂粒子
JP2005008822A (ja) * 2003-06-20 2005-01-13 Jsp Corp アルミニウム粉を含有するスチレン系樹脂発泡体

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016130282A (ja) * 2015-01-13 2016-07-21 株式会社カネカ 発泡性熱可塑性樹脂粒子、その予備発泡粒子及び発泡体
US11298892B2 (en) 2019-07-01 2022-04-12 The Boeing Company Expandable tooling systems and methods
US11833766B2 (en) 2019-07-01 2023-12-05 The Boeing Company Expandable tooling systems and methods
CN113004572A (zh) * 2019-12-19 2021-06-22 波音公司 用于回收膨胀的聚合物工具的方法
EP3838537A3 (en) * 2019-12-19 2021-09-29 The Boeing Company Methods for recovering expanded polymer tooling
US11872776B2 (en) 2019-12-19 2024-01-16 The Boeing Company Methods for recovering expanded polymer tooling

Also Published As

Publication number Publication date
JP2012167267A (ja) 2012-09-06
TWI596118B (zh) 2017-08-21
JP5882070B2 (ja) 2016-03-09
CN104080847A (zh) 2014-10-01
CN104080847B (zh) 2016-08-31
TW201331228A (zh) 2013-08-01

Similar Documents

Publication Publication Date Title
JP5372783B2 (ja) 発泡性ポリスチレン系樹脂粒子とその製造方法及び発泡成形体
WO2011118706A1 (ja) 発泡性ポリスチレン系樹脂粒子とその製造方法、ポリスチレン系樹脂予備発泡粒子、ポリスチレン系樹脂発泡成形体、熱可塑性樹脂予備発泡粒子とその製造方法、及び熱可塑性樹脂発泡成形体
JP5969938B2 (ja) 発泡性熱可塑性樹脂粒子とその製造方法、予備発泡粒子、発泡成形体、帯電防止性樹脂成形体製造用樹脂組成物
WO2013111368A1 (ja) 発泡性ポリスチレン系樹脂粒子とその製造方法及び発泡成形体
JP5603629B2 (ja) 熱可塑性樹脂予備発泡粒子の製造方法、熱可塑性樹脂発泡成形体の製造方法
JP6063792B2 (ja) 発泡性ポリスチレン系樹脂粒子とその製造方法、予備発泡粒子及び発泡成形体
JP5603628B2 (ja) 発泡性ポリスチレン系樹脂粒子とその製造方法、ポリスチレン系樹脂予備発泡粒子の製造方法及びポリスチレン系樹脂発泡成形体の製造方法
JP5641846B2 (ja) 発泡性ポリスチレン系樹脂粒子とその製造方法、ポリスチレン系樹脂予備発泡粒子及びポリスチレン系樹脂発泡成形体
JP5756003B2 (ja) 発泡性ポリスチレン系樹脂粒子とその製造方法、ポリスチレン系樹脂予備発泡粒子及びポリスチレン系樹脂発泡成形体
JP5425654B2 (ja) 発泡性ポリスチレン系樹脂粒子とその製造方法、ポリスチレン系樹脂予備発泡粒子及びポリスチレン系樹脂発泡成形体
JP6223097B2 (ja) 発泡性ポリスチレン系樹脂粒子及びその製造方法、並びに、ポリスチレン系樹脂予備発泡粒子及び発泡成形体
JP2013072003A (ja) 発泡性ポリスチレン系樹脂粒子とその製造方法、ポリスチレン系樹脂予備発泡粒子及びポリスチレン系樹脂発泡成形体
JP2012207186A (ja) 加熱溶融発泡成形用の発泡剤含有熱可塑性樹脂粒子とその製造方法及び熱可塑性樹脂発泡成形体とその製造方法
JP6043562B2 (ja) 熱可塑性樹脂粒子の製造方法、発泡性熱可塑性樹脂粒子の製造方法、予備発泡粒子の製造方法及び発泡成形体の製造方法
JP2012207156A (ja) 加熱溶融発泡成形用の発泡剤含有熱可塑性樹脂粒子とその製造方法及び熱可塑性樹脂発泡成形体とその製造方法
JP5704831B2 (ja) 気泡含有発泡性ポリスチレン系樹脂粒子とその製造方法、ポリスチレン系樹脂予備発泡粒子及びポリスチレン系樹脂発泡成形体の製造方法
JP2012072231A (ja) 発泡性ポリスチレン系樹脂粒子とその製造方法、ポリスチレン系樹脂予備発泡粒子及びポリスチレン系樹脂発泡成形体
JP2013071996A (ja) 発泡性熱可塑性樹脂粒子とその製造方法、熱可塑性樹脂予備発泡粒子及び熱可塑性樹脂発泡成形体
JP2012207157A (ja) 加熱溶融発泡成形用の発泡剤含有熱可塑性樹脂粒子とその製造方法及び熱可塑性樹脂発泡成形体とその製造方法
JP2013071998A (ja) 発泡性ポリスチレン系樹脂粒子とその製造方法、ポリスチレン系樹脂予備発泡粒子及びポリスチレン系樹脂発泡成形体
JP2013227537A (ja) 発泡性ポリスチレン系樹脂粒子とその製造方法、予備発泡粒子及び発泡成形体
JP2013203821A (ja) 発泡性ポリスチレン系樹脂粒子とその製造方法、予備発泡粒子及び発泡成形体
JP2012201688A (ja) 発泡性ポリスチレン系樹脂粒子とその製造方法、ポリスチレン系樹脂予備発泡粒子及びポリスチレン系樹脂発泡成形体
JP2013209444A (ja) 発泡性熱可塑性樹脂粒子、その製造方法、その製造装置及び熱可塑性樹脂発泡成形体とその製造方法
JP2013071995A (ja) 発泡性ポリスチレン系樹脂粒子とその製造方法、ポリスチレン系樹脂予備発泡粒子及びポリスチレン系樹脂発泡成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12866547

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12866547

Country of ref document: EP

Kind code of ref document: A1