WO2013111310A1 - 物体認識装置および車両制御装置 - Google Patents

物体認識装置および車両制御装置 Download PDF

Info

Publication number
WO2013111310A1
WO2013111310A1 PCT/JP2012/051704 JP2012051704W WO2013111310A1 WO 2013111310 A1 WO2013111310 A1 WO 2013111310A1 JP 2012051704 W JP2012051704 W JP 2012051704W WO 2013111310 A1 WO2013111310 A1 WO 2013111310A1
Authority
WO
WIPO (PCT)
Prior art keywords
stationary object
preceding vehicle
vehicle
trajectory
movement
Prior art date
Application number
PCT/JP2012/051704
Other languages
English (en)
French (fr)
Inventor
浩靖 市田
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2012/051704 priority Critical patent/WO2013111310A1/ja
Priority to JP2013555069A priority patent/JP5751350B2/ja
Priority to CN201280067818.4A priority patent/CN104067329A/zh
Priority to RU2014130232A priority patent/RU2014130232A/ru
Priority to KR1020147020898A priority patent/KR20140107619A/ko
Priority to AU2012367661A priority patent/AU2012367661B2/en
Priority to EP12866502.3A priority patent/EP2808853A4/en
Priority to US14/373,812 priority patent/US9384388B2/en
Priority to BR112014018262A priority patent/BR112014018262A8/pt
Publication of WO2013111310A1 publication Critical patent/WO2013111310A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/20Movements or behaviour, e.g. gesture recognition
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/165Anti-collision systems for passive traffic, e.g. including static obstacles, trees
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes

Definitions

  • the present invention relates to an object recognition device and a vehicle control device.
  • This object recognition device stores the position of the object detected by the radar device, sets a determination area centered on the position, and when the other object passes through the determination area set for one object, The passing direction is determined. Then, an object whose passing direction approaches the host vehicle is recognized as a fixed object on the road.
  • an object when an object is recognized using a millimeter wave sensor, an iron plate, a road sign, or the like on the road may be recognized as an obstacle to travel. Further, when an object is recognized by analyzing a reflected wave of millimeter waves, detection of an object close to the preceding vehicle is delayed and sufficient analysis may not be performed.
  • the present invention intends to provide an object recognition device that can appropriately recognize an object that does not become an obstacle to the traveling of the host vehicle, and a vehicle control device that can appropriately control the traveling of the host vehicle.
  • the object recognition apparatus calculates the relative movement trajectory of the preceding vehicle with respect to the own vehicle based on the object detection unit that detects the preceding vehicle and a stationary object on the road and the history of the detection position of the preceding vehicle.
  • the object recognition device of the present invention it is possible to easily determine whether the preceding vehicle has passed the stationary object by determining whether the moving locus of the preceding vehicle and the moving locus of the stationary object intersect. Thus, an object that does not become an obstacle to traveling of the host vehicle can be recognized with high accuracy and promptly.
  • the second trajectory calculation unit may estimate the position of the stationary object at a time point before the stationary object is detected, and may calculate the movement trajectory of the stationary object based on the detected position and the estimated position of the stationary object. . Thereby, even when the detection of a stationary object is delayed, an object that does not become an obstacle can be appropriately recognized.
  • the object recognition device further includes an intersection determination unit that determines whether or not the positions of the preceding vehicle and the stationary object coincide when the preceding vehicle and the stationary object are closest when the movement trajectories intersect,
  • the recognizing unit may recognize the stationary object as an object that does not hinder traveling when the positions of the preceding vehicle and the stationary object coincide. Thereby, it is possible to accurately recognize an object that does not become an obstacle.
  • the second trajectory calculation unit may calculate the movement trajectory of the stationary object based on the road shape ahead of the host vehicle. As a result, the movement trajectory of the stationary object can be calculated with high accuracy, and an object that does not become an obstacle can be recognized appropriately.
  • the first trajectory calculation unit may calculate the movement trajectory of the preceding vehicle based on the movement history of a plurality of points set in the preceding vehicle. Thereby, the movement locus of the preceding vehicle is calculated with high accuracy, and an object that does not become an obstacle can be recognized with high accuracy.
  • the vehicle control device calculates the relative movement trajectory of the preceding vehicle with respect to the own vehicle based on the object detection unit that detects the preceding vehicle and a stationary object on the road, and the history of the detection position of the preceding vehicle.
  • the second trajectory calculation unit that calculates the relative movement trajectory of the stationary object with respect to the own vehicle based on the history of the detection position of the stationary object, and collision avoidance A travel control unit that suppresses execution of the control.
  • the vehicle control device of the present invention it is possible to easily determine whether or not the preceding vehicle has passed the stationary object by determining whether or not the moving locus of the preceding vehicle and the moving locus of the stationary object intersect. Thus, based on the determination result, the traveling of the host vehicle can be controlled.
  • an object recognition device that can appropriately recognize an object that does not become an obstacle to the traveling of the host vehicle
  • a vehicle control device that can appropriately control the traveling of the host vehicle
  • the vehicle control device controls traveling of the host vehicle 1 by determining whether or not the preceding vehicle has passed the stationary object according to whether or not the moving locus of the preceding vehicle and the moving locus of the stationary object intersect. It is a device to do.
  • the vehicle control device includes a sensor 2 and an ECU 10 (Electronic Control Unit).
  • ECU 10 Electronic Control Unit
  • Sensor 2 constitutes an object detection unit that detects a preceding vehicle and a stationary object on the road.
  • the stationary object includes, for example, fixed objects / installed objects on the road (iron plates, drainage grooves, road lighting, traveling separation zones, road signs, road bridges, etc.) and falling objects.
  • the sensor 2 is composed of, for example, a millimeter wave radar, but may be composed of another sensor, such as a laser sensor, as long as it can detect an object.
  • the sensor 2 transmits a detection wave in front of the host vehicle 1, receives a reflected wave from the object ahead, and detects the distance between the host vehicle 1 and the object and the relative speed of the object with respect to the host vehicle 1.
  • the position of the object including the preceding vehicle and the stationary object O is detected. Based on the change in the detected value, the object is identified as a preceding vehicle, a stationary object O, or an oncoming vehicle.
  • the position of the object indicates a relative distance indicating a distance from the own vehicle 1 in the traveling direction (vertical direction) of the own vehicle 1 and a distance from the own vehicle 1 in the vehicle width direction (lateral direction) of the own vehicle 1. Identified by relative lateral position.
  • the position of the object is a coordinate with the traveling direction (vertical direction) of the own vehicle 1 as the y axis and the vehicle width direction (lateral direction) of the own vehicle 1 as the x axis, with the front center of the own vehicle 1 as a reference. To be specified.
  • the ECU10 is a vehicle-mounted controller which has CPU, ROM, RAM, etc.
  • the ECU 10 includes a first trajectory calculation unit 11, a second trajectory calculation unit 12, an intersection determination unit 13, an object recognition unit 14, and a travel control unit 15.
  • the first trajectory calculation unit 11, the second trajectory calculation unit 12, the intersection determination unit 13, and the object recognition unit 14 constitute an object recognition device together with the sensor 2.
  • the traveling control unit 15 constitutes a vehicle control device together with the sensor 2 and the components 11 to 14 of the object recognition device.
  • the components 11 to 15 are realized by software executed on the ECU 10. Note that the components 11 to 15 may be distributed and arranged in two or more ECUs.
  • the first trajectory calculation unit 11 calculates the relative movement trajectory of the preceding vehicle with respect to the host vehicle 1 based on the history of the detection position of the preceding vehicle.
  • the movement trajectory of the preceding vehicle is calculated as a line segment connecting the current detection position and the detection position before a predetermined time with respect to the preceding vehicle.
  • the present is the time when the intersection determination of the movement locus of the preceding vehicle and the movement locus of the stationary object is performed, and the predetermined time is a time (retroactive time) used for the intersection determination, which is generally longer than the sampling cycle of the sensor 2.
  • the position of the preceding vehicle is detected as, for example, the center, left end, right end, etc. of the preceding vehicle when viewed from the host vehicle 1.
  • the second trajectory calculation unit 12 calculates the relative movement trajectory of the stationary object with respect to (the movement of) the own vehicle 1 based on the history of the detection position of the stationary object.
  • the movement trajectory of the stationary object is obtained as a line segment connecting the current detection position and the detection position a predetermined time before the stationary object.
  • the second trajectory calculation unit 12 estimates the position of the stationary object at the time before detecting the stationary object, and calculates the movement trajectory of the stationary object based on the detected position and the estimated position of the stationary object.
  • the movement trajectory of the stationary object is obtained as a line segment connecting the current detection position and the estimated position before a predetermined time.
  • the position of the stationary object is detected or estimated as the center, the left end, the right end, etc. of the stationary object when viewed from the host vehicle 1, for example.
  • the intersection determination unit 13 determines whether the movement locus of the preceding vehicle and the movement locus of the stationary object intersect. Whether or not the movement trajectories intersect is determined, for example, by solving simultaneous equations relating to the line segment of the movement trajectory of the preceding vehicle and the line segment of the movement trajectory of the stationary object. Furthermore, the intersection determination unit 13 determines whether or not the positions of the preceding vehicle and the stationary object coincide with each other when they are closest to each other. Whether or not the positions match is determined, for example, by comparing the position of the stationary object with the existing area of the preceding vehicle.
  • the object recognition unit 14 recognizes the stationary object as an object that does not become an obstacle to traveling when the movement locus of the preceding vehicle and the movement locus of the stationary object intersect.
  • the object recognition unit 14 may recognize the stationary object as an object that does not hinder traveling when the position of the preceding vehicle and the stationary object at the time of the closest approach further match.
  • the traveling control unit 15 suppresses the execution of the collision avoidance control when the movement locus of the preceding vehicle and the movement locus of the stationary object intersect. That is, the traveling control unit 15 normally performs predetermined control such as outputting a control signal to a braking device and a steering device (both not shown) in order to avoid a collision with an obstacle. This control is not executed when the trajectory and the moving trajectory of the stationary object intersect.
  • the traveling control unit 15 may further suppress the execution of the collision avoidance control when the position of the preceding vehicle and the stationary object at the time of closest approach coincide.
  • FIG. 2 is a flowchart showing the operation of the object recognition apparatus.
  • the object recognition apparatus repeatedly executes a series of processes shown in FIG. 2 at a predetermined cycle of, for example, about 10 to 100 ms.
  • the sensor 2 detects the preceding vehicle V and the stationary object O, and the ECU 10 stores the history of the respective detection positions.
  • the sensor 2 detects the relative position (relative distance, relative lateral position) with respect to the own vehicle 1 with respect to the preceding vehicle V and the stationary object O.
  • the ECU 10 acquires steering angle information from a steering angle sensor (not shown) and acquires vehicle speed information from a wheel speed sensor (not shown).
  • the ECU 10 holds these detected values for at least a predetermined time T.
  • the predetermined time T is a time (retroactive time) used for the intersection determination, and is set as a shorter time as the vehicle speed of the host vehicle 1 is increased, for example, set as 0.5 s to 1.0 s.
  • step S12 the ECU 10 determines whether the preceding vehicle V and the stationary object O are detected.
  • the intersection determination after step S13 is performed, and when it is determined that the preceding vehicle V and the stationary object O are not detected, the process ends.
  • the ECU 10 before performing the intersection determination after step S13, the ECU 10 preferably performs the following processing.
  • the ECU 10 determines whether the vehicle speed, the relative distance to the object, the average rudder angle within the predetermined period T, and the like satisfy a set threshold value. If these values satisfy the set threshold value, the recognition process is performed effectively, so an intersection determination is made. On the other hand, if the set threshold value is not satisfied, the process ends.
  • the ECU 10 excludes a specific object from the determination target.
  • the intersection determination is basically performed for all combinations of the preceding vehicle V and the stationary object O that are detected. That is, for example, when four preceding vehicles V and four stationary objects O are detected, 16 sets of intersection determination are basically performed.
  • the preceding vehicle V for which the position before the predetermined time T is not detected is excluded from the determination because the recognition process is not effectively performed.
  • a stationary object O that is recognized in advance as to whether it is an obstacle is also determined unless it is newly detected as a preceding vehicle V or an oncoming vehicle or is no longer detected as an object (lost). Excluded from the subject.
  • the ECU 10 sets the existence area A of the preceding vehicle V as shown below and determines whether or not the stationary object O is located in the area A.
  • the stationary object O located in the area A is determined to have been passed by the preceding vehicle V, and is excluded from the determination target.
  • the existence area A of the preceding vehicle V has a position Pbl represented by equations (1) to (4) when the current detection position (x, y) is the rear center of the preceding vehicle V. It is set as a rectangular area defined by Pbr, Pfl, and Pfr.
  • Pbl (x ⁇ w / 2 ⁇ w, y) (1)
  • Pbr (x + w / 2 + ⁇ w, y) (2)
  • Pfl (x ⁇ w / 2 ⁇ w, y + 1)
  • Pfr (x + w / 2 + ⁇ w, y + 1) (4)
  • the symbols in the equations (1) to (4) indicate that l is the total length of the preceding vehicle V, w is the vehicle width, and ⁇ w is the vehicle width correction value.
  • the signs in the formula are set as l ⁇ 2.5 m, w ⁇ 1.8 m, and ⁇ w ⁇ 0.2 to 0.3 m.
  • the vehicle width correction value ⁇ w is set to a relatively small value when a plurality of objects are grouped during the recognition process.
  • the first trajectory calculating unit 11 moves the trajectory Tv of the preceding vehicle V within the predetermined time T. Is calculated.
  • the movement locus Tv of the preceding vehicle V is obtained as a line segment connecting the current detection position and the detection position before the predetermined time T.
  • step S14 the ECU 10 determines whether or not the stationary object O is detected before the predetermined time T. If it is determined that the stationary object O is detected, the second trajectory calculating unit 12 calculates the moving trajectory To of the stationary object O within the predetermined time T in step S16. In this case, the movement trajectory To of the stationary object O is obtained as a line segment connecting the current detection position and the detection position before the predetermined time T.
  • step S15 the second trajectory calculation unit 12 determines the position of the stationary object O before the predetermined time T, that is, the time point before the stationary object O is detected.
  • the position of the stationary object O at is estimated.
  • the second trajectory calculation unit 12 calculates the moving trajectory To of the stationary object O within the predetermined time T. In this case, the movement trajectory To of the stationary object O is obtained as a line segment connecting the current detection position and the estimated position before the predetermined time T.
  • FIG. 4 is a diagram illustrating a method for obtaining the movement trajectory To of the stationary object O on the straight road based on the detection position.
  • FIG. 4A shows the history of the detection position Do of the stationary object O together with the relative positional relationship between the preceding vehicle V and the stationary object O with respect to the host vehicle 1.
  • the preceding vehicle V moves from the detection position D to the detection position C with a certain distance from the host vehicle 1.
  • the stationary object O moves from the detection position B to the detection position A within a predetermined time T as the vehicle 1 travels, as indicated by the history of the detection position Do.
  • FIG. 4B shows the movement trajectory To of the preceding vehicle V and the stationary object O.
  • the position A (x1, y1) is the current position of the stationary object O
  • the position B (x2, y2) is a position before the predetermined time T.
  • the position C (x3, y3) is the current position of the preceding vehicle V
  • the position D (x4, y4) is a position before the predetermined time T.
  • the movement trajectory Tv of the preceding vehicle V is obtained as a line segment CD connecting the detection position C and the detection position D
  • the movement trajectory To of the stationary object O is obtained as a line segment AB connecting the detection position A and the detection position B. Yes.
  • FIG. 5 is a diagram showing a method for obtaining the movement trajectory To of the stationary object O on the straight road based on the detected position Do and the estimated position Eo.
  • FIG. 5A shows the detected position Do and the estimated position Eo of the stationary object O together with the relative positional relationship between the preceding vehicle V and the stationary object O with respect to the host vehicle 1. Also in this example, the preceding vehicle V moves from the detection position D to the detection position C with a certain distance from the host vehicle 1.
  • the position B before the predetermined time T is estimated from the position A.
  • the estimated position B (x2, y2) on the straight path is obtained using the average vehicle speed of the host vehicle 1.
  • the average vehicle speed is calculated based on the vehicle speed information acquired within the predetermined time T.
  • the estimated value y2 is obtained by multiplying the average vehicle speed by a predetermined time T to obtain the amount of movement in the y direction, and adding this amount of movement to the current detected value y1.
  • the estimated value x2 obtains the movement amount in the x direction based on the average steering angle and the movement amount in the y direction, and adds this movement amount to the current detection value x1. It is required by that.
  • FIG. 5B shows the movement trajectories Tv and To of the preceding vehicle V and the stationary object O.
  • the movement trajectory Tv of the preceding vehicle V is obtained as a line segment CD connecting the detection position C (x3, y3) and the detection position D (x4, y4)
  • the movement trajectory To of the stationary object O is the detection position A (x1, It is obtained as a line segment AB connecting y1) and the estimated position B (x2, y2).
  • FIG. 6 is a diagram showing a method for obtaining the movement trajectory To of the stationary object O on the curved road based on the detected position Do and the estimated position Eo.
  • FIG. 6A shows the relative positional relationship between the preceding vehicle V and the stationary object O with respect to the host vehicle 1. Also in this example, the preceding vehicle V moves from the detection position D to the detection position C with a certain distance from the host vehicle 1. Since the stationary object O is detected for the first time at the detection position A, the position B before the predetermined time T is estimated retroactively from this position.
  • the estimated position B on the curved road is obtained using the average vehicle speed of the host vehicle 1 and the curvature radius R of the traveling road.
  • the curvature radius R is estimated based on the steering angle information acquired within the predetermined time T.
  • the estimated value y2 of the relative distance is obtained in the same manner as in the case of a straight path.
  • the estimated value x2 of the relative lateral position is obtained as described later in consideration of the curvature radius R of the curved road.
  • FIG. 7 is a diagram illustrating a method for calculating the relative lateral position of the stationary object O on the curved road.
  • the coordinate in the x direction of the second position is represented by the left side of Expression (5).
  • x- (R-Rcos ⁇ ) xR (1-cos ⁇ ) (5)
  • the detected value x1 is substituted for x in the right side of Equation (7), the amount of movement in the y direction obtained in the same manner as in the case of the straight path is substituted for L, and the curvature radius R is substituted. Is required.
  • the movement trajectory To of the stationary object O is a line connecting the detected position A (x1, y1) and the estimated position B (x2, y2), as in the case of a straight road. It is calculated as minute AB. Note that the detection position B (x2, y2) is also obtained in the same manner in the method of obtaining the movement trajectory To of the stationary object O based on the detection position Do on the curved road.
  • the intersection determination unit 13 determines whether or not the movement trajectories Tv and To intersect in step S17 of FIG. Thereby, the possibility of passage of the stationary object O by the preceding vehicle V is determined.
  • FIG. 8 is a diagram illustrating a method for determining passage possibility.
  • the point Q is expressed by Expression (8) and Expression (9).
  • r is the ratio of the length from the position A to the arbitrary point P with respect to the length of the line segment AB (0 ⁇ r ⁇ 1)
  • s is the arbitrary point from the position C to the length of the line segment CD.
  • the ratio of the length to Q (0 ⁇ s ⁇ 1).
  • P A + r (BA)
  • Q C + s (DC) (9)
  • x1 + r (x2-x1) x3 + s (x4-x3)
  • y1 + r (y2-y1) y3 + s (y4-y3)
  • the intersection of the line segment AB and the line segment CD is determined based on the solution of the simultaneous equations consisting of the equations (12) and (13). That is, when the conditions of 0 ⁇ r ⁇ 1 and 0 ⁇ s ⁇ 1 are satisfied, it is determined that the line segments AB and CD intersect each other. On the other hand, when any of the conditions r ⁇ 0, r ⁇ 1, s ⁇ 0, and s ⁇ 1 is satisfied, it is determined that the line segments AB and CD do not intersect each other.
  • step S18 of FIG. 2 If it is determined in step S18 of FIG. 2 that the movement trajectories Tv and To intersect in step S17, the intersection determination unit 13 matches the positions of the preceding vehicle V and the stationary object O when they are closest. It is determined whether or not. Thus, when it is determined that the preceding vehicle V may pass through the stationary object O, it is determined whether the preceding vehicle V actually passes through the stationary object O.
  • FIG. 9 is a diagram showing a method for determining passage. As shown in FIG. 9, when the preceding vehicle V moves laterally away from the stationary object O, the movement trajectories Tv and To cross each other even though the preceding vehicle V does not pass through the stationary object O. May end up. Therefore, the passage determination is performed in order to prevent an erroneous determination accompanying the passage possibility determination.
  • the existence area A at this time is set as described with reference to FIG. Then, if the stationary object O is located in the existence area A of the preceding vehicle V, it is determined that the positions of both coincide with each other when approaching, that is, the passage of the stationary object O by the preceding vehicle V has occurred.
  • step S19 of FIG. 2 if it is determined in step S18 that the position of the preceding vehicle V and the stationary object O coincide with each other when approaching, that is, if it is determined that the stationary vehicle O has passed by the preceding vehicle V, The recognizing unit 14 recognizes the stationary object O as an object that does not hinder the traveling of the host vehicle 1. On the other hand, if it is determined in step S17 that the movement trajectories Tv and To do not intersect with each other, or if it is determined in step S18 that the positions of the preceding vehicle V and the stationary object O do not match at the time of closest approach, the processing ends. To do.
  • the traveling control unit 15 sends a control signal to the braking device and the steering device in order to avoid a collision with an obstacle.
  • the predetermined control is not executed, for example, is output.
  • the traveling control unit 15 may suppress the execution of the collision avoidance control after it is determined in step S19 that the stationary object O has passed by the preceding vehicle V.
  • FIG. 10 is a diagram showing a modification of the passability determination method.
  • the movement locus Tv of the preceding vehicle V is calculated based on a movement locus of one point on the preceding vehicle V such as the rear center of the vehicle body. Therefore, depending on the positional relationship between the preceding vehicle V and the stationary object O, the movement trajectories Tv and To may not intersect each other even though the preceding vehicle V has passed the stationary object O.
  • a plurality of points for example, a first point and a second point are set on the body of the preceding vehicle V including a point corresponding to the detected position or the estimated position.
  • the first movement trajectory connecting the current first point and the second point before the predetermined time T, and the second movement connecting the current second point and the first point before the predetermined time T. Calculate the trajectory.
  • the plurality of points are preferably set such that the plurality of movement trajectories intersect each other.
  • the third movement locus Tv3 intersects the movement locus To of the stationary object O as the preceding vehicle V passes the stationary object O.
  • the second movement locus Tv2 intersects the movement locus To of the stationary object O as the preceding vehicle V passes the stationary object O. Yes.
  • the movement trajectories Tv1 to Tv3 of the preceding vehicle V can be determined with high accuracy.
  • the preceding vehicle V passes through the stationary object O by determining the intersection of the moving locus Tv of the preceding vehicle V and the moving locus To of the stationary object O. It is possible to easily determine whether or not the object has been made, and an object that does not become an obstacle to the traveling of the host vehicle 1 can be quickly recognized with high accuracy.
  • the object is recognized by determining whether or not the positions of the preceding vehicle V and the stationary object O coincide when the preceding vehicle V and the stationary object O are closest. Thus, an object that does not become an obstacle can be accurately recognized.
  • the movement trajectory To of the stationary object O can be calculated with high accuracy, and an object that does not become an obstacle is properly recognized. be able to.
  • the movement trajectory Tv of the preceding vehicle V is calculated with high accuracy, and an object that does not become an obstacle. Can be accurately recognized.
  • the preceding vehicle V passes through the stationary object O by determining whether or not the movement locus Tv of the preceding vehicle V and the movement locus To of the stationary object O intersect each other. It is possible to easily determine whether or not the vehicle 1 has been operated, and based on the determination result, the traveling of the vehicle 1 can be controlled.
  • the above-described embodiment describes the best embodiment of the object recognition device and the vehicle control device according to the present invention, and the object recognition device and the vehicle control device according to the present invention are described in the present embodiment. It is not limited to things.
  • the object recognition device and the vehicle control device according to the present invention are modified from the object recognition device and the vehicle control device according to the present embodiment or applied to other devices without departing from the gist of the invention described in each claim. It may be a thing.
  • the present invention can be similarly applied to a program for appropriately recognizing an object that does not become an obstacle to the traveling of the host vehicle 1 or a computer-readable recording medium storing the program in accordance with the method described above. . Further, the present invention can be similarly applied to a program for controlling the traveling of the vehicle 1 according to the method described above or a computer-readable recording medium storing the program.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Health & Medical Sciences (AREA)
  • Psychiatry (AREA)
  • Social Psychology (AREA)
  • Human Computer Interaction (AREA)
  • Traffic Control Systems (AREA)
  • Image Analysis (AREA)

Abstract

物体認識装置は、先行車(V)および路上の静止物体(O)を検出するセンサ(2)と、先行車(V)の検出位置の履歴に基づいて、自車(1)に対する先行車(V)の相対的な移動軌跡(Tv)を算定する第1の軌跡算定部(11)と、静止物体(O)の検出位置の履歴に基づいて、自車(1)に対する静止物体(O)の相対的な移動軌跡(To)を算定する第2の軌跡算定部(12)と、移動軌跡(Tv、To)同士が交差する場合、静止物体(O)を走行にとって障害にならない物体として認識する物体認識部(14)を備える。

Description

物体認識装置および車両制御装置
 本発明は、物体認識装置および車両制御装置に関する。
 従来、例えば特開2006-127194号公報が開示するように、自車の走行を制御する際に参照する先行車を路上の固定物などと区別して認識する物体認識装置が知られている。
 この物体認識装置は、レーダ装置により検出された物体の位置を記憶し、その位置を中心とする判定領域を設定し、一方の物体に設定された判定領域を他方の物体が通過した場合に、その通過方向を判定する。そして、通過方向が自車に接近する方向である物体を路上の固定物などとして認識する。
特開2006-127194号公報
 しかしながら、従来技術では、自車の走行にとって障害とならない物体を認識するには、認識の精度・速度の点で改善の余地が依然として残されている。
 例えば、ミリ波センサを用いて物体を認識する場合、路上にある鉄板、道路標識などを走行にとって障害となる物体として認識してしまう場合があった。また、ミリ波の反射波を解析して物体を認識する場合、先行車に近接している物体の検出が遅れてしまい十分な解析を行うことができない場合があった。
 そこで、本発明は、自車の走行にとって障害とならない物体を適切に認識可能な物体認識装置と、自車の走行を適切に制御可能な車両制御装置とを提供しようとするものである。
 本発明に係る物体認識装置は、先行車および路上の静止物体を検出する物体検出部と、先行車の検出位置の履歴に基づいて、自車に対する先行車の相対的な移動軌跡を算定する第1の軌跡算定部と、静止物体の検出位置の履歴に基づいて、自車に対する静止物体の相対的な移動軌跡を算定する第2の軌跡算定部と、移動軌跡同士が交差する場合、静止物体を走行にとって障害とならない物体として認識する物体認識部とを備える。
 本発明に係る物体認識装置によれば、先行車の移動軌跡と静止物体の移動軌跡が交差するか否かを判定することで、先行車が静止物体を通過したか否かが容易に判定可能となり、自車の走行にとって障害とならない物体を高い精度で、かつ迅速に認識することができる。
 また、第2の軌跡算定部は、静止物体を検出する前の時点における静止物体の位置を推定し、静止物体の検出位置および推定位置に基づいて、静止物体の移動軌跡を算定してもよい。これにより、静止物体の検出が遅れた場合でも、障害とならない物体を適切に認識することができる。
 また、物体認識装置は、移動軌跡同士が交差する場合、先行車と静止物体が最接近するときに先行車と静止物体の位置が一致するか否かを判定する交差判定部をさらに備え、物体認識部は、先行車と静止物体の位置が一致する場合、静止物体を走行にとって障害とならない物体として認識してもよい。これにより、障害とならない物体を正確に認識することができる。
 また、第2の軌跡算定部は、自車の前方の道路形状に基づいて、静止物体の移動軌跡を算定してもよい。これにより、静止物体の移動軌跡が高い精度で算定可能となり、障害とならない物体を適切に認識することができる。
 また、第1の軌跡算定部は、先行車に設定される複数の点の移動履歴に基づいて、先行車の移動軌跡を算定してもよい。これにより、先行車の移動軌跡が高い精度で算定され、障害とならない物体を精度よく認識することができる。
 本発明に係る車両制御装置は、先行車および路上の静止物体を検出する物体検出部と、先行車の検出位置の履歴に基づいて、自車に対する先行車の相対的な移動軌跡を算定する第1の軌跡算定部と、静止物体の検出位置の履歴に基づいて、自車に対する静止物体の相対的な移動軌跡を算定する第2の軌跡算定部と、移動軌跡同士が交差する場合、衝突回避制御の実行を抑制する走行制御部とを備える。
 本発明に係る車両制御装置によれば、先行車の移動軌跡と静止物体の移動軌跡が交差するか否かを判定することで、先行車が静止物体を通過したか否かが容易に判定可能となり、その判定結果に基づいて、自車の走行を制御することができる。
 本発明によれば、自車の走行にとって障害とならない物体を適切に認識可能な物体認識装置と、自車の走行を適切に制御可能な車両制御装置とを提供することができる。
本発明の実施形態に係る車両制御装置の構成を示すブロック図である。 物体認識装置の動作を示すフロー図である。 先行車の存在領域の設定方法を示す図である。 検出位置に基づいて、直線路における静止物体の移動軌跡を求める方法を示す図である。 検出位置および推定位置に基づいて、直線路における静止物体の移動軌跡を求める方法を示す図である。 検出位置および推定位置に基づいて、曲線路における静止物体の移動軌跡を求める方法を示す図である。 曲線路における静止物体の相対横位置を算定する方法を示す図である。 通過可能性の判定方法を示す図である。 通過の判定方法を示す図である。 通過可能性の判定方法の変形例を示す図である。
 以下、添付図面を参照して、本発明の実施形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
 まず、図1を参照して、本発明の実施形態に係る車両制御装置の構成について説明する。車両制御装置は、先行車の移動軌跡と静止物体の移動軌跡が交差するか否かに応じて、先行車が静止物体を通過したか否かを判定することで、自車1の走行を制御する装置である。
 図1に示すように、車両制御装置は、センサ2およびECU10(Electronic Control Unit)を有する。
 センサ2は、先行車および路上の静止物体を検出する物体検出部を構成する。ここで、静止物体は、例えば、路上の固定物・設置物(鉄板、排水溝、道路照明、走行分離帯、道路標識、路道橋など)、落下物を含むものである。
 センサ2は、例えばミリ波レーダで構成されるが、物体を検出できるものであれば、他のセンサ、例えばレーザセンサで構成されてもよい。センサ2は、自車1前方に検出波を送信し、前方の物体からの反射波を受信し、自車1と物体の間の距離、および自車1に対する物体の相対速度を検出することで、先行車および静止物体Oを含む物体の位置を検出する。物体は、検出値の変化に基づいて、先行車、静止物体Oまたは対向車のいずれに該当するかが識別される
 また、物体の位置は、自車1の進行方向(縦方向)における自車1との隔たりを示す相対距離と、自車1の車幅方向(横方向)における自車1との隔たりを示す相対横位置により特定される。例えば、物体の位置は、自車1の前部中央を基準として、自車1の進行方向(縦方向)をy軸、自車1の車幅方向(横方向)をx軸とする座標を用いて特定される。
 ECU10は、CPU、ROM、RAMなどを有する車載コントローラである。ECU10は、第1の軌跡算定部11、第2の軌跡算定部12、交差判定部13、物体認識部14および走行制御部15を備える。ここで、第1の軌跡算定部11、第2の軌跡算定部12、交差判定部13および物体認識部14は、センサ2と共に物体認識装置を構成する。また、走行制御部15は、センサ2および物体認識装置の構成要素11~14と共に車両制御装置を構成する。構成要素11~15は、ECU10上で実行されるソフトウェアにより実現される。なお、構成要素11~15は、2つ以上のECUに分散して配置されてもよい。
 第1の軌跡算定部11は、先行車の検出位置の履歴に基づいて、自車1に対する先行車の相対的な移動軌跡を算定する。先行車の移動軌跡は、先行車について、現在の検出位置と所定時間前の検出位置を結ぶ線分として算定される。現在とは、先行車の移動軌跡と静止物体の移動軌跡の交差判定を行う時点であり、所定時間とは、交差判定に用いる時間(遡及時間)であり、一般にセンサ2のサンプリング周期よりも長い時間として設定される。なお、先行車の位置は、例えば自車1から視た場合における先行車の中央、左端、右端などとして検出される。
 第2の軌跡算定部12は、静止物体の検出位置の履歴に基づいて、自車1(の移動)に対する静止物体の相対的な移動軌跡を算定する。この場合、静止物体の移動軌跡は、静止物体について、現在の検出位置と所定時間前の検出位置を結ぶ線分として求められる。また、第2の軌跡算定部12は、静止物体を検出する前の時点における静止物体の位置を推定し、静止物体の検出位置および推定位置に基づいて、静止物体の移動軌跡を算定する。この場合、静止物体の移動軌跡は、現在の検出位置と所定時間前の推定位置を結ぶ線分として求められる。なお、静止物体の位置は、例えば自車1から視た場合における静止物体の中央、左端、右端などとして検出または推定される。
 交差判定部13は、先行車の移動軌跡と静止物体の移動軌跡が交差するか否かを判定する。移動軌跡が交差するか否かは、例えば、先行車の移動軌跡の線分と静止物体の移動軌跡の線分に関する連立方程式を解くことで判定される。さらに、交差判定部13は、先行車と静止物体が最接近するときに両者の位置が一致するか否かを判定する。位置が一致するか否かは、例えば、静止物体の位置を先行車の存在領域と比較することで判定される。
 物体認識部14は、先行車の移動軌跡と静止物体の移動軌跡が交差する場合、静止物体を走行にとって障害とならない物体として認識する。物体認識部14は、さらに最接近時の先行車と静止物体の位置が一致する場合、静止物体を走行にとって障害とならない物体として認識してもよい。
 走行制御部15は、先行車の移動軌跡と静止物体の移動軌跡が交差する場合、衝突回避制御の実行を抑制する。つまり、走行制御部15は、通常、障害物との衝突を回避するために、制動装置、操舵装置(いずれも不図示)に制御信号を出力するなど所定の制御を行うが、先行車の移動軌跡と静止物体の移動軌跡が交差する場合、この制御を実行しない。走行制御部15は、さらに最接近時の先行車と静止物体の位置が一致する場合、衝突回避制御の実行を抑制してもよい。
 つぎに、図2から図9を参照して、物体認識装置および車両制御装置の動作について説明する。
 図2は、物体認識装置の動作を示すフロー図である。なお、図2中の符号については、図4等を併せて参照されたい。物体認識装置は、例えば10~100ms程度の所定の周期で図2に示す一連の処理を繰り返し実行する。図2に示すように、ステップS11において、センサ2は、先行車Vおよび静止物体Oを検出し、ECU10は、それぞれの検出位置の履歴を保存する。
 つまり、センサ2は、先行車Vおよび静止物体Oについて、自車1に対する相対的な位置(相対距離、相対横位置)を検出する。また、センサ2による検出に並行して、ECU10は、舵角センサ(不図示)から舵角情報を取得し、車輪速センサ(不図示)から車速情報を取得する。ECU10は、これらの検出値を少なくとも所定時間Tに亘って保持する。なお、所定時間Tとは、交差判定に用いる時間(遡及時間)であり、自車1の車速が大きいほど短い時間として設定され、例えば0.5s~1.0sとして設定される。
 ステップS12において、ECU10は、先行車Vおよび静止物体Oが検出されているか否かを判定する。ここで、先行車Vおよび静止物体Oが検出されていると判定された場合、ステップS13以降の交差判定が行われ、検出されていないと判定された場合、処理が終了する。
 ここで、ステップS13以降の交差判定を行う前に、ECU10は、以下のような処理を行うことが好ましい。
 第1に、ECU10は、車速、物体との相対距離、所定期間T内の平均舵角などが設定閾値を満たすか否かを判定することが好ましい。これらの値が設定閾値を満たす場合、認識処理が有効に行われるので、交差判定が行われる一方、設定閾値を満たさない場合、処理が終了する。
 第2に、ECU10は、特定の物体を判定の対象から除外することが好ましい。ここで、交差判定は、基本的に、検出されている先行車Vおよび静止物体Oの全ての組合せについて行われる。つまり、例えば先行車Vが4つ、静止物体Oが4つ検出されている場合、基本的に16組の交差判定が行われる。しかし、例外的に、所定時間T前の位置が検出されていない先行車Vについては、認識処理が有効に行われないので、判定の対象から除外される。また、障害物であるか否かが事前に認識されている静止物体Oについても、先行車Vまたは対向車として新たに検出されたり、物体として検出されなくなったり(ロストしたり)しない限り、判定の対象から除外される。
 第3に、ECU10は、以下で示すように先行車Vの存在領域Aを設定し、その領域A内に静止物体Oが位置するか否かを判定することが好ましい。領域A内に位置する静止物体Oは、先行車Vにより通過されたと判定されて、判定の対象から除外される。
 先行車Vの存在領域Aは、図3に示すように、現在の検出位置(x、y)を先行車Vの後部中央とすると、式(1)~(4)で表される位置Pbl、Pbr、Pfl、Pfrで規定される矩形の領域として設定される。
  Pbl=(x-w/2-Δw、y)   ・・・(1)
  Pbr=(x+w/2+Δw、y)   ・・・(2)
  Pfl=(x-w/2-Δw、y+l) ・・・(3)
  Pfr=(x+w/2+Δw、y+l) ・・・(4)
 ここで、式(1)~(4)中の符号は、lが先行車Vの全長、wが車幅、Δwが車幅補正値を示している。式中の符号は、例えば普通自動車の場合、l≒2.5m、w≒1.8m、Δw≒0.2~0.3mとして設定される。車幅補正値Δwは、認識処理に際して複数の物体がグルーピングされている場合に相対的に小さな値に設定される。
 図2のステップS13において、ステップS12にて先行車Vおよび静止物体Oが検出されていると判定された場合、第1の軌跡算定部11は、所定時間T内の先行車Vの移動軌跡Tvを算定する。先行車Vの移動軌跡Tvは、現在の検出位置と所定時間T前の検出位置を結ぶ線分として求められる。
 ステップS14において、ECU10は、所定時間T前に静止物体Oが検出されているか否かを判定する。ここで、静止物体Oが検出されていると判定された場合、ステップS16において、第2の軌跡算定部12は、所定時間T内の静止物体Oの移動軌跡Toを算定する。この場合、静止物体Oの移動軌跡Toは、現在の検出位置と所定時間T前の検出位置を結ぶ線分として求められる。
 一方、静止物体Oが検出されていないと判定された場合、ステップS15において、第2の軌跡算定部12は、所定時間T前の静止物体Oの位置、つまり静止物体Oを検出する前の時点における静止物体Oの位置を推定する。なお、位置の推定方法については後述する。そして、ステップS16において、第2の軌跡算定部12は、所定時間T内の静止物体Oの移動軌跡Toを算定する。この場合、静止物体Oの移動軌跡Toは、現在の検出位置と所定時間T前の推定位置を結ぶ線分として求められる。
 以下では、図4から図7を参照して、先行車Vの移動軌跡Tvと静止物体Oの移動軌跡Toを求める方法について説明する。図4は、検出位置に基づいて、直線路における静止物体Oの移動軌跡Toを求める方法を示す図である。図4(a)には、自車1に対する先行車Vおよび静止物体Oの相対的な位置関係と共に、静止物体Oの検出位置Doの履歴が示されている。この例では、先行車Vは、自車1に対して一定の車間を隔てて検出位置Dから検出位置Cへ移動している。静止物体Oは、その検出位置Doの履歴が示すように、自車1の進行に伴って、所定時間T内に検出位置Bから検出位置Aへ移動している。
 図4(b)には、先行車Vおよび静止物体Oの移動軌跡Toが示されている。位置A(x1、y1)は、静止物体Oの現在の位置であり、位置B(x2、y2)は、所定時間T前の位置である。位置C(x3、y3)は、先行車Vの現在の位置であり、位置D(x4、y4)は、所定時間T前の位置である。先行車Vの移動軌跡Tvは、検出位置Cと検出位置Dを結ぶ線分CDとして求められ、静止物体Oの移動軌跡Toは、検出位置Aと検出位置Bを結ぶ線分ABとして求められている。
 図5は、検出位置Doおよび推定位置Eoに基づいて、直線路における静止物体Oの移動軌跡Toを求める方法を示す図である。図5(a)には、自車1に対する先行車Vおよび静止物体Oの相対的な位置関係と共に、静止物体Oの検出位置Doおよび推定位置Eoが示されている。この例でも、先行車Vは、自車1に対して一定の車間を隔てて検出位置Dから検出位置Cへ移動している。また、静止物体Oは、検出位置Aで初めて検出されているので、この位置Aから遡って所定時間T前の位置Bが推定されている。
 ここで、直進路における推定位置B(x2、y2)は、自車1の平均車速を用いて求められる。なお、平均車速は、所定時間T内に取得された車速情報に基づいて算定される。推定値y2は、平均車速に所定時間Tを乗じてy方向の移動量を求め、この移動量を現在の検出値y1に加えることで求められる。また、所定時間T内に舵角が変化する場合、推定値x2は、平均舵角およびy方向の移動量に基づいてx方向の移動量を求め、この移動量を現在の検出値x1に加えることで求められる。
 図5(b)には、先行車Vおよび静止物体Oの移動軌跡Tv、Toが示されている。先行車Vの移動軌跡Tvは、検出位置C(x3、y3)と検出位置D(x4、y4)を結ぶ線分CDとして求められ、静止物体Oの移動軌跡Toは、検出位置A(x1、y1)と推定位置B(x2、y2)を結ぶ線分ABとして求められている。
 図6は、検出位置Doおよび推定位置Eoに基づいて、曲線路における静止物体Oの移動軌跡Toを求める方法を示す図である。図6(a)には、自車1に対する先行車Vおよび静止物体Oの相対的な位置関係が示されている。この例でも、先行車Vは、自車1に対して一定の車間を隔てて検出位置Dから検出位置Cへ移動している。静止物体Oは、検出位置Aで初めて検出されているので、この位置から遡って所定時間T前の位置Bが推定されている。
 ここで、曲線路における推定位置Bは、自車1の平均車速および走行路の曲率半径Rを用いて求められる。なお、曲率半径Rは、所定時間T内に取得された舵角情報に基づいて推定される。相対距離の推定値y2は、直進路の場合と同様に求められる。相対横位置の推定値x2は、曲線路の曲率半径Rを考慮して、後述するように求められる。
 図7は、曲線路における静止物体Oの相対横位置を算定する方法を示す図である。図7に示すように、曲線路内の第1の位置(x、y)を基準とすると、第2の位置のx方向の座標は、式(5)の左辺で表される。ここで、曲線路の曲率半径R、角移動量φ、孤長L(≒y)とする。
  x-(R-Rcosφ)=x-R(1-cosφ) ・・・(5)
 式(5)中のcosφをテイラー展開すると、
  cosφ=1-φ/2!+φ/4!+…
       +(-1)φ2n/(2n)!+… ・・・(6)
 ここで、φ=L/Rであるので、L<<Rほど高次項の省略による誤差が小さくなる。よって、式(5)は、式(7)に変換される。
  x-(R-Rcosφ)≒x-R[1-{1-L/(2!・R)}]
             =x-L/(2R) ・・・(7)
 よって、推定値x2は、検出値x1を式(7)の右辺中のxに代入し、直進路の場合と同様に求められるy方向の移動量をLに代入し、さらに曲率半径Rを代入することで求められる。
 これにより、図6(b)に示すように、静止物体Oの移動軌跡Toは、直線路の場合と同様に、検出位置A(x1、y1)と推定位置B(x2、y2)を結ぶ線分ABとして求められている。なお、曲線路において検出位置Doに基づいて、静止物体Oの移動軌跡Toを求める方法でも同様に、検出位置B(x2、y2)が求められる。
 移動軌跡Tv、Toを算定すると、図2のステップS17において、交差判定部13は、移動軌跡Tv、To同士が交差するか否かを判定する。これにより、先行車Vによる静止物体Oの通過可能性が判定される。
 図8は、通過可能性の判定方法を示す図である。位置A(x1、y1)と位置B(x2、y2)を結ぶ線分AB上の任意点P、および位置C(x3、y3)と位置D(x4、y4)を結ぶ線分CD上の任意点Qは、式(8)および式(9)で表される。ここで、rは、線分ABの長さに対する位置Aから任意点Pまでの長さの比率(0≦r≦1)であり、sは、線分CDの長さに対する位置Cから任意点Qまでの長さの比率(0≦s≦1)である。
  P=A+r(B-A) ・・・(8)
  Q=C+s(D-C) ・・・(9)
 この場合、線分ABと線分CDの交差は、以下の式(10)~(13)により判定することができる。
  P=Q ・・・(10)
 式(10)に式(8)、(9)を代入すると、式(11)が得られる。
  A+r(B-A)=C+s(D-C) ・・・(11)
 式(11)に位置A、B、C、Dの座標を入力すると、式(12)、(13)が得られる。
  x1+r(x2-x1)=x3+s(x4-x3) ・・・(12)
  y1+r(y2-y1)=y3+s(y4-y3) ・・・(13)
 そして、線分ABと線分CDの交差は、式(12)、(13)からなる連立方程式の解に基づいて判定される。つまり、0<r<1かつ0<s<1の条件が満たされる場合、線分AB、CD同士が交差すると判定される。一方、r≦0、r≧1、s≦0、s≧1のいずれかの条件が満たされる場合、線分AB、CD同士が交差しないと判定される。
 図2のステップS18において、ステップS17にて移動軌跡Tv、To同士が交差すると判定された場合、交差判定部13は、先行車Vと静止物体Oが最接近するときに両者の位置が一致するか否かを判定する。これにより、先行車Vが静止物体Oを通過する可能性があると判定されると、先行車Vが静止物体Oを実際に通過するかが判定される。
 図9は、通過の判定方法を示す図である。図9に示すように、先行車Vが静止物体Oの遠方で横方向に移動すると、先行車Vが静止物体Oを通過していないにもかかわらず、移動軌跡Tv、To同士が交差してしまうことがある。よって、通過可能性判定に伴う誤判定を防止するために通過判定を行う。
 このため、静止物体Oについて、図8を参照して、先行車Vに最接近する時点の位置I(x5、y5)を式(14)、(15)から求める。また、最接近する時点Tp(最接近した時点までの遡及時間)を式(16)から求める。なお、式(14)~(16)中のrは、式(8)、(9)を用いて求められる。
  x5=(x2-x1)r+x1 ・・・(14)
  y5=(y2-y1)r+y1 ・・・(15)
  Tp=T×r ・・・(16)
 つぎに、先行車Vについて、最接近する時点の検出位置(位置I)に基づいて、図3を参照して説明したように、この時点の存在領域Aを設定する。そして、静止物体Oが先行車Vの存在領域A内に位置すれば、最接近時に両者の位置が一致する、つまり先行車Vによる静止物体Oの通過が生じたと判定する。
 図2のステップS19において、ステップS18にて最接近時に先行車Vと静止物体Oの位置が一致すると判定された場合、つまり先行車Vによる静止物体Oの通過が生じたと判定された場合、物体認識部14は、静止物体Oを自車1の走行にとって障害とならない物体として認識する。一方、ステップS17にて移動軌跡Tv、To同士が交差しないと判定された場合、またはステップS18にて最接近時に先行車Vと静止物体Oの位置が一致しないと判定された場合、処理が終了する。
 そして、走行制御部15は、ステップS18にて最接近時に先行車Vと静止物体Oの位置が一致すると判定された場合、障害物との衝突を回避するために制動装置、操舵装置に制御信号を出力するなど所定の制御を実行しない。なお、走行制御部15は、ステップS19にて先行車Vによる静止物体Oの通過が生じたと判定された後に、衝突回避制御の実行を抑制してもよい。
 図10は、通過可能性の判定方法の変形例を示す図である。前述した方法では、車体の後部中央など、先行車V上の一点の移動軌跡に基づいて先行車Vの移動軌跡Tvを算出していた。よって、先行車Vと静止物体Oの位置関係によっては、先行車Vが静止物体Oを通過したにもかかわらず、移動軌跡Tv、To同士が交差しない場合がある。
 このため、まず、先行車Vの車体上に検出位置または推定位置に相当する点を含めて複数の点、例えば第1および第2の点を設定する。つぎに、現在の第1の点と所定時間T前の第2の点を結ぶ第1の移動軌跡と、現在の第2の点と所定時間T前の第1の点を結ぶ第2の移動軌跡を算定する。そして、第1および第2の移動軌跡のいずれかが静止物体Oの移動軌跡Toと交差するか否かを判定する。ここで、複数の点は、複数の移動軌跡が互いに交差するように設定されることが好ましい。
 例えば、図10に示す例では、まず、車体の後部中央の検出点(中央点Cc、Dc)の他に、その両側に互いに車幅を隔てて2つの点(左側点Cl、Dl、右側点Cr、Dr)を設定する。つぎに、中央点Cc、Dc同士を結ぶ第1の移動軌跡Tv1の他に、現在の左側点Clと所定時間T前の右側点Drを結ぶ第2の移動軌跡Tv2と、同様に右側点Crと左側点Dlを結ぶ第3の移動軌跡Tv3を算定する。そして、第1から第3の移動軌跡Tv1~Tv3のいずれかが静止物体Oの移動軌跡Toと交差するか否かを判定する。
 例えば、図10(a)に示すように車間が拡大する状況では、先行車Vによる静止物体Oの通過に伴って、第3の移動軌跡Tv3が静止物体Oの移動軌跡Toに交差している。同様に、図10(b)に示すように車間が縮小する状況では、先行車Vによる静止物体Oの通過に伴って、第2の移動軌跡Tv2が静止物体Oの移動軌跡Toに交差している。このように、車体の後部左側、後部右側など、先行車Vに設定される複数の点の移動軌跡に基づいて先行車Vの移動軌跡Tv1~Tv3を算出することで、移動軌跡Tv、Toが交差するか否かを高い精度で判定することができる。
 以上説明したように、本実施形態に係る物体認識装置によれば、先行車Vの移動軌跡Tvと静止物体Oの移動軌跡Toの交差を判定することで、先行車Vが静止物体Oを通過したか否かが容易に判定可能となり、自車1の走行にとって障害とならない物体を高い精度で、かつ迅速に認識することができる。
 また、静止物体Oを検出する前の時点における静止物体Oの位置を推定し、静止物体Oの移動軌跡Toを算定することで、静止物体Oの検出が遅れた場合でも、障害とならない物体を適切に認識することができる。
 また、移動軌跡Tv、To同士が交差する場合、先行車Vと静止物体Oが最接近するときに先行車Vと静止物体Oの位置が一致するか否かを判定して物体を認識することで、障害とならない物体を正確に認識することができる。
 また、自車1の前方の道路形状に基づいて静止物体Oの移動軌跡Toを算定することで、静止物体Oの移動軌跡Toが高い精度で算定可能となり、障害とならない物体を適切に認識することができる。
 また、先行車Vに設定される複数の点の移動履歴に基づいて、先行車Vの移動軌跡Tvを算定することで、先行車Vの移動軌跡Tvが高い精度で算定され、障害とならない物体を精度よく認識することができる。
 また、本実施形態に係る車両制御装置によれば、先行車Vの移動軌跡Tvと静止物体Oの移動軌跡Toが交差するか否かを判定することで、先行車Vが静止物体Oを通過したか否かが容易に判定可能となり、その判定結果に基づいて、自車1の走行を制御することができる。
 なお、前述した実施形態は、本発明に係る物体認識装置および車両制御装置の最良な実施形態を説明したものであり、本発明に係る物体認識装置および車両制御装置は、本実施形態に記載したものに限定されるものではない。本発明に係る物体認識装置および車両制御装置は、各請求項に記載した発明の要旨を逸脱しない範囲で本実施形態に係る物体認識装置および車両制御装置を変形し、または他のものに適用したものであってもよい。
 また、本発明は、前述した方法に従って、自車1の走行にとって障害とならない物体を適切に認識するためのプログラム、または当該プログラムを記憶しているコンピュータ読取可能な記録媒体にも同様に適用できる。また、本発明は、前述した方法に従って自車1の走行を制御するためのプログラム、または当該プログラムを記憶しているコンピュータ読取可能な記録媒体にも同様に適用できる。
 1…車両、2…センサ、10…ECU、11…第1の軌跡算定部、12…第2の軌跡算定部、13…交差判定部、14…物体認識部、15…走行制御部、V…先行車、O…静止物体、Tv…先行車の移動軌跡、To…静止物体の移動軌跡。

Claims (6)

  1.  先行車および路上の静止物体を検出する物体検出部と、
     前記先行車の検出位置の履歴に基づいて、自車に対する前記先行車の相対的な移動軌跡を算定する第1の軌跡算定部と、
     前記静止物体の検出位置の履歴に基づいて、前記自車に対する前記静止物体の相対的な移動軌跡を算定する第2の軌跡算定部と、
     前記移動軌跡同士が交差する場合、前記静止物体を走行にとって障害とならない物体として認識する物体認識部と、
     を備える物体認識装置。
  2.  前記第2の軌跡算定部は、前記静止物体を検出する前の時点における前記静止物体の位置を推定し、前記静止物体の検出位置および推定位置に基づいて、前記静止物体の移動軌跡を算定する、請求項1に記載の物体認識装置。
  3.  前記移動軌跡同士が交差する場合、前記先行車と前記静止物体が最接近するときに前記先行車と前記静止物体の位置が一致するか否かを判定する交差判定部をさらに備え、
     前記物体認識部は、前記先行車と前記静止物体の位置が一致する場合、前記静止物体を走行にとって障害とならない物体として認識する、請求項1または2に記載の物体認識装置。
  4.  前記第2の軌跡算定部は、前記自車の前方の道路形状に基づいて、前記静止物体の移動軌跡を算定する、請求項1~3のいずれか一項に記載の物体認識装置。
  5.  前記第1の軌跡算定部は、前記先行車に設定される複数の点の移動履歴に基づいて、前記先行車の移動軌跡を算定する、請求項1~4のいずれか一項に記載の物体認識装置。
  6.  先行車および路上の静止物体を検出する物体検出部と、
     前記先行車の検出位置の履歴に基づいて、自車に対する前記先行車の相対的な移動軌跡を算定する第1の軌跡算定部と、
     前記静止物体の検出位置の履歴に基づいて、前記自車に対する前記静止物体の相対的な移動軌跡を算定する第2の軌跡算定部と、
     前記移動軌跡同士が交差する場合、衝突回避制御の実行を抑制する走行制御部と、
     を備える車両制御装置。
     
PCT/JP2012/051704 2012-01-26 2012-01-26 物体認識装置および車両制御装置 WO2013111310A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
PCT/JP2012/051704 WO2013111310A1 (ja) 2012-01-26 2012-01-26 物体認識装置および車両制御装置
JP2013555069A JP5751350B2 (ja) 2012-01-26 2012-01-26 物体認識装置および車両制御装置
CN201280067818.4A CN104067329A (zh) 2012-01-26 2012-01-26 物体识别装置及车辆控制装置
RU2014130232A RU2014130232A (ru) 2012-01-26 2012-01-26 Устройство распознавания объектов и устройство управления транспортным средством
KR1020147020898A KR20140107619A (ko) 2012-01-26 2012-01-26 물체 인식 장치 및 차량 제어 장치
AU2012367661A AU2012367661B2 (en) 2012-01-26 2012-01-26 Object recognition device and vehicle control device
EP12866502.3A EP2808853A4 (en) 2012-01-26 2012-01-26 OBJECT RECOGNITION DEVICE AND VEHICLE CONTROL DEVICE
US14/373,812 US9384388B2 (en) 2012-01-26 2012-01-26 Object recognition device and vehicle controller
BR112014018262A BR112014018262A8 (pt) 2012-01-26 2012-01-26 Dispositivo de reconhecimento de objeto e controlador de veículo

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/051704 WO2013111310A1 (ja) 2012-01-26 2012-01-26 物体認識装置および車両制御装置

Publications (1)

Publication Number Publication Date
WO2013111310A1 true WO2013111310A1 (ja) 2013-08-01

Family

ID=48873077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051704 WO2013111310A1 (ja) 2012-01-26 2012-01-26 物体認識装置および車両制御装置

Country Status (9)

Country Link
US (1) US9384388B2 (ja)
EP (1) EP2808853A4 (ja)
JP (1) JP5751350B2 (ja)
KR (1) KR20140107619A (ja)
CN (1) CN104067329A (ja)
AU (1) AU2012367661B2 (ja)
BR (1) BR112014018262A8 (ja)
RU (1) RU2014130232A (ja)
WO (1) WO2013111310A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018119985A (ja) * 2018-04-06 2018-08-02 株式会社デンソーテン レーダ装置、車両制御システム及び信号処理方法
CN110239562A (zh) * 2018-03-10 2019-09-17 百度(美国)有限责任公司 自动驾驶车辆的基于周围车辆行为的实时感知调整与驾驶调适

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9446711B2 (en) * 2012-05-09 2016-09-20 Toyota Jidosha Kabushiki Kaisha Driving assist device
US9135798B2 (en) * 2012-09-01 2015-09-15 Honda Motor Co., Ltd. Vehicle periphery monitoring device
US9558659B1 (en) 2014-08-29 2017-01-31 Google Inc. Determining the stationary state of detected vehicles
JP6408860B2 (ja) * 2014-10-22 2018-10-17 株式会社デンソー 物体検知装置
JP6027659B1 (ja) * 2015-08-27 2016-11-16 富士重工業株式会社 車両の走行制御装置
JP6580982B2 (ja) * 2015-12-25 2019-09-25 日立建機株式会社 オフロードダンプトラック及び障害物判別装置
CN108713153B (zh) * 2016-03-23 2023-10-24 古野电气株式会社 雷达装置以及航迹显示方法
ITUA20163205A1 (it) * 2016-05-06 2017-11-06 Cnh Ind Italia Spa Metodo e sistema per la mappatura di un luogo di lavoro.
WO2018055773A1 (ja) * 2016-09-26 2018-03-29 日産自動車株式会社 走路設定方法及び走路設定装置
CN106379298B (zh) * 2016-10-14 2019-12-06 畅加风行(苏州)智能科技有限公司 基于目标运动体与汽车时间计算的智能刹车控制方法
WO2018073886A1 (ja) * 2016-10-18 2018-04-26 本田技研工業株式会社 車両制御装置
JP6805105B2 (ja) * 2017-09-28 2020-12-23 株式会社デンソー 制御対象車両設定装置、制御対象車両設定システムおよび制御対象車両設定方法
US10227039B1 (en) * 2018-02-19 2019-03-12 Delphi Technologies, Llc Warning system
CN109709961B (zh) * 2018-12-28 2021-12-07 百度在线网络技术(北京)有限公司 道路障碍物检测方法、装置及自动驾驶汽车
CN113496626B (zh) * 2020-03-19 2023-06-02 广州汽车集团股份有限公司 一种车辆碰撞预警方法、装置及汽车

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001124848A (ja) * 1999-10-25 2001-05-11 Hitachi Ltd ミリ波レーダ装置
JP2006127194A (ja) 2004-10-29 2006-05-18 Honda Motor Co Ltd 車両用制御対象判定装置および車両制御装置
JP2009252198A (ja) * 2008-04-11 2009-10-29 Suzuki Motor Corp 走行環境推測装置、方法及びプログラム並びに車線逸脱警報装置及び操舵アシスト装置
JP2011227582A (ja) * 2010-04-15 2011-11-10 Toyota Motor Corp 車両用衝突予測装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3822515B2 (ja) * 2002-03-29 2006-09-20 株式会社東芝 障害物検知装置及びその方法
US7729857B2 (en) * 2005-08-18 2010-06-01 Gm Global Technology Operations, Inc. System for and method of detecting a collision and predicting a vehicle path
US7865277B1 (en) * 2007-05-07 2011-01-04 The United States Of America As Represented By The Secretary Of The Navy Obstacle avoidance system and method
JP2009031053A (ja) 2007-07-25 2009-02-12 Fujitsu Ten Ltd 前方障害物検出装置
JP4978494B2 (ja) * 2008-02-07 2012-07-18 トヨタ自動車株式会社 自律移動体、及びその制御方法
JP5094658B2 (ja) * 2008-09-19 2012-12-12 日立オートモティブシステムズ株式会社 走行環境認識装置
US8581776B2 (en) 2008-12-18 2013-11-12 Toyota Jidosha Kabushiki Kaisha Radar system
JP4957747B2 (ja) * 2009-05-18 2012-06-20 トヨタ自動車株式会社 車両環境推定装置
JP5655297B2 (ja) * 2009-12-07 2015-01-21 トヨタ自動車株式会社 物体検出装置、物体検出装置を備えた車両の安全システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001124848A (ja) * 1999-10-25 2001-05-11 Hitachi Ltd ミリ波レーダ装置
JP2006127194A (ja) 2004-10-29 2006-05-18 Honda Motor Co Ltd 車両用制御対象判定装置および車両制御装置
JP2009252198A (ja) * 2008-04-11 2009-10-29 Suzuki Motor Corp 走行環境推測装置、方法及びプログラム並びに車線逸脱警報装置及び操舵アシスト装置
JP2011227582A (ja) * 2010-04-15 2011-11-10 Toyota Motor Corp 車両用衝突予測装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2808853A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110239562A (zh) * 2018-03-10 2019-09-17 百度(美国)有限责任公司 自动驾驶车辆的基于周围车辆行为的实时感知调整与驾驶调适
JP2019167091A (ja) * 2018-03-10 2019-10-03 バイドゥ ユーエスエイ エルエルシーBaidu USA LLC 自動運転車両の周辺車両の挙動に基づくリアルタイム感知調整と運転調整
JP2018119985A (ja) * 2018-04-06 2018-08-02 株式会社デンソーテン レーダ装置、車両制御システム及び信号処理方法

Also Published As

Publication number Publication date
BR112014018262A8 (pt) 2017-07-11
US9384388B2 (en) 2016-07-05
US20140341432A1 (en) 2014-11-20
BR112014018262A2 (ja) 2017-06-20
AU2012367661A1 (en) 2014-08-14
EP2808853A4 (en) 2015-07-08
JPWO2013111310A1 (ja) 2015-05-11
EP2808853A1 (en) 2014-12-03
RU2014130232A (ru) 2016-03-20
KR20140107619A (ko) 2014-09-04
CN104067329A (zh) 2014-09-24
AU2012367661B2 (en) 2015-04-23
JP5751350B2 (ja) 2015-07-22

Similar Documents

Publication Publication Date Title
JP5751350B2 (ja) 物体認識装置および車両制御装置
CN107719363B (zh) 用于沿着路径引导机动车辆的控制系统和控制方法
US9481364B2 (en) Drive assist device
EP3613647B1 (en) Automatic parking control device
WO2013051083A1 (ja) 車両の運転支援システム
JPWO2018193535A1 (ja) 走行支援方法及び走行支援装置
JP6442904B2 (ja) 運転支援装置
US20170088133A1 (en) Course evaluation apparatus and course evaluation method
CN109572690B (zh) 车辆控制装置
WO2014033956A1 (ja) 衝突判定装置及び衝突判定方法
US11027728B2 (en) Vehicle control device
JP6698117B2 (ja) 車両制御装置
JP2019144691A (ja) 車両制御装置
JP2011227582A (ja) 車両用衝突予測装置
JP2006213073A (ja) 先行車認識装置
JP2017151726A (ja) 衝突予測装置
JP6497329B2 (ja) 車両用走行制御装置
JP2015191650A (ja) 衝突判定装置、衝突判定方法及びプログラム
KR20180039900A (ko) 진행경로 시나리오에 따라 충돌가능성을 판단하고 차량을 제어하는 장치 및 방법
JP7512970B2 (ja) 車両の報知制御装置
JP6481627B2 (ja) 車両用走行制御装置
CN114132311A (zh) 车辆自动紧急制动危险目标筛选方法及模块
JP2014112348A (ja) 動作解析装置、動作解析システム、および動作解析方法
US20190092324A1 (en) System and method for determining collision point of vehicle
JP6712851B2 (ja) 監視装置および監視装置の監視方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12866502

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013555069

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012866502

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012866502

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14373812

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147020898

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2012367661

Country of ref document: AU

Date of ref document: 20120126

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014130232

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014018262

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014018262

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140724