WO2013108681A1 - 遠心式ポンプ装置 - Google Patents

遠心式ポンプ装置 Download PDF

Info

Publication number
WO2013108681A1
WO2013108681A1 PCT/JP2013/050187 JP2013050187W WO2013108681A1 WO 2013108681 A1 WO2013108681 A1 WO 2013108681A1 JP 2013050187 W JP2013050187 W JP 2013050187W WO 2013108681 A1 WO2013108681 A1 WO 2013108681A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
permanent magnet
magnetic body
permanent magnets
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2013/050187
Other languages
English (en)
French (fr)
Japanese (ja)
Inventor
山田 裕之
顕 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to US14/372,998 priority Critical patent/US9366261B2/en
Publication of WO2013108681A1 publication Critical patent/WO2013108681A1/ja
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/026Units comprising pumps and their driving means with a magnetic coupling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • F04D29/048Bearings magnetic; electromagnetic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/104Extracorporeal pumps, i.e. the blood being pumped outside the patient's body
    • A61M60/109Extracorporeal pumps, i.e. the blood being pumped outside the patient's body incorporated within extracorporeal blood circuits or systems
    • A61M60/113Extracorporeal pumps, i.e. the blood being pumped outside the patient's body incorporated within extracorporeal blood circuits or systems in other functional devices, e.g. dialysers or heart-lung machines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/205Non-positive displacement blood pumps
    • A61M60/216Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller
    • A61M60/226Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller the blood flow through the rotating member having mainly radial components
    • A61M60/232Centrifugal pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/403Details relating to driving for non-positive displacement blood pumps
    • A61M60/422Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being electromagnetic, e.g. using canned motor pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/804Impellers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/818Bearings
    • A61M60/82Magnetic bearings
    • A61M60/822Magnetic bearings specially adapted for being actively controlled
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/818Bearings
    • A61M60/824Hydrodynamic or fluid film bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0606Canned motor pumps
    • F04D13/064Details of the magnetic circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0666Units comprising pumps and their driving means the pump being electrically driven the motor being of the plane gap type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/126Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
    • A61M60/148Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel in line with a blood vessel using resection or like techniques, e.g. permanent endovascular heart assist devices

Definitions

  • the present invention relates to a centrifugal pump device, and more particularly to a centrifugal pump device provided with an impeller that sends a liquid by a centrifugal force during rotation.
  • centrifugal blood pump device that transmits a driving torque of an external motor to an impeller in a blood chamber using a magnetic coupling is increasing as a blood circulation device of an oxygenator. According to this centrifugal blood pump device, physical communication between the outside and the blood chamber can be eliminated, and invasion of blood such as bacteria can be prevented.
  • a centrifugal blood pump disclosed in Japanese Patent Application Laid-Open No. 2004-209240 includes a housing including first to third chambers partitioned by first and second partition walls, and a second chamber (blood chamber).
  • An impeller provided rotatably inside, a magnetic body provided on one side of the impeller, an electromagnet provided in the first chamber facing the one side of the impeller, and provided on the other side of the impeller
  • a permanent magnet, a rotor and a motor provided in the third chamber, and a permanent magnet provided on the rotor facing the other surface of the impeller.
  • a dynamic pressure groove is formed on the surface of the second partition wall facing the other surface of the impeller.
  • the impeller Due to the attractive force acting on one side of the impeller from the electromagnet, the attractive force acting on the other surface of the impeller from the permanent magnet of the rotor, and the hydrodynamic bearing effect of the dynamic pressure groove, the impeller is separated from the inner wall of the second chamber, Rotates without contact.
  • a centrifugal blood pump disclosed in Japanese Patent Laid-Open No. 2006-167173 includes a housing including first to third chambers partitioned by first and second partition walls, and a second chamber (blood An impeller rotatably provided in the chamber), a magnetic body provided on one surface of the impeller, a first permanent magnet provided in the first chamber facing the one surface of the impeller, and an impeller A second permanent magnet provided on the other surface; a rotor and a motor provided in the third chamber; and a third permanent magnet provided on the rotor facing the other surface of the impeller.
  • a first dynamic pressure groove is formed on the surface of the first partition wall facing the one surface of the impeller, and a second dynamic pressure groove is formed on the surface of the second partition wall facing the other surface of the impeller.
  • Patent Document 3 includes a housing, an impeller rotatably provided in the housing, and a first pump provided on one surface of the impeller.
  • 1 permanent magnet a rotor provided outside the housing, a second permanent magnet provided on the rotor facing one surface of the impeller, and a third permanent magnet provided on the other surface of the impeller
  • a magnetic body provided on the housing so as to face the other surface of the impeller.
  • a first dynamic pressure groove is formed on one surface of the impeller, and a second dynamic pressure groove is formed on the other surface of the impeller.
  • the impeller Due to the attractive force acting on one side of the impeller from the second permanent magnet of the rotor, the attractive force acting on the other surface of the impeller from the magnetic body of the housing, and the hydrodynamic bearing effect of the first and second dynamic pressure grooves
  • the impeller is separated from the inner wall of the housing and rotates in a non-contact state.
  • a clean pump disclosed in Japanese Utility Model Publication No. 6-53790 includes a casing, an impeller provided rotatably in the casing, a first permanent magnet provided on one surface of the impeller, and a casing.
  • a dynamic pressure groove is formed on one surface of the impeller.
  • the electromagnet When the rotation speed of the impeller is lower than the predetermined rotation speed, the electromagnet is operated, and when the rotation speed of the impeller exceeds the predetermined rotation speed, energization to the electromagnet is stopped. Due to the attractive force acting on one surface of the impeller from the second permanent magnet of the rotor and the hydrodynamic bearing effect of the hydrodynamic groove, the impeller is separated from the inner wall of the housing and rotates in a non-contact state.
  • JP 2004-209240 A JP 2006-167173 A Japanese Patent Laid-Open No. 4-91396 Japanese Utility Model Publication No. 6-53790
  • the pumps of the above-mentioned patent documents 1 to 4 support the impeller in the axial direction by a dynamic pressure groove formed in the opposed portion of the impeller and the housing, and a permanent magnet provided on the impeller and a permanent magnet provided outside the housing. This is common in that the impeller is supported in the radial direction by the suction force.
  • the support rigidity of the dynamic pressure groove is proportional to the rotation speed of the impeller. Therefore, in order for the impeller to rotate stably without contacting the housing even when a disturbance is applied to the pump, it is necessary to increase the normal rotation speed range of the pump and increase the rigidity of the impeller in the axial direction.
  • the support rigidity is low and the impeller cannot be rotated at a high speed. .
  • Patent Document 2 an electromagnet for urging the impeller in a predetermined direction and a magnetic force adjustment coil for changing the magnetic force of the permanent magnet are provided, and these are operated when the impeller starts rotating.
  • a method to make the impeller start up smoothly has also been proposed.
  • such a countermeasure has a problem that the pump size is increased because a new dedicated member such as an electromagnet or a coil is required, and the reliability is lowered because the number of components increases.
  • a main object of the present invention is to provide a small centrifugal pump device that can rotate an impeller at high speed and can smoothly rotate and start the impeller.
  • a centrifugal pump device is provided with a housing including first and second chambers partitioned by a partition, and is rotatably provided along the partition in the first chamber.
  • a centrifugal pump device provided with an impeller to be sent and a drive unit that is provided in a second chamber and rotationally drives the impeller via a partition wall, the first magnetic body provided on one surface of the impeller;
  • the second magnetic body that is provided on the inner wall of the first chamber facing the one surface of the impeller and that attracts the first magnetic body and the other surface of the impeller are the same so that adjacent magnetic poles are different from each other.
  • a plurality of first permanent magnets arranged along a circle.
  • the drive unit is provided to face the plurality of first permanent magnets, and is provided corresponding to the plurality of third magnetic bodies each formed in a columnar shape, and the plurality of third magnetic bodies, respectively. Each includes a plurality of coils wound around a corresponding third magnetic body and generating a rotating magnetic field.
  • the first attraction force between the first and second magnetic bodies and the second attraction force between the plurality of first permanent magnets and the plurality of third magnetic bodies are: It balances in the middle of the movable range of the impeller in the room.
  • a first dynamic pressure groove is formed on one surface of the impeller or the inner wall of the first chamber facing it, and a second dynamic pressure groove is formed on the other surface of the impeller or a partition wall facing it.
  • a third magnetic body is provided in each coil of the drive unit, and this third magnetic body and the first permanent magnet of the impeller are magnetically coupled. Therefore, by adjusting the coil current, the impeller can be The impeller can be rotated at a high speed, and the rotation starting force of the impeller can be increased while keeping the pump size small.
  • the third magnetic body is formed in a columnar shape, a large space for the coil can be secured and the number of turns of the coil can be increased. Therefore, a large torque for rotating the impeller can be generated. Moreover, the copper loss which generate
  • the ellipticity of the third magnetic body is determined according to the inner and outer diameter dimensions of the coil space and the number of motor slots.
  • the drive unit further includes a fourth magnetic body provided on a front end surface of the third magnetic body facing the first permanent magnet.
  • the area of the surface of the fourth magnetic body facing the first permanent magnet is larger than the area of the tip surface of the third magnetic body.
  • the surfaces of the two adjacent fourth magnetic bodies facing each other are provided substantially parallel to each other. In this case, a large torque for rotating the impeller can be generated.
  • each third magnetic body includes a plurality of steel plates stacked in the length direction of the rotation shaft of the impeller. In this case, the eddy current loss generated in the third magnetic body can be reduced, and the energy efficiency in the rotational driving of the impeller can be increased.
  • each third magnetic body includes a plurality of steel plates stacked in the direction of rotation of the impeller.
  • the eddy current loss generated in the third magnetic body can be reduced, and the energy efficiency in the rotational driving of the impeller can be increased.
  • each third magnetic body includes a plurality of steel plates stacked in the radial direction of the impeller.
  • the eddy current loss generated in the third magnetic body can be reduced, and the energy efficiency in the rotational driving of the impeller can be increased.
  • each third magnetic body is made of pure iron, soft iron, or silicon iron powder.
  • the iron loss in the third magnetic body can be reduced, and the energy efficiency in the rotational driving of the impeller can be increased.
  • each of the first and second magnetic bodies is a permanent magnet. Further preferably, it further includes a plurality of second permanent magnets provided on the other surface of the impeller and respectively inserted into a plurality of gaps of the plurality of first permanent magnets.
  • Each second permanent magnet is magnetized in the direction of rotation of the impeller.
  • the first magnetic pole of each second permanent magnet is directed to the first permanent magnet side in which the first magnetic pole is directed to the partition side of the two adjacent first permanent magnets.
  • the second magnetic pole of each second permanent magnet is directed to the first permanent magnet side in which the second magnetic pole is directed to the partition side of the two adjacent first permanent magnets.
  • the sum of the absolute value of the negative support stiffness value in the axial direction of the impeller constituted by the first and second suction forces and the absolute value of the positive stiffness value in the radial direction of the impeller is expressed by: Is smaller than the absolute value of the positive stiffness value obtained by the first and second dynamic pressure grooves in the normal rotational speed region where the rotation speed of the motor is rotated.
  • the dynamic pressure generated by the first dynamic pressure groove is different from the dynamic pressure generated by the second dynamic pressure groove.
  • At least one of the first and second dynamic pressure grooves is an inward spiral groove.
  • a diamond-like carbon film for reducing frictional force is formed on at least one of the impeller surface and the inner wall of the first chamber.
  • the liquid is blood and the centrifugal pump device is used to circulate blood.
  • the centrifugal pump device is used to circulate blood.
  • the impeller can be rotated at high speed, and the rotation starting force of the impeller can be increased while keeping the pump size small. Further, the mechanical contact between the impeller and the housing can be reduced, and the impeller can be stably floated. In addition, the liquid can flow smoothly. Further, the impeller can be rotated and started smoothly. Further, a large torque for rotating the impeller can be generated. Moreover, the energy efficiency in the rotational drive of an impeller can be improved. In addition, when blood is circulated, hemolysis can be avoided.
  • FIG. 3 is a sectional view taken along line III-III in FIG. 2.
  • FIG. 4 is a sectional view taken along line IV-IV in FIG. 3.
  • FIG. 4 is a cross-sectional view showing a state where an impeller is removed from the cross-sectional view taken along the line IV-IV in FIG.
  • FIG. 4 is a cross-sectional view showing a state where an impeller is removed from the cross-sectional view taken along the line VI-VI in FIG. 3.
  • FIG. 4 is a sectional view taken along line VII-VII in FIG. 3.
  • FIG. 8 is a block diagram illustrating a configuration of a controller that controls the pump unit illustrated in FIGS. 1 to 7; 12 is a time chart illustrating an operation of the controller illustrated in FIG. 11.
  • 6 is a block diagram showing a modification of the first embodiment.
  • FIG. 10 is a time chart showing another modification of the first embodiment.
  • FIG. 10 is a cross-sectional view showing still another modification example of the first embodiment.
  • FIG. 10 is a cross-sectional view showing still another modification example of the first embodiment.
  • FIG. 10 is a cross-sectional view showing still another modification example of the first embodiment.
  • FIG. 17 is a cross-sectional view illustrating the shape of a magnetic body 35 illustrated in FIG. 16.
  • FIG. 10 is a cross-sectional view showing still another modification example of the first embodiment.
  • FIG. 10 is a cross-sectional view showing still another modification example of the first embodiment.
  • FIG. 10 is a cross-sectional view showing still another modification example of the first embodiment.
  • FIG. 10 is a cross-sectional view showing still another modification example of the first embodiment.
  • FIG. 10 is a cross-sectional view showing a main part of a modification of the second embodiment.
  • FIG. 10 is a diagram illustrating a modification example of the fourth embodiment. It is a figure which shows the optimal range of the area ratio of the permanent magnet 40 with respect to the permanent magnet 17 shown in FIG. It is a figure which shows the structure of the axial gap type motor by Embodiment 5 of this invention.
  • FIG. 10 is a diagram showing a comparative example of the fifth embodiment. It is a figure which shows the example of a change of Embodiment 5.
  • FIG. 1 is a front view showing an appearance of a pump unit 1 of a centrifugal blood pump apparatus according to Embodiment 1 of the present invention
  • FIG. 2 is a side view thereof
  • 3 is a sectional view taken along the line III-III in FIG. 2
  • FIG. 4 is a sectional view taken along the line IV-IV in FIG. 3
  • FIG. 5 shows a state where the impeller is removed from the sectional view taken along the line IV-IV in FIG.
  • It is sectional drawing. 6 is a cross-sectional view showing a state where the impeller is removed from the cross-sectional view taken along the line VI-VI in FIG. 3
  • FIG. 7 is a cross-sectional view taken along the line VII-VII in FIG.
  • the pump unit 1 of the centrifugal blood pump apparatus includes a housing 2 formed of a nonmagnetic material.
  • the housing 2 includes a columnar main body 3, a cylindrical blood inflow port 4 erected at the center of one end surface of the main body 3, and a cylindrical blood outflow provided on the outer peripheral surface of the main body 3.
  • Port 5 is included.
  • the blood outflow port 5 extends in the tangential direction of the outer peripheral surface of the main body 3.
  • a blood chamber 7 and a motor chamber 8 partitioned by a partition wall 6 are provided in the housing 2.
  • a disc-like impeller 10 having a through hole 10a in the center is rotatably provided.
  • the impeller 10 includes two shrouds 11 and 12 each having a donut plate shape and a plurality of (for example, six) vanes 13 formed between the two shrouds 11 and 12.
  • the shroud 11 is disposed on the blood inlet port 4 side, and the shroud 12 is disposed on the partition wall 6 side.
  • the shrouds 11 and 12 and the vane 13 are made of a nonmagnetic material.
  • a plurality (six in this case) of blood passages 14 partitioned by a plurality of vanes 13 are formed between the two shrouds 11 and 12.
  • the blood passage 14 communicates with the central through hole 10 a of the impeller 10, and starts from the through hole 10 a of the impeller 10 and extends so that the width gradually increases to the outer peripheral edge.
  • the vane 13 is formed between two adjacent blood passages 14.
  • the plurality of vanes 13 are provided at equiangular intervals and formed in the same shape. Therefore, the plurality of blood passages 14 are provided at equiangular intervals and are formed in the same shape.
  • the blood flowing in from the blood inflow port 4 is sent from the through hole 10a to the outer periphery of the impeller 10 through the blood passage 14 by the centrifugal force and flows out from the blood outflow port 5.
  • a permanent magnet 15 is embedded in the shroud 11
  • a permanent magnet 16 that attracts the permanent magnet 15 is embedded in the inner wall of the blood chamber 7 facing the shroud 11.
  • the permanent magnets 15 and 16 are provided for attracting (in other words, energizing) the impeller 10 on the side opposite to the motor chamber 8, in other words, on the blood inflow port 4 side.
  • a permanent magnet may be provided on one of the inner walls of the shroud 11 and the blood chamber 7, and a magnetic material may be provided on the other.
  • a magnetic material may be provided on the other.
  • the magnetic material either a soft magnetic material or a hard magnetic material may be used.
  • the permanent magnet 16 may be one or plural.
  • the permanent magnet 16 is formed in a ring shape.
  • the plurality of permanent magnets 16 are arranged along the same circle at equal angular intervals.
  • the permanent magnet 15 is the same as the permanent magnet 16, and may be one or plural.
  • a plurality (for example, eight) of permanent magnets 17 are embedded in the shroud 12.
  • the plurality of permanent magnets 17 are arranged along the same circle at equal angular intervals so that adjacent magnetic poles are different from each other.
  • the permanent magnets 17 with the N pole facing the motor chamber 8 side and the permanent magnets 17 with the S pole facing the motor chamber 8 side are alternately arranged along the same circle at equal angular intervals. .
  • a plurality of (for example, nine) magnetic bodies 18 are provided in the motor chamber 8.
  • the plurality of magnetic bodies 18 are arranged along the same circle at equal angular intervals so as to face the plurality of permanent magnets 17 of the impeller 10.
  • the base ends of the plurality of magnetic bodies 18 are joined to one disk-shaped yoke 19.
  • a coil 20 is wound around each magnetic body 18.
  • each of the plurality of magnetic bodies 18 is formed in a cylindrical shape, and the plurality of magnetic bodies 18 have the same dimensions.
  • the end face on the base end side of the cylindrical magnetic body 18 is joined to the yoke 19, and the end face on the front end side faces the plurality of permanent magnets 17 of the impeller 10 through the partition wall 6.
  • a space for winding the coil 20 is evenly secured around the plurality of magnetic bodies 18.
  • the magnetic body 18 is often formed in a triangular prism shape or a fan shape.
  • the surfaces of the two adjacent magnetic bodies 18 facing each other can be made substantially parallel, and adjacent coils 20 interfere with each other to reduce the winding volume. This is because it can be prevented.
  • the magnetic body 18 is preferably cylindrical.
  • the length of the conductive wire of the coil 20 is greater when the coil 20 is wound around the cylindrical magnetic body 18.
  • the resistance value of the coil 20 can be reduced. That is, the copper loss generated in the coil 20 can be reduced, and the energy efficiency in the rotational drive of the impeller 10 can be increased.
  • the outer surface surrounding the plurality of magnetic bodies 18 is the outer surface surrounding the plurality of permanent magnets 17 (the outer periphery of the plurality of permanent magnets 17 in FIG. 4).
  • the outer surface surrounding the plurality of magnetic bodies 18 may be larger than the outer surface surrounding the plurality of permanent magnets 17.
  • the magnetic body 18 is designed so that there is no magnetic saturation at the maximum rating of the pump 1 (the condition that the rotational driving torque of the impeller 10 is maximum).
  • the voltage is applied to the nine coils 20 by, for example, a 120-degree energization method. That is, nine coils 20 are grouped by three. Voltages VU, VV, and VW as shown in FIG. 8 are applied to the first to third coils 20 of each group. A positive voltage is applied to the first coil 20 during a period of 0 to 120 degrees, 0 V is applied during a period of 120 to 180 degrees, a negative voltage is applied during a period of 180 to 300 degrees, and 300 to 360 degrees. 0V is applied during this period.
  • the front end surface (end surface on the impeller 10 side) of the magnetic body 18 around which the first coil 20 is wound becomes the N pole in the period of 0 to 120 degrees and becomes the S pole in the period of 180 to 300 degrees.
  • the phase of the voltage VV is 120 degrees behind the voltage VU
  • the phase of the voltage VW is 120 degrees behind the voltage VV. Therefore, by applying the voltages VU, VV, and VW to the first to third coils 20, respectively, a rotating magnetic field can be formed, and the magnetic elements 18 and the permanent magnets 17 of the impeller 10 are attracted to each other.
  • the impeller 10 can be rotated by the force and the repulsive force.
  • the impeller 10 rotates at the rated rotational speed, the attractive force between the permanent magnets 15 and 16 and the attractive force between the plurality of permanent magnets 17 and the plurality of magnetic bodies 18 are within the blood chamber 7.
  • the impeller 10 is balanced near the approximate center of the movable range. For this reason, in any movable range of the impeller 10, the acting force due to the suction force to the impeller 10 is very small. As a result, the frictional resistance at the time of relative sliding between the impeller 10 and the housing 2 generated when the impeller 10 starts rotating can be reduced.
  • a plurality of dynamic pressure grooves 21 are formed on the surface of the partition wall 6 facing the shroud 12 of the impeller 10, and a plurality of dynamic pressure grooves 22 are formed on the inner wall of the blood chamber 7 facing the shroud 11.
  • a dynamic pressure bearing effect is generated between each of the dynamic pressure grooves 21 and 22 and the impeller 10.
  • a drag force is generated from each of the dynamic pressure grooves 21 and 22 against the impeller 10, and the impeller 10 rotates in a non-contact state in the blood chamber 7.
  • the plurality of dynamic pressure grooves 21 are formed in a size corresponding to the shroud 12 of the impeller 10, as shown in FIG.
  • Each dynamic pressure groove 21 has one end on the periphery (circumference) of a circular portion slightly spaced from the center of the partition wall 6 and has a width up to the vicinity of the outer edge of the partition wall 6 in a spiral shape (in other words, curved). It extends to gradually spread.
  • the plurality of dynamic pressure grooves 21 have substantially the same shape and are arranged at substantially the same interval.
  • the dynamic pressure groove 21 is a recess, and the depth of the dynamic pressure groove 21 is preferably about 0.005 to 0.4 mm.
  • the number of the dynamic pressure grooves 21 is preferably about 6 to 36.
  • ten dynamic pressure grooves 21 are arranged at an equal angle with respect to the central axis of the impeller 10. Since the dynamic pressure groove 21 has a so-called inward spiral groove shape, when the impeller 10 rotates in the clockwise direction, the liquid pressure increases from the outer diameter portion to the inner diameter portion of the dynamic pressure groove 21. For this reason, a repulsive force is generated between the impeller 10 and the partition wall 6, and this becomes a dynamic pressure.
  • the dynamic pressure groove 21 may be provided on the surface of the shroud 12 of the impeller 10 instead of providing the dynamic pressure groove 21 in the partition wall 6.
  • the impeller 10 is separated from the partition wall 6 and rotates in a non-contact state. For this reason, a blood flow path is ensured between the impeller 10 and the partition 6, and the blood retention between both and the generation
  • the corner portion of the dynamic pressure groove 21 is preferably rounded so as to have an R of at least 0.05 mm. Thereby, generation
  • the plurality of dynamic pressure grooves 22 are formed in a size corresponding to the shroud 11 of the impeller 10 as with the plurality of dynamic pressure grooves 21.
  • Each dynamic pressure groove 22 has one end on the periphery (circumference) of a circular portion slightly spaced from the center of the inner wall of the blood chamber 7, and is spirally (in other words, curved) on the inner wall of the blood chamber 7. It extends so that the width gradually increases to the vicinity of the outer edge.
  • the plurality of dynamic pressure grooves 22 have substantially the same shape and are arranged at substantially the same interval.
  • the dynamic pressure groove 22 is a recess, and the depth of the dynamic pressure groove 22 is preferably about 0.005 to 0.4 mm.
  • the number of the dynamic pressure grooves 22 is preferably about 6 to 36. In FIG. 6, ten dynamic pressure grooves 22 are arranged at an equal angle with respect to the central axis of the impeller 10.
  • the dynamic pressure groove 22 may be provided not on the inner wall side of the blood chamber 7 but on the surface of the shroud 11 of the impeller 10. Further, the corners of the dynamic pressure grooves 22 are preferably rounded so as to have an R of at least 0.05 mm. Thereby, generation
  • the impeller 10 is separated from the inner wall of the blood chamber 7 and rotates in a non-contact state. Moreover, when the pump part 1 receives an external impact or when the dynamic pressure by the dynamic pressure groove 21 becomes excessive, it is possible to prevent the impeller 10 from sticking to the inner wall of the blood chamber 7.
  • the dynamic pressure generated by the dynamic pressure groove 21 and the dynamic pressure generated by the dynamic pressure groove 22 may be different.
  • the impeller 10 rotates in a state in which the gap between the shroud 12 of the impeller 10 and the partition wall 6 and the gap between the shroud 11 of the impeller 10 and the inner wall of the blood chamber 7 are substantially the same.
  • the dynamic pressure by the dynamic pressure groove on the narrowing side is made larger than the dynamic pressure by the other dynamic pressure groove, To make the dynamic pressure grooves 21 and 22 different in shape.
  • each of the dynamic pressure grooves 21 and 22 has an inward spiral groove shape, but other shapes of the dynamic pressure grooves 21 and 22 can also be used. However, when blood is circulated, it is preferable to employ the inward spiral groove-shaped dynamic pressure grooves 21 and 22 that allow blood to flow smoothly.
  • the attraction force F1 between the permanent magnets 15 and 16 is set smaller than the attraction force F2 between the permanent magnet 17 and the magnetic body 18, and the floating position of the impeller 10 at which the resultant force becomes zero is from the middle of the impeller movable range. Is also on the partition wall 6 side.
  • the shapes of the dynamic pressure grooves 21 and 22 are the same.
  • the acting force on the impeller 10 includes an attractive force F1 between the permanent magnets 15 and 16, an attractive force F2 between the permanent magnet 17 and the magnetic body 18, a dynamic pressure F3 in the dynamic pressure groove 21, and a dynamic force in the dynamic pressure groove 22.
  • the pressure F4 and the resultant force “net force F5 acting on the impeller” are shown.
  • FIG. 10 shows that the magnitude of the resultant force between the attractive force F1 between the permanent magnets 15 and 16 and the attractive force F2 between the permanent magnet 17 and the magnetic body 18 is the movable range in the blood chamber 7 of the impeller 10. It is a figure which shows the force which acts on the impeller 10 when it adjusts so that it may become zero in the center position P0. Also in this case, the rotational speed of the impeller 10 is kept at the rated value.
  • the attractive force F1 between the permanent magnets 15 and 16 and the attractive force F2 between the permanent magnet 17 and the magnetic body 18 are set to be substantially the same. Further, the shapes of the dynamic pressure grooves 21 and 22 are the same. In this case, the support rigidity with respect to the floating position of the impeller 10 is higher than in the case of FIG. Since the net force F5 acting on the impeller 10 is zero at the center of the movable range, the impeller 10 floats at the center position when no disturbance force acts on the impeller 10.
  • the floating position of the impeller 10 is generated in the dynamic pressure grooves 21 and 22 when the impeller 10 rotates, and the attractive force F1 between the permanent magnets 15 and 16, the attractive force F2 between the permanent magnet 17 and the magnetic body 18, and the impeller 10. It is determined by the balance with dynamic pressures F3 and F4.
  • F1 and F2 substantially the same and making the shape of the dynamic pressure grooves 21 and 22 the same
  • the impeller 10 can be floated at the substantially central portion of the blood chamber 7 when the impeller 10 rotates.
  • the impeller 10 has a shape in which blades are formed between two disks. Therefore, two surfaces facing the inner wall of the housing 2 can have the same shape and the same size. Therefore, it is possible to provide the dynamic pressure grooves 21 and 22 having substantially the same dynamic pressure performance on both sides of the impeller 10.
  • the two dynamic pressure grooves 21 and 22 have the same shape.
  • the dynamic pressure grooves 21 and 22 have different shapes, and the dynamic pressure grooves 21 and 22
  • the pressure performance may be different. For example, when a disturbance in one direction always acts on the impeller 10 due to fluid force or the like during pumping, the performance of the dynamic pressure groove in the direction of the disturbance is made higher than the performance of the other dynamic pressure groove. As a result, the impeller 10 can be floated and rotated at the center position of the housing 2. As a result, the contact probability between the impeller 10 and the housing 2 can be kept low, and the stable flying performance of the impeller 10 can be obtained.
  • the absolute value of the negative support rigidity value in the axial direction of the impeller 10 constituted by the attractive force F1 between the permanent magnets 15 and 16 and the attractive force F2 between the permanent magnet 17 and the magnetic body 18 is defined as Ka. If the absolute value of the radial positive stiffness value is Kr, and the absolute value of the positive stiffness value obtained by the two dynamic pressure grooves 21 and 22 is Kg in the normal rotational speed region where the impeller 10 rotates, Kg> Ka + Kr It is preferable to satisfy the relationship.
  • the absolute value Kg of the positive stiffness value obtained by the two dynamic pressure grooves 21 and 22 is set to a value exceeding 30000 N / m.
  • the axial support rigidity of the impeller 10 is a value obtained by subtracting the negative rigidity due to the attractive force between the magnetic bodies from the rigidity caused by the dynamic pressure generated in the dynamic pressure grooves 21 and 22, it has a relationship of Kg> Ka + Kr.
  • the support rigidity in the axial direction can be higher than the support rigidity in the radial direction of the impeller 10.
  • the impeller 10 swings during rotation. This swing depends on the natural frequency determined by the mass of the impeller 10 and the support rigidity value of the impeller 10 and the rotational speed of the impeller 10. Maximum if matched.
  • the support rigidity in the radial direction is smaller than the support rigidity in the axial direction of the impeller 10. Therefore, it is preferable to set the maximum rotational speed of the impeller 10 to be equal to or less than the natural frequency in the radial direction. Therefore, in order to prevent mechanical contact between the impeller 10 and the housing 2, the radial rigidity value of the impeller 10 constituted by the attractive force F1 between the permanent magnets 15 and 16 and the attractive force F2 between the permanent magnet 17 and the magnetic body 18 is set.
  • the maximum rotation speed of the impeller 10 is set to 258 rad / s (2465 rpm) or less.
  • the maximum rotation speed of the impeller 10 is set to 366 rad / s (3500 rpm)
  • the radial rigidity is set to 4018 N / m or more.
  • the maximum rotation speed of the impeller 10 it is preferable to set the maximum rotation speed of the impeller 10 to 80% or less of this ⁇ . Specifically, when the mass of the impeller 10 is 0.03 kg and the radial rigidity value is 2000 N / m, the maximum rotational speed is set to 206.4 rad / s (1971 rpm) or less. Conversely, when the maximum rotational speed of the impeller 10 is desired to be 366 rad / s (3500 rpm), the radial rigidity value is set to 6279 N / m or more. By setting the maximum rotation speed of the impeller 10 in this way, contact between the impeller 10 and the housing 2 during rotation of the impeller 10 can be suppressed.
  • the dynamic pressure grooves 21 and 22 have a negative rigidity value in the axial direction of the impeller 10 constituted by the attractive force F1 between the permanent magnets 15 and 16 and the attractive force F2 between the permanent magnet 17 and the magnetic body 18.
  • the impeller 10 and the housing 2 are not in contact with each other. Therefore, it is preferable to make this negative rigidity value as small as possible. Therefore, in order to keep the negative rigidity value small, it is preferable to make the sizes of the opposed surfaces of the permanent magnets 15 and 16 different.
  • the rate of change of the attractive force that changes depending on the distance between them, that is, the negative stiffness can be kept small, and the impeller support stiffness is prevented from being lowered. Can do.
  • impeller 10 it is preferable to rotate the impeller 10 after confirming that the impeller 10 is in contact with the partition wall 6 before the impeller 10 starts rotating.
  • the shroud 12 of the impeller 10 when the shroud 12 of the impeller 10 is in contact with the partition wall 6, compared with the case where the shroud 11 of the impeller 10 is in contact with the inner wall of the blood chamber 7, the permanent magnet 17 of the impeller 10 and the motor chamber 8 Since the magnetic body 18 is close, the rotational torque at the time of starting the impeller 10 can be increased, and the impeller 10 can be rotated and started smoothly.
  • the attractive force F1 between the permanent magnets 15 and 16 and the attractive force F2 between the permanent magnet 17 and the magnetic body 18 are such that the position of the impeller 10 is within the movable range of the impeller 10. Since it is set so as to be balanced in the vicinity of the center, the impeller 10 is not necessarily in contact with the partition wall 6 when the impeller 10 is stopped.
  • this centrifugal blood pump device is provided with means for moving the impeller 10 toward the partition wall 6 before the impeller 10 is rotationally activated. Specifically, current is passed through the plurality of coils 20 so that the attractive force F2 between the permanent magnet 17 and the magnetic body 18 is increased, and the impeller 10 is moved to the partition wall 6 side.
  • FIG. 11 is a block diagram showing the configuration of the controller 25 that controls the pump unit 1.
  • the controller 25 includes a motor control circuit 26 and a power amplifier 27.
  • the motor control circuit 26 outputs a three-phase control signal of, for example, a 120-degree energization method.
  • the power amplifier 27 amplifies the three-phase control signal from the motor control circuit 26 to generate the three-phase voltages VU, VV, and VW shown in FIG.
  • Three-phase voltages VU, VV, and VW are applied to first to third coils 20 described with reference to FIGS. 7 and 8, respectively. Accordingly, during normal operation, the impeller 10 rotates at a predetermined rotational speed at the center position of the movable range.
  • 12 (a) to 12 (c) are time charts showing temporal changes in the coil current I, the position of the impeller 10 and the rotational speed of the impeller 10 when the impeller 10 starts rotating.
  • 12A to 12C in the initial state, the shroud 11 of the impeller 10 is in contact with the inner wall of the blood chamber 7 by the attractive force of the permanent magnets 15 and 16, and the impeller 10 is at the position PA. To do. In this state, since the impeller 10 is difficult to rotate, the impeller 10 is moved to a position PB where the shroud 12 of the impeller 10 contacts the partition wall 6.
  • the voltage of any one of the six patterns (0 to 60 degrees, 60 to 120 degrees,..., 300 to 360 degrees) of voltages VU, VV, and VW shown in FIG. 3 is applied to the coil 20, and a predetermined current I 0 is passed through the coil 20.
  • the attractive force F2 between the permanent magnet 17 and the magnetic body 18 becomes larger than the attractive force F1 between the permanent magnets 15 and 16, and the impeller 10 is hardly rotated and positioned on the partition wall 6 side.
  • the shroud 12 of the impeller 10 contacts the partition wall 6.
  • the current I0 is cut off (time t1).
  • the impeller 10 is moved without rotating, even if the impeller 10 is moved to the position PB on the partition 6 side while rotating, the impeller 10 is prevented from moving due to the hydrodynamic bearing effect of the hydrodynamic groove 21. Because. In addition, it is preferable to provide a sensor for detecting the position of the impeller 10 in the blood chamber 7 and to cut off the current I 0 after confirming that the impeller 10 has contacted the partition wall 6.
  • the impeller 10 rotates slightly (strictly speaking, 1/4 rotation or less, that is, 360 degrees or less in electrical angle), and moves to the position PB on the partition wall 6 side.
  • FIG. 13 is a block diagram showing a modification of the first embodiment.
  • the power source is switched when the impeller 10 starts rotating and thereafter. That is, in FIG. 13, in this modified example, the power amplifier 27 of FIG. 11 is replaced with power amplifiers 30 and 31 and a changeover switch 32. From time t0 to t1 in FIG. 12, the output signal of the motor control circuit 26 is given to the power amplifier 30, the output voltage of the power amplifier 30 is applied to the coil 20 via the changeover switch 32, and the current I0 flows through the coil 20. It is. After time t2, the output signal of the motor control circuit 26 is given to the power amplifier 31, the output voltage of the power amplifier 31 is applied to the coil 20 via the changeover switch 32, and a current flows through the coil 20.
  • FIGS. 14A to 14C are time charts showing another modification of the first embodiment. 14A to 14C, it is assumed that the shroud 11 of the impeller 10 is in contact with the inner wall of the blood chamber 7 in the initial state, and the impeller 10 is at the position PA.
  • a predetermined current I1 is passed through the coil 20 at time t0. That is, the motor control circuit 26 generates, for example, a 120-degree energization type three-phase control signal.
  • the power amplifier 27 amplifies the three-phase control signal from the motor control circuit 26 to generate the three-phase voltages VU, VV, and VW shown in FIG. Three-phase voltages VU, VV, and VW are applied to first to third coils 20 described with reference to FIGS. 7 and 8, respectively.
  • This current I1 is larger than the current I0 in FIG. 12 and is a current that can rotate the impeller 10 even when the shroud 11 of the impeller 10 is in contact with the inner wall of the blood chamber 7.
  • the coil current I is reduced and gradually increased to a predetermined rated value. In this way, even when the impeller 10 is on the position PA side, an excessive current may be supplied to the coil 20 only when the impeller 10 starts to rotate.
  • a diamond-like carbon (DLC) film may be formed on at least one of the inner wall surface of the blood chamber 7 and the surface of the partition wall 6 and the surface of the impeller 10. Thereby, the frictional force between the impeller 10 and the inner wall of the blood chamber 7 and the partition wall 6 can be reduced, and the impeller 10 can be smoothly rotated and started.
  • a fluorine-based resin film, a paraxylylene-based resin film, or the like may be formed instead of the diamond-like carbon film.
  • FIG. 15 is a cross-sectional view showing still another modified example of the first embodiment, and is a diagram contrasted with FIG.
  • the sizes of the opposing surfaces of the opposing permanent magnets 15 and 16 are different.
  • FIG. 3 shows a case where the sizes of the opposing surfaces of the permanent magnets 15 and 16 are the same.
  • the amount of change in force that is, negative rigidity can be suppressed to a small value, and a decrease in the support rigidity of the impeller 10 can be prevented.
  • FIG. 16 is a cross-sectional view showing still another modified example of the first embodiment, and is a view compared with FIG.
  • a magnetic body 35 is provided on the tip surface of each magnetic body 18 facing the permanent magnet 17.
  • the area of the surface of the magnetic body 35 facing the permanent magnet 17 is larger than the area of the tip surface of the magnetic body 18.
  • the surface of the magnetic body 35 facing the permanent magnet 17 is preferably triangular or fan-shaped.
  • the magnetic body 18 is often formed in a triangular prism shape or a fan shape, and the front end surface of the magnetic body 18 is not provided with the magnetic body 35.
  • the permanent magnet 17 are often directly opposed to the permanent magnet 17.
  • a magnetic flux for generating torque can be uniformly applied to the magnetic pole switching line (boundary line between the N pole and the S pole) of the permanent magnet 17.
  • the motor structure can be simplified and the number of parts can be reduced if the tip surface of the magnetic body 18 is directly opposed to the permanent magnet 17 without providing the magnetic body 35.
  • the cylindrical magnetic body 18 is used to reduce the copper loss of the coil 20 and increase the motor efficiency.
  • the efficiency of the torque generating magnetic flux with respect to the magnetic pole switching line (the boundary line between the N pole and the S pole) of the permanent magnet 17 becomes low.
  • the energy efficiency in the rotational drive of the impeller 10 cannot be increased.
  • the pump device of the first embodiment it is necessary to precisely adjust the balance between the attractive force generated on the permanent magnets 15 and 16 side and the attractive force generated on the permanent magnet 17 side.
  • the attractive force value largely depends on the facing area of the magnetic body 18 and the permanent magnet 17. If the cross-sectional area of the magnetic body 18 is changed in order to adjust the attractive force value, the coil 20 needs to be rewound and the motor body reassembled each time the change is made, which increases labor.
  • FIG. 18 is a cross-sectional view showing still another modification of the first embodiment, and is a view contrasted with FIG.
  • the yoke 19 is replaced with the yoke 36
  • the magnetic body 18 is replaced with the magnetic body 37.
  • Each of the yoke 36 and the magnetic body 37 includes a plurality of steel plates stacked in the length direction of the rotation shaft of the impeller 10.
  • the eddy current loss generated in the yoke 36 and the magnetic body 37 can be reduced, and the energy efficiency in the rotational drive of the impeller 10 can be increased.
  • the magnetic body 37 may be replaced with a magnetic body 38 including a plurality of steel plates stacked in the rotation direction of the impeller 10.
  • the magnetic body 37 may be replaced with a magnetic body 39 including a plurality of steel plates stacked in the radial direction of the impeller 10. Even in these cases, the same effect as the modified example of FIG. 18 is obtained.
  • each of the yoke 19 and the magnetic body 18 in FIG. 3 may be formed of pure iron, soft iron, or silicon iron powder. In this case, the iron loss of the yoke 19 and the magnetic body 18 can be reduced, and the energy efficiency in the rotational drive of the impeller 10 can be improved.
  • FIG. 21 is a cross-sectional view showing still another modified example of the first embodiment, which is compared with FIG.
  • the cross-sectional shape of the magnetic body 18 when the magnetic body 18 is cut along a plane perpendicular to the axial direction of the magnetic body 18 is an ellipse. That is, the cross-sectional shape of the magnetic body 18 is not limited to a perfect circle, and may be an ellipse with an ellipticity of 0.5 or more. However, the ellipticity is a ratio (short diameter / major diameter) of the short axis (length of the short axis) and the long diameter (length of the long axis) of the ellipse.
  • the ellipticity of the magnetic body 18 is determined according to the size of the inner and outer diameters of the space for the coil 20 and the number of slots of the motor.
  • the plurality of magnetic bodies 18 are arranged at equiangular intervals along the same circle. As shown in FIG. 21, the major axis of the ellipse may be oriented in the tangential direction of the circle, and as shown in FIG. 22, the minor axis of the ellipse may be oriented in the tangential direction of the circle. Even in these modified examples, since the outer peripheral surface of the magnetic body 18 has no corners, the coil 20 can be easily wound and a large space for the coil 20 can be secured.
  • FIG. 23 is a cross-sectional view showing a configuration of a pump portion of a centrifugal blood pump apparatus according to Embodiment 2 of the present invention, and is a view compared with FIG.
  • permanent magnets 15a and 15b are embedded in the shroud 11
  • permanent magnets 16a and 16b for attracting the permanent magnets 15a and 15b are embedded in the inner wall of the blood chamber 7 facing the shroud 11, respectively. Yes.
  • Each of the permanent magnets 15a and 15b is formed in an annular shape, and the outer diameter of the permanent magnet 15a is smaller than the inner diameter of the permanent magnet 15b.
  • the permanent magnets 15 a and 15 b are provided coaxially, and the center points of the permanent magnets 15 a and 15 b are both arranged on the rotation center line of the impeller 10. In the figure, the end faces in the same direction of the permanent magnets 15a and 15b have different polarities, but they may have the same polarity.
  • each of the permanent magnets 16a and 16b is formed in an annular shape, and the outer diameter and inner diameter of the permanent magnet 16a are the same as the outer diameter and inner diameter of the permanent magnet 15a.
  • the outer diameter and inner diameter of the permanent magnet 16b are the same as the outer diameter and inner diameter of the permanent magnet 15b.
  • the permanent magnets 16 a and 16 b are provided coaxially, and the center points of the permanent magnets 16 a and 16 b are both arranged on the center line of the cylindrical side wall of the blood chamber 7. In the figure, the end faces in the same direction of the permanent magnets 16a and 16b have different polarities, but they may have the same polarity.
  • the permanent magnets 15a and 16a and the permanent magnets 15b and 16b are opposed to each other in a pole arrangement for attracting each other.
  • the distance D1 between the permanent magnets 15a and 15b is a radial movable distance of the impeller 10 (that is, the distance between the inner diameter of the blood chamber 7 and the outer diameter of the impeller 10).
  • the distance D2 is set to be larger than the half distance D2 (D1> D2). This is because when D1 ⁇ D2, when the impeller 10 moves to the maximum in the radial direction, the permanent magnets 15a and 16b and the permanent magnets 15b and 16a interfere with each other to restore the impeller 10 to the pump center position. Because it becomes unstable.
  • the radial movable distance of impeller 10 is the difference between the inner diameter of the protrusion on the inner wall of blood chamber 7 and the outer diameter of impeller 10.
  • FIGS. 24 (a) and 24 (b) are diagrams showing a main part of a modification of the second embodiment, and showing the configuration of the permanent magnets 15a, 15b, 16a, 16b.
  • FIG. 24A is a cross-sectional view taken along the line XXIVA-XXIVA of FIG.
  • each of the permanent magnets 15a and 15b is formed in an annular shape, and the outer diameter of the permanent magnet 15a is smaller than the inner diameter of the permanent magnet 15b.
  • each of the permanent magnets 16 a and 16 b is formed in an arc shape, and two are arranged in the rotation direction of the impeller 10.
  • the outer diameter and inner diameter of the two permanent magnets 16a arranged in an annular shape are the same as the outer diameter and inner diameter of the permanent magnet 15a.
  • the outer diameter and inner diameter of the two permanent magnets 16b arranged in an annular shape are the same as the outer diameter and inner diameter of the permanent magnet 15b. Even in this modified example, the same effect as in the second embodiment can be obtained.
  • FIG. 25 shows a state where the rotation center line L2 of the impeller 10 has moved to the opening 7a side by a certain distance R from the center line L1 of the cylindrical side wall of the blood chamber 7. Moreover, the state in which the partition wall 6 and the impeller 10 are not parallel, and the plane including the partition wall 6 and the plane including the center surface of the impeller 10 intersect at an angle ⁇ on the opposite side of the opening 7a is shown. Yes.
  • FIG. 26 is a diagram showing a positional relationship between the center line L1 of the side wall of the blood chamber 7 and the opening 7a.
  • the housing 2 is cut along a plane that is orthogonal to the center line L 1 of the side wall of the blood chamber 7 and includes the center line of the hole of the blood outflow port 5.
  • the side wall of the blood chamber 7 is formed along a circle C on the plane.
  • the center point of the circle C is the intersection of the plane and the center line L 1 of the side wall of the blood chamber 7.
  • the hole of the blood outflow port 5 extends in the tangential direction of the circle C.
  • the impeller 10 rotates in the direction of rotation of the clock hand, and the blood also rotates in that direction.
  • the hole P of the blood outflow port 5 and the contact point P of the circle C are located at the end on the upstream side (left side in FIG. 26) of the opening 7 a on the side wall of the blood chamber 7.
  • the direction of the contact P (upstream end of the opening 7a) as viewed from the center point of the circle C (center line L1 of the side wall of the blood chamber 7) is 0 degree, and the opposite direction is 180 degrees.
  • the impeller 10 floats at a position where the fluid force of blood, the dynamic pressure of the hydrodynamic bearing, the attractive force of the permanent magnets 15a and 15b and the permanent magnets 16a and 16b, the permanent magnet 17 on the impeller 10 side and the magnetic body 18 on the motor side. It is determined by the balance such as suction force.
  • the permanent magnets 15a, 15b and the permanent magnets on the opening 7a side are made permanent.
  • the attractive force of the magnets 16a and 16b is set smaller than the attractive force of the permanent magnets 15a and 15b and the permanent magnets 16a and 16b on the opposite side of the opening 7a.
  • a degree is a predetermined angle larger than 0 degree and smaller than 180 degrees.
  • the A degree is 60 degrees.
  • FIG. 27 (a) and 27 (b) are diagrams showing the configuration of the permanent magnets 15a, 15b, 16a and 16b
  • FIG. 27 (a) is a cross-sectional view taken along the line XXVIIA-XXVIIA in FIG. 27 (b).
  • 27A and 27B show a state in which the center line L1 of the cylindrical side wall of the blood chamber 7 and the rotation center line L2 of the impeller 10 coincide with each other.
  • Each of the permanent magnets 15a and 15b is formed in an annular shape, and the outer diameter of the permanent magnet 15a is smaller than the inner diameter of the permanent magnet 15b.
  • the permanent magnets 15 a and 15 b are provided coaxially, and the center points of the permanent magnets 15 a and 15 b are both disposed on the rotation center line L ⁇ b> 2 of the impeller 10.
  • the N poles of the permanent magnets 15a and 15b are directed in opposite directions.
  • each of the permanent magnets 16a and 16b is also formed in an annular shape.
  • the outer diameter and inner diameter of the permanent magnet 16a are the same as the outer diameter and inner diameter of the permanent magnet 15a.
  • the outer diameter and inner diameter of the permanent magnet 16b are the same as the outer diameter and inner diameter of the permanent magnet 15b.
  • the permanent magnets 16 a and 16 b are provided coaxially, and the center points of the permanent magnets 16 a and 16 b are both disposed on the center line L 1 of the cylindrical side wall of the blood chamber 7.
  • the N poles of the permanent magnets 16a and 16b are directed in different directions.
  • the S poles of the permanent magnets 15a and 15b and the N poles of the permanent magnets 16a and 16b are opposed to each other.
  • the attractive force of the permanent magnets 15a and 15b and the permanent magnets 16a and 16b on the opening 7a side is expressed by the permanent magnet 15a on the opposite side of the opening 7a.
  • 15b and the permanent magnets 16a, 16b, the permanent magnets 16a, 16b on the opening 7a side are made thinner.
  • a degree is a predetermined angle larger than 0 degree and smaller than 180 degrees.
  • the A degree is 60 degrees.
  • the back surface of the permanent magnets 16a and 16b (the surface opposite to the surface facing the permanent magnets 15a and 15b) has a predetermined depth. A recess is formed.
  • the attractive force of the permanent magnets 15a, 15b and the permanent magnets 16a, 16b on the opening 7a side is made smaller than the attractive force of the permanent magnets 15a, 15b and the permanent magnets 16a, 16b on the opposite side of the opening 7a,
  • the impeller 10 can be parallel to the partition wall 6 during rotation, and the impeller 10 can be prevented from contacting the inner wall of the blood chamber 7.
  • the predetermined portions of the permanent magnets 16a and 16b are thinned in order to suppress the inclination (angle ⁇ ) with respect to the rotation axis of the impeller 10.
  • the present invention is not limited to this, and the permanent magnets 16a and 16b are not limited thereto.
  • a cutout may be made in the outer peripheral portion of the predetermined portion, the width of the predetermined portion may be narrowed, the predetermined portion may be omitted, or the predetermined portion may be chamfered.
  • FIG. 28 is a cross-sectional view showing the main part of a centrifugal blood pump apparatus according to Embodiment 4 of the present invention, and is a view compared with FIG.
  • a plurality of permanent magnets 17 are arranged with gaps along the same circle at equal angular intervals so that adjacent magnetic poles are different from each other.
  • the permanent magnet 17 with the N pole facing the motor chamber 8 side and the permanent magnet 17 with the S pole facing the motor chamber 8 side are alternately arranged along the same circle with a gap at equal angular intervals. Has been placed.
  • FIG. 29 (a) is a diagram showing the magnetic field between the permanent magnets 17 and 17 in the fourth embodiment
  • FIG. 29 (b) is a diagram showing the magnetic field between the permanent magnets 17 and 17 in the first embodiment.
  • the magnetic flux density between the permanent magnets 17 and 17 is as follows.
  • the fourth embodiment is larger, and the magnetic field around the permanent magnet 17 is stronger in the fourth embodiment. Therefore, in the fourth embodiment, the magnetic coupling force between the permanent magnet 17 of the impeller 10 and the magnetic body 18 and the coil 20 in the motor chamber 8 can be increased. Therefore, it is possible to increase the rotational torque of the impeller 10 while keeping the apparatus size small.
  • FIG. 30 is a diagram illustrating a modification of the fourth embodiment.
  • a plurality of permanent magnets 17 and a plurality of permanent magnets 40 are embedded in the shroud 12.
  • the number of permanent magnets 40 is the same as the number of permanent magnets 17.
  • the permanent magnet 40 is magnetized in the circumferential direction (the rotation direction of the impeller 10).
  • the plurality of permanent magnets 17 and the plurality of permanent magnets 40 are alternately arranged in a Halbach array structure along the same circle at equal angular intervals.
  • the permanent magnet 17 with the N pole facing the partition wall 6 side and the permanent magnet 17 with the S pole facing the partition wall 6 side are alternately arranged along the same circle with gaps provided at equal angular intervals.
  • the N pole of each permanent magnet 40 is arranged toward the permanent magnet 17 with the N pole facing the partition 6 side
  • the S pole of each permanent magnet 40 is arranged toward the permanent magnet 17 with the S pole facing the partition 6 side. Is done.
  • the shapes of the plurality of permanent magnets 17 are the same, and the shapes of the plurality of permanent magnets 40 are the same.
  • the shape of the permanent magnet 17 and the shape of the permanent magnet 40 may be the same or different.
  • the attractive force between the permanent magnet 17 and the magnetic body 18 can be suppressed, and the magnetic flux causing torque can be increased, so that the permanent magnet can be most miniaturized. That is, the impeller 10 can be most lightweight and energy efficiency can be increased even when the motor gap is wide.
  • FIG. 31 shows the relationship between the attractive force and the generated torque when the total weight of the permanent magnet 17 and the permanent magnet 40 is the same and the area ratio of the permanent magnet 40 to the permanent magnet 17 is changed.
  • the area ratio of the permanent magnet 40 to the permanent magnet 17 is set in a range of 1/2 or more and 2 or less, the attraction force of the permanent magnet 17 and the magnetic body 18 is suppressed to be small while the impeller 10 The rotational torque can be increased. Therefore, the area ratio of the permanent magnet 40 to the permanent magnet 17 is optimally in the range of 1/2 or more and 2 or less.
  • the area ratio between the permanent magnet 17 and the permanent magnet 40 is set to about 5: 1 to 3: 1.
  • the area ratio of the permanent magnet 17 and the permanent magnet 40 is set in a range from 2: 1 to 1: 2 according to the motor size and the motor gap. Can be optimized.
  • FIG. 32 (a) is a bottom view of the rotor 61 of the axial gap motor according to the fifth embodiment of the present invention as viewed from the partition wall 60 side
  • FIG. 32 (b) is a front view showing the main part of the axial gap motor.
  • this axial gap type motor has the same configuration as that of the pump unit 1 of the centrifugal blood pump apparatus according to the first to fourth embodiments, and is divided into a first partition partitioned by a circular partition wall 60. And a second chamber (not shown).
  • An annular rotor 61 that is rotatably provided along the partition wall 60 is provided in the first chamber, and a stator 70 that rotates the rotor 61 through the partition wall 60 is provided in the second chamber. ing.
  • the rotor 61 includes an annular support member 62 formed of a nonmagnetic material, and a plurality (for example, eight) of permanent magnets 63 fixed to the support member 62.
  • the plurality of permanent magnets 63 are arranged with a gap therebetween in the rotation direction of the rotor 61.
  • Each permanent magnet 63 is magnetized in the extending direction of the rotation center axis of the rotor 61.
  • the magnetic poles of two adjacent permanent magnets 63 are different from each other.
  • the stator 70 includes a plurality of (for example, six) magnetic bodies 71 disposed to face the plurality of permanent magnets 63 and a plurality of coils 72 wound around the plurality of magnetic bodies 71 and generating a rotating magnetic field. Including.
  • the plurality of magnetic bodies 71 are fixed to an annular yoke 73.
  • the rotor 61 can be rotated by applying a voltage to the plurality of coils 72 by a 120-degree ener
  • 33 (a) and 33 (b) are diagrams showing a comparative example of the fifth embodiment and are compared with FIGS. 32 (a) and 32 (b). 33 (a) and 33 (b), this comparative example is different from the fifth embodiment in that there are no gaps between the plurality of permanent magnets 63.
  • the weight of the permanent magnet 63 of the fifth embodiment and the weight of the permanent magnet 63 of the comparative example are the same, the magnetic flux density between the permanent magnets 63 and 63 is implemented.
  • the magnetic field around the permanent magnet 63 becomes stronger in the fifth embodiment. Therefore, in the fifth embodiment, the magnetic coupling force between the permanent magnet 63 of the rotor 61 and the magnetic body 71 and the coil 72 of the stator 70 can be increased. Therefore, the rotational torque of the rotor 61 can be increased while keeping the apparatus size small.
  • 34 (a) and 34 (b) are diagrams showing a modification of the fifth embodiment.
  • the rotor 61 is provided with a plurality of permanent magnets 63 and a plurality of permanent magnets 67.
  • the number of permanent magnets 67 is the same as the number of permanent magnets 63.
  • the permanent magnet 67 is magnetized in the circumferential direction (rotation direction of the rotor 61).
  • the plurality of permanent magnets 63 and the plurality of permanent magnets 67 are alternately arranged one by one at equal angular intervals along the same circle in a Halbach array structure.
  • the permanent magnets 63 with the north pole facing the partition wall 60 and the permanent magnets 63 with the south pole facing the partition wall 60 are alternately arranged along the same circle with gaps at equal angular intervals.
  • the N pole of each permanent magnet 67 is arranged toward the permanent magnet 63 with the N pole facing the partition 60 side, and the S pole of each permanent magnet 67 is arranged toward the permanent magnet 63 with the S pole facing the partition 60 side. Is done.
  • the shapes of the plurality of permanent magnets 63 are the same, and the shapes of the plurality of permanent magnets 67 are the same.
  • the shape of the permanent magnet 63 and the shape of the permanent magnet 67 may be the same or different.
  • the attractive force between the permanent magnet 63 and the magnetic body 71 can be suppressed, and the magnetic flux resulting from the torque can be increased, so that the permanent magnet can be most miniaturized (see FIG. 30). That is, the rotor 61 can be most lightened and the energy efficiency can be increased even when the motor gap is wide.
  • the magnetic flux causing the attractive force and torque of the permanent magnet 63 and the magnetic body 71 is adjusted by the ratio of the area of the surface of the permanent magnet 63 facing the partition wall 60 and the area of the surface of the permanent magnet 67 facing the partition wall 60. can do.
  • the area ratio of the permanent magnet 67 to the permanent magnet 63 is set in a range of 1/2 or more and 2 or less, the rotor 61 is suppressed while reducing the attractive force between the permanent magnet 63 and the magnetic body 71.
  • the rotational torque of can be increased. Therefore, the area ratio of the permanent magnet 67 to the permanent magnet 63 is optimally in the range of 1/2 or more and 2 or less.
  • the magnetic poles are often composed of only the permanent magnets 63.
  • the stator 70 and the rotor regardless of the radial gap type or the axial gap type. Since the gap between 61 becomes large, there is a problem that high torque and high efficiency are difficult.
  • the degree of freedom in design is low due to dimensional restrictions and the like, and it is easily affected by local magnetic saturation, and it is difficult to achieve high efficiency.
  • the field magnetic flux of the permanent magnet 63 can be efficiently passed through the stator 70 even when the gap between the stator 70 and the rotor 61 is large. Therefore, the motor torque can be increased without increasing the mass of the rotor 61 and without increasing the negative rigidity value in the axial direction with respect to a wide motor gap. Therefore, the rotor 61 can be rotated at high speed, and the rotor 61 can be smoothly rotated and started.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Mechanical Engineering (AREA)
  • Cardiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Anesthesiology (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • Pulmonology (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • External Artificial Organs (AREA)
PCT/JP2013/050187 2012-01-18 2013-01-09 遠心式ポンプ装置 Ceased WO2013108681A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/372,998 US9366261B2 (en) 2012-01-18 2013-01-09 Centrifugal pump device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012007845A JP6083929B2 (ja) 2012-01-18 2012-01-18 遠心式ポンプ装置
JP2012-007845 2012-01-18

Publications (1)

Publication Number Publication Date
WO2013108681A1 true WO2013108681A1 (ja) 2013-07-25

Family

ID=48799108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050187 Ceased WO2013108681A1 (ja) 2012-01-18 2013-01-09 遠心式ポンプ装置

Country Status (3)

Country Link
US (1) US9366261B2 (enExample)
JP (1) JP6083929B2 (enExample)
WO (1) WO2013108681A1 (enExample)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158162A1 (ja) * 2015-03-30 2016-10-06 Ntn株式会社 遠心式ポンプ装置

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6506579B2 (ja) * 2015-03-20 2019-04-24 Ntn株式会社 回転駆動装置または回転駆動装置を備える遠心式ポンプ装置
JP6577754B2 (ja) * 2015-05-26 2019-09-18 日本電産サンキョー株式会社 磁気カップリング機構およびこれを備えたポンプ装置
US20170016449A1 (en) * 2015-07-14 2017-01-19 Hamilton Sundstrand Corporation Axial-flux induction motor pump
ES3026736T3 (en) 2015-08-04 2025-06-12 Abiomed Europe Gmbh Blood pump with self-flushing bearing
PL3173108T3 (pl) 2015-11-30 2018-12-31 Fundacja Rozwoju Kardiochirurgii Im. Prof. Zbigniewa Religi Wirnik z kanałami krytymi dla odśrodkowej wszczepialnej pompy wspomagania serca
KR101697148B1 (ko) * 2016-03-04 2017-01-17 황광선 원심 흡입식 하이브리드 베인 유체기계
US10161908B2 (en) * 2016-03-24 2018-12-25 Infineon Technologies Ag Apparatus for determining a characteristic of a fluid having a device configured to measure a hydrodynamic pressure of the fluid
CN105641763B (zh) * 2016-04-12 2017-12-01 上海理工大学 分离型电磁耦合血泵系统
US11324942B2 (en) * 2016-06-28 2022-05-10 Albert Rather, Jay K. Brama, Md, Gurjap Singh Medical devices including rotary valve
JP7414529B2 (ja) 2017-06-07 2024-01-16 シファメド・ホールディングス・エルエルシー 血管内流体移動デバイス、システム、および使用方法
EP3710076B1 (en) 2017-11-13 2023-12-27 Shifamed Holdings, LLC Intravascular fluid movement devices, systems, and methods of use
EP4085965A1 (en) 2018-02-01 2022-11-09 Shifamed Holdings, LLC Intravascular blood pumps and methods of use and manufacture
WO2020028537A1 (en) 2018-07-31 2020-02-06 Shifamed Holdings, Llc Intravascaular blood pumps and methods of use
US12220570B2 (en) 2018-10-05 2025-02-11 Shifamed Holdings, Llc Intravascular blood pumps and methods of use
EP3754204B1 (de) * 2019-06-17 2022-03-16 Levitronix GmbH Lüfter
WO2021011473A1 (en) 2019-07-12 2021-01-21 Shifamed Holdings, Llc Intravascular blood pumps and methods of manufacture and use
WO2021062260A1 (en) 2019-09-25 2021-04-01 Shifamed Holdings, Llc Catheter blood pumps and collapsible blood conduits
GB2588823A (en) * 2019-11-11 2021-05-12 Epropelled Ltd Electrical machine
US12409310B2 (en) 2019-12-11 2025-09-09 Shifamed Holdings, Llc Descending aorta and vena cava blood pumps

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001329988A (ja) * 2000-05-19 2001-11-30 Ntn Corp 液体ポンプ装置
JP2007089972A (ja) * 2005-09-30 2007-04-12 Terumo Corp 遠心式血液ポンプ装置
WO2011013483A1 (ja) * 2009-07-29 2011-02-03 Ntn株式会社 回転駆動装置およびそれを用いた遠心式ポンプ装置

Family Cites Families (254)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1093868A (en) 1912-03-11 1914-04-21 Henry W Jacobs Means for forming couplings or joints.
US3960468A (en) 1946-07-16 1976-06-01 The United States Of America As Represented By The United States Energy Research And Development Administration Fluid lubricated bearing assembly
US2684035A (en) 1947-10-02 1954-07-20 Philip G Kemp Fluid pump
US3510229A (en) 1968-07-23 1970-05-05 Maytag Co One-way pump
US3932069A (en) 1974-12-19 1976-01-13 Ford Motor Company Variable reluctance motor pump
LU77252A1 (enExample) 1976-05-06 1977-08-22
FR2451480A1 (fr) 1979-03-16 1980-10-10 Belenger Jacques Pompe centrifuge medicale
JPH0247496Y2 (enExample) 1980-05-21 1990-12-13
US4382199A (en) 1980-11-06 1983-05-03 Nu-Tech Industries, Inc. Hydrodynamic bearing system for a brushless DC motor
US4688998A (en) 1981-03-18 1987-08-25 Olsen Don B Magnetically suspended and rotated impellor pump apparatus and method
US5078741A (en) 1986-10-12 1992-01-07 Life Extenders Corporation Magnetically suspended and rotated rotor
DE3214397C2 (de) 1982-04-20 1984-07-26 Karl Dr. 6301 Pohlheim Aigner Perfusions-Doppellumenkatheter
US4549860A (en) 1983-04-04 1985-10-29 Yakich Sam S Blood pump improvements
US4806080A (en) 1983-07-06 1989-02-21 Ebara Corporation Pump with shaftless impeller
US4686982A (en) 1985-06-19 1987-08-18 John Nash Spiral wire bearing for rotating wire drive catheter
US4769006A (en) 1985-05-13 1988-09-06 Kos Medical Technologies, Ltd. Hydrodynamically propelled pacing catheter
US4790843A (en) 1986-06-16 1988-12-13 Baxter Travenol Laboratories, Inc. Prosthetic heart valve assembly
US4753221A (en) 1986-10-22 1988-06-28 Intravascular Surgical Instruments, Inc. Blood pumping catheter and method of use
US4902272A (en) 1987-06-17 1990-02-20 Abiomed Cardiovascular, Inc. Intra-arterial cardiac support system
US4930997A (en) 1987-08-19 1990-06-05 Bennett Alan N Portable medical suction device
US4846152A (en) 1987-11-24 1989-07-11 Nimbus Medical, Inc. Single-stage axial flow blood pump
US4817586A (en) 1987-11-24 1989-04-04 Nimbus Medical, Inc. Percutaneous bloom pump with mixed-flow output
US4895557A (en) 1987-12-07 1990-01-23 Nimbus Medical, Inc. Drive mechanism for powering intravascular blood pumps
US5092879A (en) 1988-02-17 1992-03-03 Jarvik Robert K Intraventricular artificial hearts and methods of their surgical implantation and use
US4906229A (en) 1988-05-03 1990-03-06 Nimbus Medical, Inc. High-frequency transvalvular axisymmetric blood pump
FR2632686B1 (enExample) 1988-06-14 1993-07-16 Thomson Brandt Armements
US4908012A (en) 1988-08-08 1990-03-13 Nimbus Medical, Inc. Chronic ventricular assist system
US4964864A (en) 1988-09-27 1990-10-23 American Biomed, Inc. Heart assist pump
US4919647A (en) 1988-10-13 1990-04-24 Kensey Nash Corporation Aortically located blood pumping catheter and method of use
US4957504A (en) 1988-12-02 1990-09-18 Chardack William M Implantable blood pump
US4969865A (en) 1989-01-09 1990-11-13 American Biomed, Inc. Helifoil pump
US4944722A (en) 1989-02-23 1990-07-31 Nimbus Medical, Inc. Percutaneous axial flow blood pump
US4995857A (en) 1989-04-07 1991-02-26 Arnold John R Left ventricular assist device and method for temporary and permanent procedures
US5324177A (en) 1989-05-08 1994-06-28 The Cleveland Clinic Foundation Sealless rotodynamic pump with radially offset rotor
US4985014A (en) 1989-07-11 1991-01-15 Orejola Wilmo C Ventricular venting loop
US5147186A (en) 1989-08-04 1992-09-15 Bio Medicus, Inc. Blood pump drive system
JPH03111697A (ja) 1989-09-22 1991-05-13 Jidosha Denki Kogyo Co Ltd 小型遠心ポンプ
US5112202A (en) 1990-01-31 1992-05-12 Ntn Corporation Turbo pump with magnetically supported impeller
JP3025295B2 (ja) 1990-10-11 2000-03-27 エヌティエヌ株式会社 ターボ形ポンプ
US5145333A (en) 1990-03-01 1992-09-08 The Cleveland Clinic Foundation Fluid motor driven blood pump
FR2659396B1 (fr) 1990-03-07 1992-05-15 Cit Alcatel Pompe a vide pour vide moleculaire propre.
JPH0636821B2 (ja) 1990-03-08 1994-05-18 健二 山崎 体内埋設形の補助人工心臓
US5092844A (en) 1990-04-10 1992-03-03 Mayo Foundation For Medical Education And Research Intracatheter perfusion pump apparatus and method
US5211546A (en) 1990-05-29 1993-05-18 Nu-Tech Industries, Inc. Axial flow blood pump with hydrodynamically suspended rotor
DE4020120A1 (de) 1990-06-25 1991-01-31 Klaus Prof Dr Ing Affeld Medizinische vorrichtung zur erzeugung eines alternierenden volumenstroms fuer den antrieb von implantierbaren blutpumpen
CA2022019C (en) 1990-07-26 1992-12-29 Michael Black Catheter
JP2989233B2 (ja) 1990-07-31 1999-12-13 エヌティエヌ株式会社 ターボ形ポンプ
US5195877A (en) 1990-10-05 1993-03-23 Kletschka Harold D Fluid pump with magnetically levitated impeller
US5190528A (en) 1990-10-19 1993-03-02 Boston University Percutaneous transseptal left atrial cannulation system
DE4111713A1 (de) 1991-04-10 1993-01-14 Magnet Motor Gmbh Fluidpumpe
US5106372A (en) 1991-05-03 1992-04-21 Sherwood Medical Company Single use syringe
JPH0521197U (ja) 1991-05-17 1993-03-19 株式会社荏原製作所 キヤンドモータポンプ
US5584803A (en) 1991-07-16 1996-12-17 Heartport, Inc. System for cardiac procedures
US5290236A (en) 1991-09-25 1994-03-01 Baxter International Inc. Low priming volume centrifugal blood pump
US5449342A (en) 1991-09-30 1995-09-12 Nippon Zeon Co., Ltd. Apparatus for assisting blood circulation
US5360445A (en) 1991-11-06 1994-11-01 International Business Machines Corporation Blood pump actuator
US5201679A (en) 1991-12-13 1993-04-13 Attwood Corporation Marine propeller with breakaway hub
US5306295A (en) 1992-04-30 1994-04-26 University Of Utah Research Foundation Electrohydraulic heart with septum mounted pump
US5300112A (en) 1992-07-14 1994-04-05 Aai Corporation Articulated heart pump
US5354331A (en) 1992-07-15 1994-10-11 Schachar Ronald A Treatment of presbyopia and other eye disorders
JP2564843Y2 (ja) 1992-07-29 1998-03-11 日本ビクター株式会社 すべりスラスト軸受け構造
US5290227A (en) 1992-08-06 1994-03-01 Pasque Michael K Method of implanting blood pump in ascending aorta or main pulmonary artery
US5312341A (en) 1992-08-14 1994-05-17 Wayne State University Retaining apparatus and procedure for transseptal catheterization
SE501215C2 (sv) 1992-09-02 1994-12-12 Oeyvind Reitan Kateterpump
US5376114A (en) 1992-10-30 1994-12-27 Jarvik; Robert Cannula pumps for temporary cardiac support and methods of their application and use
FR2698560B1 (fr) 1992-11-30 1995-02-03 Virbac Laboratoires Principes actifs pulvérulents stabilisés, compositions les contenant, leur procédé d'obtention et leurs applications.
JP2583924Y2 (ja) 1992-12-25 1998-10-27 エヌティエヌ株式会社 クリーンポンプ
US5332374A (en) 1992-12-30 1994-07-26 Ralph Kricker Axially coupled flat magnetic pump
US5643226A (en) 1993-02-24 1997-07-01 Minnesota Mining And Manufacturing Low velocity aortic cannula
DE4321260C1 (de) 1993-06-25 1995-03-09 Westphal Dieter Dipl Ing Dipl Blutpumpe als Zentrifugalpumpe
JP3898754B2 (ja) 1993-07-01 2007-03-28 ボストン サイエンティフィック リミテッド 像形成、電位検出型及び切除カテーテル
JPH0714220U (ja) 1993-08-18 1995-03-10 アスモ株式会社 液中軸受
US5527159A (en) 1993-11-10 1996-06-18 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Rotary blood pump
JPH0742869U (ja) 1993-12-28 1995-08-11 象印マホービン株式会社 遠心ポンプ
EP0741584A1 (en) 1994-02-01 1996-11-13 Howmedica Inc. Coated femoral stem prosthesis
US5597377A (en) 1994-05-06 1997-01-28 Trustees Of Boston University Coronary sinus reperfusion catheter
US5607407A (en) 1994-05-09 1997-03-04 Tolkoff; Marc J. Catheter assembly
US5507629A (en) 1994-06-17 1996-04-16 Jarvik; Robert Artificial hearts with permanent magnet bearings
US5504978A (en) 1994-07-15 1996-04-09 Meyer, Iii; Harold A. Locking clamp assembly
US5569111A (en) 1994-10-11 1996-10-29 The United States Of America As Represented By The Secretary Of The Navy Permanent magnet torque/force transfer apparatus
US5613935A (en) 1994-12-16 1997-03-25 Jarvik; Robert High reliability cardiac assist system
US5725357A (en) 1995-04-03 1998-03-10 Ntn Corporation Magnetically suspended type pump
EP0819330B1 (de) 1995-04-03 2001-06-06 Levitronix LLC Rotationsmaschine mit elektromagnetischem drehantrieb
US5707218A (en) 1995-04-19 1998-01-13 Nimbus, Inc. Implantable electric axial-flow blood pump with blood cooled bearing
US5938412A (en) 1995-06-01 1999-08-17 Advanced Bionics, Inc. Blood pump having rotor with internal bore for fluid flow
US6206659B1 (en) 1995-06-01 2001-03-27 Advanced Bionics, Inc. Magnetically driven rotor for blood pump
US5924848A (en) 1995-06-01 1999-07-20 Advanced Bionics, Inc. Blood pump having radial vanes with enclosed magnetic drive components
US5793974A (en) 1995-06-30 1998-08-11 Sun Microsystems, Inc. Network navigation and viewing system for network management system
US6007479A (en) 1996-07-08 1999-12-28 H.D.S. Systems Ltd. Heart assist system and method
US5575630A (en) 1995-08-08 1996-11-19 Kyocera Corporation Blood pump having magnetic attraction
US5924975A (en) 1995-08-30 1999-07-20 International Business Machines Corporation Linear pump
DE19535781C2 (de) 1995-09-26 1999-11-11 Fraunhofer Ges Forschung Vorrichtung zur aktiven Strömungsunterstützung von Körperflüssigkeiten
JPH09122228A (ja) 1995-10-27 1997-05-13 Terumo Corp 遠心ポンプ駆動制御装置および体外循環血液回路用送血装置
US5947703A (en) 1996-01-31 1999-09-07 Ntn Corporation Centrifugal blood pump assembly
US5695471A (en) 1996-02-20 1997-12-09 Kriton Medical, Inc. Sealless rotary blood pump with passive magnetic radial bearings and blood immersed axial bearings
US5840070A (en) 1996-02-20 1998-11-24 Kriton Medical, Inc. Sealless rotary blood pump
DE19613564C1 (de) 1996-04-04 1998-01-08 Guenter Prof Dr Rau Intravasale Blutpumpe
US5868703A (en) 1996-04-10 1999-02-09 Endoscopic Technologies, Inc. Multichannel catheter
US5738649A (en) 1996-04-16 1998-04-14 Cardeon Corporation Peripheral entry biventricular catheter system for providing access to the heart for cardiopulmonary surgery or for prolonged circulatory support of the heart
US5611679A (en) 1996-04-22 1997-03-18 Eastman Kodak Company Corrosion-resistant pump
US5814011A (en) 1996-04-25 1998-09-29 Medtronic, Inc. Active intravascular lung
US5746709A (en) 1996-04-25 1998-05-05 Medtronic, Inc. Intravascular pump and bypass assembly and method for using the same
US6074180A (en) 1996-05-03 2000-06-13 Medquest Products, Inc. Hybrid magnetically suspended and rotated centrifugal pumping apparatus and method
US6254359B1 (en) 1996-05-10 2001-07-03 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method for providing a jewel bearing for supporting a pump rotor shaft
JPH09313600A (ja) 1996-05-28 1997-12-09 Terumo Corp 遠心式液体ポンプ装置
US6244835B1 (en) 1996-06-26 2001-06-12 James F. Antaki Blood pump having a magnetically suspended rotor
DE19629614A1 (de) 1996-07-23 1998-01-29 Cardiotools Herzchirurgietechn Linksherzassistpumpe
US5755783A (en) 1996-07-29 1998-05-26 Stobie; Robert Suture rings for rotatable artificial heart valves
CA2237203C (en) 1996-09-10 2007-09-18 Sulzer Electronics Ag Rotary pump and method for operation thereof
CA2265754C (en) 1996-09-13 2006-10-24 Medtronic, Inc. Prosthetic heart valve with suturing member having non-uniform radial width
US5851174A (en) 1996-09-17 1998-12-22 Robert Jarvik Cardiac support device
JP4104088B2 (ja) 1996-10-04 2008-06-18 ユナイテッド ステイツ サージカル コーポレイション 循環器支援システム
US6071093A (en) 1996-10-18 2000-06-06 Abiomed, Inc. Bearingless blood pump and electronic drive system
US5888242A (en) 1996-11-01 1999-03-30 Nimbus, Inc. Speed control system for implanted blood pumps
US5776111A (en) 1996-11-07 1998-07-07 Medical Components, Inc. Multiple catheter assembly
US5807311A (en) 1996-11-29 1998-09-15 Palestrant; Aubrey M. Dialysis catheter having rigid and collapsible lumens and related method
US6123460A (en) 1997-02-28 2000-09-26 Sumitomo Electric Industries, Ltd. Hydrodynamic gas bearing structure and optical deflection scanner comprising the same
US5890883A (en) 1997-03-19 1999-04-06 The Cleveland Clinic Foundation Rotodynamic pump with non-circular hydrodynamic bearing journal
US5964694A (en) 1997-04-02 1999-10-12 Guidant Corporation Method and apparatus for cardiac blood flow assistance
AUPO902797A0 (en) 1997-09-05 1997-10-02 Cortronix Pty Ltd A rotary blood pump with hydrodynamically suspended impeller
JPH10331841A (ja) 1997-05-27 1998-12-15 Sony Corp 動圧流体軸受装置及び動圧流体軸受装置の製造方法
US6532964B2 (en) 1997-07-11 2003-03-18 A-Med Systems, Inc. Pulmonary and circulatory blood flow support devices and methods for heart surgery procedures
US6709418B1 (en) 1997-07-11 2004-03-23 A-Med Systems, Inc. Apparatus and methods for entering cavities of the body
US6123725A (en) 1997-07-11 2000-09-26 A-Med Systems, Inc. Single port cardiac support apparatus
EP0928613A4 (en) 1997-07-25 2001-01-17 Sun Medical Technology Res Cor PORTABLE DRIVE SYSTEM FOR AN ARTIFICIAL HEART
EP0899855B1 (de) 1997-08-25 2006-03-08 Levitronix LLC Magnetgelagerte Rotationsanordnung
DE59712162D1 (de) 1997-09-04 2005-02-17 Levitronix Llc Waltham Zentrifugalpumpe
JP3919896B2 (ja) 1997-09-05 2007-05-30 テルモ株式会社 遠心式液体ポンプ装置
US6610004B2 (en) 1997-10-09 2003-08-26 Orqis Medical Corporation Implantable heart assist system and method of applying same
UA56262C2 (uk) 1997-10-09 2003-05-15 Орквіс Медікел Корпорейшн Імплантовувана система підтримки серця
US5928131A (en) 1997-11-26 1999-07-27 Vascor, Inc. Magnetically suspended fluid pump and control system
US6422990B1 (en) 1997-11-26 2002-07-23 Vascor, Inc. Blood pump flow rate control method and apparatus utilizing multiple sensors
US6293901B1 (en) 1997-11-26 2001-09-25 Vascor, Inc. Magnetically suspended fluid pump and control system
JPH11244377A (ja) 1998-03-03 1999-09-14 Terumo Corp 遠心式血液ポンプ装置
DE29804046U1 (de) 1998-03-07 1998-04-30 Günther, Rolf W., Prof. Dr.med., 52074 Aachen Perkutan implantierbare selbstentfaltbare Axialpumpe zur temporären Herzunterstützung
US6176822B1 (en) 1998-03-31 2001-01-23 Impella Cardiotechnik Gmbh Intracardiac blood pump
US6086527A (en) 1998-04-02 2000-07-11 Scimed Life Systems, Inc. System for treating congestive heart failure
US6508777B1 (en) 1998-05-08 2003-01-21 Cardeon Corporation Circulatory support system and method of use for isolated segmental perfusion
DE19821307C1 (de) 1998-05-13 1999-10-21 Impella Cardiotech Gmbh Intrakardiale Blutpumpe
US6042347A (en) 1998-07-27 2000-03-28 Scholl; Frank G. Pedia-cadio pump
US6135943A (en) 1998-08-07 2000-10-24 Cardiac Assist Technologies, Inc. Non-invasive flow indicator for a rotary blood pump
WO2000018448A2 (en) 1998-09-30 2000-04-06 A-Med Systems, Inc. Method and apparatus for preventing air embolisms
US6149683A (en) 1998-10-05 2000-11-21 Kriton Medical, Inc. Power system for an implantable heart pump
US6264635B1 (en) 1998-12-03 2001-07-24 Kriton Medical, Inc. Active magnetic bearing system for blood pump
AU2485100A (en) 1998-12-23 2000-07-12 A-Med Systems, Inc. Left and right side heart support
US6158984A (en) 1998-12-28 2000-12-12 Kriton Medical, Inc. Rotary blood pump with ceramic members
US7329236B2 (en) 1999-01-11 2008-02-12 Flowmedica, Inc. Intra-aortic renal drug delivery catheter
US6749598B1 (en) 1999-01-11 2004-06-15 Flowmedica, Inc. Apparatus and methods for treating congestive heart disease
US6123659A (en) 1999-01-26 2000-09-26 Nimbus Inc. Blood pump with profiled outflow region
US6245007B1 (en) 1999-01-28 2001-06-12 Terumo Cardiovascular Systems Corporation Blood pump
US6319231B1 (en) 1999-02-12 2001-11-20 Abiomed, Inc. Medical connector
EP1034808A1 (en) 1999-03-09 2000-09-13 Paul Frederik Gründeman A device for transventricular mechanical circulatory support
US6295877B1 (en) 1999-03-30 2001-10-02 A-Med Systems, Inc. Pressure sensing cannula
AUPP995999A0 (en) 1999-04-23 1999-05-20 University Of Technology, Sydney Non-contact estimation and control system
US6234772B1 (en) 1999-04-28 2001-05-22 Kriton Medical, Inc. Rotary blood pump
JP4043644B2 (ja) 1999-05-06 2008-02-06 日本電産株式会社 動圧軸受装置の製造方法
US6146325A (en) 1999-06-03 2000-11-14 Arrow International, Inc. Ventricular assist device
EP1063753B1 (de) 1999-06-22 2009-07-22 Levitronix LLC Elektrischer Drehantrieb mit einem magnetisch gelagerten Rotor
US6190304B1 (en) 1999-07-13 2001-02-20 University Of North Texas Health Science Center At Fort Worth Enhanced intra-aortic balloon assist device
US6247892B1 (en) 1999-07-26 2001-06-19 Impsa International Inc. Continuous flow rotary pump
US7022100B1 (en) 1999-09-03 2006-04-04 A-Med Systems, Inc. Guidable intravascular blood pump and related methods
US6227820B1 (en) 1999-10-05 2001-05-08 Robert Jarvik Axial force null position magnetic bearing and rotary blood pumps which use them
DE29921352U1 (de) 1999-12-04 2001-04-12 Impella Cardiotechnik AG, 52074 Aachen Intravasale Blutpumpe
DE19963662C2 (de) 1999-12-29 2003-10-16 Guido Brohlburg Direkt beschiefertes Aufsparren Dämmsystem für Hausdächer
US6439845B1 (en) 2000-03-23 2002-08-27 Kidney Replacement Services, P.C. Blood pump
JP5214836B2 (ja) 2000-03-27 2013-06-19 ザ クリーブランド クリニック ファウンデーション ターボ形血液ポンプ用長期性能制御システム
JP2001309628A (ja) 2000-04-19 2001-11-02 Unisia Jecs Corp モータポンプ
US6547530B2 (en) 2000-05-19 2003-04-15 Ntn Corporation Fluid pump apparatus
US6458163B1 (en) 2000-07-11 2002-10-01 Prosthetic Design, Inc. Coupling-socket adapter assembly for a prosthetic limb
AU2002217770A1 (en) 2000-11-16 2002-05-27 Geoff Briggs Automatic suture fixation apparatus and method
DE10058669B4 (de) 2000-11-25 2004-05-06 Impella Cardiotechnik Ag Mikromotor
DE10059714C1 (de) 2000-12-01 2002-05-08 Impella Cardiotech Ag Intravasale Pumpe
DE10060275A1 (de) 2000-12-05 2002-06-13 Impella Cardiotech Ag Verfahren zum Kalibrieren eines Drucksensors oder eines Flussensors an einer Rotationspumpe
US20020095210A1 (en) 2001-01-16 2002-07-18 Finnegan Michael T. Heart pump graft connector and system
DE10108810A1 (de) 2001-02-16 2002-08-29 Berlin Heart Ag Vorrichtung zur axialen Förderung von Flüssigkeiten
US6547519B2 (en) 2001-04-13 2003-04-15 Hewlett Packard Development Company, L.P. Blower impeller apparatus with pivotable blades
US6517315B2 (en) 2001-05-29 2003-02-11 Hewlett-Packard Company Enhanced performance fan with the use of winglets
US20020188167A1 (en) 2001-06-06 2002-12-12 Anthony Viole Multilumen catheter for minimizing limb ischemia
US20030023302A1 (en) 2001-07-26 2003-01-30 Riyad Moe Sewing cuff assembly for heart valves
US6623420B2 (en) 2001-08-16 2003-09-23 Apex Medical, Inc. Physiological heart pump control
US6808371B2 (en) 2001-09-25 2004-10-26 Matsushita Electric Industrial Co., Ltd. Ultra-thin pump and cooling system including the pump
US6942672B2 (en) 2001-10-23 2005-09-13 Vascor, Inc. Method and apparatus for attaching a conduit to the heart or a blood vessel
US6692318B2 (en) 2001-10-26 2004-02-17 The Penn State Research Foundation Mixed flow pump
JP4060570B2 (ja) 2001-11-02 2008-03-12 テルモ株式会社 遠心式血液ポンプ
CA2471484A1 (en) 2002-01-08 2003-07-17 Micromed Technology, Inc. Method and system for detecting ventricular collapse
US6991595B2 (en) 2002-04-19 2006-01-31 Thoratec Corporation Adaptive speed control for blood pump
US20040024285A1 (en) 2002-06-21 2004-02-05 Helmut Muckter Blood pump with impeller
US6732501B2 (en) 2002-06-26 2004-05-11 Heartware, Inc. Ventricular connector
US7241257B1 (en) 2002-06-28 2007-07-10 Abbott Cardiovascular Systems, Inc. Devices and methods to perform minimally invasive surgeries
US6949188B2 (en) 2002-07-15 2005-09-27 Geyer's Manufacturing & Design, Inc. Filter assembly having improved sealing features
US7578843B2 (en) 2002-07-16 2009-08-25 Medtronic, Inc. Heart valve prosthesis
US7959674B2 (en) 2002-07-16 2011-06-14 Medtronic, Inc. Suture locking assembly and method of use
US6949066B2 (en) 2002-08-21 2005-09-27 World Heart Corporation Rotary blood pump diagnostics and cardiac output controller
US6817836B2 (en) 2002-09-10 2004-11-16 Miwatec Incorporated Methods and apparatus for controlling a continuous flow rotary blood pump
JP4186593B2 (ja) 2002-11-13 2008-11-26 松下電工株式会社 Dcブラシレスモータ及びそれを備えたdcポンプ
US6860713B2 (en) 2002-11-27 2005-03-01 Nidec Corporation Fan with collapsible blades, redundant fan system, and related method
EP1430919A1 (en) 2002-12-17 2004-06-23 Terumo Kabushiki Kaisha Centrifugal blood pump apparatus
JP4456857B2 (ja) 2002-12-17 2010-04-28 テルモ株式会社 遠心式血液ポンプ装置
US7048681B2 (en) 2003-03-28 2006-05-23 Terumo Corporation Method and apparatus for adjusting a length of the inflow conduit on a ventricular assist device
JP2004332566A (ja) 2003-04-30 2004-11-25 Yamada Seisakusho Co Ltd マグネットポンプ
TWI297282B (en) 2003-05-22 2008-06-01 Ind Tech Res Inst High performance purification process and device for high specific resistance liquid crystal
US7128538B2 (en) 2003-07-07 2006-10-31 Terumo Corporation Centrifugal fluid pump apparatus
US7416525B2 (en) 2003-09-18 2008-08-26 Myrakelle, Llc Rotary blood pump
ATE406685T1 (de) 2003-10-03 2008-09-15 Foster Miller Inc Drehpumpe mit elektromagnetischem lcr-lager
JP4767488B2 (ja) 2003-10-23 2011-09-07 Ntn株式会社 磁気浮上型ポンプ
DE102004019721A1 (de) 2004-03-18 2005-10-06 Medos Medizintechnik Ag Pumpe
EP1598087B1 (en) 2004-03-24 2010-02-03 Terumo Kabushiki Kaisha blood pump with hydrodynamic bearing
JP4340178B2 (ja) 2004-03-24 2009-10-07 テルモ株式会社 遠心式血液ポンプ装置
JP4233475B2 (ja) 2004-03-25 2009-03-04 テルモ株式会社 遠心式血液ポンプ装置
US7160243B2 (en) 2004-03-25 2007-01-09 Terumo Corporation Method and system for controlling blood pump flow
JP4340183B2 (ja) 2004-03-31 2009-10-07 テルモ株式会社 遠心式血液ポンプ装置
US7172551B2 (en) 2004-04-12 2007-02-06 Scimed Life Systems, Inc. Cyclical pressure coronary assist pump
JP2006002937A (ja) 2004-05-20 2006-01-05 Minebea Co Ltd 流体動圧軸受装置およびその製造方法、スピンドルモータ、および記録ディスク駆動装置
KR100600758B1 (ko) 2004-09-15 2006-07-19 엘지전자 주식회사 모터의 스테이터 및 그 제조방법
US7393181B2 (en) 2004-09-17 2008-07-01 The Penn State Research Foundation Expandable impeller pump
US7699586B2 (en) 2004-12-03 2010-04-20 Heartware, Inc. Wide blade, axial flow pump
US8419609B2 (en) 2005-10-05 2013-04-16 Heartware Inc. Impeller for a rotary ventricular assist device
JP4759261B2 (ja) 2004-12-16 2011-08-31 テルモ株式会社 遠心式血液ポンプ装置
DE102005017546A1 (de) 2005-04-16 2006-10-19 Impella Cardiosystems Gmbh Verfahren zur Steuerung einer Blutpumpe
JP2007002885A (ja) 2005-06-22 2007-01-11 Aisin Takaoka Ltd 差動装置
JP2007043621A (ja) 2005-08-05 2007-02-15 Matsushita Electric Ind Co Ltd アンテナ装置およびアンテナ装置の製造方法
JP4472612B2 (ja) 2005-09-30 2010-06-02 テルモ株式会社 遠心式血液ポンプ装置
US9744279B2 (en) 2005-12-08 2017-08-29 Heartware, Inc. Implant connector
EP3954901A1 (en) 2006-01-13 2022-02-16 HeartWare, Inc. Rotary blood pump
US8672611B2 (en) 2006-01-13 2014-03-18 Heartware, Inc. Stabilizing drive for contactless rotary blood pump impeller
JP5068951B2 (ja) 2006-02-08 2012-11-07 本田技研工業株式会社 モータ用ロータの製造方法および製造装置
US20070213690A1 (en) 2006-03-08 2007-09-13 Nickolas Phillips Blood conduit connector
JP2007247489A (ja) 2006-03-15 2007-09-27 Asmo Co Ltd 電動ポンプ
CN101448535B (zh) 2006-03-23 2011-10-19 宾州研究基金会 带有可膨胀叶轮泵的心脏辅助装置
WO2007115222A2 (en) 2006-03-31 2007-10-11 Orqis Medical Corporation Rotary blood pump
US7850594B2 (en) 2006-05-09 2010-12-14 Thoratec Corporation Pulsatile control system for a rotary blood pump
JP4898319B2 (ja) 2006-06-23 2012-03-14 テルモ株式会社 血液ポンプ装置
JP2008104278A (ja) 2006-10-18 2008-05-01 Honda Motor Co Ltd モータ
JP4787726B2 (ja) 2006-11-28 2011-10-05 テルモ株式会社 センサレス磁気軸受型血液ポンプ装置
JP4959424B2 (ja) 2007-05-31 2012-06-20 勇 青谷 ポンプ装置
JP4707696B2 (ja) 2007-06-26 2011-06-22 本田技研工業株式会社 アキシャルギャップ型モータ
DE102007043575A1 (de) 2007-09-13 2009-03-26 Minebea Co., Ltd. Fluiddynamische Lagerstruktur und fluiddynamisches Lager
WO2009057667A1 (en) 2007-10-29 2009-05-07 Semiconductor Energy Laboratory Co., Ltd. Formation method of single crystal semiconductor layer, formation method of crystalline semiconductor layer, formation method of polycrystalline layer, and method for manufacturing semiconductor device
US7942805B2 (en) 2007-12-27 2011-05-17 Heartware, Inc. VAD connector plug
JP5171953B2 (ja) 2008-06-23 2013-03-27 テルモ株式会社 血液ポンプ装置
WO2010067682A1 (ja) 2008-12-08 2010-06-17 Ntn株式会社 遠心式ポンプ装置
JP5347171B2 (ja) 2008-12-11 2013-11-20 ソラテック コーポレーション 遠心式ポンプ装置
JP5378010B2 (ja) 2009-03-05 2013-12-25 ソラテック コーポレーション 遠心式ポンプ装置
US8770945B2 (en) 2009-03-06 2014-07-08 Thoratec Corporation Centrifugal pump apparatus
US9682180B2 (en) 2009-11-15 2017-06-20 Thoratec Corporation Attachment system, device and method
US20110118829A1 (en) 2009-11-15 2011-05-19 Thoratec Corporation Attachment device and method
JP5443197B2 (ja) 2010-02-16 2014-03-19 ソラテック コーポレーション 遠心式ポンプ装置
WO2011118325A1 (ja) 2010-03-26 2011-09-29 テルモ株式会社 遠心式血液ポンプ装置
JP5681403B2 (ja) 2010-07-12 2015-03-11 ソーラテック コーポレイション 遠心式ポンプ装置
JP5577506B2 (ja) 2010-09-14 2014-08-27 ソーラテック コーポレイション 遠心式ポンプ装置
EP3020426B1 (en) 2010-09-24 2017-12-27 Tc1 Llc Generating artificial pulse
JP2012200285A (ja) 2011-03-23 2012-10-22 Toshiba Corp 画像処理装置、x線ct装置、及び画像処理方法
EP2693609B1 (en) 2011-03-28 2017-05-03 Thoratec Corporation Rotation and drive device and centrifugal pump device using same
US8579790B2 (en) 2012-01-05 2013-11-12 Thoratec Corporation Apical ring for ventricular assist device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001329988A (ja) * 2000-05-19 2001-11-30 Ntn Corp 液体ポンプ装置
JP2007089972A (ja) * 2005-09-30 2007-04-12 Terumo Corp 遠心式血液ポンプ装置
WO2011013483A1 (ja) * 2009-07-29 2011-02-03 Ntn株式会社 回転駆動装置およびそれを用いた遠心式ポンプ装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158162A1 (ja) * 2015-03-30 2016-10-06 Ntn株式会社 遠心式ポンプ装置
JP2016188592A (ja) * 2015-03-30 2016-11-04 Ntn株式会社 遠心式ポンプ装置

Also Published As

Publication number Publication date
JP2013147969A (ja) 2013-08-01
US20150010415A1 (en) 2015-01-08
JP6083929B2 (ja) 2017-02-22
US9366261B2 (en) 2016-06-14

Similar Documents

Publication Publication Date Title
JP6083929B2 (ja) 遠心式ポンプ装置
JP5681403B2 (ja) 遠心式ポンプ装置
JP5656835B2 (ja) 回転駆動装置およびそれを用いた遠心式ポンプ装置
JP5378010B2 (ja) 遠心式ポンプ装置
JP5443197B2 (ja) 遠心式ポンプ装置
JP5577506B2 (ja) 遠心式ポンプ装置
JP5577503B2 (ja) 遠心式ポンプ装置
JP5347171B2 (ja) 遠心式ポンプ装置
JP5378012B2 (ja) 遠心式ポンプ装置
WO2010067682A1 (ja) 遠心式ポンプ装置
WO2010101107A1 (ja) 遠心式ポンプ装置
JP5693812B2 (ja) 遠心式ポンプ装置
JP5378060B2 (ja) 遠心式ポンプ装置
JP2012013043A (ja) 回転駆動装置およびそれを用いた遠心式ポンプ装置
JP2010131303A (ja) 遠心式ポンプ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13738407

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14372998

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13738407

Country of ref document: EP

Kind code of ref document: A1