WO2013099135A1 - フレキシブル表示装置 - Google Patents

フレキシブル表示装置 Download PDF

Info

Publication number
WO2013099135A1
WO2013099135A1 PCT/JP2012/007995 JP2012007995W WO2013099135A1 WO 2013099135 A1 WO2013099135 A1 WO 2013099135A1 JP 2012007995 W JP2012007995 W JP 2012007995W WO 2013099135 A1 WO2013099135 A1 WO 2013099135A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
terminal portion
product
flexible
display device
Prior art date
Application number
PCT/JP2012/007995
Other languages
English (en)
French (fr)
Inventor
崇 大迫
裕司 田中
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/983,169 priority Critical patent/US8780568B2/en
Priority to JP2013551212A priority patent/JP6042823B2/ja
Publication of WO2013099135A1 publication Critical patent/WO2013099135A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/118Printed elements for providing electric connections to or between printed circuits specially for flexible printed circuits, e.g. using folded portions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits
    • H05K3/361Assembling flexible printed circuits with other printed circuits
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0221Insulating particles having an electrically conductive coating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • H05K3/323Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED

Definitions

  • the present invention relates to a flexible display device, and more particularly, to a connection structure between a device substrate and a flexible circuit substrate via an ACF (Anisotropic Conductive Film).
  • ACF Anagonal Conductive Film
  • the terminal part of the device substrate and the terminal part of the flexible circuit board are electrically connected by conductive particles contained in the ACF.
  • a pressure is applied from above with the ACF 830 disposed therebetween, and the ACF 830 is pressure-bonded to the device substrate 810 and the flexible circuit substrate 820 as shown in FIG. 9B, and the conductive particles 831 included in the ACF 830 are attached to both ends.
  • both terminal parts 812 and 822 are electrically connected through the conductive particles 831. At that time, if the crushed conductive particles 831 are deformed into a flat shape, the contact area between the conductive particles 831 and each of the terminal portions 812 and 822 is increased, so that the electrical connection is stabilized.
  • the thickness of the terminal portion 812 of the device substrate 810 is very thin (for example, 0.5 ⁇ m), the hard and thick glass substrate 811 is present below the terminal portion 812, so that the conductive particles 831 are used in the pressure bonding. Even if strongly pressed, the terminal portion 812 is not easily deformed.
  • the thickness of the terminal portion 822 of the flexible circuit board 820 is relatively thick (for example, 8 ⁇ m), it is not easily deformed at the time of crimping. Since both the terminal portions 812 and 822 are not deformed in this way, the conductive particles 831 existing between the terminal portions 812 and 822 can be appropriately crushed into a flat shape at the time of pressure bonding.
  • Patent Document 1 As shown in FIG. 10A, a terminal portion 912 provided on the flexible substrate 911 of the device substrate 910 and a terminal portion 922 provided on the base film 921 of the flexible circuit substrate 920 are provided. However, there is disclosed a flexible display device electrically connected through conductive particles 931 of ACF930.
  • the conductive particles 931 cannot be crushed into an appropriate flat shape, so that the contact area between the conductive particles 931 and the terminal portion 912 is small and conduction is unstable. Moreover, since the thickness of the terminal part 912 becomes thin in the recessed part, this also makes conduction unstable. If the indentation by the conductive particles 931 is strong, not only the dent is formed but also the terminal portion 912 may be cracked. In this case, the contact between the conductive particles 931 and the terminal portion 912 may occur. It becomes more unstable and poor conduction may occur. In particular, when the flexible display device is used while being bent, poor conduction tends to occur.
  • the present invention has been made in view of the above problems, and provides a flexible display device in which a terminal portion of a device substrate and a terminal portion of a flexible circuit board are electrically connected with high reliability via an ACF. With the goal.
  • a flexible display device includes a flexible substrate, a device substrate including a display portion and a first terminal portion formed on the flexible substrate, and a flexible substrate including a second terminal portion.
  • the first terminal portion and the second terminal portion are connected via an anisotropic conductive film containing conductive particles, and the flexible substrate
  • An electrode layer and a buffer layer are provided between the first terminal portion and a product of an average particle diameter and an elastic modulus of the core portion of the conductive particles (hereinafter referred to as “product of the core portion”).
  • product of the metal layer is the average of the first terminal portions.
  • product of thickness and elastic modulus hereinafter referred to as “product of first terminal portion”
  • product of the buffer layer the product of the average thickness and elastic modulus of the electrode layer
  • electrode layer the product of the average thickness and elastic modulus of the electrode layer
  • the “average particle diameter” means a particle diameter at an integrated value of 50% in the particle size distribution obtained by the laser diffraction / scattering method.
  • the electrode layer and the buffer layer are provided between the flexible substrate and the first terminal portion, and the sum of the product of the core portion and the product of the metal layer is calculated. Since the value divided by the sum of the product of the first terminal portion, the product of the buffer layer, and the product of the electrode layer is 1.5 or less, the upper and lower sides with the interface between the conductive particles and the first terminal portion as the boundary The strain balance on both sides can be kept good, and the first terminal portion is hardly deformed. Therefore, the conductive particles can be crushed into an appropriate flat shape, and since the electrical connection between the conductive particles and the first electrode is stabilized, poor conduction is unlikely to occur.
  • FIG. 11 is a perspective view illustrating a connection structure between a display panel and a flexible circuit board according to one embodiment of the present invention. It is sectional drawing of the location along the AA of FIG. 2 of the flexible display apparatus based on an Example.
  • FIG. 3 is a cross-sectional view of a portion along the line BB in FIG. 2 of the flexible display device according to the example. It is a conceptual diagram for demonstrating the connection structure of the display panel which concerns on an Example, and a flexible circuit board. It is a figure for demonstrating the conditions of the experiment regarding a deformation
  • a flexible display device includes a flexible substrate, a device substrate including a display portion and a first terminal portion formed on the flexible substrate, and a flexible substrate including a second terminal portion.
  • the first terminal portion and the second terminal portion are connected via an anisotropic conductive film containing conductive particles, and the flexible substrate
  • An electrode layer and a buffer layer are provided between the first terminal portion, a product of an average particle diameter and an elastic modulus of the core portion of the conductive particles, and a metal layer covering the core portion.
  • the sum of the product of twice the average thickness and the elastic modulus is the product of the average thickness and elastic modulus of the first terminal portion, the product of the average thickness and elastic modulus of the buffer layer, and the electrode layer.
  • the value divided by the sum of the product of the average thickness and the elastic modulus is 1.5 or less Characterized in that it comprises.
  • the buffer layer is made of a resin.
  • a display unit formation region in which the display unit is formed and the first terminal unit are provided between the flexible substrate and the display unit.
  • a base layer is continuously provided in the terminal part forming region formed and an intermediate region between the display part forming region and the terminal part forming region, and the terminal part forming region in the base layer is provided.
  • the portion is the buffer layer.
  • FIG. 1 is a diagram illustrating an overall configuration of a flexible display device according to an aspect of the present invention.
  • the flexible display device 1 according to one embodiment of the present invention is a flexible display including a display panel 100, a drive control unit 200, and a plurality of flexible circuit boards 300.
  • the display panel 100 is, for example, an organic EL (Electro Luminescence) panel using an electroluminescence effect.
  • the drive control unit 200 includes four drive circuits 210 and a control circuit 220.
  • An IC as a drive circuit 210 is mounted on the flexible circuit board 300.
  • FIG. 2 is a perspective view illustrating a connection structure between a display panel and a flexible circuit board according to one embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of a portion along the line AA of FIG. 2 of the flexible display device according to the example.
  • FIG. 4 is a cross-sectional view of a portion along the line BB of FIG. 2 of the flexible display device according to the example.
  • a display unit 101 is formed in the central region (a portion surrounded by a two-dot chain line in FIG. 2).
  • a plurality of first terminal portions 114 are formed on all four sides of the outer peripheral area, as shown in FIGS.
  • a region where the display unit 101 is formed is referred to as a display unit forming region
  • a region where the first terminal unit 114 is formed is referred to as a terminal unit forming region
  • a region therebetween is referred to as an intermediate region. .
  • the flexible circuit board 300 is, for example, formed by forming a conductive pattern (not shown) on a base film 310 made of polyimide using copper or the like, and a lower surface (TFT substrate) of the end of the base film 310 on the display panel 100 side.
  • a plurality of second terminal portions 320 electrically connected to the conductive pattern are formed at positions corresponding to the first terminal portions 114.
  • the ACF 400 is a film obtained by molding a thermosetting resin into a film, and is interposed between the first terminal portion 114 and the second terminal portion 320, and the first terminal portion 114 and the second terminal portion are formed by thermocompression bonding.
  • the second terminal portion 320 is bonded.
  • the ACF 400 includes conductive particles 410, and the first terminal portions 114 of the display panel 100 and the corresponding second terminal portions 320 of the flexible circuit board 300 are connected via the conductive particles 410 of the ACF 400. Are electrically connected.
  • the conductive particles 410 are obtained by coating the surface of a core portion 411 made of a resin material such as PP (polypropylene) with a metal layer 412 made of a metal such as Ni (nickel) or Au (gold).
  • the first terminal portion 114 is not necessarily formed on all four sides of the outer peripheral region of the TFT substrate 111, and may be formed on only one side, or formed on two sides or three sides. May be. And the drive circuit 210 and the flexible circuit board 300 should just be adhere
  • the display panel 100 includes, for example, a device substrate 110 and a CF (Color Filter) substrate 120.
  • the device substrate 110 and the CF substrate 120 are arranged opposite to each other and bonded together.
  • a CF substrate 120 is disposed above the device substrate 110 via a sealing member 102, and a resin layer 103 is filled between the EL substrate 110 and the CF substrate 120.
  • the sealing member 102 and the resin layer 103 are made of a dense resin material (for example, silicone resin, acrylic resin, etc.), seal the display portion 101 of the device substrate 110, and allow the organic light emitting layer 116 to contact moisture, gas, or the like. Is preventing.
  • the surface on the CF substrate 120 side is also referred to as the “upper surface” for each layer constituting the device substrate 110).
  • a display portion 101 composed of a plurality of pixels is formed, and R (red), G (green), or B (blue) light emitted from each of the pixels is transmitted through the CF substrate 120 to display the display panel.
  • a color image is displayed in front of 100.
  • a first terminal portion 114 is provided in a region surrounding the display portion 101 on the upper surface of the TFT substrate 111.
  • the example in which the CF substrate 120 is installed has been described, but the CF substrate is not necessarily installed.
  • the device substrate 110 includes a TFT substrate 111 and an EL (Electro Luminescence) substrate 124.
  • the EL substrate 124 is formed on the upper surface of the TFT substrate 111 by a planarization film 112, a lower electrode 113, a contact hole 113X, an anode ring 113Y,
  • the display portion of the device substrate 110 has a stacked structure in which the first terminal portion 114, the bank 115, the organic light emitting layer 116, the electron transport layer 117, the upper electrode 118, the sealing layer 119a, the protective film 119b, and the like are stacked.
  • Each pixel constituting 101 is constituted by a top emission type organic EL element constituted by a lower electrode 113, an organic light emitting layer 116, an electron transport layer 117, an upper electrode 118 and the like.
  • the TFT substrate 111 has, for example, a structure in which a TFT layer 111b is formed on the upper surface of the flexible substrate 111a.
  • the TFT layer 111b includes an SD wiring 111c, a passivation film 111d, and the like.
  • the flexible substrate 111a includes, for example, polyimide, aromatic polyimide, polyetherimide, polyester sulfone, polyethylene, ultrahigh molecular weight polyethylene, polyvinyl alcohol, polycarbonate, polystyrene, polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polyphenylene sulfide, polypropylene, It consists of resin materials such as polyamide, aramid, polyamideimide, acrylonitrile butadiene styrene, cyclic olefin copolymer and polyvinyl chloride.
  • the foundation layer 104 is composed of the passivation film 111d and the planarizing film 112. A portion of the base layer 104 corresponding to the first terminal portion 114 functions as the buffer layer 104a.
  • the buffer layer may be formed as a layer continuous with the plurality of first terminal portions.
  • the buffer layer has a first terminal corresponding to each of the plurality of first terminal portions in which only each buffer layer 104a in FIG. 4 is formed as a buffer layer having the characteristics of the present invention.
  • Each part may be formed as an independent layer.
  • the SD wiring 111c is made of a conductive material such as Ag, Cu, Ti, Mo, Al, W, or an alloy thereof, and is electrically connected to the lead wiring (not shown) of the TFT substrate 111.
  • the SD wiring 111c and the first terminal portion 114 are electrically connected via a via connection portion 114X that penetrates the passivation film 111d and the planarization film 112.
  • the portion of the terminal portion formation region in the SD wiring 111 c constitutes the electrode layer 105.
  • the electrode layer 105 exists between the flexible substrate 111a and the first terminal portion 114, and exists on the upper surface of the flexible substrate 111a. Note that the electrode layer 105 may be provided not only in the terminal portion formation region on the upper surface of the flexible substrate 111a but also in other regions.
  • the electrode layer is preferably thinner than the first terminal portion.
  • the passivation film 111d is made of, for example, a water-soluble resin such as polyvinyl alcohol (PVA), a fluorine-based resin, SiO (silicon oxide), SiN (silicon nitride), or the like, and covers and protects the SD wiring 111c. .
  • a water-soluble resin such as polyvinyl alcohol (PVA), a fluorine-based resin, SiO (silicon oxide), SiN (silicon nitride), or the like, and covers and protects the SD wiring 111c.
  • the planarizing film 112 is made of, for example, an insulating material such as polyimide resin or acrylic resin, and planarizes the step on the upper surface of the passivation film 111d. Note that the planarization film 112 is not always necessary.
  • the lower electrode (pixel electrode) 113 is electrically connected to the TFT layer 111b through the contact hole 113X.
  • the lower electrode 113 may have a two-layer structure of a metal layer and a metal oxide layer, for example.
  • the metal layer is, for example, Ag (silver), APC (silver, palladium, copper alloy), ARA (silver, rubidium, gold alloy), MoCr (molybdenum and chromium alloy), NiCr (nickel and chromium alloy). It is made of a light-reflective conductive material such as, and is formed in a matrix in a region corresponding to each pixel.
  • the metal oxide layer is made of a conductive material such as ITO (indium tin oxide) or IZO (indium zinc oxide), and is formed on the metal layer so as to cover the metal layer.
  • the first terminal portion 114 is electrically connected to the lead wiring (not shown) of the TFT substrate 111.
  • the first terminal portion 114 may have a two-layer structure of a metal layer and a metal oxide layer.
  • the metal layer is made of, for example, a conductive material such as Ag, Cu, Ti, Mo, Al, APC, ARA, MoCr, NiCr, and along the outer peripheral edge of the TFT substrate 111 along all four sides of the outer peripheral region of the TFT substrate 111. Are formed at intervals.
  • the metal oxide layer is made of, for example, ITO, IZO or the like, and is formed on each metal layer so as to cover each metal layer.
  • the first terminal portion can be formed using the same material and the same process as the lower electrode (pixel electrode) in the display portion. In this case, it is not necessary to provide a separate process for forming the first terminal portion, and the manufacturing process can be simplified.
  • the bank 115 is made of, for example, an insulating organic material such as acrylic resin, polyimide resin, or novolac type phenol resin, and is formed so as to avoid a region where the lower electrode 113 is formed in the central region of the TFT substrate 111. Has been.
  • the bank 115 may be a pixel bank having a cross structure or a line bank having a stripe structure.
  • the organic light emitting layer 116 is formed in a region corresponding to each pixel defined by the bank 115, and emits light to R, G, or B by recombination of holes and electrons when the display panel 100 is driven.
  • the organic light emitting layer 116 is composed of an organic material. Examples of the organic material include an oxinoid compound, a perylene compound, a coumarin compound, an azacoumarin compound, an oxazole compound, an oxadiazole compound described in JP-A-5-163488.
  • organic material constituting the organic light emitting layer 116 polyphenylene vinylene and derivatives thereof, polyacetylene and derivatives thereof, polyphenylene (PP) and derivatives thereof, polyparaphenyleneethylene and derivatives thereof, Polymeric materials such as poly-3-hexylthiophene (P3HT) and derivatives thereof, and polyfluorene (PF) and derivatives thereof can also be used.
  • P3HT poly-3-hexylthiophene
  • PF polyfluorene
  • the electron transport layer 117 is made of, for example, barium, phthalocyanine, lithium fluoride, or a mixture thereof, and has a function of transporting electrons injected from the upper electrode 118 to the organic light emitting layer 116.
  • the upper electrode 118 is a transparent electrode formed of a light-transmitting conductive material such as ITO or IZO, for example, and covers almost the entire display unit 101 so as to cover the upper surfaces of the bank 115 and the organic light emitting layer 116. Is formed.
  • the sealing layer 119a is, for example, a layer for covering and sealing the display unit 101, and is formed on the upper electrode 118, for example, made of a light-transmitting resin material such as silicone resin or acrylic resin. Has been.
  • the protective film 119b covers and seals the display portion 101, and prevents the organic light emitting layer 116 from being exposed to moisture, gas, or the like.
  • the protective film 119b includes SiN, SiO, SiON (silicon oxynitride), SiC ( It is made of a light transmissive material such as silicon carbide), SiOC (carbon-containing silicon oxide), Al 2 O 3 (aluminum oxide), or AlN (aluminum nitride), and is formed on the sealing layer 119a.
  • one or more other layers such as a hole transport layer and a hole injection layer are further formed between the lower electrode 113 and the organic light emitting layer 116. May be.
  • One or more other layers such as an electron injection layer may be further formed between the organic light emitting layer 116 and the upper electrode 118.
  • the CF substrate 120 has a structure in which an R, G, or B color filter 122 and a black matrix layer 123 are formed on the lower surface (the main surface on the device substrate 110 side) of the flexible substrate 121.
  • the color filter 122 is a transparent layer that transmits visible light having a wavelength corresponding to R, G, or B, and is made of a known resin material or the like, and is formed in a region corresponding to each pixel.
  • the black matrix layer 123 prevents external light from entering the panel, prevents internal components from being seen through the CF substrate 120, and suppresses reflection of external light to improve the contrast of the display panel 100.
  • the black resin layer is formed of an ultraviolet curable resin material containing a black pigment having excellent light absorption and light shielding properties.
  • the base layer 104 is provided on the entire top surface of the flexible substrate 111a. That is, it is continuously provided in the display portion forming region, the terminal portion forming region, and the intermediate region.
  • the base layer 104 is not necessarily provided in the terminal portion formation region.
  • the base layer 104 is provided over the entire upper surface of the flexible substrate 111a, that is, the terminal portion formation region.
  • the portion of the terminal portion formation region in the base layer 104 is used as a buffer layer 104a for suppressing deformation of the first terminal portion 114. In this manner, when a part of the base layer 104 is used as the buffer layer 104a, it is not necessary to separately perform the step of providing the buffer layer 104a, and the display panel 100 can be manufactured more easily.
  • the configuration of the buffer layer 104a will be described in detail.
  • the SD wiring layer 111c includes a terminal portion forming region portion, a passivation film 111d portion of a terminal portion forming region portion, and a planarizing film 112 of a terminal portion forming region portion.
  • the average thickness of the buffer layer 104a is, for example, 3.75 ⁇ m.
  • the elastic modulus of the buffer layer 104a is, for example, about 1.5 GPa, and the elastic modulus of each of the passivation film 111d and the planarizing film 112 constituting the buffer layer 104a is, for example, about 1.5 GPa.
  • the average thickness of each layer is not limited to the above, and the elastic modulus of each layer is not limited to the above.
  • the buffer layer 104a is provided on the lower side of the first terminal portion 114 in the device substrate 110 according to the embodiment, the first terminal portion 114 is not easily deformed by the pressure when the ACF 400 is crimped. The reason will be described below.
  • the flexible substrate 111a has an average thickness of, for example, 38 ⁇ m, an elastic modulus of 3 GPa to 7 GPa (made of polyimide), and has flexibility.
  • the first terminal portion 114 is a very thin layer having an average thickness of, for example, 0.2 ⁇ m. As described above, when the flexible substrate 111a is flexible and the first terminal portion 114 is a very thin layer, in the conventional device substrate in which the buffer layer 104a is not provided, when the ACF is crimped The first terminal portion is greatly deformed by the pressure of.
  • the buffer layer 104 a is provided below the first terminal portion 114.
  • the repulsive force of the buffer layer 104a affects the first terminal portion 114, and the force with which the first terminal portion 114 pushes back the conductive particles 410 becomes stronger. It becomes easy to be crushed.
  • the product of the average particle diameter and the elastic modulus of the core part 411 of the conductive particles 410 (hereinafter referred to as “product of the core part 411”) and the average of the metal layer 412.
  • the sum of the product of twice the thickness and the modulus of elasticity (hereinafter referred to as the “product of the metal layer 412”) is the product of the average thickness of the first terminal portion 114 and the modulus of elasticity (hereinafter referred to as “first” Of the buffer layer 104a ”, the product of the average thickness and the elastic modulus of the buffer layer 104a (hereinafter referred to as“ product of the buffer layer 104a ”), and the average thickness and the elastic modulus of the electrode layer 105.
  • the value divided by the sum of the product (hereinafter referred to as “product of electrode layer”) is 1.5 or less. By adjusting the value to 1.5 or less, it is possible to balance the strain on both the upper and lower sides with the interface between the conductive particle 410 and the first terminal portion 114 as a boundary.
  • the strain of the core portion 411 is the product of the core portion 411
  • the strain of the metal layer 412 is the product of the metal layer 412
  • the strain of the first terminal portion 114 is the product of the first terminal portion 114
  • the buffer layer 104a Can be represented by the product of the buffer layer 104a
  • the strain of the electrode layer 105 can be represented by the product of the electrode layer 105. The larger the product, the smaller the strain.
  • the balance of strain on both the upper and lower sides with the interface between the conductive particle 410 and the first terminal portion 114 as the boundary is the sum of the product of the core portion 411 and the product of the metal layer 412. 114, and the product of the buffer layer 104a and the product of the electrode layer 105 can be adjusted. If this value is 1.5 or less, the first terminal portion 114 is deformed. It was confirmed by the experiment described later that can be effectively suppressed. The value obtained by dividing the sum of the product of the core portion 411 and the product of the metal layer 412 by the sum of the product of the first terminal portion 114, the product of the buffer layer 104a, and the product of the electrode layer 105 is It is good that it is 1.5 ⁇ 10 ⁇ 3 or more.
  • the first terminal portion 114 is, for example, an ACL metal having an elastic modulus of about 70 GPa and an average thickness of 0.2 ⁇ m.
  • the value obtained by dividing the sum of the product of the core part 411 and the product of the metal layer 412 by the sum of the product of the first terminal part 114, the product of the buffer layer 104a, and the product of the electrode layer 105 is Since it is 1.1 and is 1.5 or less, the balance of strain on both the upper and lower sides with the interface between the conductive particle 410 and the first terminal portion 114 as a boundary is good.
  • FIG. 5 is a conceptual diagram for explaining a connection structure between the display panel and the flexible circuit board according to the embodiment.
  • the ACF 400 is interposed between the first terminal portion 114 provided on the buffer layer 104 a of the device substrate 110 and the terminal portion 320 provided on the base film 310 of the flexible circuit board 300.
  • the ACF 400 is pressure-bonded to the device substrate 110 and the flexible circuit board 300, and the conductive particles 410 included in the ACF 400 are connected to the both terminal portions 114. , 320, the terminal portions 114, 320 are electrically connected via the conductive particles 410.
  • the conductive particles 410 can be appropriately deformed into a flat shape. Therefore, a large contact area between the first terminal portion 114 and the conductive particles 410 can be ensured, and poor conduction due to poor contact is unlikely to occur.
  • FIG. 6A is a schematic diagram for explaining the structure of the sample
  • FIG. 6B constitutes the sample. It is a table
  • the ACF one containing conductive particles in which a PP core part having an average particle diameter of 4 ⁇ m was coated with a Ni metal layer having an average thickness of 0.1 ⁇ m was used.
  • the ACF was bonded using a thermocompression bonding apparatus at a set temperature of 250 ° C., a set time of 15 sec, and a set pressure of 0.12 MPa.
  • a substrate made of PI (polyimide) having an average thickness of 38 ⁇ m and an SiON layer having an average thickness of 1 ⁇ m was used as the flexible substrate.
  • an Mo (molybdenum) layer having an average thickness of 25 nm is applied to the flexible substrate
  • a Mo layer having an average thickness of 75 nm is applied to the sample 2
  • a W (tungsten) layer having an average thickness of 25 nm is applied to the sample 3.
  • a W layer having an average thickness of 75 nm was provided in place of the first terminal portion.
  • Samples 5 and 6 have a structure as shown in FIG. 6A.
  • Mo layer having an average thickness of 25 nm is used instead of the electrode layer on the flexible substrate as a buffer layer.
  • a PL (resin) layer having an average thickness of 4 ⁇ m was provided as a Mo layer having an average thickness of 75 nm instead of the first terminal portion.
  • a W layer with an average thickness of 25 nm is used instead of the electrode layer on the flexible substrate
  • a PL layer with an average thickness of 4 ⁇ m is used instead of the buffer layer
  • a W layer with an average thickness of 75 nm is used instead of the first terminal portion.
  • Samples 1 to 4 each have a conventional configuration in which no buffer layer is provided, but Samples 5 and 6 each have a configuration according to the present invention in which a buffer layer is provided, and Modification 2 in which an electrode layer is provided. It is a sandwich structure similar to
  • the elastic modulus of Mo is about 290 GPa
  • the elastic modulus of W is about 400 GPa
  • the elastic modulus of PL is about 1.5 GPa
  • the elastic modulus of PP is about 1.5 GPa
  • the elasticity of Ni The rate is about 200 GPa.
  • FIG. 7 is an electron micrograph showing the results of an experiment relating to the deformation suppression effect. As shown in FIGS. 7A to 7D, the surface of Samples 1 to 4 was noticeably uneven with a certain degree of possibility of conduction failure. From this, when only the 1st terminal part which is a metal film was provided and the buffer layer was not provided, it has confirmed that the 1st terminal part deform
  • FIG. 8 is an electron micrograph showing the results of an experiment relating to the deformation suppression effect. As shown in FIG. 8A, in the sample 4, remarkable unevenness was generated on the lower surface of the first terminal portion. On the other hand, as shown in FIG. 8B, in Sample 6, almost no irregularities were found on the lower surface of the electrode layer. From this, it was confirmed that the deformation of the first terminal portion can be suppressed by providing the electrode layer and the buffer layer.
  • the flexible display device according to the present invention can be suitably used for, for example, home or public facilities, various display devices for business use, television devices, displays for portable electronic devices, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

デバイス基板の端子部とフレキシブル回路基板の端子部とがACFを介して高い信頼性で電気的に接続されているフレキシブル表示装置を提供することを目的とし、フレキシブル基板(111a)と、当該フレキシブル基板上に形成された表示部(101)及び第1の端子部(114)と、を備えたデバイス基板(110)と、第2の端子部(320)を備えたフレキシブル回路基板(300)と、を具備したフレキシブル表示装置(1)において、前記第1の端子部と前記第2の端子部とは、導電性粒子(410)を含む異方性導電膜(400)を介して接続されており、前記フレキシブル基板と前記第1の端子部との間に、電極層(105)及び緩衝層(104a)が設けられており、前記導電性粒子のコア部(411)の平均粒径と弾性率との積と、前記コア部を被覆する金属層(412)の平均厚みの2倍と弾性率との積との和を、前記第1の端子部の平均厚みと弾性率との積と、前記緩衝層の平均厚みと弾性率との積と、前記電極層の平均厚みと弾性率との積との和で除した値が1.5以下となる構成とする。

Description

フレキシブル表示装置
 本発明は、フレキシブル表示装置に関し、特に、デバイス基板とフレキシブル回路基板とのACF(Anisotropic Conductive Film:異方性導電フィルム)を介した接続構造に関する。
 上記接続構造において、デバイス基板の端子部とフレキシブル回路基板の端子部とは、ACFに含まれる導電性粒子によって電気的に接続される。具体的には、例えば、図9(a)に示すように、デバイス基板810のガラス基板811に設けられた端子部812と、フレキシブル回路基板820のベースフィルム821に設けられた端子部822との間にACF830を配置した状態で上方から圧力をかけて、図9(b)に示すように、ACF830をデバイス基板810およびフレキシブル回路基板820に圧着すると共に、ACF830に含まれる導電性粒子831を両端子部812,822によって押し潰した状態とすることによって、その導電性粒子831を介して両端子部812,822が電気的に接続される。その際、押し潰した導電性粒子831が扁平形状に変形していると、導電性粒子831と各端子部812,822との接触面積が大きくなるため、電気的な接続が安定する。
 デバイス基板810の端子部812の厚みは非常に薄い(例えば0.5μm)が、端子部812の下側には硬くて厚いガラス基板811が存在しているため、圧着の際に導電性粒子831が強く押し付けられたとしても、端子部812は簡単には変形しない。一方、フレキシブル回路基板820の端子部822の厚みは比較的厚い(例えば8μm)ため、やはり圧着の際に簡単に変形しない。このように両端子部812,822がそれぞれ変形しない構成であるため、それら端子部812,822間に存在する導電性粒子831を、圧着の際に適度に扁平形状に押し潰すことができる。
 ところで、近年は、ガラス基板の代わりに可撓性を有するフレキシブル基板を採用したフレキシブル表示装置の開発が進められている。例えば、特許文献1には、図10(a)に示すように、デバイス基板910のフレキシブル基板911に設けられた端子部912と、フレキシブル回路基板920のベースフィルム921に設けられた端子部922とが、ACF930の導電性粒子931を介して電気的に接続されたフレキシブル表示装置が開示されている。
特開2008-242249号公報
 しかしながら、特許文献1に開示された構成では、端子部912,922間にACF930を配置した状態で上方から圧力をかけると、図10(b)に示すように、導電性粒子931が端子部912に強く押し付けられることによってフレキシブル基板911が変形し、端子部912に導電性粒子931の形状に応じた凹みが形成されてしまう。
 このような凹みが形成されると、導電性粒子931を適度な扁平形状に押し潰すことができないため、導電性粒子931と端子部912との接触面積が小さく導通が不安定である。また、凹み部分では端子部912の厚みが薄くなるため、これによっても導通が不安定になる。そして、導電性粒子931による押し込みが強い場合は、凹みが形成されるだけでなく端子部912にクラックが発生する可能性があり、この場合は、導電性粒子931と端子部912との接触がより不安定となって導通不良が生じうる。特に、フレキシブル表示装置は曲げて使用される場合は導通不良が生じ易い。
 本発明は上記の問題点を鑑みてなされたもので、デバイス基板の端子部とフレキシブル回路基板の端子部とがACFを介して高い信頼性で電気的に接続されたフレキシブル表示装置を提供することを目的とする。
 本発明の一態様に係るフレキシブル表示装置は、フレキシブル基板と、当該フレキシブル基板上に形成された表示部及び第1の端子部と、を備えたデバイス基板と、第2の端子部を備えたフレキシブル回路基板と、を具備したフレキシブル表示装置において、前記第1の端子部と前記第2の端子部とは、導電性粒子を含む異方性導電膜を介して接続されており、前記フレキシブル基板と前記第1の端子部との間に、電極層及び緩衝層が設けられており、前記導電性粒子のコア部の平均粒径と弾性率との積(以下、「コア部の積」と称する。)と、前記コア部を被覆する金属層の平均厚みの2倍と弾性率との積(以下、「金属層の積」と称する。)との和を、前記第1の端子部の平均厚みと弾性率との積(以下、「第1の端子部の積」と称する。)と、前記緩衝層の平均厚みと弾性率との積(以下、「緩衝層の積」と称する。)と、前記電極層の平均厚みと弾性率との積(以下、「電極層の積」と称する。)との和で除した値が1.5以下となることを特徴とする。
 なお、本願において、「平均粒径」とは、レーザー回折・散乱法によって求めた粒度分布における積算値50%での粒子径を意味する。
 本発明の一態様に係るフレキシブル表示装置は、フレキシブル基板と第1の端子部との間に電極層及び緩衝層が設けられており、かつ、コア部の積と金属層の積との和を第1の端子部の積と緩衝層の積と電極層の積との和で除した値が1.5以下であるため、導電性粒子と第1の端子部との界面を境界とする上下両側の歪みバランスを良好に保つことができ、第1の端子部が変形し難い。したがって、導電性粒子を適度な扁平形状に押し潰すことができ、導電性粒子と第1の電極との電気的な接続が安定するため、導通不良が生じ難い。
本発明の一態様に係るフレキシブル表示装置の全体構成を示す図である。 本発明の一態様に係る表示パネルとフレキシブル回路基板との接続構造を示す斜視図である。 実施例に係るフレキシブル表示装置の図2のA-A線に沿った箇所の断面図である。 実施例に係るフレキシブル表示装置の図2のB-B線に沿った箇所の断面図である。 実施例に係る表示パネルとフレキシブル回路基板との接続構造を説明するための概念図である。 変形抑制効果に関する実験の条件を説明するための図である。 変形抑制効果に関する実験の結果を示す電子顕微鏡写真である。 変形抑制効果に関する実験の結果を示す電子顕微鏡写真である。 従来例に係る表示パネルとフレキシブル回路基板との接続構造を説明するための概念図である。 従来例に係る表示パネルとフレキシブル回路基板との接続構造を説明するための概念図である。
 [本発明の一態様の概要]
 本発明の一態様に係るフレキシブル表示装置は、フレキシブル基板と、当該フレキシブル基板上に形成された表示部及び第1の端子部と、を備えたデバイス基板と、第2の端子部を備えたフレキシブル回路基板と、を具備したフレキシブル表示装置において、前記第1の端子部と前記第2の端子部とは、導電性粒子を含む異方性導電膜を介して接続されており、前記フレキシブル基板と前記第1の端子部との間に、電極層及び緩衝層が設けられており、前記導電性粒子のコア部の平均粒径と弾性率との積と、前記コア部を被覆する金属層の平均厚みの2倍と弾性率との積との和を、前記第1の端子部の平均厚みと弾性率との積と、前記緩衝層の平均厚みと弾性率との積と、前記電極層の平均厚みと弾性率との積との和で除した値が1.5以下となることを特徴とする。
 本発明の一態様に係るフレキシブル表示装置の特定の局面では、前記緩衝層は、樹脂からなる。
 本発明の一態様に係るフレキシブル表示装置の特定の局面では、前記フレキシブル基板と前記表示部との間には、前記表示部が形成されている表示部形成領域と、前記第1の端子部が形成されている端子部形成領域と、前記表示部形成領域および前記端子部形成領域の間の中間領域とに連続して、下地層が設けられており、前記下地層における前記端子部形成領域の部分が前記緩衝層である。
 [表示装置]
 以下、本発明の一態様に係るフレキシブル表示装置について、図面を参照しながら説明する。なお、各図面における部材の縮尺は実際のものとは同じとは限らない。
 図1は、本発明の一態様に係るフレキシブル表示装置の全体構成を示す図である。図1に示すように、本発明の一態様に係るフレキシブル表示装置1は、表示パネル100と、駆動制御部200と、複数のフレキシブル回路基板300とを備えた、フレキシブルディスプレイである。
 表示パネル100は、例えば、エレクトロルミネッセンス効果を利用した有機EL(Electro Luminescence)パネルである。駆動制御部200は、4つの駆動回路210と、制御回路220とから構成されている。フレキシブル回路基板300には、駆動回路210としてのICが搭載されている。
 図2は、本発明の一態様に係る表示パネルとフレキシブル回路基板との接続構造を示す斜視図である。図3は、実施例に係るフレキシブル表示装置の図2のA-A線に沿った箇所の断面図である。図4は、実施例に係るフレキシブル表示装置の図2のB-B線に沿った箇所の断面図である。
 図2に示すように、表示パネル100のTFT基板111上(フレキシブル基板111a上でもある)には、その中央領域に表示部101が形成されており(図2において二点鎖線で囲んだ部分)、中央領域を囲繞する外周領域には、その外周領域の4辺全てに、図3および図4に示すように、それぞれ複数の第1の端子部114が形成されている。なお、以下では、表示部101が形成されている領域を表示部形成領域と称し、第1の端子部114が形成されている領域を端子部形成領域と称し、その間の領域を中間領域と称する。
 フレキシブル回路基板300は、例えば、ポリイミド製のベースフィルム310に、銅等によって導電パターン(不図示)が形成されたものであって、ベースフィルム310の表示パネル100側の端部の下面(TFT基板111と対向する面)には、各第1の端子部114と対応する位置に、前記導電パターンと電気的に接続された第2の端子部320が複数形成されている。
 TFT基板111の外周領域には、その4辺全てにそれぞれベースフィルム310の表示パネル100側の端部がACF400を介して接続されている。このACF400は、熱硬化性樹脂を膜状に成型したフィルムであって、第1の端子部114と第2の端子部320との間に介在し、熱圧着により第1の端子部114および第2の端子部320に接着されている。
 ACF400には導電性粒子410が含まれており、表示パネル100の各第1の端子部114とそれに対応するフレキシブル回路基板300の第2の端子部320とは、ACF400の導電性粒子410を介して電気的に接続されている。導電性粒子410は、例えば、PP(ポリプロピレン)等の樹脂材料からなるコア部411の表面を、Ni(ニッケル)、Au(金)等の金属からからなる金属層412でコーティングしたものである。
 なお、第1の端子部114は、必ずしもTFT基板111の外周領域の4辺全てに形成されている必要はなく、1辺にだけ形成されていても良いし、2辺或いは3辺に形成されていても良い。そして、駆動回路210およびフレキシブル回路基板300は、第1の端子部114が形成されている辺にだけ接着されていれば良い。
 [表示パネル]
 表示パネル100は、例えば、デバイス基板110と、CF(Color Filter)基板120とを備える。デバイス基板110およびCF基板120は対向配置され貼り合わされている。
 デバイス基板110の上方には、シール部材102を介してCF基板120が配置され、EL基板110とCF基板120との間には樹脂層103が充填されている。シール部材102および樹脂層103は、緻密な樹脂材料(例えばシリコーン系樹脂、アクリル系樹脂等)からなり、デバイス基板110の表示部101を封止し有機発光層116が水分やガス等に触れるのを防止している。
 TFT基板111の上面(CF基板120側の主面。以下の説明では、デバイス基板110を構成する各層についても、CF基板120側の面を「上面」と称する。)には、マトリクス状に配置された複数の画素で構成される表示部101が形成されており、それら各画素が出射するR(赤色)、G(緑色)またはB(青色)の光がCF基板120を透過し、表示パネル100の正面にカラー画像が表示される。そして、TFT基板111の上面の表示部101を囲繞する領域に第1の端子部114が設けられている。
 なお、本実施の形態ではCF基板120が設置される例を説明したが、CF基板は必ずしも設置される必要はない。
 <デバイス基板>
 デバイス基板110は、TFT基板111と、EL(Electro Luminescence)基板124とからなり、EL基板124は、TFT基板111の上面に、平坦化膜112、下部電極113、コンタクトホール113X、アノードリング113Y、第1の端子部114、バンク115、有機発光層116、電子輸送層117、上部電極118、封止層119a、および保護膜119b等が積層された積層構造を有し、デバイス基板110の表示部101を構成する各画素は、下部電極113、有機発光層116、電子輸送層117、上部電極118等で構成されるトップエミッション型の有機EL素子で構成されている。
 TFT基板111は、例えば、フレキシブル基板111aの上面に、TFT層111bを形成した構造である。TFT層111bには、SD配線111cおよびパッシベーション膜111dなどが含まれる。
 フレキシブル基板111aは、例えば、ポリイミド、芳香族ポリイミド、ポリエーテルイミド、ポリエステルスルホン、ポリエチレン、超高分子量ポリエチレン、ポリビニルアルコール、ポリカーボネート、ポリスチレン、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、硫化ポリフェニレン、ポリプロピレン、ポリアミド、アラミド、ポリアミドイミド、アクリロニトリルブタジエンスチレン、環状オレフィンコポリマーおよび塩化ポリビニル等の樹脂材料からなる。
 図3および図4に示す実施例では、パッシベーション膜111dおよび平坦化膜112で下地層104が構成されている。そして、下地層104のうちの第1の端子部114に相当する部分が、緩衝層104aとして機能している。
 緩衝層は、図4に示したように、複数の第1の端子部に連続した層として形成されていてもよい。また、緩衝層は、図4の各々の緩衝層104aのみが本発明の特徴を有する緩衝層として形成されているような、複数の第1の端子部の各々に対応して、第1の端子部ごとに独立した層として形成されていてもよい。 SD配線111cは、Ag、Cu、Ti、Mo、Al、Wまたはこれらの合金などの導電性材料からなり、TFT基板111の引出配線(不図示)と電気的に接続されている。また、SD配線111cと第1の端子部114とは、パッシベーション膜111dおよび平坦化膜112を貫通するビア接続部114Xを介して電気的に接続されている。
 SD配線111cにおける端子部形成領域の部分が、電極層105を構成している。電極層105は、フレキシブル基板111aと第1の端子部114との間であって、フレキシブル基板111aの上面に存在する。なお、電極層105は、フレキシブル基板111aの上面における端子部形成領域だけでなく、それ以外の領域にも設けられていても良い。電極層の厚みは、第1の端子部の厚みよりも薄いのが好ましい。
 パッシベーション膜111dは、例えば、ポリビニルアルコール(PVA)などの水溶性樹脂、フッ素系樹脂、SiO(酸化シリコン)、SiN(窒化シリコン)等からなり、SD配線111cを被覆し、これらを保護している。
 平坦化膜112は、例えば、ポリイミド系樹脂、アクリル系樹脂等の絶縁材料からなり、パッシベーション膜111dの上面の段差を平坦化している。なお、平坦化膜112は必ずしも必要ではない。
 下部電極(画素電極)113は、コンタクトホール113Xを介してTFT層111bと電気的に接続されている。なお、下部電極113は、例えば、金属層と金属酸化物層との2層構造であってもよい。金属層は、例えば、Ag(銀)、APC(銀、パラジウム、銅の合金)、ARA(銀、ルビジウム、金の合金)、MoCr(モリブデンとクロムの合金)、NiCr(ニッケルとクロムの合金)等の光反射性導電材料からなり、各画素に対応した領域にマトリクス状に形成されている。金属酸化物層は、例えば、ITO(酸化インジウムスズ)、IZO(酸化インジウム亜鉛)等の導電材料からなり、金属層上に金属層を被覆するように形成されている。
 第1の端子部114は、TFT基板111の引出配線(不図示)と電気的に接続されている。なお、第1の端子部114は、金属層と金属酸化物層との2層構造であってもよい。金属層は、例えば、Ag、Cu、Ti、Mo、Al、APC、ARA、MoCr、NiCr等の導電材料からなり、TFT基板111の外周領域の4辺全てに、TFT基板111の外周縁に沿って複数個ずつ間隔を空けて形成されている。金属酸化物層は、例えば、ITO、IZO等からなり、各金属層上に各金属層を被覆するように形成されている。また、第1の端子部は、表示部における下部電極(画素電極)と同一材料・同一プロセスにより形成することもできる。この場合、第1の端子部を形成するプロセスを別に設ける必要がなく、製造プロセスの簡略化を図ることができる。 バンク115は、例えば、アクリル系樹脂、ポリイミド系樹脂、ノボラック型フェノール樹脂等の絶縁性の有機材料からなり、TFT基板111の中央領域内に、下部電極113が形成された領域を避けるように形成されている。バンク115は、井桁構造のピクセルバンクであっても、ストライプ構造のラインバンクであっても良い。
 有機発光層116は、バンク115で規定された各画素に対応した領域に形成されており、表示パネル100の駆動時において、ホールと電子との再結合によりR、GまたはBに発光する。有機発光層116は有機材料で構成されており、有機材料としては、例えば、特開平5-163488号公報に記載のオキシノイド化合物、ペリレン化合物、クマリン化合物、アザクマリン化合物、オキサゾール化合物、オキサジアゾール化合物、ペリノン化合物、ピロロピロール化合物、ナフタレン化合物、アントラセン化合物、フルオレン化合物、フルオランテン化合物、テトラセン化合物、ピレン化合物、コロネン化合物、キノロン化合物およびアザキノロン化合物、ピラゾリン誘導体およびピラゾロン誘導体、ローダミン化合物、クリセン化合物、フェナントレン化合物、シクロペンタジエン化合物、スチルベン化合物、ジフェニルキノン化合物、スチリル化合物、ブタジエン化合物、ジシアノメチレンピラン化合物、ジシアノメチレンチオピラン化合物、フルオレセイン化合物、ピリリウム化合物、チアピリリウム化合物、セレナピリリウム化合物、テルロピリリウム化合物、芳香族アルダジエン化合物、オリゴフェニレン化合物、チオキサンテン化合物、シアニン化合物、アクリジン化合物、8-ヒドロキシキノリン化合物の金属錯体、2-ビピリジン化合物の金属錯体、シッフ塩とIII族金属との錯体、オキシン金属錯体、希土類錯体等の蛍光物質等を挙げることができる。また、有機発光層116を構成する有機材料としては、ポリフェニレンビニレンおよびその誘導体、ポリアセチレン(polyacetylene)およびその誘導体、ポリフェニレン(polyphenylene(PP))およびその誘導体、ポリパラフェニレンエチレン(polyparaphenyleneethylene)およびその誘導体、ポリ3-ヘキシルチオフェン(poly-3-hexylthiophene(P3HT))およびその誘導体、ポリフルオレン(polyfluorene(PF))およびその誘導体などの高分子系材料を用いることもできる。
 電子輸送層117は、例えば、バリウム、フタロシアニン、フッ化リチウム、またはこれらの混合物等からなり、上部電極118から注入された電子を有機発光層116へ輸送する機能を有する。
 上部電極118は、例えば、ITO、IZO等の光透過性導電材料で形成された透明電極であって、バンク115および有機発光層116の上面を覆うように、表示部101のほぼ全体に亘って形成されている。
 封止層119aは、例えば、表示部101を覆って封止するための層であって、例えば、シリコーン系樹脂、アクリル系樹脂等の光透過性の樹脂材料からなり、上部電極118上に形成されている。
 保護膜119bは、表示部101を覆って封止し、有機発光層116が水分やガス等に触れるのを防止するための膜であって、SiN、SiO、SiON(酸窒化シリコン)、SiC(炭化ケイ素),SiOC(炭素含有酸化シリコン)、Al23(酸化アルミニウム)、AlN(窒化アルミニウム)等の光透過性材料からなり、封止層119a上に形成されている。封止層119aの上にさらに保護膜119bを形成することで、例えば封止層119aにピンホールと呼ばれる封止欠陥部分が存在する場合でも、その封止欠陥部分から封止層119a内に水分やガス等が浸入するのを防止することができる。
 以上のように説明したデバイス基板110の積層構造に関して、下部電極113と有機発光層116との間には、ホール輸送層、ホール注入層等の他の層が1層または複数層さらに形成されていても良い。また、有機発光層116と上部電極118との間には、電子注入層等の他の層が1層または複数層さらに形成されていても良い。
 <CF基板>
 CF基板120は、フレキシブル基板121の下面(デバイス基板110側の主面)側に、R、GまたはBのカラーフィルタ122と、ブラックマトリクス層123とが形成された構造である。カラーフィルタ122は、R、GまたはBに対応する波長の可視光を透過する透明層であって、公知の樹脂材料等からなり、各画素に対応した領域に形成されている。ブラックマトリクス層123は、パネル内部への外光の入射を防止したり、CF基板120越しに内部部品が透けて見えるのを防止したり、外光の照り返しを抑えて表示パネル100のコントラストを向上させたりする目的で形成されている黒色樹脂層であって、例えば光吸収性および遮光性に優れる黒色顔料を含む紫外線硬化樹脂材料からなる。
 <緩衝層>
 (緩衝層の構成)
 図3および図4に示す本実施の形態に係るデバイス基板110では、下地層104がフレキシブル基板111aの上面全体に設けられている。すなわち、表示部形成領域、端子部形成領域および中間領域に連続して設けられている。下地層104は、端子部形成領域には必ずしも設ける必要はないが、実施例に係るデバイス基板110では、下地層104をフレキシブル基板111aの上面全体に亘って設けることで、すなわち、端子部形成領域まで拡張させて設けることで、下地層104における端子部形成領域の部分を、第1の端子部114の変形を抑制するための緩衝層104aとして利用している。このように、下地層104の一部を緩衝層104aとして利用する構成とすれば、緩衝層104aを設ける工程を別途行う必要がなくなり、表示パネル100をより簡単に製造することができる。
 なお、緩衝層104aの構成を詳細に説明しておくと、ゲート配線層における端子部形成領域の部分と、ゲート絶縁膜における端子部形成領域の部分と、隔壁における端子部形成領域の部分と、SD配線層111cにおける端子部形成領域の部分と、パッシベーション膜111dにおける端子部形成領域の部分と、平坦化膜112における端子部形成領域の部分とで構成されている。このような緩衝層104aを第1の端子部114の下側に設けることで、ACF400を圧着する際の圧力で第1の端子部114が変形するのを抑制している。
 (緩衝層の平均厚みと弾性率)
 緩衝層104aの平均厚みは、例えば、3.75μmである。緩衝層104aの弾性率は、例えば、約1.5GPaであって、緩衝層104aを構成するパッシベーション膜111d、平坦化膜112のそれぞれの弾性率も、例えば、約1.5GPaである。各層の平均厚みは、上記に限定されず、各層の弾性率も、上記に限定されない。
 (緩衝層の変形抑制効果)
 実施例に係るデバイス基板110には、第1の端子部114の下側に緩衝層104aが設けられているため、ACF400を圧着する際の圧力で第1の端子部114が変形し難い。その理由を以下に説明する。
 フレキシブル基板111aは、平均厚みが例えば、38μm、弾性率が3GPa~7GPa(ポリイミド製の場合)であって、可撓性を有する。また、第1の端子部114は、平均厚みが例えば、0.2μmであって、非常に薄い層である。このようにフレキシブル基板111aが可撓性を有し、且つ、第1の端子部114が非常に薄い層であるため、緩衝層104aが設けられていない従来のデバイス基板では、ACFを圧着する際の圧力によって第1の端子部が大きく変形してしまう。
 しかしながら、実施例に係るデバイス基板110では、第1の端子部114の下側に緩衝層104aが設けられている。緩衝層104aを設けることによって、緩衝層104aの反発する力が第1の端子部114に影響し、第1の端子部114が導電性粒子410を押し返す力が強くなるため、導電性粒子410が潰れ易くなる。
 また、実施例に係るデバイス基板110では、導電性粒子410のコア部411の平均粒径と弾性率との積(以下、「コア部411の積」と称する。)と、金属層412の平均厚みの2倍と弾性率との積(以下、「金属層412の積」と称する。)との和を、第1の端子部114の平均厚みと弾性率との積(以下、「第1の端子部114の積」と称する。)と、緩衝層104aの平均厚みと弾性率との積(以下、「緩衝層104aの積」と称する。)と、電極層105の平均厚みと弾性率との積(以下、「電極層の積」と称する。)との和で除した値が1.5以下である。前記値を1.5以下に調製することで、導電性粒子410と第1の端子部114との界面を境界とする上下両側における歪みのバランスをとることができる。
 歪みのバランスについて具体的に説明すると、まず、フックの法則によれば、応力を「σ」、弾性率を「E」、歪みを「ε」とした場合に、下記の(式1)の関係が成り立つ。
 σ=E×ε ・・・ (式1)
 また、緩衝層104aの断面積(厚み×幅)を「A」、力を「F」とした場合に、下記の(式2)の関係が成り立つ。
 σ=F/A ・・・(式2)
 ここで、力「F」は一定であり、弾性率「E」は材料固有の値であり、緩衝層104aの幅も一定とすると、(式1)および(式2)から、歪み「ε」を表す下記の(式3)が導き出せる。
 ε≒1/(厚み×E) ・・・(式3)
 つまり、コア部411の歪みはコア部411の積によって、金属層412の歪みは金属層412の積によって、第1の端子部114の歪みは第1の端子部114の積によって、緩衝層104aの歪みは緩衝層104aの積によって、電極層105の歪みは電極層105の積によって、それぞれ表すことが可能であり、それら積が大きくなるほど歪が小さくなる。
 そして、導電性粒子410と第1の端子部114との界面を境界とする上下両側における歪みのバランスは、コア部411の積と、金属層412の積との和を、第1の端子部114の積と、緩衝層104aの積と、電極層105の積との和で除した値によって調整できると考えられ、この値が1.5以下であれば、第1の端子部114の変形を有効に抑制できることが後述する実験により確認できた。なお、コア部411の積と、金属層412の積との和を、第1の端子部114の積と、緩衝層104aの積と、電極層105の積との和で除した値は、1.5×10-3以上であるのがよい。
 歪みのバランスについて、実施例の構成を例に挙げて説明する。
 まず、コア部411の積と、金属層412の積との和について、例えば、弾性率が約1.5GPa、平均粒径が4.0μmであるPP製のコア部411の場合、コア部411の積は、約1.5GPa×4.0μm=約6.0GPa・μmとなる。また、例えば、弾性率が約200GPa、平均厚みが0.1μmであるNi製の金属層412の場合、金属層412の積は、約200GPa×0.1μm×2=約40GPa・μmとなる。したがって、コア部411の積と、金属層412の積との和は、約46GPa・μmとなる。
 次に、第1の端子部114の積と、緩衝層104aの積との和について、第1の端子部114が、例えば、弾性率が約70GPa、平均厚み0.2μmであるACL製の金属層と、弾性率が約11GPa、平均厚み0.016μmであるIZO製の金属酸化物層とからなる場合、第1の端子部114の積は、約70GPa×0.2μm+約11GPa×0.016μm=約14.2GPa・μmとなる。また、緩衝層104aが、例えば上述したように、弾性率が約1.5GPa、平均厚みが3.75μmである場合、緩衝層104aの積は、約1.5GPa×3.75μm=約5.6GPa・μmとなる。また、例えば、電極層105が、モリブデン製であって、弾性率が約290GPa、平均厚みが0.075μmである場合、電極層105の積は、約290GPa×0.075μm=約21.8GPa・μmとなる。したがって、第1の端子部114の積と、緩衝層104aの積と、電極層105との和は、約41.6GPa・μmとなる。
 そうすると、コア部411の積と、金属層412の積との和を、第1の端子部114の積と、緩衝層104aの積と、電極層105の積との和で除した値は、1.1となり1.5以下であるため、導電性粒子410と第1の端子部114との界面を境界とする上下両側における歪みのバランスは良好である。
 図5は、実施例に係る表示パネルとフレキシブル回路基板との接続構造を説明するための概念図である。図5(a)に示すように、デバイス基板110の緩衝層104a上に設けられた第1の端子部114と、フレキシブル回路基板300のベースフィルム310に設けられた端子部320との間にACF400を配置した状態で上方から圧力をかけて、図5(b)に示すように、ACF400をデバイス基板110およびフレキシブル回路基板300に圧着すると共に、ACF400に含まれる導電性粒子410を両端子部114,320によって押し潰した状態とすることによって、その導電性粒子410を介して両端子部114,320が電気的に接続される。その際、第1の端子部114の変形は緩衝層104aによって抑制され、導電性粒子410を適度に扁平形状に変形させることができる。したがって、第1の端子部114と導電性粒子410との接触面積を大きく確保することができ、接触不良による導通不良が生じ難い。
 [変形例]
 以上、本発明の一態様に係るフレキシブル表示装置の実施例を具体的に説明してきたが、上記態様は、本発明の構成および作用・効果を分かり易く説明するために用いた例であって、本発明の内容は、上記態様に限定されない。
 [実験]
 実験により、緩衝層が圧着による端子部の変形に及ぼす影響について調べた。図6は、変形抑制効果に関する実験の条件を説明するための図であって、図6(a)は、サンプルの構造を説明するための概略図、図6(b)は、サンプルを構成する材料を説明するための表である。
 実験では、図6(a)に示すように、フレキシブル基板に設けた第1の端子部とベースフィルムに設けた第2の端子部との間に配置したACFを圧着した際に、導電性粒子によって第1の端子部がどの程度変形するのかを、フレキシブル基板の下側からサンプルの状態を観察することで評価した。
 ACFとしては、平均粒径4μmのPP製のコア部が平均厚み0.1μmのNi製の金属層でコーティングされた導電性粒子を含むものを使用した。ACFの圧着は熱圧着装置を用いて、設定温度が250℃、設定時間が15sec、設定圧力が0.12MPaで行なった。
 図6(b)に示すように、サンプル1~6に共通して、フレキシブル基板には、平均厚み1μmのSiON層が積層された平均厚み38μmのPI(ポリイミド)製の基板を用いた。そのフレキシブル基板上に、サンプル1の場合は平均厚み25nmのMo(モリブデン)層を、サンプル2の場合は平均厚み75nmのMo層を、サンプル3の場合は平均厚み25nmのW(タングステン)層を、サンプル4の場合は平均厚み75nmのW層を、それぞれ第1の端子部の代わりとして設けた。
 また、サンプル5、6は、図6(a)に示すような構造であって、サンプル5の場合、フレキシブル基板上に、電極層の代わりとして平均厚み25nmのMo層を、緩衝層の代わりとして平均厚み4μmのPL(樹脂)層を、第1の端子部の代わりとして平均厚み75nmのMo層を設けた。サンプル6の場合、フレキシブル基板上に電極層の代わりとして平均厚み25nmのW層を、緩衝層の代わりとして平均厚み4μmのPL層を、第1の端子部の代わりとして平均厚み75nmのW層を設けた。
 サンプル1~4は、それぞれ緩衝層が設けられていない従来の構成であるが、サンプル5,6は、それぞれ緩衝層が設けられた本発明の構成であり、電極層が設けられた変形例2に類するサンドイッチ構造である。
 ここで、Moの弾性率は約290GPaであり、Wの弾性率は約400GPaであり、PLの弾性率は約1.5GPaであり、PPの弾性率は約1.5GPaであり、Niの弾性率は約200GPaである。これらに基づき、サンプル1~4について、コア部の積と金属層の積との和を、第1の端子部の積で除した値を算出した。また、サンプル5,6について、コア部の積と金属層の積との和を、第1の端子部の積と緩衝層の積と電極層の積とで除した値を算出した。
 サンプル1の前記値は、(約1.5GPa×4.0μm+約200GPa×0.1μm×2)/(約290GPa×25μm)=約6.34である。
 サンプル2の前記値は、(約1.5GPa×4.0μm+約200GPa×0.1μm×2)/(約290GPa×75μm)=約2.11である。
 サンプル3の前記値は、(約1.5GPa×4.0μm+約200GPa×0.1μm×2)/(約400GPa×25μm)=約4.6である。
 サンプル4の前記値は、(約1.5GPa×4.0μm+約200GPa×0.1μm×2)/(約400GPa×75μm)=約1.53である。
 サンプル5の前記値は、(約1.5GPa×4.0μm+約200GPa×0.1μm×2)/(約290GPa×25μm+約1.5GPa×4.0μm+約290GPa×75μm)=約1.31である。
 サンプル6の前記値は、(約1.5GPa×4.0μm+約200GPa×0.1μm×2)/(約400GPa×25μm+約1.5GPa×4.0μm+約400GPa×75μm)=約1.0である。
 図7は、変形抑制効果に関する実験の結果を示す電子顕微鏡写真である。図7(a)~(d)に示すように、サンプル1~4の下面には、導通不良のおそれがある程度の顕著な凹凸がみられた。このことから、金属膜である第1の端子部のみが設けられ、緩衝層が設けられていない場合は、第1の端子部が変形することが確認できた。この結果は、第1の端子部の厚さや弾性率に関係なく同じであった。
 一方、図7(e),(f)に示すように、サンプル5,6の下面は、導通不良のおそれがない程度の小さな凹凸しか生じなかった。このことから、電極層および緩衝層を設けることによって、第1の端子部の変形を抑制する効果が得られることが確認できた。
 さらに、サンプル4,6については、ベースフィルムを剥いで、第1の端子部または電極層の下面の状態を確認した。図8は、変形抑制効果に関する実験の結果を示す電子顕微鏡写真である。図8(a)に示すように、サンプル4について、第1の端子部の下面に顕著な凹凸が生じていた。一方、図8(b)に示すように、サンプル6について、電極層の下面に凹凸はほとんど見られなかった。このことからも、電極層および緩衝層を設けることによって、第1の端子部の変形を抑制できることが確認できた。
 以上をまとめると、顕著な凹凸が生じたサンプル4の前記値が約1.53であり、小さな凹凸しか生じなかったサンプル5の前記値が約1.31であったことから、前記値が1.5以下の場合に第1の端子部の変形が抑制できると判断した。
 本発明に係るフレキシブル表示装置は、例えば、家庭用もしくは公共施設、或いは業務用の各種表示装置、テレビジョン装置、携帯型電子機器用ディスプレイ等に好適に利用可能である。
 1,500,600 フレキシブル表示装置
 101 表示部
 104 下地層
 104a,505 緩衝層
 110 デバイス基板
 111a フレキシブル基板
 114 第1の端子部
 300 フレキシブル回路基板
 320 第2の端子部
 400 異方性導電膜
 410 導電性粒子
 411 コア部
 412 金属層
 605 電極層

Claims (9)

  1.  フレキシブル基板と、当該フレキシブル基板上に形成された表示部及び第1の端子部と、を備えたデバイス基板と、
     第2の端子部を備えたフレキシブル回路基板と、
     を具備したフレキシブル表示装置において、
     前記第1の端子部と前記第2の端子部とは、導電性粒子を含む異方性導電膜を介して接続されており、
     前記フレキシブル基板と前記第1の端子部との間に、電極層及び緩衝層が設けられており、
     前記導電性粒子のコア部の平均粒径と弾性率との積と、前記コア部を被覆する金属層の平均厚みの2倍と弾性率との積との和を、前記第1の端子部の平均厚みと弾性率との積と、前記緩衝層の平均厚みと弾性率との積と、前記電極層の平均厚みと弾性率との積との和で除した値が1.5以下となることを特徴とする、
    フレキシブル表示装置。
  2.  前記緩衝層は、樹脂からなる、
    請求項1に記載されたフレキシブル表示装置。
  3.  前記緩衝層は、複数の前記第1の端子部に連続した層として形成されている、
    請求項1に記載されたフレキシブル表示装置。
  4.  前記緩衝層は、複数の前記第1の端子部の各々に対応して、前記第1の端子部ごとに独立した層として形成されている、
    請求項1に記載されたフレキシブル表示装置。
  5.  前記電極層の厚みが、前記第1の端子部の厚みよりも薄い、
    請求項1に記載されたフレキシブル表示装置。
  6.  前記第1の端子部は、前記表示部における画素電極と同一プロセスによって形成されている、
    請求項1に記載されたフレキシブル表示装置。
  7.  前記電極層と、前記第1の端子部とは、ビア接続部を介して電気的に接続されている、
    請求項1に記載されたフレキシブル表示装置。
  8.  前記フレキシブル基板と前記表示部との間には、前記表示部が形成されている表示部形成領域と、前記第1の端子部が形成されている端子部形成領域と、前記表示部形成領域および前記端子部形成領域の間の中間領域とに連続して、下地層が設けられており、
     前記下地層における前記端子部形成領域の部分が前記緩衝層である、
    請求項1に記載されたフレキシブル表示装置。
  9.  前記下地層は、隔壁、パッシベーション膜及び平坦化膜のうちの少なくとも1つで構成されている、
    請求項8に記載されたフレキシブル表示装置。
PCT/JP2012/007995 2011-12-28 2012-12-14 フレキシブル表示装置 WO2013099135A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/983,169 US8780568B2 (en) 2011-12-28 2012-12-14 Flexible display device
JP2013551212A JP6042823B2 (ja) 2011-12-28 2012-12-14 フレキシブル表示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011288564 2011-12-28
JP2011-288564 2011-12-28

Publications (1)

Publication Number Publication Date
WO2013099135A1 true WO2013099135A1 (ja) 2013-07-04

Family

ID=48696683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/007995 WO2013099135A1 (ja) 2011-12-28 2012-12-14 フレキシブル表示装置

Country Status (3)

Country Link
US (1) US8780568B2 (ja)
JP (1) JP6042823B2 (ja)
WO (1) WO2013099135A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152441A1 (ja) * 2015-03-20 2016-09-29 デクセリアルズ株式会社 異方性接続構造体
JP2017096998A (ja) * 2015-11-18 2017-06-01 株式会社ジャパンディスプレイ 表示装置
JP2017117688A (ja) * 2015-12-25 2017-06-29 株式会社ジャパンディスプレイ 表示装置
JP2018013762A (ja) * 2016-07-21 2018-01-25 エルジー ディスプレイ カンパニー リミテッド 表示装置
US10070515B2 (en) 2015-08-10 2018-09-04 Samsung Electronics Co., Ltd. Transparent electrode using amorphous alloy and method of manufacturing the same
WO2018158841A1 (ja) * 2017-02-28 2018-09-07 シャープ株式会社 Elデバイスの製造方法、elデバイス、elデバイスの製造装置、実装装置
WO2018179177A1 (ja) * 2017-03-29 2018-10-04 シャープ株式会社 実装方法、実装装置、および製造装置
JP2018170498A (ja) * 2017-02-17 2018-11-01 芝浦メカトロニクス株式会社 電子部品の実装装置と表示用部材の製造方法
JP2018170497A (ja) * 2017-02-13 2018-11-01 芝浦メカトロニクス株式会社 電子部品の実装装置と表示用部材の製造方法
US20210393978A1 (en) * 2020-06-22 2021-12-23 Electronics And Telecommunications Research Institute Bio-signal detection and stimulation device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103959360B (zh) 2011-11-24 2016-10-26 株式会社日本有机雷特显示器 柔性显示装置
KR102591535B1 (ko) 2019-03-29 2023-10-20 삼성디스플레이 주식회사 감마 전압 생성 장치 및 이를 포함하는 표시 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10104650A (ja) * 1996-09-26 1998-04-24 Denso Corp 液晶表示素子及びその異方性導電部材
JPH10206874A (ja) * 1997-01-21 1998-08-07 Ricoh Co Ltd ポリマーフィルム液晶パネルの実装構造
JP2000259092A (ja) * 1999-03-08 2000-09-22 Optrex Corp 電気光学装置
JP2002258768A (ja) * 2001-03-02 2002-09-11 Seiko Epson Corp 電気光学装置、その製造方法および電子機器
JP2009301040A (ja) * 2008-06-13 2009-12-24 Prime View Internatl Co Ltd フレキシブルディスプレイモジュール及びその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5443922A (en) 1991-11-07 1995-08-22 Konica Corporation Organic thin film electroluminescence element
JPH05163488A (ja) 1991-12-17 1993-06-29 Konica Corp 有機薄膜エレクトロルミネッセンス素子
JP2008145840A (ja) * 2006-12-12 2008-06-26 Fujifilm Corp 表示装置
JP2008242249A (ja) 2007-03-28 2008-10-09 Kyodo Printing Co Ltd フレキシブルディスプレイ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10104650A (ja) * 1996-09-26 1998-04-24 Denso Corp 液晶表示素子及びその異方性導電部材
JPH10206874A (ja) * 1997-01-21 1998-08-07 Ricoh Co Ltd ポリマーフィルム液晶パネルの実装構造
JP2000259092A (ja) * 1999-03-08 2000-09-22 Optrex Corp 電気光学装置
JP2002258768A (ja) * 2001-03-02 2002-09-11 Seiko Epson Corp 電気光学装置、その製造方法および電子機器
JP2009301040A (ja) * 2008-06-13 2009-12-24 Prime View Internatl Co Ltd フレキシブルディスプレイモジュール及びその製造方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107409467B (zh) * 2015-03-20 2019-08-06 迪睿合株式会社 各向异性连接构造体
JP2016178226A (ja) * 2015-03-20 2016-10-06 デクセリアルズ株式会社 異方性接続構造体
KR20170113621A (ko) * 2015-03-20 2017-10-12 데쿠세리아루즈 가부시키가이샤 이방성 접속 구조체
CN107409467A (zh) * 2015-03-20 2017-11-28 迪睿合株式会社 各向异性连接构造体
WO2016152441A1 (ja) * 2015-03-20 2016-09-29 デクセリアルズ株式会社 異方性接続構造体
KR102092615B1 (ko) * 2015-03-20 2020-03-24 데쿠세리아루즈 가부시키가이샤 이방성 접속 구조체
US10070515B2 (en) 2015-08-10 2018-09-04 Samsung Electronics Co., Ltd. Transparent electrode using amorphous alloy and method of manufacturing the same
JP2017096998A (ja) * 2015-11-18 2017-06-01 株式会社ジャパンディスプレイ 表示装置
JP2017117688A (ja) * 2015-12-25 2017-06-29 株式会社ジャパンディスプレイ 表示装置
JP2018013762A (ja) * 2016-07-21 2018-01-25 エルジー ディスプレイ カンパニー リミテッド 表示装置
JP2018170497A (ja) * 2017-02-13 2018-11-01 芝浦メカトロニクス株式会社 電子部品の実装装置と表示用部材の製造方法
JP2018170498A (ja) * 2017-02-17 2018-11-01 芝浦メカトロニクス株式会社 電子部品の実装装置と表示用部材の製造方法
WO2018158841A1 (ja) * 2017-02-28 2018-09-07 シャープ株式会社 Elデバイスの製造方法、elデバイス、elデバイスの製造装置、実装装置
WO2018179177A1 (ja) * 2017-03-29 2018-10-04 シャープ株式会社 実装方法、実装装置、および製造装置
US20210393978A1 (en) * 2020-06-22 2021-12-23 Electronics And Telecommunications Research Institute Bio-signal detection and stimulation device

Also Published As

Publication number Publication date
US8780568B2 (en) 2014-07-15
JP6042823B2 (ja) 2016-12-14
JPWO2013099135A1 (ja) 2015-04-30
US20140055964A1 (en) 2014-02-27

Similar Documents

Publication Publication Date Title
JP6042823B2 (ja) フレキシブル表示装置
KR101663840B1 (ko) 유기 el 장치 및 그 제조 방법
JP5574450B2 (ja) 有機発光素子、有機発光装置、有機表示パネル、有機表示装置および有機発光素子の製造方法
JP5909841B2 (ja) 表示パネルの製造方法、表示パネルおよび表示装置
JP6310668B2 (ja) 表示装置及び表示装置の製造方法
JP5519537B2 (ja) 有機el表示パネル及びその製造方法
WO2011039950A1 (ja) 発光素子およびそれを用いた表示装置
JP2011228229A (ja) 有機エレクトロルミネッセンス装置
US8717260B2 (en) EL display panel, EL display device provided with EL display panel, organic EL display device, and method for manufacturing EL display panel
JP5607728B2 (ja) 有機el表示パネル及びその製造方法
JP2019121575A (ja) 有機el表示パネルおよびその製造方法
JP2010244850A (ja) 有機el表示装置
US20080191612A1 (en) Self-emissive display device
US8350471B2 (en) EL display panel, EL display device provided with EL display panel, organic EL display device, and method for manufacturing EL display panel
US11672140B2 (en) Self-luminous display panel and method of manufacturing self-luminous display panel
US10249694B2 (en) Organic EL display device
KR102234829B1 (ko) 유기 발광 표시 장치 및 유기 발광 표시 장치 제조 방법
JP2011150828A (ja) 有機el装置およびその製造方法
JP5710858B2 (ja) 有機el素子
JPWO2013187074A1 (ja) 発光素子の製造方法、発光素子および表示パネル
JP2011014496A (ja) 発光素子および表示装置
JP2020184426A (ja) 有機el表示パネルおよびその製造方法
JP2012079616A (ja) 照明装置
JP2014123628A (ja) 有機エレクトロルミネッセンス表示装置及び有機エレクトロルミネッセンス表示装置の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13983169

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013551212

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12862812

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12862812

Country of ref document: EP

Kind code of ref document: A1