WO2013094491A1 - ウエハホルダ - Google Patents

ウエハホルダ Download PDF

Info

Publication number
WO2013094491A1
WO2013094491A1 PCT/JP2012/082190 JP2012082190W WO2013094491A1 WO 2013094491 A1 WO2013094491 A1 WO 2013094491A1 JP 2012082190 W JP2012082190 W JP 2012082190W WO 2013094491 A1 WO2013094491 A1 WO 2013094491A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
protrusion
recess
height
wafer holder
Prior art date
Application number
PCT/JP2012/082190
Other languages
English (en)
French (fr)
Inventor
文弥 小林
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Publication of WO2013094491A1 publication Critical patent/WO2013094491A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68771Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by supporting more than one semiconductor substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4585Devices at or outside the perimeter of the substrate support, e.g. clamping rings, shrouds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68735Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by edge profile or support profile

Definitions

  • the present invention relates to a wafer holder for holding a wafer.
  • a wafer holder that holds a wafer when a film is formed on the wafer.
  • a wafer holder includes a recess that is recessed in a direction perpendicular to the main surface. The wafer is placed and held in the recess.
  • the film formed on the wafer not only grows in the direction of increasing the film thickness, but also grows from the upper surface to the side surface of the wafer. For this reason, as the film grows, not only the upper surface of the wafer but also the side surface of the wafer may be covered with the film.
  • the film covering the side surface of the wafer is solidified while being in contact with the side surface of the recess, the side surface of the wafer and the side surface of the recess are bonded to each other by the film. For this reason, when the wafer is taken out, an excessive external force is applied to the wafer, and the wafer may be damaged such as a crack or a crack.
  • a technique for devising the structure of the recess has been proposed (see, for example, Patent Document 1).
  • the wafer holder of Patent Document 1 is provided with an inclined surface above the side surface of the recess.
  • the inclined surface is inclined so that the concave portion expands toward the upper side. Therefore, since a space is provided between the inclined surface and the side surface of the wafer, the contact area between the side surface of the wafer and the inclined surface is reduced. As a result, the adhesion between the side surface of the wafer and the side surface of the recess is suppressed, and damage to the wafer can be suppressed.
  • the wafer holder when forming a film on a wafer, in order to make the film forming conditions uniform, the wafer holder may be rotated at high speed around the direction perpendicular to the main surface during film formation.
  • the present invention has been made in view of such a situation, and it is possible to suppress damage to the wafer based on adhesion between the side surface of the wafer and the side surface of the recess while suppressing the protrusion of the wafer during film formation.
  • An object is to provide a wafer holder.
  • a feature of the present invention is a wafer holder comprising a main surface and a recess that is recessed in a direction perpendicular to the main surface, wherein the recess includes a bottom surface parallel to the main surface and an outer periphery of the bottom surface. And a projecting portion projecting from the side surface to the inside of the recess, and the projecting portion is provided along the outer periphery of the bottom surface, and in the vertical direction,
  • the gist is that the height from the bottom surface to the tip of the protruding portion is higher than 1/3 of the height from the bottom surface to the main surface.
  • FIG. 1 is a perspective view of a wafer holder 1A according to the first embodiment.
  • FIG. 2 is a perspective view of the recess 20 according to the first embodiment.
  • FIG. 3 is a partial cross-sectional view of the recess 20 according to the first embodiment.
  • FIG. 4 is a cross-sectional view of the recess 20 according to the first embodiment.
  • FIG. 5 is a cross-sectional view of the recess 20 according to the first embodiment.
  • FIG. 6 is a plan view of the recess 20 according to the second embodiment.
  • FIG. 7 is a plan view of the recess 20 according to the third embodiment.
  • FIG. 8 is a partial cross-sectional view of the recess 20 according to the fourth embodiment.
  • FIG. 1 is a perspective view of a wafer holder 1A according to the first embodiment.
  • FIG. 2 is a perspective view of the recess 20 according to the first embodiment.
  • FIG. 3 is a partial cross-sectional view of the recess 20 according to the first embodiment. Specifically, FIG. 3 is a partial cross-sectional view of the recess 20 along the vertical direction Z and the radial direction X.
  • the wafer holder 1 has a disk shape.
  • the wafer holder 1 includes a main surface 10 and a recess 20.
  • the main surface 10 is a surface of the wafer holder 1, and the main surface 10 is a surface opposite to the back surface of the wafer holder 1.
  • the recess 20 is recessed in the vertical direction Z with respect to the main surface 10.
  • the recess 20 is a portion that is lower than the main surface 10.
  • the wafer holder 1 includes a plurality of recesses 20.
  • the recess 20 is circular when viewed from the vertical direction Z.
  • a wafer 200 is disposed in the recess 20 (see FIGS. 3 and 4).
  • the recess 20 has a bottom surface 30, a side surface 50, and a protrusion 100.
  • the bottom surface 30 is a surface parallel to the main surface 10.
  • the bottom surface 30 is a plane.
  • a wafer 200 is placed on the bottom surface 30. Accordingly, the bottom surface 30 is in contact with the wafer lower surface 200b.
  • the bottom surface 30 when viewed from the vertical direction Z, the bottom surface 30 has a circular shape. Accordingly, the outer periphery 35 of the bottom surface 30 is annular.
  • the direction along the outer periphery 35 of the bottom surface 30 is the outer peripheral direction R.
  • the direction parallel to the bottom surface 30 and connecting the center O of the bottom surface 30 and the side surface 50 is the radial direction X. In the radial direction X, a direction toward the center O is a direction toward the inside of the recess 20, and a direction toward the side surface 50 is a direction toward the outside of the recess 20.
  • the side surface 50 is provided from the outer periphery 35 of the bottom surface 30 to the main surface 10.
  • the side surface 50 is a surface along the outer circumferential direction R.
  • the side surface 50 has an upper side surface 50a and a lower side surface 50b.
  • the upper side surface 50a is a surface that is on the main surface 10 side (ie, the upper side) with respect to the protruding portion 100 in the vertical direction Z.
  • the upper side surface 50a is a surface parallel to the vertical direction Z.
  • the lower side surface 50b is a surface located on the bottom surface 30 side (that is, the lower side) with respect to the protruding portion 100 in the vertical direction Z.
  • the lower side surface 50 b has a surface parallel to the vertical direction Z and a curved surface connected to the bottom surface 30.
  • the protruding portion 100 protrudes from the side surface 50 to the inside of the recessed portion 20. That is, the protruding portion 100 protrudes with respect to the side surface 50. Further, the protruding portion 100 is provided along the outer periphery 35 of the bottom surface 30. That is, the protruding portion 100 is provided along the outer peripheral direction R. Details of the protrusion 100 will be described later.
  • the wafer holder 1 is preferably made of silicon carbide. Since silicon carbide has high thermal conductivity, the wafer 200 can be heated evenly. As a result, no unevenness occurs in the film, and the film 300 with good quality is formed on the wafer 200.
  • FIG. 4 is a cross-sectional view of the recess 20 according to the first embodiment. Specifically, FIG. 4 is a cross-sectional view of the recess 20 along the vertical direction Z and the radial direction X.
  • the protruding portion 100 is provided along the outer periphery 35 of the bottom surface 30.
  • the protruding portion 100 is provided along the outer peripheral direction R.
  • the protruding part 100 extends along the outer peripheral direction R.
  • one protrusion 100 is provided.
  • the protrusion 100 is continuous over the entire circumference of the side surface 50.
  • the protrusion 100 makes a round around the side surface 50. Therefore, in the outer circumferential direction R, the total length of the protruding portion 100 matches the length of the side surface 50.
  • the protruding portion 100 has a protruding upper surface 100a that is an upper surface and a protruding lower surface 100b that is a lower surface.
  • the protruding upper surface 100a is a surface on the main surface 10 side.
  • the protruding upper surface 100a is continuous with the upper side surface 50a.
  • the projecting upper surface 100 a is parallel to the bottom surface 30.
  • the protruding lower surface 100b is a surface on the bottom surface 30 side.
  • the projecting lower surface 100 b is inclined with respect to the bottom surface 30.
  • the protruding lower surface 100 b approaches the main surface 10 in the vertical direction Z
  • the protruding lower surface 100 b approaches the inside of the recess 20 in the radial direction X.
  • the protruding lower surface 100b is continuous with the lower side surface 50b.
  • the protrusion 100 has a tip 150.
  • the tip 150 of the protrusion 100 is the innermost end of the recess 20. That is, the tip 150 of the protrusion 100 is an end on the center O side of the bottom surface 30 in the radial direction X.
  • the tip 150 of the protrusion 100 is a boundary portion between the protrusion upper surface 100a and the protrusion lower surface 100b.
  • the length k in the radial direction X of the protrusion 100 is preferably 0.1 mm or more. If the length k of the protruding portion 100 is 0.1 mm or more, the distance between the wafer side surface 200c and the side surface 50 of the concave portion 20 is increased, so that the wafer side surface 200c and the side surface 50 of the concave portion 20 are not easily bonded. Moreover, it is preferable that the length k in the radial direction X of the protrusion 100 is 2 mm or less. If the length k of the protrusion 100 is 2 mm or less, the gap between the wafer side surface 200c and the side surface 50 of the recess 20 is reduced, so that a decrease in heat uniformity can be suppressed. The length k of the protrusion 100 is equal to the length from the side surface 50 in the radial direction X to the tip 150 of the protrusion 100.
  • the wafer 200 is arranged such that the wafer upper surface 200a is located on the main surface 10 side and the wafer lower surface 200b is located on the bottom surface 30 side. Wafer lower surface 200b is disposed in contact with bottom surface 30.
  • the wafer 200 has a maximum width W in the width direction (that is, the radial direction X) of the wafer 200 at a position that is 1/2 of the height H of the wafer 200 in the vertical direction Z (see FIGS. 3 and 4). ).
  • the portion having the maximum width of the wafer 200 is a wafer maximum width portion 210.
  • the width of the wafer 200 becomes narrower from the wafer maximum width portion 210 toward the wafer upper surface 200a.
  • the width of the wafer 200 becomes narrower from the wafer maximum width portion 210 toward the wafer lower surface 200b.
  • the height t from the bottom surface 30 to the tip 150 of the protrusion 100 is higher than 1/3 of the height D from the bottom surface 30 to the main surface 10. Further, the height t from the bottom surface 30 to the tip 150 of the protrusion 100 is higher than 1 ⁇ 2 of the height H of the wafer 200. That is, the wafer maximum width portion 210 is located closer to the bottom surface 30 than the tip 150 of the protrusion 100.
  • the height t from the bottom surface 30 to the tip 150 of the protrusion 100 is not more than the height D from the bottom surface 30 to the main surface 10.
  • the height t from the bottom surface 30 to the tip 150 of the protrusion 100 is preferably equal to or less than the height H of the wafer 200. If the height t from the bottom surface 30 to the tip 150 of the protruding portion 100 is equal to or less than the height H of the wafer 200, the gap between the wafer side surface 200c and the side surface 50 of the recess 20 is reduced, so that a decrease in thermal uniformity is suppressed. it can.
  • the height D from the bottom surface 30 to the main surface 10 is higher than the height H of the wafer 200.
  • the wafer 200 is thermally expanded by heating. Therefore, it is preferable to determine the dimensions of the recess 20 and the protrusion 100 in consideration of the thermal expansion of the wafer 200.
  • the distance s between the protrusion 100 and the wafer 200 is preferably 1 mm or less.
  • the distance s between the tip 150 of the protrusion 100 and the wafer side surface 200c is preferably 1 mm or less.
  • the wafer side surface 200 c contacts the tip 150 of the protrusion 100.
  • the length L between the tips 150 of the protrusions 100 facing each other across the center O of the bottom surface 30 is from the maximum width W of the wafer 200. It is preferable that the length is 2 mm or less. That is, it is preferable that the maximum width W and the length L satisfy the relationship of the following formula (1).
  • the recess 20 has the protrusion 100 that protrudes from the side surface 50 to the inside of the recess 20, and the protrusion 100 is provided along the outer peripheral direction R.
  • the height t from the bottom surface 30 to the tip 150 of the protrusion 100 is higher than 1/3 of the height D from the bottom surface 30 to the main surface 10.
  • the protrusion 100 is along the outer peripheral direction R. For this reason, as shown in FIG. 4, even if the film 300 grows from the wafer upper surface 200a to the wafer side surface 200c, the protrusion 100 serves as a barrier and the growth of the film 300 is blocked. That is, the protrusion 100 can inhibit the film 300 from growing to the wafer side surface 200 c closer to the bottom surface 30 than the protrusion 100. For this reason, it can suppress that a film
  • the wafer side surface 200 c comes into contact with the protruding portion 100, a space is provided between the wafer side surface 200 c and the side surface 50. For this reason, the film 300 covering the wafer side surface 200 c is less likely to contact the side surface 50.
  • the contact area between the side surface of the recess having no protrusion and the film is proportional to the height of the side surface of the wafer.
  • the contact area between the protrusion 100 and the film 300 is proportional to the thickness of the grown film 300. Since the film thickness of the film 300 is thinner than the height of the wafer side surface 200c, the contact area between the protrusion 100 and the film 300 is smaller than the contact area between the side surface of the conventional recess and the film.
  • the height t from the bottom surface 30 to the tip 150 of the protrusion 100 is higher than 1/3 of the height D from the bottom surface 30 to the main surface 10. Since the wafer maximum width portion 210 is not more than the height D from the bottom surface 30 to the main surface 10, the wafer maximum width portion 210 is caught by the protrusion 100 as shown in FIG. Therefore, since the wafer 200 can be prevented from moving upward, the wafer 200 can be prevented from jumping out of the recess 20 even if the wafer holder 1A is rotated at a high speed.
  • the protrusion 100 is continuous over the entire circumference of the side surface 50. For this reason, in any part of the wafer side surface 200c in the outer peripheral direction R, the protrusion 100 serves as a barrier, and the growth of the film 300 is blocked. Accordingly, it is possible to further suppress the film 300 from covering the wafer side surface 200c closer to the bottom surface 30 than the protrusion 100. As a result, damage to the wafer 200 can be further suppressed.
  • the wafer maximum width portion 210 is caught by the protruding portion 100 at any portion of the side surface 50 in the outer peripheral direction R, it is possible to further suppress the wafer 200 from jumping out from the concave portion 20.
  • the upper side surface 50a is a surface parallel to the vertical direction Z. For this reason, when the wafer holder is rotated at a high speed, even if the wafer 200 tries to jump out of the recess 20 beyond the protrusion 100, the wafer 200 hits the upper side surface 50 a, so that the wafer 200 can be further prevented from jumping out.
  • FIG. 6 is a plan view of the recess 20 according to the second embodiment. In addition, it demonstrates centering on the different part between 1st Embodiment mentioned above and 2nd Embodiment. Parts of the second embodiment similar to those of the first embodiment are omitted as appropriate.
  • a part different from the first embodiment described above is a protrusion 100.
  • the protrusion 100 is continuous over the half circumference of the side surface 50. Therefore, in the outer circumferential direction R, the total length of the protruding portion 100 is 50% of the length of the side surface 50.
  • the length along the outer circumferential direction R of the protrusion 100 is 50% along the outer circumferential direction R of the side surface 50.
  • the center O of the bottom surface 30 is shifted from the center C of the main surface 10. Further, the protruding portion 100 is provided at a position far from the center C of the main surface 10. Therefore, when the wafer holder rotates at a high speed, the direction in which the centrifugal force F acts is the direction toward the protrusion 100 as shown in FIG. For this reason, when the wafer 200 is disposed in the recess 20 according to the present embodiment, the wafer 200 moves toward the protruding portion 100. For this reason, even when there is a side surface 50 on which the protruding portion 100 is not provided when viewed from the vertical direction Z, it is possible to suppress adhesion of the wafer side surface 200c and the side surface 50 of the recess 20.
  • the protrusions 100 continuous over the half circumference of the side surface 50 suppress damage of the wafer 200 based on adhesion between the wafer side surface 200c and the side surface 50 of the recess 20 while suppressing the protrusion of the wafer 200 when the film 300 is formed. Can be suppressed.
  • the total length of the protruding portion 100 may be 50% or more of the length of the side surface 50. If the total length of the protruding portion 100 is 50% or more of the length of the side surface 50, it is possible to further suppress the bonding between the wafer side surface 200c and the side surface 50 of the recess 20.
  • FIG. 7 is a plan view of the recess 20 according to the third embodiment. The description will focus on the differences between the first and second embodiments described above and the third embodiment. Parts of the third embodiment similar to the first and second embodiments are omitted as appropriate.
  • a portion different from the first and second embodiments described above is a protrusion 100.
  • the protruding portion 100 extends intermittently along the outer peripheral direction R.
  • the protrusion 100 is provided symmetrically with respect to the center O of the bottom surface 30.
  • the length of each protrusion 100 is 1 / of the length of the side surface 50. Therefore, in the outer circumferential direction R, the total length of the protruding portion 100 is 50% of the length of the side surface 50. Note that the total length of the protrusions 100 is equal to the total length of the protrusions 100.
  • the film 300 grows between the protrusion 100 and the protrusion 100 to the wafer side surface 200c below the protrusion 100.
  • the wafer side surface 200 c hits the protrusion 100, a space is provided between the wafer 200 and the side surface 50.
  • the film 300 is unlikely to contact the side surface 50.
  • it can suppress that the wafer side surface 200c and the side surface 50 of the recessed part 20 adhere
  • the protrusions 100 extending intermittently can suppress damage to the wafer 200 due to adhesion between the wafer side surface 200 c and the side surface 50 of the recess 20 while suppressing the protrusion of the wafer 200 when the film 300 is formed.
  • the total length of the protruding portion 100 may be 50% or more of the length of the side surface 50.
  • five or more protrusions 100 having a length that is 1/8 of the length of the side surface 50 may be provided.
  • the length of each protrusion 100 may be longer than 1 / of the length of the side surface 50. If the total length of the protruding portion 100 is 50% or more of the length of the side surface 50, it is possible to further suppress the bonding between the wafer side surface 200c and the side surface 50 of the recess 20.
  • FIG. 8 is a partial cross-sectional view of the recess 20 according to the fourth embodiment. The description will focus on the differences between the first to third embodiments described above and the fourth embodiment. The parts of the fourth embodiment similar to the first to third embodiments are omitted as appropriate.
  • the part different from the first embodiment described above is the height t of the tip 150 of the protrusion 100.
  • the height t of the tip 150 of the protrusion 100 is equal to the height D from the bottom surface 30 to the main surface 10. Therefore, the tip 150 of the protrusion 100 is flush with the main surface 10.
  • the protruding upper surface 100 a is on the same plane as the main surface 10.
  • the projecting lower surface 100 b is inclined with respect to the bottom surface 30. As the protruding lower surface 100 b approaches the main surface 10 in the vertical direction Z, the protruding lower surface 100 b approaches the inside of the recess 20 in the radial direction X.
  • the protruding lower surface 100b is continuous with the lower side surface 50b.
  • the maximum width W of the wafer 200 is smaller than the length L between the tips 150 of the protrusions 100 facing each other across the center O of the bottom surface 30. This is because the wafer 200 may not be placed in the recess 20. Further, when the wafer 200 is heated, it is preferable that the maximum width W of the wafer 200 is larger than the length L between the tips 150 of the protruding portions 100 facing each other across the center O of the bottom surface 30. Since the size of the wafer 200 is larger than the opening of the recess 20, the jumping out of the wafer can be further suppressed.
  • the interval s between the protrusion 100 and the wafer side surface 200c is the interval between the protrusion lower surface 100b and the wafer side surface 200c.
  • the interval s is preferably 1 mm or less. If the thickness is 1 mm or less, the protrusion 100 serves as a barrier, and the growth of the film 300 is blocked. That is, the protrusion 100 can inhibit the film 300 from growing to the wafer side surface 200 c closer to the bottom surface 30 than the protrusion 100. For this reason, it can suppress that a film
  • the recess 20 when viewed from the vertical direction Z, has a circular shape and the bottom surface 30 has a circular shape, but this is not limitative.
  • the concave portion 20 and the bottom surface 30 can be appropriately changed according to the shape of the wafer 200 to be arranged. For example, it may be polygonal when viewed from the vertical direction Z.
  • the upper side surface 50a is parallel to the vertical direction Z, but is not limited thereto.
  • the upper side surface 50a may be inclined with respect to the vertical direction Z.
  • the upper surface 50a is preferably inclined so as to approach the inside of the recess 20 in the radial direction X. That is, it is preferable that the upper side surface 50a is inclined so that the concave portion becomes narrower toward the upper side.
  • the protruding upper surface 100a is parallel to the bottom surface 30, and the protruding lower surface 100b is inclined with respect to the bottom surface 30, but this is not limitative.
  • the protruding upper surface 100 a may be inclined with respect to the bottom surface 30.
  • the protruding upper surface 100 a may be inclined so as to approach the inner side of the recess 20 in the radial direction X as it approaches the bottom surface 30 in the vertical direction Z.
  • the protruding upper surface 100 a and the protruding lower surface 100 b may be parallel to the bottom surface 30.
  • the tip 150 of the protrusion 100 is planar.
  • the height D from the bottom surface 30 to the main surface 10 is higher than the height H of the wafer 200, but the height D from the bottom surface 30 to the main surface 10 is the height H of the wafer 200. May be lower.
  • the height t from the bottom surface 30 to the tip 150 of the protrusion 100 is higher than 1 ⁇ 2 of the height H of the wafer 200.
  • the wafer holder according to the present invention is useful because it can suppress damage to the wafer due to adhesion between the side surface of the wafer and the side surface of the recess while suppressing the protrusion of the wafer during film formation.

Abstract

 主面(10)と、主面(10)に対して垂直方向(Z)に凹む凹部(20)とを備えるウエハホルダ(1)であって、凹部(20)は、主面(10)に平行な底面(30)と、底面(30)の外周(35)から主面(10)に亘って設けられる側面(50)と、側面(50)から凹部(20)の内側に突出する突出部(100)と、を有しており、突出部(100)は、底面(30)の外周(35)に沿って設けられており、垂直方向(Z)において、底面(30)から突出部(100)の先端(150)までの高さ(t)は、凹部(20)に配置されるウエハの高さ(H)の1/2よりも高いか、あるいは、底面(30)から主面(10)までの高さ(D)の1/3よりも高い。

Description

ウエハホルダ
 本発明は、ウエハを保持するウエハホルダに関する。
 従来、ウエハに膜を形成する際に、ウエハを保持するウエハホルダが知られている。一般的に、ウエハホルダは、主面に対して垂直方向に凹む凹部を備える。ウエハは、凹部に配置されて、保持される。
 ウエハに形成される膜は、膜厚が厚くなる方向に成長するだけでなく、ウエハの上面から側面へ向かって成長する。このため、膜の成長に伴って、ウエハの上面だけでなく、ウエハの側面も膜に覆われることがあった。ウエハの側面を覆った膜が、凹部の側面に接触したまま、固まると、ウエハの側面と凹部の側面とが膜によって接着される。このため、ウエハを取り出す際に、ウエハに必要以上の外力を加えることとなり、ウエハに割れや亀裂などの損傷が生じることがあった。ウエハの側面と凹部の側面との接着に基づくウエハの損傷を抑制するために、凹部の構造を工夫する技術が提案されている(例えば、特許文献1参照)。
 特許文献1のウエハホルダは、凹部の側面の上側に傾斜面が設けられている。傾斜面は、上側に向かうに連れ凹部が広がるように、傾斜している。従って、傾斜面とウエハの側面との間には、スペースが設けられるため、ウエハの側面と傾斜面との接触面積が小さくなる。その結果、ウエハの側面と凹部の側面との接着が抑制され、ウエハの損傷を抑制できる。
特開2009-71210号公報
 ところで、ウエハに膜を形成する際に、成膜条件を均等にするために、膜の形成時において、主面に対して垂直な方向を軸として、ウエハホルダを高速回転させることがある。
 特許文献1のウエハホルダでは、傾斜面は、上側に向かうに連れ凹部が広がるように、傾斜しているため、高速回転時に、傾斜面に沿って、凹部からウエハが飛び出ることがあった。
 そこで、本発明は、このような状況に鑑みてなされたものであり、膜の形成時におけるウエハの飛び出しを抑制しつつ、ウエハの側面と凹部の側面との接着に基づくウエハの損傷を抑制できるウエハホルダを提供することを目的とする。
 上述した課題を解決するため、本発明は、次のような特徴を有している。本発明の特徴は、主面と、前記主面に対して垂直方向に凹む凹部とを備えるウエハホルダであって、前記凹部は、前記主面に平行な底面と、前記底面の外周から前記主面に亘って設けられる側面と、前記側面から前記凹部の内側に突出する突出部と、を有しており、前記突出部は、前記底面の外周に沿って設けられており、前記垂直方向において、前記底面から前記突出部の先端までの高さは、前記底面から前記主面までの高さの1/3よりも高いことを要旨とする。
図1は、第1実施形態に係るウエハホルダ1Aの斜視図である。 図2は、第1実施形態に係る凹部20の斜視図である。 図3は、第1実施形態に係る凹部20の一部断面図である。 図4は、第1実施形態に係る凹部20の断面図である。 図5は、第1実施形態に係る凹部20の断面図である。 図6は、第2実施形態に係る凹部20の平面図である。 図7は、第3実施形態に係る凹部20の平面図である。 図8は、第4実施形態に係る凹部20の一部断面図である。
 本発明に係るウエハホルダの一例について、図面を参照しながら説明する。具体的には、(1)第1実施形態(2)第2実施形態、(3)第3実施形態、(4)第4実施形態、(5)その他実施形態、について説明する。
 以下の図面の記載において、同一または類似の部分には、同一又は類似の符号を付している。図面は模式的なのものであり、各寸法の比率などは現実のものとは異なることを留意すべきである。従って、具体的な寸法などは以下の説明を参酌して判断すべきものである。図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
 (1)第1実施形態
 (1.1)ウエハホルダ1Aの概略構成
 第1実施形態に係るウエハホルダ1Aの概略構成について、図1から図3を参照しながら説明する。図1は、第1実施形態に係るウエハホルダ1Aの斜視図である。図2は、第1実施形態に係る凹部20の斜視図である。図3は、第1実施形態に係る凹部20の一部断面図である。具体的には、図3は、垂直方向Z及び径方向Xに沿った凹部20の一部断面図である。
 図1に示されるように、ウエハホルダ1は、円板状である。ウエハホルダ1は、主面10と、凹部20とを備える。主面10は、ウエハホルダ1の表面であり、主面10は、ウエハホルダ1の裏面と反対側の面である。
 凹部20は、主面10に対して垂直方向Zに凹む。凹部20は、主面10に対して低い部分である。本実施形態において、ウエハホルダ1は、複数の凹部20を備える。凹部20は、垂直方向Zから見て、円形状である。凹部20には、ウエハ200が配置される(図3、図4参照)。凹部20は、底面30と、側面50と、突出部100とを有する。
 底面30は、主面10に平行な面である。底面30は、平面である。底面30には、ウエハ200が載置される。従って、底面30は、ウエハ下面200bに接する。本実施形態において、垂直方向Zから見て、底面30は、円形状である。従って、底面30の外周35は、環状である。底面30の外周35に沿った方向は、外周方向Rである。なお、底面30に平行であり、底面30の中心Oと側面50とを結ぶ方向は、径方向Xである。径方向Xにおいて、中心Oに向かう方向は、凹部20の内側に向かう方向であり、側面50に向かう方向は、凹部20の外側に向かう方向である。
 側面50は、底面30の外周35から主面10に亘って設けられる。側面50は、外周方向Rに沿った面である。本実施形態において、側面50は、上側面50aと下側面50bとを有する。上側面50aは、垂直方向Zにおいて突出部100よりも主面10側(すなわち、上側)にある面である。上側面50aは、垂直方向Zに平行な面である。下側面50bは、垂直方向Zにおいて突出部100よりも底面30側(すなわち、下側)にある面である。下側面50bは、垂直方向Zに平行な面と、底面30に連なる曲面とを有する。
 突出部100は、側面50から凹部20の内側に突出する。すなわち、突出部100は、側面50に対して突出している。また、突出部100は、底面30の外周35に沿って設けられる。すなわち、突出部100は、外周方向Rに沿って設けられる。突出部100の詳細は、後述する。
 ウエハホルダ1は、炭化珪素からなることが好ましい。炭化珪素は、熱伝導率が高いため、ウエハ200を均等に加熱できる。これにより、膜にムラが生じず、ウエハ200に品質の良好な膜300が形成される。
 (1.2)突出部100の概略構成
 第1実施形態に係る突出部100の概略構成について、図2から図4を参照しながら説明する。図4は、第1実施形態に係る凹部20の断面図である。具体的には、図4は、垂直方向Z及び径方向Xに沿った凹部20の断面図である。
 図2に示されるように、突出部100は、底面30の外周35に沿って設けられる。突出部100は、外周方向Rに沿って設けられる。突出部100は、外周方向Rに沿って延在する。本実施形態において、突出部100は、1つ設けられる。外周方向Rにおいて、突出部100は、側面50の全周に亘って連続している。外周方向Rにおいて、突出部100は、側面50を一周する。従って、外周方向Rにおいて、突出部100の全長は、側面50の長さと一致する。
 図3に示されるように、突出部100は、上側の面である突出上面100aと、下側の面である突出下面100bとを有する。突出上面100aは、主面10側の面である。突出上面100aは、上側面50aと連なる。本実施形態において、突出上面100aは、底面30と平行である。突出下面100bは、底面30側の面である。本実施形態において、突出下面100bは、底面30に対して傾斜している。突出下面100bは、垂直方向Zにおいて主面10に近づくに連れ、径方向Xにおいて凹部20の内側に近づく。突出下面100bは、下側面50bと連なる。
 図3に示されるように、突出部100は、先端150を有する。突出部100の先端150は、凹部20の最も内側の端である。すなわち、突出部100の先端150は、径方向Xにおいて、底面30の中心O側の端である。本実施形態おいて、突出部100の先端150は、突出上面100aと突出下面100bとの境界部分である。
 突出部100の径方向Xにおける長さkは、0.1mm以上であることが好ましい。突出部100の長さkが0.1mm以上であれば、ウエハ側面200cと凹部20の側面50との距離が離れるため、ウエハ側面200cと凹部20の側面50とが接着されにくくなる。また、突出部100の径方向Xにおける長さkは、2mm以下であることが好ましい。突出部100の長さkが2mm以下であれば、ウエハ側面200cと凹部20の側面50との隙間が小さくなるため、均熱性の低下を抑制できる。なお、突出部100の長さkは、径方向Xにおける側面50から突出部100の先端150までの長さに等しい。
 図3に示されるように、ウエハ200は、ウエハ上面200aが主面10側に位置し、ウエハ下面200bが底面30側に位置するように配置される。ウエハ下面200bは、底面30に接するように配置される。
 一般的に、ウエハ200は、垂直方向Zにおけるウエハ200の高さHの1/2の位置が、ウエハ200の幅方向(すなわち径方向X)における最大幅Wとなる(図3、図4参照)。ウエハ200の最大幅となる部分は、ウエハ最大幅部分210である。ウエハ最大幅部分210からウエハ上面200aに向かうに連れ、ウエハ200の幅は、狭くなる。同様に、ウエハ最大幅部分210からウエハ下面200bに向かうに連れ、ウエハ200の幅は、狭くなる。
 垂直方向Zにおいて、底面30から突出部100の先端150までの高さtは、底面30から主面10までの高さDの1/3よりも高い。また、底面30から突出部100の先端150までの高さtは、ウエハ200の高さHの1/2よりも高い。すなわち、ウエハ最大幅部分210は、突出部100の先端150よりも底面30側に位置する。
 底面30から突出部100の先端150までの高さtは、底面30から主面10までの高さD以下である。底面30から突出部100の先端150までの高さtは、ウエハ200の高さH以下が好ましい。底面30から突出部100の先端150までの高さtは、ウエハ200の高さH以下であれば、ウエハ側面200cと凹部20の側面50との隙間が小さくなるため、均熱性の低下を抑制できる。
 本実施形態において、底面30から主面10までの高さDは、ウエハ200の高さHよりも高い。
 一般的に、ウエハ200は加熱によって熱膨張する。従って、ウエハ200の熱膨張を考慮して、凹部20及び突出部100の寸法を定めることが好ましい。ウエハ200の最高加熱温度に達したときに、図3に示されるように、突出部100とウエハ200との間隔sが1mm以下であることが好ましい。具体的には、突出部100の先端150とウエハ側面200cとの間隔sが1mm以下であることが好ましい。本実施形態おいて、ウエハ側面200cは、突出部100の先端150に接触する。
 ウエハ200の最高加熱温度に達したときに、図4に示されるように、底面30の中心Oを挟んで対向する突出部100の先端150どうしの長さLは、ウエハ200の最大幅Wから2mm加えた長さ以下であることが好ましい。すなわち、最大幅W及び長さLは、以下の式(1)の関係を満たすことが好ましい。
 L(mm) ≦ W(mm) + 2 ・・・式(1)
 式(1)の関係を満たすことにより、ウエハ側面200cと突出部100との間隔sが短くなるため、突出部100が障壁となって、膜の成長をより妨げることができる。従って、突出部100よりも底面30側のウエハ側面200cを膜300が覆うことを抑制できる。
 (1.3)作用効果
 ウエハホルダ1によれば、凹部20は、側面50から凹部20の内側に突出する突出部100を有しており、突出部100は、外周方向Rに沿って設けられており、垂直方向Zにおいて、底面30から突出部100の先端150までの高さtは、底面30から主面10までの高さDの1/3よりも高い。
 突出部100は、外周方向Rに沿っている。このため、図4に示されるように、ウエハ上面200aからウエハ側面200cに膜300が成長しても、突出部100が障壁となって、膜300の成長が遮られる。すなわち、突出部100よりも底面30側のウエハ側面200cにまで膜300が成長することを、突出部100によって阻害できる。このため、突出部100よりも底面30側のウエハ側面200cを膜が覆うことを抑制できる。
 また、突出部100にウエハ側面200cが接触するため、ウエハ側面200cと側面50との間には、スペースが設けられる。このため、ウエハ側面200cを覆う膜300が、側面50に接触しにくくなる。
 従来のウエハホルダのように、突出部がない凹部の側面と膜との接触面積は、ウエハの側面の高さに比例する。一方、図4に示されるように、突出部100と膜300との接触面積は、成長した膜300の膜厚に比例する。膜300の膜厚は、ウエハ側面200cの高さに比べると薄いため、突出部100と膜300との接触面積は、従来の凹部の側面と膜との接触面積に比べると小さくなる。
 これらの結果、ウエハ200を取り出す際に、ウエハ200に加える外力を小さくすることができるため、ウエハ200の損傷を抑制できる。
 ウエハホルダ1Aによれば、垂直方向Zにおいて、底面30から突出部100の先端150までの高さtは、底面30から主面10までの高さDの1/3よりも高い。ウエハ最大幅部分210が、底面30から主面10までの高さD以下であるため、図5に示されるように、ウエハ最大幅部分210が突出部100に引っ掛る。従って、ウエハ200が上側に移動することを抑制できるため、ウエハホルダ1Aを高速回転させても、凹部20からウエハ200が飛び出ることを抑制できる。
 ウエハホルダ1Aによれば、外周方向Rにおいて、突出部100は、側面50の全周に亘って連続している。このため、外周方向Rにおけるウエハ側面200cの何れの部分であっても突出部100が障壁となって、膜300の成長が遮られる。従って、突出部100よりも底面30側のウエハ側面200cを膜300が覆うことをより抑制できる。その結果、ウエハ200の損傷をより抑制できる。
 さらに、外周方向Rにおける側面50の何れの部分であってもウエハ最大幅部分210が突出部100に引っ掛るため、凹部20からウエハ200が飛び出すことをより抑制できる。
 なお、上側面50aは、垂直方向Zに平行な面である。このため、ウエハホルダを高速回転させた場合において、ウエハ200が突出部100を超えて、凹部20から飛び出そうとしても、上側面50aに当たるため、ウエハ200が飛び出すことをさらに抑制することができる。
 (2)第2実施形態
 第2実施形態に係るウエハホルダについて、図6を参照しながら説明する。図6は、第2実施形態に係る凹部20の平面図である。なお、上述した第1実施形態と第2実施形態との異なる部分を中心に説明する。第1実施形態と同様の第2実施形態の部分は、適宜省略する。
 第2実施形態において、上述した第1実施形態と異なる部分は、突出部100である。図6に示されるように、第2実施形態において、突出部100は、側面50の半周に亘って連続している。従って、外周方向Rにおいて、突出部100の全長は、側面50の長さの50%である。垂直方向Zから見て、突出部100の外周方向Rに沿った長さは、側面50の外周方向Rに沿った長さ50%である。
 本実施形態において、底面30の中心Oは、主面10の中心Cからずれている。また、突出部100は、主面10の中心Cから遠い方に設けられている。従って、ウエハホルダが高速回転した場合、図6に示されるように、遠心力Fが働く方向は、突出部100に向かう方向となる。このため、本実施形態に係る凹部20にウエハ200を配置した場合、ウエハ200は、突出部100に向かって移動する。このため、垂直方向Zから見て、突出部100が設けられていない側面50があっても、ウエハ側面200cと凹部20の側面50とが接着することを抑制できる。
 側面50の半周に亘って連続している突出部100によって、膜300の形成時におけるウエハ200の飛び出しを抑制しつつ、ウエハ側面200cと凹部20の側面50との接着に基づくウエハ200の損傷を抑制できる。
 なお、外周方向Rにおいて、突出部100の全長は、側面50の長さの50%以上であってもよい。突出部100の全長が、側面50の長さの50%以上であれば、ウエハ側面200cと凹部20の側面50とが接着することをより抑制できる。
 (3)第3実施形態
 第3実施形態に係るウエハホルダについて、図7を参照しながら説明する。図7は、第3実施形態に係る凹部20の平面図である。なお、上述した第1,2実施形態と第3実施形態との異なる部分を中心に説明する。第1,2実施形態と同様の第3実施形態の部分は、適宜省略する。
 第3実施形態において、上述した第1,2実施形態と異なる部分は、突出部100である。図7に示されるように、第3実施形態において、突出部100は、4つ設けられている。突出部100は、外周方向Rに沿って断続的に延在する。垂直方向Zから見て、突出部100は、底面30の中心Oを点対称に設けられている。外周方向Rにおいて、各突出部100の長さは、側面50の長さの1/8である。従って、外周方向Rにおいて、突出部100の全長は、側面50の長さの50%である。なお、突出部100の全長は、各突出部100の長さの合計に等しい。
 本実施形態おいて、突出部100と突出部100との間において、突出部100よりも下側のウエハ側面200cまで、膜300は、成長する。しかしながら、ウエハ側面200cは、突出部100に当たるため、ウエハ200と側面50との間にはスペースが設けられる。このため、ウエハ側面200cが膜300に覆われても、膜300は、側面50に接触しにくい。このため、ウエハ側面200cと凹部20の側面50とが接着することを抑制できる。断続的に延在している突出部100によって、膜300の形成時におけるウエハ200の飛び出しを抑制しつつ、ウエハ側面200cと凹部20の側面50との接着に基づくウエハ200の損傷を抑制できる。
 なお、外周方向Rにおいて、突出部100の全長は、側面50の長さの50%以上であってもよい。例えば、側面50の長さの1/8の長さをもつ突出部100が5つ以上設けられていてもよい。また、各突出部100の長さが、側面50の長さの1/8よりも長くても良い。突出部100の全長が、側面50の長さの50%以上であれば、ウエハ側面200cと凹部20の側面50とが接着することをより抑制できる。
 (4)第4実施形態
 第4実施形態に係るウエハホルダについて、図8を参照しながら説明する。図8は、第4実施形態に係る凹部20の一部断面図である。なお、上述した第1~3実施形態と第4実施形態との異なる部分を中心に説明する。第1~3実施形態と同様の第4実施形態の部分は、適宜省略する。
 第4実施形態において、上述した第1実施形態と異なる部分は、突出部100の先端150の高さtである。第4実施形態において、図8に示されるように、突出部100の先端150の高さtは、底面30から主面10までの高さDと等しい。従って、突出部100の先端150は、主面10と同一面上にある。突出上面100aは、主面10と同一面上にある。突出下面100bは、底面30に対して傾斜している。突出下面100bは、垂直方向Zにおいて主面10に近づくに連れ、径方向Xにおいて凹部20の内側に近づく。突出下面100bは、下側面50bと連なる。
 ウエハ200を凹部20に配置するときに、ウエハ200の最大幅Wが底面30の中心Oを挟んで対向する突出部100の先端150どうしの長さLよりも小さいことが好ましい。ウエハ200が凹部20に配置できない可能性があるためである。また、ウエハ200の加熱時において、ウエハ200の最大幅Wが底面30の中心Oを挟んで対向する突出部100の先端150どうしの長さLよりも大きいことが好ましい。凹部20の開口よりもウエハ200の大きさが大きいため、ウエハの飛び出しをより抑制することができる。
 図8に示されるように、本実施形態において、突出部100とウエハ側面200cとの間隔sは、突出下面100bとウエハ側面200cとの間隔である。間隔sは、1mm以下であることが好ましい。1mm以下であれば、突出部100が障壁となって、膜300の成長が遮られる。すなわち、突出部100よりも底面30側のウエハ側面200cにまで膜300が成長することを、突出部100によって阻害できる。このため、突出部100よりも底面30側のウエハ側面200cを膜が覆うことを抑制できる。
 本実施形態において、底面30に対して傾斜している突出下面100bにウエハ側面200cが接触するため、ウエハ側面200cと下側面50bとの間には、スペースが設けられる。このため、ウエハ側面200cを膜300が覆っても、側面50に接触しにくくなる。
 (5)その他実施形態
 本発明の実施形態を通じて本発明の内容を開示したが、この開示の一部をなす論述及び図面は、本発明を限定するものであると理解すべきではない。本発明はここでは記載していない様々な実施形態を含む。
 上述した実施形態では、垂直方向Zから見て、凹部20は、円形状であり、底面30は、円形状であったが、これに限られない。凹部20及び底面30は、配置されるウエハ200の形状に合わせて適宜変更可能である。例えば、垂直方向Zから見て、多角形状であってもよい。
 上述した第1実施形態では、上側面50aは、垂直方向Zに平行であったが、これに限られない。上側面50aは、垂直方向Zに対して傾斜していてよい。上側面50aは、垂直方向Zにおいて主面10に近づくに連れ、径方向Xにおいて凹部20の内側に近づくように傾斜していることが好ましい。すなわち、上側面50aが、上側に向かうに連れ凹部が狭くなるように、傾斜していることが好ましい。これにより、ウエハホルダを高速回転させても、上側面50aに当たりやすくなり、凹部20からウエハ200が飛び出ることをさらに抑制できる。
 上述した実施形態では、突出上面100aは、底面30と平行であり、突出下面100bは、底面30に対して傾斜していたが、これに限られない。突出上面100aは、底面30に対して傾斜していてもよい。具体的には、突出上面100aは、垂直方向Zにおいて底面30に近づくに連れ、径方向Xにおいて凹部20の内側に近づくように傾斜していてもよい。また、突出上面100a及び突出下面100bは、底面30と平行であってもよい。この場合、突出部100の先端150は、面状である。
 上述した実施形態では、底面30から主面10までの高さDは、ウエハ200の高さHよりも高かったが、底面30から主面10までの高さDは、ウエハ200の高さHよりも低くてもよい。ただし、底面30から突出部100の先端150までの高さtは、ウエハ200の高さHの1/2よりも高い。
 なお、上述した実施形態における各特徴は、発明を損なわない範囲内において、適宜組み合わせることが可能である。
 以上のように、本発明はここでは記載していない様々な実施形態を含む。従って、本発明の技術的範囲は上記の説明から妥当な請求の範囲に係る発明特定事項によってのみ定められるものである。
 なお、日本国特許出願第2011-279827号(2011年12月21日出願)の全内容が、参照により、本願明細書に組み込まれている。
 以上のように、本発明に係るウエハホルダは、膜の形成時におけるウエハの飛び出しを抑制しつつ、ウエハの側面と凹部の側面との接着に基づくウエハの損傷を抑制できるため、有用である。

Claims (7)

  1.  主面と、前記主面に対して垂直方向に凹む凹部とを備えるウエハホルダであって、
     前記凹部は、前記主面に平行な底面と、前記底面の外周から前記主面に亘って設けられる側面と、前記側面から前記凹部の内側に突出する突出部と、を有しており、
     前記突出部は、前記底面の外周に沿って設けられており、
     前記垂直方向において、前記底面から前記突出部の先端までの高さは、前記底面から前記主面までの高さの1/3よりも高いウエハホルダ。
  2.  前記底面の外周に沿った方向において、前記突出部の全長は、前記側面の長さの50%以上である請求項1に記載のウエハホルダ。
  3.  前記底面の外周に沿った方向において、前記突出部は、全周に渡って連続している請求項1又は2に記載のウエハホルダ。
  4.  主面と、前記主面に対して垂直方向に凹む凹部とを備えるウエハホルダであって、
     前記凹部は、前記主面に平行な底面と、前記底面の外周から前記主面に亘って設けられる側面と、前記側面から前記凹部の内側に突出する突出部と、を有しており、
     前記突出部は、前記底面の外周に沿って設けられており、
     前記垂直方向において、前記底面から前記突出部の先端までの高さは、前記凹部に配置されるウエハの高さの1/2よりも高いウエハホルダ。
  5.  前記底面の外周に沿った方向において、前記突出部の全長の長さは、前記側面の長さの50%以上である請求項4に記載のウエハホルダ。
  6.  前記底面の外周に沿った方向において、前記突出部は、全周に渡って連続している請求項4又は5に記載のウエハホルダ。
  7.  前記ウエハの最高加熱温度に達したときに、前記突出部と前記ウエハとの間隔が1mm以下である請求項4から6の何れか1項に記載のウエハホルダ。
PCT/JP2012/082190 2011-12-21 2012-12-12 ウエハホルダ WO2013094491A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-279827 2011-12-21
JP2011279827A JP2013131614A (ja) 2011-12-21 2011-12-21 ウエハホルダ

Publications (1)

Publication Number Publication Date
WO2013094491A1 true WO2013094491A1 (ja) 2013-06-27

Family

ID=48668384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082190 WO2013094491A1 (ja) 2011-12-21 2012-12-12 ウエハホルダ

Country Status (2)

Country Link
JP (1) JP2013131614A (ja)
WO (1) WO2013094491A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150132527A1 (en) * 2013-11-12 2015-05-14 International Business Machines Corporation Handle wafer
JP2021082824A (ja) * 2021-01-27 2021-05-27 株式会社ニューフレアテクノロジー 気相成長装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI533401B (zh) 2013-08-29 2016-05-11 Bridgestone Corp 晶座

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1087394A (ja) * 1996-09-10 1998-04-07 Shin Etsu Handotai Co Ltd 気相成長装置用サセプタ
JP2007251078A (ja) * 2006-03-20 2007-09-27 Nuflare Technology Inc 気相成長装置
JP2009016567A (ja) * 2007-07-04 2009-01-22 Nuflare Technology Inc 気相成長装置及び気相成長方法
JP2009071210A (ja) * 2007-09-18 2009-04-02 Covalent Materials Tokuyama Corp サセプタおよびエピタキシャル成長装置
JP2010028013A (ja) * 2008-07-24 2010-02-04 Sumco Corp 気相成長装置用のサセプタ
WO2010024943A2 (en) * 2008-08-29 2010-03-04 Veeco Instruments Inc. Wafer carrier with varying thermal resistance

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1087394A (ja) * 1996-09-10 1998-04-07 Shin Etsu Handotai Co Ltd 気相成長装置用サセプタ
JP2007251078A (ja) * 2006-03-20 2007-09-27 Nuflare Technology Inc 気相成長装置
JP2009016567A (ja) * 2007-07-04 2009-01-22 Nuflare Technology Inc 気相成長装置及び気相成長方法
JP2009071210A (ja) * 2007-09-18 2009-04-02 Covalent Materials Tokuyama Corp サセプタおよびエピタキシャル成長装置
JP2010028013A (ja) * 2008-07-24 2010-02-04 Sumco Corp 気相成長装置用のサセプタ
WO2010024943A2 (en) * 2008-08-29 2010-03-04 Veeco Instruments Inc. Wafer carrier with varying thermal resistance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150132527A1 (en) * 2013-11-12 2015-05-14 International Business Machines Corporation Handle wafer
US9716010B2 (en) 2013-11-12 2017-07-25 Globalfoundries Inc. Handle wafer
JP2021082824A (ja) * 2021-01-27 2021-05-27 株式会社ニューフレアテクノロジー 気相成長装置

Also Published As

Publication number Publication date
JP2013131614A (ja) 2013-07-04

Similar Documents

Publication Publication Date Title
WO2013094491A1 (ja) ウエハホルダ
US20130213300A1 (en) Semiconductor manufacturing apparatus
CN207227547U (zh) 用于mocvd设备中的石墨盘
TWI653368B (zh) 用於保持半導體晶圓的基座、用於在半導體晶圓的正面上沉積磊晶層的方法、以及具有磊晶層的半導體晶圓
JP2007518249A (ja) 半導体製造時にウェハを支持するホルダ
JP2009012086A (ja) ワークキャリア
JP2011071180A5 (ja)
CN107326342A (zh) 用于mocvd设备中的石墨盘
WO2015030167A1 (ja) サセプタ
JP2009016567A (ja) 気相成長装置及び気相成長方法
JPWO2013069088A1 (ja) ウェーハ収納容器
JP2004128271A (ja) サセプタ
JP3596710B2 (ja) 気相成長装置用サセプタ
JP2011190129A (ja) 炭化ケイ素単結晶の製造装置
CN105779960A (zh) 沉积组件及半导体加工设备
KR102414561B1 (ko) 브레이크 패드의 마찰체 보호 패드 및 브레이크 패드
TWI677601B (zh) 用於在半導體晶圓的正側上沉積層期間保持具有取向凹槽之半導體晶圓的基座以及使用該基座以沉積該層的方法
WO2006030986A8 (en) Silicon substrate for magnetic recording medium and magnetic recording medium
US10490437B2 (en) Susceptor, vapor deposition apparatus, vapor deposition method and epitaxial silicon wafer
WO2021120189A1 (zh) 一种晶圆承载盘及化学气相淀积设备
US20150259827A1 (en) Susceptor
TWI484591B (zh) 最小重疊排除圓環
JP6002101B2 (ja) サセプタ
WO2018207942A1 (ja) サセプタ、エピタキシャル基板の製造方法、及びエピタキシャル基板
US20070240848A1 (en) Heatsink and heatsink-positioning system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12858945

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12858945

Country of ref document: EP

Kind code of ref document: A1