WO2013093972A1 - 転舵装置 - Google Patents

転舵装置 Download PDF

Info

Publication number
WO2013093972A1
WO2013093972A1 PCT/JP2011/007182 JP2011007182W WO2013093972A1 WO 2013093972 A1 WO2013093972 A1 WO 2013093972A1 JP 2011007182 W JP2011007182 W JP 2011007182W WO 2013093972 A1 WO2013093972 A1 WO 2013093972A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering
transmission ratio
angle
steering wheel
wheel
Prior art date
Application number
PCT/JP2011/007182
Other languages
English (en)
French (fr)
Inventor
泰昭 鶴見
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US14/365,966 priority Critical patent/US9428209B2/en
Priority to CN201180075782.XA priority patent/CN104010919B/zh
Priority to PCT/JP2011/007182 priority patent/WO2013093972A1/ja
Publication of WO2013093972A1 publication Critical patent/WO2013093972A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D1/00Steering controls, i.e. means for initiating a change of direction of the vehicle
    • B62D1/02Steering controls, i.e. means for initiating a change of direction of the vehicle vehicle-mounted
    • B62D1/16Steering columns
    • B62D1/166Means changing the transfer ratio between steering wheel and steering gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/008Changing the transfer ratio between the steering wheel and the steering gear by variable supply of energy, e.g. by using a superposition gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0475Controlling other elements
    • B62D5/0478Clutches

Definitions

  • the present invention relates to a steering device, and more particularly, to a steering device provided with a transmission ratio variable mechanism.
  • the present invention has been made to solve the above-described problems, and an object thereof is to realize miniaturization, cost reduction, or deletion of a power steering motor.
  • a steering apparatus includes a transmission ratio variable mechanism that changes a transmission ratio that is a ratio of a steering angle of a wheel to a steering angle of a steering wheel.
  • the transmission ratio variable mechanism lowers the transmission ratio when the steering wheel is steered at a speed lower than a predetermined vehicle speed, when the steering wheel is increased, compared to a case where the steering wheel is steered at a speed higher than the predetermined vehicle speed. At the time of returning, the transmission ratio is lowered as compared with the time of increasing.
  • the transmission ratio can be reduced and can be fixed. Further, since the transmission ratio is lowered when the steering wheel is returned compared to when the steering wheel is increased, the wheel can be largely steered by repeating the steering wheel increasing steering and the return steering.
  • the transmission ratio variable mechanism is configured so that the steering wheel should be positioned to steer at the predetermined vehicle speed or higher up to the wheel angle at the time of starting the return.
  • the transmission ratio may be lowered as compared with the time of increasing until reaching the value.
  • the steering wheel can be easily returned to the normal steering angle without turning the wheel in the reverse direction. For this reason, it is possible to suppress a sense of incongruity when the steering wheel is returned to the normal steering angle at a predetermined vehicle speed or higher.
  • the transmission ratio variable mechanism is provided so as to be rotatable at least in a direction to return the steering wheel.
  • the transmission wheel is rotated until the normal steering angle is reached. You may return.
  • the driver can return the steering wheel to the normal steering angle only by releasing the steering wheel. For this reason, it is possible to more appropriately suppress the uncomfortable feeling when the normal steering condition is satisfied and the transmission ratio becomes high.
  • the power steering motor can be reduced in size, reduced in cost, or deleted.
  • (A) And (b) is a figure which shows the structure of the steering apparatus which concerns on this embodiment.
  • (A) is a figure which shows the transmission ratio variable mechanism of a normal transmission ratio state. It is a flowchart which shows the execution procedure of the steering control by the steering apparatus which concerns on this embodiment. It is a flowchart which shows in detail the execution procedure of stationary mode control of S12 in FIG. It is a flowchart which shows the execution procedure of steering control at the time of stationary of S22 in FIG. It is a flowchart which shows the execution procedure of stationary non-steering control of S24 in FIG.
  • (A) is a figure which shows a mode that a wheel is steered gradually.
  • (B) is a figure which shows the steering angle of the steering wheel for implement
  • (C) is a figure which shows the steering angle of the steering wheel for implement
  • (A) is a diagram showing a main shaft angle ⁇ m and a ring gear angle ⁇ r with respect to the steering wheel angle ⁇ s when the steering wheel is increased in the stationary mode.
  • (B) is a diagram showing a main shaft angle ⁇ m and a ring gear angle ⁇ r with respect to the steering wheel angle ⁇ s when the steering wheel is released from the state of (a).
  • FIG. 1 (a) and FIG. 1 (b) are diagrams showing a configuration of a steering apparatus 10 according to the present embodiment.
  • FIG. 1A shows a perspective view of the main configuration of the steering device 10
  • FIG. 1B schematically shows the configuration of the steering device 10.
  • the steering device 10 is a device that steers the wheel 20 in accordance with the steering angle of the steering wheel 12, and includes the steering wheel 12, the steering shaft 14, the main shaft 16, the transmission ratio variable mechanism 18, and A steering mechanism 19 is provided.
  • the transmission ratio variable mechanism 18 changes the transmission ratio that is the ratio of the turning angle of the wheel 20 to the steering angle of the steering wheel 12.
  • the transmission ratio variable mechanism 18 includes a sun gear 22, a planetary gear 24, a ring gear 26, a first disk 28, a second disk 30, a shaft 32, a first rotating member 40, a drum 42, a fixing member 44, a first clutch 50, a first clutch 50, 2 clutch 52, second rotating member 54, fixed member 56, third clutch 58, return mechanism 60, and electronic control unit (hereinafter referred to as “ECU”) 100.
  • ECU electronic control unit
  • the upper end of the steering shaft 14 is fixed to the steering wheel 12 coaxially.
  • the lower end of the steering shaft 14 is coaxially fixed to the sun gear 22.
  • the sun gear 22 is engaged with a plurality of planetary gears 24 having the same shape.
  • a ring gear 26 meshes with the plurality of planetary gears 24 so as to surround the outer periphery thereof.
  • four planetary gears 24 are used.
  • the number of planetary gears 24 is not limited to two.
  • Each of the plurality of planetary gears 24 is fixed with a shaft 32 passing through coaxially.
  • a first disk 28 is disposed above the sun gear 22 so as to be coaxial with the steering shaft 14 and rotatable with respect to the steering shaft 14.
  • the upper ends of each of the plurality of shafts 32 are rotatably supported by the first disk 28.
  • a second disk 30 is disposed below the sun gear 22 so as to be rotatable coaxially with the sun gear 22.
  • the upper ends of each of the plurality of shafts 32 are rotatably supported by the second disk 30.
  • the upper end of the main shaft 16 is coaxially fixed to the second disk 30.
  • the lower end of the main shaft 16 is connected to the steering mechanism 19.
  • the steered mechanism 19 converts the rotational motion of the main shaft 16 into the steered motion of the wheel 20 to be steered. Since the structure of the steering mechanism 19 is well-known, the description about the detailed structure is abbreviate
  • the first rotating member 40 is fixed to the steering shaft 14.
  • a drum 42 is fixed to the ring gear 26.
  • a first clutch 50 is provided between the first rotating member 40 and the drum 42.
  • a fixing member 44 is fixed to the vehicle body.
  • a second clutch 52 is provided between the fixing member 44 and the drum 42.
  • a second rotating member 54 is fixed to the main shaft 16.
  • a fixing member 56 is fixed to the vehicle body.
  • a third clutch 58 is provided between the second rotating member 54 and the fixed member 56.
  • both the first rotating member 40 and the drum 42 are fixed so as to rotate together.
  • first clutch 50 is turned off, the first rotating member 40 and the drum 42 can be relatively rotated.
  • second clutch 52 is turned on, both the drum 42 and the fixing member 44 are fixed so as to rotate together.
  • first clutch 50 is turned off, the drum 42 and the fixed member 44 are relatively rotatable.
  • third clutch 58 is turned on, both the second rotating member 54 and the fixed member 56 are fixed so as to rotate together.
  • the third clutch 58 is turned off, the second rotating member 54 and the fixed member 56 are relatively rotatable.
  • the first clutch 50, the second clutch 52, and the third clutch 58 are each connected to the electric ECU 100.
  • ECU 100 controls on / off of first clutch 50, second clutch 52, and third clutch 58.
  • clutches that can be connected and disconnected by turning on and off such as the first clutch 50, the second clutch 52, and the third clutch 58, are well known. Omitted.
  • a return mechanism 60 is attached to the steering shaft 14.
  • the return mechanism 60 rotates the steering wheel 12 in the return direction.
  • the return mechanism 60 has a motor 62, a motor gear 64, and a gear 66.
  • the gear 66 is fixed by inserting the steering shaft 14.
  • the motor gear 64 is fixed to the motor shaft of the motor 62.
  • the motor gear 64 and the gear 66 are meshed with each other.
  • the steering shaft 14 can be rotated by operating the motor 62.
  • the ECU 100 controls on / off of the first clutch 50, the second clutch 52, and the third clutch 58, so that any of the normal transmission ratio state, the low transmission ratio state, and the transmission ratio zero state is selected. Let's move to. Since the turning angle of the wheel 20 and the rotation angle of the main shaft 16 are proportional, the ratio of the rotation angle of the main shaft 16 to the steering angle of the steering wheel 12 will be described below as a “transmission ratio”.
  • the “steering angle” refers to the rotation angle of the steering wheel 12 from the initial position of the steering wheel 12 that should be positioned when the vehicle goes straight.
  • the transmission ratio In the normal transmission ratio state, the transmission ratio is set to 1. That is, in the normal transmission ratio state, the main shaft 16 rotates by the same angle as the steering angle of the steering wheel 12. In the low transmission ratio state, the transmission ratio is set to 1/3. Therefore, the main shaft 16 rotates by an angle that is 1/3 of the steering angle of the steering wheel 12. In the transmission ratio zero state, the transmission ratio is set to zero. Accordingly, the connection between the steering shaft 14 and the main shaft 16 is released, and the main shaft 16 does not rotate even when the steering shaft 14 is steered.
  • the normal transmission ratio state, the low transmission ratio state, and the transmission ratio zero state will be described in detail with reference to FIGS. 2 (a) to 2 (c).
  • FIG. 2A is a diagram showing the transmission ratio variable mechanism 18 in a normal transmission ratio state.
  • the ECU 100 turns on the first clutch 50, turns off the second clutch 52, and turns off the third clutch 58.
  • the steering shaft 14 and the ring gear 26 are fixed via the first rotating member 40 and the drum 42.
  • the plurality of planetary gears 24 meshed with both the sun gear 22 and the ring gear 26 also have the same angle as the steering angle of the steering shaft 14 and the axis of the sun gear 22. Revolve to the center.
  • the main shaft 16 rotates through the shaft 32 and the second disk 30 at the same angle as the revolution angle of the plurality of planetary gears 24. Therefore, the main shaft 16 rotates by the same angle as the steering angle of the steering shaft 14, and the transmission ratio in the normal transmission ratio state is 1.
  • FIG. 2B is a diagram showing the transmission ratio variable mechanism 18 in the low transmission ratio state.
  • the ECU 100 turns off the first clutch 50, turns on the second clutch 52, and turns off the third clutch 58.
  • the ring gear 26 is fixed to the vehicle body via the drum 42 and the fixing member 44, and thus cannot be rotated.
  • the steering shaft 14 rotates
  • the sun gear 22 rotates but the ring gear 26 does not rotate, and a plurality of planetary gears 24 between the sun gear 22 and the ring gear 26 rotate and revolve around the sun gear 22. To do.
  • the specifications of the respective gears are set so that the plurality of planetary gears 24 rotate 1/3 while the sun gear 22 rotates once.
  • the revolution angle of the plurality of planetary gears 24 becomes the rotation angle of the main shaft 16.
  • the main shaft 16 rotates by 1/3 of the steering angle of the steering shaft 14, and the transmission ratio in the low transmission ratio state becomes 1/3.
  • FIG. 2 (c) is a diagram showing the transmission ratio variable mechanism 18 in a transmission ratio zero state.
  • the ECU 100 turns off the first clutch 50, turns off the second clutch 52, and turns on the third clutch 58.
  • the main shaft 16 is fixed to the vehicle main body via the second rotating member 54 and the fixing member 56 and cannot rotate. Therefore, the plurality of planetary gears 24 can rotate but cannot revolve.
  • the ring gear 26 is not fixed to the vehicle body or the steering shaft 14. For this reason, when the steering shaft 14 is rotated, the plurality of planetary gears 24 rotate without revolving, so that the ring gear 26 idles in the direction opposite to the rotation direction of the sun gear 22. Therefore, the rotation angle of the main shaft 16 is zero with respect to the steering angle of the steering shaft 14, and the transmission ratio in the transmission ratio zero state is zero.
  • the transmission ratio variable mechanism 18 may be in a second low transmission ratio state in which the transmission ratio is lowered when the steering wheel 12 is returned, compared to when the steering wheel 12 is increased, instead of the transmission ratio zero state.
  • a second planetary gear mechanism is provided in the transmission ratio variable mechanism 18 for the second low transmission ratio state. In the second low transmission ratio state, the second planetary gear mechanism is used to increase the steering wheel 12 when the steering wheel 12 is returned. You may reduce a transmission ratio compared with the case.
  • the driver has a large force to steer the steering wheel 12 unless the steering force is assisted using an electric power steering device or the like. Necessary.
  • the transmission ratio is lowered, it is difficult to steer the wheel 20 greatly even if the steering wheel 12 is steered to the limit steering angle.
  • the transmission ratio variable mechanism 18 has a transmission ratio when the steering wheel 12 is steered at a speed lower than the predetermined vehicle speed, compared with a case where the steering wheel 12 is steered at a speed higher than the predetermined vehicle speed when the steering wheel 12 is increased.
  • the transmission ratio is lowered when the steering wheel 12 is returned compared to when the steering wheel 12 is increased.
  • the transmission ratio variable mechanism 18 determines whether or not a predetermined on-off condition that should be satisfied in order to determine that the steering wheel 12 has been fixed is satisfied, or to determine that the steering wheel 12 has been steered while the vehicle is traveling. It is determined whether a predetermined normal steering condition to be satisfied is satisfied.
  • the stationary condition is satisfied when the speed is less than the predetermined speed
  • the normal steering condition is determined when the speed is equal to or higher than the predetermined speed.
  • the stationary condition and the normal steering condition are not limited to this.
  • the transmission ratio variable mechanism 18 lowers the transmission ratio when the steering wheel 12 is increased more than when the normal steering condition is satisfied, and the steering wheel 12 and the wheel 20 when the steering wheel 12 is returned. And the transmission ratio is made zero.
  • this transmission ratio control will be described in detail with reference to the flowchart.
  • FIG. 3 is a flowchart showing an execution procedure of steering control by the steering apparatus 10 according to the present embodiment.
  • a vehicle speed sensor (not shown) that detects the vehicle speed by detecting the rotational speed of the wheel 20 is provided in the vicinity of the wheel 20 of the vehicle on which the steering device 10 is mounted.
  • the ECU 100 acquires the detection result of the vehicle speed sensor, and determines whether or not the vehicle is stopped by determining whether or not the vehicle speed is zero or less than a predetermined speed at which the vehicle is considered to be stopped (S10).
  • the ECU 100 determines that the stationary condition is satisfied, and executes the stationary mode control.
  • the ECU 100 determines that the normal steering condition is satisfied, and executes normal mode control. In this normal mode control, the ECU 100 turns on the first clutch 50, turns off the second clutch 52, and turns off the third clutch 58 to place the transmission ratio variable mechanism 18 in the normal transmission ratio state.
  • FIG. 4 is a flowchart showing in detail the execution procedure of the stationary mode control in S12 in FIG.
  • the steering shaft 14 is provided with a steering angle sensor (not shown) that detects the steering angle of the steering shaft 14.
  • ECU100 acquires the detection result of a rudder angle sensor.
  • the ECU 100 determines whether or not the steering wheel 12 is steered using the detection result of the steering angle sensor (S20). When the steering wheel 12 is being steered (Y in S20), the ECU 100 executes steering control at the time of stationary (S22). When the vehicle is not steered (N in S20), the ECU 100 executes the non-steering control at the time of stationary (S24).
  • FIG. 5 is a flowchart showing an execution procedure of the stationary steering control in S22 in FIG.
  • the ECU 100 determines whether the steering wheel 12 has been turned up or returned using the detection result of the steering angle sensor (S50).
  • the ECU 100 turns off the first clutch 50, turns on the second clutch 52, turns off the third clutch 58, and sets the transmission ratio variable mechanism 18 in the low transmission ratio state. (S52).
  • the steering angle of the steering wheel 12 corresponding to the turning angle of the wheel 20 when the steering wheel 12 is steered in the normal transmission ratio state is referred to as a normal steering angle.
  • the ECU 100 determines whether or not the steering angle of the steering wheel 12 at that time is equal to or greater than the normal steering angle (S54).
  • the ECU 100 When the steering angle is equal to or greater than the normal steering angle (Y in S54), the ECU 100 turns off the first clutch 50, turns off the second clutch 52, and turns on the third clutch 58 to bring the transmission ratio variable mechanism 18 into the transmission ratio zero state ( S56).
  • the transmission ratio variable mechanism 18 is steered when the normal steering condition is satisfied up to the angle of the wheel 20 when the steering wheel 12 starts to return.
  • the transmission ratio is set to zero until the normal steering angle at which the steering wheel 12 should be positioned is reached. Accordingly, the driver can increase the steering wheel 12 in the low transmission ratio state and return the steering wheel 12 in the transmission ratio zero state. For this reason, it becomes possible to steer the steering wheel 12 with a steering force lower than that in the normal transmission ratio state by repeating the increase and the return.
  • the ECU 100 When it is not the normal steering angle or more (N in S54), the ECU 100 turns off the first clutch 50, turns on the second clutch 52, turns off the third clutch 58, and sets the transmission ratio variable mechanism 18 to the low transmission ratio state ( S52). Therefore, when returning the steering wheel 12 to an angle smaller than the normal steering angle, the transmission ratio is not zero, but the transmission ratio is low, so that the turning angle of the wheel 20 can be returned to the low transmission ratio.
  • FIG. 6 is a flowchart showing an execution procedure of the non-steering control at the time of stationary in S24 in FIG.
  • the ECU 100 determines whether or not the steering angle of the steering wheel 12 at that time is larger than the normal steering angle (S80).
  • the ECU 100 If it is larger than the normal steering angle (Y in S80), the ECU 100 turns off the first clutch 50, turns off the second clutch 52, and turns on the third clutch 58 to bring the transmission ratio variable mechanism 18 into the transmission ratio zero state. (S82). Next, the ECU 100 operates the return mechanism 60 to return the steering wheel 12 to the normal steering angle (S84). Thus, when the steering force to the steering wheel 12 is released during the stationary mode, the ECU 100 returns the steering wheel 12 until the normal steering angle is reached. Thereby, when the vehicle starts to travel, it is possible to smoothly shift to the normal mode. If the steering angle of the steering wheel 12 has already become the normal steering angle (N in S80), the ECU 100 skips S82 and S84 and avoids the returning operation of the steering wheel 12.
  • FIG. 7 (a) is a diagram illustrating a state in which the wheels 20 are gradually steered.
  • FIG. 7B is a diagram showing the steering angle of the steering wheel 12 for realizing the turning angle of the wheel 20 shown in FIG. 7A during the normal mode. As described above, during the normal mode, the wheel 20 can be steered without greatly steering the steering wheel 12.
  • Fig. 7 (c) is a diagram showing the steering angle of the steering wheel 12 for realizing the turning angle of the wheel 20 shown in Fig. 7 (a).
  • the steering wheel 12 needs to be steered greatly in order to steer the wheel 20 as in the normal mode.
  • the steering wheel 12 can be steered with a smaller steering force.
  • the driver simply releases the steering wheel 12 after steering the steering wheel 12 and automatically returns the steering wheel 12 to the normal steering angle that is the steering angle of the steering wheel 12 that should be positioned in the normal mode. Can do.
  • the frequency at which the steering wheel 12 is positioned at the normal steering angle can be increased, and even when the vehicle starts traveling, the mode can be smoothly shifted to the normal mode.
  • FIG. 8A is a diagram showing the main shaft angle ⁇ m and the ring gear angle ⁇ r with respect to the steering wheel angle ⁇ s when the steering wheel 12 is increased in the stationary mode.
  • ⁇ s represents a steering wheel angle
  • ⁇ m represents a main shaft angle
  • ⁇ r represents a ring gear angle.
  • the steering wheel angle ⁇ s refers to the steering angle of the steering wheel 12 from the initial position when the vehicle is traveling straight.
  • the main shaft angle ⁇ m refers to the rotation angle of the main shaft 16 from the initial position when the vehicle is traveling straight. Further, it means the rotation angle of the ring gear 26 from the initial position when the vehicle goes straight.
  • the line L1 indicates the relationship between the steering wheel angle ⁇ s and the main shaft angle ⁇ m in the normal transmission ratio state.
  • Line L2 shows the relationship between the steering wheel angle ⁇ s and the main shaft angle ⁇ m in the low transmission ratio state.
  • a line L3 indicates the relationship between the steering wheel angle ⁇ s and the ring gear angle ⁇ r in the normal transmission ratio state.
  • the relationship A1 between the steering wheel angle ⁇ s and the main shaft angle ⁇ m moves along line L2. Therefore, the main shaft angle ⁇ m rotates by an angle of 1/3 compared to L1 indicating that the normal mode is being performed, and the driver can steer the steering wheel 12 with a correspondingly small steering force.
  • FIG. 8B is a diagram showing the main shaft angle ⁇ m and the ring gear angle ⁇ r with respect to the steering wheel angle ⁇ s when the steering wheel 12 is released from the state of FIG.
  • the return mechanism 60 rotates the steering wheel 12 in the returning direction, so that the steering wheel angle ⁇ s decreases.
  • the relationship A2 between the steering wheel angle ⁇ s and the main shaft angle ⁇ m is parallel to the horizontal axis. Since the steering wheel angle ⁇ s reaches the normal steering angle when A2 reaches the line L1, the return operation of the steering wheel 12 by the return mechanism 60 stops at the second steering angle ⁇ s2 at this time.
  • the relationship B2 between the steering wheel angle ⁇ s and the ring gear angle ⁇ r is such that the steering wheel angle ⁇ s is the second steering.
  • the angle ⁇ s2 changes linearly so as to intersect the line L3.
  • the driver repeats the operation of releasing the steering wheel 12 and returning it to the normal steering angle with the steering wheel 12 after the steering wheel 12 is increased, thereby further turning the wheel 20 to the steering angle. Can be made.
  • the present invention is not limited to the above-described embodiment, and an appropriate combination of the elements of this embodiment is also effective as an embodiment of the present invention.
  • Various modifications such as various design changes can be added to the present embodiment based on the knowledge of those skilled in the art, and the embodiments with such modifications can be included in the scope of the present invention.
  • Steering device 10 Steering device, 12 Steering wheel, 14 Steering shaft, 16 Main shaft, 18 Transmission ratio variable mechanism, 19 Steering mechanism, 20 Wheel, 22 Sun gear, 24 Planetary gear, 26 Ring gear, 28 1st disc, 30 2nd disc Disc, 32 shaft, 40 first rotating member, 42 drum, 44 fixed member, 50 first clutch, 52 second clutch, 54 second rotating member, 56 fixed member, 58 third clutch, 100 ECU.
  • the present invention can be used for a steering device, and in particular, can be used for a steering device provided with a transmission ratio variable mechanism.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

 転舵装置10において、伝達比可変機構18は、ステアリングホイール12の操舵角に対する車輪20の転舵角の比である伝達比を変化させる。ECU100は、据え切りモード中において、ステアリングホイール12の切り増し時は通常モード中に比べて伝達比を低下させた低伝達比状態とし、ステアリングホイール12の戻し時はステアリングホイール12と車輪20との接続を解除して伝達比をゼロにする伝達比ゼロ状態とする。

Description

転舵装置
 本発明は、転舵装置に関し、特に、伝達比可変機構を備えた転舵装置に関する。
 従来より、ステアリングホイールの操舵角に対する車輪の転舵角の比である伝達比を電動モータを用いて変化させる伝達比可変装置が提案されている(例えば、特許文献1参照)。このような伝達比可変装置を用いることで、ステアリングホイールの操舵角に対する車輪の転舵角を状況に応じて変化させることができる。
特開2010-215067号公報
 車両停車中にステアリングホイールを操舵する、いわゆる据え切り時には、運転手は大きな力を必要とする。しかしながら、上述の特許文献に記載された技術では、据え切り時において操舵トルクに応じて電動パワーステアリング装置が作動することから、必要な補助力を発生させるために大きなパワーステアリング用モータを使用する必要が生じる。このため、パワーステアリング用モータの小型化、低コスト化、または削除が困難であった。
 そこで、本発明は上述した課題を解決するためになされたものであり、その目的は、パワーステアリング用モータの小型化、低コスト化、または削除を実現することにある。
 上記課題を解決するために、本発明のある態様の転舵装置は、ステアリングホイールの操舵角に対する車輪の転舵角の比である伝達比を変化させる伝達比可変機構を備える。前記伝達比可変機構は、前記ステアリングホイールが所定車速未満で操舵された場合、前記ステアリングホイールの切り増し時は前記所定車速以上で操舵される場合に比べて前記伝達比を低下させ、前記ステアリングホイールの戻し時は切り増し時に比べて前記伝達比を低下させる。
 この態様によれば、伝達比を小さくして据え切ることができる。また、ステアリングホイールの戻し時は切り増し時に比べて伝達比を低下させるため、ステアリングホイールの切り増し操舵と戻し操舵を繰り返すことにより、車輪を大きく転舵させることができる。
 前記伝達比可変機構は、前記ステアリングホイールが前記所定車速未満で戻された場合、戻し開始時の前記車輪の角度まで前記所定車速以上で転舵させるために前記ステアリングホイールが位置すべき通常操舵角度に達するまで切り増し時に比べて前記伝達比を低下させてもよい。
 この態様によれば、車輪を逆方向に転舵させることなく通常操舵角度までステアリングホイールを簡易に戻すことができる。このため、所定車速以上となってステアリングホイールを通常操舵角度に戻すときの違和感を抑制することができる。
 前記伝達比可変機構は、前記ステアリングホイールを少なくとも戻す方向に回転可能に設けられ、前記所定車速未満で前記ステアリングホイールへの操舵力が解除された場合、前記通常操舵角度に達するまで前記ステアリングホイールを戻してもよい。
 この態様によれば、運転者はステアリングホイールを放すだけでステアリングホイールを通常操舵角度まで戻すことができる。このため、通常操舵条件を満たして伝達比が高くなるときの違和感をより適切に抑制することができる。
 本発明によれば、パワーステアリング用モータの小型化、低コスト化、または削除を実現することができる。
(a)および(b)は、本実施形態に係る転舵装置の構成を示す図である。 (a)は、通常伝達比状態の伝達比可変機構を示す図である。 本実施形態に係る転舵装置による操舵制御の実行手順を示すフローチャートである。 図3におけるS12の据え切りモード制御の実行手順を詳細に示すフローチャートである。 図4におけるS22の据え切り時操舵制御の実行手順を示すフローチャートである。 図4におけるS24の据え切り時非操舵制御の実行手順を示すフローチャートである。 (a)は、車輪が徐々に転舵される様子を示す図である。(b)は、通常モード中に(a)に示す車輪の転舵角を実現するためのステアリングホイールの操舵角を示す図である。(c)は、(a)に示す車輪の転舵角を実現するためのステアリングホイールの操舵角を示す図である。 (a)は、据え切りモード中においてステアリングホイールが切り増されたときのとステアリングホイール角度θsに対するメインシャフト角度θmおよびリングギア角度θrを示す図である。(b)は、(a)の状態からステアリングホイールが放されたときのステアリングホイール角度θsに対するメインシャフト角度θmおよびリングギア角度θrを示す図である。
 以下、図面を参照して本発明の実施の形態(以下、「実施形態」という。)について詳細に説明する。
 図1(a)および図1(b)は、本実施形態に係る転舵装置10の構成を示す図である。図1(a)は、転舵装置10の主要な構成の斜視図を示しており、図1(b)は、転舵装置10の構成を模式的に示している。
 転舵装置10は、転舵装置10は、ステアリングホイール12の操舵角度に応じて車輪20を転舵させる装置であり、ステアリングホイール12、ステアリングシャフト14、メインシャフト16、伝達比可変機構18、および転舵機構19を有する。
 伝達比可変機構18は、ステアリングホイール12の操舵角に対する車輪20の転舵角の比である伝達比を変化させる。伝達比可変機構18は、サンギア22、遊星ギア24、リングギア26、第1ディスク28、第2ディスク30、シャフト32、第1回転部材40、ドラム42、固定部材44、第1クラッチ50、第2クラッチ52、第2回転部材54、固定部材56、第3クラッチ58、戻し機構60、および電子制御ユニット(以下、「ECU」という)100を有する。
 ステアリングシャフト14の上端は、ステアリングホイール12に同軸に固定されている。ステアリングシャフト14の下端は、サンギア22に同軸に固定されている。サンギア22には、同一形状の複数の遊星ギア24が噛み合っている。さらにその外周を囲う様に、複数の遊星ギア24にリングギア26が噛み合っている。本実施形態では、4つの遊星ギア24が用いられている。なお、遊星ギア24の数が2つに限られないことは勿論である。
 複数の遊星ギア24の各々は、シャフト32が同軸に貫通して固定されている。サンギア22の上方には第1ディスク28がステアリングシャフト14と同軸且つステアリングシャフト14に対して回転可能に配置されている。複数のシャフト32の各々の上端は、この第1ディスク28に回転可能に支持されている。サンギア22の下方には第2ディスク30がサンギア22と同軸に回転可能に配置されている。複数のシャフト32の各々の上端は、この第2ディスク30に回転可能に支持されている。
 第2ディスク30には、メインシャフト16の上端が同軸に固定されている。メインシャフト16は、下端が転舵機構19に接続されている。転舵機構19は、メインシャフト16の回転運動を転舵対象となる車輪20の転舵運動に変換する。転舵機構19の構成は公知であるため、その詳細な構造についての説明は省略する。
 ステアリングシャフト14には、第1回転部材40が固定されている。リングギア26には、ドラム42が固定されている。この第1回転部材40とドラム42との間に第1クラッチ50が設けられている。車両本体には、固定部材44が固定されている。固定部材44とドラム42との間には、第2クラッチ52が設けられている。メインシャフト16には、第2回転部材54が固定されている。車両本体には、固定部材56が固定されている。第2回転部材54と固定部材56との間には、第3クラッチ58が設けられている。
 第1クラッチ50がオンになると、第1回転部材40とドラム42とがともに回転するよう両者が固定される。第1クラッチ50がオフになると、第1回転部材40とドラム42とが相対的に回転可能となる。第2クラッチ52がオンになると、ドラム42と固定部材44とがともに回転するよう両者が固定される。第1クラッチ50がオフになると、ドラム42と固定部材44とが相対的に回転可能となる。第3クラッチ58がオンになると、第2回転部材54と固定部材56とがともに回転するよう両者が固定される。第3クラッチ58がオフになると、第2回転部材54と固定部材56とが相対的に回転可能となる。
 第1クラッチ50、第2クラッチ52、および第3クラッチ58は、それぞれ電ECU100に接続されている。ECU100は、第1クラッチ50、第2クラッチ52、および第3クラッチ58のオン、オフを制御する。なお、第1クラッチ50、第2クラッチ52、および第3クラッチ58のように、オン、オフすることで接続および接続解除が可能なクラッチは公知であるため、これらの構成についての詳細な説明は省略する。
 ステアリングシャフト14には、戻し機構60が取り付けられている。戻し機構60は、ステアリングホイール12を戻す方向に回転させる。戻し機構60は、モータ62、モータギア64、およびギア66を有する。ギア66は、ステアリングシャフト14が挿入され固定されている。モータギア64は、モータ62のモータ軸に固定されている。モータギア64とギア66とは噛み合っている。
 これにより、伝達比可変機構18によってステアリングシャフト14と車輪20との接続が解除され伝達比がゼロに設定されたときには、モータ62を作動させることでステアリングシャフト14を回転させることが可能となる。
 本実施形態では、ECU100は、第1クラッチ50、第2クラッチ52、および第3クラッチ58のオン、オフを制御することで、通常伝達比状態、低伝達比状態、および伝達比ゼロ状態のいずれかに移行させる。車輪20の転舵角とメインシャフト16の回転角は比例するため、以下、ステアリングホイール12の操舵角に対するメインシャフト16の回転角の比を「伝達比」として説明する。なお、本実施形態において「操舵角」は、車両直進時に位置すべきステアリングホイール12の初期位置からのステアリングホイール12の回転角度をいうものとする。
 通常伝達比状態では、伝達比は1に設定される。すなわち、通常伝達比状態では、メインシャフト16はステアリングホイール12の操舵角と同一角度回転する。低伝達比状態では、伝達比は1/3に設定される。したがって、ステアリングホイール12の操舵角の1/3の角度だけメインシャフト16が回転する。伝達比ゼロ状態では、伝達比はゼロに設定される。したがって、ステアリングシャフト14とメインシャフト16との接続が解除され、ステアリングシャフト14を操舵してもメインシャフト16は回転しない。以下、図2(a)~図2(c)に関連して、通常伝達比状態、低伝達比状態、および伝達比ゼロ状態について詳細に説明する。
 図2(a)は、通常伝達比状態の伝達比可変機構18を示す図である。通常伝達比状態では、ECU100は、第1クラッチ50をオン、第2クラッチ52をオフ、第3クラッチ58をオフにする。これにより、第1回転部材40、ドラム42を介してステアリングシャフト14とリングギア26とが固定される。ステアリングシャフト14とサンギア22とはもともと固定されているため、サンギア22とリングギア26との両者に噛み合っている複数の遊星ギア24も、ステアリングシャフト14の操舵角と同一角度、サンギア22の軸を中心に公転する。メインシャフト16は、シャフト32および第2ディスク30を介して複数の遊星ギア24の公転角度と同一角度回転する。したがって、メインシャフト16は、ステアリングシャフト14の操舵角と同一角度回転し、通常伝達比状態における伝達比は1となる。
 図2(b)は、低伝達比状態の伝達比可変機構18を示す図である。低伝達比状態では、ECU100は、第1クラッチ50をオフ、第2クラッチ52をオン、第3クラッチ58をオフにする。これにより、リングギア26はドラム42および固定部材44を介して車両本体に固定されるため、回転不能となる。このため、ステアリングシャフト14が回転すると、サンギア22が回転するがリングギア26が回転せず、サンギア22とリングギア26との間にある複数の遊星ギア24が自転しながらサンギア22の周りを公転する。
 本実施形態では、リングギア26が固定されているとき、サンギア22が1回転する間に複数の遊星ギア24が1/3回転するよう、それぞれのギアの諸元が設定されている。上述のように、複数の遊星ギア24の公転角度がメインシャフト16の回転角となる。このため、ステアリングシャフト14の操舵角の1/3だけメインシャフト16が回転し、低伝達比状態における伝達比は1/3となる。
 図2(c)は、伝達比ゼロ状態の伝達比可変機構18を示す図である。伝達比ゼロ状態では、ECU100は、第1クラッチ50をオフ、第2クラッチ52をオフ、第3クラッチ58をオンにする。これにより、メインシャフト16が第2回転部材54および固定部材56を介して車両本体に固定され、回転不能となる。したがって、複数の遊星ギア24は、自転は可能だが公転が不能となる。一方、リングギア26は車両本体にもステアリングシャフト14にも固定されない状態となる。このため、ステアリングシャフト14を回転させると、複数の遊星ギア24は、公転せずに自転するため、リングギア26はサンギア22の回転方向と逆方向に空転することになる。したがって、ステアリングシャフト14の操舵角に対してメインシャフト16の回転角はゼロになり、伝達比ゼロ状態における伝達比はゼロとなる。
 なお、伝達比可変機構18は、伝達比ゼロ状態に代えて、ステアリングホイール12の戻し時は切り増し時に比べて伝達比を低下させる第2低伝達比状態としてもよい。例えば伝達比可変機構18に第2遊星ギヤ機構が第2低伝達比状態用に設けられ、第2低伝達比状態では、この第2遊星ギヤ機構を用いて、ステアリングホイール12の戻し時に切り増し時に比べて伝達比を低下させてもよい。
 ここで、据え切り時は、通常伝達比状態のように伝達比が高いと、電動パワーステアリング装置などを用いて操舵力を補助しなければ運転者はステアリングホイール12を操舵するために大きな力が必要となる。これに対し、伝達比可変装置を用いて、据え切り時に伝達比を低下させる対応も考えられる。しかし、伝達比を低下させるとステアリングホイール12の限界操舵角まで操舵しても車輪20を大きく転舵させることが困難となる。
 このため、本実施形態では、伝達比可変機構18は、ステアリングホイール12が所定車速未満で操舵された場合、ステアリングホイール12の切り増し時は所定車速以上で操舵される場合に比べて伝達比を低下させ、ステアリングホイール12の戻し時は切り増し時に比べて伝達比を低下させる。具体的には、伝達比可変機構18は、ステアリングホイール12が据え切りされたと判定するために満たすべき所定の据え切り条件を満たすか、ステアリングホイール12が車両走行中に操舵されたと判定するために満たすべき所定の通常操舵条件を満たすかを判定する。本実施形態では、所定速度未満のときに据え切り条件を満たすと判定し、所定速度以上のときに通常操舵条件を満たすと判定する。なお、据え切り条件および通常操舵条件がこれに限定されないことは勿論である。据え切り条件を満たす場合、伝達比可変機構18は、ステアリングホイール12の切り増し時は通常操舵条件を満たす場合に比べて伝達比を低下させ、ステアリングホイール12の戻し時はステアリングホイール12と車輪20との接続を解除して伝達比をゼロにする。以下、フローチャートに関連してこの伝達比制御について詳細に説明する。
 図3は、本実施形態に係る転舵装置10による操舵制御の実行手順を示すフローチャートである。転舵装置10が搭載される車両の車輪20近傍には、車輪20の回転速度を検出することで車速を検出する車速センサ(図示せず)が設けられている。ECU100は、車速センサの検出結果を取得し、車速がゼロ、または車両が停止中とみなせる所定速度未満か否かを判定することで車両停止中か否かを判定する(S10)。
 車両停止中の場合(S10のY)、ECU100は、据え切り条件を満たしたと判定し、据え切りモード制御を実行する。車両走行中の場合(S10のN)、ECU100は、通常操舵条件を満たしたと判定し、通常モード制御を実行する。この通常モード制御では、ECU100は、第1クラッチ50をオン、第2クラッチ52をオフ、第3クラッチ58をオフにして伝達比可変機構18を通常伝達比状態とする。
 図4は、図3におけるS12の据え切りモード制御の実行手順を詳細に示すフローチャートである。ステアリングシャフト14には、ステアリングシャフト14の操舵角を検出する舵角センサ(図示せず)が設けられている。ECU100は、舵角センサの検出結果を取得する。ECU100は、舵角センサの検出結果を用いてステアリングホイール12が操舵されたか否かを判定する(S20)。ステアリングホイール12が操舵されている場合(S20のY)、ECU100は、据え切り時操舵制御を実行する(S22)。操舵されていない場合(S20のN)、ECU100は、据え切り時非操舵制御を実行する(S24)。
 図5は、図4におけるS22の据え切り時操舵制御の実行手順を示すフローチャートである。据え切り時操舵制御では、ECU100は、舵角センサの検出結果を用いて、ステアリングホイール12が切り増しされたか戻されたかを判定する(S50)。ステアリングホイール12が切り増しされた場合(S50のY)、ECU100は、第1クラッチ50をオフ、第2クラッチ52をオン、第3クラッチ58をオフにして伝達比可変機構18を低伝達比状態とする(S52)。
 以下、通常伝達比状態においてステアリングホイール12が操舵されたときの、車輪20の転舵角に対応するステアリングホイール12の操舵角を通常操舵角度という。ステアリングホイール12が戻された場合(S50のN)、ECU100は、そのときのステアリングホイール12の操舵角が通常操舵角以上か否かを判定する(S54)。
 通常操舵角以上の場合(S54のY)、ECU100は、第1クラッチ50をオフ、第2クラッチ52をオフ、第3クラッチ58をオンにして伝達比可変機構18を伝達比ゼロ状態とする(S56)。このように伝達比可変機構18は、据え切り条件を満たすときにステアリングホイール12が戻された場合、ステアリングホイール12の戻し開始時の車輪20の角度まで通常操舵条件を満たすときに転舵させるためにステアリングホイール12が位置すべき通常操舵角度に達するまで、伝達比をゼロにする。これにより、運転者は、低伝達比状態でステアリングホイール12を切り増し、伝達比ゼロ状態でステアリングホイール12を戻すことができる。このため、切り増しと戻しを繰り返すことで、通常伝達比状態よりも低い操舵力でステアリングホイール12を大きく転舵させることが可能となる。
 通常操舵角以上でない場合(S54のN)、ECU100は、第1クラッチ50をオフ、第2クラッチ52をオン、第3クラッチ58をオフにして伝達比可変機構18を低伝達比状態とする(S52)。したがって、通常操舵角度より小さい角度までステアリングホイール12を戻そうとする場合、伝達比ゼロ状態ではなく低伝達比状態になるため、車輪20の転舵角を低伝達比状態で戻すことができる。
 図6は、図4におけるS24の据え切り時非操舵制御の実行手順を示すフローチャートである。ECU100は、そのときのステアリングホイール12の操舵角が通常操舵角より大きいか否かを判定する(S80)。
 通常操舵角より大きいの場合(S80のY)、ECU100は、第1クラッチ50をオフ、第2クラッチ52をオフ、第3クラッチ58をオンにして伝達比可変機構18を伝達比ゼロ状態とする(S82)。次にECU100は、戻し機構60を作動させてステアリングホイール12を通常操舵角まで戻す(S84)。このようにECU100は、据え切りモード中にステアリングホイール12への操舵力が解除された場合、通常操舵角度に達するまでステアリングホイール12を戻す。これにより、車両が走行開始したときに通常モードに円滑に移行させることができる。ステアリングホイール12の操舵角がすでに通常操舵角となっている場合(S80のN)、ECU100は、S82およびS84をスキップしてステアリングホイール12の戻し動作を回避する。
 図7(a)は、車輪20が徐々に転舵される様子を示す図である。図7(b)は、通常モード中に図7(a)に示す車輪20の転舵角を実現するためのステアリングホイール12の操舵角を示す図である。このように通常モード中は、ステアリングホイール12を大きく操舵することなく車輪20を転舵させることができる。
 図7(c)は、図7(a)に示す車輪20の転舵角を実現するためのステアリングホイール12の操舵角を示す図である。このように据え切りモード中は、通常モードと同様に車輪20を転舵させるためにはステアリングホイール12を大きく操舵する必要がある。しかし、その分小さい操舵力でステアリングホイール12を操舵することができる。また、運転者は、ステアリングホイール12を操舵後にステアリングホイール12を放すだけで、通常モード中であれば位置すべきステアリングホイール12の操舵角である通常操舵角度までステアリングホイール12を自動的に戻すことができる。このため、ステアリングホイール12を通常操舵角度に位置させる頻度を高めることができ、車両が走行開始しても通常モードへ円滑に移行させることができる。
 図8(a)は、据え切りモード中においてステアリングホイール12が切り増されたときのとステアリングホイール角度θsに対するメインシャフト角度θmおよびリングギア角度θrを示す図である。図8(a)および(b)において、θsはステアリングホイール角度、θmはメインシャフト角度、θrはリングギア角度を示している。ステアリングホイール角度θsは、車両直進時の初期位置からのステアリングホイール12の操舵角をいう。メインシャフト角度θmは、車両直進時の初期位置からのメインシャフト16の回転角をいう。また、車両直進時の初期位置からのリングギア26の回転角をいう。
 また、ラインL1は、通常伝達比状態でのステアリングホイール角度θsとメインシャフト角度θmとの関係を示す。ラインL2は、低伝達比状態でのステアリングホイール角度θsとメインシャフト角度θmとの関係を示す。ラインL3は、通常伝達比状態でのステアリングホイール角度θsとリングギア角度θrとの関係を示す。
 図8(a)に示すように、ステアリングホイール12を操舵してステアリングホイール角度θsが限界操舵角以下の第1操舵角θs1まで増加する間、ステアリングホイール角度θsとメインシャフト角度θmとの関係A1はラインL2に沿って移行する。したがってメインシャフト角度θmは、通常モード中を示すL1に比べて1/3の角度回転し、運転手はその分だけ小さい操舵力でステアリングホイール12を操舵できる。一方、ステアリングホイール角度θsが限界操舵角以下の第1操舵角θs1まで増加する間、リングギア26はロックされているため、ステアリングホイール角度θsとリングギア角度θrとの関係B1は、リングギア角度θrがゼロのまま横軸と平行に移動する。
 図8(b)は、図8(a)の状態からステアリングホイール12が放されたときのステアリングホイール角度θsに対するメインシャフト角度θmおよびリングギア角度θrを示す図である。
 ステアリングホイール角度θsが第1操舵角θs1まで増加した後、ステアリングホイール12が放されると、戻し機構60は、ステアリングホイール12を戻す方向に回転させるため、ステアリングホイール角度θsは減少する。このときメインシャフト16はロックされメインシャフト角度θmが変化しないため、ステアリングホイール角度θsとメインシャフト角度θmとの関係A2は横軸と平行になる。A2がラインL1に到達したときにステアリングホイール角度θsが通常操舵角度に達するため、このときの第2操舵角θs2で戻し機構60によるステアリングホイール12の戻し動作が停止する。
 ステアリングホイール12が放されると、伝達比ゼロ状態となってリングギア26のロックが解除されるため、ステアリングホイール角度θsとリングギア角度θrとの関係B2は、ステアリングホイール角度θsが第2操舵角θs2に達したときにラインL3と交差するよう直線的に変化する。さらに車輪20を転舵させたい場合、運転者は、ステアリングホイール12の切り増した後にステアリングホイール12を放してステアリングホイール12と通常操舵角度まで戻す動作を繰り返すことで、車輪20をさらに転舵角させることができる。
 本発明は上述の実施形態に限定されるものではなく、本実施形態の各要素を適宜組み合わせたものも、本発明の実施形態として有効である。また、当業者の知識に基づいて各種の設計変更等の変形を本実施形態に対して加えることも可能であり、そのような変形が加えられた実施形態も本発明の範囲に含まれうる。
 10 転舵装置、 12 ステアリングホイール、 14 ステアリングシャフト、 16 メインシャフト、 18 伝達比可変機構、 19 転舵機構、 20 車輪、 22 サンギア、 24 遊星ギア、 26 リングギア、 28 第1ディスク、 30 第2ディスク、 32 シャフト、 40 第1回転部材、 42 ドラム、 44 固定部材、 50 第1クラッチ、 52 第2クラッチ、 54 第2回転部材、 56 固定部材、 58 第3クラッチ、 100 ECU。
 本発明は、転舵装置に利用可能であり、特に、伝達比可変機構を備えた転舵装置に利用可能である。

Claims (3)

  1.  ステアリングホイールの操舵角に対する車輪の転舵角の比である伝達比を変化させる伝達比可変機構を備え、
     前記伝達比可変機構は、前記ステアリングホイールが所定車速未満で操舵された場合、前記ステアリングホイールの切り増し時は前記所定車速以上で操舵される場合に比べて前記伝達比を低下させ、前記ステアリングホイールの戻し時は切り増し時に比べて前記伝達比を低下させることを特徴とする転舵装置。
  2.  前記伝達比可変機構は、前記ステアリングホイールが前記所定車速未満で戻された場合、戻し開始時の前記車輪の角度まで前記所定車速以上で転舵させるために前記ステアリングホイールが位置すべき通常操舵角度に達するまで切り増し時に比べて前記伝達比を低下させることを特徴とする請求項1に記載の転舵装置。
  3.  前記伝達比可変機構は、前記ステアリングホイールを少なくとも戻す方向に回転可能に設けられ、前記所定車速未満で前記ステアリングホイールへの操舵力が解除された場合、前記通常操舵角度に達するまで前記ステアリングホイールを戻すことを特徴とする請求項2に記載の転舵装置。
PCT/JP2011/007182 2011-12-21 2011-12-21 転舵装置 WO2013093972A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/365,966 US9428209B2 (en) 2011-12-21 2011-12-21 Steering device
CN201180075782.XA CN104010919B (zh) 2011-12-21 2011-12-21 转向装置
PCT/JP2011/007182 WO2013093972A1 (ja) 2011-12-21 2011-12-21 転舵装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/007182 WO2013093972A1 (ja) 2011-12-21 2011-12-21 転舵装置

Publications (1)

Publication Number Publication Date
WO2013093972A1 true WO2013093972A1 (ja) 2013-06-27

Family

ID=48667904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/007182 WO2013093972A1 (ja) 2011-12-21 2011-12-21 転舵装置

Country Status (3)

Country Link
US (1) US9428209B2 (ja)
CN (1) CN104010919B (ja)
WO (1) WO2013093972A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4528008Y1 (ja) * 1966-06-24 1970-10-28
JPS4946430U (ja) * 1972-07-27 1974-04-23
JPS53140464A (en) * 1977-05-13 1978-12-07 Toyota Motor Corp Variable device of steering gear ratio
JPS62178474A (ja) * 1986-01-30 1987-08-05 Mazda Motor Corp 自動車のステアリング装置
JPH02246868A (ja) * 1989-03-17 1990-10-02 Sadayoshi Itou ステアリングトルク切換装置
JPH02293257A (ja) * 1989-05-01 1990-12-04 Sadayoshi Itou ステアリングトルク切換装置
JP2005297808A (ja) * 2004-04-13 2005-10-27 Toyota Motor Corp 車両用操舵制御装置
JP2008013005A (ja) * 2006-07-04 2008-01-24 Jtekt Corp 車両用操舵装置
JP2009029387A (ja) * 2007-07-31 2009-02-12 Nissan Motor Co Ltd 車両用操舵制御装置
JP2010167842A (ja) * 2009-01-21 2010-08-05 Honda Motor Co Ltd 車両用操舵装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2866302B2 (ja) * 1994-03-18 1999-03-08 本田技研工業株式会社 車両用可変舵角比操舵装置
SE526240C2 (sv) * 2003-12-17 2005-08-02 Volvo Bussar Ab Förfarande och datorprodukt vid ett styrsystem hos ett fordon
KR100589160B1 (ko) * 2003-12-17 2006-06-12 현대자동차주식회사 조향기어비 가변장치
JP4400270B2 (ja) * 2004-03-19 2010-01-20 日産自動車株式会社 車両の舵角比制御装置
JP4492230B2 (ja) * 2004-07-06 2010-06-30 日産自動車株式会社 車両用操舵制御装置
JP4506386B2 (ja) 2004-09-29 2010-07-21 日産自動車株式会社 車両用操舵装置
GB2419332A (en) * 2004-10-22 2006-04-26 Gibbs Tech Ltd Steering arrangement with retractable wheels
JP4254777B2 (ja) * 2005-11-11 2009-04-15 トヨタ自動車株式会社 車輌用操舵制御装置
JP4669800B2 (ja) * 2006-03-09 2011-04-13 日立オートモティブシステムズ株式会社 パワーステアリング装置
JP4678524B2 (ja) * 2006-05-15 2011-04-27 株式会社ジェイテクト 車両用操舵装置
JP4902309B2 (ja) * 2006-10-13 2012-03-21 日立オートモティブシステムズ株式会社 ステアリング装置
DE602008002674D1 (de) * 2007-10-19 2010-11-04 Honda Motor Co Ltd Lenksystem
JP5171487B2 (ja) * 2008-09-02 2013-03-27 本田技研工業株式会社 ステアリング装置
JP2010215067A (ja) 2009-03-16 2010-09-30 Toyota Motor Corp 車両の舵角比可変装置
DE102009027342A1 (de) * 2009-06-30 2011-01-05 Zf Friedrichshafen Ag Überlagerungsgetriebe für ein Lenksystem
DE102009028181B4 (de) * 2009-08-03 2016-01-28 Ford Global Technologies, Llc Pull-Drift-Kompensation mittels AFS
JP4877384B2 (ja) * 2009-12-01 2012-02-15 トヨタ自動車株式会社 操舵装置
KR101526796B1 (ko) * 2014-04-01 2015-06-05 현대자동차주식회사 능동 전륜 조향 장치의 캐치업 방지 방법 및 이에 사용되는 장치

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4528008Y1 (ja) * 1966-06-24 1970-10-28
JPS4946430U (ja) * 1972-07-27 1974-04-23
JPS53140464A (en) * 1977-05-13 1978-12-07 Toyota Motor Corp Variable device of steering gear ratio
JPS62178474A (ja) * 1986-01-30 1987-08-05 Mazda Motor Corp 自動車のステアリング装置
JPH02246868A (ja) * 1989-03-17 1990-10-02 Sadayoshi Itou ステアリングトルク切換装置
JPH02293257A (ja) * 1989-05-01 1990-12-04 Sadayoshi Itou ステアリングトルク切換装置
JP2005297808A (ja) * 2004-04-13 2005-10-27 Toyota Motor Corp 車両用操舵制御装置
JP2008013005A (ja) * 2006-07-04 2008-01-24 Jtekt Corp 車両用操舵装置
JP2009029387A (ja) * 2007-07-31 2009-02-12 Nissan Motor Co Ltd 車両用操舵制御装置
JP2010167842A (ja) * 2009-01-21 2010-08-05 Honda Motor Co Ltd 車両用操舵装置

Also Published As

Publication number Publication date
US9428209B2 (en) 2016-08-30
CN104010919B (zh) 2016-08-24
CN104010919A (zh) 2014-08-27
US20140360311A1 (en) 2014-12-11

Similar Documents

Publication Publication Date Title
JP4930751B2 (ja) ステアリング装置
JP2008068758A (ja) 車両用操舵装置
JP4678524B2 (ja) 車両用操舵装置
KR102262140B1 (ko) 스티어 바이 와이어 시스템용 조향장치
JP2005112025A (ja) 操舵制御装置
WO2014068633A1 (ja) クラッチ装置、車両用操舵装置
JP5618014B2 (ja) 転舵装置
WO2013093972A1 (ja) 転舵装置
JP2007099144A (ja) 操舵装置
JP2007313958A (ja) ステアリング装置
JP2005112013A (ja) 車両用操舵装置
JP2007145070A (ja) 車両用駆動輪構造
JP4734945B2 (ja) 車両用操舵装置
JP2004017768A (ja) 車両用操舵装置
JP2009248762A (ja) 車両用操舵装置
JP2008168679A (ja) ステアリング装置
JP2008074368A (ja) 車両用操舵装置
JP2007083848A (ja) 車両用ステアリングシステム
JP5826146B2 (ja) 無段変速機の制御装置
JP2005262992A (ja) ステアリング装置
JP2008207783A (ja) 車両用操舵装置
JP2004224096A (ja) 電動パワーステアリング装置
JP2009056888A (ja) 車両用操舵装置
JP2004114856A (ja) 車両用操舵装置
JP2006290250A (ja) 車輌用可変舵角装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11878186

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013549955

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14365966

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11878186

Country of ref document: EP

Kind code of ref document: A1