WO2013093962A1 - 車両の制御装置 - Google Patents

車両の制御装置 Download PDF

Info

Publication number
WO2013093962A1
WO2013093962A1 PCT/JP2011/007117 JP2011007117W WO2013093962A1 WO 2013093962 A1 WO2013093962 A1 WO 2013093962A1 JP 2011007117 W JP2011007117 W JP 2011007117W WO 2013093962 A1 WO2013093962 A1 WO 2013093962A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
coasting
ecu
inertial
current position
Prior art date
Application number
PCT/JP2011/007117
Other languages
English (en)
French (fr)
Inventor
貴一 本園
庄野 彰一
上田 晃宏
種甲 金
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CN201180075211.6A priority Critical patent/CN104024075A/zh
Priority to PCT/JP2011/007117 priority patent/WO2013093962A1/ja
Priority to EP11878114.5A priority patent/EP2796332B1/en
Priority to US14/365,426 priority patent/US9073549B2/en
Priority to JP2013549945A priority patent/JP5846218B2/ja
Publication of WO2013093962A1 publication Critical patent/WO2013093962A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/184Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • B60W2030/1809Without torque flow between driveshaft and engine, e.g. with clutch disengaged or transmission in neutral
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/0075Automatic parameter input, automatic initialising or calibrating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/12Brake pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/18Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/15Road slope
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/20Road profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/30Road curve radius
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/10Historical data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/50External transmission of data to or from the vehicle for navigation systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a vehicle control device capable of coasting when not driven.
  • Patent Document 1 a driving system that instructs the driver to execute the operation of the accelerator pedal and the brake pedal according to the gradient of the road ahead
  • the driving system described in Patent Document 1 is input from vehicle position specifying means for specifying the current position of the vehicle, gradient information storage means for storing road gradient information, vehicle position specifying means, and gradient information storage means. Determining means for determining a driving mode for improving fuel efficiency based on the signal, and the determining means determines the timing of an accelerator operation and a brake operation for improving the fuel efficiency and notifies the driver.
  • the determining unit obtains information indicating the gradient of the road ahead of the current position of the vehicle from the gradient information storage unit, and determines the optimal timing when the driver steps on the accelerator pedal or the brake pedal. Fuel consumption is improved.
  • a driving mode for improving fuel efficiency is determined and transmitted from the power source to the driving wheels. It is also conceivable to further improve fuel efficiency by shutting off the power and allowing the vehicle to coast.
  • Patent Document 1 is designed to determine an optimal driving mode based on the vehicle travel position and the gradient information, the road gradient is maintained regardless of road conditions other than the road gradient. In the case of being similar, the same operation mode is determined as the optimum one.
  • the present invention has been made to solve the above-described conventional problems, and an object of the present invention is to provide a vehicle control device that can improve fuel efficiency without causing the driver to feel uncomfortable.
  • a control device is a vehicle control device capable of stopping transmission of power from a power source to driving wheels during traveling, and a position specifying unit for specifying the current position of the vehicle
  • a road information storage unit that stores road information indicating a road including the identified current position in association with a road condition of the road, and the power source based on the road information for a road ahead of the current position.
  • An inertial travel execution unit that stops the transmission of power from the vehicle to the drive wheel and coasts the vehicle, a driving operation detection unit that detects at least a driving operation that indicates interruption and start of the inertial traveling, and the inertial traveling When a driving operation to be interrupted is detected, an interruption information storage that stores information indicating that the current position and the inertial traveling are interrupted in association with the road information in the road information storage unit If, based on the interruption information stored information stored by the unit, characterized in that it and a coasting prohibition unit that prohibits coasting in a predetermined section including the current position.
  • the control device stores the information in association with the position information when inertial running is interrupted by the driver's operation. Can do.
  • the driver does not desire inertial driving, such as when the road width in front of the current position is narrowed, and the brake operation is performed.
  • information indicating prohibition of inertial traveling is stored, and execution of inertial traveling can be avoided when traveling in a section including the current position after the next time. Therefore, the control device can improve fuel efficiency by executing inertial running, and can also prevent the inertial running that gives the driver a sense of discomfort.
  • the inertial travel prohibition unit includes a predetermined section including the current position on condition that the number of pieces of information indicating that the inertial travel associated with the current position is interrupted is equal to or greater than a predetermined value.
  • the vehicle is prohibited from coasting.
  • the control device can prevent inertial traveling in a section including the current position from being prohibited when the number of times inertial traveling is interrupted at the current position is less than a predetermined number. Therefore, even if the driver originally desires inertial driving at the current position but the brake is operated and the inertial driving is interrupted due to an interruption of another vehicle, the section including the current position In this way, it is possible to prevent the inertia running from being prohibited.
  • the driving operation detection unit detects at least one of an operation amount of an accelerator pedal, an operation amount of a brake pedal, and an operation amount of a steering wheel.
  • the control device determines whether or not the driver has interrupted inertial driving based on the operation amount of the accelerator pedal, the brake pedal, or the steering wheel operated by the driver. be able to. Therefore, the inertial traveling prohibition unit can prohibit the inertial traveling from being performed in the future section where the driver does not want inertial traveling.
  • the road condition is at least one of a gradient and a curvature of the road.
  • control device can inhibit inertial traveling based on the slope and curvature of the road that affect whether the driver feels uncomfortable with inertial traveling.
  • the inertial travel prohibition unit cancels the prohibition of the inertial travel in a predetermined section including the current position when a driving operation indicating the start of the inertial travel is detected while the inertial travel is prohibited. It is characterized by doing.
  • the control device cancels the prohibition of inertial driving when the driver performs a driving operation that desires inertial driving in a section where inertial driving is prohibited due to a previous driving operation. By doing so, inertial running in the section can be resumed.
  • the inertial travel prohibition unit stores, in the road information storage unit, a duration of the inertial travel in a predetermined section including the current position when the inertial travel is interrupted, and stores a plurality of accumulated In the case where the average value of the duration of inertial traveling is equal to or less than a predetermined value, inertial traveling in a predetermined section including the current position is prohibited.
  • the control device when the average value of the durations of a plurality of inertial travels associated with the current position is equal to or less than a predetermined value, the control device according to the present invention can inertia only for a short time in the section including the current position. There is a possibility that the fuel consumption is worsened by executing the traveling than when the inertia traveling is not performed. Therefore, the control device can inhibit inertial running in the section including the current position, and can prevent deterioration in fuel consumption of the vehicle.
  • the inertial traveling execution unit ends the inertial traveling when it is determined that the traveling state of the vehicle does not satisfy a predetermined condition for permitting inertial traveling.
  • control device can end inertial traveling according to the traveling state of the vehicle. Therefore, the inertial running can be terminated before the driver feels uncomfortable with the inertial running and executes the driving operation for interrupting the inertial running.
  • the power source is constituted by an internal combustion engine
  • the vehicle includes a transmission between the internal combustion engine and the drive wheel
  • the inertia traveling execution unit is configured to transmit power to the drive wheel by the transmission.
  • the vehicle is coasted by stopping the transmission of the vehicle.
  • control device can switch whether or not the inertial running is performed in a vehicle having an internal combustion engine as a power source depending on whether or not the transmission is in a neutral state.
  • the power source is configured by an internal combustion engine and a rotating electrical machine that can be regenerated when the vehicle is not driven, and the inertia traveling execution unit stops the regeneration by stopping the regeneration by the rotating electrical machine when the vehicle is not driven. It is made to run.
  • the control device can switch whether or not to perform inertial traveling according to the traveling state and driving state of a vehicle even in a hybrid vehicle including an internal combustion engine and a rotating electric machine as power sources. . Therefore, by executing the regeneration, the actual braking distance becomes shorter than the driver's desired braking distance, and the driver operates the accelerator pedal, so that the fuel consumption can be prevented from deteriorating.
  • FIG. 1 is a skeleton diagram showing a configuration of a vehicle control device according to an embodiment of the present invention. It is an operation
  • control device according to the present invention is applied to an FR (Front-engine-Rear-drive) vehicle equipped with an automatic transmission will be described.
  • the vehicle 1 includes an engine 2, a torque converter 3 that increases the rotational torque output by the engine 2, and a speed change mechanism that outputs the rotational speed of the output shaft of the torque converter 3 by changing the speed. , And the rotational torque output from the speed change mechanism 4 is transmitted to the drive wheels via a differential gear (not shown).
  • the engine 2 is composed of a known internal combustion engine that outputs power by burning fuel such as gasoline or light oil.
  • the torque converter 3 and the transmission mechanism 4 constitute an automatic transmission 5.
  • the torque converter 3 is disposed between the engine 2 and the transmission mechanism 4, and includes a pump impeller 41 coupled to the engine 2, a turbine impeller 43 coupled to the input shaft 42 of the transmission mechanism 4, and one And a stator impeller 45 that is prevented from rotating in one direction by a directional clutch 44.
  • the pump impeller 41 and the turbine impeller 43 transmit power through a fluid.
  • the torque converter 3 includes a lock-up clutch 46 for directly connecting the pump impeller 41 and the turbine impeller 43.
  • a lock-up clutch 46 for directly connecting the pump impeller 41 and the turbine impeller 43.
  • the power transmission efficiency from the engine 2 to the speed change mechanism 4 is increased by mechanically connecting the impeller 43 directly.
  • the torque converter 3 can also cause the lockup clutch 46 to slip at a predetermined slip rate.
  • the pump impeller 41 is provided with a mechanical oil pump 47 that generates a hydraulic pressure for controlling the transmission of the transmission mechanism 4 and a hydraulic pressure for supplying lubricating oil to each part.
  • the transmission mechanism 4 includes a double pinion type first planetary gear device 48, and a single pinion type second planetary gear device 49 and a third planetary gear device 50.
  • the sun gear S1 of the first planetary gear device 48 can be connected to the input shaft 42 via the clutch C3 and can be connected to the housing 51 via the one-way clutch F2 and the brake B3. Further, the rotation of the input shaft 42 in the direction opposite to the rotation direction is prevented.
  • the carrier CA1 of the first planetary gear device 48 can be connected to the housing 51 via the brake B1.
  • the carrier CA1 is always prevented from rotating in the reverse direction by a one-way clutch F1 provided in parallel with the brake B1.
  • the ring gear R1 of the first planetary gear device 48 is connected to the ring gear R2 of the second planetary gear device 49, and can be connected to the housing 51 via the brake B2.
  • the sun gear S2 of the second planetary gear device 49 is connected to the sun gear S3 of the third planetary gear device 50, and can be connected to the input shaft 42 via the clutch C4.
  • the sun gear S2 can be connected to the input shaft 42 via the one-way clutch F4 and the clutch C1, and is prevented from rotating in the reverse direction.
  • the carrier CA2 of the second planetary gear device 49 is connected to the ring gear R3 of the third planetary gear device 50, can be connected to the input shaft 42 via the clutch C2, and is connected to the housing 51 via the brake B4. It is possible.
  • the carrier CA2 is prevented from rotating in the reverse direction by a one-way clutch F3 provided in parallel with the brake B4.
  • the carrier CA3 of the third planetary gear device 50 is connected to the output shaft 52.
  • the clutches C1 to C4 and the brakes B1 to B4 are configured by a hydraulic friction engagement device that is controlled by a hydraulic actuator such as a multi-plate clutch or a brake.
  • a hydraulic actuator such as a multi-plate clutch or a brake.
  • the clutch C and the brake B are switched according to a hydraulic circuit that is switched depending on transmission solenoids S1 to S4 of a hydraulic control circuit 6 to be described later, and excitation and non-excitation of linear solenoids SLT and SLU and an operating state of a manual valve (not shown).
  • One of the engaged state and the released state is taken. Therefore, as shown in FIG.
  • the speed change mechanism 4 is configured to take a gear position corresponding to the combination of the engaged state and the released state of the clutch C and the brake B.
  • the speed change mechanism 4 according to the present embodiment is configured to take any one of six forward speeds and one reverse speed constituted by first to sixth speeds. Further, the transmission mechanism 4 can take a neutral state in which transmission of power from the engine 2 to the drive wheels is interrupted by disengaging all the clutches C and brakes B.
  • the vehicle 1 further includes a hydraulic control circuit 6 for controlling the torque increase ratio by the torque converter 3 and the gear position of the transmission mechanism 4 by hydraulic pressure.
  • the hydraulic control circuit 6 has transmission solenoids S1 to S4, linear solenoids SLT and SLU, and an AT oil temperature sensor 32 for measuring the oil temperature of the hydraulic oil.
  • the vehicle 1 further includes an ECU 11 for controlling fuel injection in the engine 2 and a shift in the automatic transmission 5, an engine speed sensor 21 for measuring the speed of the engine 2, and an intake air amount of the engine 2.
  • An intake air amount sensor 22 for measuring, an intake air temperature sensor 23 for measuring the temperature of air taken into the engine 2, a throttle sensor 24 for measuring the opening degree of the throttle valve 31, and an input shaft of the speed change mechanism 4
  • An input shaft rotational speed sensor 25 for detecting the rotational speed of 42, an output shaft rotational speed sensor 26 for detecting the rotational speed of the output shaft 52 of the speed change mechanism 4, and a brake sensor 27 for measuring the pedaling force on the brake pedal.
  • the vehicle 1 further includes a shift lever 28, an operation position sensor 29 that detects the position of the shift lever 28, an accelerator opening sensor 30 for detecting the accelerator opening, and a steering angle sensor 33.
  • the engine speed sensor 21 measures the speed of the engine 2 based on the rotation of a crankshaft (not shown), and outputs a signal representing the engine speed to an ECU (Electronic Control Unit) 11 described later. .
  • ECU Electronic Control Unit
  • the throttle sensor 24 is composed of a hall element that can obtain an output voltage corresponding to the throttle opening of the throttle valve 31, and outputs a signal representing the throttle opening to the ECU 11 described later.
  • the input shaft speed sensor 25 outputs a signal representing the input shaft speed of the speed change mechanism 4 to the ECU 11 described later.
  • the output shaft speed sensor 26 outputs a signal representing the output shaft speed of the speed change mechanism 4 to the ECU 11 described later.
  • the operation position sensor 29 detects the operation position of the shift lever 28 operated by the driver.
  • the brake sensor 27 measures a change in the master cylinder pressure or an operation stroke corresponding to the driver's operation pedaling force with respect to the brake pedal, and outputs a brake pedaling force signal corresponding to the measured pedaling force to the ECU 11. It has become.
  • the accelerator opening sensor 30 is composed of an electronic position sensor using a hall element, and when the accelerator pedal mounted on the vehicle 1 is operated by the driver, the position of the accelerator pedal, that is, the accelerator opening is determined. A signal to be expressed is output to the ECU 11.
  • the steering angle sensor 33 detects the steering torque of the steering shaft connected to the steering wheel, and outputs a signal corresponding to the steering torque to the ECU 11.
  • the ECU 11 calculates the steering amount of the steering wheel in the left direction or the right direction based on the signal input from the steering angle sensor 33.
  • the vehicle 1 includes a navigation device 38.
  • the navigation device 38 receives signals transmitted from a plurality of GPS satellites via the GPS antenna 39 and specifies the current position of the vehicle 1, the road information ahead of the vehicle 1 and the vehicle out of the road information stored in advance. 1 current location information is transmitted to the ECU 11.
  • road conditions such as road gradient and curvature are associated and stored.
  • the ECU 11 calculates the curvature and gradient of the road ahead of the vehicle 1 based on the road information and current position information associated with these road conditions.
  • the ECU 11 includes an engine speed sensor 21, an intake air amount sensor 22, an intake air temperature sensor 23, a throttle sensor 24, an input shaft speed sensor 25, an output shaft speed sensor 26, a brake sensor 27, an operation position sensor 29, and AT oil. These sensors are connected to a temperature sensor 32. From these sensors, the engine speed, intake air amount, intake air temperature, throttle opening, input shaft speed, output shaft speed, brake pedal force, shift lever 28 operating position and AT A signal representing the oil temperature is input.
  • the ECU 11 executes engine control by the EFI-ECU 13 and shift control by the ECT-ECU 14 based on information input from these sensors and a shift map representing a shift diagram.
  • the ECU 11 includes an EFI-ECU (Electronic Fuel Injection-Electronic Control Unit) 13 that controls the engine 2 and an ECT (Electronic Controlled Automatic Transmission) -ECU 14 that controls the automatic transmission 5.
  • the ECU 11 may further include a plurality of ECUs (not shown) such as a brake ECU that controls the brake of the vehicle 1.
  • ECU11 comprises the control apparatus which concerns on this invention.
  • the EFI-ECU 13 has a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory) and an input / output interface (not shown), and the engine 2 is controlled according to the operation amount of the accelerator pedal. Thus, an engine control signal is output to the engine 2.
  • a CPU Central Processing Unit
  • RAM Random Access Memory
  • ROM Read Only Memory
  • the ECT-ECU 14 has a CPU, RAM, ROM and input / output interface (not shown), and controls the hydraulic control circuit 6 so that the torque converter 3 and the gear position of the automatic transmission 5 are controlled based on the input signal. It is supposed to be.
  • the ROM stores a program for executing the shift control.
  • the shift lever 28 takes a D position corresponding to the drive range, an N position corresponding to the neutral range, an R position corresponding to the reverse range, and a P position corresponding to the parking range from the rear to the front of the vehicle 1.
  • the position is shifted according to the gate pattern.
  • the shift lever 28 further indicates an S position representing a manual position for shifting the shift range of the automatic transmission 5 in the manual shift mode, a plus position (+ position) for instructing a shift up, and a shift down.
  • the negative position (-position) is taken.
  • the S position is located beside the D position, and the shift lever 28 is held at the S position by a spring (not shown) when moved laterally from the D position by the driver.
  • the ECU 11 realizes a sequential shift in which the shift lever 28 is moved to the + position or the ⁇ position to shift from the current shift range to the shift range that is one up or one down, respectively.
  • the ECU 11 When the ECU 11 acquires from the operation position sensor 29 that the shift lever 28 is positioned at the D position, the ECU 11 shifts to the automatic shift mode, and sets the hydraulic control circuit 6 based on the vehicle speed, the throttle opening degree, and the shift map. The shift stage of the automatic transmission 5 is shifted through the via.
  • the ECU 11 acquires from the operation position sensor 29 that the shift lever 28 is in the S position, the ECU 11 shifts to the manual shift mode and automatically shifts according to the shift range instructed by the driver. The gear position of the machine 5 is shifted.
  • the ECU 11 executes neutral inertial traveling control (hereinafter, simply referred to as N coasting control) that shifts the gear position to neutral according to the traveling state of the vehicle 1 and travels the vehicle 1 by inertia to improve fuel efficiency. It is supposed to be.
  • N coasting control neutral inertial traveling control
  • the ECU 11 is not set to the manual shift mode or the power mode for increasing the output to the accelerator pedal than usual, and when the traveling state of the vehicle 1 satisfies the following first to third conditions:
  • the shift stage of the automatic transmission 5 is shifted to neutral via the hydraulic control circuit 6.
  • the ECU 11 determines that the accelerator pedal and the brake pedal are not depressed based on signals input from the accelerator opening sensor 30 and the brake sensor 27, and uses the signals input from the steering angle sensor 33. Based on this, the first condition is that it is determined that the steering amount of the steering wheel (not shown) in the left direction or the right direction is equal to or less than a predetermined value.
  • the ECU 11 sets a second condition that the gravity applied to the vehicle 1 according to the turning state of the vehicle 1 and the road gradient is equal to or less than a predetermined value.
  • the ECU 11 acquires a signal representing the curvature and gradient of the road ahead of the current travel position of the vehicle 1 based on the signal input from the navigation device 38, and these curvature and gradient are below a predetermined value. That is the third condition.
  • the ECU 11 starts N coasting control when these first to third conditions are satisfied, and shifts the gear position of the automatic transmission 5 to neutral.
  • the ECU 11 determines that the N coasting control stop condition is satisfied, and N The coasting control is terminated.
  • the ECU 11 performs N coasting at the same position thereafter when any of the following conditions is satisfied, such as when the driver depresses the brake pedal during the N coasting control.
  • N coasting prohibition learning control is executed so as to prevent the control from being executed.
  • the ECU 11 stores road information constituting map information in the navigation device 38.
  • This road information constitutes a database that can be stored by dividing a road into sections and associating information such as vehicle speed information with the sections.
  • ECU11 matches and memorize
  • a node is set every 100 m along a road on the map information, and a link connecting each node is set as the section.
  • the ECU 11 acquires road information of the current traveling position from the navigation device 38 while the vehicle 1 is traveling, and determines whether information indicating N coasting prohibition is associated with the section including the traveling position.
  • the ECU 11 determines that the information indicating N coasting prohibition is associated with the section, the ECU 11 prohibits the start of the N coasting control even when the N coasting control start condition is satisfied. .
  • ECU11 performs N coasting prohibition learning, when a driver
  • the ECU 11 interrupts the N coasting control and detects the current position and the current vehicle speed when detecting that the driver depresses the accelerator pedal or the brake pedal during the N coasting control.
  • the information to be represented is stored in the navigation device 38 in association with the section including the current position in the road information.
  • the driver may step on the brake pedal because another vehicle happens to enter from the side road.
  • the ECU 11 since the driver originally does not want to prohibit N coasting, the ECU 11 needs to avoid storing this traveling section as N coasting prohibition. Therefore, the ECU 11 stores an N coasting prohibition section on condition that the number of cases in which the driver operates the brake pedal or the accelerator pedal exceeds a certain number when the vehicle is traveling at the same vehicle speed in the same section. Like that.
  • the ECU 11 stores the number of times that the N coasting control is continued in the navigation device 38 without operating the brake pedal or the accelerator pedal by each driver in each section, and the driver operates the brake pedal or the accelerator pedal. May be stored as an N coasting prohibition section on the condition that has become a certain ratio or more.
  • the ECU 11 secondly, when the N coasting control is interrupted due to the driving operation during the execution of the N coasting control, the duration of the N coasting control is shortened.
  • the N coasting prohibition learning is performed in a situation where the fuel consumption is worse than when the coasting control is not performed.
  • the driver may step on the brake pedal because another vehicle accidentally enters from the side road. Therefore, when the ECU 11 is traveling at the same vehicle speed in the same section, the average value of the N coasting time becomes shorter than a predetermined value, and if the N coasting control is executed in the section, the possibility that the fuel consumption is deteriorated increases. In this case, the section is stored in the navigation device 38 as an N coasting prohibited section.
  • FIG. 4 is a functional block diagram for explaining a main part of the N coasting control function by the ECU 11.
  • the ECU 11 permits the N coasting start determining unit 61 for determining the N coasting start condition, the N coasting stop determining unit 66 for determining the N coasting stop condition, and the running mode of the vehicle 1 to permit the N coasting execution.
  • N coasting control permission condition judgment unit 71 for judging whether or not the mode is a running mode
  • N coasting control judgment unit 72 for judging execution and stop of N coasting
  • N coasting judgment unit 72 for judging that N coasting is carried out
  • An N coasting requesting unit 73 that requests N coasting in the case of being performed.
  • the N coasting start determination unit 61 performs a driver operation determination unit 62 that determines whether the driver's operation satisfies a condition for executing the N coasting control, and the traveling state of the vehicle 1 executes the N coasting control. Based on the information acquired from the vehicle state determination unit 63 and the navigation device 38 that determines whether or not the conditions for the vehicle are satisfied, the road gradient and curvature of the section ahead of the position where the vehicle 1 is currently traveling are determined. A prefetch determination unit 64 that determines whether or not a start condition for executing N coasting control is satisfied, and a logical product calculation unit 65 that calculates a logical product for these determinations.
  • the N coasting stop determination unit 66 has a driver operation determination unit 67 that determines whether or not the driver's operation satisfies a condition for stopping the N coasting control, and a condition that the traveling state of the vehicle 1 stops the N coasting control. Based on the vehicle state determination unit 68 that determines whether or not the vehicle is satisfied and the information acquired from the navigation device 38, the road gradient and curvature of the section ahead of the position where the vehicle 1 is currently traveling are subjected to N coasting control. A prefetch determination unit 69 for determining whether or not a stop condition for stopping is satisfied, and a logical sum calculation unit 70 for calculating a logical sum for these determinations.
  • the N coasting determination unit 72 is conditioned on the condition that the N coasting control permission condition determination unit 71 determines that the N coasting control execution condition is satisfied, and the driver operation determination unit 62 and the vehicle state determination unit 63. If it is determined in all of the prefetch determination units 64 that the N coasting control execution condition is satisfied, the N coasting control is started. Then, the N coasting determination unit 72 determines that the N coasting determination is performed when any of the driver operation determination unit 67, the vehicle state determination unit 68, and the prefetch determination unit 69 determines that the condition for stopping the N coasting control is satisfied. Stop control.
  • FIG. 5 is a functional block diagram for explaining in more detail the function of the prefetch determination unit 64 in the N coasting start determination unit 61 shown in FIG.
  • the prefetch determination unit 64 includes a current position acquisition unit 81 for acquiring the current position of the vehicle 1, a current vehicle speed acquisition unit 82 for acquiring the current vehicle speed of the vehicle 1, and the vehicle 1 currently traveling from the road information.
  • the prefetch determination unit 64 performs vehicle motion prediction that performs motion prediction of the vehicle 1 based on information acquired by the current position acquisition unit 81, the current vehicle speed acquisition unit 82, the prefetch curvature acquisition unit 83, and the prefetch gradient acquisition unit 84.
  • a prediction model generation unit 85 is provided.
  • the vehicle motion prediction model generation unit 85 stores, for example, a motion equation according to the specification values of the vehicle 1 in advance, and a current position acquisition unit 81, a current vehicle speed acquisition unit 82, a pre-read curvature acquisition unit 83, and a pre-read gradient acquisition unit. By substituting the information respectively acquired by 84 into this equation of motion, changes in vehicle speed and acceleration in the front-rear and lateral directions of the vehicle 1 are predicted.
  • the prefetch determination unit 64 includes an N coasting control prohibition learning unit 95.
  • N coasting control prohibition learning unit 95 obtains current position information, current vehicle speed information, pre-read curvature information, and pre-read gradient information from current position acquisition unit 91, current vehicle speed acquisition unit 92, pre-read curvature acquisition unit 93, and pre-read gradient acquisition unit 94, respectively.
  • the current position acquisition unit 91, the current vehicle speed acquisition unit 92, the pre-read curvature acquisition unit 93, and the pre-read gradient acquisition unit 94 are the current position acquisition unit 81, the current vehicle speed acquisition unit 82, the pre-read curvature acquisition unit 83, and the pre-read gradient acquisition described above.
  • Each of the parts 84 may be configured.
  • the N coasting control prohibition learning unit 95 indicates that the driver feels uncomfortable due to the start of N coasting control based on the acquired current position information, current vehicle speed information, pre-read curvature information, and pre-read gradient information. Whether or not the operation has been executed, whether or not the N coasting control has been performed rather than the execution of other traveling controls such as fuel cut control or deceleration flex lockup control, or conversely, the driver Based on whether or not an operation indicating that the driver desires N coasting control is detected, such as selecting the N range in the N coasting prohibited section, an N coasting prohibited section DB 97 described later is updated. ing.
  • the prefetch determination unit 64 has an N coasting prohibition section DB 97 that is associated with road information and stores N coasting prohibition sections in a database. If the N coasting control prohibition learning unit 95 determines that N coasting control at the current travel position is prohibited, the N coasting control prohibition learning unit 95 stores the travel section including the travel position in the N coasting prohibition section DB 97 as an N coasting prohibition section.
  • This N coasting prohibition section DB 97 constitutes a part of a learning DB described later.
  • the prefetch determination unit 64 determines the vehicle speed change condition predicted by the vehicle motion prediction model generation unit 85, the longitudinal and lateral acceleration conditions of the vehicle 1, and the N coasting prohibited section condition stored in the N coasting prohibited section DB97. Is input to the logical product circuit 98, and it is determined that the N coasting start condition is satisfied when both conditions satisfy the N coasting start condition.
  • N coasting prohibition learning control based on the sense of discomfort will be described with reference to FIG.
  • the process described below is realized by a program stored in advance in the ROM of the ECU 11, and is executed by the CPU at predetermined time intervals. Further, a case where N coasting control is interrupted due to the brake pedal being depressed by the driver will be described as an example.
  • the ECU 11 determines whether or not the brake is ON during the N coasting control, that is, whether or not the brake pedal is depressed by the driver (step S11).
  • the ECU 11 has an N coasting flag indicating that N coasting control is being performed, and turns on the N coasting flag during execution of the N coasting control. Therefore, the ECU 11 determines whether or not the vehicle 1 is currently executing N coasting control by referring to the N coasting flag.
  • the ECU 11 determines that the brake is ON based on a signal input from the brake sensor 27 when the brake pedal is depressed.
  • step S11 If the ECU 11 determines that the brake is turned on during N coasting control (YES in step S11), the ECU 11 proceeds to step S12. On the other hand, when the ECU 11 determines that N coasting is not being performed or the brake is not ON (NO in step S11), the ECU 11 proceeds to END.
  • step S12 the ECU 11 stores the current position and the current vehicle speed in the learning DB. Specifically, in the road information stored in the navigation device 38, information indicating the current position and the current vehicle speed is associated with the section including the current position.
  • the ECU 11 refers to information associated with the section including the current position, and collates data similar to the current position and the current vehicle speed stored this time (step S13).
  • the similar data is, for example, that the difference between the vehicle speed and the current vehicle speed is within a predetermined value in the data stored in the learning DB, and is within a predetermined distance from the current position within the same section as the current position. Means data.
  • the ECU 11 determines whether the N coasting control is interrupted, that is, whether the position and the vehicle speed are equal to or more than a certain number of cases similar to this time (step). S14). If the ECU 11 determines that there are more than a certain number of similar cases (YES in step S14), the ECU 11 proceeds to step S15.
  • the fixed number means a number that can exclude the event that the driver accidentally performs a brake operation in a road situation where the driver originally desires N coasting, and is set to 3 times, for example. On the other hand, if it is determined that the number of similar cases is less than a certain number (NO in step S14), the process proceeds to END.
  • step S15 the ECU 11 sets the section referred to in step S12 as the N coasting prohibited section.
  • the ECU 11 turns on a flag indicating N coasting prohibition associated with the section in the road information.
  • the process described below is realized by a program stored in advance in the ROM of the ECU 11, and is executed by the CPU at predetermined time intervals.
  • Step S21 the ECU11 first determines whether N coasting was interrupted by the driver's driving operation. Specifically, the ECU 11 determines that the brake pedal or the accelerator pedal has been depressed or the steering angle becomes equal to or greater than a predetermined value based on a signal input from the brake sensor 27, the operation position sensor 29, or the steering angle sensor 33. For example, it is determined whether a condition for interrupting N coasting is satisfied.
  • ECU11 transfers to step S22, when it determines with N coasting control being interrupted by driving
  • the ECU 11 stores the time during which the N coasting control is continued, the current traveling position, and the vehicle speed in association with the section including the current traveling position in the road information (step S22).
  • the ECU 11 refers to the information associated with the section including the current travel position, and collates data close to the current travel position and the vehicle speed (step S23).
  • the ECU 11 calculates an expected value of the time during which the N coasting control has continued from the data collated in step S23 (step S24). Specifically, the ECU 11 refers to the road information, and calculates an average value of the time during which the N coasting control is continued as expected value from data close to the current travel position and vehicle speed. The ECU 11 may use a median value or the like as the expected value instead of the average value.
  • step S24 determines whether or not the expected value of the N coasting time calculated in step S24 is equal to or less than a certain time (step S25).
  • This fixed time represents the time when the fuel consumption deteriorates when traveling with N coasting control performed compared to traveling without N coasting control, and is obtained by experimental measurement in advance. Yes.
  • ECU11 transfers to step S26, when it determines with the expected value of N coasting time being below a fixed time (it is YES at step S25). On the other hand, when it is determined that the expected value of the N coasting time exceeds a certain time (YES in step S25), the process proceeds to END.
  • the ECU 11 registers the section as an N coasting prohibited section in the learning DB.
  • the ECU 11 turns on a flag indicating N coasting prohibition associated with the section in the road information.
  • N coasting prohibition release control by driver operation will be described with reference to FIG.
  • the process described below is realized by a program stored in advance in the ROM of the ECU 11, and is executed by the CPU at predetermined time intervals.
  • the ECU 11 determines whether or not the vehicle has been shifted to the N range during coasting by the D range, that is, during non-driving running (step S31). The ECU 11 determines whether the indicated range has shifted from the D range to the N range based on the signal input from the operation position sensor 29. Further, the ECU 11 determines whether or not the accelerator pedal is depressed based on a signal input from the accelerator opening sensor 30.
  • step S31 If the instruction range is shifted from the D range to the N range and the accelerator pedal is not depressed, the ECU 11 determines that the range has been shifted to the N range during coasting by the D range (YES in step S31), and the process proceeds to step S32. Transition. On the other hand, if it is determined that the gear has not been shifted to the N range during coasting by the D range (NO in step S31), the flow proceeds to END.
  • the ECU 11 determines whether or not the vehicle is traveling in the N coasting prohibited section.
  • the ECU 11 refers to the road information stored in the navigation device 38 and refers to whether or not the flag indicating N coasting prohibition in the section including the current traveling position is ON. When the flag indicating N coasting prohibition is ON, the ECU 11 determines that the vehicle is traveling in the N coasting prohibition section.
  • step S32 If the ECU 11 determines that the vehicle is traveling in the N coasting prohibited section (YES in step S32), the ECU 11 proceeds to step S33. On the other hand, when it is determined that the current position is not in the N coasting prohibited section (NO in step S32), the process proceeds to END.
  • the ECU 11 registers in the learning DB so as to cancel the N coasting prohibition of the section. Specifically, the ECU 11 changes the N coasting prohibition flag in the section including the current position from ON to OFF in the learning DB stored in the navigation device 38.
  • the ECU 11 stores the information in association with the position information when the coasting control is interrupted by the driver's operation. Can be made. Thereby, execution of coasting control can be prohibited when the vehicle 1 travels in the same place after the next time. Therefore, for example, even when the slope of the road at the current position is equal to the slope of another road where coasting control is permitted, the driver does not desire coasting control, such as when the road width in front of the current position becomes narrow, and the driver performs a braking operation. Stores information indicating prohibition of coasting control, and when traveling in a section including the current position next time, execution of coasting control can be avoided. Therefore, the ECU 11 can improve fuel efficiency by executing the coasting control, and can also prevent the coasting control that gives the driver a sense of discomfort.
  • the ECU 11 can prevent the coasting control in the section including the current position from being prohibited. Therefore, even though the driver originally wants coasting control at the current position, even if the brake is operated and the coasting control is interrupted due to an interruption of another vehicle, the section including the current position It is possible to prevent the coasting control from being prohibited.
  • the ECU 11 can prohibit the coasting control from being executed in the future section where the driver does not want the coasting control.
  • the ECU 11 cancels the coasting control prohibition to cancel the coasting control in the section.
  • the coasting control can be resumed.
  • coasting control is executed by performing coasting control only for a short time in the section including the current position. There is a possibility that the fuel consumption will be worse than if not. Therefore, the ECU 11 can inhibit coasting control in the section including the current position, and can prevent deterioration in fuel consumption of the vehicle 1.
  • control device may be applied to a vehicle equipped with an automatic transmission having a gear stage other than the sixth speed, or an FF (Front-engine-Front-drive) vehicle.
  • the configuration of the automatic transmission 5 in the present embodiment is merely an example, and the automatic transmission 5 may have other configurations.
  • the vehicle 1 may be equipped with CVT (Continuously Variable Transmission) instead of the automatic transmission 5.
  • the control device according to the present invention is applied to the vehicle 1 equipped with only the engine 2 as a power source.
  • the present invention is not limited to this, and as described below, the power source And may be applied to the vehicle 100 equipped with the engine 2 and the motors MG1 and MG2.
  • a vehicle control apparatus according to another example of the present embodiment will be described with reference to FIG.
  • the same components as those of the vehicle control device according to the first embodiment described above will be described using the same reference numerals as those in the first embodiment. In particular, only the differences will be described in detail.
  • the hybrid vehicle 100 transmits the power generated by the engine 2 constituting the internal combustion engine and the engine 2 to the drive wheels 105L and 105R via the drive shaft 103 and the drive shafts 104L and 104R.
  • the engine ECU 108 communicates with the hybrid ECU 107 via an in-vehicle network such as a high-speed CAN (Controller Area Network).
  • the engine ECU 108 receives input from a control signal input from the hybrid ECU 107 and various sensors that detect the operating state of the engine 2. Based on the detected signal or the like, the engine 2 is controlled for operation such as fuel injection control, ignition control and intake air amount adjustment control, and data related to the operating state of the engine 2 is output to the hybrid ECU 107 as necessary. It has become.
  • the power transmission device 106 includes motor generators MG1 and MG2 that mutually convert electric power and rotational force, power that transmits power generated by the engine 2 to the drive wheels 105L and 105R, and power that drives the motor generator MG1. And a power split mechanism 109 that splits the power into the power.
  • Power split mechanism 109 is connected to the end of crankshaft 110 serving as the output shaft of engine 2, splits the power generated by engine 2, and transmits the power transmitted from motor generator MG 1 and drive wheels 105 L and 105 R side. It is comprised by the planetary gear mechanism which integrates.
  • the power split mechanism 109 causes the motor generator MG1 to function as a generator by using one split power, and rotates the driving wheels 105L and 105R by using the other split power.
  • Power split device 109 integrates the power input from engine 2 and the power input from motor generator MG1 when motor generator MG1 functions as an electric motor and engine 2 is driven. ing.
  • power split mechanism 109 rotates crankshaft 110 with the power input from motor generator MG1 to start engine 2 when motor generator MG1 functions as an electric motor and engine 2 is stopped. It has become.
  • the power output from the power transmission device 106 is transmitted to the drive wheels 105L and 105R via the differential gear 111 and the drive shafts 104L and 104R.
  • the motor generator MG2 to which the drive power is supplied functions as a drive source, and the power generated by the motor generator MG2 is transmitted to the drive wheels 105L and 105R.
  • the motor generator MG2 to which drive power is not supplied functions as a power regenerator that converts the rotational force into electric power while decelerating the rotation of the drive wheels 105L and 105R.
  • Motor generator MG1 and motor generator MG2 exchange power with battery 114 via inverter 112 and inverter 113 to charge / discharge battery 114.
  • the hybrid vehicle 100 includes a motor ECU 115.
  • Motor ECU 115 drives and controls motor generators MG1 and MG2 by outputting switching control signals to inverter 112 and inverter 113.
  • the motor ECU 115 communicates with the hybrid ECU 107 via the high-speed CAN, and controls the inverters 112 and 113 in accordance with the control signal input from the hybrid ECU 107, whereby the motor generators MG1 and MG2 are respectively controlled. The drive is controlled. Further, the motor ECU 115 outputs data related to the driving state of the motor generators MG1 and MG2 to the hybrid ECU 107 as necessary.
  • the hybrid vehicle 100 includes a battery ECU 116.
  • the battery ECU 116 is constituted by a microprocessor including a CPU, a ROM, a RAM, a flash memory, and an input / output port.
  • the battery ECU 116 receives a signal necessary for managing the state of the battery 114, for example, a signal representing a voltage between terminals of the battery 114, a charge / discharge current of the battery 114, a temperature of the battery 114, and the like. It has become so.
  • the battery ECU 116 outputs data related to the state of the battery 114 to the hybrid ECU 107 as necessary. For example, the battery ECU 116 calculates SOC (State Of Charge) representing the remaining capacity of the battery 114 based on the integrated value of the charge / discharge current of the battery 114, and outputs the calculated SOC to the hybrid ECU 107. .
  • SOC State Of Charge
  • the hybrid ECU 107 includes a microprocessor including a CPU, a ROM, a RAM, a flash memory, and an input / output port.
  • the ROM stores a program for causing the microprocessor to function as the hybrid ECU 107. That is, when the CPU executes a program stored in the ROM using the RAM as a work area, the microprocessor functions as the hybrid ECU 107.
  • the hybrid ECU 107 is connected to the engine ECU 108, the motor ECU 115, and the battery ECU 116 via the high-speed CAN, and exchanges various control signals and data with the engine ECU 108, the motor ECU 115, and the battery ECU 116.
  • the hybrid ECU 107 is similar to the ECU 11 described above, the N coasting start determination unit 61, the N coasting stop determination unit 66, the N coasting control permission condition determination unit 71, the N coasting determination unit 72, and the N coasting determination unit.
  • a request unit 73 is configured.
  • the hybrid ECU 107 can execute N coasting control to suppress the operation of the accelerator pedal although the regeneration by the motor generator MG2 is not executed, and to improve fuel consumption and power consumption. .
  • the hybrid ECU 107 prohibits the N coasting control by prohibiting the N coasting control in a situation where the traveling by the execution of the N coasting control is lower in fuel consumption and power consumption than the traveling while regenerating by the motor generator MG2. And it can suppress that power consumption deteriorates.

Abstract

 運転者に違和感を与えずに燃費を向上することができる車両の制御装置を提供する。ECUは、N惰行制御中にブレーキがONになったと判定すると(ステップS11でYES)、現在位置と現在車速とを学習DBに記憶する(ステップS12)。次に、ECUは、当該現在位置を含む区間に対応付けられた情報を参照し、今回記憶した現在位置および現在車速と類似したデータを照合する(ステップS13)。次に、ECUは、ステップS13において類似したデータを照合した結果、同様のケースが一定数以上あると判断した場合には(ステップS14でYES)、ステップS12で参照された区間をN惰行禁止区間に設定する。

Description

車両の制御装置
 本発明は、非駆動時に惰性走行が可能な車両の制御装置に関する。
 従来、車両の現在位置および現在位置より前方の道路状況を表す情報を取得し、前方の道路状況に応じた運転操作を運転者に促すことにより燃費を向上する車両の制御装置が知られている。
 このような車両の制御装置として、前方の道路の勾配に応じて運転者に対しアクセルペダルおよびブレーキペダルの操作を実行するよう運転者に指示する運転システムが知られている(例えば、特許文献1参照)。
 この特許文献1に記載の運転システムは、車両の現在位置を特定する車両位置特定手段と、道路の勾配情報を記憶する勾配情報記憶手段と、車両位置特定手段および勾配情報記憶手段から入力される信号に基づいて燃費を向上する運転態様を決定する決定手段とを備え、決定手段は、燃費を向上するためのアクセル操作およびブレーキ操作のタイミングを決定し運転者に通報するようになっている。
 この構成により、決定手段は、勾配情報記憶手段により車両の現在位置より前方の道路の勾配を表す情報を取得し、運転手がアクセルペダルまたはブレーキペダルを踏む最適なタイミングを決定するので、車両の燃費が向上されるようになっている。
 また、特許文献1に記載の運転システムと同様に車両位置特定手段と勾配情報記憶手段から入力される情報に基づいて、燃費を向上する運転態様を決定するとともに動力源から駆動輪に伝達される動力を遮断し、車両を惰性走行させることによりさらに燃費を向上することも考えられる。
特開2007-156704号公報
 しかしながら、この特許文献1に記載された運転システムは、車両の走行位置および勾配情報から最適な運転態様を決定するようになっているものの、道路の勾配以外の道路状況にかかわらず道路の勾配が同様である場合には、同様の運転態様を最適なものとして決定するようになっていた。
 そのため、同じ勾配の道路であっても、見通しの良し悪しや他車両の合流の有無など実際の道路状況に応じて運転者の所望とする運転態様が異なるにもかかわらず、運転者の所望とする運転態様に沿わない運転態様を決定する可能性があった。特に、特許文献1に記載された運転システムに惰性走行の実行を組み合わせた場合には、運転者が惰性走行を望まない走行位置において惰性走行が開始されたり、短時間しか惰性走行が実行できないにもかかわらず惰性走行の実行が開始される場合があった。そのため、運転者に違和感を与えたり燃費が悪化する可能性があった。
 本発明は、上述のような従来の問題を解決するためになされたもので、運転者に違和感を与えずに燃費を向上することができる車両の制御装置を提供することを目的とする。
 本発明に係る制御装置は、上記目的達成のため、走行中に動力源から駆動輪への動力の伝達を停止可能な車両の制御装置であって、前記車両の現在位置を特定する位置特定部と、特定された前記現在位置を含む道路を示す道路情報を前記道路の道路状況と対応付けて記憶する道路情報記憶部と、前記現在位置より前方の道路に対する前記道路情報に基づいて前記動力源から前記駆動輪への動力の伝達を停止して前記車両を惰性走行させる惰性走行実行部と、少なくとも前記惰性走行の中断および開始を表す運転操作を検出する運転操作検出部と、前記惰性走行を中断する運転操作が検出された場合には、前記現在位置および前記惰性走行が中断されたことを表す情報を前記道路情報に対応付けて前記道路情報記憶部に記憶する中断情報記憶部と、前記中断情報記憶部により記憶された情報に基づいて、前記現在位置を含む所定の区間における惰性走行を禁止する惰性走行禁止部と、を備えることを特徴とする。
 この構成により、本発明に係る制御装置は、惰性走行が実行されている場合においても、運転者の操作により惰性走行が中断された場合には、その情報を位置情報と対応付けて記憶させることができる。これにより、車両が次回以降同じ場所を走行した場合には惰性走行の実行を禁止することができる。したがって、例えば現在位置における道路の勾配が惰性走行が許可されるほかの道路の勾配と等しい場合においても、現在位置の前方の道幅が狭くなるなど運転者が惰性走行を望まずブレーキ操作をした場合には、惰性走行の禁止を表す情報を記憶し、次回以降現在位置を含む区間を走行する場合には惰性走行の実行を回避することができる。したがって、制御装置は、惰性走行を実行することにより燃費を向上することができるとともに、運転者に違和感を与える惰性走行が実行されることを防止することができる。
 好ましくは、前記惰性走行禁止部は、前記現在位置に対応付けられた前記惰性走行が中断されたことを表す情報の数が所定値以上となったことを条件に前記現在位置を含む所定の区間における前記車両の惰性走行を禁止することを特徴とする。
 この構成により、本発明に係る制御装置は、現在位置において惰性走行が中断された回数が所定数に満たない場合には、当該現在位置を含む区間における惰性走行が禁止されることを防止できる。したがって、運転者が当該現在位置において本来は惰性走行を望んでいるにもかかわらず、他車両の割り込みなどに起因してブレーキを操作し惰性走行が中断されたとしても、当該現在位置を含む区間において惰性走行が禁止されることを防止できる。
 好ましくは、前記運転操作検出部は、アクセルペダルの操作量、ブレーキペダルの操作量およびステアリングホイールの操作量のうち少なくともいずれか1の操作量を検出することを特徴とする。
 この構成により、本発明に係る制御装置は、運転者により操作されたアクセルペダル、ブレーキペダルあるいはステアリングホイールの操作量に基づいて、運転者による惰性走行の中断操作が行われたか否かを判定することができる。したがって、惰性走行禁止部は、運転者が惰性走行を望まない区間で今後惰性走行が実行されることを禁止することができる。
 好ましくは、前記道路状況は、前記道路の勾配および曲率の少なくともいずれか一方であることを特徴とする。
 この構成により、本発明に係る制御装置は、運転者が惰性走行に対し違和感を覚えるか否かに影響を与える道路の勾配および曲率に基づいて、惰性走行を禁止することができる。
 好ましくは、前記惰性走行禁止部は、前記惰性走行の禁止中に前記惰性走行の開始を表す運転操作が検出された場合には、前記現在位置を含む所定の区間における前記惰性走行の禁止を解除することを特徴とする。
 この構成により、本発明に係る制御装置は、以前の運転操作に起因して惰性走行が禁止された区間において運転者が惰性走行を望む運転操作を実行した場合には、惰性走行の禁止を解除することにより、当該区間における惰性走行を再開することができる。
 好ましくは、前記惰性走行禁止部は、前記惰性走行が中断された場合に、前記現在位置を含む所定の区間における前記惰性走行の継続時間を前記道路情報記憶部に記憶し、蓄積された複数の惰性走行の継続時間の平均値が予め定められた所定値以下である場合には前記現在位置を含む所定の区間における惰性走行を禁止することを特徴とする。
 この構成により、本発明に係る制御装置は、現在位置に対応付けられた複数の惰性走行の継続時間の平均値が所定値以下である場合には、当該現在位置を含む区間において短時間のみ惰性走行を実行することにより惰性走行を実行しない場合よりも燃費が悪化する可能性がある。したがって、制御装置は、当該現在位置を含む区間における惰性走行を禁止し、車両の燃費の悪化を防止することができる。
 好ましくは、前記惰性走行実行部は、前記車両の走行状態が惰性走行を許可する予め定められた条件を満たさなくなったと判断した場合には、前記惰性走行を終了することを特徴とする。
 この構成により、本発明に係る制御装置は、車両の走行状況に応じて惰性走行を終了することができる。したがって、運転者が惰性走行に違和感を覚え惰性走行を中断するための運転操作を実行する前に惰性走行を終了することができる。
 好ましくは、前記動力源が内燃機関により構成され、前記車両は、前記内燃機関と前記駆動輪との間に変速機を備え、前記惰性走行実行部は、前記変速機によって前記駆動輪への動力の伝達を停止することにより前記車両を惰性走行させることを特徴とする。
 この構成により、本発明に係る制御装置は、動力源として内燃機関を備えた車両において、変速機をニュートラル状態にするか否かに応じて惰性走行の実行の有無を切替えることができる。
 好ましくは、前記動力源が内燃機関および前記車両の非駆動時に回生可能な回転電機により構成され、前記惰性走行実行部は、前記非駆動時に前記回転電機による回生を停止することにより前記車両を惰性走行させることを特徴とする。
 この構成により、本発明に係る制御装置は、動力源として内燃機関と回転電機とを備えたハイブリッド車両においても、車両の走行状況や運転状況に応じて惰性走行の実行の有無を切替えることができる。したがって、回生を実行することにより実際の制動距離が運転者の所望の制動距離より短くなり、運転者がアクセルペダルを操作することになり、かえって燃費が悪化するという現象を防止することができる。
 本発明によれば、運転者に違和感を与えずに燃費を向上することができる車両の制御装置を提供することができる。
本発明の実施の形態に係る制御装置を搭載した車両を示す概略構成図である。 本発明の実施の形態に係る車両の制御装置の構成を示す骨子図である。 本発明の実施の形態に係る自動変速機の作動表である。 本発明の実施の形態に係る制御装置のブロック構成図である。 本発明の実施の形態に係る制御装置のブロック構成図である。 本発明の実施の形態に係るN惰行禁止学習制御のフローチャートである。 本発明の実施の形態に係るN惰行禁止学習制御のフローチャートである。 本発明の実施の形態に係るN惰行禁止解除制御のフローチャートである。 本発明の実施の形態の別の例に係る制御装置を搭載した車両を示す概略構成図である。
 以下、本発明の実施の形態に係る車両の制御装置について、図1ないし図8を参照して説明する。まず、構成について説明する。
 なお、本実施の形態においては、自動変速機を搭載したFR(Front engine Rear drive)車両に本発明に係る制御装置を適用した場合について説明する。
 図1、2に示すように、車両1は、エンジン2と、エンジン2により出力された回転トルクを増大させるトルクコンバータ3と、トルクコンバータ3の出力軸の回転速度を変速して出力する変速機構4と、を備えており、変速機構4から出力される回転トルクは、図示しないディファレンシャルギアを介して駆動輪に伝達されるようになっている。
 エンジン2は、ガソリンあるいは軽油などの燃料を燃焼させて動力を出力する公知の内燃機関により構成されている。また、トルクコンバータ3および変速機構4は、自動変速機5を構成している。
 トルクコンバータ3は、エンジン2と変速機構4との間に配置されており、エンジン2に連結されたポンプ翼車41と、変速機構4の入力軸42に連結されたタービン翼車43と、一方向クラッチ44によって一方向の回転が阻止されているステータ翼車45とを有している。ポンプ翼車41とタービン翼車43とは、流体を介して動力を伝達するようになっている。
 さらに、トルクコンバータ3は、ポンプ翼車41とタービン翼車43との間を直結するためのロックアップクラッチ46を備えており、車両1の高速走行時において、作動油によりポンプ翼車41とタービン翼車43とを機械的に直結することにより、エンジン2から変速機構4への動力の伝達効率を上げるようになっている。また、トルクコンバータ3は、ロックアップクラッチ46を所定の滑り率でスリップさせることも可能である。
 また、ポンプ翼車41には、変速機構4を変速制御するための油圧や、各部に潤滑油を供給するための油圧を発生する機械式のオイルポンプ47が設けられている。
 変速機構4は、ダブルピニオン型の第1遊星歯車装置48と、シングルピニオン型の第2遊星歯車装置49および第3遊星歯車装置50と、を備えている。第1遊星歯車装置48のサンギヤS1は、クラッチC3を介して入力軸42に連結可能であるとともに、一方向クラッチF2およびブレーキB3を介してハウジング51に連結可能となっている。また、入力軸42の回転方向と逆方向への回転が阻止されるようになっている。
 第1遊星歯車装置48のキャリアCA1は、ブレーキB1を介してハウジング51に連結可能となっている。また、キャリアCA1は、ブレーキB1と並列に設けられた一方向クラッチF1により、常に逆方向の回転が阻止されるようになっている。
 第1遊星歯車装置48のリングギヤR1は、第2遊星歯車装置49のリングギヤR2と連結されており、ブレーキB2を介してハウジング51に連結可能となっている。第2遊星歯車装置49のサンギヤS2は、第3遊星歯車装置50のサンギヤS3と連結されており、クラッチC4を介して入力軸42に連結可能となっている。また、サンギヤS2は、一方向クラッチF4およびクラッチC1を介して入力軸42に連結可能となっており、逆方向への回転が阻止されるようになっている。
 第2遊星歯車装置49のキャリアCA2は、第3遊星歯車装置50のリングギヤR3と連結されており、クラッチC2を介して入力軸42に連結可能であるとともに、ブレーキB4を介してハウジング51に連結可能となっている。また、キャリアCA2は、ブレーキB4と並列に設けられた一方向クラッチF3により、逆方向への回転が阻止されるようになっている。また、第3遊星歯車装置50のキャリアCA3は、出力軸52に連結されている。
 クラッチC1~C4およびブレーキB1~B4(以下、特に区別しない場合は単にクラッチC、ブレーキBという)は、多板式のクラッチやブレーキなど油圧アクチュエータによって係合制御される油圧式摩擦係合装置により構成されている。また、クラッチCおよびブレーキBは、後述する油圧制御回路6のトランスミッションソレノイドS1~S4、およびリニアソレノイドSLT、SLUの励磁、非励磁や図示しないマニュアルバルブの作動状態によって切換えられる油圧回路に応じて、係合状態および解放状態のいずれか一方の状態をとるようになっている。したがって、変速機構4は、図3に示すように、これらのクラッチCおよびブレーキBの係合状態および解放状態の組み合わせに応じた変速段をとるようになっている。本実施の形態に係る変速機構4は、1速~6速により構成される6つの前進変速段および1つの後進変速段のうちいずれかの変速段をとるようになっている。また、変速機構4は、すべてのクラッチCおよびブレーキBを解放状態とすることにより、エンジン2から駆動輪への動力の伝達を遮断するニュートラル状態をとることができる。
 車両1は、さらに、トルクコンバータ3によるトルクの増大比および変速機構4の変速段を油圧により制御するための油圧制御回路6を備えている。油圧制御回路6は、トランスミッションソレノイドS1~S4、リニアソレノイドSLT、SLUおよび作動油の油温を測定するためのAT油温センサ32を有している。
 車両1は、さらに、エンジン2における燃料噴射および自動変速機5における変速を制御するためのECU11と、エンジン2の回転数を測定するためのエンジン回転数センサ21と、エンジン2の吸入空気量を測定する吸入空気量センサ22と、エンジン2に吸入される空気の温度を測定する吸入空気温度センサ23と、スロットル弁31の開度を測定するためのスロットルセンサ24と、変速機構4の入力軸42の回転数を検出するための入力軸回転数センサ25と、変速機構4の出力軸52の回転数を検出するための出力軸回転数センサ26と、ブレーキペダルに対する踏力を測定するブレーキセンサ27と、を備えている。車両1は、さらにシフトレバー28と、シフトレバー28のポジションを検出する操作位置センサ29と、アクセル開度を検出するためのアクセル開度センサ30と、操舵角センサ33と、を備えている。
 エンジン回転数センサ21は、図示しないクランクシャフトの回転に基づいて、エンジン2の回転数を計測し、エンジン回転数を表す信号を後述するECU(Electronic Control Unit)11に出力するようになっている。
 スロットルセンサ24は、スロットル弁31のスロットル開度に応じた出力電圧が得られるホール素子により構成されており、スロットル開度を表す信号を後述するECU11に出力するようになっている。入力軸回転数センサ25は、変速機構4の入力軸回転数を表す信号を後述するECU11に出力するようになっている。
 出力軸回転数センサ26は、変速機構4の出力軸回転数を表す信号を後述するECU11に出力するようになっている。操作位置センサ29は、運転者により操作されたシフトレバー28の操作位置を検出するようになっている。
 ブレーキセンサ27は、ブレーキペダルに対する運転者の操作踏力に応じたマスターシリンダ圧の変化あるいは操作ストロークを測定するようになっており、測定された踏力に応じたブレーキ踏力信号をECU11に出力するようになっている。
 アクセル開度センサ30は、ホール素子を用いた電子式のポジションセンサにより構成されており、車両1に搭載されたアクセルペダルが運転者により操作されると、アクセルペダルの位置、すなわちアクセル開度を表す信号を、ECU11に出力するようになっている。
 操舵角センサ33は、ステアリングホイールに連結された操舵軸の操舵トルクを検出するようになっており、操舵トルクに応じた信号をECU11に出力するようになっている。ECU11は、操舵角センサ33から入力された信号に基づいて、ステアリングホイールの左方向または右方向への操舵量を算出するようになっている。
 また、車両1は、ナビゲーション装置38を備えている。ナビゲーション装置38は、複数のGPS衛星から送信された信号をGPSアンテナ39を介して受信し車両1の現在位置を特定すると、予め記憶している道路情報のうち車両1の前方の道路情報と車両1の現在地情報とをECU11に送信するようになっている。この道路情報には、道路の勾配や曲率などの道路状況が対応付けられて記憶されている。ECU11は、これらの道路状況が対応付けられた道路情報および現在位置情報に基づいて、車両1前方の道路の曲率や勾配を算出するようになっている。
 ECU11は、エンジン回転数センサ21、吸入空気量センサ22、吸入空気温度センサ23、スロットルセンサ24、入力軸回転数センサ25、出力軸回転数センサ26、ブレーキセンサ27、操作位置センサ29およびAT油温センサ32と接続されており、これらのセンサからエンジン回転数、吸入空気量、吸入空気温度、スロットル開度、入力軸回転数、出力軸回転数、ブレーキ踏力、シフトレバー28の操作位置およびAT油温を表す信号をそれぞれ入力するようになっている。そして、ECU11は、これらのセンサから入力された情報や、変速線図を表す変速マップに基づいて、EFI-ECU13によるエンジン制御やECT-ECU14による変速制御を実行するようになっている。
 ECU11は、エンジン2を制御するEFI-ECU(Electronic Fuel Injection - Electronic Control Unit)13と、自動変速機5を制御するECT(Electronic Controlled Automatic Transmission)-ECU14とを備えている。なお、ECU11は、車両1のブレーキを制御するブレーキECUなど図示しない複数のECUをさらに備えるようにしてもよい。ここで、ECU11は、本発明に係る制御装置を構成する。
 EFI-ECU13は、図示しないCPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)および入出力インターフェースを有しており、アクセルペダルの操作量に応じてエンジン2が制御されるよう、エンジン2に対してエンジン制御信号を出力するようになっている。
 ECT-ECU14は、図示しないCPU、RAM、ROMおよび入出力インターフェースを有しており、入力した信号に基づいて自動変速機5のトルクコンバータ3や変速段が制御されるよう油圧制御回路6を制御するようになっている。また、ROMには、変速制御を実行するためのプログラムなどが記憶されている。
 シフトレバー28は、例えば、車両1の後方から前方に向かって、ドライブレンジに対応するDポジション、中立レンジに対応するNポジション、後進レンジに対応するRポジション、駐車レンジに対応するPポジションを取るようになっており、ゲートパターンに従ってポジションがシフトされるようになっている。
 シフトレバー28は、さらに、手動変速モードにおいて自動変速機5の変速レンジをシフトするためのマニュアルポジションを表すSポジション、シフトアップを指示するためのプラスポジション(+ポジション)およびシフトダウンを指示するためのマイナスポジション(-ポジション)を取るようになっている。
 SポジションはDポジションの横に位置しており、シフトレバー28は、運転者によりDポジションから横に移動されると、図示しないばねにより、Sポジションに保持されるようになっている。
 ECU11は、シフトレバー28が+ポジションや-ポジションに移動されることにより、現在の変速レンジから一つ上あるいは一つ下の変速レンジにそれぞれ移行するシーケンシャルシフトを実現するようになっている。
 ECU11は、シフトレバー28がDポジションに位置していることを操作位置センサ29から取得した場合には、自動変速モードに移行し、車速、スロットル開度および変速マップに基づき、油圧制御回路6を介して自動変速機5の変速段をシフトするようになっている。また、ECU11は、シフトレバー28がSポジションに位置していることを操作位置センサ29から取得した場合には、手動変速モードに移行するとともに、運転者により指示された変速レンジに応じて自動変速機5の変速段をシフトするようになっている。
 本実施の形態に係るECU11は、車両1の走行状態に応じて変速段をニュートラルに移行し車両1を惰性により走行させ燃費を向上するニュートラル惰性走行制御(以下、単にN惰行制御という)を実行するようになっている。
 ECU11は、手動変速モードや、アクセルペダルに対する出力を通常より増加させるパワーモードなどに設定されておらず、かつ、車両1の走行状態が以下の第1ないし第3の条件を満たした場合には、油圧制御回路6を介して自動変速機5の変速段をニュートラルに移行するようになっている。
 具体的には、ECU11は、アクセル開度センサ30およびブレーキセンサ27から入力される信号に基づいて、アクセルペダルおよびブレーキペダルが踏み込まれていないと判断し、操舵角センサ33から入力される信号に基づいて、図示しないステアリングホイールの左方向または右方向への操舵量が所定値以下であると判断したことを第1の条件とする。
 また、ECU11は、Gセンサ34から入力された信号に基づいて、車両1の旋回状態および道路の勾配に応じ車両1に加わる重力が所定値以下であることを第2の条件とする。
 また、ECU11は、ナビゲーション装置38から入力される信号に基づいて、現在の車両1の走行位置より前方の位置の道路の曲率および勾配を表す信号を取得し、これらの曲率や勾配が所定値以下であることを第3の条件とする。
 ECU11は、これら第1ないし第3の条件が成立した場合には、N惰行制御を開始し、自動変速機5の変速段をニュートラルに移行する。
 また、ECU11は、N惰行制御の実行中に、上記第1ないし第3の条件のうち少なくともいずれか1つの条件が成立した場合には、N惰行制御の停止条件が成立したと判定し、N惰行制御を終了するようになっている。
 ここで、例えば、現在位置より前方の道路の曲率や勾配が上記第3の条件を満たしている場合においても、運転者は、現在位置より前方の見通しが悪くN惰行を望まない場合には、ブレーキペダルを踏むことになる。しかしながら、従来の制御装置においては、この車両1が同じ位置に差し掛かった場合に再び上記第1ないし第3の条件が成立するため、再びN惰行制御を開始してしまい、運転者はその都度N惰行に対し違和感を覚えることになる。
 そこで、本実施の形態に係るECU11は、このようにN惰行制御の実行中に運転者によりブレーキペダルが踏み込まれるなど、以下のいずれかの条件が成立した場合には、その後同じ位置においてN惰行制御が実行されることを抑制するよう、N惰行禁止学習制御を実行するようになっている。
 具体的には、ECU11は、ナビゲーション装置38に地図情報を構成する道路情報を記憶している。この道路情報は、道路を区間に分割しこの区間に車速情報などの情報を対応付けて記憶可能なデータベースを構成している。そして、ECU11は、現在の走行位置を含む所定区間に対し、N惰行禁止を表す情報を対応付けて記憶する。区間は、例えば地図情報上の道路に沿って100mごとにノードを設定し、各ノードを結ぶリンクを区間とするようにする。
 そして、ECU11は、車両1の走行中にナビゲーション装置38から現在の走行位置の道路情報を取得するとともに、当該走行位置を含む区間にN惰行禁止を表す情報が対応付けられているかを判断する。ECU11は、当該区間にN惰行禁止を表す情報が対応付けられていると判断した場合には、N惰行制御の開始条件が成立した場合においてもN惰行制御の開始を禁止するようになっている。
 ECU11は、N惰行禁止学習制御として、第1に運転者が違和感を感じて運転操作を実行した場合にN惰行禁止学習を実行するようになっている。
 具体的には、ECU11は、N惰行制御の実行中に、運転者によりアクセルペダルあるいはブレーキペダルが踏み込まれたことを検知した場合に、N惰行制御を中断するとともに、現在位置および現在の車速を表す情報を、道路情報における現在位置を含む区間に対応付けてナビゲーション装置38に記憶させる。
 ここで、ECU11によるN惰行制御の実行中において、たまたま横道から他車両が進入してきたため、運転者がブレーキペダルを踏む場合がある。この場合、運転者は本来はN惰行の禁止を望んでいないため、ECU11は、この走行区間をN惰行禁止として記憶することを回避する必要がある。そこで、ECU11は、同区間において同様の車速で走行している場合に、運転者によりブレーキペダルやアクセルペダルが操作されたケースが一定数以上となったことを条件にN惰行禁止区間として記憶するようにする。
 なお、ECU11は、各区間において、運転者によりブレーキペダルやアクセルペダルが操作されず、N惰行制御が継続した回数もナビゲーション装置38に記憶させ、運転者によりブレーキペダルやアクセルペダルが操作されたケースが一定の割合以上となったことを条件にN惰行禁止区間として記憶するようにしてもよい。
 また、ECU11は、N惰行禁止学習制御として、第2に、N惰行制御の実行中に、運転操作に起因してN惰行制御が中断した場合に、N惰行制御の継続時間が短くなったためN惰行制御を実行しない場合よりもかえって燃費が悪化する状況においてN惰行禁止学習を実行するようになっている。
 この場合においても、ECU11によるN惰行制御の実行中において、たまたま横道から他車両が進入してきたため、運転者がブレーキペダルを踏む場合がある。そこで、ECU11は、同区間において同様の車速で走行している場合に、N惰行時間の平均値が所定値よりも短くなり、当該区間でN惰行制御を実行すると燃費が悪くなる可能性が高まった場合に当該区間をN惰行禁止区間としてナビゲーション装置38に記憶するようにする。
 図4は、ECU11によるN惰行制御機能の要部を説明する機能ブロック図である。ECU11は、N惰行開始条件を判定するためのN惰行開始判定部61と、N惰行停止条件を判定するためのN惰行停止判定部66と、車両1の走行モードなどがN惰行の実行を許可するモードであるか否かを判定するためのN惰行制御許可条件判定部71と、N惰行の実施および停止を判定するN惰行判定部72と、N惰行判定部72によりN惰行の実施と判定された場合にN惰行を要求するN惰行要求部73と、を備えている。
 N惰行開始判定部61は、運転者の操作がN惰行制御を実行するための条件を満たしているか否かを判定するドライバー操作判定部62と、車両1の走行状態がN惰行制御を実行するための条件を満たしているか否かを判定する車両状態判定部63と、ナビゲーション装置38から取得する情報に基づいて、車両1が現在走行している位置より先の区間の道路の勾配や曲率がN惰行制御を実行するための開始条件を満たしているか否かを判定する先読み判定部64と、これらの判定に対する論理積を演算するための論理積演算部65と、を有している。
 N惰行停止判定部66は、運転者の操作がN惰行制御を停止する条件を満たしているか否かを判定するドライバー操作判定部67と、車両1の走行状態がN惰行制御を停止する条件を満たしているか否かを判定する車両状態判定部68と、ナビゲーション装置38から取得する情報に基づいて、車両1が現在走行している位置より先の区間の道路の勾配や曲率がN惰行制御を停止する停止条件を満たしているか否かを判定する先読み判定部69と、これらの判定に対する論理和を演算するための論理和演算部70と、を有している。
 したがって、N惰行判定部72は、N惰行制御許可条件判定部71によりN惰行制御の実行条件が成立していると判定されていることを条件に、ドライバー操作判定部62、車両状態判定部63および先読み判定部64のすべてにおいてN惰行制御の実行条件が成立していると判定された場合には、N惰行制御を開始する。そして、N惰行判定部72は、ドライバー操作判定部67、車両状態判定部68および先読み判定部69のいずれかにおいて、N惰行制御を停止する条件が成立したと判定された場合には、N惰行制御を停止する。
 図5は、図4に示したN惰行開始判定部61における先読み判定部64の機能をより詳細に説明するための機能ブロック図である。
 先読み判定部64は、車両1の現在位置を取得するための現在位置取得部81と、車両1の現在の車速を取得するための現在車速取得部82と、道路情報から車両1が現在走行している位置より先の区間における曲率を取得するための先読み曲率取得部83と、道路情報から車両1が現在走行している位置より先の区間における勾配を取得するための先読み勾配取得部84と、を備えている。
 さらに、先読み判定部64は、現在位置取得部81、現在車速取得部82、先読み曲率取得部83および先読み勾配取得部84によりそれぞれ取得された情報に基づいて車両1の運動予測を実行する車両運動予測モデル生成部85を備えている。車両運動予測モデル生成部85は、例えば車両1の諸元値に従った運動方程式を予め記憶しており、現在位置取得部81、現在車速取得部82、先読み曲率取得部83および先読み勾配取得部84によりそれぞれ取得された情報をこの運動方程式に代入することにより、車速変化や車両1の前後および横方向の加速度を予測するようになっている。
 さらに、先読み判定部64は、N惰行制御禁止学習部95を備えている。N惰行制御禁止学習部95は、現在位置取得部91、現在車速取得部92、先読み曲率取得部93および先読み勾配取得部94からそれぞれ現在位置情報、現在車速情報、先読み曲率情報および先読み勾配情報を取得するようになっている。なお、現在位置取得部91、現在車速取得部92、先読み曲率取得部93および先読み勾配取得部94は、上述した現在位置取得部81、現在車速取得部82、先読み曲率取得部83および先読み勾配取得部84によりそれぞれ構成されていてもよい。
 N惰行制御禁止学習部95は、取得した現在位置情報、現在車速情報、先読み曲率情報および先読み勾配情報に基づいて、運転者がN惰行制御の開始に起因して違和感を覚えたことを示す運転操作を実行したか否か、フューエルカット制御や減速フレックスロックアップ制御など他の走行制御を実行するよりもN惰行制御を実行した方がかえって燃費が悪化するか否か、あるいは逆に、運転者がN惰行禁止区間においてNレンジを選択するなど運転者がN惰行制御を望んでいることを表す操作を検出したか否か、に基づいて、後述するN惰行禁止区間DB97を更新するようになっている。
 また、先読み判定部64は、道路情報と関連付けられN惰行禁止区間をデータベース化したN惰行禁止区間DB97を有している。N惰行制御禁止学習部95は、現在の走行位置におけるN惰行制御を禁止と判定した場合には、当該走行位置を含む走行区間をN惰行禁止区間としてN惰行禁止区間DB97に記憶する。このN惰行禁止区間DB97は、後述する学習DBの一部を構成する。
 そして、先読み判定部64は、車両運動予測モデル生成部85により予測された車速変化条件や車両1の前後および横方向の加速度条件、およびN惰行禁止区間DB97に記憶されているN惰行禁止区間条件を論理積回路98に入力し、いずれの条件もN惰行開始条件を満たしている場合に、N惰行開始条件が成立していると判定するようになっている。
 次に、N惰行禁止学習制御の動作について説明する。まず、図6を参照して違和感検知によるN惰行禁止学習制御について説明する。なお、以下に説明する処理は、予めECU11のROMに記憶されているプログラムによって実現され、CPUにより所定の時間間隔で実行される。また、運転者によりブレーキペダルが踏み込まれたことに起因してN惰行制御が中断した場合を例に説明する。
 図6に示すように、まず、ECU11は、N惰行制御中にブレーキON、すなわち運転者によりブレーキペダルが踏み込まれた状態になったか否かを判定する(ステップS11)。
 ECU11は、N惰行制御中であることを示すN惰行フラグを有しており、N惰行制御の実行中にはN惰行フラグをONにする。したがって、ECU11は、このN惰行フラグを参照することにより現在車両1がN惰行制御を実行しているか否かを判断する。
 そして、ECU11は、ブレーキセンサ27から入力される信号に基づいて、ブレーキペダルが踏み込まれている状態である場合には、ブレーキがONであると判定する。
 ECU11は、N惰行制御中にブレーキがONになったと判定すると(ステップS11でYES)、ステップS12に移行する。一方、ECU11は、N惰行中ではないあるいはブレーキがONではないと判定した場合には(ステップS11でNO)、ENDに移行する。
 ステップS12において、ECU11は、現在位置と現在車速とを学習DBに記憶する。具体的には、ナビゲーション装置38に記憶されている道路情報において、現在位置を含む区間に現在位置および現在車速を表す情報を対応付ける。
 次に、ECU11は、当該現在位置を含む区間に対応付けられた情報を参照し、今回記憶した現在位置および現在車速と類似したデータを照合する(ステップS13)。類似したデータとは、学習DBに記憶されたデータのうち、例えば、現在車速に対する車速の差が所定値以内であり、かつ、現在位置と同一区間内において現在位置から所定の距離以内であることを表すデータを意味する。
 次に、ECU11は、ステップS13において類似したデータを照合した結果、N惰行制御が中断された状況、すなわち位置や車速が、今回と同様のケースが一定数以上あるか否かを判定する(ステップS14)。ECU11は、同様のケースが一定数以上あると判断した場合には(ステップS14でYES)、ステップS15に移行する。一定数とは、運転者が本来はN惰行を希望する道路状況において、たまたまブレーキ操作をしたという事象を排除できる数を意味し、例えば3回などに設定されている。一方、同様のケースが一定数に満たないと判断した場合には(ステップS14でNO)、ENDに移行する。
 ステップS15に移行した場合、ECU11は、ステップS12で参照された区間をN惰行禁止区間に設定する。本実施の形態においては、ECU11は、道路情報において、当該区間に対応付けられたN惰行禁止を示すフラグをONにする。
 次に、図7を参照して区間燃費評価によるN惰行禁止学習制御について説明する。なお、以下に説明する処理は、予めECU11のROMに記憶されているプログラムによって実現され、CPUにより所定の時間間隔で実行される。
 ECU11は、まず、運転者の運転操作によりN惰行が中断されたか否かを判定する(ステップS21)。具体的には、ECU11は、ブレーキセンサ27、操作位置センサ29、あるいは操舵角センサ33から入力される信号に基づいて、ブレーキペダルあるいはアクセルペダルが踏み込まれた、あるいは操舵角が所定値以上となったなど、N惰行を中断する条件が成立したか否かを判定する。
 ECU11は、運転操作によりN惰行制御が中断されたと判定した場合には(ステップS21でYES)、ステップS22に移行する。一方、運転操作によりN惰行制御が中断されていないと判定した場合には(ステップS21でNO)、ENDに移行する。
 次に、ECU11は、N惰行制御が継続した時間および現在の走行位置と車速を道路情報における現在の走行位置を含む区間に対応付けて記憶する(ステップS22)。
 次に、ECU11は、現在の走行位置を含む区間に対応付けられた情報を参照し、現在の走行位置および車速と近いデータを照合する(ステップS23)。
 次に、ECU11は、ステップS23において照合したデータから、N惰行制御が継続した時間の期待値を算出する(ステップS24)。具体的には、ECU11は、道路情報を参照し、現在の走行位置および車速と近いデータからN惰行制御が継続した時間の平均値を期待値として算出する。なお、ECU11は、期待値として平均値の代わりに中央値などを用いてもよい。
 次に、ECU11は、ステップS24において算出したN惰行時間の期待値が一定時間以下であるか否かを判定する(ステップS25)。この一定時間は、N惰行制御を実行して走行した場合に、N惰行制御をせずに走行した場合と比較して燃費が悪化する時間を表しており、予め実験的な測定により求められている。
 ECU11は、N惰行時間の期待値が一定時間以下であると判定した場合には(ステップS25でYES)、ステップS26に移行する。一方、N惰行時間の期待値が一定時間を超えていると判定した場合には(ステップS25でYES)、ENDに移行する。
 ステップS26に移行した場合、ECU11は、当該区間をN惰行禁止区間として学習DBに登録する。本実施の形態においては、ECU11は、道路情報において、当該区間に対応付けられたN惰行禁止を示すフラグをONにする。
 次に、図8を参照してドライバー操作によるN惰行禁止解除制御について説明する。なお、以下に説明する処理は、予めECU11のROMに記憶されているプログラムによって実現され、CPUにより所定の時間間隔で実行される。
 まず、ECU11は、Dレンジによる惰行中、すなわち非駆動走行中に、Nレンジへシフトされたか否かを判定する(ステップS31)。ECU11は、操作位置センサ29から入力される信号に基づいて、指示レンジがDレンジからNレンジにシフトしたか否かを判定する。また、ECU11は、アクセル開度センサ30から入力される信号に基づいて、アクセルペダルが踏み込まれていないか否かを判定する。
 そして、ECU11は、指示レンジがDレンジからNレンジにシフトされ、アクセルペダルが踏み込まれていなければ、Dレンジによる惰行中にNレンジへシフトされたと判定し(ステップS31でYES)、ステップS32に移行する。一方、Dレンジによる惰行中にNレンジへシフトされていないと判定された場合(ステップS31でNO)、ENDに移行する。
 ステップS32に移行した場合、ECU11は、N惰行禁止区間を走行中であるか否かを判定する。ECU11は、ナビゲーション装置38に記憶された道路情報を参照し、現在の走行位置を含む区間におけるN惰行禁止を示すフラグがONになっているか否かを参照する。そして、ECU11は、N惰行禁止を示すフラグがONになっている場合には、N惰行禁止区間を走行中であると判定する。
 ECU11は、N惰行禁止区間を走行中であると判定した場合には(ステップS32でYES)、ステップS33に移行する。一方、現在位置がN惰行禁止区間ではないと判定した場合には(ステップS32でNO)、ENDに移行する。
 ステップS33に移行した場合、ECU11は、当該区間のN惰行禁止を解除するよう学習DBに登録する。具体的には、ECU11は、ナビゲーション装置38に記憶されている学習DBにおいて、現在位置を含む区間におけるN惰行禁止フラグをONからOFFに変更する。
 以上のように、本実施の形態に係るECU11は、惰行制御が実行されている場合においても、運転者の操作により惰行制御が中断された場合には、その情報を位置情報と対応付けて記憶させることができる。これにより、車両1が次回以降同じ場所を走行した場合には惰行制御の実行を禁止することができる。したがって、例えば現在位置における道路の勾配が惰行制御が許可されるほかの道路の勾配と等しい場合においても、現在位置の前方の道幅が狭くなるなど運転者が惰行制御を望まずブレーキ操作をした場合には、惰行制御の禁止を表す情報を記憶し、次回現在位置を含む区間を走行する場合には惰行制御の実行を回避することができる。したがって、ECU11は、惰行制御を実行することにより燃費を向上することができるとともに、運転者に違和感を与える惰行制御が実行されることを防止することができる。
 また、ECU11は、現在位置において惰行制御が中断された回数が所定数に満たない場合には、当該現在位置を含む区間における惰行制御が禁止されることを防止できる。したがって、運転者が当該現在位置において本来は惰行制御を望んでいるにもかかわらず、他車両の割り込みなどに起因してブレーキを操作し惰行制御が中断されたとしても、当該現在位置を含む区間において惰行制御が禁止されることを防止できる。
 また、運転者により操作されたアクセルペダル、ブレーキペダルあるいはステアリングホイールの操作量に基づいて、運転者による惰行制御の中断操作が行われたか否かを判定することができる。したがって、ECU11は、運転者が惰行制御を望まない区間で今後惰行制御が実行されることを禁止することができる。
 また、ECU11は、以前の運転操作に起因して惰行制御が禁止された区間において運転者が惰行制御を望む運転操作を実行した場合には、惰行制御の禁止を解除することにより、当該区間における惰行制御を再開することができる。
 また、現在位置に対応付けられた複数の惰行制御の継続時間の平均値が所定値以下である場合には、当該現在位置を含む区間において短時間のみ惰行制御を実行することにより惰行制御を実行しない場合よりも燃費が悪化する可能性がある。したがって、ECU11は、当該現在位置を含む区間における惰行制御を禁止し、車両1の燃費の悪化を防止することができる。
 なお、以上の説明においては、本発明に係る制御装置が6速の自動変速機5を搭載したFR車両に適用される場合について説明した。
 しかしながら、本発明に係る制御装置は、6速以外の変速段を有する自動変速機を搭載した車両や、FF(Front engine Front drive)車両に適用されるようにしてもよい。また、本実施の形態における自動変速機5の構成は単なる一例にすぎず、自動変速機5がこの他の構成を有していてもよい。また、車両1が自動変速機5の代わりにCVT(Continuously Variable Transmission)を搭載していてもよい。
 さらに、以上の説明においては、本発明に係る制御装置を動力源としてエンジン2のみを搭載した車両1に適用する場合について説明したが、これに限定されず、以下に説明するように、動力源としてエンジン2およびモータMG1、MG2を搭載した車両100に適用されるようにしてもよい。以下、図9を参照して、本実施の形態の別の例に係る車両の制御装置について説明する。なお、別の例に係る車両の制御装置において、上述の第1の実施の形態に係る車両の制御装置と同様の構成要素については、第1の実施の形態と同様の符号を用いて説明し、特に相違点についてのみ詳述する。
 図9に示すように、ハイブリッド車両100は、内燃機関を構成するエンジン2と、エンジン2によって発生された動力を駆動軸103およびドライブシャフト104L、104Rを介して駆動輪105L、105Rに伝達するための動力伝達装置106と、ハイブリッド車両100の各部を制御するハイブリッドECU107と、エンジン2を制御するエンジンECU108と、を備えている。
 エンジンECU108は、ハイブリッドECU107と高速CAN(Controller Area Network)等の車内ネットワークを介して通信するようになっており、ハイブリッドECU107から入力される制御信号およびエンジン2の運転状態を検出する各種センサから入力される検出信号等に基づいて、燃料噴射制御、点火制御および吸入空気量調節制御等のエンジン2の運転制御を行うとともに、必要に応じてエンジン2の運転状態に関するデータをハイブリッドECU107に出力するようになっている。
 動力伝達装置106は、電力と回転力とを相互に変換するモータジェネレータMG1、MG2と、エンジン2によって発生された動力を駆動輪105L、105R側に伝達する動力とモータジェネレータMG1を駆動する動力とに分割する動力分割機構109とを備えている。
 動力分割機構109は、エンジン2の出力軸としてのクランクシャフト110の端部に接続され、エンジン2によって発生された動力を分割すると共に、モータジェネレータMG1および駆動輪105L、105R側から伝達された動力を統合する遊星歯車機構によって構成されている。
 したがって、動力分割機構109は、分割した一方の動力によってモータジェネレータMG1を発電機として機能させるとともに、分割した他方の動力によって駆動輪105L、105Rを回転させるようになっている。
 また、動力分割機構109は、モータジェネレータMG1が電動機として機能し、エンジン2が駆動しているときには、エンジン2から入力された動力と、モータジェネレータMG1から入力された動力とを統合するようになっている。
 また、動力分割機構109は、モータジェネレータMG1が電動機として機能し、かつ、エンジン2が停止しているときには、モータジェネレータMG1から入力された動力によりクランクシャフト110を回転させ、エンジン2を始動させるようになっている。
 動力伝達装置106から出力された動力は、ディファレンシャルギア111およびドライブシャフト104L、104Rを介して、駆動輪105L、105Rに伝達するようになっている。
 駆動電力が供給されたモータジェネレータMG2は、駆動源として機能するようになっており、モータジェネレータMG2によって発生された動力は、駆動輪105L、105Rに伝達されるようになっている。
 また、駆動電力が供給されていないモータジェネレータMG2は、駆動輪105L、105Rの回転を減速しつつ、その回転力を電力に変換する電力回生器として機能するようになっている。
 モータジェネレータMG1とモータジェネレータMG2とは、インバータ112およびインバータ113を介してバッテリ114との間で電力をやりとりし、バッテリ114を充放電させるようになっている。
 このようなモータジェネレータMG1、MG2を駆動制御するために、ハイブリッド車両100は、モータECU115を備えている。モータECU115は、インバータ112およびインバータ113にスイッチング制御信号を出力することにより、モータジェネレータMG1、MG2を駆動制御するようになっている。
 また、モータECU115は、ハイブリッドECU107と高速CANを介して通信するようになっており、ハイブリッドECU107から入力された制御信号に応じてインバータ112、113を制御することにより、モータジェネレータMG1、MG2をそれぞれ駆動制御するようになっている。また、モータECU115は、必要に応じてモータジェネレータMG1、MG2の駆動状態に関するデータをハイブリッドECU107に出力するようになっている。
 また、ハイブリッド車両100は、バッテリECU116を備えている。バッテリECU116は、CPUと、ROMと、RAMと、フラッシュメモリと、入出力ポートと、を備えたマイクロプロセッサによって構成されている。
 バッテリECU116には、バッテリ114の状態を管理するために必要な信号、例えば、バッテリ114の端子間の端子間電圧、バッテリ114の充放電電流、および、バッテリ114の温度等を表す信号が入力されるようになっている。
 また、バッテリECU116は、必要に応じてバッテリ114の状態に関するデータをハイブリッドECU107に出力するようになっている。例えば、バッテリECU116は、バッテリ114の充放電電流の積算値に基づいて、バッテリ114の残容量を表すSOC(State Of Charge)を算出し、算出したSOCをハイブリッドECU107に出力するようになっている。
 ハイブリッドECU107は、CPUと、ROMと、RAMと、フラッシュメモリと、入出力ポートと、を備えたマイクロプロセッサによって構成されている。ROMには、当該マイクロプロセッサをハイブリッドECU107として機能させるためのプログラムが記憶されている。すなわち、CPUがRAMを作業領域としてROMに記憶されたプログラムを実行することにより、当該マイクロプロセッサは、ハイブリッドECU107として機能する。
 ハイブリッドECU107は、エンジンECU108、モータECU115およびバッテリECU116と高速CANを介して互いに接続されており、エンジンECU108、モータECU115およびバッテリECU116と各種制御信号やデータのやりとりを行うようになっている。
 このようなハイブリッド車両100において、ハイブリッドECU107は、上述したECU11と同様に、N惰行開始判定部61、N惰行停止判定部66、N惰行制御許可条件判定部71、N惰行判定部72およびN惰行要求部73を構成している。そして、ハイブリッドECU107は、ECU11と同様の方法でN惰行制御の実施条件が成立していると判定した場合には、モータジェネレータMG2による回生を実行せず、ハイブリッド車両100を惰性走行させる。また、現在位置を含む区間に対しN惰行禁止を示すフラグがONになっている場合には、非駆動時にモータジェネレータMG2による回生を行いながらハイブリッド車両100を走行させる。
 これにより、ハイブリッドECU107は、モータジェネレータMG2により回生をしながら走行した場合には、制動力のかかりすぎに起因してハイブリッド車両100の停止位置が運転者の所望の停止位置より手前になってしまい、停止位置を調整するために運転者によりアクセルペダルが操作される結果、かえって燃費や電力消費量が悪化する可能性が生じる。このような場合には、ハイブリッドECU107はN惰行制御を実行することにより、モータジェネレータMG2による回生が実行されないもののアクセルペダルが操作されることを抑制し、燃費や電力消費量を向上することができる。
 逆に、ハイブリッドECU107は、N惰行制御の実行による走行がモータジェネレータMG2による回生をしながらの走行よりも燃費や電力消費量が低下する状況下においては、N惰行制御を禁止することにより、燃費や電力消費量が悪化することを抑制できる。
 以上説明したように、運転者に違和感を与えずに燃費を向上することができるという効果を奏するものであり、非駆動時に惰性走行が可能な車両の制御装置に有用である。
 1 車両
 2 エンジン
 3 トルクコンバータ
 4 変速機構
 5 自動変速機
 11 ECU
 21 エンジン回転数センサ
 24 スロットルセンサ
 27 ブレーキセンサ
 28 シフトレバー
 29 操作位置センサ
 30 アクセル開度センサ
 31 スロットル弁
 33 操舵角センサ
 34 Gセンサ
 38 ナビゲーション装置
 39 GPSアンテナ
 46 ロックアップクラッチ
 61 N惰行開始判定部
 62 ドライバー操作判定部
 63 車両状態判定部
 64 先読み判定部
 65 論理積演算部
 66 N惰行停止判定部
 67 ドライバー操作判定部
 68 車両状態判定部
 69 先読み判定部
 70 論理和演算部
 71 N惰行制御許可条件判定部
 72 N惰行判定部
 73 N惰行要求部
 81 現在位置取得部
 82 現在車速取得部
 83 先読み曲率取得部
 84 先読み勾配取得部
 85 車両運動予測モデル生成部
 93 先読み曲率取得部
 94 先読み勾配取得部
 95 N惰行制御禁止学習部
 97 N惰行禁止区間DB

Claims (9)

  1.  走行中に動力源から駆動輪への動力の伝達を停止可能な車両の制御装置であって、
     前記車両の現在位置を特定する位置特定部と、
     特定された前記現在位置を含む道路を示す道路情報を前記道路の道路状況と対応付けて記憶する道路情報記憶部と、
     前記現在位置より前方の道路に対する前記道路情報に基づいて前記動力源から前記駆動輪への動力の伝達を停止して前記車両を惰性走行させる惰性走行実行部と、
     少なくとも前記惰性走行の中断および開始を表す運転操作を検出する運転操作検出部と、
     前記惰性走行を中断する運転操作が検出された場合には、前記現在位置および前記惰性走行が中断されたことを表す情報を前記道路情報に対応付けて前記道路情報記憶部に記憶する中断情報記憶部と、
     前記中断情報記憶部により記憶された情報に基づいて、前記現在位置を含む所定の区間における惰性走行を禁止する惰性走行禁止部と、を備えることを特徴とする車両の制御装置。
  2.  前記惰性走行禁止部は、前記現在位置に対応づけられた前記惰性走行が中断されたことを表す情報の数が所定値以上となったことを条件に前記現在位置を含む所定の区間における前記車両の惰性走行を禁止することを特徴とする請求項1に記載の車両の制御装置。
  3.  前記運転操作検出部は、アクセルペダルの操作量、ブレーキペダルの操作量およびステアリングホイールの操作量のうち少なくともいずれか1の操作量を検出することを特徴とする請求項1または請求項2に記載の車両の制御装置。
  4.  前記道路状況は、前記道路の勾配および曲率の少なくともいずれか一方であることを特徴とする請求項1ないし請求項3のいずれか1の請求項に記載の車両の制御装置。
  5.  前記惰性走行禁止部は、前記惰性走行の禁止中に前記惰性走行の開始を表す運転操作が検出された場合には、前記現在位置を含む所定の区間における前記惰性走行の禁止を解除することを特徴とする請求項1ないし請求項4のいずれか1の請求項に記載の車両の制御装置。
  6.  前記惰性走行禁止部は、前記惰性走行が中断された場合に、前記現在位置を含む所定の区間における前記惰性走行の継続時間を前記道路情報記憶部に記憶し、蓄積された複数の惰性走行の継続時間の平均値が予め定められた所定値以下である場合には前記現在位置を含む所定の区間における惰性走行を禁止することを特徴とする請求項1ないし請求項5のいずれか1の請求項に記載の車両の制御装置。
  7.  前記惰性走行実行部は、前記車両の走行状態が惰性走行を許可する予め定められた条件を満たさなくなったと判断した場合には、前記惰性走行を終了することを特徴とする請求項1ないし請求項6のいずれか1の請求項に記載の車両の制御装置。
  8.  前記動力源が内燃機関により構成され、
     前記車両は、前記内燃機関と前記駆動輪との間に変速機を備え、
     前記惰性走行実行部は、前記変速機によって前記駆動輪への動力の伝達を停止することにより前記車両を惰性走行させることを特徴とする請求項1ないし請求項7のいずれか1の請求項に記載の車両の制御装置。
  9.  前記動力源が内燃機関および前記車両の非駆動時に回生可能な回転電機により構成され、
     前記惰性走行実行部は、前記非駆動時に前記回転電機による回生を停止することにより前記車両を惰性走行させることを特徴とする請求項1ないし請求項7のいずれか1の請求項に記載の車両の制御装置。
PCT/JP2011/007117 2011-12-20 2011-12-20 車両の制御装置 WO2013093962A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201180075211.6A CN104024075A (zh) 2011-12-20 2011-12-20 车辆的控制装置
PCT/JP2011/007117 WO2013093962A1 (ja) 2011-12-20 2011-12-20 車両の制御装置
EP11878114.5A EP2796332B1 (en) 2011-12-20 2011-12-20 Vehicle control device
US14/365,426 US9073549B2 (en) 2011-12-20 2011-12-20 Vehicle control apparatus
JP2013549945A JP5846218B2 (ja) 2011-12-20 2011-12-20 車両の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/007117 WO2013093962A1 (ja) 2011-12-20 2011-12-20 車両の制御装置

Publications (1)

Publication Number Publication Date
WO2013093962A1 true WO2013093962A1 (ja) 2013-06-27

Family

ID=48667894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/007117 WO2013093962A1 (ja) 2011-12-20 2011-12-20 車両の制御装置

Country Status (5)

Country Link
US (1) US9073549B2 (ja)
EP (1) EP2796332B1 (ja)
JP (1) JP5846218B2 (ja)
CN (1) CN104024075A (ja)
WO (1) WO2013093962A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013093962A1 (ja) * 2011-12-20 2015-04-27 トヨタ自動車株式会社 車両の制御装置
WO2016017562A1 (ja) * 2014-08-01 2016-02-04 日立オートモティブシステムズ株式会社 車両用制御装置
JP2016536549A (ja) * 2013-11-08 2016-11-24 ルノー エス.ア.エス. コーナリングの間に自動変速装置を制御するための装置及び方法
US9694820B2 (en) 2014-12-11 2017-07-04 Hyundai Motor Company SSC control method and control apparatus thereof
CN108036797A (zh) * 2017-11-30 2018-05-15 深圳市隐湖科技有限公司 基于四轮独立驱动且结合imu的里程推算方法
US10124676B2 (en) 2015-04-07 2018-11-13 Toyota Jidosha Kabushiki Kaisha Vehicle controller
JP2019043497A (ja) * 2017-09-07 2019-03-22 株式会社テクトム 運転情報システム
JPWO2019073528A1 (ja) * 2017-10-10 2020-11-05 日産自動車株式会社 車両の制御方法及び制御装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013190652A1 (ja) 2012-06-20 2013-12-27 トヨタ自動車株式会社 車両の制御装置
JP6107824B2 (ja) * 2012-08-08 2017-04-05 トヨタ自動車株式会社 車両の走行制御装置
JP5741551B2 (ja) 2012-10-24 2015-07-01 トヨタ自動車株式会社 車両の走行制御装置
US9623870B2 (en) 2012-10-31 2017-04-18 Toyota Jidosha Kabushiki Kaisha Vehicle travel control device
JP5962767B2 (ja) 2012-10-31 2016-08-03 トヨタ自動車株式会社 車両の走行制御装置
WO2014068725A1 (ja) 2012-10-31 2014-05-08 トヨタ自動車株式会社 車両の走行制御装置
JP6037001B2 (ja) 2013-05-07 2016-11-30 トヨタ自動車株式会社 車両の変速制御装置
KR101826550B1 (ko) 2015-11-30 2018-02-07 현대자동차 주식회사 차량의 변속 제어 장치 및 이를 이용한 변속 제어 방법
FR3052128B1 (fr) * 2016-06-06 2018-07-06 Peugeot Citroen Automobiles Sa Procede de commande d'un mode de roulage en roue-libre avec une periode de validation avant activation
DE102017100988A1 (de) * 2017-01-19 2018-07-19 Schaeffler Technologies AG & Co. KG Verfahren zur Steuerung eines Segelbetriebes eines Fahrzeuges mit automatisierter Kupplung
KR102368602B1 (ko) * 2017-06-30 2022-03-02 현대자동차주식회사 차량 및 그를 위한 정보 제공 방법
KR20190080053A (ko) * 2017-12-28 2019-07-08 현대자동차주식회사 관성주행 안내장치 및 제어방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004333467A (ja) * 2003-04-15 2004-11-25 Alpine Electronics Inc ナビゲーション装置およびナビゲーション方法
JP2007156704A (ja) 2005-12-02 2007-06-21 Nissan Diesel Motor Co Ltd 省燃費運転システム
JP2009042186A (ja) * 2007-08-10 2009-02-26 Aisin Aw Co Ltd ナビゲーション装置、サーバ、及びナビゲーションプログラム
JP2011121509A (ja) * 2009-12-11 2011-06-23 Toyota Motor Corp 車両の制御装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4408745C2 (de) * 1993-03-26 1997-02-27 Honda Motor Co Ltd Fahr-Steuereinrichtung für Fahrzeuge
SE0400605L (sv) * 2004-03-09 2005-01-25 Volvo Lastvagnar Ab Metod, system och datorprogram för automatisk frihjulning av fordon
JP2009292291A (ja) * 2008-06-04 2009-12-17 Toyota Motor Corp 車両用制御装置
JP4646334B2 (ja) * 2008-09-10 2011-03-09 渡邉 雅弘 車両走行制御方法
JP2010143304A (ja) * 2008-12-17 2010-07-01 Masahiro Watanabe 車両走行支援制御方法および装置
US8290695B2 (en) * 2009-01-16 2012-10-16 Volker Hiestermann Method for computing an energy efficient route
JP5304350B2 (ja) * 2009-03-12 2013-10-02 トヨタ自動車株式会社 車両用制御装置
JP2011221620A (ja) * 2010-04-05 2011-11-04 Toyota Motor Corp 車両制御装置及び車両制御システム
CN102308068A (zh) * 2010-04-27 2012-01-04 丰田自动车株式会社 发电控制装置及发电控制系统
DE102010030346A1 (de) * 2010-06-22 2011-12-22 Zf Friedrichshafen Ag Verfahren zur Fahrbetriebssteuerung eines Kraftfahrzeugs
EP2796332B1 (en) * 2011-12-20 2018-04-11 Toyota Jidosha Kabushiki Kaisha Vehicle control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004333467A (ja) * 2003-04-15 2004-11-25 Alpine Electronics Inc ナビゲーション装置およびナビゲーション方法
JP2007156704A (ja) 2005-12-02 2007-06-21 Nissan Diesel Motor Co Ltd 省燃費運転システム
JP2009042186A (ja) * 2007-08-10 2009-02-26 Aisin Aw Co Ltd ナビゲーション装置、サーバ、及びナビゲーションプログラム
JP2011121509A (ja) * 2009-12-11 2011-06-23 Toyota Motor Corp 車両の制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2796332A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013093962A1 (ja) * 2011-12-20 2015-04-27 トヨタ自動車株式会社 車両の制御装置
JP2016536549A (ja) * 2013-11-08 2016-11-24 ルノー エス.ア.エス. コーナリングの間に自動変速装置を制御するための装置及び方法
WO2016017562A1 (ja) * 2014-08-01 2016-02-04 日立オートモティブシステムズ株式会社 車両用制御装置
US9694820B2 (en) 2014-12-11 2017-07-04 Hyundai Motor Company SSC control method and control apparatus thereof
US10124676B2 (en) 2015-04-07 2018-11-13 Toyota Jidosha Kabushiki Kaisha Vehicle controller
JP2019043497A (ja) * 2017-09-07 2019-03-22 株式会社テクトム 運転情報システム
JPWO2019073528A1 (ja) * 2017-10-10 2020-11-05 日産自動車株式会社 車両の制御方法及び制御装置
CN108036797A (zh) * 2017-11-30 2018-05-15 深圳市隐湖科技有限公司 基于四轮独立驱动且结合imu的里程推算方法

Also Published As

Publication number Publication date
EP2796332A1 (en) 2014-10-29
EP2796332A4 (en) 2017-03-22
US20150006045A1 (en) 2015-01-01
JPWO2013093962A1 (ja) 2015-04-27
JP5846218B2 (ja) 2016-01-20
US9073549B2 (en) 2015-07-07
EP2796332B1 (en) 2018-04-11
CN104024075A (zh) 2014-09-03

Similar Documents

Publication Publication Date Title
JP5846218B2 (ja) 車両の制御装置
JP5062371B2 (ja) 車両の制御装置
JP5915496B2 (ja) 車両の走行制御装置
KR100460821B1 (ko) 전동기의 토크에 의해 제동되는 차량 및 그 제어 방법
JP5019002B2 (ja) 車両の制御装置
JP4915489B2 (ja) 車両の制御装置
JP5141829B2 (ja) 車両の制御装置
JP4201044B2 (ja) 車両およびその制御方法
WO2015008395A1 (ja) ハイブリッド車両の制御装置
WO2011080798A1 (ja) 車両の制御装置
JP2007331599A (ja) ハイブリッド車両の伝動状態切り替え制御装置
JP2009085330A (ja) 自動変速機の制御装置
JP2008154394A (ja) 車両およびその制御方法
JP5858578B2 (ja) ハイブリッド車両における空燃比センサの学習装置
EP2439122B1 (en) Control system of vehicle
JP6991437B2 (ja) レジャービークル
JP2007076646A (ja) 内燃機関の始動制御装置
JP4180559B2 (ja) 車両のエンジン自動停止装置
JP5774530B2 (ja) ハイブリッド車両における空燃比センサの学習装置
JP5135924B2 (ja) ハイブリッド車
JP6848402B2 (ja) 車両の制御装置
JP5652121B2 (ja) 回生制御装置
JP2015034493A (ja) 車両の制御装置
JP2015000578A (ja) 車両の走行制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11878114

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013549945

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011878114

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14365426

Country of ref document: US