WO2013091425A1 - 插销机构控制系统及起重机 - Google Patents

插销机构控制系统及起重机 Download PDF

Info

Publication number
WO2013091425A1
WO2013091425A1 PCT/CN2012/082176 CN2012082176W WO2013091425A1 WO 2013091425 A1 WO2013091425 A1 WO 2013091425A1 CN 2012082176 W CN2012082176 W CN 2012082176W WO 2013091425 A1 WO2013091425 A1 WO 2013091425A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
commutation
outlet
inlet
latch mechanism
Prior art date
Application number
PCT/CN2012/082176
Other languages
English (en)
French (fr)
Inventor
詹纯新
刘权
张建军
李英智
胡廷江
李怀福
李义
Original Assignee
中联重科股份有限公司
湖南中联重科专用车有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中联重科股份有限公司, 湖南中联重科专用车有限责任公司 filed Critical 中联重科股份有限公司
Publication of WO2013091425A1 publication Critical patent/WO2013091425A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/62Constructional features or details
    • B66C23/64Jibs
    • B66C23/70Jibs constructed of sections adapted to be assembled to form jibs or various lengths
    • B66C23/701Jibs constructed of sections adapted to be assembled to form jibs or various lengths telescopic
    • B66C23/705Jibs constructed of sections adapted to be assembled to form jibs or various lengths telescopic telescoped by hydraulic jacks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/62Constructional features or details
    • B66C23/64Jibs
    • B66C23/70Jibs constructed of sections adapted to be assembled to form jibs or various lengths
    • B66C23/701Jibs constructed of sections adapted to be assembled to form jibs or various lengths telescopic
    • B66C23/708Jibs constructed of sections adapted to be assembled to form jibs or various lengths telescopic locking devices for telescopic jibs

Definitions

  • the present invention relates to a latch mechanism control system, and more particularly to a latch mechanism control system for a construction machine telescopic boom and a corresponding crane. Background technique
  • the control mechanism of the existing latch mechanism is to supply oil through the gear pump, and the hydraulic oil reaches the cylinder pin or the arm pin after the first direction control width and the second direction control, wherein the second direction control is widely used for controlling the hydraulic pressure. Whether the passage between the oil passage and the gear pump or the fuel tank is turned on, and the first direction control is widely used to control whether the oil passage between the cylinder pin or the arm pin is turned on.
  • the mechanical telescopic arm is extended and retracted by the expansion and contraction of the telescopic cylinder and the insertion and extraction control of the cylinder pin and the arm pin with the pin structure, thereby realizing the extension or retraction of different arm segments.
  • the cylinder pin and the arm pin controlled by the latch mechanism cannot be retracted at the same time, but according to actual needs, the arm pin must remain extended if the cylinder pin is retracted, and if the arm pin is retracted, the cylinder is retracted. The pin must remain extended and this state is referred to as the "interlock" state.
  • the prior art does not require the "interlocking" function on the hydraulic system, so it is possible to generate the phenomenon that the two types of pins are simultaneously retracted, that is, when the pin is retracted, the critical point of the control electromagnetic is wide State, then it will retract the other pin at the same time.
  • the prior art can only rely on mechanical structures for limiting, thereby achieving mechanical interlocking. Therefore, once the mechanical interlocking error occurs, the cylinder pin and the arm pin may be retracted at the same time, which causes the boom to fall out of control from a high position, causing the machine to be destroyed, so the mechanical interlock There are great security risks.
  • the existing latch mechanism control system in the dynamic telescopic process of the mechanical telescopic arm, the hydraulic oil circuit must be under the action of pressure oil at all times to control one pin of the cylinder pin or the arm pin. When the sub-retracted state, it aggravates the leakage of the system. Especially when the center channel of the telescopic cylinder is selected for oil supply, the central passage is easily damaged and leaks. Summary of the invention
  • the object of the present invention is to overcome the defects of the existing latch mechanism control system and provide a new latch mechanism control system and corresponding crane to improve its safety and reliability, improve its service life, and reduce Energy loss.
  • the present invention provides a latch mechanism control system including a hydraulic oil tank, an oil pump, a first commutation wide, a multi-channel set, an arm pin cylinder, a cylinder pin cylinder, a second commutation width, and a third commutation width.
  • the hydraulic oil tank is used for storing hydraulic oil
  • the oil pump is connected to the hydraulic oil tank, and is used for outputting pressure oil.
  • the first commutation has a pressure port, a return port, a first outlet/inlet and a second outlet/inlet, wherein the pressure port is connected to the oil pump, and the oil return port is connected to the hydraulic oil tank.
  • the multi-channel group has a first channel, a second channel, a first outlet/inlet and a second outlet/inlet, wherein the first outlet/inlet of the multi-channel group is in communication with the first channel, and the second channel
  • the outlet/inlet is in communication with the second channel
  • the first channel of the multi-channel group is connected to the first outlet/inlet of the first commutation
  • the second channel of the multi-channel group is connected to the first Reversing the second exit/entry.
  • the second commutation cylinder and the arm pin cylinder are sequentially connected between the first outlet/inlet and the second outlet/inlet of the multi-channel group, and the second commutation is wider than the rod cavity of the arm pin cylinder Connected, and the rodless cavity of the arm pin cylinder is in communication with the second outlet/inlet of the multi-channel group.
  • the third commutation cylinder and the cylinder pin cylinder are sequentially connected between the second outlet/inlet of the multi-channel group and the first outlet/inlet, and the third commutation is wider with the cylinder pin cylinder
  • the rod chamber is in communication, and the rodless chamber of the cylinder pin cylinder is in communication with the first outlet/inlet of the multi-channel group.
  • the first commutation width comprises a first working state, a second working state and a third working state.
  • the first working state no high pressure oil acts in the entire system;
  • the first commutation is in the second working state the pressure oil output by the oil pump is from the first a first out/outflow of the commutating width, passing the first passage of the multi-channel group and the The first outlet/inlet enters the second commutation wide and the rodless cavity of the cylinder pin cylinder respectively;
  • the first commutation is in the third working state, the pressure oil output by the oil pump is from the first
  • the second outlet/inlet of the reversing direction flows through the second passage and the second outlet/inlet of the multi-channel group into the rodless chamber of the third reversing cylinder and the arm pin cylinder, respectively.
  • the second commutation includes a first working state and a second working state, and is configured to control an oil passage between the first passage of the multi-channel group and the rod cavity of the arm pin cylinder to be conductive Switch between state and cutoff state.
  • the arm pin cylinder is caused to perform the retracting action, and the rodless cavity entering the cylinder pin cylinder is utilized
  • the internal pressure oil acts to cause the cylinder pin cylinder to have a tendency to perform an extension action.
  • the third commutation includes a first working state and a second working state, and is configured to control an oil passage between the second passage of the multi-channel group and the rod cavity of the cylinder pin cylinder to be conductive Switching between a state and an off state, when the first commutation is in its third working state and the third commutation is in the second working state, causing the cylinder pin cylinder to perform a retracting action, and utilizing
  • the rodless cylinder of the arm pin cylinder acts as a pressure oil, and the arm pin cylinder has a tendency to perform an extension action.
  • the retracting action performed by the arm pin cylinder corresponds to the retracting action performed by the arm pin in the latch mechanism
  • the retracting action performed by the cylinder pin cylinder corresponds to the retracting action of the cylinder pin in the latch mechanism
  • the retracting action performed by the arm pin cylinder corresponds to the arm pin in the latch mechanism performing the retracting action
  • the retracting action performed by the cylinder pin cylinder corresponds to the cylinder pin in the latch mechanism performing the extending action.
  • the latch mechanism control system further includes a first oil filter, a first one-way wide, a second oil filter, and a second one-way wide.
  • first oil filter and the first unidirectional width are disposed between the first outlet/inlet of the first commutating width and the first passage of the multi-channel group; the second oil filter and the first oil filter The second unidirectional width is disposed between the second outlet/inlet of the first commutation width and the second passage of the multi-channel group.
  • the latch mechanism control system further includes a first oil filter, a first one-way wide, a second oil filter, and a second one-way wide, wherein the first oil filter and the first one-way wide are disposed at The first outlet/inlet of the multi-channel group and the second commutation are between the cylinder pin cylinder, and the second oil filter and the second unidirectional width are disposed in the second of the multi-channel group The outlet/inlet and the third commutation are between the arm pin cylinder.
  • the oil pump is a load sensing control variable displacement piston pump, and the first commutation is broadly load-sensitive electro-hydraulic proportional commutation; or the oil pump is an electrically controlled variable pump, and the first commutation is The switch type is widened; or the oil pump is a gear pump, and the first commutation is wide for the switch type.
  • the first passage and the second passage of the multi-channel set are a central passage of a telescopic cylinder, or a dual hose reel, or a single central passage and a single passage hose reel combination.
  • the latch mechanism control system further includes a controller to control the first commutation width, the second commutation width, and the third commutation width, respectively.
  • the present invention also provides a crane comprising a telescopic boom, a single cylinder latch mechanism and a latch mechanism control system, wherein the telescopic boom uses the single cylinder latch mechanism to perform a telescopic movement, wherein the single cylinder
  • the latch mechanism is controlled in accordance with the latch mechanism control system described above.
  • the latch mechanism control system of the present invention has at least the following advantages and advantageous effects:
  • the latch mechanism control system of the present invention can realize the interlocking of the cylinder pin and the arm pin of the latch mechanism, thereby ensuring that the cylinder pin and the arm pin are not retracted at the same time, thereby solving the safety hazard problem of the single-cylinder multi-section telescopic arm, and improving the problem. Its safety and reliability.
  • the first commutation width can be in the first working state, that is, in the middle position, so the oil pump does not supply oil to the entire system, then the multi-channel group
  • the first channel and the second channel are not subjected to the action of high pressure oil, thereby increasing the service life of the multi-channel group, and also reducing the internal leakage of the first channel and the second channel, thereby increasing the reliability of the entire system. And reduce the energy loss, and it is not necessary to control the system as in the existing latch mechanism.
  • the center channel must be in the high pressure oil state at all times to control one of the cylinder pins or the arm pins. The high pressure oil maintains a retracted state.
  • FIG. 1 is a schematic structural view of a latch mechanism control system according to a preferred embodiment of the present invention.
  • Figure 2 is a schematic view showing the electrical control of the latch mechanism control system shown in Figure 1. detailed description
  • the latch mechanism control system 100 is applicable to a latch mechanism for a mechanical telescopic arm, which includes a hydraulic oil tank 110, a load sensing control variable displacement piston pump 120, and a load-sensitive electro-hydraulic proportional commutation width 130 and more.
  • the hydraulic oil tank 110 is used to store hydraulic oil, which is connected to the load sensing control variable displacement piston pump 120; and the load sensing control variable displacement piston pump 120 is used to output pressure oil to the entire system, Further connecting the load-sensitive electro-hydraulic proportional commutation width 130; then the load-sensitive electro-hydraulic proportional commutation width 130 further connects the multi-channel group through the oil filter 191, the one-way wide 192, the oil filter 193 and the one-way wide 194 140.
  • the load-sensitive electro-hydraulic proportional commutation width 130 includes a pressure port, a return port, an outlet/inlet A, and an outlet/inlet B, wherein the pressure port is connected to the load sensing control variable displacement piston pump 120, and The oil port is connected to the hydraulic oil tank 110.
  • the multi-channel set 140 can be implemented with a multi-channel telescoping cylinder that includes a central passage 141, a central passage 142, an outlet/inlet 143, and an outlet/inlet 144.
  • the port/inlet A of the load-sensitive electro-hydraulic proportional commutating width 130 is connected to the central channel 141 of the multi-channel group 140 via the oil filter 191 and the unidirectional width 192, so that the load sensing control variable plunger
  • the pressure oil outputted by the pump 120 flows from the load-sensitive electro-hydraulic ratio to the outlet/inlet A of the wide 130, and is filtered by the filter 191 to flow into the central passage 141 of the multi-channel group 140, or the pressure oil is increased.
  • the center channel 141 of the channel group 140 flows back and flows back through the unidirectional width 192 to the load-sensing electro-hydraulic proportional commutation wide/outlet A.
  • the load-sensing electro-hydraulic proportional commutator 130 outlet/inlet B is connected to the central channel 142 of the multi-channel group 140 via the oil filter 193 and the unidirectional wide 194, so that the load sensing control variable displacement piston pump
  • the pressure oil outputted by 120 flows from the load-sensitive electro-hydraulic proportional to the outlet/inlet B of the wide 130, and is filtered by the filter 193 to flow into the central passage 142 of the multi-channel group 140, or the pressure oil is supplied from the multi-channel.
  • the center channel 142 of the group 140 flows back and flows back through the unidirectional wide 193 to the load-sensitive electro-hydraulic proportional commutation wide/outlet B of the inlet/outlet B.
  • the outlet/inlet 143 in the multi-channel group 140 is in communication with the central passage 141, and its outlet/inlet 144 is in communication with the central passage 142.
  • the cut-off electromagnetic commutation width 150 and the arm pin cylinder 170 are sequentially connected between the outlet/inlet 143 and the outlet/inlet 144 of the multi-channel group 140, and the cut-off electromagnetic commutation width 150 and the rod cavity of the arm pin cylinder 170 In communication, the rodless cavity of the arm pin cylinder 170 is in communication with the outlet/inlet 144 of the multichannel group 140.
  • the cut-off electromagnetic commutation width 160 and the cylinder pin cylinder 180 are sequentially connected between the inlet/outlet 144 and the outlet/inlet 143 of the multi-channel group 140, and the cut-off electromagnetic commutation width 160 and the rod-cylinder of the cylinder pin cylinder 180 are provided. Connected, and the rodless cavity of the cylinder pin cylinder 180 is connected to the inlet/outlet 143 of the multi-channel group 140 Pass.
  • the cut-off electromagnetic commutation width 150 is used to control the oil passage between the central passage 141 of the multi-channel group 140 and the rod cavity of the arm pin cylinder 170 to be switched between the on state and the off state, when the cut-off electromagnetic When the commutation is 150 and the power is lost, that is, when it is in the first working state, the oil passages at the ends of the cut-off electromagnetic commutation width 150 are disconnected, and the oil passage is blocked; and when the cut-off electromagnetic commutation is 150, the electric power is When it is in the second working state, the oil circuit at both ends of the cut-off electromagnetic commutation width 150 is turned on.
  • the cut-off electromagnetic commutation width 160 is used to control the oil passage between the center passage 142 of the multi-channel group 140 and the rod chamber of the cylinder pin cylinder 180 to be switched between the on state and the off state, when the cut-off type When the electromagnetic commutation is 160 and the power is lost, that is, when it is in the first working state, the oil passages at the ends of the cut-off electromagnetic commutation width 160 are disconnected, and the oil passage is blocked; and when the cut-off electromagnetic commutation is 160, the power is turned off. That is, when it is in the second working state, the oil passages at both ends of the cut-off electromagnetic commutation width 160 are turned on.
  • the load-sensitive electro-hydraulic proportional commutation width 130 has three working states. Specifically, when the load-sensitive electro-hydraulic proportional commutation width 130 is at the neutral position, that is, when it is in the first working state, the load-sensitive electric current is The liquid proportional commutation width 130 has no displacement, so the load sensing control variable displacement piston pump 120 has only a small amount of oil flowing out, which is used to supplement the load sensing control variable displacement piston pump 120 and the load-sensitive electro-hydraulic proportional exchange. The internal leakage of the element such as the wide 130, and at this time there is no force of the high pressure oil in the entire system.
  • the load sensing control variable displacement pump 120 When the load-sensitive electro-hydraulic proportional commutation width 130 is in the left position, that is, when it is in the second working state, the load sensing control variable displacement pump 120 outputs the pressure oil through the load-sensitive electro-hydraulic proportional commutation.
  • the width 130, the oil filter 191 enters the central passage 141 of the multi-channel group 140, and then passes through the outlet/inlet 143 to enter the rodless chamber of the cut-off electromagnetic commutation width 150 and the cylinder pin cylinder 180, respectively.
  • both the cut-off type electromagnetic commutation width 150 and the cut-off type electromagnetic commutation width 160 are in the first operational state, neither the arm pin cylinder 170 nor the cylinder pin cylinder 180 will operate.
  • the pressurized oil enters the rod cavity of the arm pin cylinder 170, promoting The arm pin cylinder 170 is retracted, and then the oil in the rod cavity of the arm pin cylinder 170 sequentially passes through the outlet/inlet 144, the center passage 142, the unidirectional width 194, and the load-sensitive electro-hydraulic proportional commutation width 130 flows back. Hydraulic oil tank 110.
  • the cut-off electromagnetic commutation width 150 at this time is in the first working state, and the cut-off electromagnetic commutation width 160 is in the second working state, the pressure oil is first entered into the cylinder pin through the center passage 141 and the outlet/inlet 143.
  • the rodless cavity of the cylinder 180 therefore, causes the cylinder pin cylinder 180 to extend.
  • the load-sensitive electro-hydraulic proportional commutation width 130 when the load-sensitive electro-hydraulic proportional commutation width 130 is in the second working state, the pressure oil flows out through the center passage 141, and by controlling the state of the cut-off electromagnetic commutation width 150, the arm pin cylinder 170 can be caused to perform retraction.
  • the cylinder pin cylinder 180 since the pressure oil flows into the rodless cavity of the cylinder pin cylinder 180 before flowing into the cut-off electromagnetic commutation width 160, the cylinder pin cylinder 180 has a tendency to perform the extension action due to the action of the pressure oil.
  • the load sensing control variable displacement pump 120 When the load-sensitive electro-hydraulic proportional commutation width 130 is in the right position, that is, when it is in the third working state, the load sensing control variable displacement pump 120 outputs the pressure oil through the load-sensitive electro-hydraulic proportional commutation.
  • the width 130, the oil filter 193 enters the central passage 142 of the multi-channel group 140, and then passes through the outlet/inlet 144 to enter the rodless chamber of the cut-off electromagnetic commutation wide 160 and the arm pin cylinder 170, respectively.
  • both the cut-off type electromagnetic commutation width 150 and the cut-off type electromagnetic commutation width 160 are in the first operational state, neither the arm pin cylinder 170 nor the cylinder pin cylinder 180 will operate.
  • the cut-off electromagnetic commutation width 150 at this time is in the first working state, and the cut-off electromagnetic commutation width 160 is in the second working state, the pressurized oil enters the rod cavity of the cylinder pin cylinder 180, and the arm pin cylinder 180 is urged. After retracting, the oil in the rod chamber of the cylinder pin cylinder 180 is sequentially returned to the hydraulic oil tank 110 through the outlet/inlet 143, the center passage 141, the one-way width 192, and the load-sensitive electro-hydraulic proportional commutation width 130.
  • the cut-off electromagnetic commutation width 150 at this time is in the second working state, and the cut-off electromagnetic commutation width 160 is in the first working state, the pressure oil is first entered into the arm pin through the center passage 142 and the outlet/inlet 144.
  • the rodless chamber of the cylinder 170 therefore, causes the arm pin cylinder 170 to extend. Therefore, when the load-sensitive electro-hydraulic proportional commutation width 130 is in the third working state, the pressure oil flows out through the center passage 142, and the cylinder pin cylinder 180 can be retracted by controlling the state of the cut-off electromagnetic commutation width 160.
  • the arm pin cylinder 170 since the pressure oil flows into the rodless cavity of the arm pin cylinder 170 before flowing into the cut-off electromagnetic commutation width 150, the arm pin cylinder 170 has a tendency to perform the sticking action due to the action of the pressure oil.
  • FIG. 2 is a schematic view showing the electrical control of the latch mechanism control system shown in Figure 1.
  • the latch mechanism control system 100 of the present invention further includes a controller 101 electrically connected to the load-sensitive electro-hydraulic proportional commutation width 130, the cut-off electromagnetic commutation width 150, and the cut-off electromagnetic commutation. Wide 160.
  • the controller 101 may be a programmable logic controller (PLC), which sends a control signal Y1 to the cut-off electromagnetic commutation width 150 to control whether the cut-off electromagnetic commutation width 150 is in the first working state or in the a second working state; a control signal ⁇ 2 is sent to the cut-off electromagnetic commutation width 160 to control whether the cut-off electromagnetic commutation width 160 is in the first working state or in the second working state; and the load-sensitive electro-hydraulic proportional commutation is wide 130 sends control signals ⁇ 3 and ⁇ 4 to control the load-sensitive electro-hydraulic proportional commutation width 130 to be in the first operational state, or the second operational state, or the third operational state.
  • PLC programmable logic controller
  • the latch mechanism control system 100 of the present invention can coordinately control the telescopic mechanism 200 with the PLC controller 101 to complete the entire telescopic process.
  • the PLC controller 101 further receives feedback feedback of the arm pin retracting signal, the arm pin extension signal, the cylinder pin retracting signal, the cylinder pin extension signal, and the telescopic position signal fed back by the telescopic device, and the like. Thereby joint control is performed.
  • the arm pin cylinder 170 in the latch mechanism control system 100 performs the sticking action to perform the sticking action on behalf of the arm pin in the latch mechanism, and the arm pin cylinder 170 performs the retracting action to represent the arm in the latch mechanism.
  • the pin performs a retracting action.
  • the cylinder pin cylinder 180 in the latch mechanism control system 100 performs the extending operation to represent the cylinder pin in the latch mechanism to perform the extending action, and the cylinder pin cylinder 180 performs the retracting action to represent the cylinder pin in the latch mechanism. Back to action.
  • the latch mechanism control system 100 of the present invention can control the latch mechanism to automatically implement the interlock function when performing the telescopic action. Specifically, if the latch mechanism is in the current working condition The state is that the cylinder pin and the arm pin are simultaneously extended, and the target state is that the arm pin is retracted and the cylinder pin remains extended. Then, the latch mechanism control system 100 of the present invention can make the load-sensitive electro-hydraulic proportional commutation width 130 in the second working state, and the cut-off electromagnetic commutation width 150 is in the second working state, and the pressure oil is from the load-sensitive electric system.
  • the outlet/inlet A of the liquid proportional commutation width 130 passes through the center passage 141 of the multi-channel group 140 to reach the rodless chamber of the cut-off electromagnetic commutation width 150 and the cylinder pin cylinder 180. Since the cut-off electromagnetic commutation width 150 is in the second working state (ie, the conduction state), the pressure oil passes through the turned-off electromagnetic commutation width 150 to enter the rod cavity of the arm pin cylinder 170, thereby making the arm pin cylinder 170 performs a retracting action.
  • the pressure oil will enter the rodless cavity of the cylinder pin cylinder 180 before flowing through the cut-off electromagnetic commutation width 160, and under the action of the pressure oil, the cylinder pin cylinder 180 will be moved in the extended state.
  • the load-sensitive electro-hydraulic proportional commutation width 130 returns to the first working state
  • the cut-off electromagnetic commutation width 150 returns to the first working state, so the pressure in the entire system disappears, reaching Target status.
  • the arm pin cylinder 170 performs the retracting action, even if the cut-off type electromagnetic commutation width 150 fails, whether in the critical state of "cut-off-on" or the off-state of the first working state, the arm The pin cylinder 170 will only delay retraction or retract, and there is no safety hazard. Also in this process, even if the cut-off electromagnetic commutation width 160 fails, whether it is the cut-off state or the critical state of "cut-off", the cylinder pin cylinder 180 only moves toward the extension under the action of the pressure oil. There is no safety hazard in the safe state of movement in the outbound direction. .
  • the latch mechanism control system 100 of the present invention can make the load-sensitive electro-hydraulic proportional commutation width 130 in the third working state, and make the cut-off electromagnetic commutation width 160 in the second working state, and the pressure oil is from the load-sensitive electric system.
  • the outlet/inlet B of the liquid proportional commutation width 130 passes through the center passage 142 of the multi-channel group 140 to reach the rodless chamber of the cut-off electromagnetic commutation wide 160 and the arm pin cylinder 170.
  • the pressure oil passes through the turned-off electromagnetic reversal width 160 to enter the rod cavity of the cylinder pin cylinder 180, thereby making the cylinder pin cylinder 180 performs a retracting action.
  • pressure oil will The rod-free cavity of the arm pin cylinder 170 is first introduced before flowing through the cut-off electromagnetic commutation width 150, and the arm pin cylinder 170 is caused to move in the extended state under the action of the pressure oil.
  • the cylinder pin cylinder 180 even if the cut-off type electromagnetic commutation width 160 fails, whether it is in the critical state of "off-on" or the off-state in the first working state, the cylinder The pin cylinder 180 will only delay retraction or retract, and there is no safety hazard. Also in this process, even if the cut-off electromagnetic commutation width 150 fails, the arm pin cylinder 170 only moves toward the safe state of the extension direction, whether it is the cut-off state or the critical state of "cut-off". , it has no security risks.
  • the latch mechanism control system 100 of the present invention can realize the interlocking of the cylinder pin and the arm pin of the latch mechanism, thereby ensuring that the cylinder pin and the arm pin are not retracted at the same time, thereby solving the safety hazard problem of the single-cylinder multi-section telescopic arm and improving Its safety and reliability.
  • the load-sensitive electro-hydraulic proportional commutation width 130 can be in the first working state, that is, in the middle position, so the load sensing control variable displacement piston pump
  • the 120 does not supply oil to the entire system, and the central passages 141 and 142 of the multi-channel group 140 are not subjected to the high pressure oil, thereby increasing the service life of the multi-channel group 140, and also reducing the center passages 141 and 142.
  • the internal leakage increases the reliability of the whole system and reduces the energy loss. It does not need to be like the existing latch mechanism control system.
  • the central channel In the whole telescopic process, the central channel must be in the high pressure oil state at all times. One of the control cylinder pins or the arm pins is kept retracted under the action of high pressure pressure oil.
  • the embodiment of the present invention performs the retracting action by the arm pin cylinder 170 corresponding to the arm pin in the latch mechanism
  • the retracting action performed by the cylinder pin cylinder 180 corresponds to the retracting action of the cylinder pin in the latch mechanism
  • the present invention can also perform the retracting action with the arm pin cylinder 170 corresponding to the arm pin in the latch mechanism to perform the extending action, and Performing the retracting action with the cylinder pin cylinder 180 performs an extending action corresponding to the cylinder pin in the latch mechanism.
  • the load sensing control variable displacement piston pump 120 in the embodiment of the present invention can be replaced by an electrically controlled variable displacement pump, and correspondingly, the load-sensitive electro-hydraulic proportional commutation wide 130 can be replaced by a switch-type commutation.
  • the load sensing control variable displacement piston pump 120 in the embodiment of the present invention may be replaced with a gear pump, and correspondingly, the load-sensitive electro-hydraulic proportional commutation width 130 may be replaced by a switch-type commutation.
  • the multi-channel group 140 is implemented using a multi-channel telescopic cylinder, that is, the first passage and the second passage of the multi-channel group 140 may be the center passage of the multi-channel telescopic cylinder.
  • the multi-channel group 140 can also be implemented in other ways.
  • the center channel 141 and the center channel 142 of the multi-channel group 140 can also adopt a double hose reel or a single center channel and A combination of single channel hose reels is substituted.
  • the oil filter 191, the one-way wide 192, the oil filter 193, and the one-way wide 194 in the embodiment of the present invention are respectively disposed in the load-sensitive electro-hydraulic proportional commutation width 130, including the inlet/outlet A and the outlet/ The inlet B is between the central passage 141 and the central passage 142 of the multi-channel group 140.
  • the present invention can also provide the oil filter 191, the one-way width 192, and the multi-channel group 140.
  • the outlet/inlet 143 is between the cut-off electromagnetic commutation width 150 and the cylinder pin cylinder 180, and the oil filter 193 and the unidirectional width 194 are disposed at the outlet/inlet 144 of the multi-channel group 140 and the cut-off electromagnetic commutation width 160. Between the arm pin cylinder 170 and the arm pin.
  • the present invention also provides a crane including a telescopic boom, a single cylinder latch structure, and a latch mechanism control system, wherein the telescopic boom uses the single cylinder latch mechanism to perform a telescopic action, and the single cylinder latch mechanism can Control is performed according to the above-described latch mechanism control system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

公开了一种插销机构控制系统,该系统包括液压油箱(110)、油泵(120)、第一换向阀(130)、多通道组(140)、臂销油缸(170)、缸销油缸(180)、第二换向阀(150)和第三换向阀(160)。第一换向阀连接油泵,且具有第一出/入口(A)和第二出/入口(B)。多通道组具有第一通道(141)、第二通道(142)、第一出/入口(143)和第二出/入口(144),其中多通道组的第一出/入口与第一通道相连通,而其第二出/入口与第二通道相连通,且多通道组的第一通道连接第一换向阀的第一出/入口,而多通道组的第二通道连接第一换向阀的第二出/入口。第二换向阀和臂销油缸依次连接在多通道组的第一出/入口和第二出/入口之间,而第三换向阀和缸销油缸依次连接在多通道组的第二出/入口和第一出/入口之间。还公开了一种包括该插销机构控制系统的起重机。该插销控制系统实现了插销机构的缸销和臂销的互锁,提高了安全性和可靠性。

Description

插销机构控制系统及起重机
技术领域
本发明涉及一种插销机构控制系统, 特别是涉及一种工程机械伸缩臂 用的插销机构控制系统及相应的起重机。 背景技术
目前国内外大吨位、 超大吨位汽车起重机大多采用单缸多节机械伸缩 臂, 而机械伸缩臂在伸缩过程中与插销机构相互配合以完成伸缩过程。 而 现有的插销机构控制系统的控制方式为通过齿轮泵供油, 液压油经过第一 方向控制阔和第二方向控制阔后到达缸销或者臂销, 其中第二方向控制阔 用于控制液压油路与齿轮泵或者油箱之间的通路是否导通, 而第一方向控 制阔用于控制缸销或者臂销之间的油路是否导通。
因此机械伸缩臂在进行伸缩过程中, 是通过伸缩油缸的伸缩并配合插 销结构对缸销和臂销的插拔控制, 从而实现不同臂节的伸出或者缩回。 在 此过程中, 插销机构控制的缸销和臂销不能同时处于缩回状态, 而是根据 实际需要设计为若缸销缩回则臂销必须保持伸出状态, 而若臂销缩回则缸 销必须保持伸出状态, 此状态称为 "互锁"状态。
而现有技术在液压系统上并没有要求实现 "互锁"功能, 因此有可能 产生两种销子同时缩回的现象, 即一种销子缩回的时候, 由于控制电磁阔 处于工作的临界状态, 则其会同时将另一种销子缩回。 现有技术只能依靠 机械结构来进行限位, 从而实现机械的互锁。 因此, 一旦机械互锁出现失 误时, 则有可能会出现缸销和臂销同时缩回的现象, 从而导致吊臂从高处 失控滑落, 造成机毁人亡的现象, 因此这种机械互锁存在很大的安全隐患。 此外, 现有的插销机构控制系统, 在机械伸缩臂的动态伸缩过程中, 液压 油路必须时时刻刻处于压力油的作用下, 以控制缸销或者臂销中的一个销 子处于缩回状态, 则其加剧了系统的泄漏, 尤其是选择伸缩油缸的中心通 道来进行供油时, 中心通道容易损坏、 漏油。 发明内容
本发明的目的在于, 克服现有的插销机构控制系统所存在的缺陷, 而 提供一种新的插销机构控制系统及相应的起重机, 以提高其安全性和可靠 性, 提升其使用寿命, 并减少能量损耗。
本发明的目的及解决其技术问题是采用以下技术方案来实现的。
本发明提供一种插销机构控制系统, 其包括液压油箱、 油泵、 第一换 向阔、 多通道组、 臂销油缸、 缸销油缸、 第二换向阔和第三换向阔。 其中, 该液压油箱用于存储液压油, 该油泵连接该液压油箱, 且用于输出压力油。 该第一换向阔具有压力口、 回油口、 第一出 /入口和第二出 /入口, 其中该压 力口连接该油泵, 而该回油口连接该液压油箱。 该多通道组具有第一通道、 第二通道、第一出 /入口和第二出 /入口,其中该多通道组的该第一出 /入口与 该第一通道相连通, 而其该第二出 /入口与该第二通道相连通, 且该多通道 组的该第一通道连接该第一换向阔的该第一出 /入口, 而该多通道组的该第 二通道连接该第一换向阔的该第二出 /入口。 该第二换向阔和该臂销油缸依 次连接在该多通道组的该第一出 /入口和第二出 /入口之间, 且该第二换向阔 与该臂销油缸的有杆腔连通, 而该臂销油缸的无杆腔与该多通道组的该第 二出 /入口连通。 而该第三换向阔和该缸销油缸依次连接在该多通道组的该 第二出 /入口和该第一出 /入口之间, 且该第三换向阔与该缸销油缸的有杆腔 连通, 而该缸销油缸的无杆腔与该多通道组的该第一出 /入口连通。
优选地, 该第一换向阔包括第一工作状态、 第二工作状态和第三工作 状态。 当该第一换向阔处于该第一工作状态时, 则整个系统内无高压压力 油作用; 当该第一换向阔处于第二工作状态时, 则该油泵所输出的压力油 从该第一换向阔的该第一出 /入口流出, 经过该多通道组的该第一通道和该 第一出 /入口而分别进入该第二换向阔和该缸销油缸的无杆腔,;当该第一换 向阔处于第三工作状态时, 则该油泵所输出的压力油从该第一换向阔的该 第二出 /入口流出, 经过该多通道组的该第二通道和该第二出 /入口而分别进 入该第三换向阔和该臂销油缸的无杆腔。
优选地, 该第二换向阔包括第一工作状态和第二工作状态, 其用于控 制该多通道组的该第一通道与该臂销油缸的有杆腔之间的油路在导通状态 和截止状态之间进行切换。 当该第一换向阔处于其第二工作状态且该第二 换向阔处于该第二工作状态时, 促使该臂销油缸执行缩回动作, 且利用进 入该缸销油缸的该无杆腔内的压力油作用, 促使该缸销油缸具有执行伸出 动作的运动趋势。
优选地, 该第三换向阔包括第一工作状态和第二工作状态, 其用于控 制该多通道组的该第二通道与该缸销油缸的有杆腔之间的油路在导通状态 和截止状态之间进行切换, 当该第一换向阔处于其第三工作状态且该第三 换向阔处于该第二工作状态时, 促使该缸销油缸执行缩回动作, 且利用进 入该臂销油缸的该无杆腔的压力油作用, 此时该臂销油缸具有执行伸出动 作的运动趋势。
优选地, 该臂销油缸执行的该缩回动作对应于插销机构中的臂销执行 缩回动作, 而该缸销油缸执行的该缩回动作对应于该插销机构中的缸销执 行缩回动作。 或者, 该臂销油缸执行的该缩回动作对应于插销机构中的臂 销执行伸出动作, 而该缸销油缸执行的该缩回动作对应于该插销机构中的 缸销执行伸出动作。
优选地, 该插销机构控制系统进一步包括第一滤油器、 第一单向阔、 第二滤油器和第二单向阔。 其中该第一滤油器和该第一单向阔设置在该第 一换向阔的该第一出 /入口和该多通道组的该第一通道之间; 该第二滤油器 和该第二单向阔设置在该第一换向阔的该第二出 /入口和该多通道组的该第 二通道之间。 优选地, 该插销机构控制系统进一步包括第一滤油器、 第一单向阔、 第二滤油器和第二单向阔, 其中该第一滤油器和该第一单向阔设置在该多 通道组的该第一出 /入口与该第二换向阔和该缸销油缸之间, 而该第二滤油 器和该第二单向阔设置在该多通道组的该第二出 /入口和该第三换向阔和该 臂销油缸之间。
优选地, 该油泵为负荷传感控制变量柱塞泵, 而该第一换向阔为负载 敏感式电液比例换向阔; 或者该油泵为电控变量泵, 而该第一换向阔为开 关式换向阔; 或者该油泵为齿轮泵, 而该第一换向阔为开关式换向阔。
优选地, 该多通道组的该第一通道和该第二通道为伸缩油缸的中心通 道、 或者双软管卷筒、 或者单中心通道和单通道软管卷筒组合。
优选地, 该插销机构控制系统进一步包括控制器, 以分别控制该第一 换向阔、 第二换向阔和第三换向阔。
本发明还提供一种起重机, 其包括伸缩式吊臂、 单缸插销机构和插销 机构控制系统, 所述伸缩式吊臂采用所述单缸插销机构进行伸缩动作, 其 特征在于, 所述单缸插销机构根据上述的插销机构控制系统进行控制。
借由上述技术方案, 本发明的插销机构控制系统至少具有下列优点及 有益效果:
因此本发明的插销机构控制系统可实现插销机构的缸销和臂销的互 锁, 保证了缸销和臂销不会同时回缩, 解决了单缸多节伸缩臂的安全隐患 问题, 提高了其安全性和可靠性。 且在伸缩过程中, 除非缸销和臂销自身 需要进行动作, 否则第一换向阔均可处于第一工作状态, 即处于中位, 因 此油泵并未向整个系统供油, 则多通道组的第一通道和第二通道并未承受 高压压力油的作用, 从而提高了多通道组的使用寿命, 同时也因减少了第 一通道和第二通道的内泄, 使整个系统的可靠性增加, 并减少了能量损耗, 而并不需要如现有的插销机构控制系统一样, 在整个伸缩过程中必须使中 心通道时刻处于高压压力油状态下, 以控制缸销或者臂销中的其中一个在 高压压力油作用下保持回缩状态。
上述说明仅是本发明技术方案的概述, 为了能够更清楚了解本发明的 技术手段, 而可依照说明书的内容予以实施, 并且为了让本发明的上述和 其他目的、 特征和优点能够更明显易懂, 以下特举较佳实施例, 并配合附 图,详细说明如下。 附图说明
图 1为本发明一较佳实施例所揭示的插销机构控制系统的结构示意图。 图 2为图 1所示的插销机构控制系统的电气控制示意图。 具体实施方式
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效, 以下结合附图及较佳实施例, 对依据本发明提出的插销机构控制系统其具 体实施方式、 方法、 步骤、 结构、 特征及其功效, 详细说明如下。
有关本发明的前述及其他技术内容、 特点及功效,在以下配合参考图式 的较佳实施例的详细说明中将可清楚呈现。 通过具体实施方式的说明,当可 对本发明为达成预定目的所采取的技术手段及功效得以更加深入且具体的 了解,然而所附图式仅是提供参考与说明之用,并非用来对本发明加以限制。
图 1为本发明一较佳实施例所揭示的插销机构控制系统的结构示意图。 如图 1所示, 该插销机构控制系统 100适用于机械伸缩臂用的插销机构, 其包括液压油箱 110、 负荷传感控制变量柱塞泵 120、 负载敏感式电液比例 换向阔 130、多通道组 140、截止式电磁换向阔 150、截止式电磁换向阔 160、 臂销油缸 170、 缸销油缸 180、 滤油器 191、 单向阔 192、 滤油器 193和单 向阔 194。
其中, 液压油箱 110用于存储液压油液, 其连接负荷传感控制变量柱 塞泵 120; 而负荷传感控制变量柱塞泵 120用于向整个系统输出压力油, 其 进一步连接负载敏感式电液比例换向阔 130;然后负载敏感式电液比例换向 阔 130进一步通过滤油器 191、 单向阔 192、 滤油器 193和单向阔 194而连 接多通道组 140。
在本实施例中, 负载敏感式电液比例换向阔 130包括压力口、 回油口、 出 /入口 A和出 /入口 B, 其中压力口连接负荷传感控制变量柱塞泵 120, 而 回油口连接液压油箱 110。多通道组 140可采用多通道伸缩油缸而实现, 其 包括中心通道 141、 中心通道 142、 出 /入口 143和出 /入口 144。 其中, 负载 敏感式电液比例换向阔 130的出 /入口 A经过滤油器 191和单向阔 192而与 多通道组 140中的中心通道 141相连接,以使负荷传感控制变量柱塞泵 120 所输出的压力油从负载敏感式电液比例换向阔 130的出 /入口 A流出, 并经 过滤油器 191的过滤后流入多通道组 140的中心通道 141,或者使压力油从 多通道组 140的中心通道 141流回, 并经过单向阔 192而流回负载敏感式 电液比例换向阔 130的出 /入口 A。而负载敏感式电液比例换向阔 130的出 / 入口 B经过滤油器 193和单向阔 194而与多通道组 140中的中心通道 142 相连接, 以使负荷传感控制变量柱塞泵 120所输出的压力油从负载敏感式 电液比例换向阔 130的出 /入口 B流出, 并经过滤油器 193的过滤后流入多 通道组 140的中心通道 142, 或者使压力油从多通道组 140的中心通道 142 流回, 并经过单向阔 193而流回负载敏感式电液比例换向阔 130的出 /入口 B。 多通道组 140中的出 /入口 143与中心通道 141相互连通, 而其出 /入口 144与中心通道 142相互连通。
截止式电磁换向阔 150和臂销油缸 170依次连接在多通道组 140的出 / 入口 143和出 /入口 144之间, 且截止式电磁换向阔 150与该臂销油缸 170 的有杆腔连通, 而臂销油缸 170的无杆腔与多通道组 140的出 /入口 144连 通。 而截止式电磁换向阔 160和缸销油缸 180依次连接在多通道组 140的 出 /入口 144和出 /入口 143之间, 且截止式电磁换向阔 160与缸销油缸 180 的有杆腔连通, 且缸销油缸 180的无杆腔与多通道组 140的出 /入口 143连 通。
其中, 截止式电磁换向阔 150用于控制多通道组 140的中心通道 141 与臂销油缸 170的有杆腔之间的油路在导通状态和截止状态之间进行切换, 当截止式电磁换向阔 150失电时, 即其处于第一工作状态时, 截止式电磁 换向阔 150两端的油路被断开, 油路不通; 而当截止式电磁换向阔 150得 电时, 即其处于第二工作状态时, 截止式电磁换向阔 150两端的油路导通。
同理, 截止式电磁换向阔 160用于控制多通道组 140的中心通道 142 与缸销油缸 180的有杆腔之间的油路在导通状态和截止状态之间进行切换, 当截止式电磁换向阔 160失电时, 即其处于第一工作状态时, 截止式电磁 换向阔 160两端的油路被断开, 油路不通; 而当截止式电磁换向阔 160得 电时, 即其处于第二工作状态时, 截止式电磁换向阔 160两端的油路导通。
负载敏感式电液比例换向阔 130具有三种工作状态, 具体地, 当负载 敏感式电液比例换向阔 130处于中位时, 即其处于第一工作状态时, 此时 负载敏感式电液比例换向阔 130 的阔芯无位移, 因此负荷传感控制变量柱 塞泵 120仅有少量的油液流出, 用于补充负荷传感控制变量柱塞泵 120、负 载敏感式电液比例换向阔 130等元件的内泄, 且此时整个系统内并没有高 压压力油的作用力。
当负载敏感式电液比例换向阔 130处于左位时, 即其处于第二工作状 态时, 此时负荷传感控制变量柱塞泵 120所输出的压力油经过负载敏感式 电液比例换向阔 130、 滤油器 191而进入多通道组 140的中心通道 141, 然 后经过出 /入口 143而分别进入截止式电磁换向阔 150和缸销油缸 180的无 杆腔。
若此时的截止式电磁换向阔 150和截止式电磁换向阔 160均处于第一 工作状态时, 则臂销油缸 170和缸销油缸 180均不进行动作。
若此时的截止式电磁换向阔 150处于第二工作状态, 且截止式电磁换 向阔 160处于第一工作状态时, 则压力油进入臂销油缸 170的有杆腔, 促 使臂销油缸 170缩回, 然后臂销油缸 170的有杆腔内的油液依次经过出 /入 口 144、 中心通道 142、 单向阔 194、 负载敏感式电液比例换向阔 130而流 回液压油箱 110。
若此时的截止式电磁换向阔 150处于第一工作状态, 而截止式电磁换 向阔 160处于第二工作状态时, 由于压力油是通过中心通道 141、 出 /入口 143而先进入缸销油缸 180的无杆腔, 因此其会促使缸销油缸 180伸出。
因此当负载敏感式电液比例换向阔 130处于第二工作状态时, 压力油 是通过中心通道 141流出, 则通过控制截止式电磁换向阔 150的状态, 可 促使臂销油缸 170执行缩回动作; 同时由于压力油是在流入截止式电磁换 向阔 160之前先流入缸销油缸 180的无杆腔, 则由于压力油的作用, 缸销 油缸 180会具有执行伸出动作的趋势。
当负载敏感式电液比例换向阔 130处于右位时, 即其处于第三工作状 态时, 此时负荷传感控制变量柱塞泵 120所输出的压力油经过负载敏感式 电液比例换向阔 130、 滤油器 193而进入多通道组 140的中心通道 142, 然 后经过出 /入口 144而分别进入截止式电磁换向阔 160和臂销油缸 170的无 杆腔。
若此时的截止式电磁换向阔 150和截止式电磁换向阔 160均处于第一 工作状态时, 则臂销油缸 170和缸销油缸 180均不进行动作。
若此时的截止式电磁换向阔 150处于第一工作状态, 且截止式电磁换 向阔 160处于第二工作状态时, 则压力油进入缸销油缸 180的有杆腔, 促 使臂销油缸 180缩回, 然后缸销油缸 180的有杆腔内的油液依次经过出 /入 口 143、 中心通道 141、 单向阔 192、 负载敏感式电液比例换向阔 130而流 回液压油箱 110。
若此时的截止式电磁换向阔 150处于第二工作状态, 而截止式电磁换 向阔 160处于第一工作状态时, 由于压力油是通过中心通道 142、 出 /入口 144而先进入臂销油缸 170的无杆腔, 因此其会促使臂销油缸 170伸出。 因此当负载敏感式电液比例换向阔 130处于第三工作状态时, 压力油 是通过中心通道 142流出, 则通过控制截止式电磁换向阔 160的状态, 可 促使缸销油缸 180执行缩回动作; 同时由于压力油是在流入截止式电磁换 向阔 150之前先流入臂销油缸 170的无杆腔, 则由于压力油的作用, 臂销 油缸 170会具有执行伸出动作的趋势。
图 2为图 1所示的插销机构控制系统的电气控制示意图。如图 2所示, 本发明的插销机构控制系统 100还进一步包括控制器 101,其分别电性连接 负载敏感式电液比例换向阔 130、 截止式电磁换向阔 150、 截止式电磁换向 阔 160。 其中, 控制器 101 可为可编程逻辑控制器 (Programmable Logic Controller, PLC), 其向截止式电磁换向阔 150发出控制信号 Yl, 以控制截 止式电磁换向阔 150处于第一工作状态还是处于第二工作状态; 向截止式 电磁换向阔 160发出控制信号 Υ2, 以控制截止式电磁换向阔 160处于第一 工作状态还是处于第二工作状态; 并向负载敏感式电液比例换向阔 130发 出控制信号 Υ3和 Υ4, 以控制负载敏感式电液比例换向阔 130处于第一工 作状态、 或者第二工作状态、 或者第三工作状态。 因此本发明的插销机构 控制系统 100可利用 PLC控制器 101而与伸缩机构 200进行协调同步控制, 完成整个伸缩过程。 此外, PLC控制器 101还进一步接收反馈的臂销缩到 位信号、 臂销伸到位信号、 缸销缩到位信号、 缸销伸到位信号、 和伸缩装 置所反馈的伸缩位信号等多种反馈信号, 从而进行联合控制。
在本实施例中, 插销机构控制系统 100中的臂销油缸 170执行伸出动 作则代表插销机构中的臂销执行伸出动作, 而臂销油缸 170执行缩回动作 则代表插销机构中的臂销执行缩回动作。 同样地, 插销机构控制系统 100 中的缸销油缸 180执行伸出动作则代表插销机构中的缸销执行伸出动作, 而缸销油缸 180执行缩回动作则代表插销机构中的缸销执行缩回动作。
因此, 本发明的插销机构控制系统 100可控制插销机构在执行伸缩动 作的时候, 自动地实现互锁功能。 具体地, 如果插销机构在当前的工作状 态是缸销和臂销同时处于伸出状态, 而目标状态为臂销缩回且缸销维持伸 出不变。 则本发明的插销机构控制系统 100可使负载敏感式电液比例换向 阔 130处于第二工作状态, 并使截止式电磁换向阔 150处于第二工作状态, 则压力油从负载敏感式电液比例换向阔 130的出 /入口 A经过多通道组 140 的中心通道 141而到达截止式电磁换向阔 150和缸销油缸 180的无杆腔。 由于截止式电磁换向阔 150处于第二工作状态 (即导通状态),则压力油经过 导通的截止式电磁换向阔 150而进入臂销油缸 170的有杆腔, 从而使臂销 油缸 170执行缩回动作。 同时压力油会在流经截止式电磁换向阔 160之前 先进入缸销油缸 180的无杆腔, 在压力油的作用下会促使缸销油缸 180朝 伸出状态的方向运动。 而当臂销油缸 170缩回到位时, 则负载敏感式电液 比例换向阔 130返回第一工作状态, 而截止式电磁换向阔 150返回第一工 作状态, 因此整个系统内压力消失, 达到目标状态。
因此, 在臂销油缸 170执行缩回动作的过程中, 即使截止式电磁换向 阔 150 出现故障, 无论处于 "截止一导通" 的临界状态还是误处于第一工 作状态的截止状态, 则臂销油缸 170 只会延迟回缩或者回缩不动, 并无安 全隐患。 同样在此过程中, 即使截止式电磁换向阔 160 出现故障, 无论为 截止的状态还是变为 "截止一导通" 的临界状态, 缸销油缸 180在压力油 的作用下只会朝着伸出方向的安全状态运动, 其并无安全隐患。。
而如果插销机构在当前的工作状态为缸销和臂销同时处于伸出状态, 而其目标状态为缸销缩回且臂销保持伸出。 则本发明的插销机构控制系统 100可使负载敏感式电液比例换向阔 130处于第三工作状态,并使截止式电 磁换向阔 160处于第二工作状态, 则压力油从负载敏感式电液比例换向阔 130的出 /入口 B经过多通道组 140的中心通道 142而到达截止式电磁换向 阔 160和臂销油缸 170的无杆腔。 由于截止式电磁换向阔 160处于第二工 作状态 (即导通状态),则压力油经过导通的截止式电磁换向阔 160而进入缸 销油缸 180的有杆腔, 从而使缸销油缸 180执行缩回动作。 同时压力油会 在流经截止式电磁换向阔 150之前先进入臂销油缸 170的无杆腔, 在压力 油作用下促使臂销油缸 170朝伸出状态的方向运动。 而当缸销油缸 180缩 回到位时, 则负载敏感式电液比例换向阔 130返回第一工作状态, 而截止 式电磁换向阔 160返回第一工作状态, 因此整个系统内压力消失, 达到目 标状态 0
因此, 在缸销油缸 180执行缩回动作的过程中, 即使截止式电磁换向 阔 160 出现故障, 无论处于 "截止一导通" 的临界状态还是误处于第一工 作状态的截止状态, 则缸销油缸 180 只会延迟回缩或者回缩不动, 并无安 全隐患。 同样在此过程中, 即使截止式电磁换向阔 150 出现故障, 无论为 截止的状态还是变为 "截止一导通" 的临界状态, 臂销油缸 170 只会朝着 伸出方向的安全状态运动, 其并无安全隐患。
因此本发明的插销机构控制系统 100可实现插销机构的缸销和臂销的 互锁, 保证了缸销和臂销不会同时回缩, 解决了单缸多节伸缩臂的安全隐 患问题, 提高了其安全性和可靠性。 且在伸缩过程中, 除非缸销和臂销自 身需要进行动作, 否则负载敏感式电液比例换向阔 130均可处于第一工作 状态, 即处于中位, 因此负荷传感控制变量柱塞泵 120并未向整个系统供 油, 则多通道组 140的中心通道 141和 142并未承受高压压力油的作用, 从而提高了多通道组 140的使用寿命,同时也因减少了中心通道 141和 142 的内泄, 使整个系统的可靠性增加, 并减少了能量损耗, 而并不需要如现 有的插销机构控制系统一样, 在整个伸缩过程中必须使中心通道时刻处于 高压压力油状态下, 以控制缸销或者臂销中的其中一个在高压压力油作用 下保持回缩状态。
虽然本发明实施例以臂销油缸 170执行缩回动作对应于插销机构中的 臂销执行缩回动作, 而以缸销油缸 180执行缩回动作对应于插销机构中的 缸销执行缩回动作, 但是, 本领域技术人员可以理解的是, 本发明也可以 以臂销油缸 170执行缩回动作对应于插销机构中的臂销执行伸出动作, 而 以缸销油缸 180执行缩回动作对应于插销机构中的缸销执行伸出动作。 本发明实施例中的负荷传感控制变量柱塞泵 120可用电控变量泵来替 代, 而对应地, 负载敏感式电液比例换向阔 130可用开关式换向阔来替代。 或者, 本发明实施例中的负荷传感控制变量柱塞泵 120可用齿轮泵来替代, 而对应地, 负载敏感式电液比例换向阔 130可用开关式换向阔来替代。 此 夕卜, 在本发明中, 多通道组 140是采用多通道伸缩油缸而实现, 即多通道 组 140 的第一通道和第二通道可为多通道伸缩油缸的中心通道。 当然, 本 领域技术人员可以理解的是, 多通道组 140也可采用其他的方式来实现, 例如多通道组 140的中心通道 141和中心通道 142也可采用双软管卷筒或 者单中心通道和单通道软管卷筒的组合来替代。
此外, 尽管本发明实施例中的滤油器 191、 单向阔 192、 滤油器 193和 单向阔 194是分别设置在负载敏感式电液比例换向阔 130包括出 /入口 A和 出 /入口 B与多通道组 140的中心通道 141和中心通道 142之间, 但是, 本 领域技术人员可以理解的是, 本发明也可将滤油器 191、 单向阔 192、 设置 在多通道组 140的出 /入口 143与截止式电磁换向阔 150和缸销油缸 180之 间, 而滤油器 193和单向阔 194设置在多通道组 140的出 /入口 144与截止 式电磁换向阔 160和臂销油缸 170之间。
另, 本发明还提供一种起重机, 其包括伸缩式吊臂、 单缸插销结构和 插销机构控制系统, 其中该伸缩式吊臂采用该单缸插销机构进行伸缩动作, 而该单缸插销机构可根据上述的插销机构控制系统而进行控制。
以上所述, 仅是本发明的较佳实施例而已, 并非对本发明作任何形式 上的限制, 虽然本发明已以较佳实施例揭露如上, 然而并非用以限定本发 明,任何熟悉本专业的技术人员, 在不脱离本发明技术方案范围内,当可利用 上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是 未脱离本发明技术方案内容, 依据本发明的技术实质对以上实施例所作的 任何简单修改、 等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims

权利要求
1. 一种插销机构控制系统, 其特征在于, 该插销机构控制系统包括: 液压油箱, 用于存储液压油;
油泵, 连接该液压油箱, 用于输出压力油;
第一换向阔, 具有压力口、 回油口、 第一出 /入口和第二出 /入口, 其中 该压力口连接该油泵, 该回油口连接该液压油箱; 多通道组, 具有第一通 道、 第二通道、 第一出 /入口和第二出 /入口, 其中该多通道组的该第一出 / 入口与该第一通道相连通, 而其该第二出 /入口与该第二通道相连通, 且该 多通道组的该第一通道连接该第一换向阔的该第一出 /入口, 而该多通道组 的该第二通道连接该第一换向阔的该第二出 /入口;
臂销油缸;
缸销油缸;
第二换向阔; 和
第三换向阔;
其中, 该第二换向阔和该臂销油缸依次连接在该多通道组的该第一出 / 入口和第二出 /入口之间, 该第二换向阔与该臂销油缸的有杆腔连通, 该臂 销油缸的无杆腔与该多通道组的该第二出 /入口连通, 而该第三换向阔和该 缸销油缸依次连接在该多通道组的该第二出 /入口和该第一出 /入口之间, 该 第三换向阔与该缸销油缸的有杆腔连通, 该缸销油缸的无杆腔与该多通道 组的该第一出 /入口连通。
2. 如权利要求 1所述的插销机构控制系统, 其特征在于, 该第一换向 阔包括第一工作状态、 第二工作状态和第三工作状态, 当该第一换向阔处 于该第一工作状态时, 则整个系统内无高压压力油作用; 当该第一换向阔 处于第二工作状态时, 则该油泵所输出的压力油从该第一换向阔的该第一 出 /入口流出, 经过该多通道组的该第一通道和该第一出 /入口而分别进入该 第二换向阔和该缸销油缸的无杆腔; 当该第一换向阔处于第三工作状态时, 则该油泵所输出的压力油从该第一换向阔的该第二出 /入口流出, 经过该多 通道组的该第二通道和该第二出 /入口而分别进入该第三换向阔和该臂销油 缸的无杆腔。
3. 如权利要求 2所述的插销机构控制系统, 其特征在于, 该第二换向 阔包括第一工作状态和第二工作状态, 其用于控制该多通道组的该第一通 道与该臂销油缸的有杆腔之间的油路在导通状态和截止状态之间进行切 换, 当该第一换向阔处于其第二工作状态且该第二换向阔处于该第二工作 状态时, 促使该臂销油缸执行缩回动作, 且利用进入该缸销油缸的该无杆 腔内的压力油作用, 促使该缸销油缸具有执行伸出动作的运动趋势。
4. 如权利要求 2所述的插销机构控制系统, 其特征在于, 该第三换向 阔包括第一工作状态和第二工作状态, 其用于控制该多通道组的该第二通 道与该缸销油缸的有杆腔之间的油路在导通状态和截止状态之间进行切 换, 当该第一换向阔处于其第三工作状态且该第三换向阔处于该第二工作 状态时, 促使该缸销油缸执行缩回动作, 且利用进入该臂销油缸的该无杆 腔的压力油作用, 此时该臂销油缸具有执行伸出动作的运动趋势。
5. 如权利要求 3或者 4所述的插销机构控制系统, 其特征在于, 该臂 销油缸执行的该缩回动作对应于插销机构中的臂销执行缩回动作, 而该缸 销油缸执行的该缩回动作对应于该插销机构中的缸销执行缩回动作; 或者 该臂销油缸执行的该缩回动作对应于该插销机构中的臂销执行伸出动作, 而该缸销油缸执行的该缩回动作对应于该插销机构中的缸销执行伸出动 作。
6. 如权利要求 1所述的插销机构控制系统, 其特征在于, 该插销机构 控制系统进一步包括第一滤油器、 第一单向阔、 第二滤油器和第二单向阔, 其中该第一滤油器和该第一单向阔设置在该第一换向阔的该第一出 /入口和 该多通道组的该第一通道之间; 该第二滤油器和该第二单向阔设置在该第 一换向阔的该第二出 /入口和该多通道组的该第二通道之间。
7. 如权利要求 1所述的插销机构控制系统, 其特征在于, 该插销机构 控制系统进一步包括第一滤油器、 第一单向阔、 第二滤油器和第二单向阔, 其中该第一滤油器和该第一单向阔设置在该多通道组的该第一出 /入口与该 第二换向阔和该缸销油缸之间,而该第二滤油器和该第二单向阔设置在(该 多通道组的该第二出 /入口和该第三换向阔和该臂销油缸之间。
8. 如权利要求 1所述的插销机构控制系统, 其特征在于, 该油泵为负 荷传感控制变量柱塞泵, 而该第一换向阔为负载敏感式电液比例换向阔; 或者该油泵为电控变量泵, 而该第一换向阔为开关式换向阔; 或者该油泵 为齿轮泵, 而该第一换向阔为开关式换向阔。
9. 如权利要求 1所述的插销机构控制系统, 其特征在于, 该多通道组 的该第一通道和该第二通道为伸缩油缸的中心通道、 或者双软管卷筒、 或 者单中心通道和单通道软管卷筒组合。
10. 如权利要求 1所述的插销机构控制系统, 其特征在于, 该插销机构 控制系统进一步包括控制器, 以分别控制该第一换向阔、 第二换向阔和第 三换向阔。
11. 一种起重机, 包括伸缩式吊臂、 单缸插销机构和插销机构控制系 统, 该伸缩式吊臂采用该单缸插销机构进行伸缩动作, 其特征在于, 该单 缸插销机构根据权利要求 1~10任一项所述的插销机构控制系统进行控制。
PCT/CN2012/082176 2011-12-20 2012-09-27 插销机构控制系统及起重机 WO2013091425A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 201110431223 CN102431900B (zh) 2011-12-20 2011-12-20 插销机构控制系统及起重机
CN201110431223.X 2011-12-20

Publications (1)

Publication Number Publication Date
WO2013091425A1 true WO2013091425A1 (zh) 2013-06-27

Family

ID=45980314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/082176 WO2013091425A1 (zh) 2011-12-20 2012-09-27 插销机构控制系统及起重机

Country Status (2)

Country Link
CN (1) CN102431900B (zh)
WO (1) WO2013091425A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104061199A (zh) * 2014-06-27 2014-09-24 徐州重型机械有限公司 起重机、单缸插销式伸缩臂及其插销机构液压系统

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102431900B (zh) * 2011-12-20 2013-07-17 中联重科股份有限公司 插销机构控制系统及起重机
CN102705275B (zh) * 2012-06-25 2014-12-17 三一重工股份有限公司 插销的液压控制系统和工程机械
CN102774760B (zh) * 2012-08-01 2014-09-24 徐州重型机械有限公司 起重机单缸插销系统中拔出臂销的控制方法
DE102012021544B4 (de) * 2012-10-29 2014-07-10 Terex Cranes Germany Gmbh Teleskopiereinheit mit Zusatzfunktion
CN103508337B (zh) * 2013-10-11 2015-06-17 中联重科股份有限公司 插拔销机构控制系统的控制方法及起重机
CN104444859B (zh) * 2014-12-10 2017-01-04 徐州重型机械有限公司 单缸插销油缸防泄漏控制方法、装置及单缸插销伸缩系统
CN104495624B (zh) * 2014-12-15 2017-08-25 太原重工股份有限公司 超起卷扬锁销装置控制系统及起重机
CN105197821B (zh) * 2015-09-07 2017-03-01 徐州重型机械有限公司 能防芯管吸空的伸缩系统及起重机
CN107630856B (zh) * 2017-11-08 2023-11-28 安徽星马专用汽车有限公司 一种顺序伸缩油缸及起重机
CN108190762B (zh) * 2018-03-09 2019-08-16 徐州重型机械有限公司 单缸插销伸缩系统及作业机械
CN113983036B (zh) * 2021-10-11 2022-11-18 中联重科股份有限公司 用于控制中心通道压力的方法、处理器及工程机械
CN114251314A (zh) * 2021-11-24 2022-03-29 徐州重型机械有限公司 一种起重机液压系统及控制方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3657969A (en) * 1970-07-10 1972-04-25 Case Co J I Hydraulic control system for extensible crane
JP2000327270A (ja) * 1999-05-21 2000-11-28 Kobelco Contstruction Machinery Ltd クレーン車のアクチュエータ制御回路およびそのアクチュエータ制御方法
JP2001097674A (ja) * 1999-09-29 2001-04-10 Kobelco Contstruction Machinery Ltd クレーンのジブ張出し・格納装置およびその方法
CN1600671A (zh) * 2004-10-12 2005-03-30 大连理工大学 多节臂单油缸伸缩控制系统的插销互锁装置及其互锁方法
CN201284197Y (zh) * 2008-10-15 2009-08-05 徐州重型机械有限公司 伸缩臂插销机构控制系统
CN101723262A (zh) * 2008-10-15 2010-06-09 徐州重型机械有限公司 伸缩臂插销机构控制系统
CN201580920U (zh) * 2009-12-31 2010-09-15 三一汽车制造有限公司 起重机及其单缸插销式伸缩臂和插销自锁装置
CN102167261A (zh) * 2010-02-26 2011-08-31 徐州重型机械有限公司 起重机及其单缸插销式伸缩机构液控系统
CN102431900A (zh) * 2011-12-20 2012-05-02 中联重科股份有限公司 插销机构控制系统及起重机

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4287665B2 (ja) * 2003-02-14 2009-07-01 株式会社タダノ クレーン車の伸縮ブーム
JP5342260B2 (ja) * 2009-02-10 2013-11-13 株式会社タダノ ブーム伸縮機構の作動制御装置
CN102180416B (zh) * 2011-01-26 2013-04-24 徐州赫思曼电子有限公司 一种单缸插销式伸缩臂起重机油缸电子防过伸装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3657969A (en) * 1970-07-10 1972-04-25 Case Co J I Hydraulic control system for extensible crane
JP2000327270A (ja) * 1999-05-21 2000-11-28 Kobelco Contstruction Machinery Ltd クレーン車のアクチュエータ制御回路およびそのアクチュエータ制御方法
JP2001097674A (ja) * 1999-09-29 2001-04-10 Kobelco Contstruction Machinery Ltd クレーンのジブ張出し・格納装置およびその方法
CN1600671A (zh) * 2004-10-12 2005-03-30 大连理工大学 多节臂单油缸伸缩控制系统的插销互锁装置及其互锁方法
CN201284197Y (zh) * 2008-10-15 2009-08-05 徐州重型机械有限公司 伸缩臂插销机构控制系统
CN101723262A (zh) * 2008-10-15 2010-06-09 徐州重型机械有限公司 伸缩臂插销机构控制系统
CN201580920U (zh) * 2009-12-31 2010-09-15 三一汽车制造有限公司 起重机及其单缸插销式伸缩臂和插销自锁装置
CN102167261A (zh) * 2010-02-26 2011-08-31 徐州重型机械有限公司 起重机及其单缸插销式伸缩机构液控系统
CN102431900A (zh) * 2011-12-20 2012-05-02 中联重科股份有限公司 插销机构控制系统及起重机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104061199A (zh) * 2014-06-27 2014-09-24 徐州重型机械有限公司 起重机、单缸插销式伸缩臂及其插销机构液压系统

Also Published As

Publication number Publication date
CN102431900B (zh) 2013-07-17
CN102431900A (zh) 2012-05-02

Similar Documents

Publication Publication Date Title
WO2013091425A1 (zh) 插销机构控制系统及起重机
CN201661532U (zh) 一种混凝土泵的液压泵送系统
CN103423221B (zh) 多油缸顺序伸缩液压系统及工程机械
CN103410803B (zh) 液控换向阀、联动控制液压系统与挖掘机的液压控制系统
CN102700604B (zh) 转向油缸结构、转向装置和电控转向车桥
WO2013040872A1 (zh) 一种液压控制阀、双缸伸缩系统及高空作业工程机械
CN104121242B (zh) 伸缩控制系统与工程机械
CN104444866B (zh) 伸缩机构的控制系统及具有其的起重机
WO2012129042A1 (en) Regeneration circuit
CN108953251A (zh) 一种直行程双作用液动执行机构
WO2014044000A1 (zh) 双缸泵送系统防窜动停机方法、双缸泵送系统及泵送设备
CN102434510B (zh) 泵送设备及其高低压切换系统、泵送系统及其运行方法
CN110566527B (zh) 液压驱动系统
CN203717509U (zh) 随车起重机多路换向装置及直臂随车起重机
CN202988589U (zh) 一种采用切换阀组的闭式液压系统
CN203889961U (zh) 吊臂伸缩液压系统及伸缩臂式汽车起重机
CN112855650B (zh) 支腿液压控制系统及起重机
CN109160427B (zh) 卷扬伸缩液压控制系统及工程机械
CN109231031B (zh) 卷扬伸缩液压控制回路及应用其的工程机械
WO2011116677A1 (zh) 起重机多支腿的控制回路以及下车多路换向阀
CN110081032A (zh) 一种工程机械及其液压动力机构
CN213738448U (zh) 货叉开合控制装置
CN110552926A (zh) 液压驱动系统
CN211545753U (zh) 一种用于支腿伸缩与保护的多路换向阀组
CN105987036A (zh) 支腿控制组合阀、液压系统及起重机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12860547

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12860547

Country of ref document: EP

Kind code of ref document: A1