WO2013089521A1 - 조명 장치의 방열 구조 및 조명장치 - Google Patents

조명 장치의 방열 구조 및 조명장치 Download PDF

Info

Publication number
WO2013089521A1
WO2013089521A1 PCT/KR2012/010966 KR2012010966W WO2013089521A1 WO 2013089521 A1 WO2013089521 A1 WO 2013089521A1 KR 2012010966 W KR2012010966 W KR 2012010966W WO 2013089521 A1 WO2013089521 A1 WO 2013089521A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
heat sink
emitting element
light
globe
Prior art date
Application number
PCT/KR2012/010966
Other languages
English (en)
French (fr)
Inventor
타케나카히로미츠
모리시타이치로
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011276475A external-priority patent/JP2013127874A/ja
Priority claimed from JP2011276478A external-priority patent/JP2013127877A/ja
Priority claimed from JP2011276481A external-priority patent/JP2013127880A/ja
Priority claimed from JP2011276477A external-priority patent/JP2013127876A/ja
Priority claimed from JP2011276480A external-priority patent/JP2013127879A/ja
Priority claimed from JP2011276476A external-priority patent/JP2013127875A/ja
Priority claimed from JP2011276479A external-priority patent/JP2013127878A/ja
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to EP12858384.6A priority Critical patent/EP2792944B1/en
Priority to US14/365,974 priority patent/US9239159B2/en
Priority to CN201280069936.9A priority patent/CN104126096B/zh
Publication of WO2013089521A1 publication Critical patent/WO2013089521A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • F21V29/77Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical diverging planar fins or blades, e.g. with fan-like or star-like cross-section
    • F21V29/773Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical diverging planar fins or blades, e.g. with fan-like or star-like cross-section the planes containing the fins or blades having the direction of the light emitting axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/66Details of globes or covers forming part of the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/232Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings specially adapted for generating an essentially omnidirectional light distribution, e.g. with a glass bulb
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/238Arrangement or mounting of circuit elements integrated in the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/64Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • F21V19/001Fastening of light sources or lamp holders the light sources being semiconductors devices, e.g. LEDs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/003Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array
    • F21V23/004Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array arranged on a substrate, e.g. a printed circuit board
    • F21V23/005Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array arranged on a substrate, e.g. a printed circuit board the substrate is supporting also the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/003Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array
    • F21V23/004Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array arranged on a substrate, e.g. a printed circuit board
    • F21V23/006Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array arranged on a substrate, e.g. a printed circuit board the substrate being distinct from the light source holder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/15Thermal insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/02Globes; Bowls; Cover glasses characterised by the shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/04Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings
    • F21V3/10Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by coatings
    • F21V3/12Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by coatings the coatings comprising photoluminescent substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0008Reflectors for light sources providing for indirect lighting
    • F21V7/0016Reflectors for light sources providing for indirect lighting on lighting devices that also provide for direct lighting, e.g. by means of independent light sources, by splitting of the light beam, by switching between both lighting modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/10Construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/83Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks the elements having apertures, ducts or channels, e.g. heat radiation holes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2101/00Point-like light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2103/00Elongate light sources, e.g. fluorescent tubes
    • F21Y2103/30Elongate light sources, e.g. fluorescent tubes curved
    • F21Y2103/33Elongate light sources, e.g. fluorescent tubes curved annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2107/00Light sources with three-dimensionally disposed light-generating elements
    • F21Y2107/30Light sources with three-dimensionally disposed light-generating elements on the outer surface of cylindrical surfaces, e.g. rod-shaped supports having a circular or a polygonal cross section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Definitions

  • the present invention relates to a heat dissipating structure of a lighting apparatus using a light emitting element and a lighting apparatus having the same.
  • a heat sink for dissipating heat generated from a light emitting element is disposed only on the back surface of the substrate on which the light emitting element is mounted.
  • measures for improving the heat radiation efficiency of the lighting apparatus have been variously carried out.
  • the LED having strong directivity since the LED having strong directivity is used as the light source, it can not be distributed only in a limited direction.
  • the incandescent lamp can be light-guided in almost all directions except for a region covered by a metal socket or the like, in an application such as an illumination device in which light distribution in almost all directions is required, It is difficult to use it as a substitute. Therefore, in the field of LED lighting devices, a technique for improving the light distribution is required.
  • a lighting device using a heat dissipation structure and a heat dissipation structure is required.
  • a light emitting module comprising: a light emitting module having at least one light emitting element for emitting light and a light emitting element substrate on which the light emitting element is disposed; A housing provided on one side of the center axis of the ring with respect to the light emitting element substrate; And a resin globe provided so as to cover the light emitting module, wherein the globe has at least two protrusions that have left at least a part of a gate portion used for molding the globe, A lighting apparatus is provided, which has a notch portion for coupling.
  • a light emitting module comprising: a light emitting module having at least one light emitting element for emitting light and a light emitting element substrate on which the light emitting element is disposed; A housing provided on one side of the center axis of the ring with respect to the light emitting element substrate; A resin globe installed to cover the light emitting module; And a heat dissipating plate installed in contact with both the light emitting element substrate and the housing and transmitting heat generated in the light emitting module to the housing, wherein the globe includes at least a part of the gate used for molding the globe Wherein at least one of the light emitting element substrate and the heat dissipating plate has a notch portion that engages with the protruding portion.
  • the projecting portions are arranged at regular intervals.
  • the globe may have a circular opening at an end of the light emitting element substrate side, and the projection may be provided along the periphery of the opening.
  • a light emitting module comprising: a light emitting module having a plurality of light emitting elements for emitting light and a light emitting element substrate in which the light emitting elements are arranged in a ring shape; A hollow, substantially cylindrical housing provided on one side of the center of the ring with respect to the light emitting element substrate; A reflector that is supported on the other surface of the light emitting element substrate opposite to the one side and reflects light emitted from the light emitting element; And a globe covering the light emitting module and the reflector, the globe having a maximum diameter larger than a maximum diameter of the housing, wherein the reflector is formed into a conical shape whose diameter is expanded as it is separated from the light emitting element substrate And a reflecting surface provided on a side surface of the truncated cone to reflect light emitted from the light emitting element, wherein the globe is connected to the housing A globe neck portion having an inclined surface along the inclination of the reflecting surface; And a substantially
  • the reflecting surface of the reflector is substantially parallel to the inclined surface of the globe.
  • the material of the globe is a material containing a phosphor, or a phosphor is coated on a surface of the globe, and the light emitting element is an LED that emits light for exciting a phosphor provided on the globe .
  • the material of the globe may be a material further containing a light-diffusing material, or a light-diffusing material may be further applied to the surface of the globe.
  • the material of the globe may be a material containing a light diffusing material, or a surface of the globe may be coated with a light diffusing material, and the light emitting device may be an LED emitting white light.
  • the length d1 of the reflector in the center axis direction is longer than the length d2 of the globe neck in the center axis direction of the ring.
  • the illuminating device it is preferable that at least a part of the light emitting element is present in the projection area when the reflector is projected onto the light emitting element substrate in the diameter expanding direction of the reflector.
  • a heat dissipating member of an illumination device using a light emitting element includes: a metal hollow body to which a globe covering a light emitting element substrate having a light emitting element disposed at one end in the longitudinal direction is connected; And a heat dissipation unit made of resin and insert-molded on an outer circumferential surface of the main body unit, wherein the main body unit is provided with a locking unit for locking the resin material forming the heat dissipation unit.
  • the engagement portion may be a plurality of holes formed in the outer peripheral surface of the body portion.
  • the hole may be formed in an elliptic or polygonal shape having a long diameter in the longitudinal direction of the body portion, in a direction in which the resin material forming the heat dissipation portion flows in the insert molding.
  • the locking portion may be a plurality of slits extending in the longitudinal direction of the body portion formed on the outer peripheral surface of the body portion.
  • the engagement portion may be a step portion whose diameter is reduced toward the other end side from one end side connected to the glove portion formed on the outer peripheral surface of the main body portion.
  • the engagement portion may be a plurality of concave portions formed on the outer peripheral surface of the main body portion.
  • the locking portion may be a plurality of protruding portions formed on the outer peripheral surface of the main body portion.
  • a heat dissipation structure of a lighting apparatus using a light emitting element is provided.
  • a heat dissipation structure of a lighting apparatus of the present invention is a first heat sink provided on one side of a central axis direction of a light emitting element arranged in a ring shape with reference to a heating element including light emitting elements arranged in a ring shape.
  • a second heat sink provided on the other side of the central axis direction.
  • the light emitting element includes a light emitting element; And a light emitting device substrate on which the light emitting device is mounted.
  • the first heat sink and the second heat sink may each have a hollow main body portion, and the center axis of the main body portion and the central axis of the light emitting element may coincide with each other.
  • a flange portion extending from the outer peripheral surface of the main body portion of the first heat sink or the main body portion of the second heat sink, which supports the heat generating element, may be provided.
  • the heat generating element may be provided on the outer circumferential surface of the second heat sink.
  • first heat sink and the second heat sink may be integrally formed.
  • a light emitting device comprising: a light emitting element that emits light; A light emitting element substrate having a light emitting element arranged in a ring shape; A heat sink for dissipating heat from a heating element including a light emitting element; And a globe covering the light emitting element substrate on which the light emitting element is disposed, wherein the heat sink comprises: a first heat sink provided on one side of the central axis direction of the light emitting element arranged in a ring shape with respect to the heat generating element; And a second heat sink provided on the other side of the central axis direction.
  • the first heat sink and the second heat sink each have a hollow main body portion having a central axis coinciding with the center axis of the light emitting element
  • the globe is a hollow portion of the main body portion of the second heat sink provided on the globe portion side And may have openings to be connected thereto.
  • a light emitting module comprising: a light emitting module having a plurality of light emitting elements for emitting light and a light emitting element substrate in which the light emitting elements are arranged in a ring shape; A first heat sink mounted on one side of the ring in a center axis direction with respect to the light emitting element substrate; A second heat sink provided on the other side of the center axis of the ring with respect to the light emitting element substrate; A globe installed to cover the light emitting module; And a driving circuit installed in the second heat sink to drive the light emitting device, wherein the first heat sink emits only heat generated in one of the light emitting module and the driving circuit to the outside, And the second heat sink discharges only the heat generated in the other one of the light emitting module and the driving circuit to the outside.
  • the first heat sink may radiate heat generated in the driving circuit to the outside
  • the second heat sink may radiate heat generated in the light emitting module to the outside.
  • the first heat sink may be substantially cylindrical or substantially columnar, and an opening may be formed at a central portion of the light emitting device substrate so as not to contact the first heat sink,
  • the driving circuit may be thermally coupled to the first heat sink through a heat conductive member made of a material having thermal conductivity.
  • the illuminating device may further include a heat dissipating plate between the light emitting device substrate and the second heat sink for transmitting heat generated in the light emitting device substrate to the second heat sink, An opening portion not contacting the heat sink may be provided.
  • the first heat sink may radiate heat generated in the light emitting module to the outside
  • the second heat sink may radiate heat generated in the driving circuit to the outside.
  • a heat dissipation structure of a lighting apparatus using a light emitting element is a hollow heat sink which is provided in the central portion of a heating element including a light emitting element arranged in a ring shape and extends in the central axis direction of the light emitting element arranged in a ring shape; And a hollow inner heat sink provided inside the heat sink, wherein distances from the inner circumferential surface of the heat sink passing through the center of the heat sink to the outer circumferential surface of the inner heat sink are uneven.
  • planar shape of the heat sink viewed from the central axis direction is circular
  • planar shape of the internal heat sink may be an elliptical shape or a polygonal shape having a long diameter and a short diameter.
  • a light emitting device comprising: a light emitting element that emits light; A light emitting element substrate having a light emitting element arranged in a ring shape; A globe covering the light emitting element substrate on which the light emitting element is disposed; A hollow heat sink provided at a central portion of a heating element including a light emitting element arranged in a ring shape and extending in the central axis direction of the light emitting element arranged in a ring shape; And a hollow inner heat sink provided inside the heat sink, wherein the distance from the inner circumferential surface of the heat sink through the center of the heat sink to the outer circumferential surface of the inner heat sink is nonuniform.
  • a heat dissipation structure of a lighting apparatus using a light emitting element is a hollow heat sink which is provided in the central portion of a heating element including a light emitting element arranged in a ring shape and extends in the central axis direction of the light emitting element arranged in a ring shape; And at least one pin extending from the inner circumferential surface of the heat sink, wherein the distance between the inner circumferential surfaces of the heat sink passing through the center of the heat sink is uneven.
  • At least one of the plurality of fins provided on the inner circumferential surface of the heat sink may be different from the radial length of the other fin.
  • the fins may be radially arranged in the circumferential direction from the inner circumferential surface of the heat sink toward the center.
  • the pins may extend in one direction from the inner circumferential surface of the heat sink toward the inner space.
  • a light emitting device comprising: a light emitting element that emits light; A light emitting element substrate having a light emitting element arranged in a ring shape; A globe covering the light emitting element substrate on which the light emitting element is disposed; A hollow heat sink provided at a central portion of a heating element including a light emitting element arranged in a ring shape and extending in the central axis direction of the light emitting element arranged in a ring shape; And at least one fin extending from the inner circumferential surface of the heat sink, wherein the distance between the inner circumferential surfaces of the heat sink passing through the center of the heat sink is nonuniform.
  • a light emitting module comprising: a light emitting module having a plurality of light emitting elements for emitting light and a light emitting element substrate in which the light emitting elements are arranged in a ring shape; A first heat sink installed on one side of the ring in a central axis direction with respect to the light emitting element substrate in contact with the light emitting element substrate; A second heat sink provided on the other side of the central axis direction of the ring with respect to the light emitting element substrate, the second heat sink having a hollow shape; A reflector that is held on the one side surface of the light emitting device substrate and reflects light emitted from the light emitting device; A globe installed to cover the light emitting module and the reflector; And a driving circuit installed in the second heat sink to drive the light emitting device, wherein the first heat sink and the second heat sink are respectively connected to the heat generated in the light emitting module and the heat generated in the driving circuit;
  • the illuminating device may further include a heat sink installed to contact both the light emitting device substrate and the second heat sink and transmitting heat generated from the light emitting module to the second heat sink.
  • the reflector is provided on a side surface of the truncated cone, which protrudes from one side surface of the light emitting device substrate so as to have a conical shape, the diameter of which is expanded as the light emitting device substrate is spaced apart from the light emitting device substrate. And may have a reflecting surface for reflecting light.
  • the second heat sink is substantially cylindrical, and the maximum diameter of the globe is larger than the maximum diameter of the second heat sink.
  • the maximum diameter of the globe is 1.2 times or more the maximum diameter of the second heat sink.
  • the globe is made of a material containing a phosphor or a phosphor coated on the surface of the globe, and the light emitting element emits light for exciting a phosphor provided on the globe, And the wavelength of the light emitted from the light emitting element can be converted by the phosphor.
  • the material of the glove may further be a material containing a light-diffusing agent, or a light-diffusing agent may be further applied to the surface of the globe.
  • the material of the globe may be a material containing a light diffusing agent, or an LED in which a light diffusion agent is coated on the surface of the globe, so that the light emitting element emits white light.
  • the second heat sink may be formed by inserting a metal member into the resin and insert-molding the resin and the metal member integrally.
  • the drive circuit may not have an electrolytic capacitor for converting an alternating current into a direct current.
  • the first heat sink may be substantially cylindrical or substantially columnar, and the globe may have an opening connected to one end of the first heat sink.
  • the reflector may have a hollow shape, and the first heat sink may be disposed in the hollow portion of the reflector, and the maximum diameter of the first heat sink may be equal to or less than a maximum diameter of the reflector.
  • a light emitting module comprising: a light emitting module having a plurality of light emitting elements for emitting light and a light emitting element substrate in which the light emitting elements are arranged in a ring shape; A first heat sink installed on one side of the ring in a central axis direction with respect to the light emitting element substrate in contact with the light emitting element substrate; A second heat sink provided on the other side of the central axis direction of the ring with respect to the light emitting element substrate and having a hollow shape; A globe installed to cover the light emitting module and the reflector; And a driving circuit installed in the second heat sink to drive the light emitting device, wherein the first heat sink and the second heat sink are respectively connected to the heat generated in the light emitting module and the heat generated in the driving circuit And the first heat sink has a reflecting surface for reflecting the light emitted from the light emitting element.
  • the gate portion used in the molding of the resin glove is used in place of the positioning ribs between the light emitting module and the globe to ensure the quality of the glove as a molded product in the lighting apparatus using the light emitting element, It is possible to secure the accuracy of the alignment between the gloves (particularly, the first embodiment).
  • an illumination device capable of improving the heat radiation efficiency of the drive circuit without being influenced by heat generation from the light emitting module with respect to heat generation from the drive circuit by providing a new heat radiation structure (in particular, the seventh and eighth implementations shape).
  • FIG. 1 is a top view (a) and a front view (b) showing the overall configuration of a lighting apparatus according to a first embodiment of the present invention.
  • Fig. 2 is a cross-sectional view taken along line II-II in Fig. 1 (a) of the illumination device according to the first embodiment.
  • FIG. 3 is an enlarged cross-sectional view of part P of Fig.
  • FIG. 4 is a plan view showing the configuration of the glove according to the first embodiment.
  • FIG. 5 is a plan view showing a configuration of a light emitting module according to the first embodiment.
  • FIG. 6 is an explanatory view showing a glove molding method according to the first embodiment.
  • Fig. 7 is a partial cross-sectional view showing a modification of the illumination device according to the present embodiment, corresponding to the portion P in Fig.
  • Fig. 8 is a top view (a) and a front view (b) showing an overall configuration of a lighting apparatus according to a second embodiment of the present invention.
  • Fig. 9 is a cross-sectional view taken along line II-II in Fig. 8 (a) of the illumination device according to the second embodiment.
  • FIG. 10 is a partial cross-sectional view of a notch showing the structure of a reflector according to the second embodiment.
  • FIG. 11 is a perspective view showing a configuration of a light emitting module according to the second embodiment.
  • FIG 12 is an explanatory view showing the movement of light in the illumination apparatus according to the second embodiment.
  • FIG. 13 is a plan view and a side view showing a lighting apparatus according to a third embodiment of the present invention.
  • FIG. 14 is a cross-sectional view taken along line A-A of the illumination device of FIG.
  • FIG. 15 is a perspective view showing a body portion and a flange portion formed of a metallic material in the first heat sink according to the third embodiment.
  • FIG. 16 is a side view of Fig.
  • 17 is a perspective view showing a modification of the metal portion of the first heat sink according to the third embodiment.
  • FIG. 18 is a side view of Fig.
  • 19 is a perspective view showing another modification of the metal portion of the first heat sink according to the third embodiment.
  • Fig. 20 is a side view of Fig. 19. Fig.
  • 21 is a perspective view showing a body portion and a flange portion formed of a metallic material in a first heat sink according to another application example of the third embodiment of the present invention.
  • FIG. 22 is a side view of Fig.
  • FIG. 23 is a perspective view showing a modification of the metal portion of the first heat sink according to another application example of the third embodiment.
  • Fig. 24 is a side view of Fig. 23. Fig.
  • 25 is a perspective view showing a modification of a body portion and a flange portion formed of a metallic material in a first heat sink of yet another application example.
  • FIG. 26 is a side view of Fig. 25. Fig.
  • FIG. 27 is a plan view and a side view showing a lighting apparatus according to a fourth embodiment of the present invention.
  • FIG. 28 is a cross-sectional view taken along line A-A of the illumination device of FIG. 27;
  • 29 is a plan view showing the arrangement of light emitting elements on a light emitting element substrate.
  • FIG. 30 is a sectional view showing a lighting apparatus according to the fifth embodiment.
  • 31 is a plan view and a side view showing a lighting apparatus according to a sixth embodiment.
  • FIG. 32 is a sectional view taken along line B-B of the illumination device of FIG. 31;
  • Fig. 33 is a top view (a) and a front view (b) showing an overall configuration of an illumination apparatus according to a seventh embodiment of the present invention.
  • FIG. 34 is a cross-sectional view of the illumination device according to the seventh embodiment taken along line II-II in Fig. 33 (a).
  • FIG. 35A is a top view showing the structure of the light emitting module according to the seventh embodiment
  • FIG. 35B is a top view showing the structure of the heat sink 1170 according to the seventh embodiment.
  • 36 is an explanatory diagram showing the flow of heat in the illuminating device according to the seventh embodiment.
  • FIG. 37 is an explanatory view showing an example of a manufacturing method of the illumination apparatus according to the seventh embodiment.
  • FIG. 38 is an explanatory diagram showing the overall configuration and the flow of a column of the illumination device according to the eighth embodiment.
  • 39 is a plan view and a side view showing a lighting apparatus according to a ninth embodiment of the present invention.
  • FIG. 40 is a cross-sectional view taken along line A-A of the illumination device of Fig.
  • 41 is a plan view showing a second heat sink and a third heat sink according to the ninth embodiment.
  • FIG 42 is a plan view showing a modified example of the second heat sink and the third heat sink according to the ninth embodiment.
  • FIG 43 is a plan view showing a second heat sink according to a tenth embodiment of the present invention.
  • 44 is a plan view showing a modified example of the second heat sink according to the tenth embodiment.
  • 45 is a plan view showing another modification of the second heat sink according to the tenth embodiment.
  • 46 is an exploded perspective view showing the overall configuration of a spherical lighting device according to an eleventh embodiment of the present invention.
  • Fig. 47 is a top view (a) and a front view (b) showing an overall configuration of an illumination apparatus according to the eleventh embodiment.
  • Fig. 48 is a cross-sectional view of the illumination device according to the eleventh embodiment taken along line III-III in Fig. 2 (a).
  • Fig. 49 is an explanatory diagram showing the flow of heat in the illuminating device according to the eleventh embodiment.
  • 50 is an explanatory view showing the movement of light in the illumination device according to the eleventh embodiment.
  • 51 is an explanatory diagram showing an example of a light distribution characteristic of the illumination device according to the eleventh embodiment.
  • Fig. 52 is an explanatory diagram showing difference in light distribution by the ratio of the diameter of the glove to the diameter of the lower heat sink according to the eleventh embodiment.
  • 53 is an explanatory view showing the relationship between the maximum diameter of the upper heat sink and the maximum diameter of the reflector according to the eleventh embodiment.
  • FIG. 54 is a top view (a) and a front view (b) showing the overall configuration of a spherical lighting device according to a twelfth embodiment of the present invention.
  • FIG. 55 is a cross-sectional view of the illumination device according to the twelfth embodiment taken along the line X-X in FIG. 54 (a).
  • FIG. 55 is a cross-sectional view of the illumination device according to the twelfth embodiment taken along the line X-X in FIG. 54 (a).
  • FIG. 56 is an explanatory diagram showing the flow of heat and the movement of light in the illumination apparatus according to the twelfth embodiment.
  • 57 is a cross-sectional view showing an example of an LED chip that can be employed in the illumination device of the present invention.
  • FIG. 58 is a cross-sectional view showing another example of an LED chip that can be employed in the illumination device of the present invention.
  • 59 is a cross-sectional view showing another example of an LED chip that can be employed in the illumination device of the present invention.
  • 60 is a cross-sectional view showing an example of an LED chip mounted on a mounting substrate as a light emitting device employable in the illumination device of the present invention.
  • 61 is a cross-sectional view showing an example of an LED package (chip scale package) that can be employed in the lighting apparatus of the present invention.
  • Fig. 1 is a top view (a) and a front view (b) showing the overall configuration of a lighting apparatus 100 according to a first embodiment of the present invention.
  • Fig. 2 is a cross-sectional view taken along the line II-II in Fig. 1 (a) of the illumination device 100 according to the embodiment.
  • 3 is an enlarged cross-sectional view of part P of Fig. 4 is a plan view showing a configuration of the glove 30 according to the present embodiment.
  • 5 is a plan view showing a configuration of the light emitting module 10 according to the present embodiment.
  • the lighting device 90 includes a light emitting module 10; A housing (20); A globe 30; And a heat sink (70).
  • the light emitting module 10 is a member having the light emitting element 11 and the light emitting element substrate 13 and serving as a light source of the lighting apparatus 90.
  • the light emitting element 11 is a semiconductor light emitting element such as an LED (Light Emitting Diode) and emits light.
  • the luminescent color of the light emitting element 11 is not particularly limited, but may be different depending on the constituent material of the globe 30.
  • the globe 30 is made of a material (such as resin) containing a phosphor
  • the luminous color of the luminous means 11 is blue, and the wavelength of the light is changed in the globe 30 to become white.
  • the globe 30 is made of a material (resin or the like) containing a light diffusing material
  • the luminous color of the light emitting element 11 is white (6500K to 2000K). Light emitted from the light emitting element 11 is diffused by the globe 30 and radiated to the outside.
  • a plurality of light emitting elements 11 are prepared in the present embodiment, and these plurality of light emitting elements 11 are arranged in a ring shape on one surface of the light emitting element substrate 13.
  • the term " ring type " used here is a concept including not only a circular ring type as shown in Fig. 5, but also an elliptic ring type and polygonal ring type.
  • the number of the light emitting elements 11 may not be a plurality as shown in Fig. 5, or a single light emitting element 11 may be mounted on the light emitting element substrate 13.
  • the position of the light emitting element 11 in the case of a single light emitting element is not particularly limited, it is preferable that the light emitting element 11 is located substantially in the center portion in consideration of the light distribution.
  • the light emitting element substrate 13 is a substrate on which the light emitting element 11 is mounted and is preferably formed of a metal such as aluminum or nickel or a material having high thermal conductivity such as glass composite (CEM3) or ceramic.
  • CEM3 glass composite
  • the heat generated by the light emitting module 10 can be efficiently transmitted to the housing 20, and the heat radiation efficiency of the lighting device 90 can be improved.
  • the shape of the light emitting element substrate 13 is not particularly limited, it is preferable that the shape of the light emitting element substrate 13 is substantially circular or substantially polygonal in order to satisfy the ANSI standard which is a standard of the size of a bulb-type lighting apparatus.
  • Notch portions 13a, 13b, and 13c are formed in the light emitting element substrate 13 in this embodiment as shown in Figs. 3 and 5, and these notch portions 13a, 13b, and 13c 33b, 33c of the glove 30, which will be described later.
  • the relative position between the light emitting element substrate 13 and the globe 30 is fixed.
  • the number of notches formed in the light-emitting element substrate 13 may be determined in accordance with the number of protrusions formed on the globe 30, but it is necessary to form two or more notches.
  • the relative positions between the light emitting element substrate 13 and the globe 30 are fixed as well as the distance between the light emitting element substrate 13 and the globe 30 is increased by two or more joining portions between the light emitting element substrate 13 and the globe 30. [ It is possible to prevent the globe 30 from rotating relatively.
  • the light-emitting element substrate 13 is held on the upper portion (or the heat sink 70) of the housing 20, thereby fixing the position.
  • the housing 20 is connected to a socket (not shown) at one end thereof (lower end in FIG. 1 and FIG. 2), and is connected to a housing (not shown) in which a driving circuit As shown in Fig.
  • a drive circuit can be provided inside the hollow main body portion of the housing 20.
  • the housing 20 has a function as a so-called heat sink which externally discharges heat generated in the light emitting module 10 and heat generated in the drive circuit.
  • the housing 20 is formed of a resin having high thermal conductivity.
  • the housing 20 is formed of a resin rather than a metal in order to reduce the weight of the lighting device 90.
  • the resin is insulating, caulking when connected to a socket, This is because it is not necessary to use insulation measures at the part. Therefore, when the increase in the weight of the lighting device 90 is not a problem, a metal material such as aluminum or copper may be used as the material of the housing 20.
  • a metal material such as aluminum or copper may be used as the material of the housing 20.
  • the housing 20 is made of a metal material, it is necessary to use an insulating measure against the caulking portion of the socket.
  • the housing 20 is provided with a plurality of pins 29 on the outer peripheral surface of a hollow, substantially cylindrical main body portion having openings at both ends thereof.
  • the plurality of fins 29 By having the plurality of fins 29, the surface area of the surface exposed to the outside of the housing 20 (the area of the surface used for emitting heat) is increased, and the heat radiating effect can be enhanced.
  • the configuration for enhancing the heat radiating effect may include not only the pin 29 but also a plurality of recesses (not shown) on the outer circumferential surface of the main body portion of the housing 20, for example.
  • the housing 20 is provided on one side in the central axial direction of the ring which is constituted by the arrangement of the light emitting elements 11 (on the side where the light emitting elements 11 are not arranged Side. Thus, the housing 20 can emit heat generated in the driving circuit or the light emitting module 10 to the outside.
  • the housing 20 includes a resin 21; And a metal member (23) inserted into the resin (21).
  • the housing 20 is obtained by inserting the resin 21 and the metal member 23 integrally. If only the resin 21 is used, the metal member 23 such as aluminum or copper is inserted in order to further increase the thermal conductivity because the thermal conductivity is somewhat lower than that of metal such as aluminum or copper. Therefore, when the heat generation is suppressed by the performance of the light emitting module 10 or the driving circuit, and the heat radiating effect is sufficient, the metal member 23 does not need to be inserted.
  • the globe 30 is provided in a substantially spherical shape so as to cover the light emitting module 10 and serves to control the color of the light emitted from the light emitting element 11 (light emission color of the light emitting element 11) 30 to spread the angle of incidence of the illumination device 90.
  • the globe 30 includes a phosphor and a light diffusing material depending on the color of light emitted from the light emitting element 11 in order to realize the role of controlling the light emission color of the light emitting element 11.
  • the material of the globe 30 is a material containing a phosphor, or the surface of the globe 30 is coated with a phosphor. The wavelength of the light emitted from the light emitting element 11 and reaching the globe 30 is converted by the phosphor of the globe 30 to emit white light.
  • the light emission by the phosphor since the light emission by the phosphor has a large light diffusivity, even if the light distribution distribution of the light emitted from the light emitting element 11 is insufficient, it is possible to obtain a good light distribution by light diffusion at the time of light emission by the phosphor. Therefore, as a result of forming the globe of a highly diffusible material in order to broaden the angle of incidence as in the prior art, it is possible to solve the problem that the light transmittance is reduced and the members such as the light emitting module inside the globe are seen through. Further, by combining the blue LED and the phosphor, it becomes possible to emit light with a color close to natural light.
  • the material of the globe 30 is a material containing a light diffusing material in addition to the fluorescent material, A diffusion material can be further applied.
  • the material of the globe 30 may be a material containing a light diffusing material, or the surface of the globe 30 may be coated with a light diffusing material .
  • light emitted from the light emitting element 11 is diffused by the surface of the globe 30 by the light diffusing material, and the angle of diffraction of the illumination device 90 can be widened.
  • Fig. 6 is an explanatory view showing a molding method of the resin glove 30 according to the present embodiment.
  • the globe 30 includes protrusions 33a, 33b, and 33c that engage with the notched portions 13a, 13b, and 13c of the light emitting element substrate 13 .
  • These protrusions 33a, 33b and 33c are formed by leaving at least a part of the gate portion used for molding the globe 30 without being cut.
  • the protrusions 33a, 33b and 33c are formed on the bottom of the globe 30 (The end of the opening 31).
  • the material of the globe 30 is resin.
  • Fig. 6 shows an example of a spoke gate suitable for forming a substantially spherical shape as a gate shape.
  • molten resin is injected from the nozzle, and this resin is injected into the mold through the sprue 35, the runners 37a, 37b, 37c (the number of runners is three (Not shown in the drawings)), and passes through the gates 33a, 33b, and 33c, which are inlets for the cavity portion (frame) to be a molded product.
  • gates 33a, 33b, and 33c are inlets for the cavity portion (frame) to be a molded product.
  • gates there are many kinds of gates, but among them, gates most suitable for obtaining the appearance, strength, precision, and other purpose products of the molded product are selected.
  • the gates 33a, 33b and 33c prevent the backflow of the molten resin flowing into the molding frame of the globe 30 by blocking the flow path until cooling and solidifying, Thereby reducing residual stresses such as deformation, cracking, and warping of the molded article.
  • the gate after resin molding is cut out using a gate cutter or the like.
  • the gate portion that becomes unnecessary after molding must be as small as possible.
  • the width of the gate width D in Fig. 4
  • the width of the gate is too small, the flow rate of the gate portion is lowered, and the formation defects such as welding and gate flow tend to occur.
  • the flowability of the resin in the gate portion at the time of molding the globe 30 is improved and contributes to reduction in molding defects such as welding and gate flow. As well as the improvement of product quality.
  • the gates 33a, 33b, and 33c are arranged at regular intervals in order to uniformize the way in which the resin is supplied to the mold when the globe 30 is molded. In this case, naturally, the protrusions 33a, 33b, and 33c of the globe 30 are equally spaced.
  • the gates 33a, 33b and 33c are used as they are for positioning with the light emitting element substrate 13 and as the projections 33a, 33b and 33c for fixing the rotation of the globe 30, , It is possible to omit a space for newly providing members such as positioning and rotation fixing ribs.
  • the positioning accuracy of the globe 30 which also functions as an optical lens, .
  • the number of protrusions is three or more from the viewpoint of increasing the positioning accuracy of the globe 30.
  • there is no clearance interval when the globe 30 is mounted on the light emitting element substrate 13 It is desirable to appropriately set the number of projections depending on the use of the illumination device 90.
  • the heat dissipation plate 70 is provided to contact both the light emitting element substrate 13 and the housing 20 and mainly has a role of transmitting heat generated in the light emitting module 10 to the housing 20.
  • the heat sink 70 is made of a metal having high thermal conductivity, such as aluminum or copper, in order to realize the role of the heat transfer.
  • the notch portion that engages with the projecting portions 33a, 33b, and 33c of the globe 30 is not the light emitting element substrate 13, (Not shown).
  • the light emitting element substrate 13 is positioned between the globe 30 and the heat sink 70, it is necessary to secure the light emitting element substrate 13 to the heat sink 70 by screwing or the like.
  • the notches may be provided on both the heat radiating plate 70 and the light emitting element substrate 13 in combination with the protrusions 33a, 33b and 33c of the globe 30. In this case, It is necessary to perform positioning between the three members of the substrate 13 and the heat sink 70, so that there is a possibility that the assembly becomes somewhat complicated.
  • the heat dissipating plate 70 may not necessarily be provided if the heat dissipating efficiency of the lighting apparatus 90 is sufficiently high and the positioning accuracy of the light emitting element substrate 13 and the globe 30 can be ensured .
  • the lighting device 90 may have other members as necessary.
  • the illumination device 90 has a reflector (not shown) for reflecting the light emitted from the light emitting device 11 and for distributing the light in the socket direction .
  • the sectional shape of the light emitting element substrate 13, the housing 20, the globe 30, and the heat sink 70 when cut in a direction orthogonal to the central axis is a circular
  • the present invention is not limited to this example.
  • the cross-sectional shape of each member may be polygonal or elliptical.
  • only one light emitting element group constituted by arranging a plurality of light emitting elements 11 in a ring shape is provided on the light emitting element substrate 13, but the present invention is not limited to this example.
  • a plurality of light emitting element groups can be provided concentrically on the light emitting element substrate 13.
  • Fig. Fig. 8 is a top view (a) and a front view (b) showing an overall configuration of a lighting apparatus 100 according to a second embodiment of the present invention.
  • Fig. 9 is a cross-sectional view taken along the line II-II in Fig. 8 (a) of the illumination device 100 according to the embodiment.
  • 10 is a partial notch perspective sectional view showing the structure of the reflector 140 according to the present embodiment.
  • 11 is a perspective view showing a configuration of the light emitting module 110 according to the present embodiment.
  • the lighting apparatus 100 includes a light emitting module 110; A housing 120; A reflector 140; A glove 130; And a heat sink 170.
  • the light emitting module 110 is a member having the light emitting element 111 and the light emitting element substrate 113 and serving as a light source of the illumination apparatus 100.
  • the light emitting element 111 is a semiconductor light emitting element such as an LED (Light Emitting Diode), and emits light.
  • the luminescent color of the light emitting element 111 differs depending on the constituent material of the globe 130 to be described later. Specifically, when the globe 130 is made of a material (such as a resin) containing a phosphor, the light emitting element 111 is an LED (for example, a blue LED) that emits light that excites the phosphor, The wavelength of light in the globe 130 is changed to become white.
  • the globe 130 is made of a material (resin or the like) containing a light diffusing material
  • the luminous color of the light emitting element 111 is white (6500K to 2000K).
  • the light emitted from the light emitting device 111 is reflected by the reflector 140 described later or directly reaches the globe 130 and is diffused in the globe 130 and radiated to the outside.
  • a plurality of light emitting elements 111 are prepared in this embodiment, and the plurality of light emitting elements 111 are arranged in a ring shape on one surface of the light emitting element substrate 113.
  • ring type as used herein includes not only a circular ring type as shown in Fig. 11, but also an elliptical ring type or polygonal ring type.
  • the light emitting element substrate 113 is a substrate on which the light emitting element 111 is mounted and is preferably formed of a metal such as aluminum or nickel or a material having high thermal conductivity such as glass composite (CEM3) or ceramic. As a result, the heat generated by the light emitting module 110 can be efficiently transmitted to the housing 120, and the heat radiation efficiency of the lighting apparatus 100 can be improved.
  • the shape of the light emitting element substrate 113 is not particularly limited, it is preferable that the shape of the light emitting element substrate 113 is substantially circular or substantially polygonal in order to satisfy the above ANSI standard.
  • the position of the light emitting element substrate 113 is fixed by being sandwiched between the bottom of the reflector 140 and the top of the housing 120 (or the heat sink 170).
  • the housing 120 has a function as a housing in which a driving circuit (not shown) for driving the light emitting element is housed.
  • a driving circuit can be provided inside the hollow main body portion of the housing 120.
  • the housing 120 is connected to a socket (not shown) at one end thereof (the lower end of Figs. 8 and 9) and at the same time, the heat generated in the light emitting module 110 and the heat generated in the drive circuit are discharged to the outside. Called heat sink.
  • the housing 120 is formed of a resin having high thermal conductivity.
  • the housing 120 is formed of a resin rather than a metal in order to reduce the weight of the lighting apparatus 100. Further, since the resin is insulating, it is preferable that the caulking portion when connected to the socket is insulated There is no need to take measures.
  • a metal material such as aluminum or copper may be used as the material of the housing 120.
  • the housing 120 is made of a metal material, it is necessary to use an insulating measure against the caulking portion of the socket.
  • the housing 120 is provided with a plurality of pins 129 on the outer peripheral surface of a hollow, substantially cylindrical main body portion having openings 120a and 120b at both ends thereof.
  • the plurality of pins 129 By having the plurality of pins 129, the surface area of the surface exposed to the outside of the housing 120 (the area of the surface used for dissipating heat) is increased, and the heat radiating effect can be enhanced.
  • the structure for enhancing the heat radiation effect may include not only the fin 129 but also a plurality of recesses (not shown) on the outer circumferential surface of the main body portion of the housing 120, for example.
  • the housing 130 is provided on one side in the central axis direction of the ring formed by the arrangement of the light emitting elements 111 (on the side where the light emitting elements 111 are not disposed Side.
  • the housing 120 can emit heat generated from the driving circuit or the light emitting module 110 to the outside.
  • the housing 120 includes a resin 121; And a metal member 123 inserted into the resin 121.
  • the housing 120 is obtained by inserting the resin 121 and the metal member 123 integrally. This is because only the resin 121 has low thermal conductivity compared with metals such as aluminum and copper, and therefore, a metal member 123 such as aluminum or copper is inserted in order to further increase the thermal conductivity. Therefore, when the heat generation is suppressed by the performance of the light emitting module 110 or the driving circuit, and the heat radiating effect is sufficient, the metal member 123 does not need to be inserted.
  • the heat generated by the light emitting module 110 is easily transmitted to the housing 120.
  • the heat sink 170 is not provided , And the light emitting element substrate 113).
  • the reflector 140 is supported on the surface of the light emitting element substrate 113 on which the light emitting element 111 is disposed (hereinafter referred to as the "surface on the light emitting element 111 side"), And reflects the light emitted from the light source.
  • the reflector 140 in the present embodiment is made of a material having high light reflectivity and reflects light from the light emitting element 111 in the socket direction (direction toward the side where the housing 120 is present) 100) in the socket direction.
  • the reflector 140 is formed to have a shape of a reverse conical shape as shown in Figs. 9 and 10, that is, a conical shape in which the diameter is expanded as being separated from the light emitting element substrate 113 , And the light emitting element substrate 113 is protruded from the surface of the light emitting element 111 side.
  • the side surface of the cone-shaped reflector 140 is a reflecting surface 141 on which light emitted from the light emitting element 111 is reflected. Therefore, only this reflecting surface 141 can be made of a material having high light reflectivity, and the other part can be made of a material having no light reflectivity.
  • the reflector 140 is mounted on the light emitting element substrate (not shown) in the diameter increasing direction of the reflector 140 (in the vertical direction of the reflector 140 in the example shown in Fig. 2) 113, it is preferable that at least a part of the light emitting element 111 is present in the projection region.
  • the positional relationship between the reflector 140 and the light emitting element 111 can be made as described above so that most of the light emitted from the light emitting element 111 can reach the reflecting surface 141 of the reflector 140, Can be increased. Therefore, the angle of diffraction in the illumination device 100 can be further widened.
  • the globe 130 is provided in a substantially spherical shape so as to cover the light emitting module 110 and the reflector 140 so that the color of the light emitted from the light emitting element 111 or the light reflected by the reflector 140 111) and spreading the light on the surface of the globe 130, thereby widening the angle of incidence of the illuminating device 100.
  • the globe 130 includes a phosphor and a light diffusing material in accordance with the color of light emitted from the light emitting element 111 in order to realize the role of controlling the light emission color of the light emitting element 111.
  • the material of the globe 130 is a material containing a fluorescent material, or the surface of the globe 130 is coated with a fluorescent material.
  • a fluorescent pigment may be contained in the resin.
  • a fluorescent paint may be applied to the surface of the globe do. The wavelength of the light reflected by the reflector 140 or emitted from the light emitting element 111 and reaching the globe 130 is converted by the phosphor of the globe 130 to emit white light.
  • the material of the globe 130 may be a material containing a light diffusing material in addition to the fluorescent material, or may be a material containing, on the surface of the globe 130, A diffusion material may be further applied.
  • the material of the globe 130 may be a material containing a light diffusing material, or the surface of the globe 130 may be coated with a light diffusing material.
  • the light emitted from the light emitting element 111 or the light reflected by the reflector 140 is diffused from the surface of the globe 130 by the light diffusing material and is reflected by the diffusing angle of the illumination device 100 .
  • the maximum diameter D1 of the globe 130 is required to be larger than the maximum diameter D2 of the housing 120 in order to widen the angle of incidence of the illumination device 100. [ If the maximum diameter D2 of the housing 120 is too large for the maximum diameter D1 of the globe 130, the light emitted in the socket direction from the surface of the globe 130 is blocked by the housing 120 The spreading angle of the light in the socket direction is reduced because the area is widened.
  • the globe 130 in this embodiment is composed of two parts, a glove neck part 131 and a globe head part 133.
  • These glove neck portions 131 and globe head portions 133 may be physically separate or integrally formed.
  • the globe neck 131 is a portion of the globe 130 which is connected to the housing 120 and has an inclined surface 131a along the inclination of the reflecting surface 141 of the reflector 140.
  • the globe neck 131 since the globe neck 131 has the inclined surface 131a having the inclination along the reflecting surface 141 of the reflector 140, the light emitted from the light emitting element 111 and reflected by the reflecting surface 141 , It is easy to reach the glove neck portion 131, so that the amount of light to be distributed in the socket direction can be increased. Such an effect becomes conspicuous particularly when the reflecting surface 141 of the reflector 140 and the inclined surface 131a of the glove neck 131 are substantially parallel. It is therefore preferable that the reflecting surface 141 of the reflector 140 and the inclined surface 131a of the glove neck portion 131 are substantially parallel.
  • the length d1 in the central axis direction of the ring in which the light emitting element 111 of the reflector 140 is disposed is smaller than the length d2 in the central axis direction of the glove neck portion 131 ).
  • the shape and positional relationship of the reflector 140 and the glove neck 131 are as described above so that the ratio of the light emitted from the light emitting device 111 to the inclined surface 131a of the glove neck 131 can be increased Therefore, it is possible to increase the amount of light distributed in the socket direction.
  • an opening is provided at the bottom of the glove neck portion 131 (the end opposite to the side connected to the glove head portion 133).
  • the glove neck portion 131 (Not shown).
  • the globe head portion 133 is an almost hemispherical portion connected to the globe neck portion 131.
  • This glove head 133 mainly diffuses the light emitted from the light emitting element 111 and reaching the globe 130 directly without touching the reflector 140.
  • the glove neck portion 131 has a role of increasing the amount of light to be distributed in the socket direction while the glove head portion 133 has a role of increasing the amount of light to be distributed in the top direction of the globe 130 have.
  • a structure capable of diffusing light On the surface of the globe 130, a structure capable of diffusing light may be provided.
  • a structure capable of diffusing light for example, an uneven surface formed on the surface of the globe 130 is considered.
  • the uneven surface in this case may be a random structure or a regular structure
  • the heat radiating plate 170 is provided to contact both the light emitting element substrate 113 and the housing 120 and mainly has a role of transmitting heat generated in the light emitting module 110 to the housing 120.
  • the heat dissipating plate 170 is made of a metal having high thermal conductivity such as aluminum or copper to realize the above heat transfer.
  • the heat dissipation plate 170 may be provided with a position error prevention pin for the reflector 140. In this case, the heat dissipation plate 170 may not only function as the heat transmission, 113, the reflector 140, and the globe 130, as shown in FIG.
  • the heat radiation efficiency of the lighting apparatus 100 is sufficiently high and the positioning accuracy of the light emitting element substrate 113, the reflector 140, and the globe 130 can be ensured, It is not necessary.
  • FIG. 12 is an explanatory view showing the movement of light in the illumination apparatus 100 according to the present embodiment.
  • the light emitted from the light emitting element 111 mainly passes through four kinds of paths.
  • the first path is a path L1 that reaches the globe neck portion 131 directly from the light emitting element 111 and the second path is reflected from the light emitting element 111 by the reflecting surface 141 of the reflector 140 And the path L2 that reaches the globe neck portion 131.
  • the third path is a path that is reflected by the reflecting surface 141 of the reflector 140 from the light emitting element 111 and reaches the globe head portion 133
  • the fourth path is a path L4 that reaches the globe head portion 133 directly from the light emitting element 111.
  • the light L1 emitted from the light emitting element 111 does not reach the reflector 140 but directly enters the glove neck portion 131 and diffuses on the surface of the glove neck portion 131 .
  • Diffused light L1 'diffuses in various directions mainly in the horizontal direction and toward the socket direction.
  • the light emitting element 111 is a blue LED and the globe 130 contains a phosphor or the phosphor is coated on the surface of the globe 130
  • diffused light L1 ' Is diffused to a wider range.
  • the diffusion range of the diffusion light L1 ' can be widened (the same applies hereinafter).
  • the light L2 emitted from the light emitting element 111 is reflected by the reflecting surface 141 of the reflector 140 and the reflected light L2 is incident on the globe neck 151 , And diffuses from the surface of the globe neck 151.
  • the diffused light L2 ' is radiated in various directions.
  • the globe neck 131 has the inclined surface 131a along the reflecting surface 141 of the reflector 140 and the globe 131 has the inverted conical shape as described above, Since the maximum diameter D1 of the light emitting device 111 is larger than the maximum diameter D2 of the housing 120 when the light emitted from the light emitting device 111 passes through the first and second paths, It is possible to radiate the light emitted in the direction of the socket.
  • the reflector 140 has a shape of inverted conical shape in which the diameter is expanded as it is separated from the light emitting element substrate 113 (in a direction opposite to the socket direction), and the side surface of the reflector 140
  • the light L2 emitted from the light emitting element 111 can be reflected by the light reflecting surface 141 from the horizontal direction to the socket direction side and the reflected light L2 can be reflected by the globe neck 141.
  • the maximum diameter Dl of the globe 130 is larger than the maximum diameter D2 of the housing 120 so that the housing 130 can transmit the diffused light L1 'diffused from the surface of the globe neck 151, , L2 '), it is possible to radiate diffused light L1', L2 'over a wider range on the side of the socket in the horizontal direction.
  • the inclined surface 151a of the glove neck portion 131 has a shape in which the diameter of the inclined surface 151a of the glove neck portion 131 is expanded along the reflecting surface 141 as it is separated from the light emitting element substrate 113, It is easy to distribute the lights L1 and L2 from the horizontal direction to the socket direction side. Particularly when the reflecting surface 141 of the reflector 140 and the inclined surface 131a of the glove neck 131 are substantially parallel to each other, the light L2 easily reaches the glove neck portion 131, Can be increased.
  • the light L3 emitted from the light emitting element 111 is reflected by the reflecting surface 141 of the reflector 140 and the reflected light L3 is reflected by the globe head 133, And is diffused on the surface of the globe head portion 133.
  • the diffused light L3 ' is radiated in various directions.
  • the light L4 emitted from the light emitting element 111 enters the globe head portion 133 directly without touching the reflector 140 and passes through the surface of the globe head portion 133 Spread. In this case also, the diffused light L4 'diffuses in various directions.
  • the amount of light diffused toward the top direction (opposite to the socket direction) of the globe 130 is smaller than the horizontal direction.
  • the lighting apparatus 100 since light emitted from the light emitting element 111 passes through four kinds of paths, a wide angle of view can be realized. Specifically, in the lighting apparatus 100, for example, it is possible to realize a very high luminous efficacy within ⁇ 10% of the luminous intensity difference in the range of the divergence angle of 300 degrees, and to have the same performance as the incandescent lamp, It becomes possible to use the lighting apparatus 100.
  • the light ( ) The effect of the light distribution is that when the length d1 of the ring in which the light emitting element 111 of the reflector 140 is disposed is longer than the length d2 of the globe neck portion 131 in the central axis direction In particular, becomes remarkable.
  • the light emitting element 111 is a semiconductor element such as an LED, the light emitted from the light emitting element 111 is easy to take the third path L3 and the fourth path L4 since the directivity is strong.
  • the length d1 of the ring in which the light emitting element 111 of the reflector 140 is disposed is longer than the length d2 of the globe neck portion 131 in the central axis direction, 111 can easily take the second path L2, it is possible to increase the light distribution from the horizontal direction to the socket direction side. Therefore, it is easy to design a light distribution so as to be stable and to have a large light quantity in a wider range.
  • the present invention may be embodied with various changes and modifications.
  • the cross section of the light emitting element substrate 113, the reflector 140, the globe 130, and the heat dissipating plate 170 when cut in the direction orthogonal to the central axis C Although the shape is circular, the present invention is not limited to this example.
  • the cross-sectional shape of each member may be polygonal or elliptical.
  • only one light emitting element group constituted by arranging a plurality of light emitting elements 111 in a ring shape is provided on the light emitting element substrate 113, but the present invention is not limited to this example.
  • a plurality of light emitting element groups can be provided concentrically on the light emitting element substrate 113.
  • Fig. 13 is a plan view and a side view showing the lighting device 200 according to the present embodiment
  • Fig. 14 is a sectional view taken along the A-A cutting line of the lighting device 200 in Fig.
  • the lighting apparatus 200 includes a light emitting element 212 for emitting light; A light emitting device substrate 210 on which the light emitting device 212 is mounted; A first heat sink 220 on which the light emitting device substrate 210 is mounted; A globe 230 covering the light emitting device substrate 210 mounted on the first heat sink 220; And a second heat sink 240 installed at a central portion of the globe 230.
  • a disc-shaped metal substrate 250 is provided between the light emitting element substrate 210 and the heat sink 220 for enhancing heat dissipation.
  • an LED Light Emitting Diode
  • a plurality of (for example, twelve) light emitting elements 212 are arranged on the light emitting element substrate 210 in a ring shape at regular intervals.
  • the light emitting element substrate 210 is, for example, an aluminum substrate, and the light emitting element substrate 210 has a disc shape corresponding to the shape of the first heat sink 210 fixed through the metal substrate 250. Further, in the present embodiment, the light emitting element 212 and the light emitting element substrate 210 having these elements are referred to as heating elements.
  • the heating element includes at least the light emitting element 212, and the light emitting element substrate 210 may not necessarily be regarded as a heating element.
  • a heat source of the illumination device 200 there is a power supply circuit (not shown) in addition to a heating element including the light emitting element 212.
  • the first heat sink 220 is a member that dissipates heat from the heat source of the lighting device 200. 13 and 14, the first heat sink 220 includes a plurality of fins 223, which are resin heat dissipating portions, in the main body 222 of the cylinder.
  • the first heat sink 220 of the present embodiment is a composite member in which the body portion 222 and the flange portion 224 described later are formed of a metal material such as aluminum and the fin 223 is formed of a resin material such as plastic .
  • the detailed structure of the main body portion 222 of the first heat sink 220 and the effect produced by the composite member will be described later.
  • a socket (not shown) is provided at one end of the pin 223 at the one end (the end on the z-axis negative direction side) of the main body 222 and at the other end
  • a flange portion 224 for holding the light emitting element substrate 210 is provided.
  • the outer periphery of the flange portion 224 is provided with an arrangement of the light emitting element substrate 210 in the extending direction (base axis C direction; z direction) of the body part 222 to surround the outer periphery of the light emitting element substrate 210
  • the edge portion 124a is formed to protrude toward the side of the base portion 124a.
  • a light emitting element substrate 210 is disposed on the upper surface 124b of the flange portion 124 with a metal substrate 250 interposed therebetween.
  • the metal substrate 250 for example, an aluminum substrate can be used.
  • a power supply circuit (not shown) is installed in the internal space 226 of the body portion 222 of the first heat sink 220.
  • a resin layer 227 made of a resin material is provided on the inner surface of the body portion 222 in order to insulate the power supply circuit from the body portion 222.
  • the power supply circuit may be housed in the internal space 226 through an insulating case (not shown) to insulate the body portion 222 from the power supply circuit.
  • the first heat sink 220 dissipates heat from a heating element including the light emitting element 212 that is transmitted through the light emitting element substrate 210 and the metal substrate 250 from the light emitting element 212, Heat dissipation.
  • a heating element including the light emitting element 212 that is transmitted through the light emitting element substrate 210 and the metal substrate 250 from the light emitting element 212, Heat dissipation.
  • the globe 230 is a cover member covering the light emitting device substrate 210 mounted on the first heat sink 220 and formed of a member transmitting light emitted from the light emitting device 212.
  • the globe 230 can be formed of, for example, glass or resin having transparency.
  • the globe 230 is formed to have a substantially hemispherical curved surface, and an opening portion 232 is formed at the center portion thereof.
  • the center of the opening 232 is on a base axis C perpendicular to the light emitting device substrate 210 passing through the centers of the plurality of light emitting devices 212 arranged in a ring shape on the light emitting device substrate 210.
  • the second heat sink 240 is inserted into the opening 232.
  • the second heat sink 240 is a member for dissipating heat from the heat emitting body including the light emitting element 212.
  • the second heat sink 240 is composed of a cylindrical portion 242 and a bottom portion 244 as shown in Fig.
  • One end of the z-axis bidirectional side to which the cylindrical portion 242 is opened is connected to the opening portion 232 of the globe 230.
  • the bottom portion 244 is provided in contact with the upper surface 210a of the light emitting device substrate 210 to easily transfer heat from the heating element.
  • the second heat sink 240 may be formed of a metal material such as aluminum or the like and may be formed of a resin material such as plastic.
  • the first heat sink 220 is configured such that the body portion 222 and the flange portion 224 are made of a metal material such as aluminum, and the fin 223, which is a heat radiation portion, Is a composite member formed of a material.
  • a high heat radiation efficiency can be maintained and the material cost can be reduced.
  • a resin material and a metal material are added to the body portion 222 formed of a metal material as shown in Figs. 15 and 16 A plurality of through holes 222a are formed as engaging portions to be engaged.
  • Fig. 15 is a perspective view showing a body portion 222 and a flange portion 224 formed of a metallic material in the first heat sink 220 according to the present embodiment.
  • Fig. 16 is a side view of Fig. 15.
  • the body portion 222 and the flange portion 224 made of a metal material are collectively referred to as a metal portion 225.
  • the main body portion 222 formed of the metal material of the first heat sink 220 according to the present embodiment is provided with a plurality of heat sinks z directions), and four through holes 222a in total are formed in the circumferential direction.
  • Each of the through holes 222a is formed at regular intervals in the longitudinal direction and in the circumferential direction.
  • the metal part 225 When the metal part 225 is insert-molded with a fin 223 made of a resin material and a surface part (not shown) covering the outer circumferential surface of the body part 222, 222a, the resin material is cooled, and solidified. As a result, the adhesion between the metal material and the resin material is improved.
  • the metal material selected by the metal part 225 of the first heat sink 220 can be insert-molded because it is possible to form the through hole 222a in the body part 222 without using the metal material. Further, since the composite material is formed when the resin material flowing into the previously formed through hole 222a is cooled and solidified, it is not necessary to perform the secondary surface treatment or the secondary processing. As a result, the manufacturing cost can be reduced.
  • the through hole 222a in the body portion 222 molding can be performed without sacrificing the fluidity of the resin material at the time of insert molding. Mechanical stress is generated in the joining portion of the metal material and the resin material in the cooling cycle of the insert molding due to the difference in coefficient of linear expansion between the metal material and the resin material.
  • the shear strength of the resin material at the junction of the resin material and the metal material flowing into the through hole 222a is sufficiently secured can do. Thereby, the reliability of the product can be sufficiently maintained.
  • the shape of the through-hole 222a ' is set so that the flow of the resin material in the longitudinal direction of the body portion 222' is the same as that of the resin material in the longitudinal direction of the body portion 222 ' It is preferable to form it into an almost elliptical shape having a long diameter.
  • the shape of the through hole 222a ' may not be substantially elliptical as shown in Figs. 17 and 18, and may be a polygon having a long diameter in the longitudinal direction of the main body and a flow direction of the resin material.
  • the through hole formed in the metal portion of the first heat sink 220 according to the present embodiment has a larger opening area from the inner periphery side to the outer periphery side of the main body portion 322
  • the through hole 322a may be a tapered through hole.
  • a plurality of recesses may be formed on the outer circumferential surface of the body portion 222 of the first heat sink 220 according to the present embodiment.
  • the number of through holes formed in the metal portion is not limited to the numbers shown in Figs. 15 to 20, and it is sufficient that at least two through holes are formed in the circumferential direction. At this time, it is preferable that the through hole is formed so as to face the base axis (c).
  • the number of the through holes and the size of the through hole can be appropriately determined in consideration of the fact that the body portion is excessively opened so as not to lower the heat radiation efficiency.
  • the structure of the lighting device 200 according to the third embodiment of the present invention and the first heat sink 220, which is a mixture of the metal material and the resin material, have been described above.
  • a plurality of through holes 222a are formed in the body portion 222 of the metal portion 225 of the first heat sink 220.
  • the metal material 225 formed with the through hole 222a and the resin material forming the pin 223 are insert molded so that the selection of the metal material is not limited and the mechanical strength of these joint parts is secured without preventing the fluidity of the resin material can do. Therefore, the product reliability can be ensured, and the secondary surface treatment or the secondary machining of the metal material is not required, so that the manufacturing cost can be reduced.
  • a heat dissipating member of a lighting apparatus according to another application example of the third embodiment of the present invention will be described with reference to Figs. 21 and 22.
  • Fig. The illumination device according to the present embodiment can have the same configuration as the illumination device 200 of the foregoing example.
  • the lighting apparatus according to the present embodiment differs from the foregoing example in the configuration of the metal portion of the first heat sink.
  • 21 is a perspective view showing a body portion 422 and a flange portion 424 formed of a metallic material in the first heat sink according to the present embodiment.
  • 22 is a side view of Fig.
  • the first heat sink diagram body portion 422 and the flange portion 424 are formed of a metal material such as aluminum, Of a resin material.
  • a metal material such as aluminum, Of a resin material.
  • a plurality of slits 423 are formed in the body portion 422 as a locking portion to which the resin material and the metal material are engaged.
  • the main body portion 422 formed by the metal material of the first heat sink according to the present embodiment for example, nine slits 423 extending in the longitudinal direction (z direction) of the first heat sink are provided in the circumferential direction And are formed at regular intervals.
  • Each of the slits 423 has a narrow slit portion 423a having an opening on the opposite side of the flange portion 424 and a narrow slit portion 423a formed continuously with the narrow slit portion 423a. 423b.
  • the slits 423 in the body portion 422, molding can be performed without sacrificing the fluidity of the resin material at the time of insert molding.
  • mechanical stress is generated in the joining portion of the metal material and the resin material in the cooling cycle of the insert molding due to the difference in coefficient of linear expansion between the metal material and the resin material.
  • injecting the resin material into the slit 423 formed in the body portion 422 as in the present embodiment it is possible to sufficiently secure the shear strength of the resin material at the junction between the resin material and the metal material flowing into the slit 423 have. Thereby, the reliability of the product can be sufficiently maintained.
  • the shape of the slit formed in the main body portion of the metal portion is not limited to the example shown in Figs. 21 and 22, and may be a shape as shown in Figs. 23 and 24, for example.
  • twelve slits 523 extending in the longitudinal direction (z direction) of the first heat sink, for example, are formed in the main body portion 522 of the metal portion 525 at regular intervals in the circumferential direction.
  • Each of the slits 523 has a first narrow slit portion 523a opened on the opposite side of the flange portion 524 and a first narrow slit portion 523a formed continuously with the first narrow slit portion 523a
  • a second wide slit portion 523d formed continuously with the second slit portion 523d.
  • the widths in the circumferential direction of the first narrow slit portion 523a and the second narrow slit portion 523c, the first wide slit portion 523b, and the second wide slit portion 523d can be the same have.
  • the shape and number of the slits 523 can be appropriately determined in consideration of the fact that the body portion is excessively opened so as not to lower the heat radiation efficiency.
  • the first heat sink which is a mixture member of a metal material and a resin material, provided in the lighting apparatus according to another application example of the third embodiment has been described above.
  • a plurality of slits 423 are formed in the body portion 422 of the metal portion 425 of the first heat sink.
  • the resin material forming the fin and the metal part 525 on which the slit 423 is formed is insert molded so that the selection of the metal material is not limited and the fluidity of the resin material is not prevented and the mechanical strength of these joint parts can be secured. Therefore, the reliability of the product can be ensured and the manufacturing cost can be reduced because there is no need for secondary surface treatment or secondary machining of the metal material.
  • a plurality of hemispherical protrusions 622a may be provided on the outer peripheral surface of the main body portion 622 of the metal portion 625 of the first heat sink.
  • a step portion may be provided on the body portion 222 of the first heat sink 220 so that the diameter of the outer periphery of the first heat sink 220 decreases from one end connected to the globe 230 in the longitudinal direction toward the other end.
  • a plurality of the engagement portions may be provided in combination in the shape of each of the engagement portions shown in the above embodiment mode and the modification example.
  • the selection of the metal material is not limited by such a locking portion, and the mechanical strength of these joint portions can be ensured without preventing the fluidity of the resin material. Therefore, the product reliability can be secured, and the manufacturing cost can be reduced because there is no need for secondary surface treatment or secondary machining of the metal material.
  • the cross-sectional shape of the first heat sink 220 and the second heat sink 240 when cut in the direction orthogonal to the base axis C of the body portion is cylindrical.
  • the present invention is not limited to this example, and the shape of the main body part may be polygonal or elliptic.
  • the plurality of light emitting elements 212 are arranged in a ring shape on the light emitting element substrate 110.
  • the present invention is not limited to this example, and only one light emitting element 212 may be provided on the light emitting element substrate 210 .
  • the light emitting element substrate 210 may be provided on the outer circumferential surface of the second heat sink 240 in addition to the flange portion 224.
  • a plurality of light emitting elements 212 are arranged in a ring shape Only one light emitting element group may be arranged, or a plurality of light emitting element groups may be arranged on a concentric circle.
  • Fig. 27 is a plan view and a side view showing the lighting device 700 according to the present embodiment.
  • 28 is a sectional view taken along line A-A of the illumination device 700 of Fig. 29 is a plan view showing the arrangement of the light emitting element 712 on the light emitting element substrate 710. As shown in Fig.
  • the illumination device 700 includes a light emitting element 712 for emitting light; A light emitting element substrate 710 on which the light emitting element 712 is mounted; A first heat sink 720 on which the light emitting element substrate 710 is mounted; A globe 730 covering the light emitting element substrate 710 mounted on the first heat sink 720; And a second heat sink 740 installed at a central portion of the globe 730.
  • a disc-shaped metal substrate 750 is provided between the light emitting element substrate 710 and the first heat sink 720 to enhance the heat radiating effect.
  • the light emitting element 712 for example, an LED (Light Emitting Diode) can be used. 29, a plurality of (for example, twelve) light-emitting elements 712 are arranged on the light-emitting element substrate 710 at equal intervals in a ring form in the illumination device 700 according to the present embodiment .
  • the light emitting element substrate 710 is, for example, an aluminum substrate and has a disc shape corresponding to the shape of the first heat sink 710, which is fixed with the light emitting element substrate 710 sandwiched between the metal substrate 750.
  • the light emitting element 712 and the light emitting element substrate 710 having the light emitting element 712 are referred to as a heating element.
  • the heat generating element includes at least the light emitting element 712, and the light emitting element substrate 710 is not necessarily regarded as a heat generating element.
  • a heat source of the illumination device 700 there is a power supply circuit (not shown) in addition to a heating element including the light emitting element 712.
  • the first heat sink 720 is a member that dissipates heat from the heat source of the illumination device 700. 27 and 28, the first heat sink 720 has a plurality of fins 723 in the main body 722 of the cylinder.
  • the first heat sink 720 may be formed of a metal material such as aluminum or the like or may be formed of a resin material such as plastic or the like and the body portion 722 and the fin 723 may be formed of different materials .
  • a socket (not shown) is provided at one end (the end on the negative z direction) of the main body 722 and a light emitting element substrate 710 And a flange portion 724 for supporting the flange portion 724.
  • (Positive (C) direction) of the light emitting element substrate 710 is formed on the outer periphery of the flange portion 724 so as to surround the outer periphery of the light emitting element substrate 710, And a rim portion 724a protruding toward the rear side is formed.
  • a light emitting element substrate 710 is placed on an upper surface 724b of the flange portion 724 with a metal substrate 750 interposed therebetween.
  • the metal substrate 750 for example, an aluminum substrate can be used.
  • a power supply circuit (not shown) is provided in the internal space 726 of the body portion 722 of the first heat sink 720.
  • the power supply circuit is housed in the internal space 726 with an insulating case (not shown) interposed therebetween so as to be insulated from the main body portion 722 when the main body portion 722 is formed of a metallic material.
  • the first heat sink 720 dissipates heat from a heating element including the light emitting element 712 and is transmitted from the light emitting element 712 through the light emitting element substrate 710 and the metal substrate 750, Dissipates heat from the power supply circuit.
  • a heating element including the light emitting element 712 and is transmitted from the light emitting element 712 through the light emitting element substrate 710 and the metal substrate 750, Dissipates heat from the power supply circuit.
  • the globe 730 is a cover member that covers the light emitting element substrate 710 mounted on the first heat sink 720 and is formed of a member that transmits light emitted from the light emitting element 712.
  • the globe 730 can be formed of, for example, glass or resin having transparency.
  • the globe 730 is formed to have a substantially hemispherical curved surface, and an opening portion 732 is formed at the center portion thereof.
  • the center of the opening 732 is on a base axis C perpendicular to the light emitting element substrate 710 passing through the center of the plurality of light emitting elements 712 arranged in a ring shape on the light emitting element substrate 710.
  • the second heat sink 740 is inserted into the opening 732.
  • the second heat sink 740 is a member that dissipates heat from the heat emitting body including the light emitting element 712.
  • the second heat sink 740 includes a cylindrical portion 742 and a bottom portion 744 as shown in Fig.
  • One end of the cylindrical portion 742 on the positive z-axis direction side is connected to the opening 732 of the globe 730.
  • the bottom portion 744 is provided in contact with the upper surface 710a of the light emitting element substrate 710 so that heat from the heating element can be easily transmitted.
  • the second heat sink 740 may also be formed of a metal material such as aluminum or a resin material such as plastic.
  • the lighting apparatus 700 is a heat dissipation structure for dissipating heat from a heat emitting body including the light emitting element 712 and heat from a power supply circuit and includes a first heat sink 720 and a second heat sink 740, .
  • the first heat sink 720 is disposed on one side (z-axis negative direction side) of the base axis C with respect to the heat generating element
  • the second heat sink 740 is disposed on the base axis C with reference to the heat generating element, (The z-axis positive direction side).
  • the heat diss 720 and 740 in the vertical direction of the base axis C with respect to the heating element, the heat dissipation area increases and the heat dissipation efficiency can be increased.
  • the temperature load on the light emitting element 712 is reduced, and the product reliability can be improved and the luminous efficiency can be increased. Further, the degrees of freedom of the shapes of the heat sinks 720 and 740 for dissipating heat from the light emitting element 712 are also increased. Further, the amount of electric power supplied to the light emitting element 712 increases, and it becomes possible to raise the total light flux.
  • Heat of the heat generating element including the light emitting element 712 has conventionally been dissipated by a heat sink (first heat sink) on the back side (socket side) of the light emitting element substrate 710. If the heat radiating structure is provided only in one direction, the heat radiation efficiency is changed depending on the arrangement direction of the lighting apparatus. 28, in the lighting apparatus 700 according to the present embodiment, the first heat sink 720 and the second heat sink 740 are arranged in the vertical direction of the base axis C with respect to the heat generating element as a reference, It is possible to reduce the change in the heat radiation efficiency depending on the installation direction of the lighting apparatus 700. [
  • the illumination device 700 and its heat dissipation structure according to the fourth embodiment of the present invention have been described above.
  • a heating element including the light- A first heat sink is provided and a second heat sink is provided on the other side.
  • the heat dissipating area is increased, and heat radiation efficiency from the heat generating element can be improved.
  • Fig. 30 is a sectional view showing the lighting device 800 according to the present embodiment.
  • the illuminating device 800 according to the present embodiment has a plurality of light emitting elements 812 provided on the outer circumferential surface of the cylindrical portion 742 of the second heat sink 740 as compared with the illuminating device 700 according to the fourth embodiment And a light emitting element substrate 810 is provided.
  • a light emitting element substrate 810 is provided.
  • 27 shows the appearance of the illumination device 800 according to the present embodiment.
  • Fig. 30 is a sectional view taken along the AA cutting line in Fig. 27 when the illumination device 800 of the present embodiment is referred to. Fig. .
  • the lighting device 800 includes, as shown in Fig. 30, a light emitting element 812 for emitting light; A light emitting element substrate 810 on which the light emitting element 812 is mounted; A first heat sink 720; Globe 730; And a second heat sink 740 mounted on the central portion of the globe 730, to which the light emitting element substrate 810 is mounted. Further, a disc-shaped metal substrate 750 for enhancing the heat radiating effect is provided between the first heat sink 720 and the second heat sink 740.
  • the first heat sink 720, the globe 730, the second heat sink 740, and the metal substrate 750 are the same as the constituent members of the lighting apparatus 700 according to the fourth embodiment, The description is omitted.
  • the lighting apparatus 800 is provided with the light emitting element substrate 810 having a plurality of light emitting elements 812 on the outer circumferential surface of the cylindrical portion 742 of the second heat sink 740.
  • the light emitting element substrate 810 may be, for example, an aluminum substrate, a cylindrical shape continuous along the outer periphery of the second heat sink 740, or a plurality of light emitting element substrates 810 disposed discontinuously along the outer periphery of the second heat sink 740 Shaped substrate.
  • the light emitting element 812 which is an LED, is formed in a ring shape on a plane perpendicular to the base axis C extending in the extending direction and passing through the centers of the first heat sink 720 and the second heat sink 740 Thereby forming the light emitting element group in which the light emitting element is disposed.
  • One light emitting element group is formed by arranging a plurality of light emitting elements 812 (for example, 12) at regular intervals on a light emitting element substrate 810 in a ring shape.
  • the lighting apparatus 800 as shown in Fig. 30, three light emitting element groups 812A, 812B and 812C arranged in a ring shape are arranged in the base axis C direction.
  • the light emitting element 812 and the light emitting element substrate 810 having the light emitting element 812 are referred to as a heating element.
  • the heat generating element includes at least the light emitting element 812, and the light emitting element substrate 810 is not necessarily regarded as a heat generating element.
  • a power supply circuit (not shown) provided in the internal space 726 of the first heat sink 720, as in the first embodiment, City).
  • the lighting apparatus 800 is a heat dissipation structure for dissipating heat from a heating element including a light emitting element 812 and a power supply circuit, and includes a first heat sink 720, And a second heat sink 740.
  • the first heat sink 720 is disposed at one side (z-axis negative direction side) of the base axis C with respect to the heat generating element and at least a part of the second heat sink 740 is a heat generating body And is provided on the other side (z-axis positive direction side) of the base axis C as a reference.
  • the heat diss 720 and 740 in the vertical direction of the base axis C with respect to the heating element, the heat dissipation area increases and the heat dissipation efficiency can be increased.
  • the temperature load on the light emitting element 812 is reduced, and the reliability of the product and the light emission efficiency can be improved. Further, the degrees of freedom of the shapes of the heat sinks 720 and 740 for dissipating heat from the light emitting element 812 are also increased. Further, the power supply amount to the light emitting element 812 increases, and it becomes possible to raise the total light flux. 30, the first heat sink 720 and the second heat sink 740 are arranged in the vertical direction of the base axis C with respect to the heat generating element as a reference, It is possible to reduce the change in the heat radiation efficiency depending on the installation direction of the lighting device 800.
  • the light emitting element substrate 810 in which the light emitting element 812 is disposed is in contact with the cylindrical portion 742 of the second heat sink 740 in the illumination device 800 according to the present embodiment, The heat from the second heat sink 740 can be dissipated.
  • Fig. 31 is a plan view and a side view showing the lighting device 900 according to the present embodiment.
  • 32 is a cross-sectional view of the illumination device 300 of Fig. 31 taken along the line B-B.
  • the lighting apparatus 900 according to the present embodiment differs from the lighting apparatus 700 according to the fourth embodiment in that a first heat sink and a second heat sink are integrally formed.
  • the illumination device 900 according to the present embodiment will be described in detail with respect to the differences from the illumination device 700 according to the first embodiment, and a detailed description of components having the same configuration and the same function will be omitted.
  • the lighting apparatus 900 includes a light emitting element 912 for emitting light; A light emitting element substrate 910 on which the light emitting element 912 is mounted; A heat sink 920; And a globe 930. Between the light emitting element substrate 910 and the heat sink 920, a metal substrate 950 for enhancing the heat radiation effect is provided.
  • a plurality of (for example, twelve) light emitting elements 912 are arranged on the light emitting element substrate 910 at equal intervals in a ring shape.
  • the light emitting element substrate 910 is, for example, an aluminum substrate, and is a ring-shaped member formed with through holes 914 to be inserted into the body portions 922 (922a and 922b) of the heat sink 320.
  • the light emitting element 912 and the light emitting element substrate 910 including the same are referred to as a heat generating element.
  • the heat generating element includes at least the light emitting element 912, and the light emitting element substrate 910 is not necessarily regarded as a heat generating element.
  • a power supply circuit (not shown) provided in the internal space 926 of the heat sink 920 is connected to the power supply circuit (not shown) in the same manner as the fourth embodiment, in addition to the heat generating element including the light emitting element 912 have.
  • the heat sink 920 is a member that dissipates heat from the heat source of the lighting device 900.
  • the heat sink 920 according to the present embodiment includes a cylindrical main body portion 922 and a flange portion 924 for supporting the light emitting element substrate 910 in the extending direction (z direction) of the main body portion 922, Respectively.
  • the side (z-axis negative direction side) on which the socket (not shown) is provided is referred to as a first main body portion 922a with reference to the flange portion 924, (The side in the positive z-axis direction) on which the first main body portion 910 is provided is referred to as a second main body portion 922b.
  • the first main body portion 322a corresponds to the first heat sink 720 of the fourth embodiment and the second main body portion 922b corresponds to the second heat sink 740 of the fifth embodiment. 31 and 32, the first main body portion 922a of the heat sink 920 is provided with a plurality of pins 923.
  • the heat sink 920 may be formed of a metal material such as aluminum or the like, or may be formed of a resin material such as plastic, and the body portion 922 and the fin 923 may be formed of different materials.
  • the flange portion 924 supports the light emitting element substrate 910. (Positive direction) side of the light emitting element substrate 910 in the extending direction (z direction) of the main body portion 922 is formed on the outer periphery of the flange portion 924 so as to surround the outer periphery of the light emitting element substrate 910 And a frame portion 924a is formed to protrude toward the center.
  • a light emitting element substrate 910 is placed on the upper surface 924b of the flange portion 924 with a metal substrate 950 interposed therebetween.
  • the metal substrate 950 for example, an aluminum substrate can be used.
  • a power supply circuit (not shown) is provided in the internal space 926 of the heat sink 920, for example, the first main body 922a.
  • the power source circuit is housed in the internal space 926 with an insulating case (not shown) interposed therebetween so as to be insulated from the main body portion 922.
  • the heat sink 920 dissipates heat from a heating element including the light emitting element 912 and is transmitted from the light emitting element 912 through the light emitting element substrate 310 and the metal substrate 950, Thereby dissipating the heat from the heat source.
  • the heat dissipation area can be increased and the heat dissipation efficiency can be increased.
  • the globe 930 is mounted on the second main body portion 922b side of the heat sink 920 and covers the light emitting element substrate 910.
  • the globe 930 is formed of a member that transmits light emitted from the light emitting element 912 Member.
  • the globe 930 can be formed of, for example, glass or resin having transparency.
  • the globe 930 is formed to have a substantially hemispherical curved surface, and an opening portion 932 is formed in the center portion thereof.
  • the center of the opening 932 is on a base axis C perpendicular to the light emitting element substrate 910 passing through the centers of the plurality of light emitting elements 912 arranged in a ring shape on the light emitting element substrate 910.
  • the base axis C is also the center axis of the body portion 922 of the heat sink 920.
  • the opening portion 932 is connected to the second main body portion 922b of the heat sink 920.
  • the lighting apparatus 900 is provided with a heat sink 920 as a heat dissipation structure for dissipating heat from a heat generating element including the light emitting element 912 and a power supply circuit.
  • the heat sink 920 is provided with a first main body portion 922a on one side (z-axis negative direction side) of the base shaft C with reference to the heat generating element,
  • the second main body 922b is provided on the other side (z-axis positive direction side) of the second main body 912b.
  • the heat dissipating area can be increased and the heat dissipating efficiency can be increased.
  • the temperature load on the light emitting element 912 is reduced, and the product reliability can be improved and the luminous efficiency can be increased. Further, the degree of freedom of the shape of the heat sink 920 for dissipating the heat from the light emitting element 912 is also increased. Further, the power supply amount to the light emitting element 912 increases, and it becomes possible to raise the total light flux. In addition, it is possible to reduce a change in the heat radiation efficiency depending on the installation direction of the lighting apparatus 900. In this embodiment, the number of components of the lighting apparatus 900 can be reduced by integrally forming the heat sink 920 provided on one side and the other side of the base axis C with respect to the heat generating element as a reference. As a result, the cost can be reduced, the number of assembling steps is reduced, and the alignment accuracy of the components at the time of completion is stabilized, so that the generation of defective products can be reduced.
  • the heat generating element including the light emitting element 912 is provided in the flange portion 940 of the heat sink 920.
  • the present invention is not limited to this example.
  • a heating element including a light emitting element may be provided on the second main body 922b side of the main body 922, as in the fifth embodiment shown in Fig.
  • the plurality of light emitting element groups 812A to 812C are disposed in the extending direction of the cylindrical portion 742 of the second heat sink 740, but the present invention is not limited to this example And at least one light emitting element group may be provided.
  • Sectional shape of the main body portion of the first heat sink 720, the second heat sink 740 and the heat sink 920 when cut in a direction orthogonal to the base axis C is It was cylindrical.
  • the present invention is not limited to this example, and the shape of the body portion may be polygonal or elliptic.
  • a plurality of light emitting elements are arranged in a ring shape on the light emitting element substrate.
  • the present invention is not limited to this example, and only one light emitting element may be disposed on the light emitting element substrate. Further, when the light emitting element substrate is mounted on the flange portion of the heat sink, only one light emitting element group constituted by arranging a plurality of light emitting elements in a ring shape may be arranged as shown in Fig. 3, .
  • Fig. Fig. 33 is a top view (a) and a front view (b) showing an overall configuration of an illumination device 1100 according to a seventh embodiment of the present invention.
  • 34 is a cross-sectional view of the lighting apparatus 1100 according to the seventh embodiment taken along line II-II in Fig. 1 (a).
  • 35A is a top view showing a structure of a light emitting module 1110 according to a seventh embodiment
  • FIG. 35B is a top view showing a structure of a heat sink 1170 according to a seventh embodiment .
  • the lighting apparatus 1100 includes a light emitting module 1110, a first heat sink 1140 (hereinafter, referred to as an "upper heat sink"), a second heat sink A driving circuit 1160, a heat radiating plate 1170 and a heat conduction member 1180.
  • the heat sink 1170 is a heat sink.
  • the light emitting module 1110 has a light emitting element 1111 and a light emitting element substrate 1113 and is a member that serves as a light source of the illumination apparatus 1100.
  • the light emitting element 1111 is a semiconductor light emitting element such as an LED (Light Emitting Diode), and emits light.
  • the luminescent color of the light emitting element 1111 differs depending on the constituent material of the globe 1130 to be described later. Specifically, when the globe 1130 is made of a material (resin or the like) containing a phosphor, the light emitting color of the light emitting element 1111 is blue, and the wavelength of light is changed in the globe 1130 to become white. On the other hand, when the globe 1130 is made of a material (resin or the like) containing a light diffusing agent, the luminous color of the light emitting element 1111 is white (6500K to 2000K). Light emitted from the light emitting element 1111 is reflected by a reflector (not shown) described later, or directly reaches the globe 1130, diffused in the globe 1130, and radiated to the outside.
  • a reflector not shown
  • a plurality of light emitting devices 1111 are prepared, and the plurality of light emitting devices 1111 are arranged in a ring shape on one surface of the light emitting device substrate 1113.
  • the term " ring type " used here is a concept including not only a circular ring type as shown in Fig. 35 (a) but also an elliptic ring type or polygonal ring type.
  • the light emitting element substrate 1113 is a substrate on which the light emitting element 1111 is mounted and is preferably formed of a metal such as aluminum or nickel or a material having high thermal conductivity such as glass composite (CEM3) or ceramics. Accordingly, the heat generated by the light emitting module 1110 can be efficiently transmitted to the lower heat sink 1120, and the heat radiation efficiency of the lighting apparatus 1100 can be improved.
  • the shape of the light emitting element substrate 1113 is not particularly limited, it is preferable that the shape of the light emitting element substrate 1113 is substantially circular or almost polygonal in order to satisfy the ANSI standard described above.
  • the light emitting element substrate 1113 according to the present embodiment has an opening 1113a at the center as shown in Fig. 35 (a).
  • the shape of the opening 1113a is not particularly limited, such as a substantially circular shape, a substantially elliptical shape, and a substantially polygonal shape.
  • the size of the opening 1113a is larger than the bottom of the upper heat sink 1140 so that the light emitting element substrate 1113 and the upper heat sink 1140 are not in contact with each other. This is because, as described later, in the present embodiment, the upper heat sink 1140 needs to be installed so as to externally release only the heat generated in the drive circuit 1160 while being thermally isolated from the light emitting module 1110.
  • the light emitting element substrate 1113 is held in position by being held on the upper portion (or the heat sink 1170) of the lower heat sink 1130.
  • the upper heat sink 1140 has a function of discharging heat generated in the drive circuit 1160 to the outside.
  • the upper heat sink 1140 is made of a material such as aluminum or copper, or a metal having high thermal conductivity or a resin having high thermal conductivity.
  • the upper heat sink 1140 is provided with a concave portion or a plurality of fins to increase the surface area of the upper heat sink 1140.
  • the upper heat sink 1140 has a hollow, substantially cylindrical shape having an opening 1141 at one end.
  • the surface area of the surface exposed to the outside of the upper heat sink 1140 (the area of the surface used for dissipating heat) is increased because of the substantially cylindrical hollow portion, and the heat radiation effect can be enhanced.
  • the upper heat sink 1140 may have a substantially cylindrical or substantially columnar body portion as well as such a hollow portion for enhancing the heat radiating effect.
  • the body portion may include a plurality of pins Lt; / RTI >
  • the upper heat sink 1140 is provided on one side of the center axis of the ring formed by the arrangement of the light emitting elements 1111 with reference to the light emitting element substrate 1113. At this time, the upper heat sink 1140 is installed in contact with the drive circuit 1160 through the heat conduction member 1180. The upper heat sink 1140 is provided in contact with the drive circuit 1160 through the heat conduction member 1180 to discharge heat generated in the drive circuit 1160 to the outside.
  • the upper heat sink 1140 is installed not to be in contact with the light emitting module 1110 and the upper heat sink 1140 is also thermally coupled to the lower heat sink 1120 (by the heat insulating material 1181 described later)
  • the heat radiation efficiency of the drive circuit 1160 is not affected by the heat generation from the light emitting module 1110 and the heat radiation efficiency of the drive circuit 1160 is not affected by the heat generation from the drive circuit 1160 Can be improved.
  • the shape of the upper heat sink 1140 is not limited thereto.
  • the upper heat sink 1140 when the upper heat sink 1140 is separated from the light emitting element substrate 1113, Can be expanded stationary cone.
  • the lower heat sink 1120 has a function of being connected to a socket (not shown) at one end thereof (the lower end of FIGS. 33 to 35) and discharging heat generated in the light emitting module 1110 to the outside.
  • the lower heat sink 1120 is formed of a resin having high thermal conductivity.
  • the lower heat sink 1120 is formed of a resin rather than a metal in order to reduce the weight of the lighting apparatus 1100. Further, since the resin is insulating, Is not necessary. Therefore, when the weight of the lighting apparatus 1100 does not become a problem, a metal material such as aluminum or copper may be used as the material of the lower heat sink 1120.
  • a metal material such as aluminum or copper may be used as the material of the lower heat sink 1120.
  • the lower heat sink 1120 is made of a metal material, it is necessary to take measures against the insulation at the caulking portion of the socket.
  • a concave portion, a plurality of fins, and the like are also provided in the lower heat sink 1120 to increase the surface area of the lower heat sink 1120.
  • the lower heat sink 1120 is provided with a plurality of pins 1129 on the outer peripheral surface of a hollow, substantially cylindrical main body portion having openings at both ends thereof.
  • the plurality of pins 1129 By having the plurality of pins 1129, the surface area of the surface exposed to the outside of the lower heat sink 1120 (the area of the surface used for dissipating heat) is increased, and the heat radiating effect can be enhanced.
  • the structure for increasing the heat radiating effect may be a structure having not only these pins 1129 but also a plurality of concave portions (not shown) on the outer peripheral surface of the body portion of the lower heat sink 1120, for example.
  • the lower heat sink 1120 is provided on the other side of the central axis direction of the ring constituted by the arrangement of the light emitting elements 1111 with reference to the light emitting element substrate 1113.
  • the lower heat sink 1120 can discharge heat generated in the driving circuit 1160 or the light emitting module 1110 to the outside independently of the upper heat sink 1140. Therefore, the heat radiation efficiency of the lighting apparatus 1100 can be remarkably increased as compared with the case where only one heat sink is used.
  • the lower heat sink 1120 is thermally isolated from the drive circuit 1160 by the heat insulating material 1181 and thermally isolated from the upper heat sink 1140 as described later.
  • the lower heat sink 1120 can improve the heat radiation efficiency of the light emitting module 1110 without being influenced by the heat generated from the driving circuit 1160 in response to the heat generated from the light emitting module 1110.
  • the lower heat sink 1120 is composed of a resin 1121 and a metal member 1123 inserted into the resin 1121.
  • the lower heat sink 1120 is obtained by integrally molding the resin 1121 and the metal member 1123 by insert molding. This is because the resin 1121 is slightly lower in thermal conductivity than metal such as aluminum or copper, and therefore, a metal member 1123 such as aluminum or copper is inserted to further enhance thermal conductivity. Therefore, when the heat generation is suppressed by the performance of the light emitting module 1110 and the heat radiation effect is sufficient, there is no need to insert the metal member 1123.
  • the heat sink 1170 (the heat sink 1170) is not provided in order to more easily transfer the heat generated by the light emitting module 1110 to the lower heat sink 1120 It is preferable that the metal member 1123 is disposed so as to be in contact with the light emitting element substrate 1113).
  • the lower heat sink 1120 also has a function as a case in which the drive circuit 1160 is housed in addition to the heat radiation function described above.
  • a drive circuit 1160 is provided inside a hollow main body portion of the lower heat sink 1120.
  • the amount of heat generated by the light emitting module 1110 is larger than the driving circuit 1160.
  • the light emitting module 1110 having a large heat generation amount can be thermally connected to the lower heat sink 1120 having a larger size (surface area) than the upper heat sink 1140 and a larger heat radiation amount, The heat radiation efficiency can be increased as compared with the opposite case.
  • the globe 1130 has a spherical shape so as to cover the light emitting module 1110 and has a role of controlling the color of the light emitted from the light emitting element 1111 (light emitting color of the light emitting element 1111) And has a role of spreading the angle of incidence of the illumination device 1100 by diffusing on the surface.
  • the globe 1130 includes a phosphor and a light diffusing agent in accordance with the light emission color of the light emitting element 1111 in order to realize the role of controlling the light emission color of the light emitting element 1111.
  • the material of the globe 1130 is a material containing a phosphor or the phosphor is coated on the surface of the globe 1130.
  • a fluorescent pigment can be contained in the resin.
  • a fluorescent paint can be applied to the surface of the globe. The wavelength of the light emitted from the light emitting element 1111 and reaching the globe 1130 is converted by the phosphor of the globe 1130 to emit white light.
  • the light emitted by the phosphor has a large light diffusivity, even if the light distribution distribution of the light emitted from the light emitting element 1111 is insufficient, a good light distribution can be obtained due to the light diffusion at the time of light emission by the phosphor. Further, by combining the blue LED and the phosphor, it becomes possible to emit light with a color close to natural light.
  • the material of the globe 1130 may be a material containing a light-diffusing agent in addition to the phosphor or a light-diffusing agent may be applied to the surface of the globe 1130 in addition to the phosphor .
  • the material of the globe 1130 may be a material containing a light diffusing agent, or a light diffusing agent may be applied to the surface of the globe 1130. Also in this case, the light emitted from the light emitting element 1111 by the light diffusing agent diffuses from the surface of the globe 1130, so that the diffusing angle of the illuminating apparatus 1100 can be widened.
  • the upper heat sink 1140 is formed at the top of the globe 1130 (the end opposite to the side of the light emitting module 1110) Respectively. Accordingly, since the hollow portion of the upper heat sink 1140 is exposed to the outside, the heat radiation efficiency of the lighting apparatus 1100 can be increased.
  • An opening (not shown) is also provided at the bottom of the globe 1130 (the end on the light emitting module 1110 side) and the globe 1130 is connected to the light emitting element substrate 1113, the heat sink 1170, And is connected to the heat sink 1120.
  • the driving circuit 1160 is a power supply circuit installed inside the lower heat sink 1120 and driving (lighting) the light emitting element 1111 using electric power supplied from the outside through a socket.
  • the driving circuit 1160 is composed of a plurality of electronic parts mounted on a substrate, and a plurality of electronic parts generate heat when the light emitting element 1111 is driven. The heat generated in the driving circuit 1160 is transferred to the upper heat sink 1140 through the heat conductive member 1180 and discharged to the outside.
  • the drive circuit 1160 according to the present embodiment does not have an electrolytic capacitor for converting AC into DC.
  • the lifetime of a commercially available LED lighting device is tens of thousands of hours, the life of the electrolytic capacitor is actually several thousands of hours. Therefore, it is necessary to replace the electrolytic capacitor before reaching the lifetime of the entire LED lighting device.
  • the drive circuit 1160 according to the present embodiment does not have an electrolytic capacitor for converting an alternating current into a direct current, it is not necessary to replace the parts in thousands of hours, and the life span of the lighting device 1100 can be remarkably increased have.
  • the heat sink 1170 is provided to contact the lower heat sink 1120 to transmit the heat generated by the light emitting module 1110 to the lower heat sink 1120.
  • the heat radiating plate 1170 is made of a metal having high thermal conductivity such as aluminum or copper in order to realize the role of the heat transfer.
  • the heat sink 1170 has an opening 1170a at the center as shown in Fig. 35 (b).
  • the shape of the opening 1170a is not particularly limited to a substantially circular shape, an almost elliptical shape, a substantially polygonal shape, or the like.
  • the size of the opening 1170a is larger than the bottom of the upper heat sink 1140 so that the heat sink 1170 and the upper heat sink 1140 are not in contact with each other. This is because in this embodiment, the upper heat sink 1140 needs to be installed so as to discharge only the heat generated in the driving circuit 1160 to the outside while being thermally isolated from the light emitting module 1110.
  • the heat sink 1170 is not necessarily installed You do not have to.
  • the heat conduction member 1180 is made of a thermally conductive material (hereinafter referred to as "heat conduction material") and has a role of thermally coupling the upper heat sink 1140 and the driving circuit 1160.
  • heat conduction material include a material that can be formed into a sheet or a film, or a material having properties and conditions that can be filled into a mold and filled.
  • a material for example, there is a thermally conductive resin or the like, and among these resins, a silicone resin or an epoxy resin having high thermal conductivity is particularly preferable.
  • the heat conductive member 1180 contacts the lower heat sink 1120 or the light emitting module 1110 and the upper heat sink 1140 is thermally coupled to the lower heat sink 1120 and the light emitting module 1110, 1110 are transferred to the drive circuit 1160 and the upper heat sink 1140.
  • the heat insulating material 1181 such as resin is provided so as to cover the inner surface of the lower heat sink 1120, the lower surface of the upper heat sink 1140, or the main surface of the heat conductive member 1180, The heat sink 1140 is thermally shielded from the lower heat sink 1120 and the light emitting module 1110.
  • the lighting apparatus 1100 may have other members as required.
  • the illumination apparatus 1100 may include a reflector (not shown) for reflecting the light emitted from the light emitting element 1111 to distribute the light in the socket direction have.
  • FIG. 36 is an explanatory diagram showing the flow of heat in the illumination device 1100 according to the present embodiment.
  • the globe 1130 is omitted for easy understanding.
  • the lighting apparatus 1100 there are two parts that mainly generate heat (heating elements).
  • the first is the light emitting module 1110.
  • the light emitting element 1111 is driven by the driving circuit 1160, and heat is generated when light is emitted.
  • the heat generated in each light emitting element 1111 is transmitted to the light emitting element substrate 1113 on which the light emitting element 1111 is mounted.
  • the light emitting element substrate 1113, the heat sink 1170, and the lower heat sink 1120 are made of a material having high thermal conductivity.
  • the heat generated in the light emitting module 1110 (heat generated in the light emitting element 1111 and transferred to the light emitting element substrate 1113) is transmitted to the heat sink 1170 in contact with the lower surface of the light emitting element substrate 1113 And is transferred to the resin 1121 through the metal member 1123 as indicated by the arrow B1 in Fig.
  • the heat transferred to the resin 1121 is emitted to the outside from the pin 1129 or the like as indicated by an arrow B2.
  • the second heating element is the driving circuit 1160.
  • the heat generated in the drive circuit 1160 is transmitted to the upper heat sink 1140 through the heat conduction member 1180 in the drive circuit 1160 as indicated by an arrow T1 in FIG. And is discharged to the outside from the main surface in the opening 1141 of the upper heat sink 1140 as shown.
  • the upper heat sink 1140 is thermally coupled to only the drive circuit 1160 among the two heat emitting elements, and is thermally isolated from the light emitting element 1111 and the lower heat sink 1120.
  • the lower heat sink 1120 is thermally coupled to only the light emitting module 1110 among the two heat emitting elements and is thermally isolated from the driving circuit 1160 and the upper heat sink 1140.
  • the lower heat sink 1120 can improve the heat radiation efficiency of the light emitting module 1110 without being influenced by the heat generated from the drive circuit 1160 in response to heat generation from the light emitting module 1110.
  • the upper heat sink 1140 can improve the heat radiation efficiency of the drive circuit 1160 without being affected by the heat from the light emitting module 1110, against the heat from the drive circuit 1160.
  • the lighting apparatus 1100 has two heat radiation paths, that is, heat radiation from the upper heat sink 1140 and heat radiation from the lower heat sink 1120.
  • heat radiation path particularly, the upper heat sink 1140
  • FIG. 37 is an explanatory view showing an example of a manufacturing method of the illumination apparatus 1100 according to the present embodiment.
  • a driving circuit 1160 is provided inside (hollow portion) of the lower heat sink 1120, and a heat sink 1170 is disposed on the upper portion of the lower heat sink 1120 provided with the driving circuit 1160.
  • the heat sink 1170 is fixed to the metal member 1123 of the lower heat sink 1120 at this point.
  • the light emitting module 1110 is fixed on the heat sink 1170.
  • the globe 1130 is placed so as to cover the light emitting module 1110 and the upper heat sink 1140 is positioned so that the position of the end portion of the upper heat sink 1140 on the opening side and the opening portion of the globe 1130 match the opening of the globe 1130, (1140).
  • a heat insulating material 1181 such as a resin is disposed along the inner circumferential surface of the lower heat sink 1120 so that the end of the heat insulating material 1181 comes into contact with the periphery of the bottom of the upper heat sink 1140.
  • the entire heat exchanger is vertically inverted and the heat conductive material in the molten state is discharged from the socket connection side opening of the lower heat sink 1120 to the hollow of the lower heat sink 1120 by using, .
  • the heat conductive member 1180 is formed by curing the heat conductive material after injecting the heat conductive material at least until the bottom of the upper heat sink 1140 and the drive circuit 1160 are thermally coupled by the heat conductive material.
  • the lighting apparatus 1100 can be manufactured by connecting a socket to the lower end portion of the lower heat sink 1120.
  • FIG. Fig. 38 is an explanatory diagram showing the overall configuration and the flow of heat of the illumination device 1200 according to the eighth embodiment of the present invention.
  • the upper heat sink 1140 emits heat generated in the driving circuit 1160
  • the lower heat sink 1140 emits heat generated in the light emitting module 1110
  • the upper heat sink 1140 emits heat generated in the light emitting module 1110
  • the lower heat sink 1120 emits heat generated in the driving circuit 1160.
  • do do.
  • the amount of heat generated in the light emitting module 1110 is larger than the amount of heat generated in the driving circuit 1160 as described above, heat generated in the light emitting module in the lower heat sink 1120, which is structurally easy to increase in surface area, .
  • a material for example, carbon or the like
  • the upper heat sink 1140 may emit heat generated in the light emitting module 1110 and cause the lower heat sink 1120 to emit heat generated in the driving circuit 1160.
  • the size of the lower heat sink 1120 can be reduced, so that the light emitted from the light emitting element 1111 It is easier to distribute the light to the socket direction side than the horizontal direction.
  • each component of the lighting apparatus 1200 will be described.
  • the lighting apparatus 1200 includes a light emitting module 1210, an upper heat sink 1240, a lower heat sink 1220, a heat conduction member 1290, a globe 1230, (1260) and a heat insulating material (1280).
  • the configuration of the light emitting module 1210 is the same as that of the light emitting module 1110 according to the eighth embodiment, detailed description thereof will be omitted.
  • the upper heat sink 1240 has a function of emitting heat generated in the light emitting module 1110 to the outside.
  • the upper heat sink 1240 is formed of a metal having a high thermal conductivity, a highly heat conductive resin, or an inorganic material, but the upper heat sink 1240 according to the present embodiment has a particularly high Since heat radiation efficiency is required, it is preferable to use a material such as carbon, for example.
  • the upper heat sink 1240 is provided with a concave portion or a plurality of fins to increase the surface area of the upper heat sink 1240.
  • the upper heat sink 1240 has a shape in which a disk-shaped bottom portion is connected to an end portion of a hollow, substantially cylindrical main body portion having an opening portion 1241 at one end.
  • the substantially cylindrical hollow portion By having the substantially cylindrical hollow portion, the surface area of the surface exposed to the outside of the upper heat sink 1240 (the area of the surface used for dissipating heat) is increased, and the heat radiation effect can be enhanced.
  • the upper heat sink 1240 may have a substantially cylindrical or substantially columnar body portion, and the body portion may have a plurality of pins exposed to the outside, for example, It is possible.
  • the upper heat sink 1240 and the light emitting element substrate 1240 are formed by arranging the donut-shaped light emitting element substrate 1213 similar to the eighth embodiment in the bottom portion having the substantially disk- 1213 can be brought into direct contact with each other.
  • the upper heat sink 1240 is provided on one side of the center axis of the ring formed by the arrangement of the light emitting elements 1211 with reference to the light emitting element substrate 1213. At this time, the upper heat sink 1240 is provided so as to be in contact with the light emitting element substrate 1213 only. In this way, the upper heat sink 1240 is installed only in contact with the light emitting element substrate 1213, thereby discharging the heat generated in the light emitting module 1210 to the outside. Since the upper heat sink 1240 is thermally isolated from the driving circuit 1260 and the lower heat sink 1220 by a heat insulating material 1280 to be described later, The heat radiation efficiency of the light emitting module 1210 can be improved without being influenced by the heat generated from the lamp 1260.
  • the body portion of the upper heat sink 1240 is shown as a cylindrical shape, but the shape of the body portion of the upper heat sink 1240 is not limited thereto.
  • the disk is separated from the bottom portion of the disk- It can also be an extended inverted cone.
  • the lower heat sink 1220 has a function of being connected to a socket (not shown) at one end thereof (the lower end in FIG. 38) and discharging heat generated in the drive circuit 1260 to the outside.
  • the lower heat sink 1220 is formed of a resin having high thermal conductivity.
  • the lower heat sink 1220 is formed of resin rather than metal in order to reduce the weight of the lighting apparatus 1200.
  • the resin is insulative, Is not necessary. Therefore, when the increase in the weight of the lighting apparatus 1200 is not a problem, a metal material such as aluminum or copper may be used as the material of the lower heat sink 1220.
  • a metal material such as aluminum or copper may be used as the material of the lower heat sink 1220.
  • the lower heat sink 1220 is made of a metal material, it is necessary to take an insulation measure against the caulking portion of the socket.
  • a concave portion, a plurality of fins, and the like are also provided in the lower heat sink 1220 to increase the surface area of the lower heat sink 1220.
  • the lower heat sink 1220 is provided on the other side of the central axis direction of the ring formed by the arrangement of the light emitting elements 1211 with reference to the light emitting element substrate 1213.
  • the lower heat sink 1220 can discharge heat generated in the driving circuit 1260 to the outside independently of the upper heat sink 1240. Therefore, the heat radiation efficiency of the lighting apparatus 1200 can be remarkably increased as compared with the case where only one heat sink is provided.
  • the lower heat sink 1220 is thermally isolated from the light emitting module 1210 by the heat insulating material 1280 and is also thermally isolated from the upper heat sink 1220, as will be described later. Therefore, the lower heat sink 1220 can improve the heat radiation efficiency of the drive circuit 1260 without being affected by the heat generated from the light emitting module 1210, against the heat generated from the drive circuit 1260.
  • the lower heat sink 1220 also has a function as a case in which the drive circuit 1260 is housed in addition to the heat radiation function described above.
  • a drive circuit 1260 is provided inside a hollow main body portion of the lower heat sink 1220.
  • the hollow portion of the lower heat sink 1220 is filled with the heat conduction member 1290 in order to thermally couple the lower heat sink 1220 and the drive circuit 1260.
  • the heat conduction material 1290 a material that can be formed into a sheet form or a film form, or a material that has properties and conditions that can be filled and injected into a mold can be given.
  • a material for example, there is a thermally conductive resin or the like, and among these resins, a silicon-based resin or an epoxy-based resin having a particularly high thermal conductivity is preferable.
  • the driving circuit 1260 is a power supply circuit installed inside the lower heat sink 1220 and driving (lighting) the light emitting device 1211 using power supplied from the outside through a socket.
  • the driving circuit 1260 is composed of a plurality of electronic components mounted on a substrate, and a plurality of electronic components generate heat when the light emitting device 1211 is driven. The heat generated in the driving circuit 1260 is transferred to the lower heat sink 1220 through the heat conduction member 1290 and discharged to the outside.
  • the heat insulating material 1280 is made of a resin having no thermal conductivity and has a role of thermally insulating the lower heat sink 1220 and the driving circuit 1260 and the upper heat sink 1240.
  • the heat generated in the light emitting module 1210 is transmitted to the driving circuit 1260 and the lower heat sink 1220 when the upper heat sink 1240 is thermally coupled to the lower heat sink 1220 and the driving circuit 1260. Therefore, in this embodiment, the substantially heat insulating material 1280 is disposed between the bottom portion of the upper heat sink 1240 and the lower heat sink 1220, so that the upper heat sink 1240 is disposed between the lower heat sink 1220 and the driver circuit 1220. [ (1260). ≪ / RTI >
  • the shape of the heat insulating material 1280 is not particularly limited and may be any shape as long as it can thermally block the lower heat sink 1220 and the driving circuit 1260 and the upper heat sink 1220.
  • the lighting apparatus 1200 may have other members as required.
  • the illumination device 1200 may include a reflector (not shown) for reflecting the light emitted from the light emitting device 1211 to distribute the light in the socket direction have.
  • the lighting apparatus 1200 there are two parts that mainly generate heat (heating elements).
  • the first is the light emitting module 1210.
  • heat is generated when the light emitting element 1211 is driven by the driving circuit 1260 and light is emitted.
  • the heat generated in each light emitting element 1211 is transmitted to the light emitting element substrate 1213 on which the light emitting element 1211 is mounted.
  • the light emitting element substrate 1213 and the upper heat sink 1240 are made of a material having high thermal conductivity.
  • the heat generated in the light emitting module 1210 (heat generated in the light emitting element 1211 and transferred to the light emitting element substrate 1213) is reflected by the lower surface of the light emitting element substrate 1213 To the bottom of the upper heat sink 1240 in contact with the upper heat sink 1240.
  • the heat transferred to the bottom of the upper heat sink 1240 is discharged to the outside as it is from the bottom of the opening 1221 of the upper heat sink 1240 as indicated by the arrow T4.
  • the heat transmitted to the bottom of the upper heat sink 1240 is transmitted to the main body portion of the upper heat sink 1240 as indicated by an arrow T3 and then passes through the upper heat sink 1240, And is discharged to the outside from any part of the inner circumferential surface of the main body portion.
  • the second heating element is the driving circuit 1260.
  • the heat generated in the drive circuit 1260 is transmitted to the lower heat sink 1220 through the heat conduction member 1290 in the drive circuit 1260 as indicated by an arrow B3 in Fig. 38, And is discharged to the outside from the outer circumferential surface of the lower heat sink 1220.
  • the upper heat sink 1240 is thermally coupled to only the light emitting module 1210 among the two heat generating elements, and is thermally isolated from the driving circuit 1260 and the lower heat sink 1220.
  • the lower heat sink 1220 is thermally coupled to only the driver circuit 1260 among the two heat emitting elements and is thermally isolated from the light emitting module 1210 and the upper heat sink 1240.
  • the upper heat sink 1240 can improve the heat radiation efficiency of the light emitting module 1210 without being influenced by the heat from the drive circuit 1260 against heat generation from the light emitting module 1210.
  • the lower heat sink 1240 can improve the heat radiation efficiency of the drive circuit 1260 without being affected by the heat generated from the light emitting module 1210, against the heat generated from the drive circuit 1260.
  • the lighting apparatus 1200 has two heat radiation paths, that is, heat radiation from the upper heat sink 1240 and heat radiation from the lower heat sink 1120.
  • the heat radiation efficiency from each heat radiation path can be improved.
  • the light emitting module 1210, the upper heat sink 1240, the lower heat sink 1220, the globe 1230, the drive circuit 1260, and the heat insulating material 1280 Prepare. Subsequently, a drive circuit 1260 is provided in the interior (hollow portion) of the lower heat sink 1220, and a heat insulating material 1280 is disposed on the upper portion of the lower heat sink 1220 provided with the drive circuit 1260. The heat insulating material 1280 is fixed to the lower heat sink 1220 at this point.
  • the upper heat sink 1240 is fixed on the heat insulating material 1280.
  • a light emitting module 1210 is installed on the bottom of the upper heat sink 1240 and a globe 1230 is covered to cover the light emitting module 1210.
  • the position of the end of the upper heat sink 1240 on the opening side is set so as to match the position of the opening of the globe 1230.
  • the heat conductive member 1290 in a molten state is transferred from the opening of the socket connection side of the high and low heat sink 1220 to the lower heat sink 1220 by using, for example, a nozzle, It is injected into the hollow part. Then, the heat conductive member 1290 is injected until the heat conductive member 1290 is filled in the hollow portion of the lower heat sink 1220, and then the heat conductive member 1290 is cured.
  • the lighting apparatus 1200 can be manufactured by connecting a socket to the lower end portion of the lower heat sink 1220.
  • the present invention is not limited to these examples.
  • the sectional shape of the light emitting element substrate, the first heat sink, the second heat sink, the globe, and the heat sink when cut in the direction perpendicular to the center axis is circular , but the present invention is not limited to these examples.
  • the cross-sectional shape of each member may be polygonal or elliptical.
  • the light emitting element substrate is provided with one light emitting element group in which a plurality of light emitting elements are arranged in a ring shape, but the present invention is not limited to this example.
  • a plurality of light emitting element groups may be provided concentrically on the light emitting element substrate.
  • Fig. 39 is a plan view and a side view showing the illumination device 2000 according to the present embodiment.
  • 40 is a cross-sectional view taken along line A-A of the illumination device 2000 of Fig. 41 is a plan view showing the second heat sink 2140 and the third heat sink 2160 according to the present embodiment.
  • the illumination device 2000 includes a light emitting element 2112 for emitting light; A light emitting element substrate 2110 on which the light emitting element 2112 is mounted; A first heat sink 2120 on which the light emitting element substrate 2110 is mounted; A globe 2130 covering the light emitting element substrate 2110 mounted on the first heat sink 2120; And a second heat sink 2140 and a third heat sink 2160 provided at a central portion of the globe 2130.
  • a disk-shaped metal substrate 2150 is provided between the light emitting element substrate 2110 and the first heat sink 2120 to enhance the heat radiation effect.
  • the light emitting element 2112 for example, an LED (Light Emitting Diode) can be used.
  • the light emitting elements 2112 are arranged on the light emitting element substrate 2110 at a plurality of (for example, twelve) equal intervals in a ring shape.
  • the light emitting element substrate 2110 is, for example, an aluminum substrate, and has a disk shape corresponding to the shape of the first heat sink 2110 fixed to the light emitting element substrate 2110 via the metal substrate 2150.
  • the light emitting element 2112 and the light emitting element substrate 2110 having the light emitting element 2112 are referred to as a heat emitting body.
  • the heat generating element includes at least the light emitting element 2112, and the light emitting element substrate 2110 is not necessarily regarded as a heat generating element.
  • the heat source of the illumination device 2000 there is a power supply circuit (not shown) in addition to a heating element including the light emitting element 2112.
  • the first heat sink 2120 is a member that dissipates heat from the heat source of the illumination device 2000. As shown in Figs. 1 and 2, the first heat sink 2120 has a plurality of fins 2123 in the main body 2122 of the cylinder.
  • the first heat sink 2120 may be formed of a metal material such as aluminum or the like or may be formed of a resin material such as plastic or the like and the main body portion 2122 and the fin 2123 may be formed of different materials .
  • a flange portion 2124 for supporting the light emitting element substrate 2110 is provided at the other end of the body portion 2112 (end portion on the z-axis positive direction side).
  • (Positive direction) side of the light emitting element substrate 2110 in the extending direction (z direction) of the main body portion 2122 is formed on the outer periphery of the flange portion 124 so as to surround the outer periphery of the light emitting element substrate 2110
  • a rim portion 2124a protruding toward the center is formed.
  • a light emitting element substrate 2110 is placed on the upper surface 2124b of the flange portion 2124 with a metal substrate 2150 interposed therebetween.
  • the metal substrate 2150 for example, an aluminum substrate can be used.
  • a power supply circuit (not shown) is provided in the internal space 2126 of the main body portion 2122 of the first heat sink 2120.
  • a resin layer 2127 made of a resin material is provided on the inner surface of the main body portion 2122 in order to insulate the power supply circuit from the main body portion 2122.
  • the power source circuit may be housed in the internal space 2126 with an insulating case (not shown) interposed therebetween in order to insulate the power source circuit from the main body portion 2122.
  • the first heat sink 2120 dissipates the heat from the heating element including the light emitting element 2112 which is transmitted from the light emitting element 2112 through the light emitting element substrate 2110 and the metal substrate 2150, Dissipates heat from the power supply circuit.
  • the heat dissipating area can be increased and heat dissipation efficiency can be increased.
  • the globe 2130 is a cover member that covers the light emitting element substrate 2110 mounted on the first heat sink 2120 and is formed of a member that transmits light emitted from the light emitting element 2112.
  • the globe 2130 can be formed of, for example, glass or resin having transparency.
  • the globe 2130 is formed to have a substantially hemispherical curved surface, and an opening 2132 is formed in the center portion thereof.
  • the center of the opening 2132 is on a base axis C perpendicular to the light emitting element substrate 2110 passing through the centers of a plurality of light emitting elements 2112 arranged in a ring shape on the light emitting element substrate 2110.
  • the second heat sink 2140 is inserted into the opening 132.
  • the second heat sink 2140 is a member (heat sink) that dissipates heat from a heat emitting body including the light emitting element 2112.
  • the second heat sink 2140 includes a cylindrical portion 2142 and a bottom portion 2144 as shown in Fig. One end of the cylindrical portion 2142 on the z-axis positive side of the opening is connected to the opening 2132 of the globe 2130.
  • the bottom portion 2144 is provided in contact with the upper surface of the light emitting element substrate 2110 so that heat from the heat emitting body is easily transmitted.
  • the second heat sink 2140 may be formed of a metal material such as aluminum, or may be formed of a resin material such as plastic.
  • the third heat sink 2160 is a cylindrical hollow member (internal heat sink) inserted into the internal space 2146 of the cylindrical portion 2142 of the second heat sink 2140. As shown in Fig. 2, the third heat sink 2160 is in contact with the bottom portion 2144 of the second heat sink 2140 at one end. The other end of the third heat sink 2160 is connected to the opening 2132 of the globe 2130 and one end of the second heat sink 2140 in the extending direction of the second heat sink 2140 As shown in Fig.
  • the planar shape of the third heat sink 2160 is almost elliptical as shown in Fig.
  • the lighting apparatus 2100 includes a first heat sink 2120 and a second heat sink 2140 as a heat dissipation structure for dissipating heat from a heating element including the light emitting element 2112 and heat from a power supply circuit. And a third heat sink 2160.
  • the first heat sink 2120 and the third heat sink 2160 are disposed on one side (z-axis negative direction side) of the base axis C with respect to the heat generating element as a reference, and the second heat sink 2140 and the third heat sink 2160, (On the z-axis positive direction side) of the pivot C as a reference.
  • the heat diss 2120 and 2140 in the vertical direction of the base axis C with respect to the heating element, the heat dissipation area increases and the heat dissipation efficiency can be increased.
  • the temperature distribution of the heat dissipation by the second heat sink 2140 whose planar shape is circular, Like shape so as to be lowered toward the center from the inner peripheral surface of the portion 2142.
  • the heat tends to stay so that the air hardly conveys. Then, even if the heat from the heating element is radiated to the outside through the heat sink, the heat stays in the vicinity of the lighting device 2000, so that a sufficient heat radiation effect can not be obtained.
  • a third heat sink 2160 having a planar shape different from that of the second heat sink 2140 is provided in the second heat sink 2140.
  • the distance from the inner circumferential surface 2142a of the second heat sink 2140 to the outer circumferential surface 2162b of the third heat sink 2160 is made to be nonuniform through the center O of the second heat sink 2140, A second heat sink 2140 and a third heat sink 2160 are provided.
  • the third heat sink 2160 has a substantially elliptical plane as described above. The heat dissipation efficiency differs in part due to the difference in shape between the second heat sink 2140 and the third heat sink 2160.
  • the air easily flows in the portion L1 where the distance from the inner circumferential surface 2142a of the second heat sink 2140 to the outer circumferential surface 160b of the third heat sink 2160 is short .
  • the portion L2 where the distance from the inner circumferential surface 2142a of the second heat sink 2140 to the outer circumferential surface 2160b of the third heat sink 2160 is long air easily flows out.
  • the heat dissipation structure in which the inflow and outflow of air in the internal space 2146 naturally occurs can prevent the stay of heat and actively radiate heat to the outside, thereby improving the heat radiation efficiency.
  • the third heat sink 2160 in addition to the second heat sink 2140, the heat radiation area can be further increased and the heat radiation efficiency can be further increased.
  • the planar shape of the second heat sink 2140 is circular, but the present invention is not limited to this example.
  • Fig. 42 shows a modified example of the heat radiation structure at the other side (the z-axis positive direction side) of the base axis C with respect to the heating element.
  • the planar shape of the second heat sink 2240 is hexagonal, and the planar shape of the third heat sink 2260 is substantially elliptical.
  • the planar shape of the second heat sink 2240 may be a polygon other than a hexagonal shape.
  • the illumination device 2000 and the heat dissipation structure according to the ninth embodiment of the present invention have been described above.
  • the heat dissipation structure at the other side (the z-axis positive direction side) of the base axis C with respect to the heat generating element is referred to as the second heat sink 2140 passing through the center O of the second heat sink 2140,
  • the distance between the inner circumferential surface 2140a of the sink 2140 and the outer circumferential surface 2160b of the third heat sink 2160 is made non-uniform. Thereby, convection occurs in the internal space 2146, and heat radiation efficiency can be improved.
  • planar shape of the third heat sinks 2160 and 2260 is elliptical, but the present invention is not limited to this example, and for example, it may be a polygonal shape.
  • FIG. 43 is a plan view showing the second heat sink 2340 according to the present embodiment.
  • the second heat sink 2340 of the lighting apparatus according to the present embodiment is similar to the second heat sink 2140 and the third heat sink 2160 of the lighting apparatus 2000 according to the tenth embodiment shown in Figs. ) Can be installed instead.
  • the heat dissipation structure on the other side (positive side in the z axis direction) of the base axis C will be described in detail with reference to the heat generating element of the present embodiment.
  • the illumination device capable of installing the second heat sink 2340 according to the present embodiment is the same as the illumination device 2000 according to the ninth embodiment, and therefore, the description thereof will be omitted here.
  • the lighting apparatus is a heat dissipation structure for dissipating heat from a heating element including a light emitting element and a power supply circuit, and includes a first heat sink 2120 shown in Figs. 39 and 40; And a second heat sink 2340 shown in Fig.
  • the configuration of the first heat sink 2120 is the same as that of the ninth embodiment.
  • the second heat sink 2340 has a cylindrical portion 2342 and a bottom portion 2344 similar to the second heat sink 2140 according to the tenth embodiment and has a first portion 2342a on the inner peripheral surface 2342a of the cylindrical portion 2342, A plurality of pins 2345 (for example, twelve pins 2345a to 2345l) extending toward the center O of the heat sink 2340 are further provided.
  • Each of the fins 2345a to 2345l may be a stream like the pin 2123 of the first heat sink 2120 shown in Figs. 39 and 40, or may be a substantially rectangular plate-like member.
  • the pins 2345 are provided at regular intervals in the circumferential direction, but the present invention is not limited to this example, and the interval between the adjacent pins 2345 can be appropriately changed.
  • the radial lengths L of the respective pins 2345a to 2345l of the second heat sink 2340 are not all the same as shown in Fig. 43, and at least one is set differently. In the example shown in Fig. 43, the lengths of the opposing pins are the same.
  • the length L of the pins 2345d and 2345j becomes short, and the length L in the radial direction of the pins 2345d and 2345j becomes minimum.
  • the length between the inner circumferential surfaces 2342a passing through the center O of the second heat sink 2340 is different by making the radial length L of the pin 2345 different. For example, if the pin 2345 is not formed, the length between the inner circumferential surfaces 2342a becomes the diameter D of the second heat sink 2340. In the portion where the pin 2345 is formed, the length d1 between the pins 2345a and 2345g with the maximum length L in the radial direction is minimized and the length L in the radial direction is the minimum The length d2 between the pins 2345d and 2345j becomes the maximum.
  • the shape of the inner space 2346 of the second heat sink 2340 is formed non-uniformly so that the shape of the inner space 2346 becomes at least asymmetrical with respect to a plane parallel to the z-axis passing through the center O. That is, the second heat sink 2340 is formed so that the distance between the inner circumferential surfaces 2342a of the second heat sink 2340 becomes uneven, passing through the center O of the second heat sink 2340. As a result, the heat dissipation efficiency of the second heat sink 340 is different, and as a result, the temperature distribution of the heat dissipation becomes non-uniform. Then, convection occurs in the inner space 2346 of the second heat sink 2340. As described above, the heat dissipation structure in which the inflow and outflow of the air naturally occurs in the internal space 2346 can prevent heat stagnation and actively radiate heat to the outside, thereby improving the heat radiation efficiency.
  • the pin 2345 of the second heat sink 2340 is arranged so as to extend radially toward the center O from the inner peripheral surface 2142a of the cylindrical portion 2142 in the heat dissipation structure shown in Fig.
  • the invention is not limited to such an example.
  • Fig. 44 shows a modified example of the heat radiation structure on the other side (the positive z-axis direction side) of the base axis C with respect to the heat generating element.
  • the pin 2445 of the second heat sink 2440 is extended in one direction from the inner peripheral surface 2422a of the cylindrical portion 2422.
  • Fig. 44 five pairs of ten pins 2445a to 2445j opposed to each other in the y direction on the inner peripheral surface 2422a of the cylindrical portion 2422 are provided adjacent to each other in the x direction.
  • the length L of the opposing pins 2445 is the same and the length L is shortened as they are spaced from the center O of the second heat sink 2440.
  • the length between the inner circumferential surfaces 2442a passing through the center O of the second heat sink 2440 is different by making the radial lengths L of the pins 2445 different. For example, if the pin 2445 is not formed, the length between the inner circumferential surfaces 2442a becomes the diameter D of the second heat sink 2440.
  • the length d1 between the fins 2445a and 2445b having the maximum length L is minimized and the fins 2445g and 2445h having the minimum length L are formed.
  • the length d2 between the intersections 2445i and 2445j becomes the maximum.
  • the shape of the inner space 2446 of the second heat sink 2440 may be formed so as to be at least asymmetric with respect to the plane parallel to the z-axis passing through the center O. In this case, .
  • the heat dissipation efficiency of the second heat sink 2440 is different, and as a result, the temperature distribution of the heat dissipation becomes non-uniform. Then, convection occurs in the inner space 2446 of the second heat sink 2440.
  • the heat dissipation structure in which the inflow and outflow of the air naturally occurs in the inner space 2446 can prevent heat stagnation and actively radiate heat to the outside, thereby improving the heat radiation efficiency.
  • a pin (not shown) extending in one direction from the inner circumferential surface 2542a of the cylindrical portion 2542 of the second heat sink 2540 2545 may be longer than the length O from the center O of the second heat sink 2540. Therefore, in the second heat sink 2540 shown in FIG. 45, the length between the inner circumferential surfaces 2542a passing through the center O in the portion where the pin 2545 is formed is smaller than the length of the pin 2545a (Length d1), and becomes minimum between the pins 2545g and 2545h and 2545i and 2545j with the maximum length L (length d2).
  • the shape of the internal space 2546 of the second heat sink 2540 is formed to be at least asymmetric with respect to the plane parallel to the z axis passing through the center O, Convection may occur.
  • the heat dissipation structure of the lighting apparatus according to the tenth embodiment of the present invention has been described above.
  • the inner circumferential surface 2342a of the cylindrical portion 2342 of the second heat sink 2340 is positioned at the other side of the base shaft C with respect to the heat radiating structure at the other side
  • a plurality of pins 2345 having different lengths are provided to make the distance between the inner circumferential surfaces 2342a of the inner space 2346 uneven. Thereby, convection occurs in the inner space 2346, and heat radiation efficiency can be improved.
  • the planar shape of the second heat sink is circular, but the present invention is not limited to this example, and for example, it may be substantially elliptical or polygonal.
  • the present invention is not limited to these examples.
  • the light emitting element substrate in which the light emitting elements are arranged in a ring shape is placed on the flange portion of the first heat sink, but the present invention is not limited to this example.
  • the light emitting element substrate on which the light emitting element is placed may be provided on the outer circumferential surface of the second heat sink.
  • the light emitting element substrate is mounted on the flange portion or the main body portion of the flange portion of the heat sink, only one light emitting element group constituted by arranging a plurality of light emitting elements in a ring shape may be arranged as shown in Fig. 40, A plurality of light emitting element groups may be disposed.
  • the second heat sink has a cylindrical shape in which circles of the same diameter continue in the extending direction, but the present invention is not limited to this example.
  • the second heat sink may be formed in a taper shape having an inner diameter larger toward the opening side.
  • the illuminating device according to various embodiments to be described later in conjunction with the above-described embodiments can be usefully applied to a spherical illuminating device.
  • the inventors of the present invention have studied the conditions for becoming an alternative to incandescent lamps.
  • the bulb-type LED lighting apparatus developed up to now has insufficient heat radiation efficiency and is insufficient as a substitute for incandescent lamps.
  • the incandescent lamp has a luminous efficiency of more than 90 lm / W, a luminous intensity of 800 lm or more, a color temperature of 2700 to 3000 K, a color rendering property of Ra90 or more, ), Etc.
  • a full-spherical lighting device using a semiconductor light emitting element such as an LED, which has the same performance as the incandescent lamp in all the above characteristics.
  • the present inventors have studied the conditions for realizing a bulb-type lighting apparatus that can be a substitute for an incandescent lamp satisfying all of the above characteristics, and as a result, found that the following (1) to (3) are required.
  • condition (1) above is indispensable for a substitute for an incandescent lamp, and the condition (2) is necessary for realizing excellent light distribution characteristics, and the condition (3) is necessary for realizing high efficiency and high output.
  • the present inventors have completed the novel optical system structure and the heat dissipation structure to realize the light distribution characteristics equivalent to those of the incandescent lamp while satisfying the ANSI standard, succeded.
  • a lighting apparatus according to various embodiments of the present invention will be described in detail.
  • Fig. 46 is an exploded perspective view showing the overall configuration of a spherical illumination device 100 (hereinafter simply referred to as " illumination device ") according to an eleventh embodiment of the present invention.
  • 47 is a top view (a) and a front view (b) of the illumination device 3000 according to the twelfth embodiment.
  • Fig. 48 is a cross-sectional view of the illumination device 3000 according to the twelfth embodiment taken along line III-III in Fig. 47 (a).
  • the lighting apparatus 3000 includes a light emitting module 3110, a first heat sink 3120 (hereinafter, referred to as an "upper heat sink”), a second heat sink 3130, hereinafter referred to as “lower heat sink”), a reflector 3140, a globe 3150, a drive circuit 3160 and a heat radiating plate 3170.
  • the light emitting module 3110 is a member having a light emitting element 3111 and a light emitting element substrate 3113 and serving as a light source of the illumination apparatus 3000.
  • the light emitting element 3111 is a semiconductor light emitting element such as an LED (Light Emitting Diode), and emits light.
  • the luminescent color of the light emitting element 3111 differs depending on the constituent material of the globe 3150 to be described later. Specifically, when the globe 3150 is made of a material (such as resin) containing a phosphor, the light emitting element 3111 is an LED (for example, a blue LED) that emits light for exciting the phosphor, 3150, the wavelength of the light is changed to become white.
  • the globe 3150 is made of a material (resin or the like) containing a light diffusing agent, the luminous color of the light emitting element 3111 is white (6500K to 2000K).
  • the light emitted from the light emitting element 3111 is reflected by a reflector 3140 described later or directly reaches the globe 3150 and is diffused in the globe 3150 and radiated to the outside.
  • a plurality of light emitting elements 3111 are prepared, and the plurality of light emitting elements 3111 are arranged in a ring shape on one side of the light emitting element substrate 3113.
  • the term " ring type " used here is a concept including not only a circular ring type as shown in Fig. 46, but also an elliptic ring type or polygonal ring type.
  • the light emitting element substrate 3113 is a substrate on which the light emitting element 3111 is mounted and is preferably formed of a metal such as aluminum or nickel or a material having high thermal conductivity such as glass composite (CEM3) or ceramic. Accordingly, the heat generated by the light emitting module 3110 can be efficiently transmitted to the upper heat sink 3120 and the lower heat sink 3130, thereby improving the heat radiation efficiency of the lighting apparatus 3000.
  • the shape of the light emitting element substrate 3113 is not particularly limited, but it is preferable that the shape of the light emitting element substrate 3113 is substantially circular or substantially polygonal in order to satisfy the above ANSI standard.
  • the light emitting element substrate 3113 is held and fixed by the bottom of the upper heat sink 3120 and the upper portion of the lower heat sink 3130 (or the heat sink 3170). At this time, a screw hole 3115 is provided in a substantially central portion of the light emitting element substrate 3113. The position of the screw hole 3115 is determined by the screw hole 3125 at the bottom of the upper heat sink 3120, And the upper heat sink 3120, the light emitting element substrate 3113, and the heat radiating plate 3170 are screwed through the screw holes 3125, 3115, and 3175 in correspondence with positions of the screw holes of the heat sink 3170 and the heat sink 3170.
  • the upper heat sink 3120 has a function of discharging at least one of heat generated in the light emitting module 3110 and heat generated in the drive circuit 3160 to the outside.
  • the upper heat sink 3120 is formed of a material having high thermal conductivity such as aluminum or copper, or a resin having high thermal conductivity.
  • the upper heat sink 3120 has a substantially hollow cylindrical shape having an opening 3121 at one end.
  • the surface area of the surface exposed to the outside of the upper heat sink 3120 (the area of the surface used for dissipating heat) is increased, and the heat radiating effect can be enhanced.
  • the upper heat sink 3120 has a body portion having a substantially cylindrical or substantially columnar shape, and the body portion has a plurality of pins exposed to the outside, for example, It is possible.
  • the upper heat sink 3120 is provided in contact with the light emitting element substrate 3113 on one side of the center axis C of the ring constituted by the arrangement of the light emitting elements 3111 with reference to the light emitting element substrate 3113.
  • the upper heat sink 120 is disposed in contact with the light emitting element substrate 3113 to discharge heat generated from the light emitting element substrate 3113 or the entire light emitting module 3110 to the outside. This allows the heat from the light emitting module 3110, which generally generates a larger amount of heat than the drive circuit 160, to be emitted from both the upper heat sink 3120 and a lower heat sink 3130 described later,
  • the heat radiation efficiency of the lighting apparatus 3000 can be remarkably increased compared with the case where only one heat sink is used.
  • a screw hole 3125 is provided at a substantially central portion of the bottom surface (closed surface) of the upper heat sink 3120.
  • the upper heat sink 3120 includes the light emitting element substrate 3113 and the heat sink 3170 And the position is fixed.
  • the shape of the upper heat sink 3120 is not limited thereto.
  • the shape of the upper heat sink 3120 is not limited thereto.
  • the reflector 3140 described later It may be large.
  • the lower heat sink 3130 is connected to a socket (not shown) at one end thereof (the lower end of FIGS. 46 to 48), and at least one of heat generated in the light emitting module 3110 and heat generated in the drive circuit 3160 And discharging it to the outside.
  • the lower heat sink 3130 is formed of a resin having high thermal conductivity.
  • the lower heat sink 3130 is made of a resin rather than a metal because the lightening device 3000 is made lightweight. Further, since the resin is insulative, measures are taken for the caulking portion when connected to the socket It is not necessary.
  • a metal material such as aluminum or copper may be used as the material of the lower heat sink 3130.
  • the lower heat sink 3130 is made of a metal material, it is necessary to provide insulation measures to the caulking portion of the socket.
  • the lower heat sink 3130 is provided with a plurality of pins 3139 on the outer peripheral surface of a hollow, substantially cylindrical main body portion having openings 3130a and 3130b at both ends thereof.
  • the plurality of pins 3139 By having the plurality of pins 3139, the surface area of the surface exposed to the outside of the lower heat sink 3130 (the surface area used for dissipating heat) is increased, and the heat radiation effect can be enhanced.
  • the structure for increasing the heat radiation effect may include not only such a fin 3139 but also a plurality of concave portions (not shown) on the outer peripheral surface of the body portion of the lower heat sink 3130, for example.
  • the lower heat sink 3130 is provided on the other side of the center axis C of the ring constituted by the arrangement of the light emitting elements 3111 with reference to the light emitting element substrate 3113. Accordingly, the lower heat sink 3130 can discharge heat generated in the driving circuit 3160 or the light emitting module 3110 to the outside independently of the upper heat sink 3120. Therefore, the heat radiation efficiency of the lighting apparatus 3000 can be remarkably increased as compared with the case where only one heat sink is provided.
  • the lower heat sink 3130 is composed of a resin 3131 and a metal member 3133 inserted in the resin 3131.
  • the lower heat sink 3130 is obtained by insert molding the resin 3131 and the metal member 3133 integrally. This is because the resin 3131 is slightly lower in thermal conductivity than metal such as aluminum or copper, and therefore, a metal member 3133 such as aluminum or copper is inserted in order to further enhance the thermal conductivity. Therefore, when the heat generation is suppressed by the performance of the light emitting module 3110 or the driver circuit 3160 and the heat radiation effect is sufficient, it is not necessary to insert the metal member 3133.
  • the heat generated by the driving circuit 3160 is easily transmitted to the upper heat sink 3120 as well as to the lower heat sink 3130.
  • the heat sink 3170 It is preferable to arrange the metal member 3133 so as to be in contact with the light emitting element substrate 3113).
  • a screw hole 3135 is provided on a surface of the metal member 3133 that contacts the heat sink 3170 at a position corresponding to a screw hole 3173 provided in a heat dissipating plate 3170 described later, The metal member 3133 and the heat dissipating plate 3170 are screwed to each other through the through holes 3173.
  • the lower heat sink 3130 also has a function as a case in which the drive circuit 3160 is housed in addition to the heat radiation function described above.
  • a drive circuit 3160 is provided inside the hollow main body of the lower heat sink 3130.
  • the reflector 3140 is held on the surface of the light emitting element substrate 3113 on which the light emitting element 3111 is disposed (hereinafter referred to as the "surface on the light emitting element 3111 side"), And reflects the emitted light.
  • the reflector 3140 in this embodiment is made of a material having high light reflectivity and reflects the light from the light emitting element 3111 in the socket direction (the direction toward the lower heat sink 3130) ) In the direction of the socket.
  • the reflector 3140 is disposed on the side of the light emitting element 3111 side of the light emitting element substrate 3113 such that the cone is expanded in diameter as it is separated from the light emitting element substrate 3113 As shown in Fig.
  • the side surface 3141 of the truncated cone-shaped reflector 3140 is a reflecting surface on which light emitted from the light emitting element 3111 is reflected. Therefore, only the reflecting surface 3141 may be made of a material having high light reflectivity, and the other portion may be made of a material having no light reflectivity.
  • the reflector 3140 is connected to the bottom of the upper heat sink 3120 at the end (the lower end in Figs. 46 and 48) As shown in Fig.
  • the heat radiation efficiency of the lighting apparatus 3000 can be reduced by the reflector 3140 having the opening 3143 so that the upper heat sink 3120 can be brought into direct contact with the light emitting element substrate 3113.
  • the opening 3143 does not necessarily have to contact the bottom of the upper heat sink 3120, and may have a diameter larger than the diameter of the bottom of the upper heat sink 3120.
  • the globe 3150 is provided in a substantially spherical shape so as to cover the light emitting module 3110 and the reflector 3140 so that the color of the light emitted from the light emitting element 3111 or the light reflected by the reflector 3140 And has a role of widening the angle of incidence of the illumination device 3100 by diffusing the light on the surface of the globe 3150.
  • the globe 3150 includes a phosphor and a light diffusing agent in accordance with the light emission color of the light emitting element 3111 in order to realize the role of controlling the light emission color of the light emitting element 3111.
  • the material of the globe 3150 may be a material containing a phosphor or may be a surface of the globe 3150 Not only the inner surface but also the inner surface).
  • a fluorescent pigment can be contained in the resin.
  • a fluorescent paint can be applied to the surface of the globe. The wavelength of the light reflected by the reflector 3140 or emitted from the light emitting element 111 and reaching the globe 3150 is converted by the phosphor of the globe 3150 to emit white light.
  • the material of the globe 3150 is a material containing a light-diffusing agent in addition to the phosphor, or that the light diffusing agent is applied to the surface of the globe 3150 .
  • the material of the globe 3150 may be a material containing a light diffusing agent, or the surface of the globe 3150 may be coated with a light diffusing agent.
  • the light emitted from the light emitting element 3111 by the light diffusing agent or the light reflected by the reflector 3140 can be diffused from the surface of the globe 3150 to widen the angle of diffraction of the illumination apparatus 3000.
  • the maximum diameter of the lower heat sink 3130 (refer to the length D2 in FIG. 50) in order to widen the angle of incidence of the illumination device 3000. Further, And more preferably 1.2 times or more. If the maximum diameter of the lower heat sink 3130 is too large with respect to the maximum diameter of the globe 3150, the area radiated in the socket direction from the surface of the globe 3150 is widened by the lower heat sink 3130 The diffraction angle of light in the socket direction becomes small. The details will be described later.
  • the heat radiation efficiency of the lighting apparatus 3000 can be increased.
  • An opening (not shown) is also provided at the bottom of the globe 3150 (the end on the light emitting module 3110 side), and the globe 3150 is connected to the lower heat sink 3130 in this opening.
  • the driving circuit 3160 is installed inside the lower heat sink 3130 and is a power supply circuit for driving (lighting) the light emitting device 3111 using power supplied from the outside through a socket.
  • the driving circuit 3160 is composed of a plurality of electronic parts mounted on a substrate, and generates heat from a plurality of electronic parts when the light emitting element 3111 is driven.
  • the heat generated in the driving circuit 3160 is transferred to the lower heat sink 3130 or transferred to the upper heat sink 3120 through the metal member 3133 and the light emitting element substrate 3113, do.
  • the drive circuit 3160 according to the present embodiment does not have an electrolytic capacitor for converting AC into DC. Although the lifetime of a commercially available LED lighting device is tens of thousands of hours, the life of the electrolytic capacitor is actually several thousands of hours. Therefore, it is necessary to replace the electrolytic capacitor before reaching the lifetime of the entire LED lighting device. However, since the drive circuit 3160 according to the present embodiment does not have an electrolytic capacitor for converting an alternating current into a direct current, it is not necessary to replace the parts in thousands of hours, and the life span of the lighting apparatus 3000 can be remarkably increased have.
  • the heat radiating plate 3170 is provided to contact both the light emitting element substrate 3113 and the lower heat sink 3130 and mainly transmits heat generated from the light emitting module 3110 to the lower heat sink 3130.
  • the heat radiating plate 3170 may have a role of transmitting the heat generated in the driving circuit 3160 to the upper heat sink 3120.
  • the heat dissipating plate 3170 is made of a metal having high thermal conductivity such as aluminum or copper to realize the heat transfer function.
  • the heat dissipation plate 3170 may be provided with a position shift prevention pin of a reflector 3140.
  • the heat dissipation plate 3170 may include a light emitting element substrate 3113, a reflector 3140 ), The globe 3150, and the upper heat sink 3120 as shown in FIG.
  • the heat radiation efficiency of the lighting apparatus 3000 is sufficiently high and the positioning accuracy of the light emitting element substrate 3113, the reflector 3140, the globe 3150 and the upper heat sink 3120 can be ensured, May not necessarily be installed.
  • the heat radiating plate 3170 is screwed to the metal member 3133 of the lower heat sink 3130 by aligning the position of the screw hole 3135 with the position of the screw hole 3173 at this point.
  • the light emitting module 3110 and the reflector 3140 are disposed on the heat sink 3170 in this order from the lower heat sink 3130 side.
  • the reflector 3140 is fixed to the light emitting element substrate 3113 by screwing or the like.
  • the globe 3150 is placed so as to cover the light emitting module 3110 and the reflector 3140 and inserted until the upper heat sink 3120 contacts the light emitting element substrate 3113 from the opening 3151 of the globe 3150 do.
  • the screw hole 3115 of the light emitting element substrate 3113 and the screw hole 3175 of the heat sink 3170 are passed through the screw hole 3125 of the upper heat sink 3120 so as to be fixed by screwing or the like,
  • the device 3000 can be assembled.
  • a socket is connected to the lower end of the lower heat sink 3130.
  • the lighting apparatus 3000 according to the present embodiment when the lighting apparatus 3000 according to the present embodiment is assembled, all the components other than the socket can be mounted in one direction (in the example of FIG. 46, above the lower heat sink 3130) So that the accuracy of positioning and the like can be increased. Therefore, according to the illumination device 3000 of the present embodiment, the productivity and the yield can be improved.
  • Fig. 49 is an explanatory diagram showing the flow of heat in the lighting apparatus 3000 according to the present embodiment.
  • 50 is an explanatory diagram showing the movement of light in the illumination apparatus 3000 according to the present embodiment.
  • 51 is an explanatory view showing an example of a light distribution characteristic of the illumination apparatus 3000 according to the present embodiment.
  • 52 is an explanatory diagram showing the difference in light distribution by the ratio of the diameter of the globe 3150 and the diameter of the lower heat sink 3130 according to the present embodiment.
  • 53 is an explanatory diagram showing the relationship between the maximum diameter of the upper heat sink 3120 and the maximum diameter of the reflector 3140 according to the present embodiment.
  • the lighting apparatus 3000 there are two parts that mainly generate heat (heating elements).
  • the first is the light emitting module 3110.
  • heat is generated when the light emitting element 3111 is driven by the driving circuit 3160 and light is emitted.
  • the heat generated in each light emitting element 3111 is transmitted to the light emitting element substrate 3113 on which the light emitting element 3111 is mounted.
  • the light emitting element substrate 3113, the upper heat sink 3120, the heat sink 3170, and the lower heat sink 3130, the resin 3131, and the metal member 3133 are materials having high thermal conductivity.
  • the heat generated in the light emitting module 3110 (heat generated in the light emitting element 3111 and transferred to the light emitting element substrate 3113) is first transmitted to the upper heat sink 3120 And is discharged to the outside from the inner peripheral surface of the opening 3121 of the upper heat sink 3120 as indicated by the arrow H1 in Fig.
  • the heat generated in the light emitting module 3110 is also transmitted to the heat sink 3170 which is in contact with the lower surface of the light emitting element substrate 3113 and passes through the metal member 3133 as indicated by the arrow H2 in FIG. 3131).
  • the heat transferred to the resin 3131 is discharged to the outside from the pin 3139 or the like as indicated by the arrow H3.
  • the second heating element is the driving circuit 3160.
  • the heat generated in the drive circuit 3160 is transmitted in the order of the metal member 3133 and the resin 3131 in the hollow portion of the lower heat sink 3130 and is transmitted in the order of arrows H3 And is discharged to the outside as in the pin 3139 as shown in Fig.
  • the heat generated in the drive circuit 3160 is transferred from the hollow portion of the lower heat sink 3130 in the order of the heat sink 3170, the light emitting element substrate 3113 and the upper heat sink 3120, The heat is released from the inner peripheral surface of the opening 3121 of the upper heat sink 3120 to the outside.
  • the heat generated in the light emitting module 3110 and the driving circuit 3160 (in particular, the heat generated in the light emitting module 3110)
  • the heat can be dissipated not only from the lower heat sink 3130 but also from the upper heat sink 3120. [ Therefore, since a part of the heat radiated from the lower heat sink 3130 can be replaced by the upper heat sink 3120, the heat radiation efficiency is improved and further, the light emitting efficiency is improved.
  • the entire size of the lower heat sink 3130 can be reduced or the area of the fin 3139 of the lower heat sink 3130 can be reduced. If the size of the lower heat sink 3130 can be reduced, the area where the light diffused in the socket direction from the globe 3150 is blocked by the lower heat sink 3130 can be narrowed, do.
  • the light emitted from the light emitting element 3111 mainly passes through two kinds of paths.
  • the first path is a path from the light emitting element 3111 to the reflective surface 3141 of the reflector 3140 to reach the globe 3150 and the second path from the light emitting element 3111 directly to the globe 3150 .
  • the light L1 emitted from the light emitting device 3111 is reflected by the reflecting surface 3141 of the reflector 3140 and the reflected light L2 is incident on the globe 3150, Diffuse on the surface.
  • the diffused light L3 is radiated in various directions. As described above, when the light emitting element 3111 is a blue LED and the globe 3150 contains a phosphor or the phosphor is coated on the surface of the globe 3150, And spread to a wide range. Further, even when the globe 3150 contains a light-diffusing agent or the surface of the globe 3150 is coated with a light-diffusing agent, the diffusion range of the diffused light L3 can be widened.
  • the reflector 3140 has an inverted conical shape as described above and the maximum diameter D1 of the globe 3150 is larger than the maximum diameter D2 of the lower heat sink 3130, When the emitted light passes through the first path, the light emitted from the light emitting element 3111 can be emitted in the socket direction.
  • the reflector 3140 is an inverted conical shape in which the diameter is expanded as the reflector 3140 is spaced apart from the light emitting element substrate 3113 (the direction opposite to the socket direction), and the side surface of the reflector 3140 faces the light reflecting surface 3141,
  • the light L1 emitted from the light emitting element 3111 can be reflected by the light reflection surface 3141 toward the socket direction from the horizontal direction and the reflected light L2 can be further diffused by the globe 3150 . Since the maximum diameter D1 of the globe 3150 is larger than the maximum diameter D2 of the lower heat sink 3130 at the time of diffusing the lower heat sink 3130, It is possible to radiate the diffused light L3 in a wider range on the socket direction side than in the horizontal direction.
  • the light L4 emitted from the light emitting device 3111 is directly incident on the globe 3150 without reaching the reflector 3140 and diffused on the surface of the globe 3150.
  • the diffused light L5 diffuses in various directions.
  • the amount of light diffused toward the top direction (the direction opposite to the socket direction) of the globe 3150 is smaller than the horizontal direction.
  • the light emitted from the light emitting element 3111 passes through the second path, it is possible to sufficiently secure the diffusion amount of the light toward the top direction side of the globe 3150 in the horizontal direction.
  • the lighting apparatus 3000 since light emitted from the light emitting element 3111 passes through two kinds of paths, it is possible to realize a wide angle of view. Specifically, in the lighting apparatus 3000, an extremely high luminous efficacy within ⁇ 10% of the luminous intensity difference can be realized within the range of the light-emission angle of 300 degrees as in the example shown in FIG. 51 and the lamp has a performance equivalent to that of an incandescent lamp, The lighting apparatus 3000 can be used.
  • Fig. 52 shows the results of the present inventor's investigation as to the relationship between the maximum diameter D1 of the globe 3150 and the maximum diameter D2 of the lower heat sink 3130.
  • the ratio of the maximum diameter (globe diameter) of the globe 3150 to the maximum diameter (diameter of the lower heat sink) of the lower heat sink 3130 (hereinafter referred to as " diameter of globe / diameter of lower heat sink " (Hereinafter referred to as " light amount minimum value / maximum light amount value ") of the minimum value of the light amount with respect to the maximum value of the light amount diffused by the globe 3150 is shown on the vertical axis.
  • the maximum value of the quantity of light means a value of the quantity of light at a diffraction angle at which the quantity of light becomes maximum during the telephoto angle when the socket direction is 0 degrees and the diffraction angle is represented by a counterclockwise rotation angle, Means a value of the light quantity at the angle of incidence at which the light quantity becomes minimum during the telephoto and wide angle.
  • the diameter of the globe / the diameter of the lower heat sink is 1.2 or more, the amount of light can be almost constant irrespective of the direction of light diffusion. Therefore, the range of light emission angle is 300 deg. A very high luminous efficacy can be realized more easily.
  • the maximum value of the " diameter of the globe / diameter of the lower heat sink " is not specifically defined, if the diameter of the globe / the diameter of the lower heat sink is too large, it may exceed the ANSI standard, It is preferable to determine " the diameter of the globe / the diameter of the lower heat sink " within a range satisfying the specification.
  • the upper heat sink 3120 is disposed in the hollow portion of the reflector 3140, but in this case, considering the large light distribution angle of the illumination device 3000, It is necessary to pay attention to the relationship between the diameter and the maximum diameter of the reflector 3140 (e.g., the diameter of the most spaced apart portion in the light emitting element substrate 3113).
  • the maximum diameter of the upper heat sink 3120 is equal to or smaller than the maximum diameter of the reflector 3140.
  • the size of the upper heat sink 3120 is too small, it is preferable to determine the size of the upper heat sink 3120 considering the balance between the heat radiation efficiency and the light distribution because the amount of heat radiation by the upper heat sink 3120 decreases Do.
  • the lighting apparatus 3000 having the above-described configuration, not only the above-described heat radiation efficiency and light distribution improving effect but also luminous efficiency (90 lm / W or more), luminescent light quantity (800 lm or more), color temperature 2700 to 3000K), color rendering property (Ra90 or more), shape (standard for bulb size referred to as ANSI standard), etc., and can be used as a substitute for an incandescent lamp since it has equivalent performance to an incandescent lamp.
  • luminous efficiency 90 lm / W or more
  • luminescent light quantity 800 lm or more
  • color temperature 2700 to 3000K color rendering property
  • Ra90 or more shape (standard for bulb size referred to as ANSI standard), etc.
  • FIG. 54 is a top view (a) and a front view (b) showing the overall configuration of a spherical lighting device 3200 according to a twelfth embodiment of the present invention.
  • FIG. 55 is a cross-sectional view of the illumination device 3200 according to the twelfth embodiment taken along the line X-X in FIG. 54 (a).
  • the lighting apparatus 3200 includes a light emitting module 3210, a first heat sink 3220 (hereinafter, referred to as an "upper heat sink"), a second heat sink A driving circuit 3260 and a heat radiating plate 3270.
  • the illuminating device 3200 includes the illuminator 3200 according to the eleventh embodiment described above, Unlike the apparatus 3000, the upper heat sink 3220 does not have a reflector, and the upper heat sink 3220 also has the function of a reflector.
  • the light emitting module 3210, the lower heat sink 3230, the globe 3250, the drive circuit 3260, and the heat sink 3270 are the light emitting module 3210, the lower heat sink 3230, the globe 3250, the drive circuit 3260, and the heat sink 3270.
  • the light emitting module 3210, the lower heat sink 3230, the globe 3250, the drive circuit 3260 and the heat sink 3270 are similar to the light emitting module 3110, the lower heat sink 3130, The driving circuit 3160, and the heat sink 3170, the detailed description thereof will be omitted.
  • the upper heat sink 3220 has the function of the upper heat sink 3120 and the function of the reflector 3140 in the twelfth embodiment. That is, the upper heat sink 3220 discharges at least one of the heat generated in the light emitting module 3210 and the heat generated in the driving circuit 3260 to the outside, and at the same time, the light emitting element 3211, (Hereinafter referred to as " the surface on the side of the light emitting element 3211 ") and reflects the light emitted from the light emitting element 3211. [
  • the upper heat sink 3220 is formed of a material having high heat conductivity and high light reflectivity.
  • a material having high heat conductivity and high light reflectivity include a metal such as aluminum that is mirror-finished on the surface that becomes the outer peripheral surface of the upper heat sink 3220.
  • the upper heat sink 3220 reflects the light from the light emitting element 3211 in the socket direction and has a function of widening the diffusing angle of the illuminating device 3200 in the socket direction.
  • the light emitting device substrate 3213 is protruded from the surface of the light emitting device 3211 on the side of the light emitting device substrate 3213 so as to have a conical shape with an enlarged diameter.
  • the outer peripheral surface of the truncated cone-shaped upper heat sink 3220 is a reflecting surface 3223 on which light emitted from the light emitting element 3211 is reflected. Therefore, the mirror surface processing may be performed only on the reflecting surface 3223.
  • the upper heat sink 3220 has a hollow shape having an opening 3221 at one end. Since this hollow portion is provided, the surface area of the surface exposed to the outside of the upper heat sink 3220 (the area of the surface used for dissipating heat) is increased, and the heat radiation effect can be enhanced.
  • the upper heat sink 3220 is provided in contact with the light emitting element substrate 3213 at one side in the direction of the central axis C of the ring constituted by the arrangement of the light emitting elements 3211 with reference to the light emitting element substrate 3213. Since the upper heat sink 3220 is installed in contact with the light emitting element substrate 3213, the upper heat sink 3220 mainly emits heat generated from the light emitting element substrate 3213 (or the entire light emitting module 3210) to the outside .
  • the heat radiation efficiency of the illumination device 3200 can be remarkably increased as compared with the case of only one.
  • a screw hole 3225 is provided in a substantially central portion of the bottom surface (closed surface) of the upper heat sink 3220 and the upper heat sink 3220 is connected to the light emitting element substrate 3213 And the heat radiating plate 3270 and is fixed in position.
  • the method of assembling the illuminating device 3200 is the same as that of the illuminating device 3000 of the twelfth embodiment except that there is no reflector, and thus its detailed description is omitted.
  • FIG. 56 is an explanatory view showing the flow of heat and the movement of light in the illumination device 3200 according to the present embodiment.
  • FIG. 56 is an explanatory view showing the flow of heat and the movement of light in the illumination device 3200 according to the present embodiment.
  • the illumination device 3200 there are two parts that mainly generate heat (heating elements).
  • the first is the light emitting module 3210.
  • the light emitting module 3210 heat is generated when the light emitting element 3211 is driven by the drive circuit 3260 and light is emitted.
  • the heat generated in each light emitting element 3211 is transmitted to the light emitting element substrate 3213 on which the light emitting element 3211 is mounted.
  • the light emitting element substrate 3213, the upper heat sink 3220, the heat sink 3270, and the lower heat sink 3230 have high thermal conductivity.
  • the heat generated in the light emitting module 3210 (heat generated in the light emitting element 3211 and transferred to the light emitting element substrate 3213) is first transmitted to the upper heat sink 220 And is discharged to the outside from the inner peripheral surface of the opening 3221 of the upper heat sink 3220 as indicated by an arrow H1 'in FIG.
  • the heat generated in the light emitting module 3210 is transmitted to the heat sink 3270 which is in contact with the lower surface of the light emitting element substrate 3213 and then to the resin 3231 through the metal member 3233, 3230) are the same as those of the twelfth embodiment.
  • the second heating element driving circuit 3260 it is the second heating element driving circuit 3260.
  • the heat generated in the drive circuit 3260 is transferred from the hollow portion of the lower heat sink 3230 in the order of the metal member 3233 and the resin 3231 so that the heat generated by the light emitting module 3210 is transferred to the lower heat sink 3230 And is discharged to the outside.
  • the heat generated in the drive circuit 3260 is transferred from the hollow portion of the lower heat sink 3230 in the order of the heat sink 3270, the light emitting element substrate 3213 and the upper heat sink 3220, And is discharged to the outside from the inner peripheral surface of the opening 3221 of the upper heat sink 3220 as shown in FIG.
  • the heat generated in the light emitting module 3210 and the drive circuit 3260 (in particular, heat generated in the light emitting module 3210)
  • the heat can be dissipated not only in the lower heat sink 3230 but also in the upper heat sink 3220. Therefore, since part of the heat radiated from the lower heat sink 230 can be replaced by the upper heat sink 3220, the heat radiation efficiency is improved and the luminous efficiency is also improved.
  • the entire size of the lower heat sink 3230 can be reduced or the area of the fin (not shown) of the lower heat sink 3230 can be reduced.
  • the size of the lower heat sink 3230 it is possible to narrow the area where the light diffused in the socket direction from the globe 3250 is blocked by the lower heat sink 3230, do.
  • the light emitted from the light emitting element 3211 mainly passes through two kinds of paths.
  • the first path is a path from the light emitting element 3211 to the reflective surface 3223 of the upper heat sink 3220 to reach the globe 3250.
  • the second path is a path directly from the light emitting element 3211 to the globe 3250, .
  • the light L1 'emitted from the light emitting device 3211 is reflected by the reflecting surface 3223 of the upper heat sink 3220 and the reflected light L2' is incident on the globe 3250 And diffuses on the surface of the globe 3250. Diffused light L3 'is radiated in various directions.
  • the light emitting element 3211 is a blue LED and the globe 3250 contains a phosphor or the phosphor is coated on the surface of the globe 3250, the diffused light L3 'diffuses in a wider range do. Further, even when the globe 3250 contains the light diffusing agent or the light diffusing agent is applied to the surface of the globe 3250, the diffusion range of the diffused light L3 'can be widened.
  • the upper heat sink 3220 Since the upper heat sink 3220 has an inverted conical shape and the maximum diameter of the globe 3250 is larger than the maximum diameter of the lower heat sink 3230 as described above, The light emitted from the light emitting element 3211 can be radiated in the socket direction. That is, the upper heat sink 3220 is an inverted conical shape in which the diameter of the upper heat sink 3220 is expanded as it is spaced from the light emitting element substrate 3213 (in a direction opposite to the socket direction) The light L1 'emitted from the light emitting element 3211 can be reflected by the light reflection surface 3223 toward the socket direction from the horizontal direction and the reflected light L2' can be further diffused by the globe 250 Since the maximum diameter of the globe 3250 is larger than the maximum diameter of the lower heat sink 3230 when the light is diffused, the lower heat sink 3230 transmits the diffused light L3 'diffused from the surface of the globe 3250 The diffusion light L3 'can be radiated to a wider range on the side of the socket
  • the light L4 'emitted from the light emitting device 211 is directly incident on the globe 3250 without reaching the upper heat sink 3220 and is diffused on the surface of the globe 3250.
  • the amount of light diffused toward the top portion of the globe 3250 is smaller than in the horizontal direction.
  • a diffusion amount of light to the top direction side of the globe 3250 can be sufficiently secured in the horizontal direction.
  • the illumination device 3200 since light emitted from the light emitting element 3211 passes through two kinds of paths, it is possible to realize a wide angle of view. More specifically, in the illumination device 3200, an extremely high luminous efficacy of a luminous intensity difference of ⁇ 10% or less and a luminous intensity difference within a range of 300 deg in the example shown in FIG. 51 can be realized. Since the luminous intensity is equivalent to that of an incandescent lamp, The lighting device 3200 can be used as an alternative.
  • the present invention is not limited to these examples.
  • the cross-sectional shape of each member may be polygonal or elliptical.
  • only one light emitting element group constituted by arranging a plurality of light emitting elements 3111 in a ring shape on the light emitting element substrate 3113 is provided, but the present invention is not limited to this example .
  • a plurality of light emitting element groups may be provided concentrically on the light emitting element substrate 3113.
  • the light emitting device employable in the illumination device according to the above-described embodiments may be variously configured LED chips or various types of LED packages including such LED chips.
  • various LED chips and LED packages which can be advantageously employed in the present lighting apparatuses will be described in detail.
  • Fig. 57 is a side cross-sectional view showing an example of an LED chip that can be used in the above-described lighting apparatus.
  • the LED chip 1500 includes a light emitting stack S formed on a semiconductor substrate 1501.
  • the light emitting stacked body S includes a first conductive type semiconductor layer 1504, an active layer 1505, and a second conductive type semiconductor layer 1506.
  • the first conductive semiconductor layer 1504 and the ohmic contact layer 1508 include an ohmic electrode layer 1508 formed on the second conductive semiconductor layer 1506, 1509a and 1509b are formed.
  • the substrate 1501 an insulating, conductive, or semiconductor substrate may be used if necessary.
  • the substrate 1501 may be sapphire, SiC, Si, MgAl 2 O 4 , MgO, LiAlO 2 , LiGaO 2 , GaN.
  • a GaN substrate, which is a homogeneous substrate, is preferable for epitaxial growth of a GaN material, but a GaN substrate has a problem of high production cost due to its difficulty in manufacturing.
  • Sapphire and silicon carbide (SiC) substrates are mainly used as the different substrates.
  • Sapphire substrates are more utilized than expensive silicon carbide substrates.
  • defects such as dislocation are increased due to the difference in lattice constant between the substrate material and the thin film material.
  • warping occurs at a temperature change, and warping causes a crack in the thin film. This problem may be reduced by using the buffer layer 1502 between the substrate 1501 and the light emitting stacked body S which is GaN-based.
  • the substrate 1501 may be completely or partially removed or patterned in order to improve the optical or electrical characteristics of the LED chip before or after the LED structure growth.
  • the substrate in the case of a sapphire substrate, the substrate can be separated by irradiating the laser to the interface with the semiconductor layer through the substrate, and the silicon or silicon carbide substrate can be removed by a method such as polishing / etching.
  • the supporting substrate may be bonded using a reflective metal or may be inserted in the middle of the bonding layer can do.
  • Substrate patterning improves light extraction efficiency by forming irregularities or slopes before or after the LED structure growth on the main surface (front or both sides) or sides of the substrate.
  • the size of the pattern can be selected from the range of 5 nm to 500 ⁇ m, and it is possible to make a structure for improving the light extraction efficiency with a rule or an irregular pattern.
  • Various shapes such as a shape, a column, an acid, and a hemisphere can be adopted.
  • the lattice constants of the hexagonal-rhombo-cubic (Hexa-Rhombo R3c) symmetry are 13.001 ⁇ and 4.758 ⁇ in the c-axis and the a- , R (1102), and the like.
  • the C-plane is relatively easy to grow the nitride film, and is stable at high temperature, and thus is mainly used as a substrate for nitride growth.
  • a Si substrate As another material of the substrate, a Si substrate can be exemplified, and it is more suitable for large-scale curing and relatively low in price, so that mass productivity can be improved.
  • a technique for suppressing the occurrence of crystal defects due to the difference in lattice constant between the Si substrate having the (111) plane as the substrate surface and the lattice constant difference of about 17% with GaN Further, the difference in thermal expansion coefficient between silicon and GaN is about 56%, and a technique for suppressing the wafer warping caused by the difference in thermal expansion rate is needed. Wafer warpage can cause cracking of the GaN thin film, and process control is difficult, which can cause problems such as a large scattering of the emission wavelength in the same wafer.
  • the silicon (Si) substrate may be removed, if necessary, and Si, Ge, SiAl, Or the like is further formed and used.
  • the buffer layer 1502 is disposed between the substrate 1501 and the light emitting stack S for the purpose of preventing dislocation and cracking of the light emitting stack.
  • the buffer layer also functions to reduce the wavelength dispersion of the wafer by controlling the degree of warping of the substrate during the growth of the active layer.
  • the buffer layer 1502 is Al x In y Ga 1-xy N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1), in particular can be used for GaN, AlN, AlGaN, InGaN, or InGaNAlN, ZrB 2, as needed , HfB 2 , ZrN, HfN, TiN and the like can also be used. Further, a plurality of layers may be combined, or the composition may be gradually changed.
  • the GaN thin film is grown at a high temperature when the GaN thin film is grown on the silicon substrate, and then the tensile stress is applied to the GaN thin film due to the difference in thermal expansion coefficient between the substrate and the thin film And cracks are likely to occur.
  • Tensile stress is compensated by using a method to prevent cracks by growing the thin film so that the thin film undergoes compressive stress during growth.
  • Silicon (Si) has a high probability of occurrence of defects due to difference in lattice constant with GaN.
  • a complex structure buffer layer is used because it is necessary not only to control defects but also to control stress to suppress warpage.
  • AlN is formed on a substrate 1501. It is advisable to use a material that does not contain Ga to prevent Si and Ga reactions. AlN as well as materials such as SiC can be used. And grown at a temperature between 400 and 1300 ° C using an Al source and an N source. If necessary, an AlGaN intermediate layer for controlling the stress in the middle of GaN can be inserted between the plurality of AlN layers.
  • the light emitting stacked body (S) has a multilayer structure of a group III nitride semiconductor.
  • the first and second conductivity type semiconductor layers 1504 and 1506 are n-type and p Type impurity may be doped,
  • the present invention is not limited thereto, and conversely, it may be a p-type and an n-type semiconductor layer, respectively.
  • the present invention is not limited to this, and materials such as AlGaInP series semiconductor and AlGaAs series semiconductor may be used.
  • the first and second conductivity type semiconductor layers 1504 and 1506 may have a single-layer structure, but may have a multi-layer structure having different compositions and thicknesses as needed.
  • the first and second conductivity type semiconductor layers 1504 and 1506 may have a carrier injection layer capable of improving the injection efficiency of electrons and holes, respectively, and may have various superlattice structures You may.
  • the first conductive semiconductor layer 1504 may further include a current diffusion layer (not shown) at a portion adjacent to the active layer 1505.
  • the current diffusion layer may have a structure in which a plurality of In x Al y Ga (1-xy) N layers having different compositions or having different impurity contents are repeatedly laminated, or a layer of an insulating material may be partially formed.
  • the second conductive semiconductor layer 1506 may further include an electron blocking layer (not shown) at a portion adjacent to the active layer 1505.
  • the electron blocking layer may have a structure in which a plurality of different In x Al y Ga (1-xy) N layers are stacked or a single layer or more of Al y Ga (1-y) N, and the active layer 1505 (P-type) semiconductor layer 1506.
  • the second conductive type (p-type) semiconductor layer 1506 has a larger bandgap than the first conductive type
  • an organic metal compound gas for example, trimethyl gallium (TMG), trimethyl aluminum (TMA), etc.
  • TMG trimethyl gallium
  • TMA trimethyl aluminum
  • a nitrogen-containing gas ammonia (NH 3) or the like
  • NH 3 ammonia
  • the temperature of the substrate is maintained at a high temperature of 900 ° C to 1100 ° C
  • a gallium nitride compound semiconductor is grown on the substrate, ,
  • a gallium nitride compound semiconductor is laminated in an undoped, n-type, or p-type.
  • the n-type impurity Si is well known.
  • As the p-type impurity Zn, Cd, Be, Mg, Ca, Ba, etc. are mainly used.
  • the active layer 1505 disposed between the first and second conductivity type semiconductor layers 1504 and 1506 may be a multiple quantum well (MQW) structure in which a quantum well layer and a quantum barrier layer are alternately stacked, for example, a nitride semiconductor , A GaN / InGaN structure may be used, but a single quantum well (SQW) structure may also be used.
  • MQW multiple quantum well
  • SQW single quantum well
  • the ohmic contact layer 1508 may have a relatively high impurity concentration to lower the ohmic contact resistance, thereby lowering the operating voltage of the device and improving device characteristics.
  • the ohmic contact layer 1508 may be composed of GaN, InGaN, ZnO, or a graphene layer.
  • the first and second electrodes 1509a and 1509b may include Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au, , Ni / Al, Zn / Al, Pd / Ag, Pd / Al, Ir / Ag. Or two or more layers such as Ir / Au, Pt / Ag, Pt / Al, and Ni / Ag / Pt.
  • the LED chip shown in FIG. 57 includes, for example, a structure in which the first and second electrodes 1509a and 1509b face the same surface as the light extracting surface, a flip chip structure in which the first and second electrodes 1509a and 1509b are opposite to the light extracting surface, A vertical structure formed on the opposite surfaces of the second electrodes, and a vertical-horizontal structure employing a via structure for current dispersion efficiency.
  • LED chip shown in FIG. 58 as a structure for efficiency of current dispersion and heat dissipation efficiency.
  • the LED chip 1600 includes a first conductive semiconductor layer 1604, an active layer 1605, a second conductive semiconductor layer 1606, a second electrode layer 1607, An insulating layer 1602, a first electrode layer 1608, and a substrate 1601.
  • the first electrode layer 1608 is electrically insulated from the second conductivity type semiconductor layer 1606 and the active layer 1605 to be electrically connected to the first conductivity type semiconductor layer 1604 to form the first electrode layer 1608, And at least one contact hole (H) extending from one surface of the first conductive semiconductor layer (1604) to at least a partial region of the first conductive semiconductor layer (1604).
  • the first electrode layer 1608 is not an essential component in the present embodiment.
  • the contact hole H is formed in the first conductivity type semiconductor layer 1604 through the second electrode layer 1607, the second conductivity type semiconductor layer 1606, and the active layer 1605 from the interface of the first electrode layer 1608, . Extends at least to the interface between the active layer 1605 and the first conductivity type semiconductor layer 1604 and preferably extends to a portion of the first conductivity type semiconductor layer 1604. Since the contact hole H is provided for electrical connection and current dispersion of the first conductivity type semiconductor layer 1604, the contact hole H can be brought into contact with the first conductivity type semiconductor layer 1604, so that the first conductivity type semiconductor layer 1604 Need not extend to the outer surface of the housing.
  • the second electrode layer 1607 formed on the second conductivity type semiconductor layer 1606 may be formed of Ag, Ni, Al, Rh, Pd, Pd, or the like in consideration of the light reflection function, the second conductivity type semiconductor layer 1606, Ir, Ru, Mg, Zn, Pt, Au, or the like, and processes such as sputtering and deposition can be used.
  • the contact hole H has a shape penetrating through the second electrode layer 1607, the second conductivity type semiconductor layer 1606, and the active layer 1605 to be connected to the first conductivity type semiconductor layer 1604.
  • the hole H can be performed using an etching process, for example, ICP-RIE or the like.
  • An insulator 1602 is formed to cover the sidewall of the contact hole H and the surface of the second conductivity type semiconductor layer 1606. In this case, at least a part of the first conductivity type semiconductor layer 1604 corresponding to the bottom of the contact hole H may be exposed.
  • the insulator 1602 may be formed by depositing an insulating material such as SiO 2 , SiO x N y , or Si x N y .
  • a second electrode layer 1608 including a conductive via filled with a conductive material is formed in the contact hole H. Subsequently, a substrate 1601 is formed on the second electrode layer 1608. In this structure, the substrate 1601 may be electrically connected by a conductive via connected to the first conductive type semiconductor layer 1604.
  • Material that the substrate 1601 includes any one of, but are not limited to Au, Ni, Al, Cu, W, Si, Se, GaAs, SiAl, Ge, Sic, AlN, Al 2 O 3, GaN, AlGaN And may be formed by a process such as plating, sputtering, vapor deposition or adhesion.
  • the number, shape, pitch, contact area between the first and second conductivity type semiconductor layers 1604 and 1606, and the like can be appropriately adjusted in order to lower the contact resistance of the contact hole H, The current flow can be improved.
  • the conductive via 31 can be electrically separated from the active layer 22 and the second conductive type semiconductor layer 23 by being surrounded by the insulating portion 50.
  • the LED lighting device provides the improved heat dissipation characteristics, it is preferable that the LED chip itself used in the lighting device is used as an LED chip having a small heating value in terms of the overall heat radiation performance.
  • An LED chip (hereinafter referred to as a " nano LED chip ”) including a nano structure may be used as the LED chip satisfying these requirements.
  • Fig. 59 exemplifies a nano-LED chip as another example of an LED chip that can be employed in the above-described illumination device.
  • the nano-LED chip 1700 includes a plurality of nano-light-emitting structures N formed on a substrate 1701.
  • the nano-light-emitting structure N is illustrated as a rod-like structure as a core-shell structure, but it is not limited thereto and may have another structure such as a pyramid structure.
  • the nano-LED chip 1700 includes a base layer 1702 formed on a substrate 1701.
  • the base layer 1702 may be the first conductivity type semiconductor as a layer for providing a growth surface of the nano-light emitting structure N.
  • a mask layer 1703 having an open region for growing the nano-light-emitting structure N (particularly, a core) may be formed.
  • the mask layer 1703 may be a dielectric material such as SiO 2 or SiN x .
  • the nano-light-emitting structure N may be formed by selectively growing a first conductivity type semiconductor using a mask layer 1703 having an open region to form a first conductivity type nanocore 1704,
  • the active layer 1705 and the second conductivity type semiconductor layer 1706 are formed as a shell layer.
  • the nano-light-emitting structure N may include a core-shell structure in which the first conductivity type semiconductor becomes a nanocore and the active layer 1705 surrounding the nanocore and the second conductivity type semiconductor layer 1706 form a shell layer. Structure.
  • the nano-LED chip 1700 includes a filling material 1707 filled between the nano-light-emitting structures N.
  • the filling material 1707 may structurally stabilize the nano-light-emitting structure N.
  • the filling material 1707 may be formed of a transparent material such as SiO 2 , although it is not limited thereto.
  • the ohmic contact layer 1708 may be formed on the nano-light-emitting structure N to be connected to the second conductive semiconductor layer 1706.
  • the nano-LED chip 1700 includes first and second electrodes 1709a and 1709b connected to the base layer 1702 of the first conductivity type semiconductor and the ohmic contact layer 1708, respectively.
  • At least one of the diameter, the component and the doping concentration of the nanostructured structure N may be differently applied to emit light of two or more different wavelengths in a single device. It is possible to realize white light without using a phosphor in a single device by appropriately controlling light of other wavelengths and to combine other LED chips with such a device or to combine wavelength conversion materials such as phosphors to obtain desired color light or color temperature Other white light can be realized.
  • 60 shows a semiconductor light emitting device 1800 having an LED chip 1810 mounted on a mounting substrate 1820 as a light source that can be employed in the above-described lighting apparatus.
  • the semiconductor light emitting device 1800 shown in FIG. 60 includes a mounting substrate 1820 and an LED chip 1810 mounted on the mounting substrate 1820.
  • the LED chip 1810 is shown as an LED chip different from the example described above.
  • the LED chip 1810 includes a light emitting stack S disposed on one side of a substrate 1801 and first and second light emitting devices 1810 and 1810 disposed on the opposite side of the substrate 1801 with respect to the light emitting stack S, Electrodes 1808a and 1808b.
  • the LED chip 1810 includes an insulating portion 1803 formed to cover the first and second electrodes 1808a and 1808b.
  • the first and second electrodes 1808a and 1808b may include first and second electrode pads 1819a and 1819b by first and second electrical connections 1809a and 1809b.
  • the light emitting stacked body S may include a first conductive semiconductor layer 1804, an active layer 1805, and a second conductive semiconductor layer 1806 sequentially disposed on a substrate 1801.
  • the first electrode 1808a may be provided as a conductive via connected to the first conductive semiconductor layer 1804 through the second conductive semiconductor layer 1806 and the active layer 1805.
  • the second electrode 1808b may be connected to the second conductive semiconductor layer 1806.
  • the insulating portion 1803 has an open region to expose at least a portion of the first and second electrodes 1808a and 1808b, and the first and second electrode pads 1819a and 1819b are electrically connected to the first and second electrodes 1808a and 1808b. And may be connected to the second electrodes 1808a and 1808b.
  • the first and second electrodes 1809a and 1809b may have a single or multilayer structure of the first and second conductive semiconductor layers 1804 and 1806 and the conductive material having the ohmic characteristic, (Al), Ni (Ni), Cr (Cr), or a transparent conductive oxide (TCO), or by sputtering.
  • the first and second electrodes 1809a and 1809b may be disposed in the same direction as each other.
  • the first and second electrodes 1809a and 1809b may be mounted on a lead frame or the like in a so-called flip-chip form. In this case, the first and second electrodes 1809a and 1809b may be arranged to face in the same direction.
  • the first electrode 1808a penetrates the second conductive type semiconductor layer 1804 and the active layer 1805 and is electrically connected to the first conductive type semiconductor layer 1804 in the light emitting stacked body S
  • the first electrical connection 1809a may be formed by the first electrode 1808a having a via.
  • the number, shape, pitch, contact area with the first conductivity type semiconductor layer 1804, and the like of the conductive via and the first electrical connection portion 1809a can be appropriately adjusted so that the contact resistance is lowered, 1 electrical connection 1809a are arranged in rows and columns, so that current flow can be improved.
  • the other electrode structure may include a second electrode 1808b directly formed on the second conductive type semiconductor layer 1806 and a second electrical connection portion 1809b formed on the second electrode 1808b.
  • the second electrode 1808b is formed of a light reflecting material in addition to the function of forming an electrical ohmic contact with the second conductive type semiconductor layer 23, so that the LED chip 1810 can be formed as a flip chip structure
  • the light emitted from the active layer 1805 can be effectively emitted toward the substrate 1801.
  • the second electrode 41 may be made of a light-transmitting conductive material such as a transparent conductive oxide.
  • the two electrode structures described above can be electrically separated from each other by the insulating portion 1803.
  • the insulating portion 18030 may be any material having an electrically insulating property, and any material having electrical insulation may be employed, but it is preferable to use a material having a low light absorption rate.
  • silicon oxide such as SiO 2 , SiO x N y , Si x N y , or silicon nitride may be used.
  • a light reflecting structure can be formed by dispersing a light reflecting filler in a light transmitting substance.
  • the first and second electrode pads 1819a and 1819b may be connected to the first and second electrical connection portions 1809a and 1809b to function as external terminals of the LED chip 1810.
  • the first and second electrode pads 1819a and 1819b may be Au, Ag, Al, Ti, W, Cu, Sn, Ni, Pt, Cr, NiSn, TiW, AuSn, have.
  • solder since solder can be bonded to the mounting board 1820 using eutectic metal, a separate solder bump, which is generally required for flip chip bonding, may not be used.
  • the first and second electrode pads 1819a and 1819b may be formed to occupy a large area in order to obtain an excellent heat radiation effect.
  • the substrate 1801 and the luminescent stack S can be understood with reference to the description with reference to Fig. 57, unless otherwise described.
  • a buffer layer (not shown) may be formed between the light-emitting structure S and the substrate 1801, and the buffer layer is employed as an undoped semiconductor layer made of nitride or the like, The lattice defects of the light emitting structure can be alleviated.
  • the substrate 1801 may have first and second major surfaces opposite to each other, and at least one of the first and second main surfaces may have a concave-convex structure.
  • the concavo-convex structure formed on one surface of the substrate 1801 may be made of the same material as the substrate 1801, and may be formed of a different material from the substrate 1801.
  • the path of the light emitted from the active layer 1805 can be varied by forming the concave-convex structure on the interface between the substrate 1801 and the first conductive type semiconductor layer 1804, The rate of absorption of the light is reduced and the light scattering ratio is increased, so that the light extraction efficiency can be increased.
  • the concavo-convex structure may be formed to have a regular or irregular shape.
  • a transparent conductor, a transparent insulator, or a material having excellent reflectivity may be used as the heterogeneous material forming the unevenness.
  • the transparent insulator a material such as SiO 2 , SiN x , Al 2 O 3 , HfO, TiO 2 or ZrO is used as the transparent conductor, ZnO or the additive (Mg, Ag, Zn, Sc, Hf, Zr,
  • a transparent conductive oxide (TCO) such as indium oxide containing indium tin oxide (ITO), tin oxide (ITO), tin oxide DBRs having a multi-layer structure can be used, but the present invention is not limited thereto.
  • the substrate 1801 may be removed from the first conductive semiconductor layer 1804.
  • a laser lift off (LLO) process or an etching and polishing process can be used.
  • the surface of the first conductivity type semiconductor layer from which the substrate has been removed can be provided with irregularities.
  • the LED chip 1810 is mounted on a mounting substrate 1820.
  • the mounting substrate 1820 has upper and lower electrode layers 1812b and 1812a formed on the upper and lower surfaces of the substrate body 1811 and the substrate body 1811 to connect the upper and lower electrode layers 1812b and 1812a. And includes a through hole 1813.
  • the upper and lower electrode layers 1812b and 1812a may be a metal layer such as Au, Cu, Ag, Al, or the like.
  • the substrate body 1811 may be made of resin, ceramic, or metal.
  • the substrate on which the above-described LED chip 1810 is mounted is not limited to the form of the mounting substrate 1820 shown in FIG. 60, and any substrate having a wiring structure for driving the LED chip 1801 can be applied Do.
  • a package structure in which an LED chip is mounted on a package body having a pair of lead frames can also be provided.
  • LED chips of various structures can be used.
  • an LED chip having greatly improved light extraction efficiency by interacting with a quantum well exciton by forming surface-plasmon polarities (SPP) on the metal-dielectric boundary of an LED chip may be usefully used.
  • SPP surface-plasmon polarities
  • LED chips may be mounted on a circuit board as a bare chip and used in the above-described lighting apparatus.
  • the LED chip may be used in various types of package structures mounted on a package body having a pair of electrode structures.
  • a package (hereinafter, referred to as an LED package) having such an LED chip not only provides an external terminal structure that can be easily connected to an external circuit, but also has a heat dissipation structure for improving the heat dissipation characteristics of the LED chip and various optical structures Lt; / RTI >
  • various optical structures there may be a wavelength converter for converting light emitted from the LED chip to light having a different wavelength, or a lens structure for improving light distribution characteristics.
  • an LED chip package having a chip scale package (CSP) structure can be used as an example of an LED package that can be employed in the above-described lighting apparatus.
  • CSP chip scale package
  • the chip scale package is suitable for mass production by reducing the size of the LED chip package and simplifying the manufacturing process. Since the optical structure such as a wavelength conversion material such as a phosphor and a lens can be integrally manufactured together with the LED chip, It can be suitably used for a lighting device.
  • 61 shows a package structure in which an electrode is formed through a lower surface of an LED 1910 opposite to a main light extraction surface and a phosphor layer 1907 and a lens 1920 are integrally formed as an example of such a chip scale package.
  • the chip scale package 1900 shown in Fig. 61 includes the light emitting stacked body S, the first and second terminal portions Ta and Tb, the phosphor layer 1907 and the lens 1920 disposed on the substrate 1911 do.
  • the light emitting stacked body S is a laminated structure including first and second conductive type semiconductor layers 1904 and 1906 and an active layer 1905 disposed therebetween.
  • the first and second conductivity type semiconductor layers 1904 and 1906 may be p-type and n-type semiconductor layers, respectively, and a nitride semiconductor, for example, Al x In y Ga (1-xy ) N (0 ? X? 1, 0? Y? 1, 0? X + y? 1).
  • a GaAs-based semiconductor or a GaP-based semiconductor may also be used.
  • the active layer 1905 formed between the first and second conductive type semiconductor layers 1904 and 1906 emits light having a predetermined energy by recombination of electrons and holes and the quantum well layer and the quantum barrier layer Alternately stacked multiple quantum well (MQW) structures.
  • MQW Alternately stacked multiple quantum well
  • a multiple quantum well structure for example, InGaN / GaN, AlGaN / GaN structures may be used.
  • the first and second conductivity type semiconductor layers 1904 and 1906 and the active layer 1905 may be formed using a semiconductor layer growth process such as MOCVD, MBE, HVPE or the like known in the art.
  • the LED 1910 shown in FIG. 61 is in a state in which the growth substrate is removed, and the unevenness P may be formed on the surface from which the growth substrate is removed. Further, a phosphor layer 1907 is applied as a light conversion layer on the surface on which the irregularities are formed.
  • the LED 1910 has first and second electrodes 1909a and 1909b connected to the first and second conductive type semiconductor layers 1904 and 1906, respectively, similar to the LED chip shown in Fig.
  • the first electrode 1909a includes conductive vias 1908 connected to the second conductive type semiconductor layer 1904 through the second conductive type semiconductor layer 1906 and the active layer 1905.
  • an insulating layer 1903 is formed between the active layer 1905 and the second conductive type semiconductor layer 1906 to prevent a short circuit.
  • the conductive vias 1906 may include two or more conductive vias 1906 to facilitate current dispersion and may be arranged in various forms.
  • the mounting substrate 1911 employed in this example is exemplified as a supporting substrate to which a semiconductor process such as a silicon substrate can be easily applied, but the present invention is not limited thereto.
  • the mounting board 1911 and the LED 1910 may be bonded by bonding layers 1902 and 1912.
  • the bonding layers 1902 and 1912 are made of an electrically insulating material or an electrically conductive material.
  • an electrically insulating material oxides or nitrides such as SiO2 or SiN, resin materials such as silicon resin and epoxy resin
  • the electrically conductive material include Ag, Al, Ti, W, Cu, Sn, Sn, Ni, Pt, Cr, NiSn, TiW and AuSn or their eutectic metals.
  • the present process can be realized by applying first bonding layer 1902 and bonding bonding layer 1902 to the bonding surfaces of LED 1910 and substrate 1911, and then bonding them.
  • Vias may be formed on the lower surface of the mounting substrate 1911 so as to be connected to the first and second electrodes 1909a and 1909b of the LED 1910 bonded to the mounting substrate 1911.
  • An insulator 1913 is formed on the side surface of the via and the bottom surface of the mounting board 1911.
  • the insulator 1913 may be provided as a silicon oxide film through a thermal oxidation process.
  • the first and second terminals Ta and Tb are formed to be connected to the first and second electrodes 1909a and 1909b by filling the via with a conductive material.
  • the first and second terminals Ta and Tb may be plating portions 1919a and 1919b formed by a plating process using the seed layers 1918a and 1918b and the seed layers 1918a and 1918b.
  • the illumination device has a high color rendering index in order to provide illumination light close to natural light.
  • red, green and blue LED chips or packages can be used together, and a combination of red and green phosphors in a blue LED chip or package, blue and green LED chips or blue and red LED chips A red or green phosphor may be combined to provide a white light source.
  • These additional phosphors include Lu 3 Al 5 O 12 : Ce 3+ , Ca- ⁇ -SiAlON: Eu 2+ , L 3 Si 6 O 11 : Ce 3+ , (Ca, Sr) AlSiN 3 : Eu 2+ , Y 3 Al 5 O 12: Ce 3+ , LiAlO 2: Fe 3+ and (Ba, Sr, Mg) 3 Si 2 O 7: can be used at least one selected from the group consisting of Pb 2+.
  • the phosphor may be applied directly to the LED chip or provided on the light extraction path of the package. For example, it may be applied to the top or top and side of the LED chip, or it may be applied to the cup structure of the package in a layered structure or mixed with the packaging resin. Depending on the application type of the phosphor, it may be classified into a form of contacting the LED chip and a form of arranging the phosphor to have a certain distance from the LED chip in a remote manner.
  • a pneumatic or mechanical dispensing method and a jetting method dispensing method for a small amount of control may be used, or a screen printing method (screen printing method) printing or spraying processes may be used.
  • a screen printing method (screen printing method) printing or spraying processes may be used.
  • an electrophoretic or conformal coating process for local coating in certain areas, such as the top surface of the LED chip, may be used.
  • the phosphor may be applied by a method in which a ceramic fluorescent substance film or a fluorescent substance-containing resin film is prepared separately and bonded to an LED chip or a package.
  • the lighting apparatus using the above-described LEDs can be roughly divided into indoor and outdoor depending on the use thereof.
  • Indoor LED lighting equipment is mainly used for lamps, fluorescent lamps (LED-tubes) and flat-panel lighting devices.
  • Outdoor LED lighting devices are street lights, security lights, floodlights, And so on.
  • a light emitting diode (LED) chip, a packaging device, or a substrate module structure with an LED chip or package used for illumination should have excellent heat generating effect. Also, the color rendering property should be close to the sunlight.
  • a GaN on Si substrate or a chip size package using an inexpensive silicon (Si) Chip Scale PKG: CSP) structure can be applied.
  • an LED chip which does not generate heat or generates a small amount of heat as much as possible on the side of heat dissipation.
  • a core / shell type nano LED structure which has been recently developed, It has an advantage that the bonding density is small and the heat generation is relatively small.
  • a flip chip or a vertical structure or a vertical-horizontal structure having a plurality of vias inside the LED chip and having an electrically and thermally safe structure can enhance the heat dissipation effect and is suitable as an LED chip for illumination.
  • red, green and blue LED chips or packages can be used.
  • red or green phosphors may be combined with blue LED chips or packages, or blue or green or blue LED chips may be combined with red or green phosphors
  • a white light emitting device can be manufactured.
  • Lighting devices using LEDs may vary in optical design depending on product type, location and purpose. With regard to emotional lighting, it is possible to control the lighting using technologies for controlling the color, temperature, brightness and color of light, and wireless (remote) control technology using portable devices such as smart phones.
  • a visible light wireless communication technology is also available in which a communication function is added to the LED illumination device and the display devices to simultaneously achieve the intrinsic purpose of the LED light source and the purpose of the communication means. This is because the LED light source has a longer lifetime than the conventional light sources, has excellent power efficiency, can realize various colors, and has a fast switching speed for digital communication and digital control.
  • the visible light wireless communication technology is a wireless communication technology that wirelessly transmits information using light of a visible light wavelength band that can be perceived by human eyes.
  • Such a visible light wireless communication technology is distinguished from existing wired optical communication technology and infrared wireless communication in that it uses light in a visible light wavelength band and is distinguished from wired optical communication technology in terms of wireless communication environment.
  • visible light wireless communication technology has the advantage that it can be freely used without being regulated or licensed in terms of frequency utilization, has excellent physical security, and has a difference in that a user can visually confirm a communication link. And has the characteristic of being a convergence technology that can obtain the intrinsic purpose of the light source and the communication function at the same time.
  • the lighting device using the LED can be utilized as an internal or external light source for a vehicle.
  • an internal light source it can be used as a vehicle interior light, a reading light, various light sources of a dashboard, etc.
  • LEDs can be applied as a light source for robots or various kinds of mechanical equipment.

Abstract

광을 출사하는 적어도 하나의 발광소자 및 상기 발광소자가 배치되는 발광소자 기판을 갖는 발광모듈; 상기 발광소자 기판을 기준으로 해서, 상기 링의 중심축 방향의 일측에 설치되는 하우징; 및 상기 발광모듈을 덮도록 설치되는 수지제 글로브;를 구비하고, 상기 글로브는, 상기 글로브의 성형에 사용된 게이트부의 적어도 일부를 잔존시킨 돌출부를 2 이상 갖고, 상기 발광소자 기판은, 상기 돌출부와 결합하는 노치(notch)부를 갖는, 조명 장치가 제공된다.

Description

조명 장치의 방열 구조 및 조명장치
본 발명은, 발광소자를 사용한 조명 장치의 방열 구조 및 이를 구비한 조명 장치에 관한 것이다.
발광소자를 사용한 조명 장치에 있어서, 종래, 발광소자로부터의 발열을 방열하는 히트싱크는, 발광소자를 실장한 기판의 뒷면에만 배치되어 있다. 그러나, 방열 효율이 충분하지 않아 생기는 조명 장치의 성능 저하를 회피하기 위해, 조명 장치의 방열 효율을 향상시키는 대책이 다양하게 실시되고 있다.
또한, 발광소자를 사용한 조명 장치에서는, 광원으로서 지향성이 강한 LED를 사용하고 있기 때문에, 한정된 방향으로밖에 배광시킬 수 없다. 한편, 백열전구는, 금속 소켓(socket) 등으로 가려지는 영역을 제외하고, 거의 모든 방향으로 배광시킬 수 있기 때문에, 거의 모든 방향으로 배광시키는 것이 필요한 조명 장치와 같은 용도에서는, LED 조명 장치를 백열전구의 대체품으로서 사용하는 것은 곤란하다. 따라서, LED 조명 장치의 분야에서는, 배광성을 향상시키기 위한 기술이 요구되고 있다.
그러나, 조명 장치의 규격 등에 의해 형상에 제약이 있는 경우에는 히트싱크의 방열 면적을 늘릴 수 없고, 방열 효율을 개선해지는 것이 곤란하며, 배광성을 향상시키는데도 한계가 있으며, 이러한 문제를 해결하기 위한 신규한 방열구조 및 방열구조를 이용한 조명장치가 요구되고 있다.
본 발명의 제1 실시형태의 일 관점에 따르면, 광을 출사하는 적어도 하나의 발광소자 및 상기 발광소자가 배치되는 발광소자 기판을 갖는 발광모듈; 상기 발광소자 기판을 기준으로 해서, 상기 링의 중심축 방향의 일측에 설치되는 하우징; 및 상기 발광모듈을 덮도록 설치되는 수지제 글로브;를 구비하고, 상기 글로브는, 상기 글로브의 성형에 사용된 게이트부의 적어도 일부를 잔존시킨 돌출부를 2 이상 갖고, 상기 발광소자 기판은, 상기 돌출부와 결합하는 노치(notch)부를 갖는, 조명 장치가 제공된다.
본 발명의 제1 실시형태의 다른 관점에 따르면, 광을 출사하는 적어도 하나의 발광소자 및 상기 발광소자가 배치되는 발광소자 기판을 갖는 발광모듈; 상기 발광소자 기판을 기준으로 해서, 상기 링의 중심축 방향의 일측에 설치되는 하우징; 상기 발광모듈을 덮도록 설치되는 수지제 글로브; 및 상기 발광소자 기판과 상기 하우징 양쪽 모두에 접촉하도록 설치되고, 상기 발광모듈에서 발생한 열을 상기 하우징에 전달하는 방열판;을 구비하고, 상기 글로브는, 상기 글로브의 성형에 사용된 게이트부의 적어도 일부를 잔존시킨 돌출부를 2이상 갖고, 상기 발광소자 기판과 상기 방열판 중 적어도 어느 하나는, 상기 돌출부와 결합하는 노치부를 갖는, 조명 장치가 제공된다.
여기서, 상기 각 조명 장치에 있어서, 상기 각 돌출부가, 등간격으로 배치되어 있는 것이 바람직하다.
또한, 상기 각 조명 장치에 있어서, 상기 글로브가, 상기 발광소자 기판측의 단부에 원형상의 개구부를 갖고 있고, 상기 개구부의 주연을 따라 상기 돌출부가 설치될 수 있다.
본 발명의 제2 실시형태에 따르면, 광을 출사하는 복수의 발광소자 및 상기 발광소자가 링형으로 배치되는 발광소자 기판을 갖는 발광모듈; 상기 발광소자 기판을 기준으로 해서, 상기 링의 중심축 방향의 일측에 설치되고, 중공이며 거의 통형의 하우징; 상기 발광소자 기판에서의 상기 일측과는 반대측의 타측의 면에 지지되고, 상기 발광소자에서 출사된 광을 반사시키는 리플렉터; 및 상기 발광모듈 및 상기 리플렉터를 덮도록 설치되고, 상기 하우징의 최대 직경보다 큰 최대 직경을 갖는 글로브;를 구비하고, 상기 리플렉터는, 상기 발광소자 기판에서 이격함에 따라 직경이 확장되는 원뿔대형이 되도록 상기 발광소자 기판의 상기 타측의 면에서 돌출해 설치되고, 상기 원뿔대의 측주면(側周面)에 상기 발광소자에서 출사된 광을 반사시키는 반사면을 갖고, 상기 글로브는, 상기 하우징에 접속되고, 상기 반사면의 경사를 따른 경사면을 갖는 글로브 넥부(neck portion); 및 상기 글로브 넥부에 연결 설치되는 거의 반구형의 글로브 헤드부;로 이루어진, 조명 장치가 제공된다.
여기서, 상기 조명 장치에 있어서, 상기 리플렉터의 상기 반사면과 상기 글로브의 상기 경사면이 거의 평행한 것이 바람직하다.
또한, 상기 조명 장치에 있어서, 상기 글로브의 소재가 형광체를 함유하는 재료이거나, 상기 글로브의 표면에 형광체가 도포되어 있고, 상기 발광소자가, 상기 글로브에 설치된 형광체를 여기하는 광을 발광하는 LED인 것이 바람직하다.
또한, 상기 조명 장치에 있어서, 상기 글로브의 소재가 광확산재를 더 함유하는 재료이거나, 상기 글로브의 표면에 광확산재가 더 도포될 수 있다.
또한, 상기 조명 장치에 있어서, 상기 글로브의 소재가 광확산재를 함유하는 재료이거나, 상기 글로브의 표면에 광확산재가 도포되어 있고, 상기 발광소자가, 백색광을 발하는 LED일 수 있다.
또한, 상기 조명 장치에 있어서, 상기 리플렉터의 상기 링의 중심축 방향의 길이(d1)가, 상기 글로브 넥부의 상기 링의 중심축 방향의 길이(d2)보다 긴 것이 바람직하다.
또한, 상기 조명 장치에 있어서, 상기 리플렉터를 상기 리플렉터의 직경 확장 방향에서 상기 발광소자 기판으로 투영한 경우에, 상기 투영 영역 내에 상기 발광소자의 적어도 일부가 존재하는 것이 바람직하다.
본 발명의 제3 실시형태에 따르면, 발광소자를 이용한 조명장치의 방열 부재가 제공된다. 본 발명의 방열 부재는, 길이방향의 일단에 발광소자가 배치된 발광소자 기판을 덮는 글로브가 접속되는 금속제의 중공의 본체부; 본체부의 외주면에 인서트 성형되어 설치된 수지제의 방열부;를 구비하고, 본체부에는 방열부를 형성하는 수지재료를 계지하는 계지부가 설치되어 있는 것을 특징으로 한다.
계지부는 본체부의 외주면에 형성된 복수의 구멍일 수 있다. 이 때, 구멍은 인서트 성형 시에 방열부를 형성하는 수지재료가 유동하는 방향이면서 또한, 본체부의 길이방향으로 직경이 긴 타원형 또는 다각형으로 형성할 수 있다.
또한, 계지부는 본체부의 외주면에 형성된 본체부의 길이방향으로 연장되는 복수의 슬릿일 수 있다.
또한, 계지부는 본체부의 외주면에 형성된 글로브부와 접속되는 일단측에서 타단측을 향해 외주의 직경이 작아지는 단차부일 수 있다.
또한, 계지부는 본체부의 외주면에 형성된 복수의 오목부일 수 있다.
또한, 계지부는 본체부의 외주면에 형성된 복수의 돌기부일 수 있다.
본 발명의 특정 실시형태(제4 및 제5 실시형태)에 따르면, 발광소자를 사용한 조명 장치의 방열 구조가 제공된다. 본 발명의 조명 장치의 방열 구조는, 링형으로 배치된 발광소자를 포함하는 발열체를 기준으로 해서, 링형으로 배치된 발광소자의 중심축 방향의 일측에 설치되는 제1 히트싱크; 및 중심축 방향의 타측에 설치되는 제2 히트싱크;를 구비하는 것을 특징으로 한다.
여기서, 발광체는, 발광소자; 및 상기 발광소자가 탑재되는 발광소자 기판;으로 구성될 수 있다.
또한, 제1 히트싱크 및 제2 히트싱크는 중공의 본체부를 각각 갖고, 본체부의 중심축과 발광소자의 중심축이 일치하도록 구성해도 된다.
또한, 제1 히트싱크와 제2 히트싱크 사이에는, 제1 히트싱크의 본체부 또는 제2 히트싱크의 본체부의 외주면에서 연장 설치되는, 발열체를 지지하는 플랜지부를 설치할 수 있다.
또한, 발열체는, 제2 히트싱크의 외주면에 설치할 수 있다.
또한, 제1 히트싱크와 제2 히트싱크는 일체로 형성할 수 있다.
본 발명의 제6 실시형태의 다른 관점에 따르면, 광을 출사하는 발광소자; 발광소자가 링형으로 배치된 발광소자 기판; 발광소자를 포함하는 발열체로부터의 열을 방열하는 히트싱크; 및 발광소자가 배치된 발광소자 기판을 덮는 글로브;를 구비하고, 히트싱크는, 발열체를 기준으로 해서, 링형으로 배치된 발광소자의 중심축 방향의 일측에 설치되는 제1 히트싱크; 및 중심축 방향의 타측에 설치되는 제2 히트싱크;를 구비하는 것을 특징으로 하는 조명 장치가 제공된다.
여기서, 제1 히트싱크 및 제2 히트싱크는, 발광소자의 중심축과 일치하는 중심축을 갖는 중공의 본체부를 각각 갖고, 글로브는, 상기 글로브부측에 설치되는 제2 히트싱크의 본체부의 중공 부분과 접속되는 개구부를 구비할 수 있다.
본 발명의 다른 특정 실시형태(제7 및 제8 실시형태)에 따르면, 광을 출사하는 복수의 발광소자와 상기 발광소자가 링형으로 배치되는 발광소자 기판을 가지는 발광모듈; 상기 발광소자 기판을 기준으로 상기 링의 중심축 방향의 일측에 설치되는 제1 히트싱크; 상기 발광소자 기판을 기준으로 상기 링의 중심축 방향의 타측에 설치되는 제2 히트싱크; 상기 발광모듈을 덮도록 설치되는 글로브; 및 상기 제2의 히트싱크의 내부에 설치되어 상기 발광소자를 구동시키는 구동회로;를 구비하며, 상기 제1 히트싱크는 상기 발광모듈과 상기 구동회로의 어느 하나에서 발생한 열만을 외부로 방출하고, 상기 제2 히트싱크는 상기 발광모듈과 상기 구동회로의 다른 하나에서 발생한 열만을 외부로 방출하는 조명장치가 제공된다.
여기서, 상기 조명장치에 있어서, 상기 제1 히트싱크는 상기 구동회로에서 발생한 열을 외부로 방출하고, 상기 제2 히트싱크는 상기 발광모듈에서 발생한 열을 외부로 방출하도록 할 수 있다.
이 경우, 상기 제1 히트싱크는 거의 원통형 또는 거의 기둥형이며, 상기 발광소자 기판의 중앙부에는 상기 제1 히트싱크와 접촉하지 않는 개구부가 설치되어 있으며, 상기 발광소자 기판은 상기 제2 히트싱크와 열적으로 결합됨과 동시에 상기 구동회로는 열전도성을 가지는 재료로 이루어지는 열전도 부재를 통해 상기 제1 히트싱크와 열적으로 결합되어 있을 수 있다.
또한, 상기 조명장치는, 상기 발광소자 기판과 상기 제2 히트싱크 사이에 상기 발광소자 기판에서 발생한 열을 상기 제2 히트싱크에 전달하는 방열판을 추가로 구비하며, 상기 방열판의 중앙부에는 상기 제1 히트싱크와 접촉하지 않는 개구부가 설치되어 있을 수 있다.
또한, 상기 조명장치에 있어서, 상기 제1 히트싱크는 상기 발광모듈에서 발생한 열을 외부로 방출하고, 상기 제2 히트싱크는 상기 구동회로에서 발생한 열을 외부로 방출할 수 있다.
본 발명의 제9 실시형태의 일 관점에 따르면, 발광소자를 사용한 조명 장치의 방열 구조가 제공된다. 본 발명의 조명 장치의 방열 구조는, 링형으로 배치된 발광소자를 포함하는 발열체의 중심부에 설치되고, 링형으로 배치된 발광소자의 중심축 방향으로 연장 설치되는 중공의 히트싱크; 및 히트싱크의 내부에 설치되는 중공의 내부 히트싱크;를 구비하고, 히트싱크의 중심을 지나는 히트싱크의 내주면에서 내부 히트싱크의 외주면까지의 거리는 불균일한 것을 특징으로 한다.
여기서, 중심축 방향에서 본 히트싱크의 평면 형상은 원형이고, 내부 히트싱크의 평면 형상은 장경 및 단경을 갖는 타원형 또는 다각형이어도 된다.
본 발명의 제9 실시형태의 다른 관점에 따르면, 광을 출사하는 발광소자; 발광소자가 링형으로 배치된 발광소자 기판; 발광소자가 배치된 발광소자 기판을 덮는 글로브; 링형으로 배치된 발광소자를 포함하는 발열체의 중심부에 설치되고, 링형으로 배치된 발광소자의 중심축 방향으로 연장 설치되는 중공의 히트싱크; 및 히트싱크의 내부에 설치되는 중공의 내부 히트싱크;를 구비하고, 히트싱크의 중심을 지나는 히트싱크의 내주면에서 내부 히트싱크의 외주면까지의 거리는 불균일한 것을 특징으로 하는, 조명 장치가 제공된다.
본 발명의 제10 실시형태의 일 관점에 따르면, 발광소자를 사용한 조명 장치의 방열 구조가 제공된다. 본 발명의 조명 장치의 방열 구조는, 링형으로 배치된 발광소자를 포함하는 발열체의 중심부에 설치되고, 링형으로 배치된 발광소자의 중심축 방향으로 연장 설치되는 중공의 히트싱크; 및 히트싱크의 내주면에서 연장 설치되는 적어도 하나의 핀;을 구비하고, 히트싱크의 중심을 지나는 히트싱크의 내주면간의 거리는 불균일한 것을 특징으로 한다.
여기서, 히트싱크의 내주면에 설치되는 복수의 핀 중 적어도 하나는 다른 핀의 반경 방향의 길이와 다르게 형성해도 된다.
또한, 각 핀은, 히트싱크의 내주면에서 중심을 향해 원주 방향으로 방사상으로 배치해도 된다. 또는, 각 핀은, 히트싱크의 내주면에서 내부 공간을 향해 한 방향으로 연장 설치해도 된다.
본 발명의 제10 실시형태의 다른 관점에 따르면, 광을 출사하는 발광소자; 발광소자가 링형으로 배치된 발광소자 기판; 발광소자가 배치된 발광소자 기판을 덮는 글로브; 링형으로 배치된 발광소자를 포함하는 발열체의 중심부에 설치되고, 링형으로 배치된 발광소자의 중심축 방향으로 연장 설치되는 중공의 히트싱크; 및 히트싱크의 내주면에서 연장 설치되는 적어도 하나의 핀;을 구비하고, 히트싱크의 중심을 지나는 히트싱크의 내주면간의 거리는 불균일한 것을 특징으로 하는, 조명 장치가 제공된다.
본 발명의 제11 실시형태에 따르면, 광을 출사하는 복수의 발광소자와 상기 발광소자가 링형으로 배치되는 발광소자 기판을 가지는 발광모듈; 상기 발광소자 기판을 기준으로 상기 링의 중심축 방향의 일측에 상기 발광소자 기판과 접촉하여 설치되는 제1 히트싱크; 상기 발광소자 기판을 기준으로 상기 링의 중심축 방향의 타측에 설치되며, 중공 형상을 가지는 제2 히트싱크; 상기 발광소자 기판의 상기 일측면에 유지되며, 상기 발광소자에서 출사된 광을 반사시키는 리플렉터; 상기 발광모듈 및 상기 리플렉터를 덮도록 설치되는 글로브; 상기 제2 히트싱크의 내부에 설치되어 상기 발광소자를 구동시키는 구동회로;를 구비하며, 상기 제1 히트싱크 및 상기 제2 히트싱크는 각각 상기 발광모듈에서 발생한 열과 상기 구동회로에서 발생한 열 중 적어도 어느 하나를 외부로 방출하는 조명장치가 제공된다.
상기 조명장치는 상기 발광소자 기판과 상기 제2 히트싱크 모두에 접촉하도록 설치되며, 상기 발광모듈에서 발생한 열을 상기 제2 히트싱크로 전달하는 방열판을 추가로 구비할 수 있다.
상기 조명장치에 있어서, 상기 리플렉터는 상기 발광소자 기판으로부터 이격됨에 따라 직경이 확장되는 원뿔대형이 되도록 상기 발광소자 기판의 상기 일측면에서 돌출되어 설치되는 상기 원뿔대의 측주면에 상기 발광소자에서 출사된 광을 반사시키는 반사면을 가질 수 있다.
상기 조명장치에 있어서, 상기 제2 히트싱크는 거의 원통형이며, 상기 글로브의 최대 직경이 상기 제2 히트싱크의 최대 직경보다 큰 것이 바람직하다.
상기 조명장치에 있어서, 상기 글로브의 최대 직경이 상기 제2 히트싱크의 최대 직경의 1.2배 이상인 것이 보다 바람직하다.
상기 조명장치에 있어서, 상기 글로브의 소재가 형광체를 함유하는 재료이거나 또는 상기 글로브의 표면에 형광체가 도포되어 있으며 상기 발광소자가 상기 글로브에 구비된 형광체를 여기하는 광을 발광하는 LED이며, 상기 리플렉터에서 반사된 광 및 상기 발광소자에서 출사된 광의 파장이 상기 형광체에 의해 변환될 수 있다.
이 경우, 상기 글로브의 소재는 추가로 광확산제를 함유하는 재료이거나 또는 상기 글로브의 표면에 추가로 광확산제가 도포될 수 있다.
또한, 상기 조명장치에 있어서, 상기 글로브의 소재는 광확산제를 함유하는 재료이거나 또는 상기 글로브의 표면에 광확산제가 도포되어 있어 상기 발광소자가 백색광을 발하는 LED일 수 있다.
상기 조명장치에 있어서, 상기 제2 히트싱크는 수지의 내부에 금속부재가 삽입되며, 상기 수지와 상기 금속부재가 일체로 인서트 성형되어서 얻어지는 것일 수 있다.
상기 조명장치에 있어서, 상기 구동회로는 교류를 직류로 변환하는 전해 커패시터를 가지지 않을 수 있다.
상기 조명장치에 있어서, 상기 제1 히트싱크는 거의 원통형 또는 거의 기둥형이며, 상기 글로브는 상기 제1 히트싱크의 일단과 접속되는 개구부를 가지고 있을 수 있다.
상기 조명장치에 있어서, 상기 리플렉터는 중공 형상을 가지며, 상기 제1 히트싱크가 상기 리플렉터의 중공부에 배치되며 상기 제1 히트싱크의 최대 직경이 상기 리플렉터의 최대 직경 이하일 수 있다.
본 발명의 제12 실시형태에 따르면, 광을 출사하는 복수의 발광소자와 상기 발광소자가 링형으로 배치되는 발광소자 기판을 가지는 발광모듈; 상기 발광소자 기판을 기준으로 상기 링의 중심축 방향의 일측에 상기 발광소자 기판과 접촉하여 설치되는 제1 히트싱크; 상기 발광소자 기판을 기준으로 상기 링의 중심축 방향의 타측에 설치되어 중공 형상을 가지는 제2 히트싱크; 상기 발광모듈 및 상기 리플렉터를 덮도록 설치되는 글로브; 상기 제2 히트싱크의 내부에 설치되어 상기 발광소자를 구동시키는 구동회로;를 구비하며, 상기 제1 히트싱크 및 상기 제2 히트싱크는 각각 상기 발광모듈에서 발생한 열과 상기 구동회로에서 발생한 열 중 적어도 어느 하나를 외부로 방출하고, 상기 제1 히트싱크는 상기 발광소자에서 출사된 광을 반사시키는 반사면을 가지는 조명장치가 제공된다.
발열체로부터의 열을 적극적으로 방열할 수 있는 조명 장치의 방열 구조 및 조명 장치를 제공할 수 있다.
수지제 글로브의 성형 시에 사용되는 게이트 부분을, 발광모듈과 글로브간의 위치 결정용 리브 대신으로 이용함으로써, 발광소자를 사용한 조명 장치에 있어서, 글로브의 성형품으로서의 품질을 담보함과 동시에, 발광모듈과 글로브간의 위치 맞춤의 정밀도를 확보할 수 있다(특히, 제1 실시형태).
보다 간단한 구조로 배광 설계가 용이하면서, 백열전구와 동등한 넓은 배광각을 가짐으로써, 백열전구로 대체 가능한 조명 장치를 제공할 수 있다(특히, 제2 실시형태).
인서트 성형하는 금속재료를 한정하지 않고, 금속재료와 수지재료를 복합할 수 있는 조명장치의 방열 부재를 제공할 수 있다(특히, 제3 실시형태).
새로운 방열 구조를 구비함으로써 구동회로로부터의 발열에 대해, 발광모듈로부터의 발열의 영향을 받지 않고 구동회로의 방열효율을 향상시킬 수 있는 조명장치를 제공할 수 있다(특히, 제7 및 제8 실시형태).
방열효율이 우수하고 백열전구와 동등한 넓은 배광각을 가지면서 고발광효율, 고광량, 우수한 연색성, 백열전구와 동등한 형상(사이즈)을 가짐으로써 백열전구를 대체할 수 있는 전구형 조명장치를 제공할 수 있다(제11 및 제12 실시형태).
도 1은 본 발명의 제1 실시형태에 따른 조명 장치의 전체 구성을 나타내는 상면도(a) 및 정면도(b)이다.
도 2는 제1 실시형태에 따른 조명 장치를 도 1(a)의 II-II선으로 절단한 단면도이다.
도 3은 도 2의 P부를 확대한 단면도이다.
도 4는 제1 실시형태에 따른 글로브의 구성을 나타내는 평면도이다.
도 5는 제1 실시형태에 따른 발광모듈의 구성을 나타내는 평면도이다.
도 6은 제1 실시형태에 따른 글로브의 성형 방법을 나타내는 설명도이다.
도 7은 도 2의 P부에 대응하는 구성으로서, 본 실시형태에 따른 조명 장치의 변경예를 나타내는 부분 단면도이다.
도 8은 본 발명의 제2 실시형태에 따른 조명 장치의 전체 구성을 나타내는 상면도(a) 및 정면도(b)이다.
도 9는 제2 실시형태에 따른 조명 장치를 도 8(a)의 II-II선으로 절단한 단면도이다.
도 10은 제2 실시형태에 따른 리플렉터의 구성을 나타내는 일부 노치(notch) 사시 단면도이다.
도 11은 제2 실시형태에 따른 발광모듈의 구성을 나타내는 사시도이다.
도 12는 제2 실시형태에 따른 조명 장치에서의 광의 움직임을 나타내는 설명도이다.
도 13은 본 발명의 제3 실시 형태에 관한 조명장치를 나타내는 평면도 및 측면도이다.
도 14는 도 1의 조명장치의 A-A 절단선을 따라 절단한 단면도이다.
도 15는 제3 실시 형태에 관한 제1 히트싱크 중 금속재료로 형성되는 본체부 및 플랜지부를 나타내는 사시도이다.
도 16은 도 15의 측면도이다.
도 17은 제3 실시 형태에 관한 제1 히트싱크의 금속부의 일 변형예를 나타내는 사시도이다.
도 18은 도 17의 측면도이다.
도 19는 제3 실시 형태에 관한 제1 히트싱크의 금속부의 다른 변형 예를 나타내는 사시도이다.
도 20은 도 19의 측면도이다.
도 21은 본 발명의 제3 실시 형태의 다른 응용예에 관한 제1 히트싱크 중 금속재료로 형성되는 본체부 및 플랜지부를 나타내는 사시도이다.
도 22는 도 21의 측면도이다.
도 23은 제3 실시 형태의 다른 응용예에 관한 제1 히트싱크의 금속부의 일 변형예를 나타내는 사시도이다.
도 24는 도 23의 측면도이다.
도 25은 또 다른 응용예의 제1 히트싱크 중 금속재료로 형성되는 본체부 및 플랜지부의 일 변형례를 나타내는 사시도이다.
도 26는 도 25의 측면도이다.
도 27은 본 발명의 제4 실시형태에 따른 조명 장치를 나타내는 평면도 및 측면도이다.
도 28은 도 27의 조명 장치의 A-A 절단선을 따른 단면도이다.
도 29는 발광소자 기판 상의 발광소자의 배치를 나타내는 평면도이다.
도 30은 제5 실시 형태에 따른 조명 장치를 나타내는 단면도이다.
도 31은 제6 실시 형태에 따른 조명 장치를 나타내는 평면도 및 측면도이다.
도 32는 도 31의 조명 장치의 B-B 절단선을 따른 단면도이다.
도 33은 본 발명의 제7 실시 형태에 관한 조명장치의 전체 구성을 나타내는 상면도(a) 및 정면도(b)이다.
도 34는 제7 실시 형태에 관한 조명장치를 도 33(a)의 II-II선을 따라 절단한 단면도이다.
도 35(a)는 제7 실시 형태에 관한 발광모듈의 구성을 나타내는 상면도이며, 도35(b)는 제7 실시 형태에 관한 방열판(1170)의 구성을 나타내는 상면도이다.
도 36은 제7 실시 형태에 관한 조명장치에서의 열의 흐름을 나타내는 설명도이다.
도 37은 제7 실시 형태에 관한 조명장치의 제조 방법의 일례를 나타내는 설명도이다.
도 38은 제8 실시 형태에 관한 조명장치의 전체 구성 및 열의 흐름을 나타내는 설명도이다.
도 39는 본 발명의 제9 실시형태에 따른 조명 장치를 나타내는 평면도 및 측면도이다.
도 40은 도 39의 조명 장치의 A-A 절단선을 따른 단면도이다.
도 41은 제9 실시형태에 따른 제2 히트싱크 및 제3 히트싱크를 나타내는 평면도이다.
도 42는 제9 실시형태에 따른 제2 히트싱크 및 제3 히트싱크의 일 변형예를 나타내는 평면도이다.
도 43은 본 발명의 제10 실시형태에 따른 제2 히트싱크를 나타내는 평면도이다.
도 44는 제10 실시형태에 따른 제2 히트싱크의 일 변형예를 나타내는 평면도이다.
도 45는 제10 실시형태에 따른 제2 히트싱크의 다른 변형예를 나타내는 평면도이다.
도 46은 본 발명의 제11 실시 형태에 관한 전구형 조명장치의 전체 구성을 나타내는 분해 사시도이다.
도 47은 제11 실시 형태에 관한 조명장치의 전체 구성을 나타내는 상면도(a) 및 정면도(b)이다.
도 48은 제11 실시 형태에 관한 조명장치를 도 2(a)의 III-III선을 따라 절단한 단면도이다.
도 49는 제11 실시 형태에 관한 조명장치에서의 열의 흐름을 나타내는 설명도이다.
도 50은 제11 실시 형태에 관한 조명장치에서의 광의 움직임을 나타내는 설명도이다.
도 51은 제11 실시 형태에 관한 조명장치의 배광특성의 일례를 나타내는 설명도이다.
도 52는 제11 실시 형태에 관한 글로브의 직경과 하부 히트싱크의 직경의 비율에 의한 배광의 차이를 나타내는 설명도이다.
도 53은 제11 실시 형태에 관한 상부 히트싱크의 최대 직경과 리플렉터의 최대 직경의 관계를 나타내는 설명도이다.
도 54는 본 발명의 제12 실시 형태에 관한 전구형 조명장치의 전체 구성을 나타내는 상면도(a) 및 정면도(b)이다.
도 55는 제12 실시 형태에 관한 조명장치를 도 54(a)의 X-X선을 따라 절단한 단면도이다.
도 56은 제12 실시 형태에 관한 조명장치에서의 열의 흐름 및 광의 움직임을 나타내는 설명도이다.
도57은 본 발명의 조명장치에 채용가능한 LED 칩의 일 예를 나타내는 단면도이다.
도58은 본 발명의 조명장치에 채용가능한 LED 칩의 다른 예를 나타내는 단면도이다.
도59은 본 발명의 조명장치에 채용가능한 LED 칩의 또 다른 예를 나타내는 단면도이다.
도60은 본 발명의 조명장치에 채용가능한 발광소자로서 실장용 기판에 실장된 LED 칩의 예를 나타내는 단면도이다.
도61은 본 발명의 조명장치에 채용가능한 LED 패키지의 일 예(칩스케일 패키지)를 나타내는 단면도이다.
이하에 첨부 도면을 참조하면서, 본 발명의 바람직한 실시형태에 관해 상세히 설명한다. 한편, 본 명세서 및 도면에 있어서, 실질적으로 동일한 기능 구성을 갖는 구성 요소에 관해서는, 동일한 부호를 달아 중복 설명을 생략한다.
<제1 실시형태>
[제1 실시형태에 따른 조명 장치의 구성]
우선, 도 1 내지 도 5를 참조하면서, 본 발명의 바람직한 실시형태에 따른 조명 장치의 구성에 관해 상세히 설명한다. 도 1은, 본 발명의 제1 실시형태에 따른 조명 장치(100)의 전체 구성을 나타내는 상면도(a) 및 정면도(b)이다. 도 2는, 동 실시형태에 따른 조명 장치(100)를 도 1(a)의 II-II선으로 절단한 단면도이다. 도 3은, 도 2의 P부를 확대한 단면도이다. 도 4는, 본 실시형태에 따른 글로브(30)의 구성을 나타내는 평면도이다. 도 5는, 본 실시형태에 따른 발광모듈(10)의 구성을 나타내는 평면도이다.
도 1 및 도 2에 나타내는 바와 같이, 본 실시형태에 따른 조명 장치(90)는, 발광모듈(10); 하우징(20); 글로브(30); 및 방열판(70);을 주로 갖는다.
(발광모듈(10))
발광모듈(10)은, 발광소자(11)와 발광소자 기판(13)을 갖고, 조명 장치(90)의 광원이 되는 부재이다.
발광소자(11)는, LED(Light Emitting Diode) 등의 반도체 발광소자이고, 광을 출사한다. 이 발광소자(11)의 발광색은, 특별히 한정되지 않지만, 글로브(30)의 구성 재료에 따라 다르게 해도 된다. 예를 들어, 글로브(30)가 형광체를 함유한 재료(수지 등)로 구성될 경우, 발광소자(11)의 발광색은 청색이고, 글로브(30)에 있어서 광의 파장이 변환되고, 백색이 된다. 한편, 글로브(30)가 광확산재를 함유한 재료(수지 등)로 구성될 경우, 발광소자(11)의 발광색은 백색(6500K~2000K)이다. 발광소자(11)에서 출사된 광은, 글로브(30)에서 확산되어 외부로 방사된다.
또한, 도 5에 나타내는 바와 같이, 발광소자(11)는, 본 실시형태에서는 복수 준비되고, 이들 복수의 발광소자(11)가, 발광소자 기판(13)의 한쪽 면 상에 링형으로 배치된다. 여기서 말하는 '링형'이란, 도 5에 나타내는 바와 같은 원형의 링형 뿐만 아니라, 타원형의 링형, 다각형의 링형도 포함하는 개념이다. 또한, 발광소자(11)의 수는, 도 5에 나타내는 바와 같은 복수가 아니어도 되고, 단일의 발광소자(11)가 발광소자 기판(13) 상에 실장되어 있어도 된다. 단일인 경우의 발광소자(11)의 위치도 특별히 한정되지는 않지만, 배광성을 고려하면, 거의 중심부에 위치하는 것이 바람직하다.
발광소자 기판(13)은, 발광소자(11)가 실장되는 기판이고, 바람직하게는, 알루미늄, 니켈 등의 금속이나, 유리 컴포짓(CEM3)이나, 세라믹 등의 열전도성이 높은 재료로 형성된다. 이에 의해, 발광모듈(10)에서 발생한 열을 효율적으로 하우징(20)에 전달할 수 있고, 조명 장치(90)의 방열 효율을 향상시킬 수 있다. 발광소자 기판(13)의 형상은 특별히 한정되는 것은 아니지만, 전구형 조명 장치의 사이즈의 규격인 ANSI 규격을 만족시키기 위해서는, 거의 원형상 또는 거의 다각형상인 것이 바람직하다.
또한, 본 실시형태에서의 발광소자 기판(13)에는, 도 3 및 도 5에 나타내는 바와 같이, 노치부(13a, 13b, 13c)가 형성되어 있고, 이들 노치부(13a, 13b, 13c)는, 각각, 후술하는 글로브(30)의 돌출부(33a, 33b, 33c)와 결합한다. 이에 의해, 발광소자 기판(13)과 글로브(30)간의 상대 위치가 고정된다.
여기서, 발광소자 기판(13)에 형성되는 노치부의 수는, 글로브(30)에 형성하는 돌출부의 수에 대응해 결정하면 되지만, 2개 이상 형성하는 것이 필요하다. 이처럼, 발광소자 기판(13)과 글로브(30)간의 결합 부분이 2군데 이상이 됨으로써, 발광소자 기판(13)과 글로브(30)간의 상대 위치가 고정될 뿐만 아니라, 발광소자 기판(13)과 글로브(30)가 상대적으로 회전하는 것을 방지할 수도 있다.
한편, 발광소자 기판(13)은, 하우징(20)의 상부(또는 방열판(70))에 지지됨으로써, 위치가 고정된다.
(하우징(20))
하우징(20)은, 그 일단(도 1 및 도 2의 하단)에서 소켓(socket)(미도시)과 접속됨과 동시에, 발광소자(11)를 구동시키기 위한 구동 회로(미도시)가 수납되는 하우징으로서의 기능을 갖는다. 본 실시형태에서는, 하우징(20)의 중공의 본체부의 내부에, 구동 회로를 설치할 수 있다.
또한, 하우징(20)은, 발광모듈(10)에서 발생한 열과, 구동 회로에서 발생한 열을 외부로 방출하는, 소위 히트싱크로서의 기능을 갖는다. 이 방열 기능을 실현하기 위해, 하우징(20)은, 열전도성이 높은 수지로 형성된다. 본 실시형태에 있어서, 하우징(20)이, 금속이 아니라 수지로 형성되어 있는 것은, 조명 장치(90)를 경량화하기 위함이고, 또한, 수지는 절연성이므로, 소켓과 접속되었을 때의 코킹(caulking) 부분에 절연 대책을 쓸 필요가 없기 때문이다. 따라서, 조명 장치(90)의 중량 증가가 문제가 되지 않을 경우에는, 하우징(20)의 재질로서, 알루미늄이나 구리 등의 금속 재료를 사용해도 된다. 단, 하우징(20)을 금속 재질로 한 경우에는, 소켓의 코킹 부분에 절연 대책을 쓸 필요가 있다.
또한, 방열 효과를 더 높이기 위해, 하우징(20)의 표면에, 요부나 복수의 핀 등이 설치됨으로써, 하우징(20)의 표면적을 크게 하는 것이 바람직하다.
이 점과 관련하여, 본 실시형태에서는, 하우징(20)은, 양단에 개구부를 갖는 중공의 거의 통형의 본체부의 외주면에, 복수의 핀(29)이 설치되어 있다. 이 복수의 핀(29)을 가짐으로써 하우징(20)의 외부로 노출한 면의 표면적(열을 방출하는데 사용되는 면의 면적)이 커지고, 방열 효과를 높일 수 있다. 한편, 방열 효과를 높이기 위한 구성은, 이 같은 핀(29) 뿐만 아니라, 예를 들어, 하우징(20)의 본체부의 외주면에, 복수의 요부(미도시)를 갖는 구성이어도 된다.
또한, 하우징(20)은, 발광소자 기판(13)을 기준으로 해서, 발광소자(11)의 배치에 따라 구성되는 링의 중심축 방향의 일측(발광소자(11)가 배치되어 있지 않는 쪽의 면측)에 설치된다. 이에 의해, 하우징(20)은, 구동 회로나 발광모듈(10)에서 발생한 열을 외부로 방출할 수 있다.
또한, 본 실시형태에서는, 하우징(20)은, 수지(21); 및 이 수지(21) 내부에 삽입된 금속부재(23);로 구성되어 있다. 그리고, 하우징(20)은, 수지(21)와 금속부재(23)가 일체로 인서트 성형됨으로써 얻어지는 것이다. 이는, 수지(21)만이라면, 알루미늄이나 구리 등의 금속과 비교해 다소 열전도성이 낮기 때문에, 열전도성을 더 높이기 위해, 알루미늄이나 구리 등의 금속부재(23)를 삽입한 것이다. 따라서, 발광모듈(10)이나 구동 회로의 성능에 의해 발열이 억제되거나 해서, 방열 효과가 충분한 경우에는, 금속부재(23)를 삽입할 필요는 없다.
또한, 금속부재(23)를 삽입할 경우에는, 발광모듈(10)에서 발생한 열이, 하우징(20)에 전달되기 쉬워지도록 하기 위해, 방열판(70)(방열판(70)이 설치되지 않는 경우에는, 발광소자 기판(13))과 접촉하도록, 금속부재(23)를 배치하는 것이 바람직하다.
(글로브(30))
글로브(30)는, 발광모듈(10)을 덮도록 거의 구형으로 설치되고, 발광소자(11)에서 출사된 광의 색(발광소자(11)의 발광색)을 제어하는 역할 및, 이들 광을 글로브(30)의 표면 상에서 확산시킴으로써 조명 장치(90)의 배광각을 넓히는 역할을 갖는다.
글로브(30)는, 발광소자(11)의 발광색을 제어하는 역할을 실현하기 위해, 발광소자(11)의 발광색에 따라, 형광체나 광확산재를 포함하고 있다. 구체적으로는, 발광소자(11)가, 청색으로 발광하는 LED인 경우에는, 글로브(30)의 소재가 형광체를 함유하는 재료이거나, 또는, 글로브(30)의 표면에 형광체가 도포되어 있다. 그리고, 발광소자(11)에서 출사되고, 글로브(30)에 도달한 광의 파장이, 글로브(30)의 형광체에 의해 변환되고, 백색 발광이 된다.
여기서, 형광체에 의한 발광은, 광확산도가 크므로, 발광소자(11)에서 출사된 광의 배광 분포가 불충분해도, 형광체에 의한 발광 시의 광확산에 의해, 양호한 배광 분포를 얻는 것이 가능해진다. 따라서, 종래처럼, 배광각을 넓히기 위해, 글로브를 확산성이 높은 재질로 형성한 결과, 광의 투과율이 저하해, 글로브 내부의 발광모듈 등의 부재가 비쳐 보인다는 문제도 해소할 수 있다. 또한, 청색 LED와 형광체를 조합함으로써, 자연광에 가까운 색으로 발광시킬 수 있게 된다.
또한, 조명 장치(90)의 배광각을 보다 넓히기 위해, 글로브(30)의 소재가, 형광체에 더해 광확산재를 더 함유하는 재료이거나, 또는, 글로브(30)의 표면에, 형광체에 더해 광확산재가 더 도포될 수 있다.
한편, 발광소자(11)가, 백색 광을 발하는 LED인 경우에는, 글로브(30)의 소재가 광확산재를 함유하는 재료이거나, 또는, 글로브(30)의 표면에 광확산재가 도포되어 있어도 된다. 이 경우에도, 광확산재에 의해, 발광소자(11)에서 출사된 광이, 글로브(30)의 표면에서 확산되고, 조명 장치(90)의 배광각을 넓힐 수 있다.
다음으로, 도 4 및 도 6을 참조하면서, 본 실시형태에 따른 글로브(30)의 특징적 구성에 관해 설명한다. 도 6은, 본 실시형태에 따른 수지제 글로브(30)의 성형 방법을 나타내는 설명도이다.
도 4에 나타내는 바와 같이, 본 실시형태에서의 글로브(30)는, 상술한 발광소자 기판(13)의 노치부(13a, 13b, 13c)의 각각과 결합하는 돌출부(33a, 33b, 33c)를 갖는다. 이들 돌출부(33a, 33b, 33c)는, 글로브(30)의 성형 시에 사용된 게이트부의 적어도 일부를 컷하지 않고 잔존시킨 것이고, 글로브(30)의 저부(발광소자 기판(13)과 연결되는 측의 단부)에 형성된 개구부(31)의 주연을 따라 설치되어 있다. 이처럼, 본 실시형태에서는, 수지 성형 시에 사용되는 게이트부를 이용하므로, 글로브(30)의 재질은, 수지제이다.
여기서, 도 6을 참조하면서, 글로브(30)의 성형 방법에 관해 설명한다. 한편, 도 6에는, 게이트 형상으로서, 거의 구형으로 성형하는데 적합한 스포크 게이트의 예를 나타내고 있다. 도 6에 나타내는 바와 같이, 글로브(30)의 성형 시에는, 노즐에서 용융 상태의 수지가 사출되고, 이 수지가, 스프루(35), 러너(37a, 37b, 37c(러너의 수는 3개에 한정되는 것은 아님.))를 지나, 성형품이 되는 캐비티 부분(틀)에 대한 유입구인 게이트(33a, 33b, 33c)를 지난다. 이 게이트로는, 여러 종류의 것이 존재하지만, 이들 중, 성형품의 외관, 강도, 정밀도, 기타 목적의 제품을 얻기 위해 가장 적합한 게이트가 선택된다.
게이트(33a, 33b, 33c)는, 글로브(30)의 성형용 틀에 유입된 용융 상태의 수지가, 냉각 고화하기까지 유로를 차단해 역류를 막고, 게이트(33a, 33b, 33c) 부근에 일어나는 성형품의 변형, 깨짐, 휨 등의 잔류 응력을 경감한다. 일반적으로는, 수지 성형 후의 게이트는, 게이트 커터 등을 사용해 절제되는 것이다. 이처럼, 성형 후에 불필요해지는 게이트 부분은, 될 수 있는 한 작게 해야 한다. 특히, 게이트가, 도 6에 나타내는 바와 같이 원형의 개구부(31)의 주연을 따라 형성될 경우에는, 게이트의 폭(도 4의 폭(D))이 크면, 게이트 부분이 남지 않도록 절제하는 것이 곤란해진다. 반대로, 게이트의 폭을 너무 작게 하면, 게이트 부분의 유속이 떨어지고, 용접이나 게이트 플로우 등의 성형 불량이 발생하기 쉬워지기 때문에, 제품 품질의 저하로 이어진다는 문제도 있다.
이에 반해, 본 실시형태에서는, 도 4에 나타내는 바와 같이, 글로브(30)의 성형 시에 사용한 게이트(33a, 33b, 33c)의 적어도 일부를 남기고(도 4에서는, 전부 남긴 예를 나타내고 있음.), 이것을 그대로, 발광소자 기판(113)과의 위치 결정용 돌출부(리브)(33a, 33b, 33c)로서 이용하고 있다. 즉, 게이트(33a, 33b, 33c)를 컷할 필요가 없으므로, 게이트의 폭(D)을 크게 해도, 게이트 컷 시에 절제가 곤란해진다는 문제는 일어나지 않는다. 또한, 게이트의 폭(D)을 크게 할 수 있기 때문에, 용접이나 게이트 플로우 등의 성형 불량의 발생을 방지할 수도 있다. 따라서, 게이트(33a, 33b, 33c)의 사이즈나 형상의 자유도가 향상된다. 특히, 게이트가, 원형의 개구부(31)의 주연을 따라 형성될 경우에는, 그 효과가 크다.
이처럼, 게이트의 사이즈나 형상의 자유도가 향상됨으로써, 글로브(30)의 성형 시의 게이트부에서의 수지의 유동성이 개선되고, 용접이나 게이트 플로우 등의 성형 불량의 저감에 기여하므로, 글로브(30)의 제품 품질의 향상으로도 이어진다.
또한, 글로브(30)의 성형 시에 틀로 수지가 공급되는 방법을 균일하게 하기 위해서는, 게이트(33a, 33b, 33c)가 등간격으로 배치되어 있는 것이 바람직하다. 이 경우, 당연한 것이지만, 글로브(30)의 돌출부(33a, 33b, 33c)도 등간격으로 배치되게 된다.
또한, 게이트(33a, 33b, 33c)를, 그대로, 발광소자 기판(13)과의 위치 결정, 및, 글로브(30)의 회전 고정용 돌출부(33a, 33b, 33c)로서 사용함으로써, 글로브(30)에 새롭게 위치 결정 및 회전 고정용 리브 등의 부재를 설치하는 스페이스를 생략할 수 있다.
또한, 본 실시형태에 따른 돌출부(33a, 33b, 33c)는, 2개 이상 설치하는 것이 필요하다. 이처럼, 발광소자 기판(13)과의 위치 결정, 및, 글로브(30)의 회전 고정용 돌출부(33a, 33b, 33c)를 복수 설치함으로써, 광학렌즈로서도 기능하는 글로브(30)의 위치 결정 정밀도를 높일 수 있다. 글로브(30)의 위치 결정 정밀도를 보다 높인다는 관점에서 보면, 돌출부의 개수가 3개 이상인 것이 바람직하지만, 이 경우, 글로브(30)를 발광소자 기판(13)에 장착할 때의 여유 간격이 없어지기 때문에, 조명 장치(90)의 용도에 따라 돌출부의 수를 적절히 정하는 것이 바람직하다.
(방열판(70))
방열판(70)은, 발광소자 기판(13)과 하우징(20) 양쪽 모두에 접촉하도록 설치되고, 주로, 발광모듈(10)에서 발생한 열을 하우징(20)에 전달하는 역할을 갖는다. 이 방열판(70)은, 상기 열전달의 역할을 실현하기 위해, 알루미늄이나 구리 등의 열전도성이 높은 금속으로 구성된다.
또한, 본 실시형태에 따른 조명 장치(90)에서는, 글로브(30)의 돌출부(33a, 33b, 33c)와 결합하는 노치부가, 발광소자 기판(13)이 아니라, 도 7에 나타내는 바와 같이, 방열판(70)에 설치되어 있어도 된다. 이 경우에는, 글로브(30)와 방열판(70)의 사이에서 위치 결정이 되기 때문에, 발광소자 기판(13)을 나사 고정 등에 의해 방열판(70)에 고정해 둘 필요가 있다.
한편, 글로브(30)의 돌출부(33a, 33b, 33c)와 결합하는 노치부를, 방열판(70)과 발광소자 기판(13) 양쪽 모두에 설치해도 되지만, 이 경우는, 글로브(30)와 발광소자 기판(13)과 방열판(70)의 3개의 부재의 사이에서 위치 결정을 하는 것이 필요해지므로, 조립이 다소 복잡해질 가능성이 있다.
또한, 조명 장치(90)의 방열 효율이 충분히 높고, 또한, 발광소자 기판(13) 및 글로브(30)의 위치 결정 정밀도를 확보할 수 있으면, 방열판(70)은, 반드시 설치되어 있지 않을 수 있다.
(기타 구성)
기타, 본 실시형태에 따른 조명 장치(90)는, 필요에 따라 다른 부재를 구비하고 있어도 된다. 예를 들어, 조명 장치(90)의 배광성을 향상시키기 위해, 조명 장치(90)는, 발광소자(11)에서 출사시킨 광을 반사해 소켓 방향으로 광을 배광시키기 위한 리플렉터(미도시)를 갖고 있어도 된다.
이상, 첨부 도면을 참조하면서 본 발명의 바람직한 실시형태에 관해 상세히 설명했지만, 본 실시형태는 다양하게 변경되어 실시될 수 있다. 예를 들어, 상술한 실시형태에서는, 발광소자 기판(13), 하우징(20), 글로브(30), 및 방열판(70)의, 중심축에 대해 직교하는 방향으로 절단했을 때의 단면 형상을 원형으로 했지만, 본 발명은 이 같은 예에 한정되지 않는다. 예를 들어, 상기 각 부재의 단면 형상은, 다각형이나 타원형일 수 있다.
또한, 상술한 실시형태에서는, 발광소자 기판(13)에 복수의 발광소자(11)를 링형으로 배치해 구성되는 하나의 발광소자 그룹만을 설치하고 있지만, 본 발명은 이 같은 예에 한정되지 않는다. 예를 들어, 발광소자 기판(13)에, 동심원형으로 복수의 발광소자 그룹을 설치할 수 있다.
<제2 실시형태>
[제2 실시형태에 따른 조명 장치의 구성]
도 8 내지 도 11을 참조하면서, 본 발명의 제2 실시형태에 따른 조명 장치의 구성에 관해 상세히 설명한다. 도 8은, 본 발명의 제2 실시형태에 따른 조명 장치(100)의 전체 구성을 나타내는 상면도(a) 및 정면도(b)이다. 도 9는, 동 실시형태에 따른 조명 장치(100)를 도 8(a)의 II-II선으로 절단한 단면도이다. 도 10은, 본 실시형태에 따른 리플렉터(140)의 구성을 나타내는 일부 노치 사시 단면도이다. 도 11은, 본 실시형태에 따른 발광모듈(110)의 구성을 나타내는 사시도이다.
도 8 및 도 9에 나타내는 바와 같이, 본 실시형태에 따른 조명 장치(100)는, 발광모듈(110); 하우징(120); 리플렉터(140); 글로브(130); 및 방열판(170);을 주로 갖는다.
(발광모듈(110))
발광모듈(110)은, 발광소자(111)와 발광소자 기판(113)을 갖고, 조명 장치(100)의 광원이 되는 부재이다.
발광소자(111)는, LED(Light Emitting Diode) 등의 반도체 발광소자이고, 광을 출사한다. 이 발광소자(111)의 발광색은, 후술하는 글로브(130)의 구성 재료에 따라 다르다. 구체적으로는, 글로브(130)가 형광체를 함유한 재료(수지 등)로 구성될 경우, 발광소자(111)는, 상기 형광체를 여기하는 광을 발광하는 LED(예를 들어, 청색 LED)이고, 글로브(130)에 있어서 광의 파장이 변환되고, 백색이 된다.
한편, 글로브(130)가 광확산재를 함유한 재료(수지 등)로 구성될 경우, 발광소자(111)의 발광색은 백색(6500K~2000K)이다. 발광소자(111)에서 출사된 광은, 후술하는 리플렉터(140)에서 반사되어, 또는 직접 글로브(130)에 도달해, 글로브(130)에서 확산되어 외부로 방사된다.
또한, 도 11에 나타내는 바와 같이, 발광소자(111)는, 본 실시형태에서는 복수 준비되고, 이들 복수의 발광소자(111)가, 발광소자 기판(113)의 한쪽 면 상에 링형으로 배치된다. 여기서 말하는 "링형"이란, 도 11에 나타내는 바와 같은 원형의 링형 뿐만 아니라, 타원형의 링형, 다각형의 링형도 포함하는 개념이다.
발광소자 기판(113)은, 발광소자(111)가 실장되는 기판이고, 바람직하게는, 알루미늄, 니켈 등의 금속이나, 유리 컴포짓(CEM3)이나, 세라믹 등의 열전도성이 높은 재료로 형성된다. 이에 의해, 발광모듈(110)에서 발생한 열을 효율적으로 하우징(120)에 전달할 수 있고, 조명 장치(100)의 방열 효율을 향상시킬 수 있다. 발광소자 기판(113)의 형상은 특별히 한정되는 것은 아니지만, 상술한 ANSI 규격을 만족시키기 위해서는, 거의 원형상 또는 거의 다각형상인 것이 바람직하다.
또한, 발광소자 기판(113)은, 리플렉터(140)의 저부와, 하우징(120)의 상부(또는 방열판(170))에 의해 사이에 끼워짐으로써, 위치가 고정된다.
(하우징(120))
하우징(120)은, 발광소자를 구동시키기 위한 구동 회로(미도시)가 수납되는 하우징으로서의 기능을 갖는다. 본 실시형태에서는, 하우징(120)의 중공의 본체부의 내부에, 구동 회로를 설치할 수 있다.
또한, 하우징(120)은, 그 일단(도 8 및 도 9의 하단)에서 소켓(미도시)과 접속됨과 동시에, 발광모듈(110)에서 발생한 열과, 구동 회로에서 발생한 열을 외부로 방출하는, 소위 히트싱크로서의 기능을 갖는다. 이 방열 기능을 실현하기 위해, 하우징(120)은, 열전도성이 높은 수지로 형성된다. 본 실시형태에 있어서, 하우징(120)이, 금속이 아니라 수지로 형성되어 있는 것은, 조명 장치(100)를 경량화하기 위함이고, 또한, 수지는 절연성이므로, 소켓과 접속되었을 때의 코킹 부분에 절연 대책을 쓸 필요가 없기 때문이다. 따라서, 조명 장치(100)의 중량 증가가 문제가 되지 않는 경우에는, 하우징(120)의 재질로서, 알루미늄이나 구리 등의 금속 재료를 사용해도 된다. 단, 하우징(120)을 금속 재질로 한 경우에는, 소켓의 코킹 부분에 절연 대책을 쓸 필요가 있다.
또한, 방열 효과를 더 높이기 위해, 하우징(120)의 표면에, 요부나 복수의 핀 등이 설치됨으로써, 하우징(120)의 표면적을 크게 하는 것이 바람직하다.
이 점, 본 실시형태에서는, 하우징(120)은, 양단에 개구부(120a, 120b)를 갖는 중공의 거의 통형의 본체부의 외주면에, 복수의 핀(129)이 설치되어 있다. 이 복수의 핀(129)을 가짐으로써, 하우징(120)의 외부로 노출한 면의 표면적(열을 방산하는데 사용되는 면의 면적)이 커지고, 방열 효과를 높일 수 있다. 한편, 방열 효과를 높이기 위한 구성은, 이 같은 핀(129) 뿐만 아니라, 예를 들어, 하우징(120)의 본체부의 외주면에, 복수의 요부(미도시)를 갖는 구성일 수 있다.
또한, 하우징(130)은, 발광소자 기판(113)을 기준으로 해서, 발광소자(111)의 배치에 따라 구성되는 링의 중심축 방향의 일측(발광소자(111)가 배치되어 있지 않는 쪽의 면측)에 설치된다. 이에 의해, 하우징(120)은, 구동 회로나 발광모듈(110)에서 발생한 열을 외부로 방출할 수 있다.
또한, 본 실시형태에서는, 하우징(120)은, 수지(121); 및 이 수지(121) 내부에 삽입된 금속부재(123);로 구성되어 있다. 그리고, 하우징(120)은, 수지(121)와 금속부재(123)가 일체로 인서트 성형됨으로써 얻어지는 것이다. 이는, 수지(121) 만이라면, 알루미늄이나 구리 등의 금속과 비교해 다소 열전도성이 낮기 때문에, 열전도성을 더 높이기 위해, 알루미늄이나 구리 등의 금속부재(123)를 삽입한 것이다. 따라서, 발광모듈(110)이나 구동 회로의 성능에 의해 발열이 억제되거나 해서, 방열 효과가 충분한 경우에는, 금속부재(123)를 삽입할 필요는 없다.
또한, 금속부재(123)를 삽입할 경우에는, 발광모듈(110)에서 발생한 열이, 하우징(120)에 전달되기 쉬워지도록 하기 위해, 방열판(170)(방열판(170)이 설치되지 않는 경우에는, 발광소자 기판(113))과 접촉하도록, 금속부재(123)를 배치하는 것이 바람직하다.
(리플렉터(140))
리플렉터(140)는, 발광소자 기판(113)의 면 중 발광소자(111)가 배치된 면(이하, "발광소자(111)측의 면"이라 칭함.)에 지지되고, 발광소자(111)에서 출사된 광을 반사시킨다. 본 실시형태에서의 리플렉터(140)는, 높은 광반사성을 갖는 재료로 구성되고, 발광소자(111)로부터의 광을 소켓 방향(하우징(120)이 있는 측의 방향)으로 반사시키고, 조명 장치(100)의 배광각을 소켓 방향으로 넓히는 기능을 갖는다.
이 같은 기능을 실현하기 위해, 리플렉터(140)는, 도 9 및 도 10에 나타내는 바와 같은 역(逆)원뿔대형, 즉, 발광소자 기판(113)에서 이격함에 따라 직경이 확장되는 원뿔대형이 되도록, 발광소자 기판(113)의 발광소자(111)측의 면에서 돌출해 설치되어 있다. 또한, 원뿔대형의 리플렉터(140)의 측주면은, 발광소자(111)에서 출사된 광이 반사되는 반사면(141)으로 되어 있다. 따라서, 이 반사면(141) 만이, 높은 광반사성을 갖는 재료로 구성되고, 다른 부분이 광반사성을 갖지 않는 재료로 구성될 수 있다.
또한, 도 9의 화살표(S)에 나타내는 바와 같이, 리플렉터(140)를 상기 리플렉터(140)의 직경 확장 방향(도 2에 나타내는 예에서는, 리플렉터(140)의 수직 방향 상방)에서 발광소자 기판(113)으로 투영한 경우에, 상기 투영 영역 내에 발광소자(111)의 적어도 일부가 존재하는 것이 바람직하다. 리플렉터(140)와 발광소자(111) 간의 위치 관계를 상기처럼 함으로써, 발광소자(111)에서 출사된 광의 대부분을 리플렉터(140)의 반사면(141)에 닿게 할 수 있고, 이에 의해, 소켓 방향으로의 광의 방사 비율을 증가시킬 수 있다. 따라서, 조명 장치(100)에서의 배광각을 보다 넓힐 수 있다.
(글로브(130))
글로브(130)는, 발광모듈(110) 및 리플렉터(140)를 덮도록 거의 구형으로 설치되고, 발광소자(111)에서 출사된 광, 또는, 리플렉터(140)에서 반사된 광의 색(발광소자(111)의 발광색)을 제어하는 역할, 및, 이들 광을 글로브(130)의 표면 상에서 확산시킴으로써 조명 장치(100)의 배광각을 넓히는 역할을 갖는다.
글로브(130)는, 발광소자(111)의 발광색을 제어하는 역할을 실현하기 위해, 발광소자(111)의 발광색에 따라, 형광체나 광확산재를 포함하고 있다. 구체적으로는, 발광소자(111)가, 청색으로 발광하는 LED인 경우에는, 글로브(130)의 소재가 형광체를 함유하는 재료이거나, 또는, 글로브(130)의 표면에 형광체가 도포되어 있다. 예를 들어, 글로브(130)가 수지로 이루어질 경우에는, 이 수지 중에 형광 안료를 함유시키도록 해도 되고, 글로브(130)가 유리 재료로 이루어질 경우에는, 이 글로브의 표면에 형광 도료를 도포하도록 해도 된다. 그리고, 리플렉터(140)에서 반사되고, 또는, 발광소자(111)에서 출사되고, 글로브(130)에 도달한 광의 파장이, 글로브(130)의 형광체에 의해 변환되고, 백색의 발광이 된다.
여기서, 형광체에 의한 발광은, 광확산도가 크므로, 리플렉터(140)에서 반사된 광의 배광 분포가 불충분해도, 형광체에 의한 발광 시의 광확산에 의해, 양호한 배광 분포를 얻는 것이 가능해진다. 따라서, 종래처럼, 배광각을 넓히기 위해, 글로브를 확산성이 높은 재질로 형성한 결과, 광의 투과율이 저하되어, 글로브 내부의 발광모듈 등의 부재가 비쳐 보인다는 문제도 해소할 수 있다. 또한, 청색 LED와 형광체를 조합함으로써, 자연광에 가까운 색으로 발광시킬 수 있게 된다.
또한, 조명 장치(100)의 배광각을 보다 넓히기 위해, 글로브(130)의 소재가, 형광체에 더해 광확산재를 더 함유하는 재료이거나, 또는, 글로브(130)의 표면에, 형광체에 더해 광확산재가 더 도포되어 있어도 된다.
한편, 발광소자(111)가, 백색광을 발하는 LED인 경우에는, 글로브(130)의 소재가 광확산재를 함유하는 재료이거나, 또는, 글로브(130)의 표면에 광확산재가 도포되어 있어도 된다. 이 경우에도, 광확산재에 의해, 발광소자(111)에서 출사된 광, 또는, 리플렉터(140)에서 반사된 광이, 글로브(130)의 표면에서 확산되고, 조명 장치(100)의 배광각을 넓힐 수 있다.
또한, 조명 장치(100)의 배광각을 넓히기 위해서는, 도 9에 나타내는 바와 같이, 글로브(130)의 최대 직경(D1)은, 하우징(120)의 최대 직경(D2)보다 큰 것이 필요하다. 글로브(130)의 최대 직경(D1)에 대해, 하우징(120)의 최대 직경(D2)이 너무 크면, 글로브(130) 표면에서 소켓 방향으로 방사된 광이, 하우징(120)에 의해 차단되어 버리는 영역이 넓어지기 때문에, 소켓 방향의 광의 배광각이 작아져 버린다.
여기서, 도 8 및 도 9에 나타내는 바와 같이, 본 실시형태에서의 글로브(130)는, 글로브 넥부(131)와 글로브 헤드부(133)의 2개의 부분으로 이루어져 있다. 이들 글로브 넥부(131)와 글로브 헤드부(133)는, 물리적으로 별개로서 형성되어 있어도 되고, 일체로 형성될 수도 있다. 
(글로브 넥부(131))
글로브 넥부(131)는, 글로브(130) 중, 하우징(120)에 접속되는 측의 부분이고, 리플렉터(140)의 반사면(141)의 경사를 따른 경사면(131a)을 갖고 있다. 이처럼, 글로브 넥부(131)가, 리플렉터(140)의 반사면(141)을 따른 경사를 갖는 경사면(131a)을 가짐으로써, 발광소자(111)에서 출사되어 반사면(141)에서 반사된 광이, 글로브 넥부(131)에 도달하기 쉬워지기 때문에, 소켓 방향으로 배광되는 광의 양을 증가시킬 수 있다. 이 같은 효과는, 특히, 리플렉터(140)의 반사면(141)과, 글로브 넥부(131)의 경사면(131a)이 거의 평행한 경우에 현저해진다. 따라서, 리플렉터(140)의 반사면(141)과, 글로브 넥부(131)의 경사면(131a)은, 거의 평행한 것이 바람직하다.
또한, 도 9에 나타내는 바와 같이, 상술한 리플렉터(140)의 발광소자(111)가 배치되어 이루어진 링의 중심축 방향의 길이(d1)가, 글로브 넥부(131)의 중심축 방향의 길이(d2)보다 긴 것이 바람직하다. 리플렉터(140)와 글로브 넥부(131)의 형상과 위치 관계가 상기처럼 되어 있음으로써, 발광소자(111)에서 출사된 광이 글로브 넥부(131)의 경사면(131a)에 도달하는 비율을 증가시킬 수 있으므로, 소켓 방향으로 배광되는 광의 양을 증가시킬 수 있다.
한편, 글로브 넥부(131)의 저부(글로브 헤드부(133)와 접속되어 있는 측과는 반대측의 단부)에는 개구부(미도시)가 설치되어 있고, 글로브 넥부(131)는, 이 개구부에 있어서 하우징(120)과 접속된다.
(글로브 헤드부(133))
글로브 헤드부(133)는, 글로브 넥부(131)에 연결 설치되는 거의 반구형의 부분이다. 이 글로브 헤드부(133)는, 주로, 발광소자(111)에서 출사되고, 리플렉터(140)에는 닿지 않고 직접 글로브(130)에 도달하는 광을 확산시킨다. 전술한 글로브 넥부(131)가 소켓 방향으로 배광되는 광의 양을 증가시키는 역할을 갖는데 반해, 이 글로브 헤드부(133)는, 글로브(130)의 정상부 방향으로 배광되는 광의 양을 증가시키는 역할을 갖고 있다.
(기타)
글로브(130)의 표면에는, 광을 확산할 수 있는 구조가 설치될 수도 있다. 광을 확산할 수 있는 구조로는, 예를 들어, 글로브(130) 표면에 형성되는 요철면 등이 고려된다. 이 경우의 요철면은, 랜덤의 구조도 되고, 규칙적인 구조도 될 수 있다
(방열판(170))
방열판(170)은, 발광소자 기판(113)과 하우징(120) 양쪽 모두에 접촉하도록 설치되고, 주로, 발광모듈(110)에서 발생한 열을 하우징(120)에 전달하는 역할을 갖는다. 이 방열판(170)은, 상기 열전달의 역할을 실현하기 위해, 알루미늄이나 구리 등의 열전도성이 높은 금속으로 구성된다.
또한, 방열판(170)에는, 도시되어 있지 않은 리플렉터(140)의 위치 오차 방지핀이 설치되어 있어도 되고, 이 경우에는, 방열판(170)은, 상기의 열 전달의 역할 뿐만 아니라, 발광소자 기판(113), 리플렉터(140), 글로브(130)의 위치의 기준이 되는 역할도 갖는다.
한편, 조명 장치(100)의 방열 효율이 충분히 높고, 또한, 발광소자 기판(113), 리플렉터(140), 글로브(130)의 위치 결정 정밀도를 확보할 수 있으면, 방열판(170)은, 반드시 설치되어 있지 않아도 된다.
[제2 실시형태에 따른 조명 장치의 작용 효과]
다음으로, 도 12를 참조하면서, 본 실시형태에 따른 조명 장치(100)의 작용 효과, 즉, 배광성의 향상(광(
Figure 5ee3
)배광화) 효과에 관해 설명한다. 도 12는, 본 실시형태에 따른 조명 장치(100)에서의 광의 움직임을 나타내는 설명도이다.
본 실시형태에 따른 조명 장치(100)에서는, 도 12에 나타내는 바와 같이, 발광소자(111)에서 출사된 광은, 주로, 4종류의 경로를 지난다. 제1 경로는, 발광소자(111)로부터 직접 글로브 넥부(131)에 도달하는 경로(L1)이고, 제2 경로는, 발광소자(111)로부터 리플렉터(140)의 반사면(141)에서 반사되고, 글로브 넥부(131)에 도달하는 경로(L2)이고, 제3 경로는, 발광소자(111)로부터 리플렉터(140)의 반사면(141)에서 반사되고, 글로브 헤드부(133)에 도달하는 경로(L3)이고, 제4 경로는, 발광소자(111)로부터 직접 글로브 헤드부(133)에 도달하는 경로(L4)이다.
제1 경로를 지날 경우는, 발광소자(111)에서 출사된 광(L1)은, 리플렉터(140)에 닿지 않고, 직접 글로브 넥부(131)에 입사하고, 글로브 넥부(131)의 표면에서 확산된다. 확산광(L1')은, 여러 방향(주로, 수평 방향에서 소켓 방향측)으로 확산된다. 상술한 바와 같이, 발광소자(111)가 청색 LED이고, 글로브(130)가 형광체를 함유하거나, 글로브(130) 표면에 형광체가 도포되어 있는 경우에는, 광확산도가 크기 때문에, 확산광(L1')은, 보다 넓은 범위로 확산된다. 또한, 글로브(130)가 광확산재를 함유하거나, 글로브(130)의 표면에 광확산재가 도포되어 있는 경우에도, 확산광(L1')의 확산 범위를 넓힐 수 있다(이하 동일).
제2 경로를 지날 경우는, 발광소자(111)에서 출사된 광(L2)은, 리플렉터(140)의 반사면(141)에서 반사되고, 반사광(L2)이, 글로브 넥부(151)에 입사해, 글로브 넥부(151)의 표면에서 확산된다. 확산광(L2')은, 여러 방향으로 방사된다.
여기서, 리플렉터(140)가, 상술한 바와 같이 역원뿔대형의 형상을 갖고 있음과 동시에, 글로브 넥부(131)가 리플렉터(140)의 반사면(141)을 따른 경사면(131a)을 가지며, 글로브(130)의 최대 직경(D1)이, 하우징(120)의 최대 직경(D2)보다 크므로, 발광소자(111)에서 출사된 광이 제1 및 제2 경로를 지날 경우에는, 발광소자(111)에서 출사된 광을 소켓 방향으로 방사할 수 있다. 즉, 리플렉터(140)가, 발광소자 기판(113)에서 이격함(소켓 방향과는 반대 방향으로 감)에 따라 직경이 확장되는 역원뿔대형의 형상을 하고 있고, 이 리플렉터(140)의 측주면이 광반사면(141)으로 되어 있으므로, 발광소자(111)에서 출사된 광(L2)을, 광반사면(141)에 의해 수평 방향에서 소켓 방향측으로 반사시킬 수 있고, 이 반사광(L2)을 글로브 넥부(151)에서 더 확산시킬 수 있다. 이 확산 시, 글로브(130)의 최대 직경(D1)이, 하우징(120)의 최대 직경(D2)보다 크므로, 하우징(130)이, 글로브 넥부(151) 표면에서 확산한 확산광(L1', L2')을 차단하지 않기 때문에, 수평 방향에서 소켓 방향측의 보다 넓은 범위로, 확산광(L1', L2')을 방사할 수 있다. 또한, 글로브 넥부(131)가 갖는 경사면(151a)이, 반사면(141)을 따라, 발광소자 기판(113)에서 이격함에 따라 직경이 확장되는 형상을 하고 있으므로, 글로브 넥부(131)에 도달한 광(L1,L2)을 수평 방향에서 소켓 방향측으로 배광시키기 쉬워진다. 특히, 리플렉터(140)의 반사면(141)과, 글로브 넥부(131)의 경사면(131a)이 거의 평행한 경우에는, 광(L2)을 글로브 넥부(131)에 도달시키기 쉽기 때문에, 소켓 방향측으로의 배광을 보다 증가시킬 수 있다.
또한, 제3 경로를 지날 경우는, 발광소자(111)에서 출사된 광(L3)은, 리플렉터(140)의 반사면(141)에서 반사되고, 반사광(L3)이, 글로브 헤드부(133)에 입사해, 글로브 헤드부(133)의 표면에서 확산된다. 확산광(L3')은, 여러 방향으로 방사된다.
제4 경로를 지날 경우는, 발광소자(111)에서 출사된 광(L4)은, 리플렉터(140)에 닿지 않고, 직접 글로브 헤드부(133)에 입사하고, 글로브 헤드부(133)의 표면에서 확산된다. 이 경우도, 확산광(L4')은, 여러 방향으로 확산된다.
여기서, 발광소자(111)에서 출사된 광이 제1 및 제2 경로를 지날 경우에는, 수평 방향보다 글로브(130)의 정상부 방향(소켓 방향과는 반대 방향)측으로의 광의 확산량이 적다. 그러나, 발광소자(111)에서 출사된 광이 제3 및 제4 경로를 지남으로써, 수평 방향보다 글로브(130)의 정상부 방향측으로의 광의 확산량을 충분히 확보할 수 있다.
이상 설명한 바와 같이, 본 실시형태에 따른 조명 장치(100)에서는, 발광소자(111)에서 출사된 광이, 4종류의 경로를 지나므로, 넓은 배광각을 실현할 수 있다. 구체적으로는, 조명 장치(100)에서는, 예를 들어, 배광각 300deg의 범위에서, 발광 강도차를 ±10% 이내라는 매우 높은 배광성을 실현할 수 있고, 백열전구와 동등한 성능을 갖고, 백열전구의 대체품으로서 조명 장치(100)를 사용하는 것이 가능해진다.
상기 광(
Figure 5ee3
)배광화의 효과는, 리플렉터(140)의 발광소자(111)가 배치되어 이루어진 링의 중심축 방향의 길이(d1)가, 글로브 넥부(131)의 중심축 방향의 길이(d2)보다 긴 경우에, 특히 현저해진다. 발광소자(111)가 LED 등의 반도체 소자인 경우에는, 지향성이 강하기 때문에, 발광소자(111)에서 출사된 광은, 상기 제3 경로(L3) 및 제4 경로(L4)를 취하기 쉬워진다. 그러나, 리플렉터(140)의 발광소자(111)가 배치되어 이루어진 링의 중심축 방향의 길이(d1)가, 글로브 넥부(131)의 중심축 방향의 길이(d2)보다 긴 경우에는, 발광소자(111)에서 출사된 광이, 제2 경로(L2)를 취하기 쉬워지기 때문에, 수평 방향에서 소켓 방향측으로의 배광을 증가시킬 수 있다. 따라서, 보다 넓은 범위에서 안정적이며 큰 광량이 되도록, 배광 설계하는 것이 용이해진다.
이상, 첨부 도면을 참조하면서 본 발명의 바람직한 실시형태에 관해 상세히 설명했지만, 본 실시형태는 다양하게 변경되어 실시될 수 있다. 예를 들어, 상술한 실시형태에서는, 발광소자 기판(113), 리플렉터(140), 글로브(130), 및 방열판(170)의, 중심축(C)에 대해 직교하는 방향으로 절단했을 때의 단면 형상을 원형으로 했지만, 본 발명은 이 같은 예에 한정되지 않는다. 예를 들어, 상기 각 부재의 단면 형상은, 다각형이나 타원형일 수 있다.
또한, 상술한 실시형태에서는, 발광소자 기판(113)에 복수의 발광소자(111)을 링형으로 배치해 구성되는 하나의 발광소자 그룹만을 설치하고 있지만, 본 발명은 이 같은 예에 한정되지 않는다. 예를 들어, 발광소자 기판(113)에, 동심원형으로 복수의 발광소자 그룹을 설치할 수 있다.
<제3 실시형태>
[제3 실시형태에 따른 조명장치의 구성]
도 13 및 도 14를 참조하여 본 발명의 제3 실시 형태에 관한 조명장치(200)의 구성에 대해서 설명한다. 또한, 도 13은 본 실시 형태에 관한 조명장치(200)를 나타내는 평면도 및 측면도이며, 도 14는 도 13의 조명장치(200)의 A-A절단선을 따라 절단한 단면도이다.
본 실시 형태에 관한 조명장치(200)는 도 13 및 도 14에 나타낸 바와 같이, 광을 출사하는 발광소자(212); 발광소자(212)가 탑재된 발광소자 기판(210); 발광소자 기판(210)이 장착된 제1 히트싱크(220); 제1 히트싱크(220)에 장착된 발광소자 기판(210)을 덮는 글로브(230); 및 글로브(230)의 중앙 부분에 설치된 제2 히트싱크(240)로 이루어진다. 발광소자 기판(210)과 제의 히트싱크(220) 사이에는 방열 효과를 높이는 원반형의 금속 기판(250)이 설치되어 있다.
발광소자(112)에는 예를 들어 LED(Light Emitting Diode;발광다이오드)를 이용할 수 있다. 본 실시 형태에 관한 조명장치(200)에 있어서, 발광소자(212)는 발광소자 기판(210)상에 링형으로 복수개(예를 들어, 12개)가 등간격으로 배치된다. 발광소자 기판(210)은 예를 들어 알루미늄 기판이며, 발광소자 기판(210)은 금속 기판(250)을 통해 고정되는 제1 히트싱크(210)의 형상에 대응하여 원반형이다. 또한, 본 실시 형태에서는, 발광소자(212) 및 이들을 구비하는 발광소자 기판(210)을 발열체라 한다. 발열체는 적어도 발광소자(212)를 포함하는 것이며, 발광소자 기판(210)은 반드시 발열체로 고려하지 않아도 된다. 또한, 조명장치(200)의 열원으로는 발광소자(212)를 포함한 발열체 이외에 전원 회로(미도시)가 있다.
제1 히트싱크(220)는 조명장치(200)의 열원으로부터의 열을 방열하는 부재이다. 제1 히트싱크(220)는, 도 13 및 도 14에 나타낸 바와 같이 원통의 본체부(222)에 수지 방열부인 복수의 핀(223)을 구비한다. 본 실시 형태의 제1 히트싱크(220)는 본체부(222) 및 후술하는 플랜지부(224)가 알루미늄 등의 금속재료로 형성되고, 핀(223)이 플라스틱 등의 수지재료로 형성된 복합 부재이다. 또한, 제1 히트싱크(220)의 본체부(222)의 상세한 구성 및 복합 부재로 형성됨으로 인한 작용 효과에 대해서는 후술한다.
본체부(222)의 일단(z축 음방향측의 단부)에 있는 핀(223)의 단부에는 소켓(미도시)이 설치되고, 본체부(222)의 타단(z축 양방향측의 단부)에는 발광소자 기판(210)을 유지하는 플랜지부(224)가 설치되어 있다. 플랜지부(224)의 외주에는 발광소자 기판(210)의 외주를 감싸도록 본체부(222)의 연설(延設)방향(기축(C);z방향) 발광소자 기판(210)의 배치(양의 방향)측을 향해 돌출되는 가장자리부(124a)가 형성되어 있다. 플랜지부(124)의 상면(124b)에는, 발광소자 기판(210)이 금속 기판(250)을 개재하여 배치된다. 금속 기판(250)으로는 예를 들어 알루미늄 기판을 이용할 수 있다.
제1 히트싱크(220)의 본체부(222)의 내부 공간(226)에는 전원 회로(미도시)가 설치된다. 본체부(222)가 금속재료로 형성되어 있는 경우에는 전원 회로를 본체부(222)와 절연하기 위해서 본체부(222)의 내면에 수지재료로 이루어진 수지층(227)이 설치된다. 또는, 본체부(222)가 금속재료로 형성되어 있는 경우에는 전원 회로를 본체부(222)와 절연하기 위해서 절연 케이스(미도시)를 통해 내부 공간(226)에 수납할 수도 있다.
제1 히트싱크(220)는 발광소자(212)에서 발광소자 기판(210) 및 금속 기판(250)을 통해 전달되는 발광소자(212)를 포함한 발열체로부터의 열을 방열함과 동시에 전원회로로부터의 열을 방열한다. 본체부(222)의 외주면에 복수의 핀(223)을 설치함으로써 방열 면적이 증가되어 방열효율을 높일 수 있다.
글로브(230)는 제1 히트싱크(220)에 장착된 발광소자 기판(210)을 덮으며, 발광소자(212)가 출사하는 광을 투과시키는 부재로 형성되는 커버 부재이다. 글로브(230)는 예를 들어 투과성을 가지는 유리나 수지 등으로 형성할 수 있다. 글로브(230)는 거의 반구형의 곡면을 가지도록 형성되며, 그 중앙 부분에는 개구부(232)가 형성되어 있다. 개구부(232)의 중심은 발광소자 기판(210)에 링형으로 배치된 복수의 발광소자(212)의 중심을 지나며 발광소자 기판(210)에 대해 수직한 기축(C) 상에 있다. 개구부(232)에는 제2 히트싱크(240)가 삽입된다.
제2 히트싱크(240)는 발광소자(212)를 포함한 발열체로부터의 열을 방열하는 부재이다. 제2 히트싱크(240)는 도 14에 나타낸 바와 같이 원통부(242)와 저부(244)로 이루어진다. 원통부(242)는 개구되는 z축 양방향측의 일단이 글로브(230)의 개구부(232)와 접속되어 있다. 저부(244)는 발열체로부터의 열이 쉽게 전달되도록 하기 위해서 발광소자 기판(210)의 상면(210a)과 접촉되어 설치된다. 제2 히트싱크(240)도, 예를 들어 알루미늄 등의 금속재료로 형성할 수 있고, 플라스틱 등의 수지재료로 형성할 수 있다. 제2 히트싱크(240)를 설치함으로써 방열 면적이 더욱 증가되어 방열효율을 높일 수 있다.
[제3 실시형태에 따른 복합 부재인 히트싱크의 구성]
상술한 바와 같이, 본 실시 형태에 관한 제1 히트싱크(220)는 본체부(222) 및 플랜지부(224)가 알루미늄 등의 금속재료로 형성되고, 방열부인 핀(223)이 플라스틱 등의 수지재료로 형성된 복합 부재이다. 이러한 복합 부재로 제1 히트싱크(220)를 구성함으로써 높은 방열효율을 유지할 수 있으며, 또한 재료비용도 삭감할 수 있게 된다.
여기서, 종래에는 금속재료와 수지재료로 이루어지는 복합 부재의 형성 수법으로, 예를 들어 상기 특허 문헌 1(일본등록특허 제4541153호)와 특허 문헌 2(일본등록특허 제4292514호)에 개시되어 있는 수법이 있다. 그러나, 특허 문헌 1 및 2에 기재되어 있는 수법에서는, 인서트 성형하는 금속재료는 양극산화처리를 실시하기 때문에 알루미늄재료로 한정되어 있어 다른 금속으로는 대응할 수 없다.
그래서 본 실시 형태에서는, 인서트 성형하는 금속재료로 알루미늄재료 이외의 재료도 이용할 수 있도록 하기 위해서, 도 15 및 도 16에 나타낸 바와 같이 금속재료로 형성하는 본체부(222)에 수지재료와 금속재료가 계지되는 계지부로서 복수의 관통공(222a)을 형성한다.
도 15는 본 실시 형태에 관한 제1 히트싱크(220) 중 금속재료로 형성되는 본체부(222) 및 플랜지부(224)를 나타내는 사시도이다. 도 16은 도 15의 측면도이다.이하에서는, 금속재료로 이루어지는 본체부(222) 및 플랜지부(224)를 함께 금속부(225)라 한다. 도 15 및 도 16에 나타낸 바와 같이, 본 실시 형태에 관한 제1 히트싱크(220)의 금속재료에 의해 형성되는 본체부(222)에는, 예를 들어 제1 히트싱크(220)의 길이방향(z방향)에 3개씩, 원주방향에 4개씩 형성된 합계 12개의 관통공(222a)이 형성되어 있다. 각 관통공(222a)은 길이방향 및 원주방향에 각각 등간격으로 형성되어 있다.
이러한 금속부(225)에 수지재료로 이루어진 핀(223) 및 본체부(222)의 외주면을 덮는 표면부(부호 없음)를 인서트 성형할 때, 본 실시 형태에서는 본체부(222)의 관통공(222a)에 수지재료가 유입되고 냉각되어 고화된다. 이에 의해, 금속재료와 수지재료와의 밀착성이 향상된다. 본체부(222)에 관통공(222a)을 형성하는 것은 금속재료가 아니라도 실시할 수 있기 때문에 제1 히트싱크(220)의 금속부(225)로 선택된 금속재료를 인서트 성형할 수 있게 된다. 또한, 미리 형성된 관통공(222a)에 유입시킨 수지재료가 냉각되어 고화하면 복합 부재가 형성되기 때문에, 2차 표면처리나 2차 가공을 할 필요가 없다. 이에 의해, 제조비용을 삭감할 수 있게 된다.
또한, 본체부(222)에 관통공(222a)을 형성함으로써 인서트 성형시의 수지재료의 유동성을 희생시키지 않고 성형할 수 있다. 그리고, 금속재료와 수지재료의 선팽창계수의 차이에 의해 인서트 성형의 냉각사이클에서 금속재료와 수지재료의 접합부분에 기계적 스트레스가 발생한다. 그러나, 본 실시 형태와 같이 본체부(222)에 형성된 관통공(222a)에 수지재료를 유입시킴으로써 관통공(222a)에 유입된 수지재료와 금속재료의 접합부에서의 수지재료의 전단강도를 충분히 확보할 수 있다. 이에 의해, 제품의 신뢰성도 충분히 유지할 수 있다.
여기서, 금속재료와 수지재료의 접합부에서 충분한 전단강도를 확보하기 위해서, 도 17 및 도 18에 나타낸 바와 같이 관통공(222a')의 형상을 본체부(222')의 길이방향이면서 수지재료의 유동방향으로 직경이 긴 거의 타원형으로 형성하는 것이 좋다. 관통공(222a')의 형상은 도 17 및 도 18과 같이 거의 타원형이 아니어도 되며, 본체부의 길이방향이면서 수지재료의 유동 방향으로 직경이 긴 다각형일 수 있다. 관통공(222a')의 형상을 수지재료의 유동방향으로 직경이 긴 거의 타원형이나 다각형으로 함으로써 금속재료에 관통공(222a')를 형성할 때 버(bur) 등이 발생하더라도 수지재료의 유동성이 저하하는 것을 방지할 수 있다.
또한, 본 실시 형태에 관한 제1 히트싱크(220)의 금속부에 형성하는 관통공은, 도 19 및 도 20에 나타낸 바와 같이 본체부(322)의 내주측에서 외주측을 향해 개구면적이 넓어지는 테이퍼형의 관통공(322a)일 수 있다. 또는, 본 실시 형태에 관한 제1 히트싱크(220)의 본체부(222)의 외주면에, 내부 공간까지 관통하지 않은 홈인 오목부를 복수개 형성할 수 있다.
또한, 금속부에 형성하는 관통공의 수는 도 15 내지 도 20에 나타낸 수에 한정되지 않으며, 적어도 원주방향에 2개 이상의 관통공이 형성되어 있으면 된다. 이 때, 관통공은 기축(c)에 대해 대향하도록 형성하는 것이 좋다. 관통공의 수 및 관통공의 크기는 본체부를 과도하게 개구하여 방열효율을 저하시키지 않을 것을 고려하여 적절히 결정할 수 있다.
이상, 본 발명의 제3 실시 형태에 관한 조명장치(200)의 구성 및 금속재료와 수지재료의 혼합 부재인 제1 히트싱크(220)에 대해 설명했다. 본 실시 형태에 따르면, 제1 히트싱크(220)의 금속부(225)의 본체부(222)에 복수의 관통공(222a)을 형성한다. 관통공(222a)이 형성된 금속부(225)와 핀(223)을 형성하는 수지재료를 인서트 성형함으로써 금속재료의 선택이 제한되지 않으며, 수지재료의 유동성을 방지하지 않고 이들 접합부의 기계적 강도를 확보할 수 있다. 따라서, 제품 신뢰성을 확보할 수 있으며, 또한 금속재료의 2차 표면처리나 2차 가공이 필요 없어 제조비용을 삭감할 수 있게 된다.
<다른 응용예에 따른 히트싱크의 구성>
다음으로, 도 21 및 도 22에 기초하여 본 발명의 제3 실시 형태의 다른 응용예에 관한 조명장치의 방열 부재에 대해 설명한다. 본 실시 형태에 관한 조명장치는 앞선 예의 조명장치(200)와 동일한 구성으로 할 수 있다. 본 실시 형태에 관한 조명장치는 앞선 예와 비교하여 제1 히트싱크의 금속부의 구성이 상이하다. 이하, 본 실시 형태에 관한 조명장치의 제1 히트싱크의 금속부(425)의 구성에 대해서 설명한다. 또한, 도 21은 본 실시 형태에 관한 제1 히트싱크 중 금속재료로 형성되는 본체부(422) 및 플랜지부(424)를 나타내는 사시도이다. 도 22는 도 21의 측면도이다.
본 실시 형태에 관한 제1 히트싱크도 본체부(422) 및 플랜지부(424)(둘을 함께 「금속부(425)」라 한다.)가 알루미늄 등의 금속재료로 형성되고, 핀이 플라스틱 등의 수지재료로 형성된 복합 부재이다. 이러한 복합 부재로 제1 히트싱크를 구성함으로써 높은 방열효율을 유지할 수 있고, 재료비용도 삭감할 수 있게 된다.
본 실시 형태의 금속부(425)는 도 21 및 도 22에 나타낸 바와 같이 수지재료와 금속재료가 계지되는 계지부로서 본체부(422)에 복수의 슬릿(423)이 형성되어 있다. 본 실시 형태에 관한 제1 히트싱크의 금속재료에 의해 형성되는 본체부(422)에는, 예를 들어 제1 히트싱크의 길이방향(z방향)으로 연장되는 9개의 슬릿(423)이 원주방향에 등간격으로 형성되어 있다. 각 슬릿(423)은 플랜지부(424)의 반대측이 개구되는 좁은 슬릿부(423a)와 좁은 슬릿부(423a)에 연속하여 형성된 좁은 슬릿부(423a) 보다 원주방향의 폭이 넓은 넓은 슬릿부(423b)로 이루어진다.
이러한 금속부(425)에, 수지재료로 이루어진 핀 및 본체부(222)의 외주면을 덮는 표면부(부호 없음)를 인서트 성형할 때, 본체부(422)의 각 슬릿(423)에 수지재료가 유입되고 냉각되어 고화된다. 이에 의해, 금속재료와 수지재료와의 밀착성이 향상된다. 또한, 본체부(422)에 슬릿(423)을 형성하는 것은 금속재료가 아니더라도 실시할 수 있기 때문에 제1 히트싱크의 금속부(425)로 선택된 금속재료를 인서트 성형할 수 있게 된다. 또한, 미리 형성된 슬릿(423)에 유입된 수지재료가 냉각되어 고화되면 복합 부재가 형성되기 때문에, 2차 표면처리나 2차 가공을 할 필요가 없다. 이에 의해, 제조비용을 삭감할 수 있게 된다.
또한, 본체부(422)에 슬릿(423)을 형성함으로써 인서트 성형시의 수지재료의 유동성을 희생시키지 않고 성형할 수 있다. 또한, 금속재료와 수지재료의 선팽창계수의 차이에 의해 인서트 성형의 냉각사이클에서 금속재료와 수지재료의 접합부분에 기계적 스트레스가 발생한다. 그러나, 본 실시 형태와 같이 본체부(422)에 형성된 슬릿(423)에 수지재료를 유입시킴으로써 슬릿(423)에 유입된 수지재료와 금속재료의 접합부에서의 수지재료의 전단강도를 충분히 확보할 수 있다. 이에 의해, 제품의 신뢰성도 충분히 유지할 수 있다.
금속부의 본체부에 형성되는 슬릿의 형상은, 도 21 및 도 22에 나타내는 예에 한정되지 않으며 예를 들어 도 23 및 도 24에 나타낸 것 같은 형상으로 할 수도 있다. 본 예에서는 금속부(525)의 본체부(522)에, 예를 들어 제1 히트싱크의 길이방향(z방향)으로 연장되는 12개의 슬릿(523)이 원주방향에 등간격으로 형성되어 있다.
각 슬릿(523)은 플랜지부(524)의 반대측이 개구되는 제1의 좁은 슬릿부(523a)와, 제1의 좁은 슬릿부(523a)에 연속하여 형성된 제1의 좁은 슬릿부(523a)보다 원주방향의 폭이 넓은 제1의 넓은 슬릿부(523b)와, 제1의 넓은 슬릿부(523b)에 연속하여 형성된 제2의 좁은 슬릿부(523c)와, 제2의 좁은 슬릿부(523c)에 연속하여 형성된 제2의 넓은 슬릿부(523d)로 이루어진다. 제1의 좁은 슬릿부(523a) 및 제2의 좁은 슬릿부(523c), 제1의 넓은 슬릿부(523b) 및 제2의 넓은 슬릿부(523d)의 원주방향의 폭은 각각 동일하게 할 수 있다.
이와 같이, 슬릿(523)의 형상이나 수는 본체부를 과도하게 개구하여 방열효율을 저하시키지 않을 것을 고려하여 적절히 결정할 수 있다.
이상, 제3 실시형태의 다른 응용예에 관한 조명장치에 설치되는 금속재료와 수지재료의 혼합 부재인 제1 히트싱크에 대해서 설명했다. 본 실시 형태에 따르면, 제1 히트싱크의 금속부(425)의 본체부(422)에 복수의 슬릿(423)을 형성한다. 슬릿(423)이 형성된 금속부(525)와 핀을 형성하는 수지재료를 인서트 성형함으로써 금속재료의 선택이 제한되지 않고 수지재료의 유동성을 방지하지 않으며 이들 접합부의 기계적 강도를 확보할 수 있다. 따라서, 제품 신뢰성을 확보할 수 있으며 또한, 금속재료의 2차 표면처리나 2차 가공이 필요 없기 때문에 제조비용을 삭감할 수 있게 된다.
이상, 첨부 도면을 참조하면서 본 발명의 바람직한 실시형태에 관해 상세히 설명했지만, 본 실시형태는 다양하게 변경되어 실시될 수 있다. 예를 들어, 상기 실시 형태에서는 수지재료와 금속재료를 계지하는 계지부로서 본체부에 관통공이나 슬릿을 복수개 형성했지만, 본 발명은 이 예에 한정되지 않는다.
예를 들어, 도 25 및 도 26에 나타낸 바와 같이 제1 히트싱크의 금속부(625)의 본체부(622)의 외주면에 반구형의 돌출부(622a)를 복수개 설치할 수도 있다. 또한, 계지부로서 제1 히트싱크(220)의 본체부(222)에 길이방향에 글로브(230)와 접속되는 일단측에서 타단측을 향해 외주의 직경이 작아지는 단차부를 설치할 수도 있다. 나아가 상기 실시 형태나 변형예로 나타낸 각 계지부의 형상 중에 복수개를 조합하여 설치할 수도 있다. 이러한 계지부에 의해도 금속재료의 선택이 제한되지 않으며, 수지재료의 유동성을 방지하지 않고 이들 접합부의 기계적 강도를 확보할 수 있다. 따라서, 제품 신뢰성을 확보할 수 있으며 금속재료의 2차 표면처리나 2차 가공이 필요 없기 때문에 제조비용을 삭감할 수 있게 된다.
또한, 상기 실시 형태에서는 제1 히트싱크(220) 및 제2 히트싱크(240)의 본체부의 기축(C)에 대해 직교하는 방향으로 절단했을 때의 단면 형상이 원통형이었다. 그러나, 본 발명은 이 예에 한정되지 않으며, 본체부의 형상은 다각형이나 타원형일 수도 있다.
그리고 상기 실시 형태에서는 발광소자 기판(110)에 복수의 발광소자(212)를 링형으로 배치했지만, 본 발명은 이 예에 한정되지 않으며, 발광소자 기판(210)에 발광소자(212)를 1개만 배치해도 된다. 또한, 발광소자 기판(210)은 플랜지부(224) 이외에 제2 히트싱크(240)의 외주면에 설치할 수도 있다. 또한, 발광소자 기판(210)을 제1 히트싱크(220)의 플랜지부(224)나 제2 히트싱크(240)의 외주면에 설치할 때, 복수의 발광소자(212)를 링형으로 배치하여 구성되는 1개의 발광소자 군만을 배치할 수도 있고, 동심원상에 복수의 발광소자군을 배치할 수도 있다.
<제4 실시형태>
[제4 실시형태에 따른 조명 장치의 구성]
우선, 도 27 내지 도 29을 참조하여, 본 발명의 제4 실시형태에 따른 조명 장치(700)의 구성에 관해 설명한다. 한편, 도 27은, 본 실시형태에 따른 조명 장치(700)를 나타내는 평면도 및 측면도이다. 도 28은, 도 27의 조명 장치(700)의 A-A 절단선을 따른 단면도이다. 도 29는, 발광소자 기판(710) 상의 발광소자(712)의 배치를 나타내는 평면도이다.
본 실시형태에 따른 조명 장치(700)는, 도 27 및 도 28에 나타내는 바와 같이, 광을 출사하는 발광소자(712); 발광소자(712)가 탑재된 발광소자 기판(710); 발광소자 기판(710)이 장착된 제1 히트싱크(720); 제1 히트싱크(720)에 장착된 발광소자 기판(710)을 덮는 글로브(730); 및 글로브(730)의 중앙 부분에 설치된 제2 히트싱크(740);로 이루어진다. 발광소자 기판(710)과 제1 히트싱크(720) 사이에는, 방열 효과를 높이는 원반형의 금속 기판(750)이 설치되어 있다.
발광소자(712)에는, 예를 들어 LED(Light Emitting Diode; 발광다이오드)를 사용할 수 있다. 본 실시형태에 따른 조명 장치(700)에 있어서, 발광소자(712)는, 도 29에 나타내는 바와 같이 발광소자 기판(710) 상에 링형으로 복수개(예를 들어, 12개) 등간격으로 배치된다. 발광소자 기판(710)은, 예를 들어 알루미늄 기판이고, 발광소자 기판(710)이 금속 기판(750)을 사이에 두고 고정되는 제1 히트싱크(710)의 형상에 대응해 원반형으로 되어 있다. 한편, 본 실시형태에서는, 발광소자(712) 및 이들을 구비하는 발광소자 기판(710)을 발열체라고 칭한다. 발열체는, 적어도 발광소자(712)를 포함하는 것으로 하고, 발광소자 기판(710)은 반드시 발열체로서 고려해야 하는 것은 아니다. 또한, 조명 장치(700)의 열원으로는 발광소자(712)를 포함하는 발열체 외에, 전원 회로(미도시)가 있다.
제1 히트싱크(720)는, 조명 장치(700)의 열원으로부터의 열을 방열하는 부재이다. 제1 히트싱크(720)는, 도 27 및 도 28에 나타내는 바와 같이, 원통의 본체부(722)에 복수의 핀(723)을 구비한다. 제1 히트싱크(720)는, 예를 들어 알루미늄 등의 금속 재료로 형성해도 되고, 플라스틱 등의 수지 재료에 의해 형성해도 되고, 본체부(722)와 핀(723)을 다른 재료로 형성해도 된다.
본체부(722)의 일단(z축 음의 방향측의 단부)에는 소켓(미도시)이 설치되고, 본체부(712)의 타단(z축 양의 방향측의 단부)에는 발광소자 기판(710)을 지지하는 플랜지부(724)가 설치되어 있다. 플랜지부(724)의 외주에는, 발광소자 기판(710)의 외주를 둘러싸도록, 본체부(122)의 연장 설치 방향(기축(C); z방향) 발광소자 기판(710)의 배치(양의 방향)측을 향해 돌출하는 테두리부(724a)가 형성되어 있다. 플랜지부(724)의 상면(724b)에는, 발광소자 기판(710)이 금속 기판(750)을 사이에 두고 놓인다. 금속 기판(750)으로는, 예를 들어 알루미늄 기판을 사용할 수 있다.
제1 히트싱크(720)의 본체부(722)의 내부 공간(726)에는, 전원 회로(미도시)가 설치된다. 전원 회로는, 본체부(722)가 금속 재료로 형성되어 있는 경우, 본체부(722)와 절연하기 위해 절연 케이스(미도시)를 사이에 두고 내부 공간(726)에 수납된다.
제1 히트싱크(720)는, 발광소자(712)로부터 발광소자 기판(710) 및 금속 기판(750)을 통해 전달되는, 발광소자(712)를 포함하는 발열체로부터의 열을 방열함과 동시에, 전원 회로로부터의 열을 방열한다. 본체부(722)의 외주면에 복수의 핀(723)을 설치함으로써, 방열 면적이 증가하고, 방열 효율을 높일 수 있다.
글로브(730)는, 제1 히트싱크(720)에 장착된 발광소자 기판(710)을 덮고, 발광소자(712)가 출사하는 광을 투과하는 부재로 형성되는 커버 부재이다. 글로브(730)는, 예를 들어 투과성을 갖는 유리나 수지 등으로 형성할 수 있다. 글로브(730)는, 거의 반구형의 곡면을 갖도록 형성되고, 그 중앙 부분에는, 개구부(732)가 형성되어 있다. 개구부(732)의 중심은, 발광소자 기판(710)에 링형으로 배치된 복수의 발광소자(712)의 중심을 지나며 발광소자 기판(710)에 대해 수직인 기축(C) 상에 있다. 개구부(732)에는 제2 히트싱크(740)가 삽입된다.
제2 히트싱크(740)는, 발광소자(712)를 포함하는 발열체로부터의 열을 방열하는 부재이다. 제2 히트싱크(740)는, 도 2에 나타내는 바와 같이, 원통부(742) 및 저부(744)로 이루어진다. 원통부(742)는, 개구하는 z축 양의 방향측의 일단이 글로브(730)의 개구부(732)와 접속되어 있다. 저부(744)는, 발열체로부터의 열이 전달되기 쉽도록 발광소자 기판(710)의 상면(710a)과 접촉해 설치된다. 제2 히트싱크(740)도, 예를 들어 알루미늄 등의 금속 재료로 형성해도 되고, 플라스틱 등의 수지 재료에 의해 형성해도 된다. 제2 히트싱크(740)를 설치함으로써, 방열 면적이 더 증가하고, 방열 효율을 높일 수 있다.
[제4 실시형태에 따른 방열 구조]
본 실시형태에 따른 조명 장치(700)는, 발광소자(712)를 포함하는 발열체나 전원 회로로부터의 열을 방열하기 위한 방열 구조로서, 제1 히트싱크(720)와 제2 히트싱크(740)를 구비하고 있다. 여기서, 제1 히트싱크(720)는 발열체를 기준으로 해서 기축(C)의 일측(z축 음의 방향측)에 설치되고, 제2 히트싱크(740)는 발열체를 기준으로 해서 기축(C)의 타측(z축 양의 방향측)에 설치된다. 이처럼, 발열체를 기준으로 해서 기축(C)의 상하 방향으로 히트싱크(720, 740)를 각각 설치함으로써 방열 면적이 증가하고, 방열 효율을 높일 수 있다.
따라서, 발광소자(712)에 대한 온도 부하가 경감되고, 제품 신뢰성의 향상 및 발광 효율을 높일 수 있다. 또한, 발광소자(712)로부터의 열을 방열하는 히트싱크(720, 740)의 형상의 자유도도 높아진다. 또한, 발광소자(712)로의 전력 공급량이 상승하고, 전체 광속을 올리는 것도 가능해진다.
또한, 종래, 발광소자(712)를 포함하는 발열체의 열은, 발광소자 기판(710)의 뒷면측(소켓측)의 히트싱크(제1 히트싱크)에 의해 방열되는 것이 통상적이었다. 이처럼 한 방향으로만 방열 구조를 설치하면, 조명 장치의 배치 방향에 따라 방열 효율에 변화가 생긴다. 이에 반해, 본 실시형태에 따른 조명 장치(700)에서는, 도 28에 나타내는 바와 같이, 발열체를 기준으로 해서 기축(C)의 상하 방향으로 제1 히트싱크(720)와 제2 히트싱크(740)를 각각 설치하고 있기 때문에, 조명 장치(700)의 설치 방향에 따른 방열 효율의 변화를 저감할 수 있다.
이상, 본 발명의 제4 실시형태에 따른 조명 장치(700)와 그 방열 구조에 관해 설명하였다. 본 실시형태에 따르면, 링형으로 배치된 발광소자(712)를 포함하는 발열체를 기준으로 해서, 발광소자(712)의 중심을 지나며 발광소자 기판(710)에 대해 수직인 기축(C)의 일측에 제1 히트싱크를 설치하고, 타측에 제2 히트싱크를 설치한다. 이에 의해, 방열 면적이 증가하고, 발열체로부터의 방열 효율을 높이는 것이 가능해진다.
<제5 실시형태>
[제5 실시형태에 따른 조명 장치의 구성]
다음으로, 도 30을 참조하여, 본 발명의 제5 실시형태에 따른 조명 장치(800)의 구성에 관해 설명한다. 한편, 도 30은, 본 실시형태에 따른 조명 장치(800)를 나타내는 단면도이다. 본 실시형태에 따른 조명 장치(800)는, 제4 실시형태에 따른 조명 장치(700)와 비교해, 제2 히트싱크(740)의 원통부(742)의 외주면에 발광소자(812)를 복수 구비한 발광소자 기판(810)을 설치한 점에서 상이하다. 이하, 본 실시형태에 따른 조명 장치(800)에 관하여, 제4 실시형태에 따른 조명 장치(700)와의 상이점을 상세히 설명하며, 동일 구성, 동일 기능의 부재에 관한 설명은 생략한다. 또한, 본 실시형태에 따른 조명 장치(800)의 외관은 도27에 도시된 외관과 동일하고, 도 30는 도 27이 본 실시형태의 조명 장치(800)라고 할 때에 A-A 절단선으로 절단한 단면도인 것으로 이해할 수 있다.
본 실시형태에 따른 조명 장치(800)는, 도 30에 나타내는 바와 같이, 광을 출사하는 발광소자(812); 발광소자(812)가 탑재된 발광소자 기판(810); 제1 히트싱크(720); 글로브(730); 및 발광소자 기판(810)이 장착되고, 글로브(730)의 중앙 부분에 설치된 제2 히트싱크(740);로 이루어진다. 또한, 제1 히트싱크(720)와 제2 히트싱크(740)의 사이에는, 방열 효과를 높이는 원반형의 금속 기판(750)이 설치되어 있다. 여기서, 제1 히트싱크(720), 글로브(730), 제2 히트싱크(740) 및 금속 기판(750)은, 제4 실시형태에 따른 조명 장치(700)의 구성 부재와 동일하기 때문에, 상세한 설명은 생략한다.
본 실시형태에 따른 조명 장치(800)는, 제2 히트싱크(740)의 원통부(742)의 외주면에 발광소자(812)를 복수 구비한 발광소자 기판(810)이 설치된다. 발광소자 기판(810)은, 예를 들어 알루미늄 기판이고, 제2 히트싱크(740)의 외주를 따라 연속한 원통 형상이어도 되고, 제2 히트싱크(740)의 외주를 따라 불연속적으로 배치된 복수의 판상 기판으로 이루어진 것이어도 된다. 예를 들어 LED인 발광소자(812)는, 제1 히트싱크(720) 및 제2 히트싱크(740)의 중심을 지나며 연장 설치 방향으로 연장되는 기축(C)에 대해 수직인 평면 상에 링형으로 배치된 발광소자 그룹을 형성하고 있다. 하나의 발광소자 그룹은, 발광소자 기판(810) 상에 링형으로 발광소자(812)를 복수개(예를 들어, 12개) 등간격으로 배치해 구성된다.
본 실시형태에 따른 조명 장치(800)에서는, 도 30에 나타내는 바와 같이, 링형으로 배치된 3개의 발광소자 그룹(812A, 812B 및 812C)이 기축(C) 방향으로 배치되어 있다. 본 실시형태에서는, 발광소자(812) 및 이들을 구비하는 발광소자 기판(810)을 발열체라고 칭한다. 발열체는, 적어도 발광소자(812)를 포함하는 것으로 하고, 발광소자 기판(810)은 반드시 발열체로서 고려해야 하는 것은 아니다. 또한, 조명 장치(800)의 열원으로는, 발광소자(812)를 포함하는 발열체 외에, 제1 실시형태와 마찬가지로, 제1 히트싱크(720)의 내부 공간(726)에 설치되는 전원 회로(미도시)가 있다.
[제5 실시형태에 따른 방열 구조]
본 실시형태에 따른 조명 장치(800)도, 제4 실시형태와 마찬가지로, 발광소자(812)를 포함하는 발열체나 전원 회로로부터의 열을 방열하기 위한 방열 구조로서, 제1 히트싱크(720)와 제2 히트싱크(740)를 구비하고 있다. 본 실시형태에 있어서도, 제1 히트싱크(720)는 발열체를 기준으로 해서 기축(C)의 일측(z축 음의 방향측)에 설치되고, 제2 히트싱크(740)의 적어도 일부는 발열체를 기준으로 해서 기축(C)의 타측(z축 양의 방향측)에 설치된다. 이처럼, 발열체를 기준으로 해서 기축(C)의 상하 방향으로 히트싱크(720, 740)를 각각 설치함으로써 방열 면적이 증가하고, 방열 효율을 높일 수 있다.
따라서, 발광소자(812)에 대한 온도 부하가 경감되고, 제품 신뢰성의 향상 및 발광 효율을 높일 수 있다. 또한, 발광소자(812)로부터의 열을 방열하는 히트싱크(720, 740)의 형상의 자유도도 높아진다. 또한, 발광소자(812)로의 전력 공급량이 상승하고, 전체 광속을 올리는 것도 가능해진다. 또한, 본 실시형태에 따른 조명 장치(800)에 있어서도, 도 30에 나타내는 바와 같이, 발열체를 기준으로 해서 기축(C)의 상하 방향으로 제1 히트싱크(720)와 제2 히트싱크(740)를 각각 설치하고 있기 때문에, 조명 장치(800)의 설치 방향에 따른 방열 효율의 변화를 저감할 수 있다. 또한, 본 실시형태에 따른 조명 장치(800)에서는, 제2 히트싱크(740)의 원통부(742)에 발광소자(812)가 배치된 발광소자 기판(810)이 접촉해 있으므로, 보다 효과적으로 발열체로부터의 열을 제2 히트싱크(740)에 의해 방열할 수 있다.
<제6 실시형태>
[제6 실시형태에 따른 조명 장치의 구성]
다음으로, 도 31 및 도 32을 참조하여, 본 발명의 제6 실시형태에 따른 조명 장치(900)의 구성에 관해 설명한다. 한편, 도 31은, 본 실시형태에 따른 조명 장치(900)를 나타내는 평면도 및 측면도이다. 도 32는, 도 31의 조명 장치(300)의 B-B 절단선을 따른 단면도이다. 본 실시형태에 따른 조명 장치(900)는, 제4 실시형태에 따른 조명 장치(700)와 비교해, 제1 히트싱크와 제2 히트싱크를 일체로 형성하고 있는 점에서 상이하다. 이하, 본 실시형태에 따른 조명 장치(900)에 관해, 제1 실시형태에 따른 조명 장치(700)와의 상이점을 상세히 설명하고, 동일 구성, 동일 기능의 부재에 관한 상세한 설명은 생략한다.
본 실시형태에 따른 조명 장치(900)는, 도 31 및 도 32에 나타내는 바와 같이, 광을 출사하는 발광소자(912); 발광소자(912)가 탑재된 발광소자 기판(910); 히트싱크(920); 및 글로브(930);로 이루어진다. 또한, 발광소자 기판(910)과 히트싱크(920)의 사이에는, 방열 효과를 높이는 금속 기판(950)이 설치되어 있다.
예를 들어, LED인 발광소자(912)는, 발광소자 기판(910) 상에 링형으로 복수개(예를 들어, 12개) 등간격으로 배치된다. 발광소자 기판(910)은, 예를 들어 알루미늄 기판이고, 히트싱크(320)의 본체부(922)(922a 및 922b)에 삽입 통과되기 위한 관통홀(914)이 형성된 링형 부재이다. 본 실시형태에서는, 발광소자(912) 및 이들을 구비하는 발광소자 기판(910)을 발열체라고 칭한다. 발열체는, 적어도 발광소자(912)를 포함하는 것으로 하고, 발광소자 기판(910)은 반드시 발열체로서 고려해야 하는 것은 아니다. 또한, 조명 장치(900)의 열원으로는 발광소자(912)를 포함하는 발열체 외에, 제4 실시형태와 마찬가지로, 히트싱크(920)의 내부 공간(926)에 설치되는 전원 회로(미도시)가 있다.
히트싱크(920)는, 조명 장치(900)의 열원으로부터의 열을 방열하는 부재이다. 본 실시형태에 따른 히트싱크(920)는, 원통의 본체부(922)와, 본체부(922)의 연장 설치 방향(z방향)에는, 발광소자 기판(910)을 지지하는 플랜지부(924)가 설치된다. 여기서, 본체부(922)에서, 플랜지부(924)를 기준으로 해서, 소켓(미도시)이 설치되는 측(z축 음의 방향측)을 제1 본체부(922a)라고 하고, 발광소자 기판(910)이 설치되는 측(z축 양의 방향측)을 제2 본체부(922b)라고 한다. 제1 본체부(322a)는 제4 실시형태의 제1 히트싱크(720)에 대응하고, 제2 본체부(922b)는 제5 실시형태의 제2 히트싱크(740)에 대응한다. 히트싱크(920)의 제1 본체부(922a)에는, 도 31 및 도 32에 나타내는 바와 같이, 복수의 핀(923)을 구비한다. 히트싱크(920)는, 예를 들어 알루미늄 등의 금속 재료로 형성해도 되고, 플라스틱 등의 수지 재료에 의해 형성해도 되고, 본체부(922)와 핀(923)을 다른 재료로 형성할 수 있다.
플랜지부(924)는 발광소자 기판(910)을 지지한다. 플랜지부(924)의 외주에는, 발광소자 기판(910)의 외주를 둘러싸도록, 본체부(922)의 연장 설치 방향(z방향)으로 발광소자 기판(910)의 배치(양의 방향)측을 향해 돌출하는 테두리부(924a)가 형성되어 있다. 플랜지부(924)의 상면(924b)에는, 발광소자 기판(910)이 금속 기판(950)을 사이에 두고 놓인다. 금속 기판(950)으로는, 예를 들어 알루미늄 기판을 사용할 수 있다.
히트싱크(920)의, 예를 들어 제1 본체부(922a)의 내부 공간(926)에는, 전원 회로(미도시)가 설치된다. 전원 회로는, 본체부(922)가 금속 재료로 형성되어 있는 경우, 본체부(922)와 절연하기 위해 절연 케이스(미도시)를 사이에 두고 내부 공간(926)에 수납된다. 히트싱크(920)는, 발광소자(912)로부터 발광소자 기판(310) 및 금속 기판(950)을 통해 전달되는, 발광소자(912)를 포함하는 발열체로부터의 열을 방열함과 동시에, 전원 회로로부터의 열을 방열한다. 또한, 본체부(922)의 외주면에 복수의 핀(923)을 설치함으로써, 방열 면적이 증가하고, 방열 효율을 높일 수 있다.
글로브(930)는, 히트싱크(920)의 제2 본체부(922b)측에 장착된, 발광소자 기판(910)을 덮고, 발광소자(912)가 출사하는 광을 투과하는 부재로 형성되는 커버 부재이다. 글로브(930)는, 예를 들어 투과성을 갖는 유리나 수지 등으로 형성할 수 있다. 글로브(930)는, 거의 반구형의 곡면을 갖도록 형성되고, 그 중앙 부분에는, 개구부(932)가 형성되어 있다. 개구부(932)의 중심은, 발광소자 기판(910)에 링형으로 배치된 복수의 발광소자(912)의 중심을 지나며 발광소자 기판(910)에 대해 수직인 기축(C) 상에 있다. 기축(C)은, 히트싱크(920)의 본체부(922)의 중심축이기도 하다. 개구부(932)는 히트싱크(920)의 제2 본체부(922b)와 접속된다.
[제6 실시형태에 따른 방열 구조]
본 실시형태에 따른 조명 장치(900)는, 발광소자(912)를 포함하는 발열체나 전원 회로로부터의 열을 방열하기 위한 방열 구조로서 히트싱크(920)를 구비하고 있다. 여기서, 히트싱크(920)는, 도 32에 나타내는 바와 같이, 발열체를 기준으로 해서, 기축(C)의 일측(z축 음의 방향측)에 제1 본체부(922a)가 설치되고, 기축(C)의 타측(z축 양의 방향측)에 제2 본체부(922b)가 설치된다. 이처럼, 발열체를 기준으로 해서 기축(C)의 상하 방향으로 히트싱크(920)를 설치함으로써 방열 면적이 증가하고, 방열 효율을 높일 수 있다.
따라서, 발광소자(912)에 대한 온도 부하가 경감되고, 제품 신뢰성의 향상 및 발광 효율을 높일 수 있다. 또한, 발광소자(912)로부터의 열을 방열하는 히트싱크(920)의 형상의 자유도도 높아진다. 또한, 발광소자(912)로의 전력 공급량이 상승하고, 전체 광속을 올리는 것도 가능해진다. 또한, 조명 장치(900)의 설치 방향에 따른 방열 효율의 변화를 저감할 수 있다. 또한, 본 실시형태에서는, 발열체를 기준으로 해서 기축(C)의 일측과 타측에 설치되는 히트싱크(920)를 일체로 형성함으로써, 조명 장치(900)의 구성 부품수를 적게 할 수 있다. 이에 의해, 비용을 삭감할 수 있음과 동시에, 조립 공수도 적어지고, 완성 시의 부품의 위치 맞춤 정밀도가 안정되기 때문에 불량품의 발생을 저감할 수 있다.
한편, 본 실시형태에서는, 도 32에 나타내는 바와 같이, 발광소자(912)를 포함하는 발열체는 히트싱크(920)의 플랜지부(940)에 설치했지만, 본 발명은 이 같은 예에 한정되지 않는다. 예를 들어 발광소자를 포함하는 발열체를, 도 30에 나타내는 제5 실시형태처럼, 본체부(922)의 제2 본체부(922b)측에 설치해도 된다.
이상, 첨부 도면을 참조하면서 본 발명의 바람직한 실시형태에 관해 상세히 설명했지만, 이 같은 예에 한정되지 않는다. 예를 들어, 상기 제5 실시형태에서는, 복수의 발광소자 그룹(812A~812C)을 제2 히트싱크(740)의 원통부(742)의 연장 설치 방향으로 배치했지만, 본 발명은 이 같은 예에 한정되지 않고, 적어도 하나의 발광소자 그룹을 설치해도 된다.
또한, 상기 실시형태에서는, 제1 히트싱크(720), 제2 히트싱크(740), 및 히트싱크(920)의 본체부의, 기축(C)에 대해 직교하는 방향으로 절단했을 때의 단면 형상은 원통형이었다. 그러나, 본 발명은 이 같은 예에 한정되지 않고, 본체부의 형상은 다각형이나 타원형일 수 있다.
또한, 상기 실시형태에서는 발광소자 기판에 복수의 발광소자를 링형으로 배치했지만, 본 발명은 이 같은 예에 한정되지 않고, 발광소자 기판에 발광소자를 하나만 배치해도 된다. 또한, 발광소자 기판을 히트싱크의 플랜지부에 설치할 때, 도 3에 나타내는 바와 같이 복수의 발광소자를 링형으로 배치해 구성되는 하나의 발광소자 그룹만을 배치해도 되고, 동심원 상에 복수의 발광소자 그룹을 배치해도 된다.
<제7 실시형태>
[제7 실시형태에 따른 조명장치의 구성]
우선, 도 33 내지 도 35를 참조하여 본 발명의 제7 실시 형태에 관한 조명장치의 구성에 대해서 상세하게 설명한다. 도 33은 본 발명의 제7 실시 형태에 관한 조명장치(1100)의 전체 구성을 나타내는 상면도(a) 및 정면도(b)이다. 도 34는 제7 실시 형태에 관한 조명장치(1100)를 도 1(a)의 II-II선을 따라 절단한 단면도이다. 도 35의 (a)는 제7 실시 형태에 관한 발광모듈(1110)의 구성을 나타내는 상면도이며, 도 35의 (b)는 제7 실시 형태에 관한 방열판(1170)의 구성을 나타내는 상면도이다.
도 33 및 도 34에 나타낸 바와 같이, 본 실시 형태에 관한 조명장치(1100)는 발광모듈(1110), 제1 히트싱크(1140, 이하 「상부 히트싱크」라 한다.), 제2 히트싱크(1120, 이하 「하부 히트싱크」라 한다.), 글로브(1130), 구동회로(1160), 방열판(1170) 및 열전도 부재(1180)를 주로 가진다.
(발광모듈(1110))
발광모듈(1110)은 발광소자(1111)와 발광소자 기판(1113)을 가지며, 조명장치(1100)의 광원이 되는 부재이다.
발광소자(1111)는 LED(Light Emitting Diode) 등의 반도체 발광소자로, 광을 사출한다. 이 발광소자(1111)의 발광색은 후술하는 글로브(1130)의 구성 재료에 의해 달라진다. 구체적으로는, 글로브(1130)가 형광체를 함유한 재료(수지 등)로 구성되는 경우, 발광소자(1111)의 발광색은 청색이며, 글로브(1130)에서 광의 파장이 변환되어 백색이 된다. 한편, 글로브(1130)가 광확산제를 함유한 재료(수지 등)로 구성되는 경우, 발광소자(1111)의 발광색은 백색(6500K ~ 2000K)이다. 발광소자(1111)에서 출사된 광은, 후술하는 리플렉터(미도시)에서 반사되거나 또는 직접 글로브(1130)에 도달하여 글로브(1130)에서 확산되어 외부로 방사된다.
또한, 본 실시 형태에서는 발광소자(1111)가 복수개 준비되며, 이들 복수의 발광소자(1111)는 발광소자 기판(1113)의 일면상에 링형으로 배치된다. 여기서 말하는 「링형」이란, 도 35(a)에 나타낸 바와 같은 원형의 링형 뿐만이 아니라, 타원형의 링형, 다각형의 링형도 포함하는 개념이다.
발광소자 기판(1113)은 발광소자(1111)가 실장되는 기판이며, 바람직하게는 알루미늄, 니켈 등의 금속이나 유리 컴포지트(CEM3)나 세라믹 등 열전도성이 높은 재료로 형성된다. 이에 의해, 발광모듈(1110)에서 발생한 열을 효율적으로 하부 히트싱크(1120)에 전달할 수 있어 조명장치(1100)의 방열효율을 향상시킬 수 있다.
발광소자 기판(1113)의 형상은 특별히 한정되는 것은 아니지만, 상술한 ANSI규격을 만족하기 위해서는 거의 원형 또는 거의 다각형인 것이 바람직하다. 여기서, 본 실시 형태에 관한 발광소자 기판(1113)은 도 35(a)에 나타낸 바와 같이 중앙에 개구부(1113a)를 가진다. 개구부(1113a)의 형상은 거의 원형, 거의 타원형, 거의 다각형 등 특별히 한정되는 것은 아니다. 단, 개구부(1113a)의 크기는 상부 히트싱크(1140)의 저부보다 크고, 발광소자 기판(1113)과 상부 히트싱크(1140)가 접촉하지 않게 해야 한다. 이는, 후술하는 바와 같이, 본 실시 형태에서 상부 히트싱크(1140)는 발광모듈(1110)과는 열적으로 차단되면서 구동회로(1160)에서 발생한 열만을 외부로 방출하도록 설치될 필요가 있기 때문이다.
또한, 발광소자 기판(1113)은 하부 히트싱크(1130)의 상부(또는 방열판(1170))에 유지됨으로써 위치가 고정된다.
(상부 히트싱크(1140))
상부 히트싱크(1140)는 구동회로(1160)에서 발생한 열을 외부로 방출하는 기능을 가진다. 이 방열 기능을 실현하기 위해서, 상부 히트싱크(1140)는 알루미늄이나 구리 등의 열전도성이 높은 금속이나, 열전도성이 높은 수지 등의 재질로 형성된다. 또한, 방열 효과를 더욱 높이기 위해서, 상부 히트싱크(1140)에는 오목부나 복수의 핀 등을 설치하여 상부 히트싱크(1140)의 표면적을 크게 하는 것이 바람직하다.
이 점에서, 본 실시 형태는 상부 히트싱크(1140)는 일단에 개구부(1141)를 가지는 중공의 거의 원통형의 형상을 가진다. 거의 원통형의 중공부를 가지기 때문에 상부 히트싱크(1140)의 외부에 노출된 면의 표면적(열을 방산하는데 이용되는 면의 면적)이 커져서 방열 효과를 높일 수 있다. 또한, 방열 효과를 높이기 위한 구성은, 이러한 중공 형상뿐만이 아니라 예를 들어, 상부 히트싱크(1140)는 거의 원통형 또는 거의 기둥형의 본체부를 가지며, 이 본체부가 외부에 노출한 복수의 핀을 가지는 구성일 수 있다.
또한, 상부 히트싱크(1140)는 발광소자 기판(1113)을 기준으로 발광소자(1111)의 배치에 의해 구성되는 링의 중심축 방향의 일측에 설치된다. 이 때, 상부 히트싱크(1140)는 구동회로(1160)와 열전도 부재(1180)를 통해 접촉하도록 설치된다. 이와 같이, 상부 히트싱크(1140)가 구동회로(1160)와 열전도 부재(1180)를 통해 접촉되어 설치됨으로써 구동회로(1160)에서 발생한 열을 외부로 방출하는 역할을 가진다. 여기서, 상부 히트싱크(1140)는 상술한 바와 같이 발광모듈(1110)과 접촉하지 않게 설치되며 또한 상부 히트싱크(1140)는(후술하는 단열재(1181)에 의해) 하부 히트싱크(1120)와도 열적으로 차단되어 있기(완전하게 차단되어 있지 않아도 된다. 이하 동일.) 때문에 구동회로(1160)로부터의 발열에 대해, 발광모듈(1110)로부터의 발열의 영향을 받지 않고 구동회로(1160)의 방열효율을 향상시킬 수 있다.
도 33 및 도 34에서는, 상부 히트싱크(1140)는 원통형으로 도시되어 있지만, 상부 히트싱크(1140)의 형상은 이에 한정되는 것이 아니며 예를 들어, 발광소자 기판(1113)에서 이격됨에 따라 직경이 확장되는 역원뿔대형일 수 있다.
(하부 히트싱크(1120))
하부 히트싱크(1120)는 그 일단(도 33 내지 도 35의 하단)에서 소켓(미도시)과 접속됨과 동시에, 발광모듈(1110)에서 발생한 열을 외부로 방출하는 기능을 가진다. 이 방열 기능을 실현하기 위해서, 하부 히트싱크(1120)는 열전도성이 높은 수지로 형성된다. 본 실시 형태에 있어서, 하부 히트싱크(1120)가 금속이 아니라 수지로 형성되는 것은, 조명장치(1100)를 경량화하기 위함이며, 또한 수지는 절연성이기 때문에 소켓과 접속되었을 때의 코킹부분에 절연 대책을 실시할 필요가 없기 때문이다. 따라서, 조명장치(1100)의 중량증가가 문제가 되지 않는 경우에는, 하부 히트싱크(1120)의 재질로 알루미늄이나 구리 등의 금속재료를 사용해도 된다. 단, 하부 히트싱크(1120)를 금속재질로 했을 경우에는, 소켓의 코킹부분에 절연 대책을 실시할 필요가 있다.
또한, 방열 효과를 더욱 높이기 위해서, 하부 히트싱크(1120)에도 오목부나 복수의 핀 등을 설치하여 하부 히트싱크(1120)의 표면적을 크게 하는 것이 바람직하다.
이 점에서, 본 실시 형태는 하부 히트싱크(1120)는 양단에 개구부를 가지는 중공의 거의 원통형의 본체부의 외주면에 복수의 핀(1129)이 설치되어 있다. 이 복수의 핀(1129)을 가짐으로써 하부 히트싱크(1120)의 외부에 노출된 면의 표면적(열을 방산하는데 이용되는 면의 면적)이 커져서 방열 효과를 높일 수 있다. 또한, 방열 효과를 높이기 위한 구성은 이러한 핀(1129)뿐만이 아니라, 예를 들어, 하부 히트싱크(1120)의 본체부의 외주면에 복수의 오목부(미도시)를 가지는 구성일 수 있다.
또한, 하부 히트싱크(1120)는 발광소자 기판(1113)을 기준으로 발광소자(1111)의 배치에 의해 구성되는 링의 중심축 방향의 타측에 설치된다. 이에 의해, 하부 히트싱크(1120)는 상부 히트싱크(1140)와는 독립적으로 구동회로(1160)나 발광모듈(1110)에서 발생한 열을 외부로 방출할 수 있다. 따라서, 히트싱크가 하나뿐인 경우와 비교하여 조명장치(1100)의 방열효율을 현저하게 높일 수 있다.
여기서, 하부 히트싱크(1120)는 후술하는 바와 같이, 단열재(1181)에 의해 구동회로(1160)와 열적으로 차단되어 있으며 또한, 상부 히트싱크(1140)와도 열적으로 차단되어 있다. 따라서, 하부 히트싱크(1120)는 발광모듈(1110)로부터의 발열에 대해, 구동회로(1160)로부터의 발열의 영향을 받지 않고 발광모듈(1110)의 방열효율을 향상시킬 수 있다.
나아가, 본 실시 형태에서 하부 히트싱크(1120)는 수지(1121)와 이 수지(1121) 내부에 삽입된 금속 부재(1123)로 구성되어 있다. 그리고, 하부 히트싱크(1120)는 수지(1121)와 금속 부재(1123)가 일체로 인서트 성형됨으로써 얻어진다. 이는 수지(1121)만으로는 알루미늄이나 구리 등의 금속과 비교하여 열전도성이 다소 낮기 때문에, 더욱 열전도성을 높이기 위해서 알루미늄이나 구리 등의 금속 부재(1123)를 삽입한 것이다. 따라서, 발광모듈(1110)의 성능에 의해 발열이 억제되거나 하여 방열 효과가 충분한 경우에는, 금속 부재(1123)를 삽입할 필요가 없다.
또한, 금속 부재(1123)를 삽입하는 경우에는, 발광모듈(1110)에서 발생한 열이 하부 히트싱크(1120)에 보다 쉽게 전달되도록 하기 위해서 방열판(1170)(방열판(1170)이 설치되어 있지 않은 경우에는 발광소자 기판(1113))과 접촉하도록 금속 부재(1123)를 배치하는 것이 바람직하다.
또한, 하부 히트싱크(1120)는 상술한 방열 기능 이외에, 구동회로(1160)가 수납되는 케이스로서의 기능도 가진다. 본 실시 형태에서는, 하부 히트싱크(1120)의 중공의 본체부의 내부에 구동회로(1160)가 설치되어 있다.
또한, 일반적으로 LED 등의 반도체 발광소자를 이용한 조명장치에서는, 구동회로(1160)보다 발광모듈(1110)이 발열량이 크다. 본 실시 형태에 관한 조명장치(1100)의 구성에 따르면, 발열량이 큰 발광모듈(1110)이 상부 히트싱크(1140)보다 사이즈(표면적)가 크고, 방열량도 큰 하부 히트싱크(1120)와 열적으로 결합되어 있기 때문에 반대의 경우와 비교하여 방열효율을 높일 수 있다.
(글로브(1130))
글로브(1130)는 발광모듈(1110)을 덮도록 거의 구상으로 설치되어 발광소자(1111)에서 출사된 광의 색(발광소자(1111)의 발광색)을 제어하는 역할 및 이들 광을 글로브(1130)의 표면상에서 확산시킴으로써 조명장치(1100)의 배광각을 넓히는 역할을 가진다.
글로브(1130)는 발광소자(1111)의 발광색을 제어하는 역할을 실현하기 위해서 발광소자(1111)의 발광색에 따라 형광체나 광확산제를 포함한다. 구체적으로는, 발광소자(1111)가 청색으로 발광하는 LED인 경우에는, 글로브(1130)의 소재가 형광체를 함유하는 재료이거나 또는 글로브(1130)의 표면에 형광체가 도포되어 있다. 예를 들어, 글로브(1130)가 수지로 이루어진 경우에는 이 수지 중에 형광안료를 함유시킬 수 있고, 글로브(1130)가 유리 재료로 이루어진 경우에는 이 글로브의 표면에 형광 도료를 도포할 수 있다. 그리고, 발광소자(1111)에서 출사되어 글로브(1130)에 도달한 광의 파장이 글로브(1130)의 형광체에 의해 변환되어 백색이 발광된다.
여기서, 형광체에 의한 발광은 광확산도가 크기 때문에 발광소자(1111)에서 출사된 광의 배광분포가 불충분해도 형광체에 의한 발광시의 광확산으로 양호한 배광분포를 얻을 수 있게 된다. 또한, 청색 LED와 형광체를 조합함으로써 자연광에 가까운 색으로 발광시킬 수 있게 된다.
또한, 조명장치(1100)의 배광각을 보다 넓히기 위해서 글로브(1130)의 소재가 형광체에 추가로 광확산제를 함유하는 재료이거나 또는 글로브(1130)의 표면에 형광체에 추가로 광확산제가 도포되어 있어도 된다.
한편, 발광소자(1111)가 백색광을 발하는 LED인 경우에는, 글로브(1130)의 소재가 광확산제를 함유하는 재료이거나 또는 글로브(1130)의 표면에 광확산제가 도포되어 있어도 된다. 이 경우에도 광확산제에 의해 발광소자(1111)에서 출사된 광이 글로브(1130)의 표면에서 확산되어 조명장치(1100)의 배광각을 넓힐 수 있다.
본 실시 형태에서는, 글로브(1130)의 정상부(발광모듈(1110)측과는 반대측의 단부)에는 상부 히트싱크(1140)의 상단부(개구부(1141)가 형성되어 있는 측의 단부)와 접속되는 개구부가 형성되어 있다. 이에 의해, 상부 히트싱크(1140)의 중공부분이 외부에 노출되기 때문에 조명장치(1100)의 방열효율을 높일 수 있다.
또한, 글로브(1130)의 저부(발광모듈(1110)측의 단부)에도 개구부(미도시)가 설치되어 있으며, 글로브(1130)는 이 개구부에서 발광소자 기판(1113), 방열판(1170) 또는 하부 히트싱크(1120)와 접속된다.
(구동회로(1160))
구동회로(1160)는 하부 히트싱크(1120)의 내부에 설치되어 소켓을 통해 외부로부터 공급되는 전력을 이용하여 발광소자(1111)를 구동(점등)시키는 전원 회로이다. 구동회로(1160)는 기판에 실장되어 있는 복수의 전자부품으로 구성되어 있으며, 발광소자(1111)를 구동시킬 때에 복수의 전자부품이 발열한다. 이 구동회로(1160)에서 발생한 열은 열전도 부재(1180)를 통해 상부 히트싱크(1140)에 전달되어 외부로 방출된다.
또한, 본 실시 형태에 관한 구동회로(1160)는 교류를 직류로 변환하기 위한 전해 커패시터를 가지지 않았다. 시판되고 있는 LED 조명장치의 제품 수명은 수만 시간이라고 하지만, 실제로는 전해 커패시터의 수명이 수천 시간이기 때문에 LED 조명장치 전체로서의 제품 수명에 도달하기 전에 전해 커패시터를 교환할 필요가 있다. 하지만, 본 실시 형태에 관한 구동회로(1160)는 교류를 직류로 변환하기 위한 전해 커패시터를 가지지 않기 때문에, 수천 시간에서 부품을 교환할 필요가 없고 조명장치(1100)의 제품 수명을 현저하게 늘릴 수 있다.
(방열판(1170))
방열판(1170)은 하부 히트싱크(1120)에 접촉하도록 설치되어 발광모듈(1110)에서 발생한 열을 하부 히트싱크(1120)에 전달하는 역할을 가진다. 방열판(1170)은 상기 열전달의 역할을 실현하기 위해서, 알루미늄이나 구리 등의 열전도성이 높은 금속으로 구성된다.
여기서, 본 실시 형태에 관한 방열판(1170)은 도 35의 (b)에 나타낸 바와 같이 중앙에 개구부(1170a)를 가진다. 개구부(1170a)의 형상은 거의 원형, 거의 타원형, 거의 다각형 등으로 특별히 한정되는 것은 아니다. 단, 개구부(1170a)의 크기는 상부 히트싱크(1140)의 저부보다 크고, 방열판(1170)과 상부 히트싱크(1140)가 접촉하지 않게 할 필요가 있다. 이는 본 실시 형태에서 상부 히트싱크(1140)는 발광모듈(1110)과는 열적으로 차단되면서 구동회로(1160)에서 발생한 열만을 외부로 방출하도록 설치될 필요가 있기 때문이다.
또한, 조명장치(1100)의 방열효율이 충분히 높으며, 또한 발광소자 기판(1113), 글로브(1130), 상부 히트싱크(1140)의 위치결정 정밀도를 확보할 수 있다면 방열판(1170)은 반드시 설치되지 않아도 된다.
(열전도 부재(1180))
열전도 부재(1180)는 열전도성을 가지는 재료(이하, 「열전도재」라 한다.)로 이루어지며 상부 히트싱크(1140)와 구동회로(1160)를 열적으로 결합하는 역할을 가진다. 상기 열전도재로는 시트형태 또는 막형태로 성형할 수 있는 재료, 혹은 틀에 주입해 충전할 수 있는 성질과 상태를 가지는 재료 등을 들 수 있다. 이러한 재료로는 예를 들어, 열전도성을 가지는 수지 등이 있지만, 이러한 수지 중에서도 특히, 열전도성이 높은 실리콘계의 수지 또는 에폭시계의 수지가 바람직하다.
또한, 열전도 부재(1180)가 하부 히트싱크(1120)나 발광모듈(1110)과 접촉해서 상부 히트싱크(1140)가 하부 히트싱크(1120) 및 발광모듈(1110)과 열적으로 결합되면 발광모듈(1110)에서 발생한 열이 구동회로(1160)나 상부 히트싱크(1140)에 전달된다. 따라서, 본 실시 형태에서는 수지 등의 단열재(1181)를 하부 히트싱크(1120)의 내주면을 따라서 나아가서는 상부 히트싱크(1140)의 저부나 열전도 부재(1180)의 주면을 덮도록 구비함으로써 상부 히트싱크(1140)를 하부 히트싱크(1120) 및 발광모듈(1110)과 열적으로 차단하도록 하였다.
(그 외의 구성)
그 외, 본 실시 형태에 관한 조명장치(1100)는 필요에 따라서 다른 부재를 구비할 수 있다. 예를 들어, 조명장치(1100)의 배광성을 향상시키기 위해서 조명장치(1100)는 발광소자(1111)에서 출사된 광을 반사하여 소켓 방향으로 광을 배광시키기 위한 리플렉터(미도시)를 구비할 수 있다.
<제7 실시형태>
[제7 실시형태에 따른 조명장치의 작용 효과]
다음으로, 도 36을 참조하여 상술한 구성을 가지는 조명장치(1100)의 작용 효과에 대해서 설명한다. 도 36은 본 실시 형태에 관한 조명장치(1100)에서의 열의 흐름을 나타내는 설명도이다. 또한 도 36에서는 설명을 알기 쉽게 하기 위해 글로브(1130)가 생략되어 있다.
조명장치(1100)에서는, 주로 발열하는 부분(발열체)이 2개 있다. 1번째는 발광모듈(1110)이다. 발광모듈(1110)에서는 발광소자(1111)가 구동회로(1160)에 의해 구동되어 광이 사출될 때 열이 발생한다. 그리고, 각 발광소자(1111)에서 발생한 열은 이 발광소자(1111)가 실장되어 있는 발광소자 기판(1113)에 전달된다. 여기서, 발광소자 기판(1113), 방열판(1170) 및 하부 히트싱크(1120)(수지(1121), 금속 부재(1123))는 열전도성이 높은 재질이다.
따라서, 발광모듈(1110)에서 발생한 열(발광소자(1111)에서 발생하여 발광소자 기판(1113)에 전달된 열)은 우선 발광소자 기판(1113)의 하면에 접촉되어 있는 방열판(1170)에 전달되어 도 36의 화살표(B1)로 나타낸 바와 같이 금속 부재(1123)를 통과하여 수지(1121)까지 전달된다. 수지(1121)까지 전달된 열은 화살표(B2)로 나타낸 바와 같이 핀(1129) 등에서 외부로 방출된다.
한편, 2번째 발열체는 구동회로(1160)이다. 구동회로(1160)에서 발생한 열은 도 36의 화살표(T1)로 나타낸 바와 같이 구동회로(1160)에서 열전도 부재(1180)를 지나 상부 히트싱크(1140)에 전달되어 도 36의 화살표(T2)로 나타낸 바와 같이 상부 히트싱크(1140)의 개구부(1141)내의 주면에서 외부로 방출된다.
여기서, 본 실시 형태에 있어서는, 상부 히트싱크(1140)는 2개의 발열체 중에서 구동회로(1160)와만 열적으로 결합되어 있고, 발광소자(1111) 및 하부 히트싱크(1120)와는 열적으로 차단되어 있다. 또한, 하부 히트싱크(1120)는 2개의 발열체 중 발광모듈(1110)과만 열적으로 결합되어 있으며 구동회로(1160) 및 상부 히트싱크(1140)와는 열적으로 차단되어 있다. 이 때문에, 하부 히트싱크(1120)는 발광모듈(1110)로부터의 발열에 대해, 구동회로(1160)로부터의 발열의 영향을 받지 않고, 발광모듈(1110)의 방열효율을 향상시킬 수 있다. 반대로, 상부 히트싱크(1140)는 구동회로(1160)으로부터의 발열에 대해, 발광모듈(1110)으로부터의 발열의 영향을 받지 않고 구동회로(1160)의 방열효율을 향상시킬 수 있다.
이상, 상술할 바와 같이 조명장치(1100)는 상부 히트싱크(1140)로부터의 방열과 하부 히트싱크(1120)로부터의 방열의 2개의 방열 경로를 가지지만, 이들 2개의 방열 경로가 2개의 발열체 중 어느 하나의 방열에만 이용되기 때문에, 각 방열 경로(특히, 상부 히트싱크(1140))로부터의 방열효율을 향상시킬 수 있다.
[제7 실시형태에 따른 조명장치의 제조 방법]
도 37을 참조하여 본 실시 형태에 관한 조명장치(1100)의 제조 방법에 대해 상세하게 설명한다. 도 37은 본 실시 형태에 관한 조명장치(1100)의 제조 방법의 일례를 나타내는 설명도이다.
조명장치(1100)를 조립할 때에는, 우선 각 부품, 즉 발광모듈(1110), 상부 히트싱크(1140), 하부 히트싱크(1120), 글로브(1130), 구동회로(1160), 필요에 따라서 방열판(1170)을 준비한다. 이어서, 하부 히트싱크(1120)의 내부(중공부)에 구동회로(1160)를 설치하고, 구동회로(1160)가 설치된 하부 히트싱크(1120)의 상부에 방열판(1170)을 배치한다. 방열판(1170)은 이 시점에서 하부 히트싱크(1120)의 금속 부재(1123)에 고정한다.
다음으로, 방열판(1170)상에 발광모듈(1110)을 고정한다. 그리고 발광모듈(1110)을 덮도록 글로브(1130)을 씌우고 글로브(1130)의 개구부로부터 상부 히트싱크(1140)의 개구부측의 단부의 위치와 글로브(1130)의 개구부의 위치가 맞도록 상부 히트싱크(1140)를 삽입한다. 또한, 하부 히트싱크(1120)의 내주면을 따라 수지 등의 단열재(1181)를 배치하여 단열재(1181)의 단부가 상부 히트싱크(1140)의 저부의 주연부와 접촉하도록 한다.
여기까지 조립한 상태로 전체를 상하반전시켜서 하부 히트싱크(1120)의 소켓 접속측 개구부로부터, 예를 들어, 노즐(1183) 등을 이용하여 용융상태의 열전도재를 하부 히트싱크(1120)의 중공부에 주입한다. 그리고, 적어도 상부 히트싱크(1140)의 저부와 구동회로(1160)가 열전도재에 의해 열적으로 결합될 때까지 열전도재를 주입한 후에 이 열전도재를 경화시킴으로써 열전도 부재(1180)를 형성한다.
마지막으로, 도시하지 않았지만, 하부 히트싱크(1120)의 하단부에 소켓을 접속시킴으로써 본 실시 형태에 관한 조명장치(1100)를 제조할 수 있다.
<제8 실시 형태>
다음으로 도 38을 참조하여 본 발명의 제8 실시 형태에 관한 조명장치에 대해서 설명한다. 도 38은 본 발명의 제8 실시 형태에 관한 조명장치(1200)의 전체 구성 및 열의 흐름을 나타내는 설명도이다.
상술한 제7 실시 형태에 관한 조명장치(1100)에서는, 상부 히트싱크(1140)가 구동회로(1160)에서 발생한 열을 방출하고 하부 히트싱크(1140)가 발광모듈(1110)에서 발생한 열을 방출하고 있지만, 본 실시 형태에 관한 조명장치(1200)에서는, 상부 히트싱크(1140)가 발광모듈(1110)에서 발생한 열을 방출하고 하부 히트싱크(1120)가 구동회로(1160)에서 발생한 열을 방출한다.
상술한 바와 같이, 일반적으로는 발광모듈(1110)에서 발생하는 열량이 구동회로(1160)에서 발생하는 열량보다 크기 때문에, 구조적으로 표면적을 크게 하기 쉬운 하부 히트싱크(1120)에서 발광모듈에서 발생한 열을 방출하는 것이 바람직하다. 그러나, 예를 들어 상부 히트싱크(1140)의 재질로 알루미늄이나 구리 등보다도 열전도율이 높고, 방열효율이 뛰어난 재질(예를 들어, 카본 등)을 이용함으로써 발광모듈(1110)에서 발생하는 다량의 열을 방출할 수 있다면 상부 히트싱크(1140)가 발광모듈(1110)에서 발생한 열을 방출하고, 하부 히트싱크(1120)가 구동회로(1160)에서 발생한 열을 방출하도록 할 수 있다.
이와 같이, 발열량이 비교적 작은 구동회로(1160)로부터의 열을 하부 히트싱크(1120)에 의해 방출하도록 함으로써 하부 히트싱크(1120)의 사이즈를 소형화할 수 있기 때문에 발광소자(1111)에서 출사된 광을 수평방향보다 소켓방향측으로 배광시키기 쉬워진다. 이하, 조명장치(1200)의 각 구성 요소에 대해 설명한다.
[제8 실시 형태에 따른 조명장치의 구성]
도 38에 나타낸 바와 같이 본 실시 형태에 관한 조명장치(1200)는 발광모듈(1210), 상부 히트싱크(1240), 하부 히트싱크(1220), 열전도 부재(1290), 글로브(1230), 구동회로(1260) 및 단열재(1280)를 주로 가진다.
(발광모듈(1210))
발광모듈(1210)의 구성은 제8 실시 형태에 관한 발광모듈(1110)의 구성과 동일하기 때문에 상세한 설명을 생략한다.
(상부 히트싱크(1220))
상부 히트싱크(1240)는 발광모듈(1110)에서 발생한 열을 외부로 방출하는 기능을 가진다. 이 방열 기능을 실현하기 위해서, 상부 히트싱크(1240)는 열전도성이 높은 금속이나 열전도성이 높은 수지나 무기 재료 등의 재질로 형성되지만, 본 실시 형태에 관한 상부 히트싱크(1240)는 특히 높은 방열효율이 요구되기 때문에, 예를 들어, 카본 등의 재료를 사용하는 것이 바람직하다. 또한, 방열 효과를 더욱 높이기 위해서, 상부 히트싱크(1240)에는 오목부나 복수의 핀 등을 설치하여 상부 히트싱크(1240)의 표면적을 크게 하는 것이 바람직하다.
이 점에서, 본 실시 형태는, 상부 히트싱크(1240)는 일단에 개구부(1241)를 가지는 중공의 거의 원통형의 본체부의 단부에 거의 원판형의 저부가 연결된 형상을 가진다. 이 거의 원통형의 중공부를 가짐으로써 상부 히트싱크(1240)의 외부에 노출된 면의 표면적(열을 방산하는데 이용되는 면의 면적)이 커져 방열 효과를 높일 수 있다. 또한, 방열 효과를 높이기 위한 구성은 이러한 중공 형상뿐만이 아니라 예를 들어, 상부 히트싱크(1240)는 거의 원통형 또는 거의 기둥형의 본체부를 가지며, 이 본체부가 외부에 노출된 복수의 핀을 가지는 구성일 수도 있다. 또한, 상부 히트싱크(1240)가 상기 거의 원판형의 저부를 가지며, 이 저부에 제8 실시 형태와 같은 도너츠 형상의 발광소자 기판(1213)을 배치함으로써 상부 히트싱크(1240)와 발광소자 기판(1213)을 직접 접촉시킬 수 있다.
또한, 상부 히트싱크(1240)는 발광소자 기판(1213)을 기준으로 발광소자(1211)의 배치에 의해 구성되는 링의 중심축 방향의 일측에 설치된다. 이 때, 상부 히트싱크(1240)는 발광소자 기판(1213)과만 접촉하도록 설치된다. 이와 같이, 상부 히트싱크(1240)가 발광소자 기판(1213)과만 접촉하여 설치됨으로써 발광모듈(1210)에서 발생한 열을 외부로 방출하는 역할을 가진다. 여기서, 상부 히트싱크(1240)는 후술하는 단열재(1280)에 의해, 구동회로(1260) 및 하부 히트싱크(1220)와 열적으로 차단되어 있기 때문에, 발광모듈(1210)로부터의 발열에 대해, 구동회로(1260)로부터의 발열의 영향을 받지 않고, 발광모듈(1210)의 방열효율을 향상시킬 수 있다.
또한, 도 38에서는 상부 히트싱크(1240)의 본체부는 원통형으로 도시되어 있지만, 상부 히트싱크(1240)의 본체부의 형상은 이에 한정되는 것이 아니며 예를 들어, 원판형의 저부에서 이격됨에 따라 직경이 확장되는 역원뿔대형일 수도 있다.
(하부 히트싱크(1220))
하부 히트싱크(1220)는 그 일단(도 38의 하단)에서 소켓(미도시)과 접속됨과 동시에, 구동회로(1260)에서 발생한 열을 외부로 방출하는 기능을 가진다. 이 방열 기능을 실현하기 위해서, 하부 히트싱크(1220)는 열전도성이 높은 수지로 형성된다. 본 실시 형태에 있어서, 하부 히트싱크(1220)가 금속이 아니라 수지로 형성되어 있는 것은 조명장치(1200)를 경량화하기 위함이며, 또한 수지는 절연성이기 때문에 소켓과 접속되었을 때의 코킹부분에 절연 대책을 실시할 필요가 없기 때문이다. 따라서, 조명장치(1200)의 중량증가가 문제가 되지 않는 경우에는 하부 히트싱크(1220)의 재질로 알루미늄이나 구리 등의 금속재료를 사용해도 된다. 단, 하부 히트싱크(1220)를 금속재질로 했을 경우에는, 소켓의 코킹부분에 절연 대책을 실시할 필요가 있다.
또한, 방열 효과를 더욱 높이기 위해서, 하부 히트싱크(1220)에도 오목부나 복수의 핀 등을 설치하여 하부 히트싱크(1220)의 표면적을 크게 하는 것이 바람직하다.
또한, 하부 히트싱크(1220)는 발광소자 기판(1213)을 기준으로 발광소자(1211)의 배치에 의해 구성되는 링의 중심축 방향의 타측에 설치된다. 이에 의해, 하부 히트싱크(1220)는 상부 히트싱크(1240)와는 독립적으로 구동회로(1260)에서 발생한 열을 외부로 방출할 수 있다. 따라서, 히트싱크가 하나뿐인 경우와 비교하여 조명장치(1200)의 방열효율을 현저하게 높일 수 있다.
여기서, 하부 히트싱크(1220)는 후술하는 바와 같이, 단열재(1280)에 의해 발광모듈(1210)과 열적으로 차단되어 있으며, 또한, 상부 히트싱크(1220)와도 열적으로 차단되어 있다. 따라서, 하부 히트싱크(1220)는 구동회로(1260)로부터의 발열에 대해, 발광모듈(1210)로부터의 발열의 영향을 받지 않고 구동회로(1260)의 방열효율을 향상시킬 수 있다.
또한, 하부 히트싱크(1220)는 상술한 방열 기능 이외에, 구동회로(1260)가 수납되는 케이스로서의 기능도 가진다. 본 실시 형태에서는, 하부 히트싱크(1220)의 중공의 본체부의 내부에 구동회로(1260)가 설치되어 있다.
단, 본 실시 형태에서는, 하부 히트싱크(1220)와 구동회로(1260)를 열적으로 결합시키기 위해서 하부 히트싱크(1220)의 중공부가 열전도재(1290)로 충전되어 있다. 이 열전도재(1290)로는 시트형태 또는 막형태로 성형할 수 있는 재료, 혹은 틀에 주입하여 충전할 수 있는 성질과 상태를 가지는 재료 등을 들 수 있다. 이러한 재료로는 예를 들어 열전도성을 가지는 수지 등이 있지만, 이러한 수지 중에서도 특히 열전도성이 높은 실리콘계의 수지 또는 에폭시계의 수지가 바람직하다.
(글로브(1230))
글로브(1230)의 구성은 제8 실시 형태에 관한 글로브(1130)의 구성과 동일하기 때문에 상세한 설명을 생략한다.
(구동회로(1260))
구동회로(1260)는 하부 히트싱크(1220)의 내부에 설치되어 소켓을 통해 외부로부터 공급되는 전력을 이용하여 발광소자(1211)를 구동(점등)시키는 전원회로이다. 구동회로(1260)는 기판에 실장되어 있는 복수의 전자부품으로 구성되어 있으며, 발광소자(1211)를 구동시킬 때 복수의 전자부품이 발열한다. 이 구동회로(1260)에서 발생한 열은 열전도재(1290)를 통해 하부 히트싱크(1220)에 전달되어 외부로 방출된다.
또한, 구동회로(1260)의 그 외의 구성은 제8 실시 형태에 관한 구동회로(1160)의 구성과 동일하기 때문에 상세한 설명을 생략한다.
(단열재(1280))
단열재(1280)는 열전도성을 가지지 않는 수지 등으로 이루어지며, 하부 히트싱크(1220) 및 구동회로(1260)와 상부 히트싱크(1240)를 열적으로 차단하는 역할을 가진다. 상부 히트싱크(1240)가 하부 히트싱크(1220) 및 구동회로(1260)와 열적으로 결합되면 발광모듈(1210)에서 발생한 열이 구동회로(1260)나 하부 히트싱크(1220)에 전달되게 된다. 따라서, 본 실시 형태에서는, 거의 원판형의 단열재(1280)를 상부 히트싱크(1240)의 저부와 하부 히트싱크(1220) 사이에 배치함으로써 상부 히트싱크(1240)를 하부 히트싱크(1220) 및 구동회로(1260)와 열적으로 차단하도록 하였다. 또한 단열재(1280)의 형상은 특별히 한정되는 것이 아니며, 하부 히트싱크(1220) 및 구동회로(1260)와 상부 히트싱크(1220)를 열적으로 차단할 수 있는 형상이라면 임의의 형상을 가질 수 있다.
(그 외의 구성)
그 외, 본 실시 형태에 관한 조명장치(1200)는 필요에 따라서 다른 부재를 구비할 수 있다. 예를 들어, 조명장치(1200)의 배광성을 향상시키기 위해서 조명장치(1200)는 발광소자(1211)에서 출사된 광을 반사하여 소켓 방향으로 광을 배광시키기 위한 리플렉터(미도시)를 구비할 수 있다.
[제8 실시형태에 따른 조명장치의 작용 효과]
다음으로 다시 도 38을 참조하여 상술한 구성을 가지는 조명장치(1200)의 작용 효과에 대해서 설명한다.
조명장치(1200)에서는, 주로 발열하는 부분(발열체)이 2개 있다. 1번째는 발광모듈(1210)이다. 발광모듈(1210)에서는 발광소자(1211)가 구동회로(1260)에 의해 구동되어 광이 사출될 때에 열이 발생한다. 그리고 각 발광소자(1211)에서 발생한 열은 이 발광소자(1211)가 실장되어 있는 발광소자 기판(1213)에 전달된다. 여기서, 발광소자 기판(1213) 및 상부 히트싱크(1240)는 열전도성이 높은 재질이다.
따라서, 발광모듈(1210)에서 발생한 열(발광소자(1211)에서 발생하여 발광소자 기판(1213)에 전달된 열)은 도 38의 화살표(T3)로 나타낸 바와 같이 발광소자 기판(1213)의 하면에 접촉되어 있는 상부 히트싱크(1240)의 저부에 전달된다. 상부 히트싱크(1240)의 저부에 전달된 열은 화살표(T4)로 나타낸 바와 같이 그대로 상부 히트싱크(1240)의 개구부(1221)내의 저면에서 외부로 방출된다. 혹은 상부 히트싱크(1240)의 저부에 전달된 열은 화살표(T3)로 나타낸 바와 같이 상부 히트싱크(1240)의 본체부에 전달된 후에, 화살표(T4)로 나타낸 바와 같이 상부 히트싱크(1240)의 본체부의 내주면의 어느 한 부분에서 외부로 방출된다.
한편, 2번째 발열체는 구동회로(1260)이다. 구동회로(1260)에서 발생한 열은 도 38의 화살표(B3)로 나타낸 바와 같이 구동회로(1260)에서 열전도재(1290)을 거쳐 하부 히트싱크(1220)에 전달되어 화살표(B4)로 나타낸 바와 같이 하부 히트싱크(1220)의 외주면에서 외부로 방출된다.
여기서, 본 실시 형태에서 상부 히트싱크(1240)는 2개의 발열체 중 발광모듈(1210)과만 열적으로 결합되어 있고 구동회로(1260) 및 하부 히트싱크(1220)와는 열적으로 차단되어 있다. 또한, 하부 히트싱크(1220)는 2개의 발열체 중에서 구동회로(1260)와만 열적으로 결합되어 있고, 발광모듈(1210) 및 상부 히트싱크(1240)와는 열적으로 차단되어 있다. 이 때문에, 상부 히트싱크(1240)는 발광모듈(1210)로부터의 발열에 대해, 구동회로(1260)로부터의 발열의 영향을 받지 않고, 발광모듈(1210)의 방열효율을 향상시킬 수 있다. 반대로, 하부 히트싱크(1240)는 구동회로(1260)로부터의 발열에 대해, 발광모듈(1210)로부터의 발열의 영향을 받지 않고 구동회로(1260)의 방열효율을 향상시킬 수 있다.
이상, 상술한 바와 같이 조명장치(1200)는 상부 히트싱크(1240)로부터의 방열과 하부 히트싱크(1120)로부터의 방열의 2개의 방열 경로를 가지지만, 이들 2개의 방열 경로가 2개의 발열체 중 어느 하나의 방열에만 이용되기 때문에, 각 방열 경로로부터의 방열효율을 향상시킬 수 있다.
[제8 실시형태에 따른 조명장치의 제조 방법]
다음으로 본 실시 형태에 관한 조명장치(1200)의 제조 방법에 대해 상세하게 설명한다.
조명장치(1200)를 조립할 때, 우선, 각부품 즉 발광모듈(1210), 상부 히트싱크(1240), 하부 히트싱크(1220), 글로브(1230), 구동회로(1260) 및 단열재(1280)를 준비한다. 이어서, 하부 히트싱크(1220)의 내부(중공부)에 구동회로(1260)를 설치하고, 구동회로(1260)가 설치된 하부 히트싱크(1220)의 상부에 단열재(1280)를 배치한다. 단열재(1280)는 이 시점에서 하부 히트싱크(1220)에 고정한다.
다음으로 단열재(1280)상에 상부 히트싱크(1240)를 고정한다. 그리고 상부 히트싱크(1240)의 저부 위에 발광모듈(1210)을 설치하고 발광모듈(1210)을 덮도록 글로브(1230)를 씌운다. 이 때, 상부 히트싱크(1240)의 개구부측의 단부의 위치와 글로브(1230)의 개구부의 위치가 맞도록 설치한다.
여기까지 조립한 상태에서 전체를 상하반전시켜고 하부 히트싱크(1220)의 소켓 접속측의 개구부에서 예를 들어, 노즐 등을 이용하여 용융상태의 열전도재(1290)를 하부 히트싱크(1220)의 중공부에 주입한다. 그리고, 하부 히트싱크(1220)의 중공부내에 열전도재(1290)가 충전될 때까지 열전도재(1290)를 주입한 후에 이 열전도재(1290)을 경화시킨다.
마지막으로, 도시하지는 않았지만, 하부 히트싱크(1220)의 하단부에 소켓을 접속함으로써 본 실시 형태에 관한 조명장치(1200)를 제조할 수 있다.
이상, 첨부 도면을 참조하여 본 발명의 바람직한 실시 형태에 대해 상세하게 설명했지만, 본 발명은 이들 예에 한정되지 않는다. 예를 들어, 상술한 제7 및 제8 실시 형태에서는 발광소자 기판, 제1 히트싱크, 제2 히트싱크, 글로브 및 방열판의 중심축에 대해 직교하는 방향으로 절단했을 때의 단면형상을 원형으로 했지만, 본 발명은 이들 예에 한정되지 않는다. 예를 들어, 상기 각부재의 단면 형상은 다각형이나 타원형일 수 있다.
또한, 상술한 제7 및 제8 실시 형태에서는, 발광소자 기판에 복수의 발광소자를 링형으로 배치하여 구성되는 1개의 발광소자군을 구비하고 있지만, 본 발명은 이 예에 한정되지 않는다. 예를 들어, 발광소자 기판에 동심원상으로 복수의 발광소자군을 구비할 수 있다.
<제9 실시형태>
[제9 실시형태에 따른 조명 장치의 구성]
우선, 도 39 내지 도 41을 참조하여, 본 발명의 제9 실시형태에 따른 조명 장치(2000)의 구성에 관해 설명한다. 한편, 도 39는, 본 실시형태에 따른 조명 장치(2000)를 나타내는 평면도 및 측면도이다. 도 40은, 도 39의 조명 장치(2000)의 A-A 절단선을 따른 단면도이다. 도 41은, 본 실시형태에 따른 제2 히트싱크(2140) 및 제3 히트싱크(2160)를 나타내는 평면도이다.
본 실시형태에 따른 조명 장치(2000)는, 도 39 및 도 40에 나타내는 바와 같이, 광을 출사하는 발광소자(2112); 발광소자(2112)가 탑재된 발광소자 기판(2110); 발광소자 기판(2110)이 장착된 제1 히트싱크(2120); 제1 히트싱크(2120)에 장착된 발광소자 기판(2110)을 덮는 글로브(2130); 및 글로브(2130)의 중앙 부분에 설치된 제2 히트싱크(2140) 및 제3 히트싱크(2160);로 이루어진다. 발광소자 기판(2110)과 제1 히트싱크(2120)의 사이에는, 방열 효과를 높이는 원반형의 금속 기판(2150)이 설치되어 있다.
발광소자(2112)에는, 예를 들어 LED(Light Emitting Diode; 발광다이오드)를 사용할 수 있다. 본 실시형태에 따른 조명 장치(2000)에 있어서, 발광소자(2112)는, 발광소자 기판(2110) 상에 링형으로 복수개(예를 들어, 12개) 등간격으로 배치된다. 발광소자 기판(2110)은, 예를 들어 알루미늄 기판이고, 발광소자 기판(2110)이 금속 기판(2150)을 사이에 두고 고정되는 제1 히트싱크(2110)의 형상에 대응해 원반형으로 되어 있다. 한편, 본 실시형태에서는, 발광소자(2112) 및 이들을 구비하는 발광소자 기판(2110)을 발열체라고 칭한다. 발열체는, 적어도 발광소자(2112)를 포함하는 것으로 하고, 발광소자 기판(2110)은 반드시 발열체로서 고려해야 하는 것은 아니다. 또한, 조명 장치(2000)의 열원으로는 발광소자(2112)를 포함하는 발열체 외에, 전원 회로(미도시)가 있다.
제1 히트싱크(2120)는, 조명 장치(2000)의 열원으로부터의 열을 방열하는 부재이다. 제1 히트싱크(2120)는, 도 1 및 도 2에 나타내는 바와 같이, 원통의 본체부(2122)에 복수의 핀(2123)을 구비한다. 제1 히트싱크(2120)는, 예를 들어 알루미늄 등의 금속 재료로 형성해도 되고, 플라스틱 등의 수지 재료에 의해 형성해도 되고, 본체부(2122)와 핀(2123)을 다른 재료로 형성해도 된다.
본체부(2122)의 일단(z축 음의 방향측의 단부)에는 소켓(口
Figure f90a
)(미도시)이 설치되고, 본체부(2112)의 타단(z축 양의 방향측의 단부)에는 발광소자 기판(2110)을 지지하는 플랜지부(2124)가 설치되어 있다. 플랜지부(124)의 외주에는, 발광소자 기판(2110)의 외주를 둘러싸도록, 본체부(2122)의 연장 설치 방향(z방향)으로 발광소자 기판(2110)의 배치(양의 방향)측을 향해 돌출하는 테두리부(2124a)가 형성되어 있다. 플랜지부(2124)의 상면(2124b)에는, 발광소자 기판(2110)이 금속 기판(2150)을 사이에 두고 놓인다. 금속 기판(2150)으로는, 예를 들어 알루미늄 기판을 사용할 수 있다.
제1 히트싱크(2120)의 본체부(2122)의 내부 공간(2126)에는, 전원 회로(미도시)가 설치된다. 본체부(2122)가 금속 재료로 형성되어 있는 경우, 전원 회로를 본체부(2122)와 절연하기 위해 본체부(2122)의 내면에 수지 재료로 이루어진 수지층(2127)이 설치된다. 또는, 본체부(2122)가 금속 재료로 형성되어 있는 경우, 전원 회로를 본체부(2122)와 절연하기 위해 절연 케이스(미도시)를 사이에 두고 내부 공간(2126)에 수납해도 된다.
제1 히트싱크(2120)는, 발광소자(2112)로부터 발광소자 기판(2110) 및 금속 기판(2150)을 통해 전달되는, 발광소자(2112)를 포함하는 발열체로부터의 열을 방열함과 동시에, 전원 회로로부터의 열을 방열한다. 본체부(2122)의 외주면에 복수의 핀(2123)을 설치함으로써, 방열 면적이 증가하고, 방열 효율을 높일 수 있다.
글로브(2130)는, 제1 히트싱크(2120)에 장착된 발광소자 기판(2110)을 덮고, 발광소자(2112)가 출사하는 광을 투과하는 부재로 형성되는 커버 부재이다. 글로브(2130)는, 예를 들어 투과성을 갖는 유리나 수지 등으로 형성할 수 있다. 글로브(2130)는, 거의 반구형의 곡면을 갖도록 형성되고, 그 중앙 부분에는, 개구부(2132)가 형성되어 있다. 개구부(2132)의 중심은, 발광소자 기판(2110)에 링형으로 배치된 복수의 발광소자(2112)의 중심을 지나며 발광소자 기판(2110)에 대해 수직인 기축(C) 상에 있다. 개구부(132)에는 제2 히트싱크(2140)가 삽입된다.
제2 히트싱크(2140)는, 발광소자(2112)를 포함하는 발열체로부터의 열을 방열하는 부재(히트싱크)이다. 제2 히트싱크(2140)는, 도 40에 나타내는 바와 같이, 원통부(2142)와 저부(2144)로 이루어진다. 원통부(2142)는, 개구하는 z축 양의 방향측의 일단이 글로브(2130)의 개구부(2132)와 접속되어 있다. 저부(2144)는, 발열체로부터의 열이 전달되기 쉽도록 발광소자 기판(2110)의 상면과 접촉해 설치된다. 제2 히트싱크(2140)도, 예를 들어 알루미늄 등의 금속 재료로 형성해도 되고, 플라스틱 등의 수지 재료에 의해 형성해도 된다. 제2 히트싱크(2140)를 설치함으로써, 방열 면적이 더 증가하고, 방열 효율을 높일 수 있다.
제3 히트싱크(2160)는, 제2 히트싱크(2140)의 원통부(2142)의 내부 공간(2146)에 삽입 통과되는 통형의 중공 부재(내부 히트싱크)이다. 제3 히트싱크(2160)는, 도 2에 나타내는 바와 같이, 일단이 제2 히트싱크(2140)의 저부(2144)에 접촉해 있다. 또한, 제3 히트싱크(2160)의 타단은, 제2 히트싱크(2140)의 연장 설치 방향(z방향)에 있어서, 글로브(2130)의 개구부(2132)와 제2 히트싱크(2140)의 일단과의 접속 부분과 거의 동일 위치에 있다. 제3 히트싱크(2160)의 평면 형상은, 도 41에 나타내는 바와 같이 거의 타원형이다. 이는, 제2 히트싱크(2140)와 원통부(2142)의 내주면(2142a)과 제3 히트싱크(2160)의 외주면에 의해 형성되는 공간(2146)의 형상을, 제2 히트싱크(2140)의 중심(O)을 지나는 z축에 평행한 평면에 대해 적어도 비대칭이 되는 경우가 있도록 하기 위함이다. 한편, 제2 히트싱크(2140) 및 제3 히트싱크(2160)에 의한 방열 구조의 상세한 설명은 후술한다.
[제9 실시형태에 따른 방열 구조]
본 실시형태에 따른 조명 장치(2100)는, 발광소자(2112)를 포함하는 발열체나 전원 회로로부터의 열을 방열하기 위한 방열 구조로서, 제1 히트싱크(2120), 제2 히트싱크(2140) 및 제3 히트싱크(2160)를 구비하고 있다. 여기서, 제1 히트싱크(2120)는 발열체를 기준으로 해서 기축(C)의 일측(z축 음의 방향측)에 설치되고, 제2 히트싱크(2140) 및 제3 히트싱크(2160)는 발열체를 기준으로 해서 기축(C)의 타측(z축 양의 방향측)에 설치된다. 이처럼, 발열체를 기준으로 해서 기축(C)의 상하 방향으로 히트싱크(2120, 2140)를 각각 설치함으로써 방열 면적이 증가하고, 방열 효율을 높일 수 있다.
여기서, 발열체를 기준으로 해서 기축(C)의 타측(z축 양의 방향측)에서의 방열 구조에 관해 살펴보면, 평면 형상이 원형인 제2 히트싱크(2140)에 의한 방열의 온도 분포는, 원통부(2142)의 내주면에서 중심을 향해 낮아지도록 링형의 분포가 된다. 이처럼 온도 분포가 동일한 경우, 공기가 대류하기 어렵게 열이 체류하는 경향에 있다. 그러면 발열체로부터의 열이 히트싱크를 통해 외부로 방열되어도 조명 장치(2000) 근방에 그 열이 체류하게 되어, 충분한 방열 효과를 얻을 수 없다.
따라서, 본 실시형태에서는, 제2 히트싱크(2140)의 내부에 상기 제2 히트싱크(2140)와 다른 평면 형상을 갖는 제3 히트싱크(2160)를 설치한다. 즉, 제2 히트싱크(2140)의 중심(O)을 지나며, 제2 히트싱크(2140)의 내주면(2142a)에서 제3 히트싱크(2160)의 외주면(2162b)까지의 거리가 불균일해지도록, 제2 히트싱크(2140) 및 제3 히트싱크(2160)를 설치한다. 제3 히트싱크(2160)는 상술한 바와 같이 거의 타원형의 평면을 갖고 있다. 제2 히트싱크(2140)와 제3 히트싱크(2160)간의 형상의 차이에 의해, 부분적으로 방열 효율에 차이가 생기고, 그 결과, 각 히트싱크(2140, 2160)에 따른 방열의 온도 분포에 차이가 생긴다. 그러면, 제2 히트싱크(2140)의 내주면(2142a)과 제3 히트싱크(2160)의 외주면(2160b)으로 형성되는 내부 공간(2146)에 대류가 발생한다.
본 실시형태에서는, 도 41에 나타내는 바와 같이, 제2 히트싱크(2140)의 내주면(2142a)에서 제3 히트싱크(2160)의 외주면(160b)까지의 거리가 짧은 L1 부분에서는 공기가 유입되기 쉽다. 한편, 제2 히트싱크(2140)의 내주면(2142a)에서 제3 히트싱크(2160)의 외주면(2160b)까지의 거리가 긴 L2 부분에서는 공기가 유출되기 쉽다. 이처럼, 내부 공간(2146)에서 공기의 유입 및 유출이 저절로 발생하는 방열 구조에 의해, 열의 체류를 막고, 적극적으로 열을 외부로 방출해 방열 효율을 향상시킬 수 있다. 또한, 제2 히트싱크(2140)에 더해 제3 히트싱크(2160)를 설치함으로써, 방열 면적이 더 증가하고, 방열 효율을 보다 높일 수 있다.
[제9 실시형태의 방열 구조의 변형예]
본 실시형태의 도 41에 나타내는 방열 구조에서는, 제2 히트싱크(2140)의 평면 형상은 원형이었지만 본 발명은 이 같은 예에 한정되지 않는다. 도 42에 발열체를 기준으로 해서 기축(C)의 타측(z축 양의 방향측)에서의 방열 구조의 변형예를 나타낸다. 도 42에 나타내는 예에서는, 제2 히트싱크(2240)의 평면 형상을 육각형으로 하고, 제3 히트싱크(2260)의 평면 형상을 거의 타원형으로 하고 있다. 제2 히트싱크(2240)의 평면 형상은, 육각형 이외의 다각형이어도 된다.
이 경우도, 도 41에 나타내는 방열 구조와 마찬가지로, 제2 히트싱크(2240)의 내주면(2242a)에서 제3 히트싱크(2260)의 외주면(2260b)까지의 거리가 짧은 L1 부분에서는 공기가 유입되기 쉽다. 한편, 제2 히트싱크(2240)의 내주면(2242a)에서 제3 히트싱크(2260)의 외주면(2260b)까지의 거리가 긴 L2 부분에서는 공기가 유출되기 쉽다. 이처럼, 내부 공간(2246)에서 공기의 유입 및 유출이 저절로 발생하는 방열 구조에 의해, 열의 체류를 막고, 적극적으로 열을 외부로 방출해 방열 효율을 향상시킬 수 있다.
이상, 본 발명의 제9 실시형태에 따른 조명 장치(2000)와 그 방열 구조에 관해 설명하였다. 본 실시형태에 따르면, 발열체를 기준으로 해서 기축(C)의 타측(z축 양의 방향측)에서의 방열 구조에 관해, 제2 히트싱크(2140)의 중심(O)을 지나는, 제2 히트싱크(2140)의 내주면(2140a)과 제3 히트싱크(2160)의 외주면(2160b)간의 거리를 불균일하게 한다. 이에 의해, 내부 공간(2146)에 대류가 발생하고, 방열 효율을 향상시킬 수 있다.
한편, 본 실시형태에서는, 제3 히트싱크(2160, 2260)의 평면 형상은 타원형이었지만, 본 발명은 이 같은 예에 한정되지 않고, 예를 들어 다각형이어도 된다.
<제10 실시형태>
다음으로, 도 43를 참조하여 본 발명의 제10 실시형태에 따른 조명 장치의 방열 구조에 관해 설명한다. 한편, 도 43은, 본 실시형태에 따른 제2 히트싱크(2340)를 나타내는 평면도이다. 본 실시형태에 따른 조명 장치의 제2 히트싱크(2340)는, 도 39 및 도 40에 나타낸 제10 실시형태에 따른 조명 장치(2000)의 제2 히트싱크(2140) 및 제3 히트싱크(2160) 대신에 설치할 수 있다. 이하, 본 실시형태의, 발열체를 기준으로 해서 기축(C)의 타측(z축 양의 방향측)에서의 방열 구조에 관해, 상세히 설명한다. 한편, 본 실시형태에 따른 제2 히트싱크(2340)를 설치하는 것이 가능한 조명 장치는, 제9 실시형태에 따른 조명 장치(2000)와 동일하기 때문에, 여기서는 그 설명을 생략한다.
[제10 실시형태에 따른 방열 구조]
본 실시형태에 따른 조명 장치는, 발광소자를 포함하는 발열체나 전원 회로로부터의 열을 방열하기 위한 방열 구조로서, 도 39 및 도 40에 나타내는 제1 히트싱크(2120); 및 도 41에 나타내는 제2 히트싱크(2340);를 구비하고 있다. 제1 히트싱크(2120)의 구성은 제9 실시형태와 동일한 것으로 한다.
제2 히트싱크(2340)는, 제10 실시형태에 따른 제2 히트싱크(2140)와 마찬가지로 원통부(2342)와 저부(2344)를 갖고, 원통부(2342)의 내주면(2342a)에서 제1 히트싱크(2340)의 중심(O)을 향해 연장되는 복수의 핀(2345)(예를 들어 12개의 핀(2345a~2345l))이 더 설치되어 있다. 각 핀(2345a~2345l)은, 도 39 및 도 40에 나타내는 제1 히트싱크(2120)의 핀(2123)과 같은 유선형이어도 되고, 거의 장방형의 판상 부재여도 된다. 또한, 도 43에 나타내는 예에서는, 핀(2345)은 원주 방향으로 등간격으로 설치되어 있지만, 본 발명은 이 같은 예에 한정되지 않고, 인접하는 핀(2345)의 간격은 적절히 변경 가능하다.
제2 히트싱크(2340)의 각 핀(2345a~2345l)의 반경 방향의 길이(L)는, 도 43에 나타내는 바와 같이 모두 동일하지는 않고, 적어도 하나가 다르게 설정된다. 도 43에 나타내는 예에서는, 대향하는 핀의 길이가 동일하다. 그리고, 길이(L)가 최대인 핀(2345a, 2345g)에 인접하는 핀(2345b, 2345f, 2345h, 2345l), 이들에 인접하는 핀(2345c, 2345e, 2345i, 2345k)의 순으로 반경 방향의 길이(L)가 짧아지고, 핀(2345d, 2345j)에서 반경 방향의 길이(L)는 최소가 된다.
핀(2345)의 반경 방향의 길이(L)를 상이하게 함으로써, 제2 히트싱크(2340)의 중심(O)을 지나는 내주면(2342a)간의 길이가 상이하다. 예를 들어, 핀(2345)이 형성되지 않는 부분이면 내주면(2342a)간의 길이는 제2 히트싱크(2340)의 직경(D)이 된다. 또한, 핀(2345)이 형성되어 있는 부분에 있어서는, 반경 방향의 길이(L)가 최대인 핀(2345a, 2345g)간의 길이(d1)가 최소가 되고, 반경 방향의 길이(L)가 최소인 핀(2345d, 2345j)간의 길이(d2)가 최대가 된다.
이처럼, 제2 히트싱크(2340)의 내부 공간(2346)의 형상을, 중심(O)을 지나는 z축에 평행한 평면에 대해 적어도 비대칭이 되는 경우가 있도록, 불균일하게 형성한다. 즉, 제2 히트싱크(2340)의 중심(O)을 지나며, 제2 히트싱크(2340)의 내주면(2342a)간의 거리가 불균일해지도록, 제2 히트싱크(2340)를 형성한다. 이에 의해, 제2 히트싱크(340)의 방열 부분에 의해 방열 효율에 차이가 생기고, 그 결과, 방열의 온도 분포가 불균일해진다. 그러면, 제2 히트싱크(2340)의 내부 공간(2346)에 대류가 발생한다. 이처럼, 내부 공간(2346)에서 공기의 유입 및 유출이 저절로 발생하는 방열 구조에 의해, 열의 체류를 막고, 적극적으로 열을 외부로 방출해 방열 효율을 향상시킬 수 있다.
[제10 실시형태의 방열구조의 변형예]
본 실시형태의 도 43에 나타내는 방열 구조에서는, 제2 히트싱크(2340)의 핀(2345)은 원통부(2142)의 내주면(2142a)에서 중심(O)을 향해 방사상으로 연장되도록 배치했지만, 본 발명은 이 같은 예에 한정되지 않는다. 도 44에 발열체를 기준으로 해서 기축(C)의 타측(z축 양의 방향측)에서의 방열 구조의 변형예를 나타낸다. 도 44에 나타내는 예에서는, 제2 히트싱크(2440)의 핀(2445)을 원통부(2422)의 내주면(2422a)에서 한 방향으로 연장 설치하고 있다.
구체적으로는, 도 44에 나타내는 바와 같이, 원통부(2422)의 내주면(2422a)에서 y방향으로 대향하는 5쌍 10개의 핀(2445a~2445j)이 x방향으로 인접해 연장 설치되어 있다. 대향하는 핀(2445)의 길이(L)는 동일하고, 제2 히트싱크(2440)의 중심(O)에서 이격함에 따라 길이(L)가 짧아진다. 핀(2445)의 반경 방향의 길이(L)를 상이하게 함으로써, 제2 히트싱크(2440)의 중심(O)을 지나는 내주면(2442a)간의 길이가 상이하다. 예를 들어, 핀(2445)이 형성되어 있지 않는 부분이면 내주면(2442a)간의 길이는 제2 히트싱크(2440)의 직경(D)이 된다. 또한, 핀(2445)이 형성되어 있는 부분에 있어서는, 길이(L)가 최대인 핀(2445a, 2445b)간의 길이(d1)가 최소가 되고, 길이(L)가 최소인 핀(2445g, 2445h)간 및 (2445i, 2445j)간의 길이(d2)가 최대가 된다.
이처럼, 도 44에 나타내는 예에 있어서도, 제2 히트싱크(2440)의 내부 공간(2446)의 형상을, 중심(O)을 지나는 z축에 평행한 평면에 대해 적어도 비대칭이 되는 경우가 있도록, 불균일하게 형성한다. 이에 의해, 제2 히트싱크(2440)의 방열 부분에 의해 방열 효율에 차이가 생기고, 그 결과, 방열의 온도 분포가 불균일해진다. 그러면, 제2 히트싱크(2440)의 내부 공간(2446)에 대류가 발생한다. 이처럼, 내부 공간(2446)에서 공기의 유입 및 유출이 저절로 발생하는 방열 구조에 의해, 열의 체류를 막고, 적극적으로 열을 외부로 방출해 방열 효율을 향상시킬 수 있다.
또한, 도 44의 제2 히트싱크(2440)의 변형예로서, 도 45에 나타내는 바와 같이 제2 히트싱크(2540)의 원통부(2542)의 내주면(2542a)에서 한 방향으로 연장 설치되는 핀(2545)의 길이를, 제2 히트싱크(2540)의 중심(O)에서 이격함에 따라 길이(L)가 길어지게 해도 된다. 따라서, 도 45에 나타내는 제2 히트싱크(2540)에서는, 핀(2545)이 형성되어 있는 부분에서의 중심(O)을 지나는 내주면(2542a)간의 길이가, 길이(L)가 최소인 핀(2545a, 2545b)간에서 최대가 되고(길이(d1)), 길이(L)가 최대인 핀(2545g, 2545h)간 및 (2545i, 2545j)간에서 최소가 된다(길이(d2)).
이처럼 제2 히트싱크(2540)의 내부 공간(2546)의 형상을, 중심(O)을 지나는 z축에 평행한 평면에 대해 적어도 비대칭이 되는 경우가 있도록, 불균일하게 형성하고, 내부 공간(2446)에 대류가 발생하도록 해도 된다.
이상, 본 발명의 제10 실시형태에 따른 조명 장치의 방열 구조에 관해 설명하였다. 본 실시형태에 따르면, 발열체를 기준으로 해서 기축(C)의 타측(z축 양의 방향측)에서의 방열 구조에 관해, 제2 히트싱크(2340)의 원통부(2342)의 내주면(2342a)으로부터, 길이가 상이한 복수의 핀(2345)을 설치하고, 내부 공간(2346)의 내주면(2342a)간의 거리를 불균일하게 한다. 이에 의해, 내부 공간(2346)에 대류가 발생하고, 방열 효율을 향상시킬 수 있다.
한편, 본 실시형태에서는, 제2 히트싱크의 평면 형상은 원형이었지만, 본 발명은 이 같은 예에 한정되지 않고, 예를 들어 거의 타원형이나 다각형이어도 된다.
이상, 첨부 도면을 참조하면서 본 발명의 바람직한 실시형태에 관해 상세히 설명했지만, 본 발명은 이 같은 예에 한정되지 않는다. 예를 들어, 상기 실시형태에서는, 발광소자를 링형으로 배치한 발광소자 기판이 제1 히트싱크의 플랜지부에 놓였지만, 본 발명은 이 같은 예에 한정되지 않는다. 예를 들어, 발광소자가 놓인 발광소자 기판은 제2 히트싱크의 외주면에 설치해도 된다. 또한, 발광소자 기판을 히트싱크의 플랜지부의 플랜지부 또는 본체부에 설치할 때, 도 40에 나타내는 바와 같이 복수의 발광소자를 링형으로 배치해 구성되는 하나의 발광소자 그룹만을 배치해도 되고, 동심원 상에 복수의 발광소자 그룹을 배치해도 된다.
또한, 상기 실시형태에서는, 제2 히트싱크는 연장 설치 방향으로 동일 직경의 원이 연속하는 원통 형상이었지만, 본 발명은 이 같은 예에 한정되지 않는다. 예를 들어, 제2 히트싱크는, 개구부측을 향함에 따라 내경이 커지는 테이퍼 형상으로 형성해도 된다.
<전구의 대체품이 되기 위한 조건의 검토>
상술된 실시형태와 함께 후술될 다양한 실시형태에 따른 조명장치는 전구형 조명장치에 유용하게 적용될 수 있다. 이러한 맥락에서, 본 발명자가 백열전구의 대체품이 되기 위한 조건에 대해 검토한 결과에 대해 설명한다.
상술한 바와 같이 지금까지 개발된 전구형 LED 조명장치는, 방열효율이 충분하지 않고 배광성도 백열전구의 대체품으로서는 불충분한 것이다. 백열전구는 발광효율(90lm/W이상), 발광광량(800lm이상), 색온도(2700~3000 K), 연색성(Ra90이상), 배광특성(300deg이상), 형상(ANSI규격이라 불리는 전구 사이즈에 관한 규격) 등을 만족하는 것이지만, 현재 LED등의 반도체 발광소자를 이용한 전구형 조명장치에서는, 상기한 모든 특성에 있어서 백열전구와 동등한 성능을 가지는 것이 시장에는 없다.
그래서 본 발명자가 상기 특성을 모두 만족하는 백열전구의 대체품이 될 수 있는 전구형 조명장치를 실현하기 위한 조건을 검토한 결과, 이하의 (1) 내지 (3)이 필요하다는 것을 알아냈다.
(1) 형상으로서 ANSI 규격을 만족할 것
(2) 발광부(글로브부분)의 직경이 히트싱크(소켓과 접속되는 케이스 부분) 보다도 클 것
(3) 고방열 특성을 가질 것
상기 (1)의 조건은 백열전구의 대체품에는 불가결한 것이며, (2)의 조건은 우수한 배광특성을 실현하기 위해서 필요하며, (3)의 조건은 고효율 및 고출력을 실현하기 위해서 필요하다.
여기서, 방열효율을 올리려면 히트싱크의 표면적이나 크기를 크게 할 필요가 있다. 즉, 전구형 조명장치 전체의 사이즈를 크게 하거나, 히트싱크에 설치되는 핀의 사이즈를 크게 할 필요가 있다. 그러나, 이는 ANSI규격을 만족하는 조건 내에서, 즉, 전구형 조명장치로서의 형상이 제한되어 있을 때에는 실현하기 곤란하며, 또한 히트싱크의 사이즈를 크게 하면 그 만큼 광을 배광할 수 있는 영역도 좁아지기 때문에 백열전구와 동등한 배광각을 실현하기 어렵다.
이상의 검토 내용으로부터 본 발명자는 새로운 광학계의 구조와 방열 구조를 신규하게 완성시킴으로써, 전구형 조명장치 전체의 사이즈나 핀 등의 사이즈를 ANSI규격을 만족하는 조건내이면서, 백열전구와 동등한 배광특성을 실현하는데 성공했다. 이하, 본 발명의 다양한 실시 형태에 관한 조명장치에 대해서 상세하게 설명한다.
<제11 실시형태>
[제11 실시 형태에 따른 조명장치]
우선, 도 46 내지 도 48을 참조하여 본 발명의 제11 실시 형태에 관한 전구형 조명장치의 구성에 대해서 상세하게 설명한다. 도 46은 본 발명의 제11 실시 형태에 관한 전구형 조명장치(100, 이하, 간단히 「조명장치」라 함.)의 전체 구성을 나타내는 분해 사시도이다. 도 47은 제12 실시 형태에 관한 조명장치(3000)의 상면도(a) 및 정면도(b)이다. 도 48은 제12 실시 형태에 관한 조명장치(3000)를 도 47(a)의 III-III선을 따라 절단한 단면도이다.
도 47 내지 도 49에 나타낸 바와 같이, 본 실시 형태에 관한 조명장치(3000)는 발광모듈(3110), 제1 히트싱크(3120, 이하 「상부 히트싱크」라 한다.), 제2히트싱크(3130, 이하 「하부 히트싱크」라 한다.), 리플렉터(3140), 글로브(3150), 구동회로(3160) 및 방열판(3170)을 주로 가진다.
(발광모듈(3110))
발광모듈(3110)은 발광소자(3111)와 발광소자 기판(3113)을 가지며 조명장치(3000)의 광원이 되는 부재이다.
발광소자(3111)는 LED(Light Emitting Diode) 등의 반도체 발광소자이며, 광을 사출한다. 이 발광소자(3111)의 발광색은 후술하는 글로브(3150)의 구성 재료에 의해 달라진다. 구체적으로, 글로브(3150)가 형광체를 함유한 재료(수지 등)로 구성되는 경우, 발광소자(3111)는 상기 형광체를 여기하는 광을 발광하는 LED(예를 들어, 청색 LED)이며, 글로브(3150)에서 광의 파장이 변환되어 백색이 된다. 한편, 글로브(3150)가 광확산제를 함유한 재료(수지 등)로 구성되는 경우, 발광소자(3111)의 발광색은 백색(6500K ~ 2000K)이다. 발광소자(3111)에서 출사된 광은 후술하는 리플렉터(3140)에서 반사되거나 혹은 직접 글로브(3150)에 도달하여 글로브(3150)에서 확산되어 외부로 방사된다.
그리고, 본 실시 형태에서는 발광소자(3111)가 복수개가 준비되며, 이들 복수의 발광소자(3111)가 발광소자 기판(3113)의 일측면상에 링형으로 배치된다. 여기서 말하는 「링형」이란, 도 46에 나타낸 바와 같은 원형의 링 형뿐만이 아니라, 타원형의 링형, 다각형의 링형도 포함하는 개념이다.
발광소자 기판(3113)은 발광소자(3111)가 실장되는 기판이며, 바람직하게는 알루미늄, 니켈 등의 금속이나, 유리 컴포지트(CEM3)나, 세라믹 등 열전도성이 높은 재료로 형성된다. 이에 의해, 발광모듈(3110)에서 발생한 열을 효율적으로 상부 히트싱크(3120)나 하부 히트싱크(3130)에 전달할 수 있어 조명장치(3000)의 방열효율을 향상시킬 수 있다. 발광소자 기판(3113)의 형상은 특별히 한정되는 것은 아니지만, 상술한 ANSI규격을 만족하기 위해서는 거의 원형 또는 거의 다각형인 것이 바람직하다.
또한, 발광소자 기판(3113)은 상부 히트싱크(3120)의 저부와 하부 히트싱크(3130)의 상부(또는 방열판(3170))에 의해 협지되어 위치가 고정된다. 이 때, 발광소자 기판(3113)의 거의 중심부에는 나사 구멍(3115)이 설치되어 있으며, 이 나사 구멍(3115)의 위치는, 후술하는 바와 같이 상부 히트싱크(3120) 저부의 나사 구멍(3125) 및 방열판(3170)의 나사 구멍(175)의 위치와 대응하며 나사 구멍(3125, 3115, 3175)을 통해 상부 히트싱크(3120), 발광소자 기판(3113) 및 방열판(3170)이 나사결합된다.
(상부 히트싱크(3120))
상부 히트싱크(3120)는 발광모듈(3110)에서 발생한 열과 구동회로(3160)에서 발생한 열 중에서 적어도 어느 하나를 외부로 방출하는 기능을 가진다. 이 방열 기능을 실현하기 위해서, 상부 히트싱크(3120)는 알루미늄이나 구리 등의 열전도성이 높은 금속이나, 열전도성이 높은 수지 등의 재질로 형성된다. 또한, 방열 효과를 더욱 높이기 위해서, 상부 히트싱크(3120)에는 오목부나 복수의 핀 등을 설치하며 상부 히트싱크(3120)의 표면적을 크게 하는 것이 바람직하다.
이 점에서, 본 실시 형태는 상부 히트싱크(3120)는 일단에 개구부(3121)를 가지는 중공의 거의 원통형을 가진다. 이 거의 원통형의 중공부를 가짐으로써 상부 히트싱크(3120)의 외부에 노출된 면의 표면적(열을 방산하는데 이용되는 면의 면적)이 커져 방열 효과를 높일 수 있다. 또한 방열 효과를 높이기 위한 구성은 이러한 중공 형상뿐만이 아니라, 예를 들어, 상부 히트싱크(3120)는 거의 원통형 또는 거의 기둥형의 본체부를 가지며, 이 본체부가 외부에 노출된 복수의 핀을 가지는 구성일 수도 있다.
또한, 상부 히트싱크(3120)는 발광소자 기판(3113)을 기준으로 발광소자(3111)의 배치에 의해 구성되는 링의 중심축C 방향의 일측에 발광소자 기판(3113)과 접촉되어 설치된다. 이와 같이, 상부 히트싱크(120)는 발광소자 기판(3113)에 접촉되어 설치됨으로써 주로, 발광소자 기판(3113, 또는 발광모듈(3110) 전체)에서 발생한 열을 외부로 방출하는 역할을 가진다. 이에 의해, 일반적으로 구동회로(160)보다 다량의 열이 발생하는 발광모듈(3110)로부터의 열을, 상부 히트싱크(3120)와 후술하는 하부 히트싱크(3130) 모두에서 방출할 수 있기 때문에, 히트싱크가 하나뿐인 경우에 비해 조명장치(3000)의 방열효율을 현저하게 높일 수 있다.
또한, 상부 히트싱크(3120)의 저면(폐쇄된 면)의 거의 중심부에는, 나사 구멍(3125)가 설치되며, 상술한 바와 같이 상부 히트싱크(3120)는 발광소자 기판(3113) 및 방열판(3170)과 나사결합되어 위치가 고정된다.
또한, 도 46 및 도 48에는 상부 히트싱크(3120)가 원통형으로 도시되어 있지만, 상부 히트싱크(3120)의 형상은 이에 한정되는 것이 아니며, 예를 들어, 후술하는 리플렉터(3140)와 같이 역원뿔대형일 수도 있다.
(하부 히트싱크(3130))
하부 히트싱크(3130)는 그 일단(도 46 내지 도 48의 하단)에서 소켓(미도시)과 접속됨과 동시에, 발광모듈(3110)에서 발생한 열과 구동회로(3160)에서 발생한 열 중에서 적어도 어느 하나를 외부로 방출하는 기능을 가진다. 이 방열 기능을 실현하기 위해서, 하부 히트싱크(3130)는 열전도성이 높은 수지로 형성된다. 본 실시 형태에 있어서, 하부 히트싱크(3130)가 금속이 아니라 수지로 형성된 것은 조명장치(3000)를 경량화하기 때문이며, 또한 수지는 절연성이기 때문에 소켓과 접속되었을 때의 코킹부분에 절연대책을 실시할 필요가 없기 때문이다. 따라서, 조명장치(3000)의 중량증가가 문제가 되지 않는 경우에는, 하부 히트싱크(3130)의 재질로 알루미늄이나 구리 등의 금속재료를 사용해도 된다. 단, 하부 히트싱크(3130)을 금속재질로 했을 경우에는, 소켓의 코킹부분에 절연 대책을 실시할 필요가 있다.
또한, 방열 효과를 더욱 높이기 위해서, 하부 히트싱크(3130)에도 오목부나 복수의 핀 등을 설치하여 하부 히트싱크(3130)의 표면적을 크게 하는 것이 바람직하다.
이 점에서, 본 실시 형태는 하부 히트싱크(3130)는 양단에 개구부(3130a, 3130b)를 가지는 중공의 거의 원통형의 본체부의 외주면에 복수의 핀(3139)이 설치되어 있다. 이 복수의 핀(3139)을 가지므로 하부 히트싱크(3130)의 외부에 노출된 면의 표면적(열을 방산하는데 이용되는 면의 면적)이 커져 방열 효과를 높일 수 있다. 또한, 방열 효과를 높이기 위한 구성은 이러한 핀(3139)뿐만이 아니라 예를 들어, 하부 히트싱크(3130)의 본체부의 외주면에 복수의 오목부(미도시)를 가지는 구성이어도 된다.
또한, 하부 히트싱크(3130)는 발광소자 기판(3113)을 기준으로 발광소자(3111)의 배치에 의해 구성되는 링의 중심축C 방향의 타측에 설치된다. 이에 의해, 하부 히트싱크(3130)는 상부 히트싱크(3120)와는 독립적으로 구동회로(3160)나 발광모듈(3110)에서 발생한 열을 외부로 방출할 수 있다. 따라서, 히트싱크가 하나뿐인 경우와 비교하여 조명장치(3000)의 방열효율을 현저하게 높일 수 있다.
나아가, 본 실시 형태에서는, 하부 히트싱크(3130)는 수지(3131)와 이 수지(3131) 내부에 삽입된 금속부재(3133)로 구성된다. 그리고, 하부 히트싱크(3130)는 수지(3131)와 금속부재(3133)가 일체로 인서트 성형되어서 얻어지는 것이다. 이는 수지(3131)만으로는 알루미늄이나 구리 등의 금속과 비교하여 열전도성이 다소 낮기 때문에, 열전도성을 더욱 높이기 위해서 알루미늄이나 구리 등의 금속부재(3133)를 삽입한 것이다. 따라서, 발광모듈(3110)이나 구동회로(3160)의 성능에 의해 발열이 억제되거나 하여 방열 효과가 충분한 경우에는 금속부재(3133)를 삽입할 필요가 없다.
또한, 금속부재(3133)를 삽입하는 경우에는 구동회로(3160)에서 발생한 열이 하부 히트싱크(3130) 뿐만 아니라, 상부 히트싱크(3120)에도 쉽게 전달되게 하기 위해서 방열판(3170)(방열판(3170)이 설치되어 있지 않은 경우에는 발광소자 기판(3113))과 접촉하도록 금속부재(3133)를 배치하는 것이 바람직하다.
또한, 금속부재(3133)의 방열판(3170)과 접촉하는 면에는 나사 구멍(3135)이 후술하는 방열판(3170)에 설치된 나사 구멍(3173)과 대응하는 위치에 설치되어 있으며 이 나사 구멍(3135, 3173)을 통해 금속부재(3133)와 방열판(3170)이 나사결합된다.
또한, 하부 히트싱크(3130)는 상술한 방열 기능 이외에, 구동회로(3160)가 수납되는 케이스로서의 기능도 가진다. 본 실시 형태에서는 하부 히트싱크(3130)의 중공의 본체부의 내부에 구동회로(3160)가 설치되어 있다.
(리플렉터(3140))
리플렉터(3140)는 발광소자 기판(3113)의 면 중 발광소자(3111)가 배치된 면(이하, 「발광소자(3111)측의 면」이라 한다.)에 유지되며, 발광소자(3111)에서 출사된 광을 반사시킨다. 본 실시 형태에 있어서의 리플렉터(3140)는 높은 광반사성을 가지는 재료로 구성되며, 발광소자(3111)로부터의 광을 소켓방향(하부 히트싱크(3130)측의 방향)으로 반사시켜서 조명장치(3000)의 배광각을 소켓방향으로 넓히는 기능을 가진다.
이러한 기능을 실현하기 위해서, 리플렉터(3140)는 역원뿔대형, 즉, 발광소자 기판(3113)에서 이격됨에 따라 직경이 확장되는 원뿔대형이 되도록 발광소자 기판(3113)의 발광소자(3111)측의 면에서 돌출되어 설치된다. 또한, 원뿔대형상인 리플렉터(3140)의 측주면(3141)은 발광소자(3111)에서 출사된 광이 반사되는 반사면이다. 따라서, 이 반사면(3141)만 높은 광반사성을 가지는 재료로 구성되고, 다른 부분은 광반사성을 가지지 않는 재료로 구성될 수도 있다.
또한, 리플렉터(3140)는 원뿔대형의 상하 양단면이 개방되어 있으며, 발광소자 기판(3113)과 접촉하는 측의 단부(도 46, 도 48에서는 하단부)에 상부 히트싱크(3120)의 저부와 접속되기 위한 개구부(3143)를 가진다. 리플렉터(3140)가 이 개구부(3143)를 가짐으로써 상부 히트싱크(3120)를 발광소자 기판(3113)에 직접 접촉시킬 수 있기 때문에, 조명장치(3000)의 방열효율(특히, 발광모듈(3110)에서 발생한 열의 방출효율)을 높일 수 있다. 따라서, 개구부(3143)는 반드시 상부 히트싱크(3120)의 저부와 접촉할 필요는 없고, 상부 히트싱크(3120)의 저부의 직경보다 직경이 커도 된다.
(글로브(3150))
글로브(3150)는 발광모듈(3110) 및 리플렉터(3140)를 덮도록 거의 구형으로 설치되며, 발광소자(3111)에서 출사된 광 또는 리플렉터(3140)에서 반사된 광의 색(발광소자(3111)의 발광색)을 제어하는 역할 및 이들 광을 글로브(3150)의 표면상에서 확산시킴으로써 조명장치(3100)의 배광각을 넓히는 역할을 가진다.
글로브(3150)는 발광소자(3111)의 발광색을 제어하는 역할을 실현하기 위해서, 발광소자(3111)의 발광색에 따라 형광체나 광확산제를 포함한다.
구체적으로는, 발광소자(3111)가 청색LED 등의 형광체를 여기하는 광을 발광하는 LED인 경우에는, 글로브(3150)의 소재가 형광체를 함유하는 재료이거나 또는 글로브(3150)의 표면(외표면뿐만이 아니라 내표면도 포함한다.)에 형광체가 도포되어 있다. 예를 들어, 글로브(3150)가 수지로 이루어진 경우에는 이 수지 중에 형광안료를 함유시킬 수 있으며, 글로브(3150)가 유리 재료로 이루어진 경우에는 이 글로브의 표면에 형광 도료를 도포할 수 있다. 그리고, 리플렉터(3140)에서 반사되거나 또는 발광소자(111)에서 출사되어 글로브(3150)에 도달한 광의 파장이 글로브(3150)의 형광체에 의해 변환되어 백색이 발광된다.
여기서, 형광체에 의한 발광은 광확산도가 크기 때문에 리플렉터(3140)에서 반사된 광의 배광분포가 불충분해도 형광체에 의한 발광시의 광확산으로 양호한 배광분포를 얻을 수 있게 된다. 또한, 청색LED와 형광체를 조합함으로써 자연광에 가까운 색으로 발광시킬 수 있게 된다.
또한, 조명장치(3000)의 배광각을 보다 넓히기 위해서, 글로브(3150)의 소재가 형광체에 추가로 광확산제를 함유하는 재료이거나 또는 글로브(3150)의 표면에 형광체에 추가로 광확산제가 도포되도 된다.
한편, 발광소자(3111)가 백색광을 발하는 LED인 경우에는, 글로브(3150)의 소재가 광확산제를 함유하는 재료이거나 또는 글로브(3150)의 표면에 광확산제가 도포되어 있어도 된다. 이 경우에도, 광확산제에 의해 발광소자(3111)에서 출사된 광 또는 리플렉터(3140)에서 반사된 광이 글로브(3150)의 표면에서 확산되어 조명장치(3000)의 배광각을 넓힐 수 있다.
또한, 조명장치(3000)의 배광각을 넓히기 위해서는, 글로브(3150)의 최대 직경(도 50의 길이 D1을 참조)은 하부 히트싱크(3130)의 최대 직경(도 50의 길이 D2를 참조)보다 큰 것이 바람직하고, 1.2배 이상인 것이 보다 바람직하다. 글로브(3150)의 최대 직경에 대해 하부 히트싱크(3130)의 최대 직경이 너무 크면, 글로브(3150) 표면에서 소켓방향으로 방사된 광이 하부 히트싱크(3130)에 의해 차단되는 영역이 넓어지기 때문에 소켓방향의 광의 배광각이 작아진다. 상세하게는 후술한다.
본 실시 형태에서는, 글로브(3150)의 정상부(발광모듈(3110)측과 반대측의 단부)에는, 상부 히트싱크(3120)의 상단부(개구부(3121)이 형성되어 있는 측의 단부)와 접속되는 개구부(3151)가 형성되어 있다. 이에 의해, 상부 히트싱크(3120)의 중공부분이 외부에 노출되게 되기 때문에 조명장치(3000)의 방열효율을 높일 수 있다.
또한, 글로브(3150)의 저부(발광모듈(3110)측의 단부)에도 개구부(미도시)가 설치되어 있으며, 글로브(3150)는 이 개구부에서 하부 히트싱크(3130)와 접속된다.
(구동회로(3160))
구동회로(3160)는 하부 히트싱크(3130)의 내부에 설치되며, 소켓을 통해 외부로부터 공급되는 전력을 이용하여 발광소자(3111)를 구동(점등)시키는 전원회로이다. 구동회로(3160)는 기판에 실장되어 있는 복수의 전자부품으로 구성되며, 발광소자(3111)를 구동시킬 때 복수의 전자부품에서 발열한다. 이 구동회로(3160)에서 발생한 열은 하부 히트싱크(3130)에 전달되거나 금속 부재(3133, 방열판(3170)), 발광소자 기판(3113)을 통해 상부 히트싱크(3120)에 전달되어 외부로 방출된다.
또한, 본 실시 형태에 관한 구동회로(3160)는 교류를 직류로 변환하기 위한 전해 커패시터를 가지지 않았다. 시판되고 있는 LED 조명장치의 제품 수명은 수만 시간이라고 하지만, 실제로는 전해 커패시터의 수명이 수천 시간이기 때문에 LED 조명장치 전체로서의 제품 수명에 도달하기 전에 전해 커패시터를 교환할 필요가 있다. 하지만, 본 실시 형태에 관한 구동회로(3160)는 교류를 직류로 변환하기 위한 전해 커패시터를 가지지 않기 때문에, 수천 시간에서 부품을 교환할 필요가 없고 조명장치(3000)의 제품 수명을 현저하게 늘릴 수 있다.
(방열판(3170))
방열판(3170)은 발광소자 기판(3113)와 하부 히트싱크(3130) 모두에 접촉하도록 설치되며, 주로 발광모듈(3110)에서 발생한 열을 하부 히트싱크(3130)에 전달하는 역할을 가진다. 물론, 방열판(3170)이 구동회로(3160)에서 발생한 열을 상부 히트싱크(3120)에 전달하는 역할을 가질 수도 있다. 이 방열판(3170)은 상기 열전달의 역할을 실현하기 위해서, 알루미늄이나 구리 등 열전도성이 높은 금속으로 구성된다.
또한, 방열판(3170)에는 도시하지 않은 리플렉터(3140)의 위치 어긋남 방지 핀이 설치되어 있어도 되며, 이 경우에는, 방열판(3170)은 상기의 열전달 역할 뿐만 아니라 발광소자 기판(3113), 리플렉터(3140), 글로브(3150), 상부 히트싱크(3120)의 위치의 기준이 되는 역할도 가진다.
또한, 조명장치(3000)의 방열효율이 충분히 높고 발광소자 기판(3113), 리플렉터(3140), 글로브(3150), 상부 히트싱크(3120)의 위치 결정 정밀도를 확보할 수 있다면, 방열판(370)은 반드시 설치되지 않아도 된다.
[제11 실시형태에 따른 조명장치의 조립 방법]
이상, 본 발명의 제11 실시 형태에 관한 조명장치(3000)의 구성에 대해서 상세하게 설명했지만, 이어서 다시 도 46을 참조하여 이에 관한 구성을 가지는 조명장치(3000)의 조립 방법에 대해 설명한다.
조명장치(3000)를 조립할 때에는 우선, 각부품 즉, 발광모듈(3110), 상부 히트싱크(3120), 하부 히트싱크(3130), 리플렉터(3140), 글로브(3150), 구동회로(3160), 필요한 경우에는 방열판(3170)을 준비한다. 이어서, 하부 히트싱크(3130)의 내부(중공부)에 구동회로(3160)를 설치하고, 구동회로(3160)가 설치된 하부 히트싱크(3130)의 상부에 방열판(3170)을 배치한다. 방열판(3170)은 이 시점에서 나사 구멍(3135)의 위치와 나사 구멍(3173)의 위치를 맞추어 하부 히트싱크(3130)의 금속부재(3133)에 나사결합한다.
그리고, 방열판(3170)상에 하부 히트싱크(3130)측에서 순서대로 발광모듈(3110), 리플렉터(3140)를 배치한다. 리플렉터(3140)는 나사고정 등에 의해 발광소자 기판(3113)에 고정한다. 또한, 발광모듈(3110) 및 리플렉터(3140)를 덮도록 글로브(3150)을 씌우고 글로브(3150)의 개구부(3151)에서 상부 히트싱크(3120)를 발광소자 기판(3113)에 접촉할 때까지 삽입한다. 마지막으로, 상부 히트싱크(3120)의 나사 구멍(3125)에서 발광소자 기판(3113)의 나사 구멍(3115), 방열판(3170)의 나사 구멍(3175)을 관통하도록 하여 나사고정 등에 의해 고정함으로써 조명장치(3000)를 조립할 수 있다.
또한, 도시하지 않았지만, 하부 히트싱크(3130)의 하단부에는 소켓을 접속 한다.
이상 상술한 바와 같이 본 실시 형태에 관한 조명장치(3000)를 조립할 때에는 소켓 이외의 부품은 모두 한방향(도 46의 예에서는 하부 히트싱크(3130)의 윗쪽)에서 장착할 수 있게 되어 있기 때문에, 용이하게 조립할 수 있어서 위치 결정 등의 정밀도도 높힐 수 있다. 따라서, 본 실시 형태에 관한 조명장치(3000)에 따르면, 제조성 및 수율을 향상시킬 수도 있다.
[제11 실시형태에 따른 조명장치의 작용 효과]
다음으로, 도 49 내지 도 53을 참조하여 본 실시 형태에 관한 조명장치(3000)의 작용 효과에 대해서 설명한다. 도 49는 본 실시 형태에 관한 조명장치(3000)에서의 열의 흐름을 나타내는 설명도이다. 도 50은 본 실시 형태에 관한 조명장치(3000)에서의 광의 움직임을 나타내는 설명도이다. 도 51은 본 실시 형태에 관한 조명장치(3000)의 배광특성의 일례를 나타내는 설명도이다. 도 52은 본 실시 형태에 관한 글로브(3150)의 직경과 하부 히트싱크(3130)의 직경의 비율에 의한 배광의 차이를 나타내는 설명도이다. 도 53은 본 실시 형태에 관한 상부 히트싱크(3120)의 최대 직경과 리플렉터(3140)의 최대 직경의 관계를 나타내는 설명도이다.
(방열효율의 향상 효과)
우선, 도 49에 기초하여 본 실시 형태에 관한 조명장치(3000)에 의한 방열효율의 향상 효과에 대해서 설명한다.
조명장치(3000)에서는, 주로 발열하는 부분(발열체)이 2개 있다. 1번째는 발광모듈(3110)이다. 발광모듈(3110)에서는, 발광소자(3111)가 구동회로(3160)에 의해 구동되어 광이 사출될 때 열이 발생한다. 그리고, 각 발광소자(3111)에서 발생한 열은 이 발광소자(3111)가 실장되어 있는 발광소자 기판(3113)에 전달된다. 여기서, 발광소자 기판(3113), 상부 히트싱크(3120), 방열판(3170) 및 하부 히트싱크(3130, 수지(3131), 금속부재(3133))는 열전도성이 높은 재질이다.
따라서, 발광모듈(3110)에서 발생한 열(발광소자(3111)에서 발생하여 발광소자 기판(3113)에 전달된 열)은 우선, 발광소자 기판(3113)의 상면에 접촉되어 있는 상부 히트싱크(3120)에 전달되어 도 49의 화살표(H1)로 나타낸 바와 같이 상부 히트싱크(3120)의 개구부(3121)의 내주면에서 외부로 방출된다. 발광모듈(3110)에서 발생한 열은 또한 발광소자 기판(3113)의 하면에 접촉되어 있는 방열판(3170)에 전달되어 도 49의 화살표(H2)로 나타낸 바와 같이 금속부재(3133)를 통과하여 수지(3131)까지 전달된다. 수지(3131)까지 전달된 열은 화살표(H3)로 나타낸 바와 같이 핀(3139) 등에서 외부로 방출된다.
한편, 2번째 발열체는 구동회로(3160)이다. 구동회로(3160)에서 발생한 열은 하부 히트싱크(3130)의 중공부에서 금속부재(3133), 수지(3131)의 순서로 전달되어 발광모듈(3110)에서 발생한 열과 동일하게 화살표(H3)로 나타낸 바와 같이 핀(3139)등에서 외부로 방출된다. 또한, 구동회로(3160)에서 발생한 열은 하부 히트싱크(3130)의 중공부에서 방열판(3170), 발광소자 기판(3113), 상부 히트싱크(3120)의 순서로 전달되어 도 49의 화살표(H1)로 나타낸 바와 같이 상부 히트싱크(3120)의 개구부(3121)의 내주면에서 외부로 방출된다.
이상, 상술한 바와 같이 조명장치(3000)에서는, 발광모듈(3110) 및 구동회로(3160)에서 발생한 열(특히, 발광모듈(3110)에서 발생한 열)을 종래의 히트싱크가 1개인 경우와는 달리 하부 히트싱크(3130)뿐만이 아니라 상부 히트싱크(3120)로부터도 방열시킬 수 있다. 따라서, 하부 히트싱크(3130)에서 방출하는 열량의 일부를 상부 히트싱크(3120)로 대체할 수 있기 때문에 방열효율이 향상되고 나아가서는 발광효율의 향상으로도 연결된다.
또한, 하부 히트싱크(3130)의 방열량을 줄일 수 있기 때문에 하부 히트싱크(3130) 전체의 사이즈를 작게 하거나 하부 히트싱크(3130)의 핀(3139)의 면적을 삭감할 수도 있게 된다. 그리고, 하부 히트싱크(3130)의 사이즈를 작게 할 수 있게 되면, 글로브(3150)에서 소켓방향으로 확산되는 광이 하부 히트싱크(3130)에 의해 차단되는 영역을 좁힐 수 있으므로, 광 배광화에도 기여한다.
(배광성의 향상 효과)
다음으로, 도 50 내지 도 52에 기초하여 본 실시 형태에 관한 조명장치(3000)에 의한 배광성의 향상(광배광화) 효과에 대해서 설명한다.
본 실시 형태에 관한 조명장치(3000)에서는, 도 50에 나타낸 바와 같이 발광소자(3111)에서 출사된 광은 주로 2 종류의 경로를 지난다. 제1 경로는 발광소자(3111)로부터 리플렉터(3140)의 반사면(3141)에서 반사되어 글로브(3150)에 도달하는 경로이며, 제2 경로는 발광소자(3111)로부터 직접 글로브(3150)에 도달하는 경로이다.
제1 경로를 지나는 경우는 발광소자(3111)에서 출사된 광(L1)은 리플렉터(3140)의 반사면(3141)에서 반사되어 반사광(L2)이 글로브(3150)에 입사되어 글로브(3150)의 표면에서 확산된다. 확산광(L3)은 여러 방향으로 방사된다. 상술한 바와 같이, 발광소자(3111)가 청색 LED이며, 글로브(3150)가 형광체를 함유하거나 글로브(3150) 표면에 형광체가 도포되어 있는 경우에는, 광확산도가 크기 때문에 확산광(L3)이 보다 넓은 범위로 확산된다. 또한, 글로브(3150)가 광확산제를 함유하거나 글로브(3150)의 표면에 광확산제가 도포되어 있는 경우에도, 확산광(L3)의 확산 범위를 넓힐 수 있다.
여기서, 리플렉터(3140)가 상술한 바와 같이 역원뿔대형을 가지며, 글로브(3150)의 최대 직경(D1)이 하부 히트싱크(3130)의 최대 직경(D2)보다도 크기 때문에, 발광소자(3111)에서 출사된 광이 제1 경로를 지나는 경우에는, 발광소자(3111)에서 출사된 광을 소켓방향으로 방사할 수 있다. 즉, 리플렉터(3140)가 발광소자 기판(3113)에서 이격(소켓방향과는 역방향으로 감)됨에 따라 직경이 확장되는 역원뿔대형이며, 이 리플렉터(3140)의 측주면이 광 반사면(3141)이기 때문에 발광소자(3111)에서 출사된 광(L1)를 광 반사면(3141)에 의해 수평방향보다 소켓방향측으로 반사시킬 수 있고, 이 반사광(L2)을 글로브(3150)에서 더욱 확산시킬 수 있다. 확산할 때, 글로브(3150)의 최대 직경(D1)이 하부 히트싱크(3130)의 최대 직경(D2)보다 크기 때문에, 하부 히트싱크(3130)가 글로브(3150) 표면에서 확산된 확산광(L3)을 차단하지 않아서 수평방향보다 소켓방향측의 보다 넓은 범위로 확산광(L3)을 방사할 수 있다.
제2 경로를 지나는 경우는 발광소자(3111)에서 출사된 광(L4)은 리플렉터(3140)에 닿지 않고 직접 글로브(3150)에 입사되어 글로브(3150)의 표면에서 확산된다. 이 경우도, 확산광(L5)은 여러 방향으로 확산된다. 여기서, 발광소자(3111)에서 출사된 광이 제1 경로를 지나는 경우에는, 수평방향보다도 글로브(3150)의 정상부방향(소켓방향과는 역방향) 측으로의 광의 확산량이 적다. 그러나, 발광소자(3111)에서 출사된 광이 제2 경로를 지나므로 수평방향보다 글로브(3150)의 정상부방향측으로의 광의 확산량을 충분히 확보할 수 있다.
이상과 같이, 본 실시 형태에 관한 조명장치(3000)에서는, 발광소자(3111)에서 출사된 광이 2 종류의 경로를 지나기 때문에 넓은 배광각을 실현할 수 있다. 구체적으로는, 조명장치(3000)에서는 도 51에 나타낸 예와 같이 배광각 300deg의 범위에서, 발광강도 차이가 ±10%이내인 매우 높은 배광성을 실현할 수 있으며 백열전구와 동등한 성능을 가지기 때문에 백열전구의 대체품으로 조명장치(3000)를 사용할 수 있다.
상기한 광배광화의 효과는, 글로브(3150)의 최대 직경(D1)이 하부 히트싱크(3130)의 최대 직경(D2)의 1.2배 이상인 경우에 특히 현저하다. 도 52에 글로브(3150)의 최대 직경(D1)과 하부 히트싱크(3130)의 최대 직경(D2)의 관계에 대해서 본 발명자가 검토한 결과를 나타냈다. 도 52에서는, 하부 히트싱크(3130)의 최대 직경(하부 히트싱크의 직경)에 대한 글로브(3150)의 최대 직경(글로브의 직경)의 비율(이하, 「글로브의 직경/하부 히트싱크의 직경」이라고 한다.)을 횡축에 나타내고, 글로브(3150)에서 확산되는 광량의 최대치에 대한 광량의 최소치의 비율(이하, 「광량 최소치/광량 최대치」라고 한다.)을 종축에 나타냈다. 여기서, 광량의 최대치란 소켓방향을 각도 0도로 하고 반시계방향의 회전각으로 배광각을 나타냈을 경우에 전배광각 중에 광량이 최대가 되는 배광각에서의 광량의 값을 의미하고, 광량의 최소치란 전배광각 중에 광량이 최소가 되는 배광각에서의 광량의 값을 의미한다.
도 52(a)에 나타낸 바와 같이 「글로브의 직경/하부 히트싱크의 직경」이 1.2미만인 경우에는, 「광량 최소치/광량 최대치」가 작다. 이는 도 52(b)에 점선으로 나타낸 바와 같이, 글로브(3150)로부터의 광의 확산방향에 따른 광량의 차이가 크다는 것을 의미한다. 도 52(b)의 예에서는 배광각이 90도, 270도인 수평방향의 광량은 많지만, 배광각이 0도, 180도인 수평방향과 직교하는 방향의 광량은 적고, 차이가 크다는 것이 나타나 있다.
한편, 「글로브의 직경/하부 히트싱크의 직경」이 1.2이상이 되면 「광량 최소치/광량 최대치」가 커진다. 이는 도 52(b)에 실선으로 나타낸 바와 같이 글로브(3150)로부터의 광의 확산방향에 따른 광량의 차이가 작다는 것을 의미한다. 도 52(b)의 예에서는 광의 확산방향에 관계없이 거의 일정한 광량인 것이 나타나 있다.
이와 같이, 「글로브의 직경/하부 히트싱크의 직경」이 1.2이상이 되면 광의 확산방향에 상관없이 거의 일정한 광량으로 할 수가 있기 때문에, 배광각 300deg의 범위이며, 발광강도 차이가 ±10%이내인 매우 높은 배광성을 보다 쉽게 실현할 수 있다.
또한, 「글로브의 직경/하부 히트싱크의 직경」의 최대치는 특별히 규정하지는 않지만 「글로브의 직경/하부 히트싱크의 직경」이 너무 크면 전구 사이즈의 규격인 ANSI규격의 범위를 넘을 가능성이 있기 때문에 ANSI규격을 만족하는 범위에서 「글로브의 직경/하부 히트싱크의 직경」을 결정하는 것이 바람직하다.
(상부 히트싱크(3120)의 최대 직경과 리플렉터(3140)의 최대 직경과의 관계)
다음으로 도 53에 기초하여 상부 히트싱크(3120)의 최대 직경과 리플렉터(3140)의 최대 직경과의 관계에 대해서 설명한다.
상술한 바와 같이 본 실시 형태에서는, 상부 히트싱크(3120)는 리플렉터(3140)의 중공부에 배치되지만, 이 경우, 조명장치(3000)의 넓은 배광각화를 고려하면 상부 히트싱크(3120)의 최대 직경과 리플렉터(3140)의 최대 직경(예를 들어, 발광소자 기판(3113)에서 가장 이격된 부부의 직경)과의 관계에 유의할 필요가 있다.
즉, 도 53(a)에 나타낸 바와 같이 상부 히트싱크(3120)의 최대 직경이 리플렉터(3140)의 최대 직경보다 작은 경우 및 도 53(b)에 나타낸 바와 같이 상부 히트싱크(3120)의 최대 직경이 리플렉터(3140)의 최대 직경과 같은 경우에는, 발광소자(3111)에서 출사된 광이 리플렉터(3140)에 닿지 않고 직접 글로브(3150)에 도달할 수 있다. 그러나, 도 53(c)에 나타낸 바와 같이 상부 히트싱크(3120)의 최대 직경이 리플렉터(3140)의 최대 직경보다 큰 경우에는, 발광소자(3111)에서 출사된 광이 리플렉터(3140)에 닿지 않는 경우에도, 상부 히트싱크(3120)에 차단되어 글로브(3150)에 도달할 수 없다. 따라서, 이러한 경우에는, 수평방향에서 글로브(150) 정상부방향측으로의 광량이 줄어들게 된다. 이 때문에, 배광각 300deg의 범위이며, 발광강도 차이가 ±10%이내인 매우 높은 배광성을 실현하기 어려워질 가능성이 있다.
따라서, 본 실시 형태에 관한 조명장치(3000)에서는, 상부 히트싱크(3120)의 최대 직경이 리플렉터(3140)의 최대 직경 이하인 것이 바람직하다.
한편, 상부 히트싱크(3120)의 사이즈가 너무 작으면 상부 히트싱크(3120)에 의한 방열량이 감소하기 때문에, 방열효율과 배광성의 균형을 고려하여 상부 히트싱크(3120)의 사이즈를 결정하는 것이 바람직하다.
(그 외)
이상과 같은 구성을 가지는 본 실시 형태에 관한 조명장치(3000)에 따르면, 상술한 바와 같은 방열효율 및 배광성의 향상 효과뿐만 아니라 발광효율(90lm/W이상), 발광광량(800lm이상), 색온도(2700~3000K), 연색성(Ra90이상), 형상(ANSI규격으로 불리는 전구 사이즈에 관한 규격) 등을 만족할 수 있으며, 백열전구와 동등한 성능을 가지기 때문에, 백열전구의 대체품으로 사용할 수 있다.
<제12 실시형태>
[제12 실시 형태에 따른 조명장치의 구성]
이어서, 도 54 및 도 55을 참조하여 본 발명의 제12 실시 형태에 관한 전구형 조명장치의 구성에 대해서 상세하게 설명한다. 도 54는 본 발명의 제12 실시 형태에 관한 전구형 조명장치(3200)의 전체 구성을 나타내는 상면도(a) 및 정면도(b)이다. 도 55는 제12 실시 형태에 관한 조명장치(3200)를 도 54(a)의 X-X선을 따라 절단한 단면도이다.
도 54 및 도 55에 나타낸 바와 같이, 본 실시 형태에 관한 조명장치(3200)는 발광모듈((3210), 제1 히트싱크(3220, 이하 「상부 히트싱크」라고 한다.), 제2 히트싱크((3230), 이하 「하부 히트싱크」라고 한다.), 글로브(3250), 구동회로(3260) 및 방열판(3270)을 주로 가진다. 조명장치(3200)는 상술한 제11 실시 형태에 관한 조명장치(3000)와는 달리 리플렉터를 가지지 않으며 상부 히트싱크(3220)가 리플렉터의 기능을 겸비한다. 이하, 각 구성 요소에 대해 상세하게 설명한다.
(발광모듈(3210), 하부 히트싱크(3230), 글로브(3250), 구동회로(3260), 방열판(3270))
발광모듈(3210), 하부 히트싱크(3230), 글로브(3250), 구동회로(3260) 및 방열판(3270)은 각각 제11 실시 형태에 관한 발광모듈(3110), 하부 히트싱크(3130), 글로브(3150), 구동회로(3160) 및 방열판(3170)과 동일한 구성 및 기능을 가지므로 그 상세한 설명을 생략한다.
(상부 히트싱크(3220))
상부 히트싱크(3220)는 제12 실시 형태에 관한 상부 히트싱크(3120)의 기능과 리플렉터(3140)의 기능을 겸비한다. 즉, 상부 히트싱크(3220)는 발광모듈(3210)에서 발생한 열과 구동회로(3260)에서 발생한 열 중에서 적어도 어느 하나를 외부로 방출함과 동시에 발광소자 기판(3213)의 면 중 발광소자(3211)가 배치된 면(이하, 「발광소자(3211)측의 면」이라 한다.)에 유지되어 발광소자(3211)에서 출사된 광을 반사시킨다.
따라서, 상부 히트싱크(3220)는 열전도성이 높으면서 높은 광반사성을 가지는 재질로 형성된다. 이러한 재질로는 예를 들어, 상부 히트싱크(3220)의 외주면이 되는 면을 경면가공한 알루미늄 등의 금속을 들 수 있다.
이 상부 히트싱크(3220)는 발광소자(3211)로부터의 광을 소켓방향으로 반사시켜서 조명장치(3200)의 배광각을 소켓방향으로 넓히는 기능을 가지기 때문에 역원뿔대형, 즉, 발광소자 기판(3213)으로부터 이격됨에 따라 직경이 확장되는 원뿔대형이 되도록 발광소자 기판(3213)의 발광소자(3211)측의 면에서 돌출되어 설치되어 있다. 또한, 원뿔대형상의 상부 히트싱크(3220)의 외주면은 발광소자(3211)에서 출사된 광이 반사되는 반사면(3223)이다. 따라서, 이 반사면(3223)에만 상기 경면가공을 실시해도 된다.
또한, 상부 히트싱크(3220)는 일단에 개구부(3221)를 가지는 중공 형상을 가지어 있다. 이 중공부를 가지기 때문에 상부 히트싱크(3220)의 외부에 노출된 면의 표면적(열을 방산하는데 이용되는 면의 면적)이 커져 방열 효과를 높일 수 있다.
또한, 상부 히트싱크(3220)는 발광소자 기판(3213)을 기준으로 발광소자(3211)의 배치에 의해 구성되는 링의 중심축C 방향의 일측에 발광소자 기판(3213)과 접촉되어 설치된다. 이와 같이, 상부 히트싱크(3220)는 발광소자 기판(3213)에 접촉되어 설치되기 때문에, 주로 발광소자 기판(3213)(또는 발광모듈(3210) 전체)에서 발생한 열을 외부로 방출하는 역할을 한다. 이에 의해, 일반적으로 구동회로(3260)보다 다량의 열이 발생하는 발광모듈(3210)로부터의 열을 상부 히트싱크(3220)와 하부 히트싱크(3230) 모두에서 방출할 수 있기 때문에, 히트싱크가 하나뿐인 경우와 비교하여 조명장치(3200)의 방열효율을 현저하게 높일 수 있다.
또한, 상부 히트싱크(3220)의 저면(폐쇄되어 있는 면)의 거의 중심부에는 나사 구멍(3225)이 설치되며, 상부 히트싱크(3220)는 나사 구멍(3215, 3275)을 통해 발광소자 기판(3213) 및 방열판(3270)과 나사결합되어 위치가 고정된다.
그리고, 조명장치(3200)의 조립 방법은 리플렉터가 없는 것을 제외하고 상술한 제12 실시 형태에 관한 조명장치(3000)과 동일하기 때문에 그 상세한 설명을 생략한다.
[제12 실시형태에 따른 조명장치의 작용 효과]
다음으로, 도 56을 참조하여 본 실시 형태에 관한 조명장치(3200)의 작용 효과에 대해서 설명한다. 도 56은 본 실시 형태에 관한 조명장치(3200)에서의 열의 흐름 및 광의 움직임을 나타내는 설명도이다.
(방열효율의 향상 효과)
우선, 본 실시 형태에 관한 조명장치(3200)에 의한 방열효율의 향상 효과에 대해서 설명한다.
조명장치(3200)에서는, 주로 발열하는 부분(발열체)이 2개 있다. 1번째는 발광모듈(3210)이다. 발광모듈(3210)에서는, 발광소자(3211)가 구동회로(3260)에 의해 구동되어 광이 사출될 때 열이 발생한다. 그리고, 각 발광소자(3211)에서 발생한 열은 이 발광소자(3211)가 실장되어 있는 발광소자 기판(3213)에 전달된다. 여기서, 발광소자 기판(3213), 상부 히트싱크(3220), 방열판(3270) 및 하부 히트싱크(3230)(수지(3231), 금속 부재(3233))는 열전도성이 높은 재질이다.
따라서, 발광모듈(3210)에서 발생한 열(발광소자(3211)에서 발생하여 발광소자 기판(3213)에 전달된 열)은 우선, 발광소자 기판(3213)의 상면에 접촉되어 있는 상부 히트싱크(220)에 전달되어 도 56의 화살표(H1')로 나타낸 바와 같이 상부 히트싱크(3220)의 개구부(3221)의 내주면에서 외부로 방출된다. 발광모듈(3210)에서 발생한 열은 또한 발광소자 기판(3213)의 하면에 접촉되어 있는 방열판(3270)에 전달되고 나서 금속 부재(3233)을 통과하여 수지(3231)까지 전달된 후에 하부 히트싱크(3230)에서 외부로 방출되는 것은, 제12 실시 형태와 같다.
한편, 2번째 발열체 구동회로(3260)이다. 구동회로(3260)에서 발생한 열은 하부 히트싱크(3230)의 중공부에서 금속 부재(3233), 수지(3231)의 순서로 전달되어 발광모듈(3210)에서 발생한 열과 같이 하부 히트싱크(3230)에서 외부로 방출된다. 또한, 구동회로(3260)에서 발생한 열은 하부 히트싱크(3230)의 중공부에서 방열판(3270), 발광소자 기판(3213), 상부 히트싱크(3220)의 순서로 전달되어 도 4의 화살표(H1')로 나타낸 바와 같이 상부 히트싱크(3220)의 개구부(3221)내의 내주면에서 외부로 방출된다.
이상, 상술한 바와 같이 조명장치(3200)에서는, 발광모듈(3210) 및 구동회로(3260)에서 발생한 열(특히, 발광모듈(3210)에서 발생한 열)을 종래의 히트싱크가 1개인 경우와는 달리 하부 히트싱크(3230)뿐만이 아니라, 상부 히트싱크(3220)에서도 방열시킬 수 있다. 따라서, 하부 히트싱크(230)에서 방출하는 열량의 일부를 상부 히트싱크(3220)로 대체할 수 있기 때문에 방열효율이 향상되고 나아가서는 발광효율의 향상으로도 이어진다.
또한, 하부 히트싱크(3230)의 방열량을 줄일 수 있기 때문에 하부 히트싱크(3230) 전체의 사이즈를 작게 하거나 하부 히트싱크(3230)의 핀(미도시)의 면적도 삭감할 수 있게 된다. 또한, 하부 히트싱크(3230)의 사이즈를 작게 할 수 있게 되면, 글로브(3250)에서 소켓방향으로 확산되는 광이 하부 히트싱크(3230)에 의해 차단되는 영역을 좁힐 수 있게 때문에 넓은 배광화에도 기여한다.
(배광성의 향상 효과)
다음으로, 본 실시 형태에 관한 조명장치(3200)에 의한 배광성의 향상(광 배광화) 효과에 대해서 설명한다.
본 실시 형태에 관한 조명장치(3200)에서는, 도 56에 나타낸 바와 같이 발광소자(3211)에서 출사된 광은 주로 2 종류의 경로를 지난다. 제1 경로는 발광소자(3211)로부터 상부 히트싱크(3220)의 반사면(3223)에서 반사되어 글로브(3250)에 도달하는 경로이며, 제2 경로는 발광소자(3211)로부터 직접 글로브(3250)에 도달하는 경로이다.
제1 경로를 지나는 경우는 발광소자(3211)에서 출사된 광(L1')은 상부 히트싱크(3220)의 반사면(3223)에서 반사되고, 반사광(L2')이 글로브(3250)에 입사되어 글로브(3250)의 표면에서 확산된다. 확산광(L3')은 여러 방향으로 방사된다. 발광소자(3211)가 청색 LED이며, 글로브(3250)가 형광체를 함유하거나 글로브(3250) 표면에 형광체가 도포되어 있는 경우에는 광확산도가 크기 때문에, 확산광(L3')은 보다 넓은 범위로 확산된다. 또한, 글로브(3250)가 광확산제를 함유하거나 글로브(3250)의 표면에 광확산제가 도포되어 있는 경우에도 확산광(L3')의 확산 범위를 넓힐 수 있다.
여기서, 상부 히트싱크(3220)가 상술한 바와 같이 역원뿔대형을 가지며 글로브(3250)의 최대 직경이 하부 히트싱크(3230)의 최대 직경보다 크기 때문에 발광소자(3211)에서 출사된 광이 제1 경로를 지나는 경우에는, 발광소자(3211)에서 출사된 광을 소켓방향으로 방사할 수 있다. 즉, 상부 히트싱크(3220)가 발광소자 기판(3213)에서 이격(소켓방향과는 역방향으로 감)됨에 따라 직경이 확장되는 역원뿔대형이며, 이 상부 히트싱크(3220)의 측주면이 광반사면(3223)이므로 발광소자(3211)에서 출사된 광(L1')을 광반사면(3223)에 의해 수평방향보다 소켓방향측으로 반사시킬 수 있으며 이 반사광(L2')을 글로브(250)에서 더욱 확산시킬 수 있다.확산할 때, 글로브(3250)의 최대 직경이 하부 히트싱크(3230)의 최대 직경보다 크기 때문에, 하부 히트싱크(3230)가 글로브(3250) 표면에서 확산된 확산광(L3')을 차단하지 않아서 수평방향보다 소켓방향측의 보다 넓은 범위로 확산광(L3')을 방사할 수 있다.
제2 경로를 지나는 경우는 발광소자(211)에서 출사된 광(L4')은 상부 히트싱크(3220)에 닿지 않고 직접 글로브(3250)에 입사되어 글로브(3250)의 표면에서 확산된다. 이 경우도, 확산광(L5')은 여러 방향으로 확산된다. 여기서, 발광소자(3211)에서 출사된 광이 제1 경로를 지나는 경우에는, 수평방향보다 글로브(3250)의 정상부방향(소켓방향과는 역방향) 측으로의 광의 확산량이 적다. 그러나, 발광소자(3211)에서 출사된 광이 제2 경로를 지나므로 수평방향보다 글로브(3250)의 정상부방향측으로의 광의 확산량을 충분히 확보할 수 있다.
이상과 같이, 본 실시 형태에 관한 조명장치(3200)에서는 발광소자(3211)에서 출사된 광이, 2 종류의 경로를 지나기 때문에 넓은 배광각을 실현할 수 있다. 구체적으로는, 조명장치(3200)에서는 도 51에 나타낸 예와 같이 배광각 300deg의 범위이며, 발광강도 차이가 ±10%이내라는 매우 높은 배광성을 실현할 수 있고, 백열전구와 동등한 성능을 가지기 때문에 백열전구의 대체품으로 조명장치(3200)를 사용할 수 있게 된다.
또한, 그 외의 작용 효과에 대해서는, 상부 히트싱크의 최대 직경과 리플렉터의 최대 직경의 관계 이외에 대해서는 상술한 제11 실시 형태와 동일하기 때문에 그 상세한 설명을 생략한다.
이상, 첨부 도면을 참조하여 본 발명의 바람직한 실시 형태에 대해 상세하게 설명했지만, 본 발명은 이들 예에 한정되지 않는다. 예를 들어, 상술한 제11 및 제12 실시 형태에서는 발광소자 기판(3113), 제1 히트싱크(3120), 제2 히트싱크(3130), 리플렉터(3140), 글로브(3150) 및 방열판(3170)의 중심축(C)에 대해 직교하는 방향으로 절단했을 때의 단면형상을 원형으로 했지만, 본 발명은 이들 예에 한정되지 않는다. 예를 들어, 상기 각부재의 단면 형상은 다각형이나 타원형일 수 있다.
또한, 상술한 제11 실시 형태에서는, 발광소자 기판(3113)에 복수의 발광소자(3111)를 링형으로 배치하여 구성되는 1개의 발광소자군만을 설치하고 있지만, 본 발명은 이 예에 한정되지 않는다. 예를 들어, 발광소자 기판(3113)에 동심원상으로 복수의 발광소자군을 설치할 수 있다.
상술된 실시형태에 따른 조명장치에 채용가능한 발광소자는 다양한 구조의 LED 칩 또는 이러한 LED 칩을 포함한 다양한 형태의 LED 패키지가 사용될 수 있다. 이하, 본 조명장치들에 유익하게 채용될 수 있는 다양한 LED 칩 및 LED 패키지를 상세히 설명하기로 한다.
<LED 칩 - 제1 예>
도57에는 상술된 조명장치에 사용될 수 있는 LED 칩의 일 예를 나타내는 측단면도이다.
도57에 도시된 바와 같이, LED 칩(1500)은 반도체 기판(1501) 상에 형성된 발광 적층체(S)를 포함한다. 상기 발광 적층체(S)는 제1 도전형 반도체층(1504), 활성층(1505) 및 제2 도전형 반도체층(1506)을 포함한다.
또한, 제2 도전형 반도체층(1506) 상에 형성된 오믹전극층(1508)을 포함하며, 제1 도전형 반도체층(1504) 및 오믹 콘택층(1508)의 상면에는 각각 제1 및 제2 전극(1509a, 1509b)이 형성된다.
본 명세서에서, '상부', '상면', '하부', '하면', '측면' 등의 용어는 도면을 기준으로 한 것이며, 실제로는 소자가 배치되는 방향에 따라 달라질 수 있을 것이다.
이하, LED 칩(1505)의 주요 구성요소에 대해서 보다 상세하게 설명하기로 한다.
(기판(1501))
상기 기판(1501)으로는 필요에 따라 절연성, 도전성 또는 반도체 기판이 사용될 수 있다. 예를 들어, 상기 기판(1501)은 사파이어, SiC, Si, MgAl2O4, MgO, LiAlO2, LiGaO2, GaN일 수 있다. GaN 물질의 에피성장을 위해서는 동종 기판인 GaN 기판이 좋으나, GaN 기판은 그 제조상의 어려움으로 생산단가가 높은 문제가 있다.
이종 기판으로는 사파이어, 실리콘 카바이드(SiC) 기판 등이 주로 사용되고 있으며. 가격이 비싼 실리콘 카바이드 기판에 비해 사파이어 기판이 더 많이 활용되고 있다. 이종 기판을 사용할 때는 기판 물질과 박막 물질 사이의 격자상수의 차이로 인해 전위(dislocation) 등 결함이 증가한다. 또한, 기판 물질과 박막 물질 사이의 열팽창계수의 차이로 인해 온도 변화시 휨이 발생하고, 휨은 박막의 균열(crack)의 원인이 된다. 기판(1501)과 GaN계인 발광 적층체(S) 사이의 버퍼층(1502)을 이용해 이러한 문제를 감소시킬 수도 있다.
상기 기판(1501)은 LED 구조 성장 전 또는 후에 LED 칩의 광 또는 전기적 특성을 향상시키기 위해 칩 제조 과정에서 완전히 또는 부분적으로 제거되거나 패터닝하는 경우도 있다.
예를 들어, 사파이어 기판인 경우는 레이저를 기판을 통해 반도체층과의 계면에 조사하여 기판을 분리할 수 있으며, 실리콘이나 실리콘 카바이드 기판은 연마/에칭 등의 방법에 의해 제거할 수 있다.
또한, 상기 기판 제거시에는 다른 지지 기판을 사용하는 경우가 있으며 지지기판은 원 성장 기판의 반대쪽에 LED 칩의 광효율을 향상시키게 위해서, 반사 금속을 사용하여 접합하거나 반사구조를 접합층의 중간에 삽입할 수 있다.
기판 패터닝은 기판의 주면(표면 또는 양쪽면) 또는 측면에 LED 구조 성장 전 또는 후에 요철 또는 경사면을 형성하여 광 추출 효율을 향상시킨다. 패턴의 크기는 5nm ~ 500㎛ 범위에서 선택될 수 있으며 규칙 또는 불규칙한 패턴으로 광 추출 효율을 좋게 하기 위한 구조면 가능하다. 모양도 기둥, 산, 반구형 등의 다양한 형태를 채용할 수 있다.
상기 사파이어 기판의 경우, 육각-롬보형(Hexa-Rhombo R3c) 대칭성을 갖는 결정체로서 c축 및 a측 방향의 격자상수가 각각 13.001Å과 4.758Å이며, C(0001)면, A(1120)면, R(1102)면 등을 갖는다. 이 경우, 상기 C면은 비교적 질화물 박막의 성장이 용이하며, 고온에서 안정하기 때문에 질화물 성장용 기판으로 주로 사용된다.
상기 기판의 다른 물질로는 Si 기판을 들 수 있으며, 대구경화에 보다 적합하고 상대적으로 가격이 낮아 양산성이 향상될 수 있다. (111)면을 기판면으로 갖는 Si 기판이 GaN와의 격자상수의 차이가 17% 정도로 격자 정수의 차이로 인한 결정 결함의 발생을 억제하는 기술이 필요하다. 또한, 실리콘과 GaN 간의 열팽창률의 차이는 약 56% 정도로, 이 열팽창률 차이로 인해서 발생한 웨이퍼 휨을 억제하는 기술이 필요하다. 웨이퍼 휨으로 인해, GaN 박막의 균열을 가져올 수 있고, 공정 제어가 어려워 동일 웨이퍼 내에서 발광 파장의 산포가 커지는 등의 문제를 발생시킬 수 있다.
상기 실리콘(Si) 기판은 GaN계 반도체에서 발생하는 빛을 흡수하여 발광소자의 외부 양자 효율이 낮아지므로, 필요에 따라 상기 기판을 제거하고 반사층이 포함된 Si, Ge, SiAl, 세라믹, 또는 금속 기판등의 지지기판을 추가로 형성하여 사용한다.
(버퍼층(1502))
상기 Si 기판과 같이 이종 기판상에 GaN 박막을 성장시킬 때, 기판 물질과 박막 물질 사이의 격자 상수의 불일치로 인해 전위(dislocation) 밀도가 증가하고, 열팽창 계수 차이로 인해 균열(crack) 및 휨이 발생할 수 있다. 발광 적층체의 전위 및 균열을 방지하기 위한 목적으로 기판(1501)과 발광적층체(S) 사이에 버퍼층(1502)을 배치시킨다. 버퍼층은 활성층 성장시 기판의 휘는 정도를 조절해 웨이퍼의 파장 산포를 줄이는 기능도 한다.
상기 버퍼층(1502)은 AlxInyGa1-x-yN (0≤x≤1, 0≤y≤1), 특히 GaN, AlN, AlGaN, InGaN, 또는 InGaNAlN를 사용할 수 있으며, 필요에 따라 ZrB2, HfB2, ZrN, HfN, TiN 등의 물질도 사용할 수 있다. 또한, 복수의 층을 조합하거나, 조성을 점진적으로 변화시켜 사용할 수도 있다.
Si 기판은 GaN와 열팽창 계수 차이가 크기 때문에, 실리콘 기판에 GaN계 박막 성장시, 고온에서 GaN 박막을 성장시킨 후, 상온으로 냉각시 기판과 박막 간의 열팽창 계수의 차이에 의해 GaN 박막에 인장응력이 가해져 균열이 발생하기 쉽다. 균열을 막기 위한 방법으로 성장 중에 박막에 압축 응력이 걸리도록 성장하는 방법을 이용해 인장응력을 보상한다.
실리콘(Si)은 GaN과의 격자 상수 차이로 인해 결함 발생 가능성도 크다. Si 기판을 사용하는 경우는 결함 제어 뿐만 아니라 휨을 억제하기 위한 응력 제어를 동시에 해줘야 하기 때문에 복합 구조의 버퍼층을 사용한다.
예를 들어, 먼저 기판(1501) 상에 AlN를 형성한다. Si와 Ga 반응을 막기 위해 Ga을 포함하지 않은 물질을 사용하는 것이 좋다. AlN 뿐만 아니라 SiC 등의 물질도 사용할 수 있다. Al 소스와 N 소스를 이용하여 400 ~ 1300 ℃ 사이의 온도에서 성장시킨다. 필요에 따라, 복수의 AlN 층 사이에 GaN 중간에 응력을 제어하기 위한 AlGaN 중간층을 삽입할 수 있다.
(발광 적층체(1504))
상기 발광적층체(S)가 3족 질화물 반도체의 다층 구조를 구비하는 발광적층체(S)를 보다 자세히 설명하면, 제1 및 제2 도전형 반도체층(1504, 1506)은 각각 n형 및 p형 불순물이 도핑된 반도체로 이루어질 수 있으며,
다만, 이에 제한되는 것은 아니고 반대로 각각 p형 및 n형 반도체층이 될 수도 있을 것이다. 예를 들어, 제1 및 제2 도전형 반도체층(1504, 1506)은 3족 질화물 반도체, 예컨대, AlxInyGa1-x-yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성을 갖는 물질로 이루어질 수 있다. 물론, 이에 한정되지 않으며, AlGaInP계열 반도체나 AlGaAs계열 반도체와 같은 물질도 이용될 수 있을 것이다.
한편, 제1 및 제2 도전형 반도체층(1504, 1506)은 단층 구조로 이루어질 수 있지만, 이와 달리, 필요에 따라 서로 다른 조성이나 두께 등을 갖는 다층 구조를 가질 수 있다. 예를 들어, 제1 및 제2 도전형 반도체층(1504, 1506)은 각각 전자 및 정공의 주입 효율을 개선할 수 있는 캐리어 주입층을 구비할 수 있으며, 또한, 다양한 형태의 초격자 구조를 구비할 수도 있다.
상기 제1 도전형 반도체층(1504)은 활성층(1505)과 인접한 부분에 전류 확산층(미도시)을 더 포함할 수 있다. 상기 전류확산층은 서로 다른 조성을 갖거나, 서로 다른 불순물 함량을 갖는 복수의 InxAlyGa(1-x-y)N층이 반복해서 적층되는 구조 또는 절연 물질 층이 부분적으로 형성될 수 있다.
상기 제2 도전형 반도체층(1506)은 활성층(1505)과 인접한 부분에 전자 차단층(미도시)을 더 포함할 수 있다. 상기 전자차단층은 복수의 서로 다른 조성의 InxAlyGa(1-x-y)N를 적층한 구조 또는 AlyGa(1-y)N로 구성된 1층 이상의 층을 가질 수 있으며, 활성층(1505)보다 밴드갭이 커서 제2 도전형(p형) 반도체층(1506)으로 전자가 넘어가는 것을 방지한다.
상기 발광 적층체(S)는 MOCVD 장치를 사용하며, 제조방법으로는 기판(1501)을 설치한 반응 용기내에 반응 가스로 유기 금속 화합물 가스(예, 트리메틸 갈륨 (TMG), 트리메틸 알루미늄(TMA) 등)와 질소 함유 가스(암모니아(NH3) 등)을 공급하고, 기판의 온도를 900℃∼1100℃의 고온으로 유지하고, 기판상에 질화 갈륨계 화합물 반도체를 성장하면서, 필요에 따라 불순물 가스를 공급해, 질화 갈륨계 화합물 반도체를 언도프, n형, 또는 p형으로 적층한다. n형 불순물로는 Si이 잘 알려져 있고, p 형 불순물으로서는 Zn, Cd, Be, Mg, Ca, Ba 등이 있으며, 주로 Mg, Zn가 사용된다.
또한, 제1 및 제2 도전형 반도체층(1504, 1506) 사이에 배치된 활성층(1505)은 양자우물층과 양자장벽층이 서로 교대로 적층된 다중 양자우물(MQW) 구조, 예컨대, 질화물 반도체일 경우, GaN/InGaN 구조가 사용될 수 있으며, 다만, 단일 양자우물(SQW) 구조를 사용할 수도 있을 것이다.
(오믹콘택층(1508) 및 제1 및 제2 전극(1509a,1509b))
상기 오믹 콘택층(1508)은 불순물 농도를 상대적으로 높게 해서 오믹 콘택 저항을 낮추어 소자의 동작 전압을 낮추고 소자 특성을 향상 시킬 수 있다. 상기 오믹 컨택층(1508)은 GaN, InGaN, ZnO 또는 그래핀층으로 구성될 수 있다. 제1 및 제2 전극(1509a,1509b)으로는 Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au 등의 물질을 포함할 수 있으며, Ni/Ag, Zn/Ag, Ni/Al, Zn/Al, Pd/Ag, Pd/Al, Ir/Ag. Ir/Au, Pt/Ag, Pt/Al, Ni/Ag/Pt 등과 같이 2층 이상의 구조로 채용될 수 있다.
도57에 도시된 LED 칩은 일 예로서 제1 및 제2 전극(1509a,1509b)이 광추출면과 동일한 면을 향하고 있는 구조이나 광추출면과 반대 방향으로되는 플립칩 구조, 제1 전극 및 제2 전극을 상호 반대되는 면에 형성된 수직 구조, 전류 분산의 효율을 위해서 비아구조를 채용하는 수직-수평 구조 등으로 다양하게 구현될 수 있다.
<LED 칩 - 제2 예>
조명용으로, 고출력을 위한 대면적 발광소자 칩을 제조하는 경우, 전류분산의 효율과 방열 효율을 위한 구조로 도58에 도시된 LED 칩이 있을 수 있다.
도58에 도시된 바와 같이, LED 칩(1600)은 순차적으로 적층된 제1 도전형 반도체층(1604), 활성층(1605), 제2 도전형 반도체층(1606), 제2 전극층(1607), 절연층(1602), 제1 전극층(1608) 및 기판(1601)을 포함한다. 이 때 제1 전극층(1608)은 제1 도전형 반도체층(1604)에 전기적으로 접속하기 위하여 제2 도전형 반도체층(1606) 및 활성층(1605)과는 전기적으로 절연되어 제1 전극층(1608)의 일면으로부터 제1 도전형 반도체층(1604)의 적어도 일부 영역까지 연장된 하나 이상의 콘택 홀(H)을 포함한다. 상기 제1 전극층(1608)은 본 실시예에서 필수적인 구성요소는 아니다.
상기 콘택홀(H)은 제1 전극층(1608)의 계면에서부터 제2 전극층(1607), 제2 도전형 반도체층(1606) 및 활성층(1605)을 통과하여 제1 도전형 반도체층(1604) 내부까지 연장된다. 적어도 활성층(1605) 및 제1 도전형 반도체층(1604)의 계면까지는 연장되고, 바람직하게는 제1 도전형 반도체층(1604)의 일부까지 연장된다. 다만, 콘택홀(H)은 제1 도전형 반도체층(1604)의 전기적 연결 및 전류분산을 위한 것이므로 제1 도전형 반도체층(1604)과 접촉하면 목적을 달성하므로 제1 도전형 반도체층(1604)의 외부표면까지 연장될 필요는 없다.
제2 도전형 반도체층(1606) 상에 형성된 제2 전극층(1607)은, 광 반사 기능과 제2 도전형 반도체층(1606)과 오믹 컨택 기능을 고려하여 Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au 등의 물질 중에서 선택하여 사용될 수 있으며, 스퍼터링이나 증착 등의 공정을 이용할 수 있다.
상기 콘택홀(H)은 상기 제1 도전형 반도체층(1604)에 연결되도록 제2 전극층(1607), 제2 도전형 반도체층(1606) 및 활성층(1605)을 관통하는 형상을 갖는다.이러한 콘택홀(H)은 식각 공정, 예컨대, ICP-RIE 등을 이용하여 실행될 수 있다.
상기 콘택홀(H)의 측벽과 상기 제2 도전형 반도체층(1606) 표면을 덮도록 절연체(1602)를 형성한다. 이 경우, 상기 상기 콘택홀(H)의 저면에 해당하는 제1 도전형 반도체층(1604)은 적어도 일부가 노출될 수 있다. 상기 절연체(1602)는 SiO2, SiOxNy, SixNy과 같은 절연 물질을 증착시켜 형성될 수 있다.
상기 콘택홀(H) 내부에는 도전 물질을 충전되어 형성된 도전성 비아를 포함한 제2 전극층(1608)이 형성된다. 이어 제2 전극층(1608) 상에 기판(1601)을 형성한다. 이러한 구조에서, 기판(1601)은 제1 도전형 반도체층(1604)과 접속되는 도전성 비아에 의해 전기적으로 연결될 수 있다.
상기 기판(1601)은 이에 한정되지는 않으나 Au, Ni, Al, Cu, W, Si, Se, GaAs, SiAl, Ge, Sic, AlN, Al2O3, GaN, AlGaN 중 어느 하나를 포함하는 물질로 이루어질 수 있으며, 도금, 스퍼터링, 증착 또는 접착 등의 공정으로 형성될 수 있다.
상기 콘택홀(H)은 접촉 저항이 낮아지도록 개수, 형상, 피치, 제1 및 제2 도전형 반도체층(1604, 1606)과의 접촉 면적 등이 적절히 조절될 수 있으며, 행과 열을 따라 다양한 형태로 배열됨으로써 전류 흐름이 개선될 수 있다. 이 경우, 도전성 비아(31)는 절연부(50)에 의하여 둘러싸여 활성층(22) 및 제2 도전형 반도체층(23)과 전기적으로 분리될 수 있다. 
<LED 칩- 제3 예>
LED 조명 장치는 방열 특성이 개선된 특징을 제공하고 있으나, 전체적인 방열 성능 측면에서 볼 때에, 조명장치에 채용되는 LED 칩 자체를 발열량이 적은 LED 칩으로 사용하는 것이 바람직하다. 이러한 요건을 만족하는 LED칩으로서, 나노 구조체를 포함한 LED 칩(이하, "나노 LED 칩"이라 함)이 사용될 수 있다.
이러한 나노 LED 칩으로 최근에 개발된 코어(core)/셀(shell)형 나노 LED 칩이 있으며, 특히, 결합 밀도가 작아서 상대적으로 열 발생이 작을 뿐만 아니라, 나노 구조체를 활용하여 발광면적을 늘려 발광 효율을 높일 수 있으며, 비극성 활성층을 얻을 수 있어 분극에 의한 효율저하를 방지할 수 있으므로, 드랍(droop)특성을 개선할 수 있다.
도59에는 상술된 조명장치에 채용될 수 있는 LED 칩의 또 다른 예로서 나노 LED 칩이 예시되어 있다.
도59에 도시된 바와 같이, 나노 LED 칩(1700)은 기판(1701) 상에 형성된 다수의 나노 발광 구조체(N)를 포함한다. 본 예에서 나노 발광 구조체(N)는 코어-셀(core-shell) 구조로서 로드구조로 예시되어 있으나, 이에 한정되지 않고 피라미드 구조와 같은 다른 구조를 가질 수 있다.
상기 나노 LED 칩(1700)은 기판(1701) 상에 형성된 베이스층(1702)을 포함한다. 상기 베이스층(1702)은 나노 발광 구조체(N)의 성장면을 제공하는 층으로서 상기 제1 도전형 반도체일 수 있다. 상기 베이스층(1702) 상에는 나노 발광 구조체(N)(특히, 코어) 성장을 위한 오픈영역을 갖는 마스크층(1703)이 형성될 수 있다. 상기 마스크층(1703)은 SiO2 또는 SiNx와 같은 유전체 물질일 수 있다.
상기 나노 발광 구조체(N)는 오픈영역을 갖는 마스크층(1703)을 이용하여 제1 도전형 반도체를 선택 성장시킴으로써 제1 도전형 나노 코어(1704)를 형성하고, 상기 나노 코어(1704)의 표면에 쉘층으로서 활성층(1705) 및 제2 도전형 반도체층(1706)을 형성한다. 이로써, 나노 발광 구조체(N)는 제1 도전형 반도체가 나노 코어가 되고, 나노 코어를 감싸는 활성층(1705) 및 제2 도전형 반도체층(1706)이 쉘층이 되는 코어-쉘(core-shell) 구조를 가질 수 있다.
본 예에 따른 나노 LED 칩(1700)은 나노 발광 구조체(N) 사이에 채워진 충전물질(1707)을 포함한다. 상기 충전물질(1707)은 나노 발광 구조체(N)를 구조적으로 안정화시킬 수 있다. 상기 충전물질(1707)은 이에 한정되지는 않으나, SiO2와 같은 투명한 물질로 형성될 수 있다. 상기 나노 발광 구조체(N) 상에는 제2 도전형 반도체층(1706)에 접속되도록 오믹콘택층(1708)이 형성될 수 있다. 상기 나노 LED 칩(1700)은 제1 도전형 반도체로 이루어진 상기 베이스층(1702)과 상기 오믹콘택층(1708)에 각각 접속된 제1 및 제2 전극(1709a,1709b)을 포함한다.
나노 발광 구조체(N)의 직경, 성분 및 도핑농도 중 적어도 하나를 달리 구현하여 단일한 소자에서 2 이상의 다른 파장의 광을 방출할 수 있다. 다른 파장의 광을 적절히 조절하여 단일 소자에서 형광체를 사용하지 않고도 백색광을 구현할 수 있으며, 이러한 소자와 함께 다른 LED 칩을 결합하거나 또는 형광체와 같은 파장변환 물질을 결합하여 원하는 다양한 색깔의 광 또는 색온도가 다른 백색광을 구현할 수 있다.
<LED 칩 - 제4 예>
도 60에는 상술된 조명장치에 채용될 수 있는 광원으로서, 실장 기판(1820) 상에 실장된 LED 칩(1810)을 갖는 반도체 발광소자(1800)가 도시되어 있다.
도 60에 도시된 반도체 발광소자(1800)는 실장 기판(1820)과 실장 기판(1820)에 탑재된 LED 칩(1810)을 포함한다. 상기 LED 칩(1810)은 앞서 설명된 예와 다른 LED 칩으로 제시되어 있다.
상기 LED 칩(1810)은 기판(1801)의 일면 상에 배치된 발광 적층체(S)와, 상기 발광 적층체(S)를 기준으로 상기 기판(1801) 반대 측에 배치된 제1 및 제2 전극 (1808a,1808b)을 포함한다. 또한, 상기 LED 칩(1810)은 상기 제1 및 제2 전극(1808a,1808b)을 덮도록 형성되는 절연부(1803)를 포함한다.
상기 제1 및 제2 전극(1808a, 1808b)은 제1 및 제2 전기연결부(1809a,1809b)에 의해 제1 및 제2 전극 패드(1819a,1819b)을 포함할 수 있다.
상기 발광 적층체(S)는 기판(1801) 상에 순차적으로 배치되는 제1 도전형 반도체층(1804), 활성층(1805) 및 제2 도전형 반도체층(1806)을 포함할 수 있다. 상기 제1 전극(1808a)은 상기 제2 도전형 반도체층(1806) 및 활성층(1805)을 관통하여 상기 제1 도전형 반도체층(1804)과 접속된 도전성 비아로 제공될 수 있다. 상기 제2 전극(1808b)는 제2 도전형 반도체층(1806)과 접속될 수 있다.
상기 절연부(1803)는 상기 제1 및 제2 전극(1808a,1808b)의 적어도 일부를 노출시키도록 오픈 영역을 구비하며, 상기 제1 및 제2 전극 패드(1819a,1819b)은 상기 제1 및 제2 전극(1808a,1808b)과 접속될 수 있다.
상기 제1 및 제2 전극(1809a,1809b)는 각각 제1 및 제2 도전형 반도체층(1804,1806)과 오믹 특성을 갖는 도전성 물질이 1층 또는 다층 구조로 이루어질 수 있으며, 예컨대, Ag, Al, Ni, Cr, 투명 도전성 산화물(TCO) 등의 물질 중 하나 이상을 증착하거나 스퍼터링하는 등의 공정으로 형성될 수 있다. 제1 및 제2 전극(1809a,1809b)은 서로 동일한 방향으로 배치될 수 있으며, 후술할 바와 같이, 리드 프레임 등에 소위, 플립 칩(flip-chip) 형태로 실장될 수 있다. 이 경우, 제1 및 제2 전극(1809a,1809b)은 서로 동일한 방향을 향하도록 배치될 수 있다.
특히, 상기 제1 전극(1808a)은 상기 제2 도전형 반도체층(1804) 및 활성층(1805)을 관통하여 상기 발광 적층체(S) 내부에서 상기 제1 도전형 반도체층(1804)에 연결된 도전성 비아를 갖는 제1 전극(1808a)에 의해 제1 전기연결부(1809a)가 형성될 수 있다.
도전성 비아와 상기 제1 전기 연결부(1809a)는 접촉 저항이 낮아지도록 개수, 형상, 피치, 제1 도전형 반도체층(1804)과의 접촉 면적 등이 적절히 조절될 수 있으며, 상기 도전성 비아와 상기 제1 전기 연결부(1809a)는 행과 열을 이루어 배열됨으로써 전류 흐름이 개선될 수 있다.
다른 한편의 전극구조는, 상기 제2 도전형 반도체층(1806) 상에 직접 형성되는 제2 전극(1808b)과 그 상부에 형성되는 제2 전기연결부(1809b)를 포함할 수 있다. 상기 제2 전극(1808b)은 상기 제2 도전형 반도체층(23)과의 전기적 오믹을 형성하는 기능 외에 광 반사 물질로 이루어짐으로써 도60에 도시된 바와 같이, LED 칩(1810)을 플립칩 구조로 실장된 상태에서, 활성층(1805)에서 방출된 빛을 기판(1801) 방향으로 효과적으로 방출시킬 수 있다. 물론, 주된 광방출방향에 따라, 상기 제2 전극(41)은 투명 전도성 산화물과 같은 광투과성 도전 물질로 이루어질 수도 있다.
상기 설명된 2개의 전극구조는 절연부(1803)에 의하여 서로 전기적으로 분리될 수 있다. 절연부(18030)는 전기적으로 절연 특성을 갖는 물질이면 어느 것이나 사용할 수 있으며, 전기 절연성을 갖는 물체라면 어느 것이나 채용 가능하지만, 광흡수율이 낮은 물질을 사용하는 것이 바람직하다. 예를 덜어, SiO2, SiOxNy, SixNy 등의 실리콘 산화물, 실리콘 질화물을 이용할 수 있을 것이다. 필요에 따라, 광투과성 물질 내에 광 반사성 필러를 분산시켜 광반사 구조를 형성할 수 있다.
상기 제1 및 제2 전극패드(1819a, 1819b)은 각각 제1 및 제2 전기연결부(1809a,1809b)와 접속되어 LED 칩(1810)의 외부 단자로 기능할 수 있다. 예를 들어, 상기 제1 및 제2 전극 패드(1819a, 1819b)은 Au, Ag, Al, Ti, W, Cu, Sn, Ni, Pt, Cr, NiSn, TiW, AuSn 또는 이들의 공융 금속일 수 있다. 이 경우에, 실장 기판(1820)에 실장시 공융 금속을 이용하여 접합될 수 있으므로, 플립 칩 본딩 시 일반적으로 요구되는 별도의 솔더 범프를 사용하지 않을 수 있다. 솔더 범프를 이용하는 경우에 비하여 공융 금속을 이용한 실장 방식에서 방열 효과가 더욱 우수한 장점이 있다. 이 경우, 우수한 방열 효과를 얻기 위하여 제1 및 제2 전극 패드(1819a, 1819b)은 넓은 면적을 차지하도록 형성될 수 있다.
상기 기판(1801) 및 상기 발광 적층체(S)는 반대되는 설명이 없는 한, 도 57을 참조하여 설명된 내용을 참조하여 이해될 수 있다. 또한, 구체적으로 도시하지는 않았으나, 상기 발광구조물(S)과 기판(1801) 사이에는 버퍼층(미도시)이 형성될 수 있으며, 버퍼층은 질화물 등으로 이루어진 언도프 반도체층으로 채용되어, 그 위에 성장되는 발광구조물의 격자 결함을 완화할 수 있다.
상기 기판(1801)은 서로 대향하는 제1 및 제2 주면을 가질 수 있으며, 상기 제1 및 제2 주면 중 적어도 하나에는 요철 구조가 형성될 수 있다. 상기 기판(1801)의 일면에 형성된 요철 구조는 상기 기판(1801)의 일부가 식각되어 상기 기판과 동일한 물질로 이루어질 수 있으며, 상기 기판(1801)과 다른 이종 물질로 구성될 수도 있다.
본 예와 같이, 상기 기판(1801)과 상기 제1 도전형 반도체층(1804)의 계면에 요철 구조를 형성함으로써, 상기 활성층(1805)으로부터 방출된 광의 경로가 다양해 질 수 있으므로, 빛이 반도체층 내부에서 흡수되는 비율이 감소하고 광 산란 비율이 증가하여 광 추출 효율이 증대될 수 있다.
구체적으로, 상기 요철 구조는 규칙 또는 불규칙적인 형상을 갖도록 형성될 수 있다. 상기 요철을 이루는 이종 물질은 투명 전도체나 투명 절연체 또는 반사성이 우수한 물질을 사용할 수 있다. 투명 절연체로는 SiO2, SiNx, Al2O3, HfO, TiO2 또는 ZrO와 같은 물질을, 투명 전도체는 ZnO나 첨가물(Mg, Ag, Zn, Sc, Hf, Zr, Te, Se, Ta, W, Nb, Cu, Si, Ni, Co, Mo, Cr, Sn)이 함유된 인듐 산화물(Indum Oxide) 등과 같은 투명 전도성 산화물(TCO)을, 반사성 물질로는 Ag, Al 또는 굴절율이 서로 다른 다층막 구조의 DBR을 사용할 수 있으나, 이에 제한되는 것은 아니다.
상기 기판(1801)은 상기 제1 도전형 반도체층(1804)으로부터 제거될 수 있다. 기판 제거에는 레이저를 이용한 LLO(Laser Lift Off) 공정 또는 식각, 연마 공정을 사용할 수 있다. 또한, 기판이 제거된 제1 도전형 반도체층의 표면에 요철을 형성할 수 있다.
도60에 도시된 바와 같이, 상기 LED 칩(1810)은 실장 기판(1820)에 탑재되어 있다. 상기 실장 기판(1820)은 기판 본체(1811) 상면 및 하면에 각각 상부 및 하부 전극층(1812b,1812a)이 형성되고, 상기 상부 및 하부 전극층(1812b,1812a)을 연결하도록 상기 기판 본체(1811)를 관통하는 비아(1813)를 포함한다. 상기 기판 본체(1811)는 수지, 세라믹 또는 금속일 수 있으며, 상기 상부 또는 하부 전극층(1812b,1812a)은 Au, Cu, Ag, Al과 같은 금속층일 수 있다.
물론, 상술된 LED 칩(1810)이 탑재되는 기판은 도60에 도시된 실장 기판(1820)의 형태에 한정되지 않으며, LED 칩(1801)을 구동하기 위한 배선 구조가 형성된 기판이라면 어느 것이나 적용 가능하다. 예를 들어, 한 쌍의 리드 프레임을 갖는 패키지 본체에 LED 칩이 실장된 패키지 구조로도 제공될 수 있다.
<LED 칩의 기타 예>
상술된 LED 칩 외에도 다양한 구조의 LED 칩이 사용될 수 있다. 예를 들어, LED 칩의 금속-유전체 경계에 표면 플라즈몬 폴라리톤(surface-plasmon polaritons: SPP)을 형성시켜 양자우물 엑시톤과 상호작용 시킴으로써 광추출효율을 크게 개선된 LED 칩도 유용하게 사용될 수 있다.
[LED 패키지]
다양한 형태의 LED 칩이 베어 칩으로 회로기판에 실장되어 상술된 조명장치에 사용될 수 있으나, 이와 달리, 한 쌍의 전극구조를 갖는 패키지 본체에 실장된 다양한 형태의 패키지 구조로 사용될 수 있다.
이러한 LED 칩을 구비한 패키지(이하, LED 패키지)는 외부 회로와 연결을 용이한 외부단자구조를 제공할 뿐만 아니라, LED 칩의 방열 특성을 개선하는 방열구조 및 광특성을 향상시키기 위한 다양한 광학적 구조를 가질 수 있다. 예를 들어, 다양한 광학적 구조로서, LED 칩으로부터 방출된 광을 다른 파장의 광을 변환하는 파장변환부 또는 배광특성을 개선하기 위한 렌즈구조가 있을 수 있다.
<LED 패키지의 예 - 칩 스케일 패키지(CSP)>
상술된 조명장치에 채용될 수 있는 LED 패키지의 일 예로서, 칩 스케일 패키지(chip scale package: CSP) 구조를 갖는 LED 칩 패키지가 사용될 수 있다.
상기 칩 스케일 패키지는 상기 LED 칩 패키지의 사이즈를 줄이고 제조 공정을 단순화하여 대량 생산에 적합하며, LED 칩과 함께, 형광체와 같은 파장변환물질과 렌즈와 같은 광학 구조를 일체형으로 제조할 수 있으므로, 특히 조명 장치에 적합하게 사용될 수 있다.
도61에는 이러한 칩 스케일 패키지의 일 예로서, 주된 광추출면과 반대 방향인 LED(1910)의 하면을 통해 전극이 형성되며 형광체층(1907) 및 렌즈(1920)가 일체로 형성된 패키지 구조이다.
도61에 도시된 칩 스케일 패키지(1900)는 기판(1911)에 배치된 발광 적층체(S), 제1 및 제2 단자부(Ta,Tb), 형광체층(1907) 및 렌즈(1920)를 포함한다.
상기 발광 적층체(S)은 제1 및 제2 도전형 반도체층(1904, 1906)과 그 사이에 배치된 활성층(1905)을 구비하는 적층 구조이다. 본 실시 형태의 경우, 제1 및 제2 도전형 반도체층(1904, 1906)은 각각 p형 및 n형 반도체층이 될 수 있으며, 또한, 질화물 반도체, 예컨대, AlxInyGa(1-x-y)N (0≤x≤1, 0≤y≤1, 0≤x+y≤1)로 이루어질 수 있다. 다만, 질화물 반도체 외에도 GaAs계 반도체나 GaP계 반도체도 사용될 수 있을 것이다.
상기 제1 및 제2 도전형 반도체층(1904, 1906) 사이에 형성되는 활성층(1905)은 전자와 정공의 재결합에 의해 소정의 에너지를 갖는 광을 방출하며, 양자우물층과 양자장벽층이 서로 교대로 적층된 다중 양자우물(MQW) 구조로 이루어질 수 있다. 다중 양자우물 구조의 경우, 예컨대, InGaN/GaN, AlGaN/GaN 구조가 사용될 수 있다.
한편, 제1 및 제2 도전형 반도체층(1904, 1906)과 활성층(1905)은 당 기술 분야에서 공지된 MOCVD, MBE, HVPE 등과 같은 반도체층 성장 공정을 이용하여 형성될 수 있을 것이다.
도61에 도시된 LED(1910)은 성장 기판이 제거된 상태이며, 성장 기판이 제거된 면에는 요철(P)이 형성될 수 있다. 또한, 요철이 형성된 면에 광변환층으로서 형광체층(1907)이 적용된다.
상기 LED(1910)은 도60에 도시된 LED 칩과 유사하게 상기 제1 및 제2 도전형 반도체층(1904,1906)에 각각 접속된 제1 및 제2 전극(1909a,1909b)을 갖는다. 상기 제1 전극(1909a)은 상기 제2 도전형 반도체층(1906) 및 활성층(1905)을 관통하여 제2 도전형 반도체층(1904)에 접속된 도전성 비아(1908)를 구비한다. 상기 도전성 비아(1908)는 활성층(1905) 및 제2 도전형 반도체층(1906) 사이에는 절연층(1903)이 형성되어 단락을 방지할 수 있다.
상기 도전성 비아(1906)는 1개로 예시되어 있으나, 전류 분산에 유리하도록 상기 도전성 비아(1906)는 2개 이상 구비하고, 다양한 형태로 배열될 수 있다.
본 예에 채용된 실장 기판(1911)은 실리콘 기판과 같은 반도체 공정이 용이하게 적용될 수 있는 지지 기판으로 예시되어 있으나, 이에 한정되는 것은 아니다. 상기 실장 기판(1911)과 상기 LED(1910)은 본딩층(1902,1912)에 의해 접합될 수 있다. 상기 본딩층(1902,1912)은 전기 절연성 물질 또는 전기 전도성 물질으로 이루어지며, 예를 들어 전기 절연성 물질의 경우, SiO2 또는 SiN과 같은 산화물 또는 질화물, 실리콘 수지나 에폭시 수지 등과 같은 수지류의 물질, 전기 전도성 물질로는 Ag, Al, Ti, W, Cu, Sn, Sn, Ni, Pt, Cr, NiSn, TiW, AuSn 또는 이들의 공융금속을 들 수 있다. 본 공정은 LED(1910)와 기판(1911)의 각 접합면에 제1 및 제2 본딩층(1902,1912)을 적용한 후에 접합시키는 방식으로 구현될 수 있다.
상기 실장 기판(1911)에는 접합된 LED(1910)의 제1 및 제2 전극(1909a,1909b)에 연결되도록 상기 실장 기판(1911)의 하면으로부터 비아가 형성될 수 있다. 상기 비아의 측면 및 상기 실장 기판(1911)의 하면에 절연체(1913)가 형성된다. 상기 실장 기판(1911)이 실리콘 기판일 경우에 상기 절연체(1913)는 열 산화공정을 통해서 실리콘 산화막으로 제공될 수 있다. 상기 비아에 도전성 물질을 충전함으로써 상기 제1 및 제2 전극(1909a,1909b)에 연결되도록 제1 및 제2 단자(Ta,Tb)를 형성한다. 상기 제1 및 제2 단자(Ta,Tb)는 시드층(1918a,1918b)과 상기 시드층(1918a,1918b)을 이용하여 도금공정으로 형성된 도금 충전부(1919a,1919b)일 수 있다.
<형광체>
[연색성 개선]
조명장치는 자연광과 가까운 조명광을 제공하기 위해서 높은 연색성(color rendering ind)을 갖도록 구현하는 것이 바람직하다. 이와 같이, 연색성을 향상시키기 위해서, 적색, 녹색, 청색의 LED 칩 또는 패키지를 함께 사용할 수 있으며, 청색 LED 칩 또는 패키지에 적색 및 녹색 형광체를 조합하거나, 청색 및 녹색 LED 칩 또는 청색 및 적색 LED 칩에 적색 또는 녹색형광체를 조합하여 백색 광원을 제공할 수 있다. 추가적으로, 황색 및/또는 연두색의 형광체 또는 칩을 사용하여 연색성을 높일 수 있다. 이러한 추가적인 형광체로는 Lu3Al5O12:Ce3+, Ca-α-SiAlON:Eu2+ , L3Si6O11:Ce3+ , (Ca,Sr)AlSiN3:Eu2+ , Y3Al5O12:Ce3+ , LiAlO2:Fe3+ 및 (Ba,Sr,Mg)3Si2O7:Pb2+으로 구성된 그룹에서 선택된 적어도 하나를 사용할 수 있다.
[형광체 적용기술]
형광체는 LED 칩에 직접 적용하거나 패키지의 광추출경로 상에 제공될 수 있다. 예를 들어, LED 칩의 상면 또는 상면 및 측면에 적용하거나, 패키지의 컵 구조에에 층 구조 또는 포장 수지와 혼합 도포될 수 있다. 형광체의 적용형태에 따라서는 LED 칩에 접촉하는 형태와 리모트 방식으로 LED 칩으로부터 일정 거리를 갖도록 형광체가 배치되는 형태로 구분될 수 있다.
이러한 형광체의 적용 방법으로는, 공압방식 또는 기구적인 디스펜싱(dispensing) 및 소량 제어를 위한 제팅(jetting)방식의 디스펜싱이 이 사용되거나, 다량의 제품에 일괄적으로 적용될 수 있는 스크린 프린팅(screen printing) 또는 스프레이(spray) 공정이 사용될 수 있다. 또한, LED 칩의 상면과 같이 특정 영역에 국부적인 코팅을 위한 전기영동 또는 컨포말(conformal coating) 공정이 사용될 수 있다.
이와 달리, 세라믹 형광체막 또는 형광체 함유 수지필름을 별도 제조하여 LED 칩 또는 패키지에 접합하는 방법으로 형광체가 적용될 수 있다.
상술된 LED를 이용한 조명 장치는 그 용도에 따라 크게 실내용(indoor) 과 실외용(outdoor)으로 구분될 수 있다. 실내용 LED 조명 장치는 주로 기존 조명 대체용(Retrofit)으로 램프, 형광등(LED-tube), 평판형 조명장치가 여기에 해당되며 실외용 LED 조명장치는 가로등, 보안등, 투광등, 경관등, 신호등 등이 해당된다.
조명에 활용되는 발광다이오드(LED) 칩, 패키지 장치, 또는 LED 칩 또는 패키지를 장착한 기판 모듈구조는 발열 효과가 우수해야 하며. 또한 연색성이 태양광에 가까워야 좋다.
또한, 활용 공간에 맞게 광학설계 및 조명제어가 이루어져야 하며, 비용측면에서 장점이 있어야 우수한 조명제품이 될 수 있다.저렴한 실리콘(Si) 기판을 사용한 칩 구조(GaN on Si substrate) 또는 칩 사이즈 패키지(Chip Scale PKG: CSP)구조를 적용할 수 있다.
우선적으로, 방열 측면에서 열을 발생하지 않거나 가능하면 작은 양의 열을 발생하는 LED 칩을 사용하는 것이 바람직하며, 최근에 개발되고 있는 코어(core)/셀(shell)형 나노 LED 구조는 LED 구조 내부에 결합 밀도가 작아서 상대적으로 열 발생이 작다는 장점이 있다.
또한, LED 칩 내부에 여러 개의 비아(via)를 형성하여 전기적, 열적으로 안전한 구조를 가지는 플립칩 또는 수직구조 또는 수직-수평구조가 방열 효과를 높일 수 있어 조명용 LED 칩으로 적합하다. 연색성을 높이기 위해 적색, 녹색, 청색의 LED 칩 또는 패키지를 사용할 수 있으며, 청색 LED 칩 또는 패키지에 적색, 녹색 형광체를 조합하거나, 청색, 녹색 또는 청색, 적색 LED 칩에 적색 또는 녹색 형광체를 조합하여 백색 발광소자를 제조할 수 있다. 추가적으로, 황색 및/또는 연두색의 형광체 또는 칩을 사용하여 연색성을 높일 수 있다.
LED를 이용한 조명 장치는 제품 형태, 장소 및 목적에 따라 광학 설계가 변할 수 있다. 감성조명과 관련하여 조명의 색, 온도, 밝기 및 색상을 컨트롤 하는 기술 및 스마트폰과 같은 휴대기기를 활용한 무선(원격) 제어 기술을 이용하여 조명제어가 가능하다.
또한, 이와 더불어 LED 조명 장치와 디스플레이 장치들에 통신 기능을 부가하여 LED 광원의 고유 목적과 통신 수단으로서의 목적을 동시에 달성하고자 하는 가시광 무선통신 기술도 가능하다. 이는 LED 광원이 기존의 광원들에 비해 수명이 길고 전력 효율이 우수하며 다양한 색 구현이 가능할 뿐만 아니라 디지털 통신을 위한 스위칭 속도가 빠르고 디지털 제어가 가능하다는 장점을 갖고 있기 때문이다.
가시광 무선통신 기술은 인간이 눈으로 인지할 수 있는 가시광 파장 대역의 빛을 이용하여 무선으로 정보를 전달하는 무선통신 기술이다. 이러한 가시광 무선통신 기술은 가시광 파장 대역의 빛을 이용한다는 측면에서 기존의 유선 광통신기술 및 적외선 무선통신과 구별되며, 통신 환경이 무선이라는 측면에서 유선 광통신 기술과 구별된다.
또한, 가시광 무선통신 기술은 RF 무선통신과 달리 주파수 이용 측면에서 규제 또는 허가를 받지 않고 자유롭게 이용할 수 있다는 편리성과 물리적 보안성이 우수하고 통신 링크를 사용자가 눈으로 확인할 수 있다는 차별성을 가지고 있으며, 무엇보다도 광원의 고유 목적과 통신기능을 동시에 얻을 수 있다는 융합 기술로서의 특징을 가지고 있다.
또한 LED를 이용한 조명장치는 차량용 내외부 광원으로 활용 가능하다. 내부 광원으로는 차량용 실내등, 독서등, 계기판의 각종 광원등으로 사용 가능하며, 차량용 외부 광원으로 전조등, 브레이크등, 방향지시등, 안개등, 주행등 등 모든 광원에 사용 가능하다. 특수한 파장대를 이용한 LED 조명은 식물의 성장을 촉지 시키고, 사람의 기분을 안정시키거나 병을 치료할 수도 있다. 로봇 또는 각종 기계 설비에 사용되는 광원으로 LED가 적용될 수 있다.
이와 같이, 첨부 도면을 참조하여 본 발명의 바람직한 실시 형태에 대해 상세하게 설명했지만, 본 발명은 이들 예에 한정되지 않는다. 예를 들어, 특별히 반대되는 설명이 없는 이상, 상술된 실시형태는 서로 결합되어 구현될 수 있다.
본 발명이 속하는 기술의 분야에서 통상의 지식을 가지는 사람이라면 특허 청구 범위에 기재된 기술적 사상의 범주 내에서, 각종 변경예 또는 수정예에 고려할 수 있으며, 이들도 본 발명의 기술적 범위에 속하는 것은 물론이다.

Claims (52)

  1. 광을 출사하는 적어도 하나의 발광소자 및 상기 발광소자가 배치되는 발광소자 기판을 갖는 발광모듈;
    상기 발광소자 기판을 기준으로 해서, 상기 링의 중심축 방향의 일측에 설치되는 하우징; 및
    상기 발광모듈을 덮도록 설치되는 수지제 글로브;를 구비하고,
    상기 글로브는, 상기 글로브의 성형에 사용된 게이트부의 적어도 일부를 잔존시킨 복수의 돌출부를 갖고,
    상기 발광소자 기판은, 상기 돌출부와 결합하는 노치부를 갖는 것을 특징으로 하는 조명 장치.
  2. 광을 출사하는 적어도 하나의 발광소자 및 상기 발광소자가 배치되는 발광소자 기판을 갖는 발광모듈;
    상기 발광소자 기판을 기준으로 해서, 상기 링의 중심축 방향의 일측에 설치되는 하우징;
    상기 발광모듈을 덮도록 설치되는 수지제 글로브; 및
    상기 발광소자 기판과 상기 하우징 양쪽 모두에 접촉하도록 설치되고, 상기 발광모듈에서 발생한 열을 상기 하우징에 전달하는 방열판을 더 포함하며,
    상기 발광소자 기판과 상기 방열판 중 적어도 어느 하나는, 상기 돌출부와 결합하는 노치부를 갖는 것을 특징으로 하는 조명 장치.
  3. 제1항 또는 제2항에 있어서, 상기 각 돌출부가, 등간격으로 배치되어 있는 것을 특징으로 하는 조명 장치.
  4. 제1항 또는 제2항에 있어서, 상기 글로브가, 상기 발광소자 기판측의 단부에 원형상의 개구부를 갖고 있고, 상기 개구부의 주연을 따라 상기 돌출부가 설치되어 있는 것을 특징으로 하는 조명 장치.
  5. 광을 출사하는 복수의 발광소자 및 상기 발광소자가 링형으로 배치되는 발광소자 기판을 갖는 발광모듈;
    상기 발광소자 기판을 기준으로 해서, 상기 링의 중심축 방향의 일측에 설치되고, 중공이며 거의 통형의 하우징;
    상기 발광소자 기판에서의 상기 일측과는 반대측의 타측의 면에 지지되고, 상기 발광소자에서 출사된 광을 반사시키는 리플렉터; 및
    상기 발광모듈 및 상기 리플렉터를 덮도록 설치되고, 상기 하우징의 최대 직경보다 큰 최대 직경을 갖는 글로브;를 구비하고,
    상기 리플렉터는, 상기 발광소자 기판에서 이격함에 따라 직경이 확장되는 원뿔대형이 되도록 상기 발광소자 기판의 상기 타측의 면에서 돌출해 설치되고, 상기 원뿔대의 측주면(側周面)에 상기 발광소자에서 출사된 광을 반사시키는 반사면을 갖고,
    상기 글로브는,
    상기 하우징에 접속되고, 상기 반사면의 경사를 따른 경사면을 갖는 글로브 넥부; 및 상기 글로브 넥부에 연결 설치되는 거의 반구형의 글로브 헤드부;로 이루어진 것을 특징으로 하는 조명 장치.
  6. 제5항에 있어서, 상기 리플렉터의 상기 반사면과 상기 글로브의 상기 경사면이 거의 평행한 것을 특징으로 하는 조명 장치.
  7. 제5항 또는 제6항에 있어서, 상기 글로브의 소재가 형광체를 함유하는 재료이거나, 상기 글로브의 표면에 형광체가 도포되어 있고,
    상기 발광소자가, 상기 글로브에 설치된 형광체를 여기하는 광을 발광하는 LED인 것을 특징으로 하는 조명 장치.
  8. 제5항 또는 제6항에 있어서, 상기 글로브의 소재가 광확산재를 더 함유하는 재료이거나, 상기 글로브의 표면에 광확산재가 더 도포되어 있는 것을 특징으로 하는 조명 장치.
  9. 제5항 또는 제6항에 있어서, 상기 글로브의 소재가 광확산재를 함유하는 재료이거나, 또는, 상기 글로브의 표면에 광확산재가 도포되어 있고,
    상기 발광소자가, 백색광을 발하는 LED인 것을 특징으로 하는 조명 장치.
  10. 제5항 또는 제6항에 있어서, 상기 리플렉터의 상기 링의 중심축 방향의 길이(d1)가, 상기 글로브 넥부의 상기 링의 중심축 방향의 길이(d2)보다 긴 것을 특징으로 하는 조명 장치.
  11. 제5항 또는 제6항에 있어서, 상기 리플렉터를 상기 리플렉터의 직경 확장 방향에서 상기 발광소자 기판으로 투영한 경우에, 상기 투영 영역 내에 상기 발광소자의 적어도 일부가 존재하는 것을 특징으로 하는 조명 장치.
  12. 길이방향의 일단에 발광소자가 배치된 발광소자 기판을 덮는 글로브가 접속되는 금속제의 중공의 본체부; 및
    상기 본체부의 외주면에 인서트 성형하여 설치된 수지제의 방열부;를 구비하고,
    상기 본체부에는 상기 방열부를 형성하는 수지재료를 계지하는 계지부가 설치되어 있는 것을 특징으로 하는 조명장치의 방열 부재.
  13. 제12항에 있어서,
    상기 계지부는 상기 본체부의 외주면에 형성된 복수의 구멍인 것을 특징으로 하는 조명장치의 방열 부재.
  14. 제13항에 있어서,
    상기 구멍은 인서트 성형시에 상기 방열부를 형성하는 수지재료가 유동하는 방향이며, 상기 본체부의 길이방향으로 직경이 긴 타원형 또는 다각형으로 형성되는 것을 특징으로 하는 조명장치의 방열 부재.
  15. 제12항 내지 제14항 중 어느 한 항에 있어서,
    상기 계지부는 상기 본체부의 외주면에 형성된 상기 본체부의 길이방향으로 연장되는 복수의 슬릿인 것을 특징으로 하는 조명장치의 방열 부재.
  16. 제12항에 있어서,
    상기 계지부는 상기 본체부의 외주면에 형성된 상기 글로브는 일단측에서 타단측을 향해 외주의 직경이 작아지는 단차부인 것을 특징으로 하는 조명장치의 방열 부재.
  17. 제12항에 있어서,
    상기 계지부는 상기 본체부의 외주면에 형성된 복수의 오목부인 것을 특징으로 하는 조명장치의 방열 부재.
  18. 제12항에 있어서,
    상기 계지부는 상기 본체부의 외주면에 형성된 복수의 돌기부인 것을 특징으로 하는 조명장치의 방열 부재.
  19. 링형으로 배치된 발광소자를 포함하는 발열체를 기준으로 해서, 상기 링형으로 배치된 발광소자의 중심축 방향의 일측에 설치되는 제1 히트싱크; 및
    상기 중심축 방향의 타측에 설치되는 제2 히트싱크;를 구비하는 것을 특징으로 하는 조명 장치의 방열 구조.
  20. 제19항에 있어서, 상기 발광체는, 상기 발광소자; 및 상기 발광소자가 탑재되는 발광소자 기판;으로 구성되는 것을 특징으로 하는 조명 장치의 방열 구조.
  21. 제19항 또는 제20에 있어서, 상기 제1 히트싱크 및 상기 제2 히트싱크는 중공의 본체부를 각각 갖고, 상기 본체부의 중심축과 상기 발광소자의 중심축이 일치하는 것을 특징으로 하는 조명 장치의 방열 구조.
  22. 제21항에 있어서, 상기 제1 히트싱크와 상기 제2 히트싱크의 사이에는, 상기 제1 히트싱크의 본체부 또는 상기 제2 히트싱크의 본체부의 외주면에서 연장 설치되는, 발열체를 지지하는 플랜지부가 설치되는 것을 특징으로 하는 조명 장치의 방열 구조.
  23. 제19항에 있어서, 상기 발열체는, 상기 제2 히트싱크의 외주면에 설치되는 것을 특징으로 하는 조명 장치의 방열 구조.
  24. 제19항에 있어서, 상기 제1 히트싱크와 상기 제2 히트싱크는 일체로 형성되는 것을 특징으로 하는 조명 장치의 방열 구조.
  25. 광을 출사하는 발광소자;
    상기 발광소자가 링형으로 배치된 발광소자 기판; 및
    상기 발광소자를 포함하는 발열체로부터의 열을 방열하는 히트싱크; 및
    상기 발광소자가 배치된 상기 발광소자 기판을 덮는 글로브;를 구비하고,
    상기 히트싱크는, 상기 발열체를 기준으로 해서, 상기 링형으로 배치된 발광소자의 중심축 방향의 일측에 설치되는 제1 히트싱크와, 상기 중심축 방향의 타측에 설치되는 제2 히트싱크;를 구비하는 것을 특징으로 하는 조명 장치.
  26. 제25항에 있어서, 상기 제1 히트싱크 및 상기 제2 히트싱크는, 상기 발광소자의 중심축과 일치하는 중심축을 갖는 중공의 본체부를 각각 갖고,
    상기 글로브는, 상기 글로브측에 설치되는 상기 제2 히트싱크의 본체부의 중공 부분과 접속되는 개구부를 구비하는 것을 특징으로 하는 조명 장치.
  27. 광을 출사하는 복수의 발광소자와 상기 발광소자가 링형으로 배치되는 발광소자 기판을 가지는 발광모듈;
    상기 발광소자 기판을 기준으로 상기 링의 중심축 방향의 일측에 설치되는 제1 히트싱크;
    상기 발광소자 기판을 기준으로 상기 링의 중심축 방향의 타측에 설치되는 제2 히트싱크;
    상기 발광모듈을 덮도록 설치되는 글로브;
    상기 제2 히트싱크의 내부에 설치되어 상기 발광소자를 구동시키는 구동회로;를 구비하며,
    상기 제1 히트싱크는 상기 발광모듈과 상기 구동회로의 어느 하나에서 발생한 열만을 외부로 방출하고,
    상기 제2 히트싱크는 상기 발광모듈과 상기 구동회로의 다른 하나에서 발생한 열만을 외부로 방출하는 것을 특징으로 하는 조명장치.
  28. 제27항에 있어서,
    상기 제1 히트싱크는 상기 구동회로에서 발생한 열을 외부로 방출하고,
    상기 제2 히트싱크는 상기 발광모듈에서 발생한 열을 외부로 방출하는 것을 특징으로 하는 조명장치.
  29. 제28항에 있어서,
    상기 제1 히트싱크는 거의 원통형 또는 거의 기둥형이며,
    상기 발광소자 기판의 중앙부에는 상기 제1 히트싱크와 접촉하지 않는 개구부가 설치되어 있으며,
    상기 발광소자 기판은 상기 제2 히트싱크와 열적으로 결합됨과 동시에 상기 구동회로는 열전도성을 가지는 재료로 이루어지는 열전도 부재를 통해 상기 제1 히트싱크와 열적으로 결합되어 있는 것을 특징으로 하는 조명장치.
  30. 제29항에 있어서,
    상기 발광소자 기판과 상기 제2 히트싱크의 사이에, 상기 발광소자 기판에서 발생한 열을 상기 제2 히트싱크에 전달하는 방열판을 추가로 구비하며,
    상기 방열판의 중앙부에는 상기 제1 히트싱크와 접촉하지 않는 개구부가 설치되어 있는 것을 특징으로 하는 조명장치.
  31. 제27항에 있어서,
    상기 제1 히트싱크는 상기 발광모듈에서 발생한 열을 외부로 방출하고,
    상기 제2 히트싱크는 상기 구동회로에서 발생한 열을 외부로 방출하는 것을 특징으로 하는 조명장치.
  32. 링형으로 배치된 발광소자를 포함하는 발열체의 중심부에 설치되고, 상기 링형으로 배치된 발광소자의 중심축 방향으로 연장 설치되는 중공의 히트싱크; 및
    상기 히트싱크의 내부에 설치되는 중공의 내부 히트싱크;를 구비하고,
    상기 히트싱크의 중심을 지나는 상기 히트싱크의 내주면에서 상기 내부 히트싱크의 외주면까지의 거리는 불균일한 것을 특징으로 하는 조명 장치의 방열 구조.
  33. 제32항에 있어서, 상기 중심축 방향에서 본 상기 히트싱크의 평면 형상은 원형이고, 상기 내부 히트싱크의 평면 형상은 장경 및 단경을 갖는 타원형 또는 다각형인 것을 특징으로 하는 조명 장치의 방열 구조.
  34. 광을 출사하는 발광소자;
    상기 발광소자가 링형으로 배치된 발광소자 기판;
    상기 발광소자가 배치된 상기 발광소자 기판을 덮는 글로브;
    상기 링형으로 배치된 발광소자를 포함하는 발열체의 중심부에 설치되고, 상기 링형으로 배치된 발광소자의 중심축 방향으로 연장 설치되는 중공의 히트싱크; 및
    상기 히트싱크의 내부에 설치되는 중공의 내부 히트싱크;를 구비하고,
    상기 히트싱크의 중심을 지나는 상기 히트싱크의 내주면에서 상기 내부 히트싱크의 외주면까지의 거리는 불균일한 것을 특징으로 하는 조명 장치.
  35. 링형으로 배치된 발광소자를 포함하는 발열체의 중심부에 설치되고, 상기 링형으로 배치된 발광소자의 중심축 방향으로 연장 설치되는 중공의 히트싱크; 및
    상기 히트싱크의 내주면에서 연장 설치되는 적어도 하나의 핀;을 구비하고,
    상기 히트싱크의 중심을 지나는 상기 히트싱크의 내주면간의 거리는 불균일한 것을 특징으로 하는 조명 장치의 방열 구조.
  36. 제35항에 있어서, 상기 히트싱크의 내주면에 설치되는 핀 중 적어도 하나는 다른 핀의 반경 방향의 길이와 다른 것을 특징으로 하는 조명 장치의 방열 구조.
  37. 제35항 또는 제36항에 있어서, 상기 각 핀은, 상기 히트싱크의 내주면에서 중심을 향해 원주 방향으로 방사상으로 배치되는 것을 특징으로 하는 조명 장치의 방열 구조.
  38. 제35항 또는 제36항에 있어서, 상기 각 핀은, 상기 히트싱크의 내주면에서 내부 공간을 향해 한 방향으로 연장 설치되는 것을 특징으로 하는 조명 장치의 방열 구조.
  39. 광을 출사하는 발광소자;
    상기 발광소자가 링형으로 배치된 발광소자 기판;
    상기 발광소자가 배치된 상기 발광소자 기판을 덮는 글로브;
    상기 링형으로 배치된 발광소자를 포함하는 발열체의 중심부에 설치되고, 상기 링형으로 배치된 발광소자의 중심축 방향으로 연장 설치되는 중공의 히트싱크; 및
    상기 히트싱크의 내주면에서 연장 설치되는 적어도 하나의 핀;을 구비하고,
    상기 히트싱크의 중심을 지나는 상기 히트싱크의 내주면간의 거리는 불균일한 것을 특징으로 하는 조명 장치.
  40. 광을 출사하는 복수의 발광소자와 상기 발광소자가 링형으로 배치되는 발광소자 기판을 가지는 발광모듈;
    상기 발광소자 기판을 기준으로 상기 링의 중심축 방향의 일측에 상기 발광소자 기판과 접촉되어 설치되는 제1 히트싱크;
    상기 발광소자 기판을 기준으로 상기 링의 중심축 방향의 타측에 설치되어 중공 형상을 가지는 제2 히트싱크;
    상기 발광소자 기판의 상기 일측면에 유지되며, 상기 발광소자에서 출사된 광을 반사시키는 리플렉터;
    상기 발광모듈 및 상기 리플렉터를 덮도록 설치되는 글로브;
    상기 제2 히트싱크의 내부에 설치되어 상기 발광소자를 구동시키는 구동회로;를 구비하고,
    상기 제1 히트싱크 및 상기 제2 히트싱크는 각각 상기 발광모듈에서 발생한 열과 상기 구동회로에서 발생한 열 중에 적어도 어느 하나를 외부로 방출하는 것을 특징으로 하는 조명장치.
  41. 제40항에 있어서,
    상기 발광소자 기판과 상기 제2 히트싱크 모두에 접촉하도록 설치되며, 상기 발광모듈에서 발생한 열을 상기 제2 히트싱크에 전달하는 방열판을 추가로 구비하는 것을 특징으로 하는 조명장치.
  42. 제40항 또는 제41항에 있어서,
    상기 리플렉터가 상기 발광소자 기판에서 이격됨에 따라 직경이 확장되는 원뿔대형이 되도록 상기 발광소자 기판의 상기 일측면에서 돌출되어 설치되며, 상기 원뿔형상의 측주면에 상기 발광소자에서 출사된 광을 반사시키는 반사면을 가지는 것을 특징으로 하는 조명장치.
  43. 제40항 내지 제41항에 있어서,
    상기 제2 히트싱크는 거의 원통형이며,
    상기 글로브의 최대 직경이 상기 제2 히트싱크의 최대 직경보다 큰 것을 특징으로 하는 조명장치.
  44. 제43항에 있어서,
    상기 글로브의 최대 직경이 상기 제2 히트싱크의 최대 직경의 1.2배 이상인 것을 특징으로 하는 조명장치.
  45. 제40항 또는 제41항에 있어서,
    상기 글로브의 소재가 형광체를 함유하는 재료이거나 상기 글로브의 표면에 형광체가 도포되어 있으며,
    상기 발광소자가 상기 글로브에 설치된 형광체를 여기하는 광을 발광하는 LED이며,
    상기 리플렉터에서 반사된 광 및 상기 발광소자에서 출사된 광의 파장이 상기 형광체에 의해 변환되는 것을 특징으로 하는 조명장치.
  46. 제45항에 있어서,
    상기 글로브의 소재가 추가로 광확산제를 함유하는 재료이거나 상기 글로브의 표면에 추가로 광확산제가 도포되어 있는 것을 특징으로 하는 조명장치.
  47. 제40항 또는 제41항에 있어서,
    상기 글로브의 소재가 광확산제를 함유하는 재료이거나 상기 글로브의 표면에 광확산제가 도포되어 있으며,
    상기 발광소자가 백색광을 발하는 LED인 것을 특징으로 하는 조명장치.
  48. 제40항 또는 제41항에 있어서,
    상기 제2 히트싱크는 수지의 내부에 금속 부재가 삽입되고 상기 수지와 상기 금속부재가 일체로 인서트 성형됨으로써 얻어지는 것을 특징으로 하는 조명장치.
  49. 제40항 또는 제41항에 있어서,
    상기 구동회로는 교류를 직류로 변환하는 전해 커패시터를 가지지 않는 것을 특징으로 하는 조명장치.
  50. 제40항 또는 제41항에 있어서,
    상기 제1 히트싱크는 거의 원통형 또는 거의 기둥형이며,
    상기 글로브는 상기 제1 히트싱크의 일단과 접속되는 개구부를 가지는 것을 특징으로 하는 조명장치.
  51. 제50항에 있어서,
    상기 리플렉터는 중공 형상을 가지며,
    상기 제1 히트싱크가 상기 리플렉터의 중공부에 배치되며,
    상기 제1 히트싱크의 최대 직경이 상기 리플렉터의 최대 직경 이하인 것을 특징으로 하는 조명장치.
  52. 광을 출사하는 복수의 발광소자와 상기 발광소자가 링형으로 배치되는 발광소자 기판을 가지는 발광모듈;
    상기 발광소자 기판을 기준으로 상기 링의 중심축 방향의 일측에 상기 발광소자 기판과 접촉되어 설치되는 제1 히트싱크;
    상기 발광소자 기판을 기준으로 상기 링의 중심축 방향의 타측에 설치되어 중공 형상을 가지는 제2 히트싱크;
    상기 발광모듈 및 상기 리플렉터를 덮도록 설치되는 글로브;
    상기 제2 히트싱크의 내부에 설치되어 상기 발광소자를 구동시키는 구동회로;를 구비하며,
    상기 제1 히트싱크 및 상기 제2 히트싱크는 각각 상기 발광모듈에서 발생한 열과 상기 구동회로에서 발생한 열 중에 적어도 어느 하나를 외부로 방출하고,
    상기 제1 히트싱크는 상기 발광소자에서 출사된 광을 반사시키는 반사면을 가지는 것을 특징으로 하는 조명장치.
PCT/KR2012/010966 2011-12-16 2012-12-14 조명 장치의 방열 구조 및 조명장치 WO2013089521A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12858384.6A EP2792944B1 (en) 2011-12-16 2012-12-14 Heat-dissipating structure for lighting apparatus and lighting apparatus
US14/365,974 US9239159B2 (en) 2011-12-16 2012-12-14 Heat-dissipating structure for lighting apparatus and lighting apparatus
CN201280069936.9A CN104126096B (zh) 2011-12-16 2012-12-14 照明装置的散热结构以及照明装置

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
JP2011-276480 2011-12-16
JP2011-276477 2011-12-16
JP2011276475A JP2013127874A (ja) 2011-12-16 2011-12-16 照明装置
JP2011276478A JP2013127877A (ja) 2011-12-16 2011-12-16 照明装置の放熱構造および照明装置
JP2011276481A JP2013127880A (ja) 2011-12-16 2011-12-16 電球形照明装置
JP2011-276476 2011-12-16
JP2011276477A JP2013127876A (ja) 2011-12-16 2011-12-16 照明装置の放熱構造および照明装置
JP2011276480A JP2013127879A (ja) 2011-12-16 2011-12-16 照明装置
JP2011-276479 2011-12-16
JP2011-276481 2011-12-16
JP2011-276475 2011-12-16
JP2011-276478 2011-12-16
JP2011276476A JP2013127875A (ja) 2011-12-16 2011-12-16 照明装置の放熱部材
JP2011276479A JP2013127878A (ja) 2011-12-16 2011-12-16 電球形照明装置
KR20120146414A KR101405011B1 (ko) 2011-12-16 2012-12-14 조명장치
KR10-2012-0146414 2012-12-14

Publications (1)

Publication Number Publication Date
WO2013089521A1 true WO2013089521A1 (ko) 2013-06-20

Family

ID=48864771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/010966 WO2013089521A1 (ko) 2011-12-16 2012-12-14 조명 장치의 방열 구조 및 조명장치

Country Status (5)

Country Link
US (1) US9239159B2 (ko)
EP (1) EP2792944B1 (ko)
KR (2) KR101405011B1 (ko)
CN (2) CN107152617B (ko)
WO (1) WO2013089521A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103411148A (zh) * 2013-08-15 2013-11-27 江苏新广联科技股份有限公司 Led球泡灯构件
WO2016125922A1 (ko) * 2015-02-02 2016-08-11 박은숙 엘이디 조명 장치

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014027327A1 (en) 2012-08-17 2014-02-20 Koninklijke Philips N.V. Heat dissipation structure with splitted chimney structure
CN202868630U (zh) * 2012-09-29 2013-04-10 东莞巨扬电器有限公司 散热模块及具有散热模块的组合式照明装置
US9345112B2 (en) * 2013-03-09 2016-05-17 Chia-Teh Chen Microcontroller-based multifunctional electronic switch and lighting apparatus having the same
US11699994B2 (en) * 2012-10-15 2023-07-11 Vaxcel International Co., Ltd. Method of tuning light color temperature for LED lighting device and application thereof
TW201425809A (zh) * 2012-12-28 2014-07-01 Genesis Photonics Inc 發光二極體光源結構及使用此發光二極體光源結構的照明裝置
TW201445082A (zh) * 2013-05-29 2014-12-01 Genesis Photonics Inc 發光裝置
US9408282B1 (en) * 2014-07-21 2016-08-02 Astro, Inc. Multi-purpose lightbulb
US9784417B1 (en) * 2014-07-21 2017-10-10 Astro, Inc. Multi-purpose lightbulb
TWM497737U (zh) * 2014-11-10 2015-03-21 Kunshan Nano New Material Technology Co Ltd 燈杯結構及包含其之led燈具
US10480768B2 (en) 2015-03-20 2019-11-19 Sabic Global Technologies B.V. Plastic heat sink for luminaires
US10337717B2 (en) * 2015-03-31 2019-07-02 Koito Manufacturing Co., Ltd. Light source unit, method of manufacturing the same, and vehicle lamp
CN105135922A (zh) * 2015-08-28 2015-12-09 中山市绿涛电子科技有限公司 一种散热器
CN105180117A (zh) * 2015-08-28 2015-12-23 中山市绿涛电子科技有限公司 一种用于led灯的散热器
CN105276550B (zh) * 2015-11-05 2020-08-25 漳州立达信光电子科技有限公司 散热灯杯
DE102016203668A1 (de) * 2016-03-07 2017-09-07 Ledvance Gmbh Retrofitlampe
TWI582340B (zh) * 2016-05-13 2017-05-11 綠點高新科技股份有限公司 照明裝置
KR102258502B1 (ko) * 2016-11-10 2021-06-01 루미리즈 홀딩 비.브이. Led 조명 유닛
JP7015455B2 (ja) * 2017-02-17 2022-02-03 日本精機株式会社 ヘッドアップディスプレイ装置
CN108323100A (zh) * 2018-01-18 2018-07-24 广州天眼电子产品有限公司 一种led屏后吸热散热装置
CN209012824U (zh) * 2018-12-21 2019-06-21 欧普照明股份有限公司 球泡灯

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004296245A (ja) * 2003-03-26 2004-10-21 Matsushita Electric Works Ltd Ledランプ
KR20090029056A (ko) * 2007-09-17 2009-03-20 주식회사 아린 엘이디를 이용한 광원 장치
JP4292514B2 (ja) 2002-11-08 2009-07-08 大成プラス株式会社 アルミニウム合金と樹脂組成物の複合体とその製造方法
JP4541153B2 (ja) 2002-12-16 2010-09-08 コロナインターナショナル株式会社 アルミニウム材と合成樹脂成形体の複合品の製造法及びその複合品
JP2011119187A (ja) * 2009-12-07 2011-06-16 Sharp Corp 照明装置
KR200454183Y1 (ko) * 2009-04-23 2011-06-20 충-시엔 후앙 방사형핀을 구비한 히트싱크
KR20110090238A (ko) * 2010-02-03 2011-08-10 김대근 Led조명용 히트싱크

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1495523A (zh) 1996-08-27 2004-05-12 ������������ʽ���� 转移方法和有源矩阵基板的制造方法
USRE38466E1 (en) 1996-11-12 2004-03-16 Seiko Epson Corporation Manufacturing method of active matrix substrate, active matrix substrate and liquid crystal display device
US7208725B2 (en) 1998-11-25 2007-04-24 Rohm And Haas Electronic Materials Llc Optoelectronic component with encapsulant
JP3906654B2 (ja) 2000-07-18 2007-04-18 ソニー株式会社 半導体発光素子及び半導体発光装置
KR20040029301A (ko) 2001-08-22 2004-04-06 소니 가부시끼 가이샤 질화물 반도체소자 및 질화물 반도체소자의 제조방법
JP2003218034A (ja) 2002-01-17 2003-07-31 Sony Corp 選択成長方法、半導体発光素子及びその製造方法
JP3815335B2 (ja) 2002-01-18 2006-08-30 ソニー株式会社 半導体発光素子及びその製造方法
KR100499129B1 (ko) 2002-09-02 2005-07-04 삼성전기주식회사 발광 다이오드 및 그 제조방법
US7002182B2 (en) 2002-09-06 2006-02-21 Sony Corporation Semiconductor light emitting device integral type semiconductor light emitting unit image display unit and illuminating unit
KR100714639B1 (ko) 2003-10-21 2007-05-07 삼성전기주식회사 발광 소자
KR100506740B1 (ko) 2003-12-23 2005-08-08 삼성전기주식회사 질화물 반도체 발광소자 및 그 제조방법
KR100664985B1 (ko) 2004-10-26 2007-01-09 삼성전기주식회사 질화물계 반도체 소자
KR100665222B1 (ko) 2005-07-26 2007-01-09 삼성전기주식회사 확산재료를 이용한 엘이디 패키지 및 그 제조 방법
KR100661614B1 (ko) 2005-10-07 2006-12-26 삼성전기주식회사 질화물계 반도체 발광소자 및 그 제조방법
KR100723247B1 (ko) 2006-01-10 2007-05-29 삼성전기주식회사 칩코팅형 led 패키지 및 그 제조방법
KR100930171B1 (ko) 2006-12-05 2009-12-07 삼성전기주식회사 백색 발광장치 및 이를 이용한 백색 광원 모듈
KR100855065B1 (ko) 2007-04-24 2008-08-29 삼성전기주식회사 발광 다이오드 패키지
KR100982980B1 (ko) 2007-05-15 2010-09-17 삼성엘이디 주식회사 면 광원 장치 및 이를 구비하는 lcd 백라이트 유닛
KR101164026B1 (ko) 2007-07-12 2012-07-18 삼성전자주식회사 질화물계 반도체 발광소자 및 그 제조방법
KR100891761B1 (ko) 2007-10-19 2009-04-07 삼성전기주식회사 반도체 발광소자, 그의 제조방법 및 이를 이용한 반도체발광소자 패키지
KR101332794B1 (ko) 2008-08-05 2013-11-25 삼성전자주식회사 발광 장치, 이를 포함하는 발광 시스템, 상기 발광 장치 및발광 시스템의 제조 방법
JP5101578B2 (ja) * 2008-08-13 2012-12-19 太一節能系統股▲分▼有限公司 発光ダイオード照明装置
JP4755276B2 (ja) 2008-09-04 2011-08-24 パナソニック株式会社 照明用光源
KR20100030470A (ko) 2008-09-10 2010-03-18 삼성전자주식회사 다양한 색 온도의 백색광을 제공할 수 있는 발광 장치 및 발광 시스템
KR101530876B1 (ko) 2008-09-16 2015-06-23 삼성전자 주식회사 발광량이 증가된 발광 소자, 이를 포함하는 발광 장치, 상기 발광 소자 및 발광 장치의 제조 방법
KR101039073B1 (ko) * 2008-10-01 2011-06-08 주식회사 아모럭스 방열장치 및 이를 이용한 전구형 led 조명장치
US8008683B2 (en) 2008-10-22 2011-08-30 Samsung Led Co., Ltd. Semiconductor light emitting device
KR101027557B1 (ko) 2008-12-16 2011-04-06 한국광기술원 발광다이오드 조명장치
TWM363020U (en) 2009-04-23 2009-08-11 chong-xian Huang Heat sink with radial heat dissipation fins
JP5354191B2 (ja) 2009-06-30 2013-11-27 東芝ライテック株式会社 電球形ランプおよび照明器具
JP2011054340A (ja) 2009-08-31 2011-03-17 Toshiba Lighting & Technology Corp 照明装置
US9217542B2 (en) * 2009-10-20 2015-12-22 Cree, Inc. Heat sinks and lamp incorporating same
KR101097118B1 (ko) 2009-11-13 2011-12-22 주식회사 아모럭스 전구형 led 조명장치
DE102010001046A1 (de) * 2010-01-20 2011-07-21 Osram Gesellschaft mit beschränkter Haftung, 81543 Leuchtvorrichtung
KR20110101789A (ko) * 2010-03-09 2011-09-16 주식회사 솔라코 컴퍼니 에어 파이프를 갖는 조명 커버 및 이를 이용한 엘이디 조명장치
US8227964B2 (en) * 2010-06-04 2012-07-24 Lg Innotek Co., Ltd. Lighting device
CN201954312U (zh) * 2010-12-28 2011-08-31 史杰 分体式led灯
CN201909293U (zh) * 2010-12-30 2011-07-27 东莞市友美电源设备有限公司 Led灯具散热结构
US8608341B2 (en) 2011-03-07 2013-12-17 Lighting Science Group Corporation LED luminaire
JP5705612B2 (ja) 2011-03-25 2015-04-22 シャープ株式会社 照明装置
CN102200233A (zh) * 2011-06-20 2011-09-28 广州莱迪光电股份有限公司 一种led球泡灯结构
JP5704005B2 (ja) 2011-07-26 2015-04-22 東芝ライテック株式会社 電球形ledランプ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4292514B2 (ja) 2002-11-08 2009-07-08 大成プラス株式会社 アルミニウム合金と樹脂組成物の複合体とその製造方法
JP4541153B2 (ja) 2002-12-16 2010-09-08 コロナインターナショナル株式会社 アルミニウム材と合成樹脂成形体の複合品の製造法及びその複合品
JP2004296245A (ja) * 2003-03-26 2004-10-21 Matsushita Electric Works Ltd Ledランプ
KR20090029056A (ko) * 2007-09-17 2009-03-20 주식회사 아린 엘이디를 이용한 광원 장치
KR200454183Y1 (ko) * 2009-04-23 2011-06-20 충-시엔 후앙 방사형핀을 구비한 히트싱크
JP2011119187A (ja) * 2009-12-07 2011-06-16 Sharp Corp 照明装置
KR20110090238A (ko) * 2010-02-03 2011-08-10 김대근 Led조명용 히트싱크

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2792944A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103411148A (zh) * 2013-08-15 2013-11-27 江苏新广联科技股份有限公司 Led球泡灯构件
WO2016125922A1 (ko) * 2015-02-02 2016-08-11 박은숙 엘이디 조명 장치

Also Published As

Publication number Publication date
EP2792944A1 (en) 2014-10-22
KR20130069673A (ko) 2013-06-26
KR20130069505A (ko) 2013-06-26
EP2792944B1 (en) 2017-09-13
CN104126096B (zh) 2017-06-20
CN104126096A (zh) 2014-10-29
US9239159B2 (en) 2016-01-19
CN107152617A (zh) 2017-09-12
CN107152617B (zh) 2019-12-03
KR101926363B1 (ko) 2018-12-07
KR101405011B1 (ko) 2014-06-10
US20140355241A1 (en) 2014-12-04
EP2792944A4 (en) 2016-04-27

Similar Documents

Publication Publication Date Title
WO2013089521A1 (ko) 조명 장치의 방열 구조 및 조명장치
WO2017222279A1 (ko) 반도체 소자
WO2019103566A1 (en) Led unit for display and display apparatus having the same
WO2019004518A1 (ko) 발광소자 패키지 및 광원 장치
WO2019124952A1 (en) Led unit for display and display apparatus having the same
WO2016129873A2 (ko) 발광소자 및 발광 다이오드
WO2017078402A1 (ko) 광학 플레이트, 조명 소자 및 광원 모듈
WO2019054547A1 (ko) 발광소자 패키지 및 이를 포함하는 조명장치
WO2017191923A1 (ko) 발광 다이오드
WO2017160119A1 (ko) 반도체 소자 및 이를 포함하는 표시장치
WO2010047553A2 (ko) 반도체 발광 소자
WO2012070895A2 (ko) 엘이디 조명기구
WO2018164371A1 (ko) 반도체 소자 및 반도체 소자 패키지
WO2013183950A1 (ko) 발광 소자 패키지
WO2019045167A1 (ko) 발광소자 패키지 및 이를 구비한 광원 장치
WO2019045166A1 (ko) 발광소자 패키지
WO2019074149A1 (ko) 발광소자 패키지 및 광원 장치
WO2020159068A1 (ko) 발광 다이오드
WO2015053600A1 (ko) 반도체 발광소자
WO2019045513A1 (ko) 발광소자 패키지 및 이를 포함하는 조명장치
WO2018139770A1 (ko) 반도체 소자 및 반도체 소자 패키지
WO2018048275A1 (ko) 반도체 소자
WO2019054793A1 (ko) 발광소자 패키지
WO2016144103A1 (ko) 발광 모듈 및 이를 구비한 조명 장치
WO2016126066A1 (ko) 발광 모듈 및 이를 구비한 조명 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12858384

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14365974

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012858384

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012858384

Country of ref document: EP