WO2013085052A1 - 希土類元素の回収方法 - Google Patents

希土類元素の回収方法 Download PDF

Info

Publication number
WO2013085052A1
WO2013085052A1 PCT/JP2012/081856 JP2012081856W WO2013085052A1 WO 2013085052 A1 WO2013085052 A1 WO 2013085052A1 JP 2012081856 W JP2012081856 W JP 2012081856W WO 2013085052 A1 WO2013085052 A1 WO 2013085052A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
leaching
earth elements
earth element
recovering
Prior art date
Application number
PCT/JP2012/081856
Other languages
English (en)
French (fr)
Inventor
杉田 薫
太田 裕二
喜弘 田口
聡 竹田
Original Assignee
日本軽金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本軽金属株式会社 filed Critical 日本軽金属株式会社
Priority to US14/363,676 priority Critical patent/US9068249B2/en
Priority to JP2013546492A priority patent/JP5545418B2/ja
Priority to CA2857263A priority patent/CA2857263C/en
Publication of WO2013085052A1 publication Critical patent/WO2013085052A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B59/00Obtaining rare earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/80Destroying solid waste or transforming solid waste into something useful or harmless involving an extraction step
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/065Nitric acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/10Hydrochloric acid, other halogenated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/38Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds containing phosphorus
    • C22B3/384Pentavalent phosphorus oxyacids, esters thereof
    • C22B3/3844Phosphonic acid, e.g. H2P(O)(OH)2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention leaches rare earth elements, particularly rare earth elements containing Nd and Dy, which are highly useful as materials for Nd—Fe—B based permanent magnets, from rare earth elements containing rare earth elements, and separates and recovers the rare earth elements. More particularly, the present invention relates to a rare earth element recovery method in which rare earth elements are efficiently leached together with Ca from a leaching raw material containing Ca and Ti, and separated and recovered.
  • Rare earth elements have been widely used for applications such as phosphors, magnetic materials, abrasives, and catalysts.
  • a magnet with a large maximum energy product and residual magnetic flux density can be obtained. It's getting on.
  • Patent Document 1 discloses a material for a permanent magnet having an excellent maximum energy product and residual magnetic flux density of an Nd—Fe—B system.
  • Patent Document 2 discloses a technique for improving the thermal stability of magnetic properties, which is a disadvantage of the magnet, by replacing part of Nd of the Nd-Fe-B permanent magnet with Dy. ing.
  • Such rare earth materials are ores such as monazite, bastonite, xenotime, and ion-adsorbed clay minerals. From these ores, rare earth elements such as mineral acids such as sulfuric acid are used. Although the elements are leached and separated from the obtained leachate, these ore resources are unevenly distributed on the earth, and the abundance ratio of each element in the rare earth elements varies greatly for each ore. In particular, heavy rare earth elements having atomic numbers of 64 to 71 are few in mines that can extract ores that are industrially highly profitable, and Dy, whose demand is particularly high, is concerned about the depletion of resources.
  • bauxite which is abundant in resources, is also included in bauxite, which is an ore resource of aluminum, and it is known that rare earth elements are eluted from this bauxite, separated and recovered (for example, , Refer to paragraph 0003 of Patent Document 3), and further, the remainder of the solid residue obtained by collecting aluminum produced as a by-product in the buyer process when the aluminum is produced from this bauxite through the process of the buyer method and the hall elue process (hereinafter referred to as the following) It is also known as “bauxite residue.” When Fe 2 O 3 is the main component, it is red and generally called “red mud.” (Patent Document 4).
  • rare earth elements are stable as compounds such as oxides and hydroxides in an aqueous alkaline solution and do not react with sodium hydroxide solution even when heated and pressurized, in the bauxite residue.
  • the rare earth element should be concentrated by the amount of the aluminum component eluted by the sodium hydroxide solution in the buyer process described above, and according to the study by the present inventors, compared with the content of the rare earth element in the bauxite.
  • the bauxite residue is an industrial waste when producing aluminum from bauxite, and it is stably produced as a by-product when producing aluminum. Since it is easily available, it is expected to be used as a raw material for rare earth elements.
  • Patent Document 4 when the above Patent Document 4 is examined in detail, as shown in Examples 1 and 2, 52.0% Fe 2 O 3 and 6.5% TiO 2 in a dry state. , 18.0% loss on ignition, 12.9% Al 2 O 3 , 2.4% SiO 2 , 1.6% Na 2 O, 5.0% CaO, 0.6% P 2 Using a bauxite residue containing O 5 as a raw material, a leaching operation (leaching or digestion) at 10 to 70 ° C.
  • Example 1 of Patent Document 4 shows the results of additional testing of Example 1 of Patent Document 4 in which the same leaching operation is repeated three times under the conditions of a temperature of 30 ° C., a pressure of 0.1 MPa, and a time of 15 minutes. Then, the leaching rate of Y remained at 5% by mass or less, and the total leaching rate of Y by the second and third leaching operations was 52% by mass. However, the leaching rates of Nd and Dy were 41% by mass, respectively. It was only 43% by mass, which was still lower than the leaching rate of Y.
  • the present inventors have examined the cause of the low leaching rate of rare earth elements, particularly Nd and Dy, in the leaching operation of rare earth elements contained in the bauxite residue, and have reached the following conclusion.
  • the bauxite when producing aluminum using bauxite as a raw material, in the buyer process, the bauxite is mixed with an aqueous sodium hydroxide solution, heated and pressurized, and the aluminum component is eluted as aluminate ions, and the obtained aluminum component The eluate containing is cooled, the aluminate ions are precipitated as aluminum hydroxide, and calcined and collected as aluminum oxide.
  • CaO is often added to recover the sodium compound produced by the reaction of the components in the bauxite and the aqueous sodium hydroxide solution as sodium hydroxide and to remove impurities such as Si and P in the buyer process.
  • the bauxite residue usually contains 4 to 15% by mass of CaO.
  • the present inventors also obtained rare earth elements such as Nd and Dy incorporated into the crystal from a leaching raw material containing a compound such as calcium titanate that forms such a perovskite (ABX3) type crystal.
  • a compound such as calcium titanate that forms such a perovskite (ABX3) type crystal.
  • the perovskite (ABX3) type crystal can be easily dissolved by digestion or maceration, and the rare earth elements not incorporated in the crystal can be dissolved in the crystal. It has been found that the incorporated rare earth elements can be easily leached, and the present invention has been completed.
  • an object of the present invention is to provide a rare earth element recovery method in which rare earth elements, particularly rare earth elements including Nd and Dy are efficiently leached from a leaching raw material containing rare earth elements, and separated and recovered.
  • an aqueous acid solution is further added and mixed to adjust pH, and the resulting slurry is subjected to a predetermined condition.
  • a leaching process in which the leaching process of transferring the rare earth element in the leaching raw material into the acid aqueous solution is carried out, and then the slurry after the leaching process is solid-liquid separated to obtain a leachate containing the rare earth element, and in this leaching process And a separation step of separating and recovering the rare earth element from the obtained leachate, wherein the leaching raw material is dried at 110 ° C.
  • S Contains Ca as CaO in a proportion of 4 to 15% by mass and Ti as TiO 2 in a proportion of 2 to 13% by mass, wherein the acid aqueous solution is an acid aqueous solution of hydrochloric acid and / or nitric acid, the preparation PH is 0 ⁇ 7 and the leaching process performed in the leaching step is digestion or maceration performed under heating and pressurizing conditions of a temperature of 160 to 300 ° C. and a pressure of 0.65 to 10 MPa.
  • a rare earth element recovery method characterized by leaching a rare earth element in a leaching raw material together with Ca.
  • digestion is preferably performed until the elution rate of Ca contained in the leaching raw material reaches 90% by mass or more, whereby Nd and Dy having high utility value including Y are obtained. It is possible to recover a rare earth element containing at a high leaching rate exceeding 70% by mass.
  • the term “rare earth element” is used as a collective term for Y of atomic number 39 and La to Lu of atomic numbers 57 to 71. According to the method of the present invention, Sc of atomic number 21 and Ac to Lr of atomic numbers 89 to 103 are also leached, but the present invention denies that these elements are leached and separated and recovered. is not.
  • the leaching raw material containing rare earth elements contains rare earth elements such as Y, Nd, and Dy
  • Ca is CaO in a proportion of 4 to 15% by mass
  • Ti is 2 in terms of TiO 2.
  • it is preferably a bauxite residue by-produced in a buyer process of leaching aluminum from bauxite using an aqueous sodium hydroxide solution.
  • it is a bauxite residue containing a rare earth element in an amount of 500 to 10,000 ppm as an oxide in the solid component (S) obtained by drying at 110 ° C. for 2 hours.
  • Such bauxite residues are by-produced in a buyer process for collecting aluminum from bauxite, particularly in a buyer process in which sodium components are recovered as sodium hydroxide and CaO is added to remove impurities such as Si and P. So it can be easily obtained in large quantities.
  • Ca and Ti in the bauxite residue are considered to form crystals of the perovskite (ABX3) type structure.
  • the cation at the A site and the anion at the X site Have a similar size, and a cation having a size smaller than the cation at the A site is located at the B site in the cubic lattice composed of the A site and the X site.
  • a and B can dissolve various elements as long as the valence and tolerance factor match.
  • the tolerance factor t is expressed by the following equation.
  • the present invention is a bauxite residue or the like, which is an industrial waste when producing aluminum from bauxite, and Ca is CaO at a rate of 4 to 15% by mass, and Ti is TiO 2 and 2 to 13% by mass. %, It is possible to efficiently and easily leach out rare earth elements, including Nd and Dy, which have high utility value, from the leaching raw materials contained at a ratio of%, and separate and recover them. Besides being able to be used effectively, concerns such as uneven distribution of raw ore of rare earth elements, fluctuation of the abundance ratio of each element in the rare earth elements for each ore, and depletion of resources can be solved.
  • FIG. 1 is a flowchart showing impurity element removal and rare earth element concentration of a leachate by a two-stage solvent extraction method according to Example 53 of the present invention.
  • the leaching raw material containing a rare earth element is a bauxite residue.
  • an aqueous acid solution is added to the bauxite residue and mixed to prepare a slurry.
  • the acid aqueous solution used here is preferably an acid aqueous solution containing hydrochloric acid and / or nitric acid which does not form an insoluble compound with Ca in the bauxite residue even when heated to 160 ° C. or higher.
  • the slurry to be prepared has a solid / liquid ratio (L / S) of the solid component (S) and the liquid component (L) of preferably 2 or more and 10 or less, more preferably 2 or more and 10 or less,
  • the pH value is preferably 0 or more and 2.7 or less, more preferably 0 or more and 2.5 or less.
  • an oxidizing agent is added in an amount of 0.1 to 1 equivalent, preferably 0.15 to 0.4 equivalent, with respect to the Fe component in the bauxite residue. It is good.
  • Preferred examples of the oxidizing agent added for this purpose include hydrogen peroxide water and aqueous perchloric acid, and more preferably 30% by mass-hydrogen peroxide water and 70% by mass-perchloric acid. It is an aqueous solution. If the amount added is less than 0.1 equivalent, there is a problem that Fe 2+ ions remain in the leachate until the pH is high, and conversely, if it exceeds 1 equivalent, the effect does not change and is wasted. Arise.
  • the slurry thus obtained is held under a predetermined condition to carry out a rare earth element leaching treatment.
  • the leaching treatment is performed at a temperature of 160 ° C. to 300 ° C., preferably 180 ° C.
  • the digestion is performed at a temperature of 250 ° C. or less and a pressure of 0.65 MPa or more and 10 MPa or less, preferably 1 MPa or more and 5 MPa or less, and a holding time of 30 minutes or more and 160 minutes or less, preferably 40 minutes or more and 120 minutes or less.
  • the digestion is performed under such a heating and pressurizing condition because Ca and Ti existing in a predetermined ratio in the bauxite residue exist as a compound that forms a crystal having a perovskite structure.
  • rare earth elements having a high utility value such as Nd and Dy are incorporated in such a perovskite type structure crystal, so that the rare earth element is leached by dissolving the perovskite type crystal.
  • the temperature during the digestion operation is less than 160 ° C.
  • the temperature exceeds 250 ° C. the leaching rate of the rare earth element reaches almost saturation, and further heating above 300 ° C. requires the necessary amount of heat. Increase, deterioration of the pressure vessel, and cost increase.
  • the holding time during the digestion operation if it is less than 30 minutes, even if the temperature and pressure are set to necessary and appropriate conditions, stable operation becomes difficult due to the short time, Since the leaching rate cannot be stabilized, it becomes difficult to leach 70% by mass or more of the rare earth element contained in the bauxite residue. On the contrary, the leaching rate of the rare earth element is almost saturated after 160 minutes. .
  • rare earth elements contained in the bauxite residue are leached together with Ca. It is preferable to perform digestion using the leaching rate of Ca contained in a larger amount than rare earth elements as an index, and it is desirable to perform digestion until the leaching rate of Ca exceeds 90% by mass. By performing digestion until the leaching rate of Ca exceeds 90% by mass, the rare earth elements in the bauxite residue can be reliably leached to exceed 70% by mass.
  • the slurry after the leaching treatment is then solid-liquid separated by means such as filtration, centrifugation, and decantation, and a leachate containing rare earth elements together with Ca is recovered.
  • the solid residue generated by the solid-liquid separation is preferably washed with washing water, and the leachate adhering to the solid residue is transferred to the washing water and recovered, and the slurry after the leaching treatment is solid-liquid separated first. Together with the leachate obtained in this way, the leachate is treated in the next separation step. If the amount of the washing water used for washing the solid residue is too small, the leachate adhering to the solid residue cannot be sufficiently recovered. On the other hand, if the amount is too large, the load in the next separation step increases.
  • the solid-liquid ratio (L / S) between the solid residue (S) and the washing water (L) is usually in the range of 2 to 10.
  • the leaching raw material has been described by taking as an example the case of a bauxite residue that is a solid residue after aluminum hydroxide is eluted from bauxite by the Bayer method, but the leaching raw material used in this leaching process As long as it contains rare earth elements and contains 4 to 15% by mass of Ca and 2 to 13% by mass of Ti, it does not have to be a bauxite residue.
  • the leachate obtained in the above leaching step is then transferred to a separation step where the rare earth elements are separated and recovered.
  • oxalate precipitation, hydroxide precipitation, and solvent extraction are used as separation methods.
  • the leachate in which the amount of Fe and Ti eluted is small, the leachate can be directly treated by the oxalate precipitation method or the solvent extraction method, but when the amount of Al or Fe eluted is large, the solvent extraction method or Since the amount of the chemical used in the oxalate precipitation method increases, it is preferable for reducing the cost to reduce the amount of the leachate by pretreatment.
  • the pH value of the leachate obtained in the leaching step is usually in the range of 1 to 3
  • a pH adjuster is added to the leachate to adjust the pH value to 4 to 6.
  • the Fe and Al hydroxides precipitated by this pH adjustment are removed by solid-liquid separation.
  • the pH adjuster used for this purpose is not particularly limited, but sodium hydroxide, potassium hydroxide, calcium hydroxide, ammonia and the like are preferably used.
  • an oxidizing agent as necessary to oxidize the Fe 2+ ions in the leachate to Fe 3+ ions, so that insoluble Fe (OH) 3 becomes stable, Fe can be easily separated and removed.
  • the oxidizing agent for example, hydrogen peroxide, perchloric acid, permanganic acid, hypochlorous acid and the like can be suitably used.
  • hydrogen peroxide is used as the oxidizing agent, the concentration of the oxidizing agent only affects the solid-liquid ratio, so an appropriate concentration can be selected from the handling and cost.
  • the leaching raw material is bauxite residue, 30% by mass-hydrogen peroxide solution and 70% by mass-perchloric acid aqueous solution are both used in the bauxite residue.
  • the amount is preferably 0.1 to 0.5 equivalent with respect to the Fe component.
  • the leachate obtained in the above leaching step or the pH of the leachate is adjusted to precipitate Fe and Al as hydroxides.
  • a pH adjuster is further added to the liquid obtained by liquid separation to adjust the pH value to 7 or more, and Ca and rare earth elements are precipitated as hydroxides thereof, and these Ca and rare earth element hydroxides. Is solid-liquid separated and recovered as a crude product.
  • the pH adjuster is preferably sodium hydroxide, potassium hydroxide, calcium hydroxide, ammonia or the like, and Ca and rare earth elements are precipitated as hydroxides.
  • This is solid-liquid separated and recovered as a rare earth element hydroxide, or for the purpose of lowering the concentration of Al, which is an impurity, to the rare earth element hydroxide deposited, at least five times the equivalent of Al. It is also preferable to add a sodium hydroxide solution to dissolve and remove the Al content as aluminate ions.
  • the leachate obtained in the above leaching step or the liquid obtained by adjusting the pH of the leachate and precipitating Fe and Al as hydroxides and solid-liquid separation, the solution An insoluble rare earth oxalate is formed by adding 1.3 to 6 equivalents of oxalic acid in the molar amount of all the rare earth elements present therein, and a solid rare earth oxalate compound is obtained as a rare earth oxalate compound by solid-liquid separation. Collect the recovered material.
  • a known method may be used as a solvent extraction method, but as an extractant, phosphate ester (DEHPA, EHPA), phosphonate ester (PC88A), phosphinate ester (Cyanex 272, Cyanex 30) with non-polar organic solvents such as hexane, aliphatic hydrocarbons such as benzene, toluene, alcohols such as octanol, and petroleum fractions such as kerosene.
  • non-polar organic solvents such as hexane, aliphatic hydrocarbons such as benzene, toluene, alcohols such as octanol, and petroleum fractions such as kerosene.
  • the diluted one can be suitably used. It is also preferable to carry out the recovery of the roughly recovered product by the solvent extraction method in two or more stages. According to the recovery of the roughly recovered product by the solvent extraction method over two or more stages, it becomes possible to separate the rare earth element into each element.
  • the leaching raw material is a solid residue (bauxite residue) after elution of aluminum hydroxide from bauxite by the Bayer method, and a crude rare earth element compound (crude recovered product) by solvent extraction from the leaching solution obtained in the above leaching step
  • the leaching solution is once adjusted to pH 2.5 to 3.5, the deposited precipitate is removed, and the solvent is extracted as it is or after being adjusted again to pH 1.2 to 2.5. It is preferable.
  • an emulsion or suspension hereinafter referred to as “emulsion” formed between the organic phase and the aqueous phase during solvent extraction or the like. Occurrence can be prevented. If the emulsion occurs, it can be removed by filtration. If the pH of the aqueous phase at the time of solvent extraction is less than 1.2, the recovery rate of rare earth elements decreases, which is not preferable.
  • Such pH adjustment is preferably performed by adding bauxite residue. If the pH is adjusted by adding bauxite residue, the amount of alkaline chemicals used can be suppressed, and the bauxite residue is a by-product in the buyer process when producing aluminum from bauxite. Cost can be reduced. In addition, when the pH is adjusted by the addition of bauxite residue, the rare earth elements contained in the added bauxite residue are eluted in the leachate. Therefore, the acid aqueous solution used for the leaching treatment should be used effectively.
  • the rare earth elements leached from the added bauxite residue can be recovered, and at this time, Ca and Ti are precipitated together with Fe, and the concentration of these elements in the leaching solution is lowered. Efficient rare earth element recovery can be performed.
  • the extraction rate of the rare earth element can be kept low, and as a result, the concentration of the rare earth element to be separated and recovered can be increased.
  • the extraction time is preferably 5 minutes or less, and more preferably 0.5 to 3 minutes.
  • the extraction rate of Al can be kept low, and as a result, the concentration of the rare earth element to be separated and recovered can be increased.
  • the extraction time exceeds 5 minutes, the extraction rate of Al increases, and as a result, the concentration of the rare earth element to be separated and recovered decreases.
  • Sc is separated into the pre-extracted organic phase, but Sc can be recovered as a solid hydroxide from the pre-extracted organic phase by back-extracting an alkaline aqueous solution of pH 7.5 or higher as a back extractant.
  • an alkaline aqueous solution of pH 7.5 or higher as a back extractant since Fe and Ti have already been removed, there is no need to adjust pH when extracting rare earth elements using DEHPA as an extractant.
  • emulsion may occur between the organic phase and the aqueous phase during solvent extraction. When the emulsion occurs, the precipitate can be removed by filtration.
  • the back extraction it is preferable to use a 2N to 8N hydrochloric acid aqueous solution or a 30 to 70% by mass sulfuric acid aqueous solution as a back extractant.
  • the back extraction time is preferably 5 minutes or less, and more preferably 0.5 to 3 minutes.
  • the back extraction time is 0.5 to 3 minutes, the extraction rate of Al can be kept low, and as a result, the concentration of the rare earth element to be separated and recovered can be increased.
  • the back extraction time exceeds 5 minutes, the extraction rate of Al increases, and as a result, the concentration of the rare earth element to be separated and recovered decreases.
  • the rare earth element when an aqueous sulfuric acid solution having a concentration of 30 to 70% by mass is used as the back extractant, the rare earth element is precipitated as a solid sulfate, so that the volume can be made very small.
  • the back extraction time is preferably 5 minutes or less, and more preferably 0.5 to 3 minutes.
  • the extraction rate of Al can be kept low, and as a result, the concentration of the rare earth element to be separated and recovered can be increased.
  • the back extraction time exceeds 5 minutes the extraction rate of Al increases, and as a result, the concentration of the rare earth element to be separated and recovered decreases.
  • the rare earth element precipitated as solid sulfate can be recovered by solid-liquid separation.
  • Al in the organic phase is recovered as aluminum sulfate by performing back extraction for 120 minutes or more using an aqueous sulfuric acid solution having a concentration of 30 to 70% by mass as a back extractant.
  • an aqueous sulfuric acid solution having a concentration of 30 to 70% by mass as a back extractant.
  • Sc, Ti, Th accumulated in the used extractant is reduced by back extraction using a 2N-8N hydrochloric acid aqueous solution or an alkaline aqueous solution as a back extractant to regenerate. It can be reused as an extractant.
  • esters selected from a mixture with tributyl phosphate and / or trioctylphosphine oxide are aliphatic hydrocarbons such as hexane, aromatic hydrocarbons such as benzene and toluene, and petroleum fractions. It is desirable to carry out by a solvent extraction method using an extractant obtained by diluting with a solvent selected from kerosene.
  • the separation by such a solvent extraction method is preferably by a countercurrent multistage solvent extraction method.
  • the pH value of the leachate is adjusted to 4 to 6, and the Fe and Al hydroxides precipitated by this pH adjustment are solidified.
  • a pH adjuster is further added to adjust the pH value to 7 or more, and the precipitated Ca and rare earth element hydroxide are subjected to solid-liquid separation to recover a roughly recovered product.
  • Fe and Al are precipitated as hydroxides directly or by adjusting the pH as in the hydroxide precipitation method, and after solid-liquid separation, oxalic acid is added to make rare earth elements as oxalates.
  • Precipitated and recovered as a rare earth element oxalate compound then treated with caustic soda to obtain a crude recovery product as a rare earth element hydroxide, or calcined rare earth element oxalate compound as a rare earth element oxide Collect the crude recovery. Since this crude recovery product is dissolved in hydrochloric acid or nitric acid and then solvent extraction is performed using the extractant, there is an advantage that the amount of expensive extractant used in this solvent extraction can be reduced as much as possible. is there.
  • Examples 1 to 8 and Comparative Examples 1 to 5 In the solid component (S) obtained by drying at 110 ° C. for 2 hours as the leaching raw material, Fe was 29.8% by mass, Al was 7.9% by mass, and Ca was 5.8% by mass. , 2.1 mass% of Na, 3.5 mass% of Ti, 2.5 mass% of Si, 0.24 of rare earth elements as the sum of Y of atomic number 39 and La to Lu of atomic numbers 57 to 71 Bauxite residues contained in a mass% proportion were used.
  • the leachate obtained in the leaching steps of Examples 1 to 8 and Comparative Examples 1 to 5 in this way was analyzed by ICP-AES (inductively coupled plasma emission spectroscopy), respectively.
  • Y, Nd, Dy, and Ca in the leachate were analyzed.
  • the element contents of Al, Si, Ti, and Fe were measured, and the leaching rate for each element was determined.
  • the leachate obtained in the leaching steps of Examples 1 to 8 in each case contained 70% by mass or more of the rare earth element contained in the bauxite residue as the leaching raw material.
  • the sulfuric acid aqueous solution is used as the acid aqueous solution
  • the solid-liquid ratio (L / S) is 8.6
  • the leaching temperature is In the case of Comparative Example 2 at 50 ° C., in the case of Comparative Example 3 using an aqueous phosphoric acid solution as the aqueous acid solution, in the case of Comparative Example 4 having an initial pH value of 3.0, and using an aqueous hypochlorous acid solution as the aqueous acid solution.
  • Comparative Example 5 in which the leaching temperature was 100 ° C., 70% by mass or more of the rare earth element contained in the bauxite residue could not be leached.
  • Example 9 to 13 and Comparative Examples 6 to 8 Except that the oxidizing agent shown in Table 3 was added to the aqueous acid solution used in the leaching process in the equivalent amount shown in Table 3 with respect to the amount of Fe in the bauxite residue, the same as in Examples 1 to 8 above. Then, leaching of rare earth elements was performed, and the element contents of Y, Nd, Dy, Ca, Al, Si, Ti, and Fe in the obtained leachate were measured, and the leaching rate for each element was determined. These leaching conditions and results are summarized in Table 3.
  • Example 14 Using the leachate having the composition shown in Table 4 obtained in Example 4, removal of impurity elements and concentration of rare earth elements were performed by a solvent extraction method.
  • this solvent extraction method first, the pH of the leachate is once set to 3.0, the deposited precipitate is removed, adjusted to 1.5, and then DEHPA is diluted with kerosene to a concentration of 0.8M. The exudate and the extractant are stirred and brought into contact with each other at a liquid ratio of 1: 1 for 3 minutes and separated into an extracted organic phase and an aqueous phase after extraction (water phase after extraction). did.
  • the extracted organic phase 6N-hydrochloric acid aqueous solution was used as the back extractant, and the extracted organic phase and the back extractant were contacted with stirring at a liquid ratio of 1: 1 for 3 minutes, followed by liquid-liquid separation and back extraction.
  • the organic phase after completion (the organic phase after back extraction) and the back extracted water phase were separated, and the rare earth elements in the extracted organic phase were transferred to the back extracted water phase, separated and recovered.
  • the organic phase after back extraction is made by using 0.02N-hydrochloric acid aqueous solution as a back extractant, contacting the organic phase after back extraction with the back extractant at a liquid ratio of 1: 1 for 3 minutes, and then separating the liquid and liquid.
  • DEHPA can be reused cyclically as an extractant diluted with kerosene to a concentration of 0.8M. Table 5 shows the recovery rates of rare earth elements and impurities recovered by this solvent extraction method.
  • Example 15 to 18 In the same method as in Example 14, the contact time between the leachate and the extractant was 0.5 minutes, 1 minute, 5 minutes, and 10 minutes, and the other conditions were the same as in Example 14, and the rare earth element was back-extracted water. The phase was separated and recovered. Table 5 shows the recovery rates of rare earth elements and impurities recovered by this solvent extraction method.
  • Example 19 to 23 In the same method as in Example 14, the contact time between the extracted organic phase and the back extractant was 0.5 minutes, 1 minute, 5 minutes, 10 minutes, and 15 minutes, and the other conditions were the same as in Example 14. Rare earth elements were transferred to the back-extracted aqueous phase and separated and recovered. Table 5 shows the recovery rates of rare earth elements and impurities recovered by this solvent extraction method.
  • Example 24 Using the leachate having the composition shown in Table 4 obtained in Example 4, removal of impurity elements and concentration of rare earth elements were performed by a solvent extraction method.
  • this solvent extraction method first, the pH of the leachate is once adjusted to 1.75, and then an extractant in which DEHPA is diluted to 0.8 M with kerosene is used, and the leachate and the extractant are mixed at a liquid ratio of 1: 1 for 3 minutes. After stirring and contacting, liquid-liquid separation was performed to separate the extracted organic phase and the aqueous phase after extraction. During the solvent extraction, an emulsion was formed between the organic phase and the aqueous phase. The emulsion was separated to the organic phase side during liquid-liquid separation, and then the organic phase was removed by filtration through a filter.
  • the extracted organic phase 6N-hydrochloric acid aqueous solution was used as a back extractant, and the extracted organic phase and the back extractant were stirred and contacted at a liquid ratio of 1: 1 for 3 minutes, followed by liquid-liquid separation and back extraction.
  • the organic phase and the back-extracted aqueous phase were separated, and the rare earth element was transferred from the extracted organic phase to the back-extracted aqueous phase to be separated and recovered.
  • the organic phase after back extraction is made by using 0.02N-hydrochloric acid aqueous solution as a back extractant, contacting the organic phase after back extraction with the back extractant at a liquid ratio of 1: 1 for 3 minutes, and then separating the liquid and liquid.
  • DEHPA can be reused cyclically as an extractant diluted with kerosene to a concentration of 0.8M. Table 5 shows the recovery rates of rare earth elements and impurities recovered by this solvent extraction method.
  • Example 25 The other implementation methods and conditions were the same as in Example 14 except that the pH was adjusted by adding the same bauxite residue as used in Example 4 instead of the addition of the aqueous sodium hydroxide solution, and the rare earth element was back-extracted water. The phase was separated and recovered. At this time, the amount of the added bauxite residue was 0.115 kg with respect to 0.1 kg of the bauxite residue which was the leaching raw material.
  • Table 5 shows the recovery rates of rare earth elements and impurities recovered by this solvent extraction method. However, in the calculation of the recovery rate, the recovery rate for 2.15 times the amount of the bauxite residue which was the leaching raw material is shown in consideration of the rare earth element contained in the bauxite residue used for pH adjustment.
  • the recovery rate of rare earth elements is higher when the extraction time is shorter, and the recovery rate of rare earth elements is longer when the back extraction time is longer.
  • the recovery rate is high, even with Y having the lowest recovery rate, a recovery rate exceeding 75% by mass can be obtained in 1 minute of back extraction time, and impurities such as Al increase as both the extraction time and back extraction time increase. It turns out that the recovery rate of becomes high.
  • Example 24 when emulsion was generated between the organic phase and the aqueous phase during solvent extraction, the recovery rate of rare earth elements was compared with Example 14 in which the extraction time and the back extraction time were the same. Can be seen to be slightly lower.
  • the recovery rate is recovery from the bauxite residue which was the leaching raw material. Since the recovery rate is lower than that of Example 14 because it is not as high as the rate, it can be seen that Ca and Ti are precipitated together with Fe, and the concentrations of these elements are greatly reduced. Furthermore, the bauxite residue is a by-product in the buyer process when producing aluminum from bauxite, resulting in cost reduction.
  • Example 26 Using the leachate having the composition shown in Table 4 obtained in Example 4, removal of impurity elements and concentration of rare earth elements were performed by a solvent extraction method.
  • this solvent extraction method first, the pH of the leachate is once adjusted to 3.0, the deposited precipitate is removed, adjusted to 1.0, and then an extractant obtained by diluting DEHPA to 0.8 M with kerosene is added.
  • the leachate and the extractant were used and agitated at a liquid ratio of 1: 1 for 3 minutes and then contacted, followed by liquid-liquid separation to separate the extracted organic phase and the extracted aqueous phase.
  • the extracted organic phase 6N-hydrochloric acid aqueous solution was used as a back extractant, and the extracted organic phase and the back extractant were stirred and contacted at a liquid ratio of 1: 1 for 3 minutes, followed by liquid-liquid separation and back extraction.
  • the organic phase and the back-extracted aqueous phase were separated, and the rare earth element was transferred from the extracted organic phase to the back-extracted aqueous phase to be separated and recovered.
  • the organic phase after back extraction is made by using 0.02N-hydrochloric acid aqueous solution as a back extractant, contacting the organic phase after back extraction with the back extractant at a liquid ratio of 1: 1 for 3 minutes, and then separating the liquid and liquid.
  • DEHPA can be reused cyclically as an extractant diluted with kerosene to a concentration of 0.8M. Table 6 shows the recovery rates of rare earth elements and impurities recovered by this solvent extraction method.
  • Examples 27 and 28 In the same method as in Example 26, an extractant obtained by diluting DEHPA to 1.2M with kerosene and an extractant obtained by diluting DEHPA to 1.5M with kerosene were used, and other conditions were the same as in Example 26.
  • the rare earth elements were transferred to the back-extracted water phase and separated and recovered. Table 6 shows the recovery rates of rare earth elements and impurities recovered by this solvent extraction method.
  • Example 29 and 30 In the same method as in Example 26, the pH of the leachate was once set to 3.0, the deposited precipitate was removed, and then the pH was again adjusted to 1.5 or 2.0. Other conditions were the same as in Example 26. As described above, the rare earth element was transferred to the back-extracted aqueous phase and separated and recovered. Table 6 shows the recovery rates of rare earth elements and impurities recovered by this solvent extraction method.
  • Example 31 Using the leachate having the composition shown in Table 4 obtained in Example 4, removal of impurity elements and concentration of rare earth elements were performed by a solvent extraction method.
  • this solvent extraction method first, the pH of the leachate was once set to 3.0, the deposited precipitate was removed, the pH was adjusted to 2.0 again, and PC88A was diluted to 0.8 M with kerosene.
  • the extractant Using the extractant, the leachate and the extractant were stirred and brought into contact with each other at a liquid ratio of 1: 1 for 3 minutes, followed by liquid-liquid separation to separate the extracted organic phase and the extracted aqueous phase.
  • the extracted organic phase 6N-hydrochloric acid aqueous solution was used as a back extractant, and the extracted organic phase and the back extractant were stirred and contacted at a liquid ratio of 1: 1 for 3 minutes, followed by liquid-liquid separation and back extraction.
  • the organic phase and the back-extracted aqueous phase were separated, and the rare earth element was transferred from the extracted organic phase to the back-extracted aqueous phase to be separated and recovered.
  • the organic phase after back extraction is made by using 0.02N-hydrochloric acid aqueous solution as a back extractant, contacting the organic phase after back extraction with the back extractant at a liquid ratio of 1: 1 for 3 minutes, and then separating the liquid and liquid. If purified, it can be reused cyclically as an extractant in which PC88A is diluted to a concentration of 0.8M with kerosene. Table 6 shows the recovery rates of rare earth elements and impurities recovered by this solvent extraction method.
  • Examples 32 to 34 In the same method as in Example 31, an extractant obtained by diluting PC88A with kerosene to a concentration of 0.5 to 1.5M was used, and the other conditions were the same as in Example 31, and the rare earth element was transferred to the back-extracted aqueous phase. Separated and recovered. Table 6 shows the recovery rates of rare earth elements and impurities recovered by this solvent extraction method.
  • Examples 35 to 37 In the same method as in Example 31, the pH of the leachate was once set to 3.0, the deposited precipitate was removed, the pH was adjusted again to 1.5 to 3.0, and other conditions were performed. As in Example 31, the rare earth element was transferred to the back-extracted aqueous phase and separated and recovered. Table 6 shows the recovery rates of rare earth elements and impurities recovered by this solvent extraction method.
  • DEHPA has a higher recovery rate of rare earth elements than PC88A, a lower recovery rate of Al, and the extractant is DEHPA.
  • PC88A the higher the pH of the leachate, the higher the recovery rate of both rare earth elements and Al, and when DEHPA is used as the extractant, the higher the concentration, the higher the rare earth elements and Al.
  • the recovery rate is high, but when PC88A is used as the extractant, the higher the concentration, the higher the recovery rate of rare earth elements, but the recovery rate of Al may have a maximum point near the concentration of 1.2M. I understand that.
  • Examples 38 to 43 Using the leachate having the composition shown in Table 4 obtained in Example 4, removal of impurity elements and concentration of rare earth elements were performed by a solvent extraction method including pre-extraction. In this method, first, the pH of the leachate is once set to 3.0, the deposited precipitate is removed, the pH is adjusted to 1.0 or 1.25 again, and then PC88A is made 0.01 to 0 with kerosene. Using a pre-extractant diluted to a concentration of 0.02 M, the leachate and the pre-extractant were brought into contact with stirring at a liquid ratio of 1: 1 for 3 minutes, and then liquid-liquid separation was performed. Separated.
  • the extracted organic phase 6N-hydrochloric acid aqueous solution was used as a back extractant, and the extracted organic phase and the back extractant were stirred and contacted at a liquid ratio of 1: 1 for 3 minutes, followed by liquid-liquid separation and back extraction.
  • the organic phase and the back-extracted aqueous phase were separated, and the rare earth element was transferred from the extracted organic phase to the back-extracted aqueous phase to be separated and recovered.
  • the organic phase after back extraction is prepared by bringing the organic phase after back extraction and the back extractant into contact with each other at a liquid ratio of 10: 1 by stirring for 3 minutes, followed by liquid-liquid separation.
  • DEHPA can be reused cyclically as an extractant diluted with kerosene to a concentration of 0.8M. Table 7 shows the recovery rates of rare earth elements and impurities recovered by this solvent extraction method.
  • Example 44 to 52 Using the leachate having the composition shown in Table 4 obtained in Example 4, removal of impurity elements and concentration of rare earth elements were performed by a solvent extraction method.
  • this solvent extraction method first, the pH of the leachate was once set to 3.0, the deposited precipitate was removed, the pH was adjusted to 1.0 again, and DEHPA was diluted to 0.8 M with kerosene.
  • the extractant Using the extractant, the leachate and the extractant were stirred and brought into contact with each other at a liquid ratio of 1: 1 for 3 minutes, followed by liquid-liquid separation to separate the extracted organic phase and the extracted aqueous phase.
  • the extracted organic phase 50% by mass-sulfuric acid aqueous solution was used as the back extractant, and the extracted organic phase and the back extractant were stirred and contacted at a liquid ratio of 1: 1 to 180 minutes. Since an element containing a rare earth element was precipitated as a solid sulfate, the solid sulfate containing the rare earth element was recovered by solid-liquid separation.
  • the organic phase after back extraction is made by using 0.02N-hydrochloric acid aqueous solution as a back extractant, contacting the organic phase after back extraction with the back extractant at a liquid ratio of 1: 1 for 3 minutes, and then separating the liquid and liquid.
  • DEHPA can be reused cyclically as an extractant diluted with kerosene to a concentration of 0.8M. Table 8 shows the recovery rates of rare earth elements and impurities recovered by this solvent extraction method.
  • Example 53 Using the leachate having the composition shown in Table 4 obtained in Example 4, removal of impurity elements and concentration of rare earth elements were performed by a two-stage solvent extraction method shown in FIG.
  • a description will be given with reference to FIG.
  • the pH of the leachate (1) is adjusted to 2.0, and then an extraction agent obtained by diluting DEHPA to 0.02M with hexane is used in the extraction operation A (Ext. A).
  • the leachate (1) and the extractant were agitated and brought into contact with each other at a liquid ratio of 1: 1 for 3 minutes, followed by liquid-liquid separation to separate the extracted organic phase A (2) and the aqueous phase A (3) after extraction.
  • Y and Dy are contained in the extracted organic phase A (2), and rare earth elements up to La-Nd are contained in the aqueous phase A (3) after extraction.
  • the extracted organic phase C (12) a 0.1N hydrochloric acid aqueous solution was used as a back extractant, and the liquid ratio of the extracted organic phase C (12) and the back extractant was 1 in the back extraction operation C (R-Ext. C). : After stirring for 5 minutes and making contact, liquid-liquid separation is performed and back extraction is performed to obtain organic phase C (15) and back-extracted aqueous phase C (16), and Ca is removed from extracted organic phase C (12). At the same time, the back-extracted aqueous phase C (16) containing Ca was used as the waste liquid (17).
  • Example 54 Using the leachate having the composition shown in Table 4 obtained in Example 4, removal of impurity elements and concentration of rare earth elements were carried out by oxalate precipitation. In this oxalate precipitation method, about 1.5 times as much chemical equivalent of oxalic acid as the rare earth ions contained in this liquid was added to the leachate of Example 4 to precipitate only the rare earth elements as oxalate, The rare earth element oxalate was recovered by liquid separation. Table 9 shows the recovery rate of rare earth elements recovered by this oxalate precipitation method and the concentration of impurities.
  • Example 55 Using the leachate having the composition shown in Table 4 obtained in Example 4, removal of impurity elements and concentration of rare earth elements were carried out by hydroxide precipitation.
  • this hydroxide precipitation method first, the leachate of Example 4 was adjusted to pH 4.5 where the solubility of Al ions and Fe ions was small and the solubility of rare earth element ions was large, and Al and Fe were converted to hydroxides. After removing the precipitated Al and Fe hydroxides by solid-liquid separation, the pH is raised to 11 by adding caustic soda solution to precipitate rare earth ions as hydroxides, and solid-liquid separation Thus, the rare earth element hydroxide was recovered. Table 9 shows the rare earth element recovery rate and impurity concentration by this hydroxide precipitation method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)
  • Extraction Or Liquid Replacement (AREA)

Abstract

 希土類元素を含む浸出原料から特にNd及びDyを含む希土類元素を効率良く浸出し、分離して回収する希土類元素の回収方法を提供する。 希土類元素を含む浸出原料の酸性スラリーを所定の条件下に保持して希土類元素の浸出処理を行ない、次いで浸出処理後のスラリーを固液分離して希土類元素を含む浸出液を得る浸出工程と、得られた浸出液から希土類元素を分離して回収する分離工程とを有し、前記浸出原料が固体成分(S)中にCaをCaOとして4~15質量%の割合で含むと共にTiをTiO2として2~13質量%の割合で含んでおり、酸水溶液が塩酸及び/又は硝酸の酸水溶液であり、かつ、浸出工程で行う浸出処理が温度160~300℃及び圧力0.65~10MPaの加熱加圧条件下で行なう温浸であって、この浸出工程では希土類元素をCaと共に浸出する希土類元素の回収方法である。

Description

希土類元素の回収方法
 この発明は、希土類元素を含む浸出原料から希土類元素、特にNd-Fe-B系の永久磁石の材料として利用価値の高いNd及びDyを含む希土類元素を浸出させ、分離して回収する希土類元素の回収方法に係り、特にCaとTiを含む浸出原料中から希土類元素をCaと共に効率良く浸出させ、分離して回収する希土類元素の回収方法に関する。
 希土類元素は、蛍光体、磁性体、研磨剤、及び触媒等の用途に広汎に利用されるようになってきている。就中、磁性体にあっては、遷移元素に対して希土類元素を添加することによって最大エネルギー積及び残留磁束密度の大きな磁石が得られることから、永久磁石の材料としての利用が急速に拡大しつつある。例えば特許文献1には、Nd-Fe-B系の優れた最大エネルギー積及び残留磁束密度を有する永久磁石の材料が開示されている。また、特許文献2には、前記Nd-Fe-B系の永久磁石のNdの一部をDyで置換することにより、同磁石の欠点である磁気特性の熱安定性を改善する技術が開示されている。
 そして、このような希土類元素の原料は、例えばモナザイト、バストネサイト、ゼノタイム、イオン吸着粘土鉱物等の鉱石であり、これらの鉱石から、例えば硫酸のような鉱酸等の酸水溶液を用いて希土類元素を浸出させ、得られた浸出液から分離して採取されているが、これらの鉱石資源は地球上において偏在していると共に、鉱石ごとに希土類元素中の各元素の存在比率が大きく変動し、特に原子番号64~71の重希土類元素は、工業的に採算性の高い鉱石を採取できる鉱山も僅少であって、就中需要の大きなDyは資源の枯渇化が懸念されている。
 他方、資源的に豊富に存在し、アルミニウムの鉱石資源であるボーキサイト中にも希土類元素が含まれており、このボーキサイトから希土類元素を溶出させ、分離して回収することが知られており(例えば、特許文献3の段落0003参照)、更に、バイヤー法及びホール・エルー法の工程を経てこのボーキサイトからアルミニウムを製造する際の、バイヤー工程で副生するアルミニウムを採取した残部の固体残渣(以下、「ボーキサイト残渣」という。Fe23が主成分である場合は赤色であって一般に「赤泥」と称される。)を原料とし、希土類元素を浸出し、分離して回収することも知られている(特許文献4)。
 そして、希土類元素はアルカリ水溶液中では酸化物や水酸化物のような化合物となって安定であり、加熱及び加圧されても水酸化ナトリウム溶液と反応しないことから、前記ボーキサイト残渣中には、前述のバイヤー工程で水酸化ナトリウム溶液によりアルミニウム成分を溶出させた分だけ希土類元素が濃縮されているはずであり、本発明者らの検討によれば、前記ボーキサイト中の希土類元素の含有量に比べて、平均的には概ね約3倍の希土類元素が含まれており、ボーキサイト残渣がボーキサイトからアルミニウムを製造する際の産業廃棄物であり、また、アルミニウムを製造する際に安定的に副生し、入手が容易であることから、希土類元素の原料としての利用が期待される。
 しかしながら、上記の特許文献4について詳細に検討してみると、その実施例1及び2に示されているように、乾燥状態で52.0%のFe23、6.5%のTiO2、18.0%の灼熱減量、12.9%のAl23、2.4%のSiO2、1.6%のNa2O、5.0%のCaO、0.6%のP25を含むボーキサイト残渣を原料とし、pH値の高い亜硫酸溶液からpH値の低い亜硫酸溶液を用いて2~3回に亘って10~70℃での浸出操作(浸出又は温浸)を繰返し、最終的なpH値を1.35~2.4とすることにより、ボーキサイト残渣中に含まれるFeとTiの溶出を低く保ったまま希土類元素を浸出させ、溶媒抽出法により分離して回収しているが、この際に、Yについてはボーキサイト残渣中に含まれる含有量の50~85%を浸出させているものの、Dyの浸出率については記載がないが、Feの浸出量を増加させ続けずに希土類元素の浸出量をほぼ飽和させることができて好ましいとされる20分の浸出時間において、Ndの浸出率はYの値に比べて低い約58%の値に過ぎない(特許文献4の第7欄第32~36行、Tables 1~3及びFIG.2の記載参照)。
 すなわち、この特許文献4に記載の実施例1及び2の技術では、浸出操作を2~3回繰返していることから、浸出液の量が増加すると共に、2~3回の固液分離操作が必要になる等、ボーキサイト残渣から希土類元素を浸出させる際の浸出工程でのコストが高くなり、しかも、この浸出操作の際の固液比について、実施例1では4:1及び10:1として2回の温浸を行なっており(Table 1参照)、また、実施例2では4:1及び8:1として2回の温浸を行なっている(Table 3参照)ことから、浸出液の量が原料であるボーキサイト残渣の14倍又は12倍になり、この浸出液から溶媒抽出法により希土類元素を分離し、回収する分離工程の溶媒抽出装置が大規模なものとなって、コストも高くなるという問題がある。
 因みに、本発明者らが、後述する実施例で用いたものと同じ組成のボーキサイト残渣0.102kgを用い、また、酸水溶液として亜硫酸水溶液を用い、固液比(L/S)5.0及び温度30℃、圧力0.1MPa及び時間15分の条件で、同じ浸出操作を3回繰り返すこの特許文献4の実施例1を追試した結果は、表1に示す通りであり、1回目の浸出操作ではYの浸出率が5質量%以下に留まり、更に2回目及び3回目の浸出操作によるYの浸出率の合計は52質量%であったが、Nd及びDyの浸出率は、それぞれ41質量%及び43質量%に留まり、Yの浸出率に比べて更に低い値に過ぎなかった。
Figure JPOXMLDOC01-appb-T000001
特開昭59-046,008号公報 特開昭62-165,305号公報 特開平09-184,028号公報 アメリカ合衆国特許第5,030,424号公報
 そこで、本発明者らは、上記のボーキサイト残渣中に含まれる希土類元素の浸出操作において希土類元素、特にNd及びDyの浸出率が低いことの原因について検討し、以下の結論に到達した。
 すなわち、ボーキサイトを原料としてアルミニウムを製造する際に、バイヤー工程では、前記ボーキサイトを水酸化ナトリウム水溶液と混合し、加熱及び加圧して、そのアルミニウム成分をアルミン酸イオンとして溶出させ、得られたアルミニウム成分を含む溶出液を冷却して、前記アルミン酸イオンを水酸化アルミニウムとして沈殿させ、更にか焼して酸化アルミニウムとして採取している。前記バイヤー工程において前記ボーキサイト中の成分と前記水酸化ナトリウム水溶液の反応により生成したナトリウム化合物を水酸化ナトリウムとして回収すると共に、Si、P等の不純物を除去するために、しばしばCaOが添加されており、前記ボーキサイト残渣中には通常4~15質量%のCaOが含有されている。
 そして、バイヤー工程において、CaOが160℃以上の高温のアルミン酸ソーダ溶液中に添加されると、このボーキサイト中に含まれていたTiがCaOとして添加されたCaと反応し、ペロブスカイト(ABX3)型構造の結晶を形成するチタン酸カルシウム(CaTiO3)を生成し、また、生成したこのチタン酸カルシウムが結晶を形成する際にボーキサイト中に含まれていたNd、Dy等の希土類元素の一部をこの結晶中に取り込み、しかも、このチタン酸カルシウム(CaTiO3)からなるペロブスカイト(ABX3)型構造の結晶は鉱酸に対して160℃未満では容易には溶解し難く、その結果として通常の浸出操作ではその浸出率を高くすることが難しいとの結論に到達した。
 そこで、本発明者らは、更にこのようなペロブスカイト(ABX3)型構造の結晶を形成するチタン酸カルシウム等の化合物を含む浸出原料から、結晶中に取り込まれたNd、Dy等の希土類元素をも含めて、希土類元素を効率良く浸出させ、得られた浸出液から希土類元素を分離し、回収することについて鋭意検討した結果、意外なことには、特定の酸水溶液を用い、特定の加熱加圧条件下で温浸(digestion or maceration)を行なうことにより、このペロブスカイト(ABX3)型構造の結晶を容易に溶解することができ、結晶中に取り込まれていない希土類元素は勿論のこと、この結晶中に取り込まれている希土類元素についても容易に浸出させることができることを見い出し、本発明を完成した。
 従って、本発明の目的は、希土類元素を含む浸出原料から希土類元素、特にNd及びDyを含む希土類元素を効率良く浸出させ、分離して回収する希土類元素の回収方法を提供することにある。
 すなわち、本発明は、希土類元素を含む浸出原料に水を添加し混合してスラリーを調製した上で、更に酸水溶液を添加し混合してpHを調整し、得られたスラリーを所定の条件下に保持して浸出原料中の希土類元素を酸水溶液中に移行させる浸出処理を行ない、次いで前記浸出処理後のスラリーを固液分離して希土類元素を含む浸出液を得る浸出工程と、この浸出工程で得られた浸出液から希土類元素を分離して回収する分離工程とを有する希土類元素の回収方法であり、前記浸出原料が、110℃及び2時間の乾燥条件で乾燥して得られた固体成分(S)中に、CaをCaOとして4~15質量%の割合で含むと共にTiをTiO2として2~13質量%の割合で含んでおり、前記酸水溶液が塩酸及び/又は硝酸の酸水溶液、前記調整されるpHが0~2.7であり、かつ、前記浸出工程で行う浸出処理が温度160~300℃及び圧力0.65~10MPaの加熱加圧条件下で行なう温浸(digestion or maceration)であって、この浸出工程では浸出原料中の希土類元素をCaと共に浸出させることを特徴とする希土類元素の回収方法である。
 本発明においては、前記浸出工程では浸出原料中に含まれるCaの溶出率が90質量%以上に到達するまで温浸を行うのがよく、これによって、Yを含めて利用価値の高いNd及びDyを含む希土類元素を、70質量%を超える高い浸出率で回収することができる。
 ここで、本発明において、「希土類元素」という用語は、原子番号39のY及び原子番号57~71のLa~Luを総称するものとして用いられる。本発明の方法によれば、原子番号21のScや原子番号89~103のAc~Lrも浸出するが、本発明は、これらの元素が浸出し、分離されて回収されることを否定するものではない。
 本発明において、希土類元素を含む浸出原料としては、それがYやNd及びDy等の希土類元素を含有すると共に、CaをCaOとして4~15質量%の割合で、また、TiをTiO2として2~13質量%の割合で含むものであれば特に制限されるものではないが、好ましくは、水酸化ナトリウム水溶液を用いてボーキサイトからアルミニウム分を浸出させるバイヤー工程において副生するボーキサイト残渣であり、より好ましくは、110℃及び2時間の乾燥条件で乾燥して得られた固体成分(S)中に、希土類元素をその酸化物として500~10000ppmの割合で含むボーキサイト残渣である。このようなボーキサイト残渣は、ボーキサイトからアルミニウム分を採取するバイヤー工程、特にナトリウム成分を水酸化ナトリウムとして回収すると共にSi、P等の不純物を除去するためにCaOが添加されるバイヤー工程で副生するので、大量にかつ容易に入手することができる。
 ここで、ボーキサイト残渣中のCaとTiは、ペロブスカイト(ABX3)型構造の結晶を形成していると考えられ、このペロブスカイト(ABX3)型構造の結晶ではAサイトの陽イオンとXサイトの陰イオンが同程度の大きさを有し、このAサイトとXサイトから構成される立方晶格子の中にAサイトの陽イオンよりも小さなサイズの陽イオンがBサイトに位置する。ペロブスカイト(ABX3)型構造の結晶では、元素は稠密配位であり高圧状態で安定となる。AサイトとBサイトのイオンの大きさはトレランスファクターt=0.75~1.1の範囲で許容される。また、Xが酸素の場合AとBの価数がA+B=6となるような元素が選択される。従って、価数とトレランスファクターが合う元素であればAとBはいろいろな元素を固溶することが出来る。希土類元素の場合、イオン半径が大きく3価であるので、イオン半径が小さく3価であるFeイオンと対になって固溶していると考えられる。なお、トレランスファクターtは次式により示される。
Figure JPOXMLDOC01-appb-I000002
 本発明によれば、ボーキサイトからアルミニウムを製造する際の産業廃棄物であるボーキサイト残渣等であって、CaをCaOとして4~15質量%の割合で、また、TiをTiO2として2~13質量%の割合で含む浸出原料から、Yのみならず利用価値の高いNd及びDyを含めて、希土類元素を効率良く容易に浸出させ、分離して回収することができるので、ボーキサイト原料中の資源を有効に利用できるほか、希土類元素の原料鉱石の偏在、鉱石ごとの希土類元素中の各元素の存在比率の変動、資源の枯渇等の懸念を解消することができる。
図1は、本発明の実施例53に係る2段階溶媒抽出法による浸出液の不純物元素除去及び希土類元素濃縮を示すフローチャートである。
 以下に、希土類元素を含む浸出原料がボーキサイト残渣である場合を例にして、本発明を実施するための形態を具体的に説明する。
 先ず、浸出工程では、ボーキサイト残渣に酸水溶液を添加し混合してスラリーを調製する。ここで用いられる酸水溶液については、160℃以上に加熱されてもボーキサイト残渣中のCaと不溶性の化合物を作らないような塩酸及び/又は硝酸を含む酸水溶液であるのがよい。
 また、調製されるスラリーについては、その固体成分(S)と液体成分(L)との固液比(L/S)が好ましくは2以上10以下、より好ましくは2以上10以下であって、pH値が好ましくは0以上2.7以下、より好ましくは0以上2.5以下であるのがよい。調製されたスラリーの固液比(L/S)が2より低いと希土類元素の浸出率が低下して不十分になるほか、スラリーの粘性が上昇して後の分離工程での取扱いが困難になり、反対に、10より高くしても希土類元素の浸出率が飽和して向上しないだけでなく、浸出液の液量が増加して後の分離工程での負荷が高くなり過ぎる。また、調製されたスラリーのpH値が2.7より高くなると希土類元素の浸出率が低下して不十分になり、反対に、このpH値を0未満にするとAlとFeの溶出量の増加によって希土類元素の分離が困難になると共に、酸および後述のpH調整剤の消費が増大することになり、コストが増加して好ましくない。
 更に、ボーキサイト残渣に酸水溶液を添加して調製されたスラリー中には、ボーキサイト残渣に由来するスラリー中のFe2+イオンをFe3+イオンに変換し、後の分離工程でのFe及びAlを沈殿させて分離する操作を容易にする目的で、ボーキサイト残渣中のFe成分に対して酸化剤を0.1~1当量の割合で、好ましくは0.15~0.4当量の割合で添加するのがよい。この目的で添加される酸化剤としては、好ましいものとして過酸化水素水や過塩素酸水溶液等を例示することができ、より好ましくは30質量%-過酸化水素水や70質量%-過塩素酸水溶液である。その添加量が0.1当量より少ないとFe2+イオンがpHの高い状態まで浸出液に残るという問題があり、反対に、1当量より多くなっても効果は変わらず、無駄になるという問題が生じる。
 次に、本発明においては、このようにして得られたスラリーを所定の条件下に保持して希土類元素の浸出処理を行うが、この浸出処理として温度160℃以上300℃以下、好ましくは180℃以上250℃以下、及び圧力0.65MPa以上10MPa以下、好ましくは1MPa以上5MPa以下の加熱加圧条件下に保持時間30分以上160分以下、好ましくは40分以上120分以下の温浸を行なう。この希土類元素の浸出処理としてこのような加熱加圧条件下に温浸を行うのは、ボーキサイト残渣中に所定の割合で存在するCaとTiがペロブスカイト型構造の結晶を形成する化合物として存在し、そのようなペロブスカイト型構造の結晶中にNd及びDy等の利用価値の高い希土類元素が取り込まれているので、このペロブスカイト型構造の結晶を溶解して希土類元素を浸出させるためである。
 ここで、温浸操作の際の温度については、160℃未満であると、圧力及び保持時間を必要かつ適切な条件に設定しても、希土類元素を十分に浸出させることが難しく、ボーキサイト残渣中に含まれる希土類元素の70質量%以上を浸出させることが困難になり、反対に、250℃を超えると希土類元素の浸出率がほぼ飽和に達し、さらに300℃を超えての加熱は必要な熱量の増加、圧力容器の劣化、コスト増大等の要因となる。また、温浸操作の際の圧力については、0.65MPa未満であると、温度及び保持時間を必要かつ適切な条件に設定しても、希土類元素を十分に浸出させることが難しく、ボーキサイト残渣中に含まれる希土類元素の70質量%以上を浸出させることが困難であり、反対に、10MPaを超えて加圧することは、必要以上に加圧することになり、圧力容器の劣化、コスト増大等の要因となる。更に、温浸操作の際の保持時間については、30分未満であると、温度及び圧力を必要かつ適切な条件に設定しても、時間が短いことによって安定的な操業が困難となって、浸出率の安定化することができないため、ボーキサイト残渣中に含まれる希土類元素の70質量%以上を浸出させることが困難になり、反対に、160分を超えると希土類元素の浸出率がほぼ飽和する。
 本発明において、このような加熱加圧条件下で行う浸出処理(温浸)においては、ボーキサイト残渣中に含まれている希土類元素、特にNd及びDyを含む希土類元素がCaと共に浸出するので、この希土類元素よりも多量に含まれているCaの浸出率を指標にして温浸を行うのがよく、このCaの浸出率が90質量%を超えるまで温浸を行うのが望ましい。Caの浸出率が90質量%を超えるまで温浸を行うことにより、ボーキサイト残渣中の希土類元素をその70質量%を超えて確実に浸出させることができる。
 浸出処理後のスラリーは、次に濾過、遠心分離、デカンテーション等の手段で固液分離され、Caと共に希土類元素を含む浸出液が回収される。この固液分離により生じた固体残渣については、好ましくは洗浄水を用いて洗浄し、固体残渣に付着した浸出液を洗浄水中に移行させて回収し、先に浸出処理後のスラリーを固液分離して得られた浸出液と併せて次の分離工程で処理する浸出液とされる。この固体残渣の洗浄に用いる洗浄水の使用量は、少なすぎると固体残渣に付着した浸出液を十分に回収することができず、反対に、多すぎると次の分離工程での負荷が大きくなるので、固体残渣(S)と洗浄水(L)の固液比(L/S)で通常2~10の範囲であるのがよい。
 以上の浸出工程については、浸出原料がボーキサイトからバイヤー法により水酸化アルミニウムを溶出させた後の固体残渣であるボーキサイト残渣の場合を例にして説明したが、この浸出工程で使用される浸出原料については、希土類元素を含むと共に4~15質量%のCaと2~13質量%のTiとを含有するものであればよく、特にボーキサイト残渣でなければならないというものではない。
 上記の浸出工程で得られた浸出液は、次に希土類元素を分離して回収する分離工程に移送される。
 この浸出液から希土類元素を分離する分離工程では、分離方法として、蓚酸塩析出法、水酸化物析出法、溶媒抽出法が用いられる。
 Fe及びTiの溶出量の少ない本発明においては、浸出液を蓚酸塩析出法又は溶媒抽出法により直接処理することも可能であるが、Al又はFeの溶出量が多い場合には、溶媒抽出法又は蓚酸塩析出法で使用する薬剤の使用量が増加するので、浸出液の量を前処理により減少させることがコスト低減のために好ましい。
 前記前処理の方法としては、例えば、浸出工程で得られた浸出液のpH値が通常1~3の範囲であるので、先ず、浸出液にpH調整剤を添加してpH値を4~6に調整し、このpH調整で析出したFe及びAlの水酸化物を固液分離して除去する。この目的で使用されるpH調整剤としては、特に限定されるものではないが、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、アンモニア等が好適に使用される。
 この浸出液のpH調整に際しては、必要に応じて酸化剤を添加し、浸出液中のFe2+イオンをFe3+イオンに酸化させるのがよく、これによって不溶性のFe(OH)3が安定となり、Feの分離除去が容易になる。酸化剤としては、例えば、過酸化水素、過塩素酸、過マンガン酸、次亜塩素酸等が好適に利用できる。酸化剤として過酸化水素を利用する場合には酸化剤の濃度は固液比に影響するのみであるので、取り扱いとコストから適当な濃度を選ぶことができる。酸化剤の添加量については、浸出原料がボーキサイト残渣である場合、30質量%-過酸化水素水を用いる場合も、また、70質量%-過塩素酸水溶液を用いる場合も、共にボーキサイト残渣中のFe成分に対して0.1~0.5当量とすることが好ましい。
 水酸化物析出法では、希土類元素を水酸化物として分離するために、上記の浸出工程で得られた浸出液、又は、該浸出液をpH調整してFe及びAlを水酸化物として沈殿させ、固液分離して得られた液に対し、更にpH調整剤を添加してpH値を7以上に調整し、Ca及び希土類元素をその水酸化物として析出させ、これらCa及び希土類元素の水酸化物を固液分離し、粗回収物として回収する。pH調整剤は好ましくは水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、アンモニア等であって、Ca及び希土類元素は水酸化物として析出する。これを固液分離して希土類元素の水酸化物として回収するか、更に、不純物であるAlの濃度を低下させることを目的として、析出した希土類元素の水酸化物に前記Alの5倍当量以上の水酸化ナトリウム液を加えて、前記Al分をアルミン酸イオンとして溶解し除去することも好適である。
 蓚酸塩析出法では、上記の浸出工程で得られた浸出液、または、該浸出液をpH調整してFe及びAlを水酸化物として沈殿させ、固液分離して得られた液に対し、その液中に存在する全希土類元素のモル量の1.3~6等量の蓚酸を加えて不溶性の希土蓚酸塩を生成させ、固液分離することによって希土類蓚酸塩化合物として粗希土類元素化合物(粗回収物)を回収する。
 上記の浸出工程で得られた浸出液、又は、該浸出液をpH調整してFe及びAlを水酸化物として沈殿させ、固液分離して得られた液から溶媒抽出法により粗希土類元素化合物(粗回収物)を回収する場合、溶媒抽出法については公知の方法によればよいが、抽出剤として、リン酸エステル(DEHPA、EHPA)、ホスホン酸エステル(PC88A)、ホスフィン酸エステル(Cyanex 272、Cyanex 30)等のエステル類を、無極性の有機溶媒であるヘキサンなどの脂肪族炭化水素、ベンゼン、トルエンなどの芳香族炭化水素、オクタノールなどのアルコール、及び石油分留物であるケロシン等の溶媒で希釈したものが好適に利用できる。
 溶媒抽出法による粗回収物の回収を2段階以上に亘って実施することも好ましい。2段階以上に亘る溶媒抽出法による粗回収物の回収によれば、希土類元素の各元素への分離も可能となる。
 浸出原料がボーキサイトからバイヤー法により水酸化アルミニウムを溶出させた後の固体残渣(ボーキサイト残渣)であって、上記の浸出工程で得られた浸出液から溶媒抽出法により粗希土類元素化合物(粗回収物)を回収する場合には、浸出液を一旦pH2.5~3.5に調整し、析出した析出物を除去してから、そのまま、またはpH1.2~2.5に再調整した後に、溶媒抽出することが好ましい。このようにpHを調整して析出物を除去することにより、溶媒抽出時の有機相と水相との間等に生成する乳濁物若しくは懸濁物(以下、「乳濁」という。)の発生を防止することができる。前記乳濁が発生した場合は、濾過により除去することができる。溶媒抽出時の水相のpHが1.2未満となると希土類元素の回収率が低下するため、好ましくない。
 このようなpHの調整については、ボーキサイト残渣を添加して行うことも好適である。ボーキサイト残渣の添加によりpHを調整すれば、アルカリ性薬品の使用量を抑制することができ、また、ボーキサイト残渣がボーキサイトからアルミニウムを製造する際のバイヤー工程で副生するものであるから、結果的にコストダウンを図ることができる。また、ボーキサイト残渣の添加によるpH調整を行った場合には、添加されたボーキサイト残渣中に含有される希土類元素が浸出液中に溶出するので、前記浸出処理に使用する酸水溶液の有効利用を図ることができると共に、添加されたボーキサイト残渣から浸出した希土類元素を回収することができ、しかも、この際にCa及びTiがFeと共に析出し、浸出液中のこれらの元素の濃度が低下し、結果的に効率的な希土類元素の回収を行うことができる。
 更にこのような場合に、DEHPA〔化学名:りん酸水素ビス(2-エチルヘキシル)〕を抽出剤として利用すると共に、溶媒でその濃度を0.1~1.5Mとなるように希釈すると、Alの抽出率を低く保つことができ、結果的に分離回収する希土類元素の濃度を高くすることができて好ましい。抽出時間は、5分間以下とすることが好ましく、0.5~3分間とすることが更に好ましい。抽出時間を0.5~3分間とすると、Alの抽出率を低く保つことができ、結果的に分離回収する希土類元素の濃度を高くすることができる。抽出時間が5分間を超えるとAlの抽出率が高くなり、結果的に分離回収する希土類元素の濃度が低下する。
 DEHPAを抽出剤として利用する場合、PC88A(化学名:2-エチルヘキシルホスホン酸モノ-2-エチルヘキシル)、リン酸トリブチル又はナフテン酸を前抽出剤として予備的に前抽出することも好適である。このような前抽出を行うことにより、浸出液中に含有されるFe、Sc、Ti等の元素の濃度を低減することができ、結果的に希土類元素の分離回収を効率化することができる。このとき、Scは前抽出有機相に分離されるが、pH7.5以上のアルカリ水溶液を逆抽出剤として逆抽出することにより、前抽出有機相からScを固体水酸化物として回収することができる。この場合には既に、Fe、Tiが除去されているため、DEHPAを抽出剤として希土類元素を抽出する際にpH調整を行う必要がない。ただしこの場合には、溶媒抽出時の有機相と水相の中間に乳濁が発生する場合がある。前記乳濁が発生した場合は、濾過により析出物を除去することができる。
 前記逆抽出に際しては、逆抽出剤として2N~8Nの塩酸水溶液又は濃度30~70質量%の硫酸水溶液を用いることが好ましい。
 逆抽出剤として2N~8Nの塩酸水溶液を用いる場合、逆抽出時間は、5分間以下とすることが好ましく、0.5~3分間とすることがさらに好ましい。逆抽出時間を0.5~3分間とすると、Alの抽出率を低く保つことができ、結果的に分離回収する希土類元素の濃度を高くすることができる。逆抽出時間が5分間を超えるとAlの抽出率が高くなり、結果的に分離回収する希土類元素の濃度が低下する。
 他方、逆抽出剤として濃度30~70質量%の硫酸水溶液を用いる場合、希土類元素は固体硫酸塩として析出するので、体積を非常に小さくすることができる。逆抽出時間は、5分間以下とすることが好ましく、0.5~3分間とすることがさらに好ましい。逆抽出時間を0.5~3分間とすると、Alの抽出率を低く保つことができ、結果的に分離回収する希土類元素の濃度を高くすることができる。逆抽出時間が5分間を超えるとAlの抽出率が高くなり、結果的に分離回収する希土類元素の濃度が低下する。固体硫酸塩として析出した希土類元素は、固液分離により回収することができる。なお、希土類元素を回収した後の有機相について、濃度30~70質量%の硫酸水溶液を逆抽出剤として120分間以上の逆抽出を行うことにより、有機相中のAlを硫酸アルミニウムとして回収することができる。
 使用済みの抽出剤については、2N~8Nの塩酸水溶液又はアルカリ水溶液を逆抽出剤とする逆抽出を行うことにより、前記使用済みの抽出剤中に蓄積したSc、Ti、Thを低減させ、再生抽出剤として再利用することができる。
 この希土類元素の分離工程において、粗回収物から各元素への分離は、リン酸エステル類、ホスホン酸エステル類、ホスフィン酸エステル類、チオホスフィン酸エステル類、及びこれらのエステル類とリン酸トリブチル(tributyl phosphate)及び/又はトリオクチルホスフィンオキサイド(trioctylphosphine oxide)との混合物から選ばれたエステル類を、ヘキサンなどの脂肪族炭化水素、ベンゼン、トルエンなどの芳香族炭化水素、及び石油分留物であるケロシンから選ばれた溶媒で希釈して得られた抽出剤を用いた溶媒抽出法で行なうのが望ましい。
 このような溶媒抽出法による分離は、向流多段溶媒抽出法によることが好適である。
 本発明の浸出液の分離工程において、上記のように、水酸化物析出法では、先ず、浸出液のpH値を4~6に調整し、このpH調整で析出したFe及びAlの水酸化物を固液分離して除去し、次いで更にpH調整剤を添加してpH値を7以上に調整し、析出したCa及び希土類元素の水酸化物を固液分離して粗回収物を回収する。また、蓚酸法では、浸出液を直接、あるいは、水酸化物析出法と同じくpH調整によりFeとAlを水酸化物として析出させ、固液分離したのちに蓚酸を添加して希土類元素を蓚酸塩として析出させ、希土類元素の蓚酸化合物として回収したのち、これを苛性ソーダで処理して希土類元素の水酸化物として粗回収物を、又は、希土類元素の蓚酸化合物をか焼して希土類元素の酸化物として粗回収物を回収する。この粗回収物を塩酸又は硝酸に溶解した後、抽出剤を用いて溶媒抽出を行うので、この溶媒抽出で使用する高価な抽出剤の使用量を可及的に低減することができるという利点がある。
 以下、本発明の希土類元素の回収方法を、浸出原料としてボーキサイト残渣を用いた実施例及び比較例に基づいて、具体的に説明するが、本発明はこれらの実施例及び比較例に限定されるものではない。
〔実施例1~8及び比較例1~5〕
 浸出原料として、110℃及び2時間の乾燥条件で乾燥して得られた固体成分(S)中に、Feを29.8質量%、Alを7.9質量%、Caを5.8質量%、Naを2.1質量%、Tiを3.5質量%、Siを2.5質量%、原子番号39のY及び原子番号57~71のLa~Luの合計としての希土類元素を0.24質量%の割合で含有するボーキサイト残渣を使用した。このようなボーキサイト残渣の約0.1kgを圧力容器に装入し、水を添加してスラリーとした後に、表2に示す固液比(L/S)及び初期pH値となるように、塩酸又は硝酸の水溶液を添加し、混合してボーキサイト残渣のスラリーを調製した。
 次いで、圧力容器内の温度及び圧力が表2に示す値となるように加熱し、加圧して、表2に示す時間保持した。その後、常温、常圧に戻して濾過により固液分離し、浸出液を回収した。更に固液分離後の固体残渣をその0.1kgに対して400cm3の洗浄水で洗浄し、洗浄後の洗浄水を前記浸出液と併せて次の分離工程で処理する浸出液とし、この浸出液のpH値を測定して、浸出工程で得られた浸出液のpHとした。
 このようにして各実施例1~8及び比較例1~5の浸出工程で得られた浸出液について、それぞれICP-AES(誘導結合プラズマ発光分光)分析法により浸出液中のY、Nd、Dy、Ca、Al、Si、Ti、及びFeの元素含有量を測定し、各元素についての浸出率を求めた。これらの浸出条件及び結果を表2にまとめて示す。
Figure JPOXMLDOC01-appb-T000003
 この表2に示す結果から明らかなように、実施例1~8の浸出工程で得られた浸出液は、そのいずれの場合も浸出原料であるボーキサイト残渣中に含まれる希土類元素の70質量%以上を浸出させることができているのに対して、浸出温度が150℃の比較例1の場合、酸水溶液として硫酸水溶液を用い、固液比(L/S)が8.6であって浸出温度が50℃である比較例2の場合、酸水溶液としてリン酸水溶液を用いた比較例3の場合、初期pH値が3.0の比較例4の場合、及び酸水溶液として次亜塩素酸水溶液を用いた比較例5の場合、浸出温度が100℃の比較例6の場合には、いずれもボーキサイト残渣中に含まれる希土類元素の70質量%以上を浸出させることができなかった。
〔実施例9~13及び比較例6~8〕
 浸出工程で使用した酸水溶液中に表3に示した酸化剤をボーキサイト残渣中のFe量に対して表3に示した当量だけ添加した以外は、上記の実施例1~8の場合と同様にして、希土類元素の浸出を行い、得られた浸出液中のY、Nd、Dy、Ca、Al、Si、Ti、及びFeの元素含有量を測定し、各元素についての浸出率を求めた。これらの浸出条件及び結果を表3にまとめて示す。
Figure JPOXMLDOC01-appb-T000004
 表3に示す結果から明らかなように、実施例9~13の浸出工程で得られた浸出液は、そのいずれの場合も浸出原料であるボーキサイト残渣中に含まれる希土類元素の70質量%以上を浸出させることができているのに対して、浸出温度が150℃の比較例6及び8の場合、酸水溶液として硫酸水溶液を用いた比較例7の場合には、いずれもボーキサイト残渣中に含まれる希土類元素の70質量%以上を浸出させることができなかった。
〔実施例14〕
 実施例4で得られた表4に示す組成の浸出液を用い、溶媒抽出法により不純物元素の除去と希土類元素の濃縮を実施した。この溶媒抽出法では、先ず、浸出液のpHを一旦3.0とし、析出した析出物を除去してから、1.5に調整し、その後に、ケロシンでDEHPAを0.8M濃度に希釈した抽出剤を用い、浸出液と抽出剤とを液比1:1で3分間撹拌して接触させた後、液液分離させて抽出有機相と抽出終了後の水相(抽出後水相)とに分離した。
Figure JPOXMLDOC01-appb-T000005
 抽出有機相については、6N-塩酸水溶液を逆抽出剤として用い、抽出有機相と逆抽出剤とを液比1:1で3分間撹拌して接触させた後、再び液液分離させて逆抽出終了後の有機相(逆抽出後有機相)と逆抽出水相とに分離し、抽出有機相中の希土類元素を逆抽出水相へと移行させて分離し、回収した。
 逆抽出後有機相は、0.02N-塩酸水溶液を逆抽出剤として、逆抽出後有機相と逆抽出剤とを液比1:1で3分間撹拌して接触させた後、液液分離させて精製すれば、ケロシンでDEHPAを0.8M濃度に希釈した抽出剤として循環的に再利用することができる。
 この溶媒抽出法で回収された希土類元素と不純物の回収率を表5に示す。
〔実施例15~18〕
 実施例14と同一の方法において、浸出液と抽出剤との接触時間を0.5分、1分、5分及び10分とし、他の条件は実施例14と同一として、希土類元素を逆抽出水相へと移行させて分離し、回収した。
 この溶媒抽出法で回収された希希土類元素と不純物の回収率を表5に示す。
〔実施例19~23〕
 実施例14と同一の方法において、抽出有機相と逆抽出剤との接触時間を0.5分、1分、5分、10分及び15分とし、他の条件は実施例14と同一として、希土類元素を逆抽出水相へと移行させて分離し、回収した。
 この溶媒抽出法で回収された希土類元素と不純物の回収率を表5に示す。
〔実施例24〕
 実施例4で得られた表4に示す組成の浸出液を用い、溶媒抽出法により不純物元素の除去と希土類元素の濃縮を実施した。この溶媒抽出法では、先ず、浸出液のpHを一旦1.75とした後、ケロシンでDEHPAを0.8M濃度に希釈した抽出剤を用い、浸出液と抽出剤とを液比1:1で3分間撹拌して接触させた後、液液分離させて抽出有機相と抽出後水相とに分離した。溶媒抽出時に有機相と水相の中間に乳濁が生成したが、該乳濁は、液液分離時に有機相側に分離し、その後に有機相をフィルターで濾過して除去した。
 抽出有機相については、6N-塩酸水溶液を逆抽出剤として、抽出有機相と逆抽出剤とを液比1:1で3分間撹拌して接触させた後、再び液液分離させて逆抽出後有機相と逆抽出水相とに分離し、希土類元素を抽出有機相から逆抽出水相へと移行させて分離し、回収した。
 逆抽出後有機相は、0.02N-塩酸水溶液を逆抽出剤として、逆抽出後有機相と逆抽出剤とを液比1:1で3分間撹拌して接触させた後、液液分離させて精製すれば、ケロシンでDEHPAを0.8M濃度に希釈した抽出剤として循環的に再利用することができる。
 この溶媒抽出法で回収された希土類元素と不純物の回収率を表5に示す。
〔実施例25〕
 水酸化ナトリウム水溶液の添加に代えて、実施例4に用いたものと同じボーキサイト残渣の添加によりpH調整をした以外、他の実施方法及び条件は実施例14と同一として、希土類元素を逆抽出水相へと移行させて分離し、回収した。このとき、添加したボーキサイト残渣の量は、浸出原料であったボーキサイト残渣0.1kgに対し、0.115kgであった。
 この溶媒抽出法で回収された希土類元素と不純物の回収率を表5に示す。ただし回収率の計算にあたっては、pH調整に使用したボーキサイト残渣中に含有されていた希土類元素を考慮し、浸出原料であったボーキサイト残渣の2.15倍の量に対する回収率を示している。
Figure JPOXMLDOC01-appb-T000006
 表5に示される、実施例14~23の希土類元素と不純物の回収率によれば、抽出時間が短い方が希土類元素の回収率が高いこと、及び逆抽出時間が長い方が希土類元素の回収率が高いが、最も回収率の低いYであっても1分の逆抽出時間で、75質量%を超える回収率が得られること、および抽出時間、逆抽出時間共に長くなるほどAlのような不純物の回収率が高くなることがわかる。
 実施例24によれば、溶媒抽出時に有機相と水相の中間に乳濁が生成した場合には、抽出時間及び逆抽出時間が同一である実施例14と比較して、希土類元素の回収率は、わずかに低いことがわかる。
 また、実施例25のボーキサイト残渣の添加によりpH調整したものはpH調整時に添加したボーキサイト残渣から溶出した希土類元素も回収されているが、その回収率は、浸出原料であったボーキサイト残渣からの回収率ほどには高くないため、回収率は実施例14より低下しているものの、Ca及びTiがFeと共に析出、これらの元素の濃度が大幅に低下していることがわかる。さらに、ボーキサイト残渣は、ボーキサイトからアルミニウムを製造する際のバイヤー工程で副生するものであり、結果的にコストダウンとなっている。
〔実施例26〕
 実施例4で得られた表4に示す組成の浸出液を用い、溶媒抽出法により不純物元素の除去と希土類元素の濃縮を実施した。この溶媒抽出法では、先ず、浸出液のpHを一旦3.0とし、析出した析出物を除去してから、1.0に調整した後、ケロシンでDEHPAを0.8M濃度に希釈した抽出剤を用い、浸出液と抽出剤とを液比1:1で3分間撹拌して接触させた後、液液分離させて抽出有機相と抽出後水相とに分離した。
 抽出有機相については、6N-塩酸水溶液を逆抽出剤として、抽出有機相と逆抽出剤とを液比1:1で3分間撹拌して接触させた後、再び液液分離させて逆抽出後有機相と逆抽出水相とに分離し、希土類元素を抽出有機相から逆抽出水相へと移行させて分離し、回収した。
 逆抽出後有機相は、0.02N-塩酸水溶液を逆抽出剤として、逆抽出後有機相と逆抽出剤とを液比1:1で3分間撹拌して接触させた後、液液分離させて精製すれば、ケロシンでDEHPAを0.8M濃度に希釈した抽出剤として循環的に再利用することができる。
 この溶媒抽出法で回収された希土類元素と不純物の回収率を表6に示す。
〔実施例27・28〕
 実施例26と同一の方法において、ケロシンでDEHPAを1.2M濃度に希釈した抽出剤、及びケロシンでDEHPAを1.5M濃度に希釈した抽出剤を用い、他の条件は実施例26と同一として、希土類元素を逆抽出水相へと移行させて分離し、回収した。
 この溶媒抽出法で回収された希土類元素と不純物の回収率を表6に示す。
〔実施例29・30〕
 実施例26と同一の方法において、浸出液のpHを一旦3.0とし、析出した析出物を除去してから、再びpHを1.5又は2.0とし、他の条件は実施例26と同一として、希土類元素を逆抽出水相へと移行させて分離し、回収した。
 この溶媒抽出法で回収された希土類元素と不純物の回収率を表6に示す。
〔実施例31〕
 実施例4で得られた表4に示す組成の浸出液を用い、溶媒抽出法により不純物元素の除去と希土類元素の濃縮を実施した。この溶媒抽出法では、先ず、浸出液のpHを一旦3.0とし、析出した析出物を除去してから、再びpHを2.0に調整した後、ケロシンでPC88Aを0.8M濃度に希釈した抽出剤を用い、浸出液と抽出剤とを液比1:1で3分間撹拌して接触させた後、液液分離させて抽出有機相と抽出後水相とに分離した。
 抽出有機相については、6N-塩酸水溶液を逆抽出剤として、抽出有機相と逆抽出剤とを液比1:1で3分間撹拌して接触させた後、再び液液分離させて逆抽出後有機相と逆抽出水相とに分離し、希土類元素を抽出有機相から逆抽出水相へと移行させて分離し、回収した。
 逆抽出後有機相は、0.02N-塩酸水溶液を逆抽出剤として、逆抽出後有機相と逆抽出剤とを液比1:1で3分間撹拌して接触させた後、液液分離させて精製すれば、ケロシンでPC88Aを0.8M濃度に希釈した抽出剤として循環的に再利用することができる。
 この溶媒抽出法で回収された希土類元素と不純物の回収率を表6に示す。
〔実施例32~34〕
 実施例31と同一の方法において、ケロシンでPC88Aを0.5~1.5M濃度に希釈した抽出剤を用い、他の条件は実施例31と同一として、希土類元素を逆抽出水相へと移行させて分離し、回収した。
 この溶媒抽出法で回収された希土類元素と不純物の回収率を表6に示す。
〔実施例35~37〕
 実施例31と同一の方法において、浸出液のpHを一旦3.0とし、析出した析出物を除去してから、再びpHの調整を行って1.5~3.0とし、他の条件は実施例31と同一として、希土類元素を逆抽出水相へと移行させて分離し、回収した。
 この溶媒抽出法で回収された希土類元素と不純物の回収率を表6に示す。
Figure JPOXMLDOC01-appb-T000007
 表6に示される、実施例26~37の希土類元素と不純物の回収率によれば、DEHPAの方がPC88Aよりも希土類元素の回収率が高く、Alの回収率が低いこと、抽出剤がDEHPA、PC88Aのいずれであっても浸出液のpHが高い方が希土類元素、Al共に回収率が高くなる傾向にあること、及びDEHPAを抽出剤とする場合は、その濃度が高いほど、希土類元素、Al共に回収率が高くなるが、PC88Aを抽出剤とする場合は、その濃度が高いほど希土類元素の回収率は高くなるが、Alの回収率は濃度1.2M付近に極大点があることがあることがわかる。
〔実施例38~43〕
 実施例4で得られた表4に示す組成の浸出液を用い、前抽出を含む溶媒抽出法により不純物元素の除去と希土類元素の濃縮を実施した。この方法では、先ず、浸出液のpHを一旦3.0とし、析出した析出物を除去してから、再びpHを1.0又は1.25に調整した後、ケロシンでPC88Aを0.01~0.02M濃度に希釈した前抽出剤を用い、浸出液と前抽出剤とを液比1:1で3分間撹拌して接触させた後、液液分離させて前抽出有機相と抽出後水相とに分離した。続いて、回収された前抽出有機相について、ケロシンでDEHPAを0.8M濃度に希釈した抽出剤を用い、抽出有機相と抽出剤とを液比1:1で3分間撹拌して接触させた後、液液分離させて抽出有機相と抽出後水相とに分離した。
 抽出有機相については、6N-塩酸水溶液を逆抽出剤として、抽出有機相と逆抽出剤とを液比1:1で3分間撹拌して接触させた後、再び液液分離させて逆抽出後有機相と逆抽出水相とに分離し、希土類元素を抽出有機相から逆抽出水相へと移行させて分離し、回収した。
 逆抽出後有機相は、0.02N-塩酸水溶液を逆抽出剤として、逆抽出後有機相と逆抽出剤とを液比10:1で3分間撹拌して接触させた後、液液分離させて精製すれば、ケロシンでDEHPAを0.8M濃度に希釈した抽出剤として循環的に再利用することができる。
 この溶媒抽出法で回収された希土類元素と不純物の回収率を表7に示す。
Figure JPOXMLDOC01-appb-T000008
 表7に示される、実施例38~43の希土類元素と不純物の回収率によれば、実施例26と比較して、希土類元素の回収率は、ほぼ同等に保たれるが、不純物のうちのCaとTiの回収率が大きく低下していることがわかる。
〔実施例44~52〕
 実施例4で得られた表4に示す組成の浸出液を用い、溶媒抽出法により不純物元素の除去と希土類元素の濃縮を実施した。この溶媒抽出法では、先ず、浸出液のpHを一旦3.0とし、析出した析出物を除去してから、再びpHを1.0に調整した後、ケロシンでDEHPAを0.8M濃度に希釈した抽出剤を用い、浸出液と抽出剤とを液比1:1で3分間撹拌して接触させた後、液液分離させて抽出有機相と抽出後水相とに分離した。
 抽出有機相については、50質量%-硫酸水溶液を逆抽出剤として、抽出有機相と逆抽出剤とを液比1:1で1~180分間撹拌して接触させた。希土類元素を含む元素が固体硫酸塩として析出したので、固液分離によりこの希土類元素を含有する固体硫酸塩を回収した。
 逆抽出後有機相は、0.02N-塩酸水溶液を逆抽出剤として、逆抽出後有機相と逆抽出剤とを液比1:1で3分間撹拌して接触させた後、液液分離させて精製すれば、ケロシンでDEHPAを0.8M濃度に希釈した抽出剤として循環的に再利用することができる。
 この溶媒抽出法で回収された希土類元素と不純物の回収率を表8に示す。
Figure JPOXMLDOC01-appb-T000009
 表8に示される、実施例44~52の希土類元素と不純物の回収率によれば、Fe及びTiは、殆ど回収されない一方、希土類元素は、高い回収率で回収できること、並びにAlの回収率は逆抽出時間が長くなるほど高くなるが、逆抽出時間が5分間以下であれば、回収率は0.1%未満の低い値に保持することができることがわかる。
〔実施例53〕
 実施例4で得られた表4に示す組成の浸出液を用い、図1に示す2段階の溶媒抽出法により不純物元素の除去と希土類元素の濃縮を実施した。以下、図1を参照しながら説明する。
 この2段階溶媒抽出法では、先ず、浸出液(1)のpHを2.0に調整した後、ヘキサンでDEHPAを0.02M濃度に希釈した抽出剤を用い、抽出操作A(Ext.A)において浸出液(1)と抽出剤とを液比1:1で3分間撹拌して接触させた後、液液分離させて抽出有機相A(2)と抽出後水相A(3)とに分離した。
 このとき、YとDyは抽出有機相A(2)に、La-Ndまでの希土類元素は抽出後水相A(3)に、それぞれ含有される。
 抽出有機相A(2)については、0.2N-塩酸水溶液を逆抽出剤として、逆抽出操作A(R-Ext.A)において抽出有機相A(2)と逆抽出剤とを液比1:1で3分間撹拌して接触させた後、再び液液分離させて逆抽出後有機相A(4)と逆抽出水相A(5)とに分離し、YとDyとを抽出有機相A(2)から逆抽出水相A(5)へと分離した。
 逆抽出後有機相A(4)については、2N-塩酸水溶液を逆抽出剤として、精製操作(P)において逆抽出後有機相A(4)と逆抽出剤とを液比1:1で3分間撹拌して接触させた後、液液分離させて精製すれば、ヘキサンでDEHPAを0.02M濃度に希釈した抽出剤として循環的に再利用され、また、使用済みの逆抽出剤は廃液(W)として廃棄される。
 更に、上記のYとDyとを抽出有機相]A(2)から分離して含有する逆抽出水相A(5)については、ヘキサンでDEHPAを0.02M濃度に希釈した抽出剤を用い、抽出B(Ext.B)において逆抽出水相A(5)と抽出剤とを液比1:1で5分間撹拌して接触させた後、液液分離させて抽出有機相B(6)と抽出後水相B(7)とに分離し、抽出後水相B(7)は廃液(8)とした。
 上記の抽出有機相B(6)については、2N-塩酸水溶液を逆抽出剤として、逆抽出操作B(R-Ext.B)において抽出有機相B(6)と逆抽出剤とを液比1:1で5分間撹拌して接触させた後、液液分離させて逆抽出後有機相B(9)と逆抽出水相B(10)とに分離し、抽出有機相B(6)から、上記逆抽出水相B(10)へとYとDyとを移行させて分離し、回収No.1(11)として回収した。
 逆抽出後有機相B(9)は、図示外の上記精製操作(P)と同様にして、ヘキサンでDEHPAを0.02M濃度に希釈した抽出剤として循環的に再利用される。
 他方、上記の抽出後水相A(3)については、pHを2に調整した後、ヘキサンでDEHPAを0.8M濃度に希釈した抽出剤を用い、抽出操作C(Ext.C)において抽出後水相A(3)と抽出剤とを液比1:1で3分間撹拌して接触させた後、液液分離させて抽出有機相C(12)と抽出後水相C(13)とに分離し、抽出後水相C(13)は廃液(14)とした。
 上記抽出有機相C(12)については、0.1N-塩酸水溶液を逆抽出剤として、逆抽出操作C(R-Ext.C)において抽出有機相C(12)と逆抽出剤とを液比1:1で5分間撹拌して接触させた後、液液分離させて逆抽出後有機相C(15)と逆抽出水相C(16)とし、抽出有機相C(12)からCaを除去すると共に、Caを含む逆抽出水相C(16)は廃液(17)とした。
 そして、上記の逆抽出後有機相C(15)については、2N-塩酸水溶液を逆抽出剤とし、逆抽出操作D(R-Ext.D)において逆抽出後有機相C(15)と逆抽出剤とを液比1:1で5分間撹拌して接触させた後、液液分離させて逆抽出後有機相D(18)と逆抽出水相D(19)とに分離し、La-Ndまでの希土類元素を逆抽出後有機相C(15)から逆抽出水相D(19)へと分離し、この逆抽出水相D(19)に蓚酸を加えて希土類蓚酸塩を析出させ、La-Ndまでの希土類元素を回収No.2(20)として回収した。
 逆抽出後有機相D(18)は、図示外の上記精製操作(P)と同様にして、ヘキサンでDEHPAを0.8M濃度に希釈した抽出剤として循環的に再利用される。
 この2段階溶媒抽出法で回収された希土類元素の回収率と不純物の濃度を表9に示す。
〔実施例54〕
 実施例4で得られた表4に示す組成の浸出液を用い、蓚酸塩析出法により不純物元素の除去と希土類元素の濃縮を実施した。この蓚酸塩析出法においては、実施例4の浸出液について、この液中に含まれる希土類元素イオンの約1.5倍の化学等量の蓚酸を加えて希土類元素のみを蓚酸塩として沈殿させ、固液分離して希土類元素蓚酸塩を回収した。
 この蓚酸塩析出法で回収された希土類元素の回収率と不純物の濃度を表9に示す。
〔実施例55〕
 実施例4で得られた表4に示す組成の浸出液を用い、水酸化物析出法により不純物元素の除去と希土類元素の濃縮を実施した。この水酸化物析出法においては、先ず、実施例4の浸出液について、AlイオンとFeイオンの溶解度が小さく、希土類元素イオンの溶解度が大きなpH4.5に調整して、AlとFeを水酸化物として沈殿させ、固液分離して沈殿したAl及びFeの水酸化物を除去した後、更に苛性ソーダ液を加えてpHを11まで上昇させ、希土類元素イオンを水酸化物として沈殿させ、固液分離して希土類元素水酸化物を回収した。
 この水酸化物析出法による希土類元素の回収率と不純物の濃度を表9に示す。
Figure JPOXMLDOC01-appb-T000010

Claims (27)

  1.  希土類元素を含む浸出原料に水を添加し混合してスラリーを調製した上で、更に酸水溶液を添加し混合してpHを調整し、得られたスラリーを所定の条件下に保持して浸出原料中の希土類元素を酸水溶液中に移行させる浸出処理を行ない、次いで前記浸出処理後のスラリーを固液分離して希土類元素を含む浸出液を得る浸出工程と、この浸出工程で得られた浸出液から希土類元素を分離して回収する分離工程とを有する希土類元素の回収方法であり、
     前記浸出原料が、110℃及び2時間の乾燥条件で乾燥して得られた固体成分(S)中に、CaをCaOとして4~15質量%の割合で含むと共にTiをTiO2として2~13質量%の割合で含んでおり、
     前記酸水溶液が塩酸及び/又は硝酸を含む酸水溶液であって調整されるpHが0~2.7であり、かつ、
     前記浸出工程で行う浸出処理が温度160~300℃及び圧力0.65~10MPaの加熱加圧条件下で行なう温浸であって、この浸出工程では浸出原料中の希土類元素をCaと共に浸出させることを特徴とする希土類元素の回収方法。
  2.  前記浸出工程では、浸出原料中に含まれるCaの溶出率が90質量%以上に到達するまで温浸を行う請求項1に記載の希土類元素の回収方法。
  3.  前記浸出原料が、水酸化ナトリウム水溶液を用いてボーキサイトからアルミニウム分を採取するバイヤー工程で副生したボーキサイト残渣である請求項1又は2に記載の希土類元素の回収方法。
  4.  前記ボーキサイト残渣は、110℃及び2時間の乾燥条件で乾燥して得られた固体成分(S)中に、希土類元素をその酸化物として500~10000ppmの割合で含む請求項3に記載の希土類元素の回収方法。
  5.  前記ボーキサイト残渣に酸水溶液を添加して得られたスラリーは、固体成分(S)と液体成分(L)との固液比(L/S)が2~10であって、pH値が0~2.7である請求項3又は4に記載の希土類元素の回収方法。
  6.  前記ボーキサイト残渣に酸水溶液を添加して調製されたスラリー中に、ボーキサイト残渣中のFe成分に対して酸化剤を0.1~1当量の割合で添加する請求項3~5のいずれかに記載の希土類元素の回収方法。
  7.  前記スラリー中に添加される酸化剤が過酸化水素水又は過塩素酸水溶液である請求項6に記載の希土類元素の回収方法。
  8.  前記浸出工程で得られた浸出液にpH調整剤を添加してpH4~6に調整し、このpH調整で析出したFe及びAlの水酸化物を固液分離して除去した後、前記分離工程に供する請求項1~7のいずれかに記載の希土類元素の回収方法。
  9.  浸出液にpH調整剤を添加してpH4~6に調整するpH調整の際に、過酸化水素、過塩素酸、過マンガン酸、及び次亜塩素酸から選ばれた酸化剤を添加し、浸出液中のFe2+イオンを酸化してFe3+イオンにする請求項8に記載の希土類元素の回収方法。
  10.  前記希土類元素の分離工程では、前記浸出工程で得られた浸出液、又は、該浸出液をpH調整してFe及びAlを水酸化物として沈殿させ、固液分離して得られた液に、pH調整剤を添加してpH7以上に調整し、このpH調整で析出したCa及び希土類元素の水酸化物を固液分離して粗回収物として回収する請求項1~9のいずれかに記載の希土類元素の回収方法。
  11.  前記希土類元素の分離工程では、前記浸出工程で得られた浸出液、又は、該浸出液をpH調整してFe及びAlを水酸化物として沈殿させ、固液分離して得られた液に存在する希土類元素の化学当量以上の蓚酸を加えて希土類元素を蓚酸塩として析出させ、更に該蓚酸塩を固液分離して前記希土類元素を粗回収物として回収する、請求項1~9のいずれかに記載の希土類元素の回収方法。
  12.  前記希土類元素の分離工程では、前記浸出工程で得られた浸出液、又は、該浸出液をpH調整してFe及びAlを水酸化物として沈殿させ、固液分離して得られた液に、リン酸エステル類、ホスホン酸エステル類、ホスフィン酸エステル類、チオホスフィン酸エステル類、及びこれらのエステル類とリン酸トリブチル及び/又はトリオクチルホスフィンオキサイドとの混合物から選ばれたエステル類を、ヘキサンなどの脂肪族炭化水素、ベンゼン、トルエンなどの芳香族炭化水素、オクタノールなどのアルコール、及び石油分留物であるケロシンから選ばれた溶媒で希釈して得られた抽出剤を加えて溶媒抽出法により希土類元素を分離して回収する、請求項1~9のいずれかに記載の希土類元素の回収方法。
  13.  前記溶媒抽出法による分離工程に先駆けて、浸出液のpH調整時に発生した乳濁を予め濾過により除去する、請求項12に記載の希土類元素の回収方法。
  14.  前記溶媒抽出法による分離工程に先駆けて、浸出液をpH2.5~3.5に調整し、析出した析出物を除去する、請求項12に記載の希土類元素の回収方法。
  15.  前記溶媒抽出法による分離工程に先駆けて行うpH調整は、ボーキサイト残渣の添加により行われる、請求項14に記載の希土類元素の回収方法。
  16.  前記溶媒抽出法の抽出剤がDEHPAである、請求項12~15のいずれかに記載の希土類元素の回収方法。
  17.  前記溶媒抽出法の抽出剤としてのDEHPAの濃度が0.1~1.5Mである、請求項16に記載の希土類元素の回収方法。
  18.  前記溶媒抽出法の抽出時間が5分間以下である、請求項12~17のいずれかに記載の希土類元素の回収方法。
  19.  前記溶媒抽出法の抽出時間が0.5~3分間である、請求項18に記載の希土類元素の回収方法。
  20.  前記DEHPAを抽出剤として用いる溶媒抽出法に先駆けて、PC88A、リン酸トリブチル又はナフテン酸を前抽出剤として用いる浸出液の前抽出を行い、この浸出液からFe、Sc及びTiを分離除去する、請求項16~19のいずれかに記載の希土類元素の回収方法。
  21.  前記溶媒抽出法は、逆抽出剤が2N~8Nの塩酸水溶液であると共に、逆抽出時間が5分間以下である、請求項12~20のいずれかに記載の希土類元素の回収方法。
  22.  前記溶媒抽出法の逆抽出時間が0.5~3分間である、請求項21に記載の希土類元素の回収方法。
  23.  前記溶媒抽出法で用いる逆抽出剤が濃度30~70質量%の硫酸水溶液であり、希土類元素を固体硫酸塩として回収する、請求項12~20のいずれかに記載の希土類元素の回収方法。
  24.  前記溶媒抽出法の逆抽出時間が5分間以下である、請求項23に記載の希土類元素の回収方法。
  25.  前記溶媒抽出法において、使用済みの抽出剤に対して、2N~8Nの塩酸水溶液又はアルカリ水溶液を逆抽出剤とする逆抽出を行い、前記使用済みの抽出剤中に蓄積したSc、Ti、Thを低減させ、再生抽出剤として再利用する、請求項12~24のいずれかに記載の希土類元素の回収方法。
  26.  前記粗回収物から各元素への分離は、粗回収物を酸水溶液に溶解し、次いでリン酸エステル類、ホスホン酸エステル類、ホスフィン酸エステル類、チオホスフィン酸エステル類、及びこれらのエステル類とリン酸トリブチル及び/又はトリオクチルホスフィンオキサイドとの混合物から選ばれたエステル類を、ヘキサンなどの脂肪族炭化水素、ベンゼン、トルエンなどの芳香族炭化水素、及び石油分留物であるケロシンから選ばれた溶媒で希釈して得られた抽出剤を用いる溶媒抽出法で行なう請求項10~25に記載の希土類元素の回収方法。
  27.  前記粗回収物から各元素への溶媒抽出法による分離が向流多段溶媒抽出法である請求項26に記載の希土類元素の回収方法。
PCT/JP2012/081856 2011-12-09 2012-12-07 希土類元素の回収方法 WO2013085052A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/363,676 US9068249B2 (en) 2011-12-09 2012-12-07 Rare earth element recovery method
JP2013546492A JP5545418B2 (ja) 2011-12-09 2012-12-07 希土類元素の回収方法
CA2857263A CA2857263C (en) 2011-12-09 2012-12-07 Rare earth element recovery method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011270145 2011-12-09
JP2011-270145 2011-12-09

Publications (1)

Publication Number Publication Date
WO2013085052A1 true WO2013085052A1 (ja) 2013-06-13

Family

ID=48574402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081856 WO2013085052A1 (ja) 2011-12-09 2012-12-07 希土類元素の回収方法

Country Status (4)

Country Link
US (1) US9068249B2 (ja)
JP (1) JP5545418B2 (ja)
CA (1) CA2857263C (ja)
WO (1) WO2013085052A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103436697A (zh) * 2013-08-15 2013-12-11 南昌大学 一种处理含铝稀土料液的碳酸稀土结晶沉淀方法
JP5889455B1 (ja) * 2015-02-27 2016-03-22 日本軽金属株式会社 希土類元素の回収方法
JP2016108583A (ja) * 2014-12-03 2016-06-20 Dowaメタルマイン株式会社 貴金属製錬スラグからの希土類元素回収方法
JP2017179414A (ja) * 2016-03-28 2017-10-05 日立金属株式会社 軽希土類元素と重希土類元素を含む処理対象物から重希土類元素を溶出させる方法
JP2018538125A (ja) * 2015-10-19 2018-12-27 サントル・ナシオナル・ド・ラ・ルシェルシュ・シアンティフィックCentre National De La Recherche Scientifique 対象物内から希土類元素を回収する方法及び装置
CN112080654A (zh) * 2020-09-25 2020-12-15 贵州省地质矿产中心实验室(贵州省矿产品黄金宝石制品质量检验站) 一种磷稀土化学精矿浸出液中回收酸和硅的方法
KR20210029541A (ko) * 2019-09-06 2021-03-16 케이씨 주식회사 고백색도를 갖는 수산화알루미늄 제조 방법

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101600334B1 (ko) * 2014-09-22 2016-03-10 한국지질자원연구원 용매추출에 의한 레늄함유 용액으로부터 레늄의 선택적인 분리방법
FI20155097L (fi) * 2015-02-12 2016-08-13 Outotec Finland Oy Menetelmä ja järjestely harvinaisten maa-alkaliaineiden talteenottamiseksi ioniadsorptiosavista
JP6633885B2 (ja) * 2015-10-22 2020-01-22 太平洋セメント株式会社 土工資材の製造方法
JP6654758B2 (ja) * 2016-01-20 2020-02-26 太平洋セメント株式会社 レアアースを含有する残渣の処理方法
JP6633927B2 (ja) * 2016-02-01 2020-01-22 太平洋セメント株式会社 土工資材およびその製造方法
CN107151031B (zh) * 2016-03-02 2019-09-17 西安瑞鑫科金属材料有限责任公司 一种从铪钛富集渣中制备氧化铪的方法
JP6656964B2 (ja) * 2016-03-17 2020-03-04 太平洋セメント株式会社 粒状の土工資材およびその製造方法
CN105886757B (zh) * 2016-06-14 2017-11-14 中铝广西有色金源稀土有限公司 一种稀土萃取除杂装置
CN105907996B (zh) * 2016-06-22 2018-02-13 中铝广西有色金源稀土有限公司 一种萃取槽有机相本级回流装置
US10533239B2 (en) 2016-11-01 2020-01-14 Battelle Energy Alliance, Llc Methods of recovering rare earth elements from a material
CN107523695A (zh) * 2017-09-15 2017-12-29 安徽大学 一种粉煤灰中稀土元素的富集分离提取方法
US11186895B2 (en) 2018-08-07 2021-11-30 University Of Kentucky Research Foundation Continuous solvent extraction process for generation of high grade rare earth oxides from leachates generated from coal sources
US11466342B1 (en) * 2019-06-10 2022-10-11 Triad National Security, Llc System and method embodiments for element extraction and separation
CN110283997B (zh) * 2019-07-25 2020-11-27 南昌航空大学 一种四出口分组分离中钇富铕稀土矿的工艺流程
CN111471865A (zh) * 2020-05-26 2020-07-31 湖南稀土金属材料研究院 稀土抛光粉废料的回收方法
CN112281003B (zh) * 2020-11-02 2022-09-30 广西国盛稀土新材料有限公司 一种低品位硫酸稀土浸出液的除杂方法
CN114737056B (zh) * 2021-01-08 2023-11-03 厦门稀土材料研究所 一种有机萃取剂及其回收金属元素的方法和应用
CN114134317B (zh) * 2021-11-30 2023-08-18 神华准能资源综合开发有限公司 一种高含铝煤层夹矸中共伴生资源综合利用的方法
CN118006940B (zh) * 2024-04-10 2024-06-04 江苏南方永磁科技有限公司 一种稀土废料处理用回收萃取设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09184028A (ja) * 1995-12-13 1997-07-15 Cytec Technol Corp 希土類元素の抽出
JPH10212532A (ja) * 1996-09-26 1998-08-11 Fansteel Inc 各種金属化合物を含む複合体からタンタル化合物及び/又はニオブ化合物を回収する方法
JP2000313928A (ja) * 1999-04-26 2000-11-14 Taiheiyo Kinzoku Kk 酸化鉱石からニッケルとスカンジウムを回収する方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5946008A (ja) 1982-08-21 1984-03-15 Sumitomo Special Metals Co Ltd 永久磁石
JPS62165305A (ja) 1986-01-16 1987-07-21 Hitachi Metals Ltd 熱安定性良好な永久磁石およびその製造方法
US5030424A (en) * 1989-04-03 1991-07-09 Alcan International Limited Recovery of rare earth elements from Bayer process red mud
RU2293134C1 (ru) * 2005-05-26 2007-02-10 Институт химии и химической технологии СО РАН (ИХХТ СО РАН) Способ извлечения редкоземельных металлов и иттрия из углей и золошлаковых отходов от их сжигания
CN102127642B (zh) * 2011-03-26 2012-08-22 太原理工大学 一种从赤泥中富集稀土元素的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09184028A (ja) * 1995-12-13 1997-07-15 Cytec Technol Corp 希土類元素の抽出
JPH10212532A (ja) * 1996-09-26 1998-08-11 Fansteel Inc 各種金属化合物を含む複合体からタンタル化合物及び/又はニオブ化合物を回収する方法
JP2000313928A (ja) * 1999-04-26 2000-11-14 Taiheiyo Kinzoku Kk 酸化鉱石からニッケルとスカンジウムを回収する方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103436697A (zh) * 2013-08-15 2013-12-11 南昌大学 一种处理含铝稀土料液的碳酸稀土结晶沉淀方法
JP2016108583A (ja) * 2014-12-03 2016-06-20 Dowaメタルマイン株式会社 貴金属製錬スラグからの希土類元素回収方法
JP5889455B1 (ja) * 2015-02-27 2016-03-22 日本軽金属株式会社 希土類元素の回収方法
US10246759B2 (en) 2015-02-27 2019-04-02 Nippon Light Metal Company, Ltd. Method of recovering rare-earth elements
JP2018538125A (ja) * 2015-10-19 2018-12-27 サントル・ナシオナル・ド・ラ・ルシェルシュ・シアンティフィックCentre National De La Recherche Scientifique 対象物内から希土類元素を回収する方法及び装置
US11148957B2 (en) 2015-10-19 2021-10-19 Centre National De La Recherche Scientifique Method and system for recovering rare earth elements from within an object
JP2017179414A (ja) * 2016-03-28 2017-10-05 日立金属株式会社 軽希土類元素と重希土類元素を含む処理対象物から重希土類元素を溶出させる方法
KR20210029541A (ko) * 2019-09-06 2021-03-16 케이씨 주식회사 고백색도를 갖는 수산화알루미늄 제조 방법
KR102260312B1 (ko) 2019-09-06 2021-06-03 케이씨 주식회사 고백색도를 갖는 수산화알루미늄 제조 방법
CN112080654A (zh) * 2020-09-25 2020-12-15 贵州省地质矿产中心实验室(贵州省矿产品黄金宝石制品质量检验站) 一种磷稀土化学精矿浸出液中回收酸和硅的方法

Also Published As

Publication number Publication date
US20140283652A1 (en) 2014-09-25
JP5545418B2 (ja) 2014-07-09
CA2857263C (en) 2016-11-29
JPWO2013085052A1 (ja) 2015-04-27
CA2857263A1 (en) 2013-06-13
US9068249B2 (en) 2015-06-30

Similar Documents

Publication Publication Date Title
JP5545418B2 (ja) 希土類元素の回収方法
RU2588960C2 (ru) Способы извлечения редкоземельных элементов из алюминийсодержащих материалов
JP5598631B2 (ja) 希土類元素の回収方法
RU2595178C2 (ru) Способ извлечения редкоземельных элементов и редких металлов
JP5894262B2 (ja) 種々の鉱石から希土類元素を回収する方法
US5011665A (en) Nonpolluting recovery of rare earth values from rare earth minerals/ores
US5015447A (en) Recovery of rare earth elements from sulphurous acid solution by solvent extraction
CA2868363A1 (en) Processes for recovering rare earth elements and rare metals
CA2834151C (en) Processes for recovering rare earth elements from various ores
CA2790558A1 (en) Processes for recovering rare earth elements and rare metals
JPH01249623A (ja) 希土類元素とコバルトを含有する残留物の処理方法
JP2015036429A (ja) Ce回収方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12855137

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013546492

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2857263

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14363676

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12855137

Country of ref document: EP

Kind code of ref document: A1