WO2013084999A1 - 急速充電用電力供給システム - Google Patents

急速充電用電力供給システム Download PDF

Info

Publication number
WO2013084999A1
WO2013084999A1 PCT/JP2012/081675 JP2012081675W WO2013084999A1 WO 2013084999 A1 WO2013084999 A1 WO 2013084999A1 JP 2012081675 W JP2012081675 W JP 2012081675W WO 2013084999 A1 WO2013084999 A1 WO 2013084999A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
charging
vehicle
stationary
power supply
Prior art date
Application number
PCT/JP2012/081675
Other languages
English (en)
French (fr)
Inventor
菅野富男
Original Assignee
株式会社エネルギー応用技術研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エネルギー応用技術研究所 filed Critical 株式会社エネルギー応用技術研究所
Priority to KR1020147018782A priority Critical patent/KR101585117B1/ko
Priority to CN201280069354.0A priority patent/CN104137378B/zh
Priority to DE112012005145.9T priority patent/DE112012005145T5/de
Priority to JP2013548297A priority patent/JP5710783B2/ja
Priority to SG11201402835YA priority patent/SG11201402835YA/en
Priority to US14/363,734 priority patent/US9555715B2/en
Publication of WO2013084999A1 publication Critical patent/WO2013084999A1/ja
Priority to PH12014501198A priority patent/PH12014501198A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/52Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by DC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/11DC charging controlled by the charging station, e.g. mode 4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/122Circuits or methods for driving the primary coil, e.g. supplying electric power to the coil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/16Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/305Communication interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/31Charging columns specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/36Means for automatic or assisted adjustment of the relative position of charging devices and vehicles by positioning the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/63Monitoring or controlling charging stations in response to network capacity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/64Optimising energy costs, e.g. responding to electricity rates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/65Monitoring or controlling charging stations involving identification of vehicles or their battery types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L55/00Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • H02J3/322Arrangements for balancing of the load in a network by storage of energy using batteries with converting means the battery being on-board an electric or hybrid vehicle, e.g. vehicle to grid arrangements [V2G], power aggregation, use of the battery for network load balancing, coordinated or cooperative battery charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/34Cabin temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/42The network being an on-board power network, i.e. within a vehicle for ships or vessels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/342The other DC source being a battery actively interacting with the first one, i.e. battery to battery charging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Definitions

  • the present invention relates to an electric power supply system for rapid charging that can rapidly charge an electric mobile body such as a vehicle or a ship, and in particular, a rapid electric power that can rapidly charge two electric mobile bodies with different charging methods.
  • the present invention relates to a power supply system for charging.
  • An electric vehicle is superior in terms of environment because it does not emit exhaust gas, but has a problem that it takes a relatively long time to charge. In order to shorten the charging time, it is necessary to supply a large amount of power to the electric vehicle in a short time, and it is necessary to increase the power receiving capacity of the power equipment in an area where only the low voltage power line is laid. Therefore, a technique is known in which commercial AC power is rectified, DC power is stored in a large-sized storage battery, and a plurality of electric vehicles having different charging conditions are rapidly charged simultaneously using the stored DC power (for example, patents). Reference 1).
  • the electric vehicle disclosed in Patent Document 1 is equipped with a quick charge control unit suitable for an in-vehicle storage battery, and can be integrated with the in-vehicle storage battery and the quick charge control unit.
  • the present invention is capable of rapidly charging both an electric mobile body equipped with quick charge control means and an electric mobile body not equipped with quick charge control means using a single stationary quick charger.
  • An object of the present invention is to provide a power supply system for quick charging.
  • the invention described in claim 1 includes a first electric mobile body equipped with a quick charge control means and a second electric mobile body not equipped with the quick charge control means.
  • a rapid charging power supply system capable of supplying power for rapid charging, respectively, wherein rapid charging of on-vehicle power storage means mounted on the second electric mobile body with power supplied from a power source And a first charging circuit for supplying DC power from the stationary quick charger to the first electric mobile body.
  • a power supply switching means for switching to one of the second charging circuits for supplying to the second electric mobile body, and connected to the stationary quick charger side via the power supply switching means
  • the second electric mobile body is possible Charged by DC power supplied from the stationary quick charger to the first charging circuit side through the power supply switching means except when charging the on-vehicle power storage means, and at least the first electric type
  • the stationary power storage means capable of storing direct current power for direct transmission to the mobile body, the power supply switching means and the stationary power storage means, provided between the stationary power storage means and the direct current power output from the stationary power storage means
  • a power supply control means for stopping power supply from the stationary quick charger to the stationary power storage means when charging the on-vehicle power storage means of the first electric mobile body. Power supply system.
  • the electric power stored in the stationary power storage means is directly sent to the first electric mobile body equipped with the quick charge control means, and the voltage and current necessary for the quick charge are the first electric mobile body. It is optimally controlled by the quick charge control means mounted on the mobile body, and the power storage means of the first electric mobile body is quickly charged.
  • the second electric mobile body that is not equipped with the quick charge control means is supplied with electric power in which the voltage and current are optimally controlled from the stationary quick charger. Rapid charging of the power storage means of the electric mobile body is performed.
  • a part of the electric power stored in the stationary power storage means is supplied to the second through the stationary rapid charger.
  • the electric mobile body can be used for rapid charging of the on-vehicle power storage means.
  • the stationary power storage means converts DC power into AC power, and converts the converted AC power into a commercial power system. It is characterized in that an inverter to be supplied is connected.
  • the stationary quick charger is connected to the first electric mobile body connected to the first charging circuit.
  • DC power whose voltage and current for quick charging are not controlled.
  • the first electric mobile body is connected to a commercial AC power source or the stationary power storage means side. It has a power converter that converts AC power from the power supply means into DC power, and the quick charge control means is connected to the output side of the power converter.
  • the power input to the stationary quick charger is power generated using renewable energy. It is characterized by.
  • the rapid charging power supply system has the power supply switching means for switching and supplying the DC power output from the stationary quick charger. It is possible to quickly charge each of the first electric mobile body equipped with the quick charge control means and the second electric mobile body not equipped with the quick charge control means using the type quick charger. As a result, even when a traffic society in which a first electric mobile body and a second electric mobile body with different charging methods are used is realized, each electric The mobile body can be charged quickly.
  • the power supply control means causes the stationary quick charger to be stationary. Since the power supply to the power storage means is stopped, when the power source is a commercial AC power supply, the power storage system of the electric power company is used without using a large burden, and only the power stored in the stationary power storage means is used. One electric mobile body can be rapidly charged. Therefore, when the first charging circuit is used to perform quick charging, the first electric mobile body receives the maximum electric power required for the first electric mobile body from the stationary power storage means at once. And can be charged at ultra high speed. This makes it possible to quickly charge the first electric mobile body in a time comparable to the refueling time of a gasoline vehicle, shortening the waiting time for charging, and increasing the use rotation efficiency of the charging equipment Can do.
  • a part of the electric power stored in the stationary power storage means is used for quick charging of the on-vehicle power storage means of the second electric mobile body through the stationary quick charger. Since it is possible, even if it is a case where the 2nd electric vehicle is rapidly charged at the time of the peak of electric power demand, for example, it can avoid applying a big burden on a power transmission / distribution system.
  • the stationary power storage means is connected to the inverter that converts the DC power into the AC power and supplies the converted AC power to the commercial power system.
  • the power stored in the means can be supplied to the commercial power system, and the power load can be leveled.
  • the stationary quick charger can supply DC power whose voltage and current for quick charging are not controlled. Even when one electric mobile body is connected, the first electric mobile body can be rapidly charged using the quick charge control means of the first electric mobile body.
  • the first electric mobile body is a power converter that converts AC power from a non-contact type power feeding means connected to a commercial AC power source or a stationary power storage means side to DC power. Since the quick charge control means is connected to the output side of the power converter, the connection work of the charging connector is unnecessary, and the charging work labor can be remarkably reduced.
  • the electric power input to the stationary quick charger is electric power generated using renewable energy
  • the electric power that does not cause CO 2 emission in the quick charging. Can be used to prevent global warming.
  • FIG. 2 is a front view of the vicinity of a stationary power storage unit and a charging stand in the rapid charging power supply system of FIG. 1. It is an electric circuit diagram which shows the connection relation of the opening / closing means and vehicle in the electric power supply system for quick charge of FIG.
  • FIG. 2 is an electric circuit diagram of switching means in the rapid charging power supply system of FIG. 1. It is an electric circuit diagram of the charge control means of the vehicle in the power supply system for rapid charging of FIG. It is a schematic diagram of the cooling unit of the vehicle in the electric power supply system for quick charge of FIG.
  • FIG. 1 It is a flowchart which shows the control procedure of the electric power feeding control means in the electric power supply system for quick charge of FIG. It is a flowchart which shows the charge procedure in the electric power supply system for quick charge of FIG. It is a flowchart which shows the charge procedure in the electric power supply system for quick charge of FIG. 1, Comprising: It is a flowchart following FIG. It is a block diagram which shows the outline
  • FIG. 16 is an enlarged front view of a charging connector in the vehicle of FIG. 15.
  • FIG. 16 is a partially enlarged front view showing a connection relationship between the charging robot and the vehicle in FIG. 15.
  • FIG. 16 is a schematic diagram of the power supply system for quick charge concerning Embodiment 6 of this invention.
  • It is a perspective view of the charge plug in the electric power supply system for quick charge of FIG.
  • It is a schematic diagram of the power supply system for quick charge concerning Embodiment 7 of this invention.
  • It is a schematic diagram of the charge control circuit of the train of FIG.
  • FIG. 2 Reference numeral 1 denotes a commercial AC power source as a power source.
  • the AC power source 1 for example, a three-phase AC power source is used. Electric power from the AC power supply 1 is supplied into the building 3 through the power line 2.
  • a stationary quick charger 11 constituting the rapid charging power supply system 10, a power supply switching unit 11 m, a power supply control unit 12, and a first power storage unit 15 as a stationary power storage unit are provided. Other equipment is arranged.
  • the input side of the stationary quick charger 11 is connected to the power line 2 in the building 3.
  • the stationary quick charger 11 has a function of adjusting the three-phase AC power from the power line 2 to a predetermined voltage value and then converting it to DC power.
  • the power supply switching means 11 m is connected to the output side of the stationary quick charger 11.
  • the power supply switching means 11m is integrated with the stationary quick charger 11 as shown in FIG.
  • the power supply switching means 11m includes a first fixed contact a, a second fixed contact b, and a movable contact c.
  • the movable contact c of the power supply switching means 11m can come into contact with either the first fixed contact a or the second fixed contact b based on a signal S42 from the circuit control unit 11j. ing.
  • the first fixed contact a side of the power supply switching unit 11m is connected to the first power storage unit 15 via the power supply control unit 12.
  • the power supply control means 12 has a function of stopping the supply of the DC power output from the stationary quick charger 11 to the first power storage means 15 based on a signal S7 from the opening / closing means 30 as will be described later. .
  • the first power storage means 15 has a function of storing DC power from the stationary quick charger 11.
  • the first power storage means 15 may be of any type as long as it can store DC power, but in this embodiment, the first power storage means 15 includes at least one of a storage battery and an electric double layer capacitor. It is configured.
  • the 1st electrical storage means 15 may be comprised only from the control valve type lead storage battery which connected many cells in series, for example, and the structure which used the storage battery and the double layer capacitor together may be sufficient as it.
  • the first power storage means 15 may be composed of only a large-capacity double layer capacitor. Further, the storage battery may be composed of an expensive but large capacity lithium ion battery.
  • the stationary quick charger 11 has a function of rapidly charging a vehicle 53 that is a second electric mobile body not equipped with the rapid charging control means 80 by controlling an optimum charging voltage and charging current, and is stationary. This is for charging the first power storage means 15 as the type power storage means, and has a charging function in consideration of the charging characteristics of the first power storage means 15.
  • a sensor (not shown) for detecting a charging voltage and a charging current of the first power storage unit 15 is provided on the first power storage unit 15 side, and the first power storage unit 15 detects the charging voltage and the charge. It is charged by the stationary quick charger 11 based on the current.
  • the open voltage of the first power storage means 15 is, for example, about DC 380 V, but the open voltage can be changed by increasing or decreasing the number of cells.
  • a large number of cells constituting the first power storage means 15 are maintained in charge balance by a battery management system (BMS) (not shown) using a passive cell balance method or an active cell balance method.
  • BMS battery management system
  • the rapid charging power supply system 10 has a function of detecting the remaining capacity (residual power amount) of the first power storage means 15.
  • the first power storage unit 15 is connected to a capacity determination unit 93 that calculates the remaining capacity of the first power storage unit 15.
  • the capacity determination unit 93 includes a first power amount sensor (not shown) provided on the output side of the first power storage unit 15 and a second power amount sensor (not shown) provided on the input side of the first power storage unit 15. )
  • To calculate the remaining capacity of the first power storage means 15. Determination information from the capacity determination unit 93 is input to the power supply control unit 12 described later.
  • the capacity determination unit 93 determines that the remaining capacity of the first power storage unit 15 is equal to or less than a predetermined value, the power supply control unit 12 has received a charge request from the vehicle 50 as the second electric mobile body. However, the power supply to the first power storage means 15 is continued.
  • the first power storage means 15 has a plus terminal plate 17 and a minus terminal plate 18.
  • the positive terminal plate 17 and the negative terminal plate 18 are connected to the output side of the stationary quick charger 11 via the power supply control means 12.
  • the building 3 is provided with a positive common terminal plate 13 and a negative common terminal plate 14 that constitute a part of the first charging circuit 20A.
  • the plus common terminal plate 13 and the minus common terminal plate 14 are for supplying DC power from the first power storage means 15 to a plurality of charging stations 21 arranged outside the building 3.
  • the plus common terminal plate 13 and the minus common terminal plate 14 are connected to the opening / closing means 30 of the charging stand 21 via the first charging circuit 20A.
  • the first charging circuit 20A means an electric circuit for supplying DC power from the first power storage means 15 to a vehicle 50 as a first electric mobile body to be described later.
  • a plurality of vehicles are charged at the same time. Therefore, a plurality of charging circuits 20 ⁇ / b> A are connected in parallel to the plus common terminal plate 13 and the minus common terminal plate 14. Yes.
  • An air conditioner 16 is provided in the building 3 to keep the room temperature substantially constant throughout the year, and the lifetime of the first power storage means 15 is increased by keeping the room temperature substantially constant throughout the year. .
  • the charging station 21 is provided in a charging station near the building 3.
  • the charging station is provided with a plurality of charging stations 21, and each charging station 21 is supplied with DC power from the first power storage means 15 via the charging circuit 20A.
  • the charging stand 21 has an operation unit 22 and a display unit 26 on the side surface.
  • the operation unit 22 is provided with a charge card reader 23, a charge start switch 24, and a charge forced stop switch 25.
  • the display unit 26 is provided with a charge amount indicator 27, a charge current indicator 28, and a charge fee indicator 29.
  • a charging cable 35 constituting a part of the charging circuit 20 is connected to the opening / closing means 30 accommodated in the charging stand 21.
  • the charging cable 35 is held on the side surface of the charging stand 21 at times other than charging, and extends toward the vehicle 50 as a moving body at the time of charging.
  • a charging plug 36 that can be connected to the charging connector 65 of the vehicle 50 is provided at the tip of the charging cable 35.
  • FIG. 3 shows the connection relationship between the charging station 21 and the vehicle 50 during charging.
  • the charging plug 36 of the charging cable 35 is connected to the charging connector 65 of the vehicle 50 as the first electric mobile body.
  • DC power from the first power storage means 15 is supplied to the vehicle 50 via an opening / closing means 30 provided in the middle of the charging circuit 20.
  • the opening / closing means 30 is opened / closed by a signal from the operation unit 22 of the charging station 21 or a signal from the vehicle 50, and has a function of supplying or stopping DC power from the first power storage means 15 to the vehicle 50. ing.
  • DC power from the opening / closing means 30 is supplied to the vehicle 50 via the charging circuit 20A.
  • FIG. 4 shows the details of the opening / closing means 30.
  • the opening / closing means 30 includes a switch 31 and an opening / closing control unit 32.
  • the switch 31 has an opening / closing function for supplying or stopping the DC power supplied from the first power storage unit 15, and is composed of a semiconductor element or an electromagnetic contactor.
  • the switch 31 is configured to open and close based on a signal S21 from the open / close control unit 32.
  • a power sensor 34 is provided on the output side of the switch 31.
  • the power sensor 34 has a function of detecting the voltage and current of DC power on the output side of the switch 31.
  • a signal S6 is input from the power sensor 34 to the open / close control unit 32.
  • the signal S1 from the charging card reader 23, the signal S2 from the charging start switch 24, and the signal S3 from the forced charging stop switch 25 can be input to the open / close control unit 32.
  • signals S4, S5 and S20 from the charging control means 80 of the vehicle 50 can be input to the opening / closing control unit 32.
  • the open / close control unit 32 has a function of outputting a power supply stop signal S7 to the power supply control means 12 based on the input signal. That is, as shown in FIGS. 5 and 8, the open / close control unit 32 outputs a power supply stop signal S7 to the power supply control unit 12 based on the signal S2 input by the charge start switch 24 and supplies the power supply stop unit S15 to the first power storage unit 15.
  • Signals S8, S9, and S10 are output from the opening / closing control unit 32 to the display unit 26 of the charging station 21.
  • the signal S8 is a signal for causing the charge amount indicator 27 to display the charge amount (supply power amount) from the start of charging
  • the signal S9 is a charge current indicator 28 indicating the charge current flowing from the switch 31 to the vehicle 50 side. This is a signal for display.
  • the signal S ⁇ b> 10 is a signal for causing the charging fee display meter 29 to display a power charge corresponding to the amount of power supplied to the vehicle 50 from the start of charging to the end of charging.
  • the switch 31 is provided for the sake of convenience. Even if the switch 31 is not provided, the vehicle 50 can be rapidly charged if the first charging circuit 20A is provided.
  • the direct current power supplied to the vehicle 50 is controlled to a predetermined voltage and current by the quick charge control means 80 and then supplied to the second power storage means 85 as the in-vehicle power storage means.
  • the second power storage means 85 may be of any type as long as it has a function of storing DC power, but in this embodiment, at least a storage battery, an electric double layer capacitor, and a lithium ion capacitor are used. It consists of either one.
  • the second power storage means 85 is composed of, for example, only a lithium ion battery in which a large number of cells are connected in series.
  • the second power storage means 85 has a structure in which a storage battery and a double layer capacitor or a lithium ion capacitor are used in combination. There may be.
  • the DC power stored in the second power storage means 85 can be supplied to the travel motor 87 via the controller 86, and the vehicle 50 can travel using the travel motor 87 as a drive source.
  • a large number of cells constituting the second power storage means 85 are maintained in charge balance by a battery management system (BMS) (not shown) using a passive cell balance method or an active cell balance method.
  • BMS battery management system
  • the vehicle 50 is equipped with a cooling unit 60 for cooling the heat generating part in the charging system.
  • FIG. 5 shows the details of the quick charge control means 80.
  • the quick charge control unit 80 includes a power control unit 81 and a charge information processing unit 84.
  • the power control unit 81 includes a charge control unit 82 and a temperature control unit 83.
  • the charge control unit 82 has a quick charge control function for controlling the DC power from the opening / closing means 30 to a charge voltage and a charge current adapted to the second power storage means 85.
  • the charge control unit 82 has a DC chopper circuit (DC chopper circuit using both a step-up chopper circuit and a step-down chopper circuit) and a current control circuit.
  • the charging control unit 82 has a function of chopper-controlling the DC power supplied from the first power storage unit 15 based on the control signal S22 from the charge information processing unit 84, and charging the second power storage unit 85 with the optimum charging voltage. Have.
  • the voltage and current output from the charging control unit 82 to the second power storage unit 85 are measured by the output sensor 76, and the signal S 16 from the output sensor 76 is input to the charging information processing unit 84.
  • a high control accuracy is particularly required with respect to the charging voltage. Therefore, the quick charge control means 80 performs a high-accuracy charge control considering this.
  • the charge control unit 82 has a DC chopper circuit that uses a step-up chopper circuit and a step-down chopper circuit in combination, even if the voltage of the first power storage means 15 gradually decreases when the vehicle 50 is charged, the first control unit 82 By controlling the voltage from the power storage means 15 by the DC chopper circuit of the charge control unit 82, the second power storage means 85 can be charged with the optimum voltage. Therefore, the change in the output voltage of the first power storage unit 15 during the quick charge does not affect the charging of the second power storage unit 85.
  • the charging information processing unit 84 has a charging program for performing optimum rapid charging control on the second power storage unit 85 based on the detected battery voltage and charging current of the second power storage unit 85. It is input in advance.
  • the rapid charge control means 80 uses a power semiconductor such as a silicon carbide (SiC) semiconductor or a nitrogen gallium (GaN) semiconductor, and is intended to be used at a high temperature and have low loss in power conversion. Further, by using these power semiconductors for the quick charge control means 80, the rapid charge control means 80 can be reduced in size and weight, and the quick charge control means 80 can be mounted on the vehicle 50 remarkably easily. . Furthermore, since these power semiconductors have high power conversion efficiency, there is little heat generation from the rapid charge control means 80, and the rapid charge control means 80 is sufficiently cooled even in the cooling unit 60 using the electronic cooling element 61 described later. be able to.
  • a power semiconductor such as a silicon carbide (SiC) semiconductor or a nitrogen gallium (GaN) semiconductor
  • the vehicle 50 includes a charging history storage unit 80 a that stores a charging history of the second power storage unit 85 by the quick charging control unit 80.
  • the charging history storage unit 80a is connected to the quick charging control unit 80, and the charging result for each charging of the second power storage unit 85 by the quick charging control unit 80 (charging voltage, charging current, charging time, etc. at the time of quick charging) Charging data) is stored.
  • the vehicle 50 can estimate the lifetime of the second power storage unit 85 by grasping the number of times of charging and the charging result via the charging history storage unit 80a.
  • the information of the charging history storage unit 80a mounted on the vehicle 50 can be received by a data center (not shown) via wireless or the like, and the owner of the vehicle 50 can receive information from the data center. Based on this, it can be known that the replacement time of the second power storage means 85 is approaching.
  • a large number of signals are input and output to the charging information processing unit 84 of the quick charging control means 80.
  • the voltage measurement sensor 33 provided on the input side of the switch 31 in FIG. 4 has a function of measuring the output voltage of the first power storage means 15, and the signal S12 from the voltage measurement sensor 33 is received at the start of charging.
  • the information is input to the charging information control processing unit 84.
  • a signal S5 indicating that the vehicle 50 can be rapidly charged is sent from the charging information processing section 84 to the opening / closing control section 32 of the opening / closing means 30. Is output.
  • the vehicle 50 is provided with a lock sensor 71, an operation start confirmation sensor 72, a parking brake sensor 73, a charge amount indicator 74, and a charge end alarm 75.
  • the lock sensor 71 has a function of confirming that the charging plug 36 is connected to the charging connector 65 of the vehicle 50. Prior to the start of charging, the signal S11 from the lock sensor 71 is input to the charging information control processing unit 84.
  • the driving activation confirmation sensor 72 has a function of confirming activation of the vehicle 50. Prior to the start of charging, the signal S13 from the driving activation confirmation sensor 72 is input to the charging information control processing unit 84.
  • the parking brake sensor 73 has a function of confirming that the parking brake is operating so that the vehicle 50 does not move during charging.
  • the signal S14 from the parking brake sensor 73 is input to the charging information control processing unit 84.
  • the charge amount indicator 74 has a function of displaying the remaining power amount of the second power storage unit 85.
  • the charge information control processing unit 84 outputs a signal S18 to the charge amount indicator 74.
  • the charge end alarm 75 has a function of notifying the driver 88 that the second power storage means 85 has reached full charge.
  • the charging current flowing to the second power storage means 85 is measured by the current sensor 76, and it is determined whether or not the second power storage means 85 has reached full charge based on the signal S16 from the current sensor 76. 84.
  • the charge information control processing unit 84 outputs a signal S19 to the charge end alarm 75.
  • the charging end alarm 75 has a function of notifying the mobile phone 89 owned by the driver 88 that charging has ended by radio.
  • a signal S20 is output from the charging information control processing unit 84 to the opening / closing control unit 32 of the opening / closing means 30, and the vehicle 50 is charged by the shut-off operation of the switch 31. Is canceled.
  • the notification of the completion of charging is not limited to the mobile phone 89, and may be configured to be performed by a vehicle-dedicated communication means or the like.
  • FIG. 6 shows a configuration of a cooling unit 60 for cooling the charging system of the vehicle 50 as the first electric mobile body.
  • the cooling unit 60 includes an electronic cooling element 61, a motor 62, and a fan 63.
  • the fan 63 is rotationally driven by a motor 62 and blows air toward the cooling surface of the electronic cooling element 61.
  • the electronic cooling element 61 uses the Peltier effect, and operates with DC power from the first power storage means 15.
  • a first temperature sensor 77 and a second temperature sensor 78 are provided in a portion of the charging system of the vehicle 50 where heat is likely to be generated.
  • the first temperature sensor 77 has a function of detecting the temperature of the second power storage unit 85.
  • the second temperature sensor 78 has a function of detecting the temperature of the power control unit 81.
  • a signal S15 from the first temperature sensor 77 and the second temperature sensor 78 is input to the charging information processing unit 84.
  • the charging information processing unit 84 outputs a signal S17 to the temperature control unit 83 when the temperature at a specific location in the charging system of the vehicle 50 rises above a predetermined value.
  • the temperature control unit 83 is configured to supply DC power from the opening / closing means 30 to the cooling unit 60 based on the signal S17 from the charging information processing unit 84.
  • the power control unit 81 controls the large electric power supplied from the first power storage unit 15 during the rapid charging, there is a possibility that the temperature of the semiconductor element rises. Moreover, since the lithium ion battery which comprises the 2nd electrical storage means 85 is accommodated in the state which was closely packed with the storage space, temperature may rise at the time of quick charge. Therefore, the power control unit 81 and the second power storage unit 85 are forcibly cooled by the cold air from the cooling unit 60 when the temperature rises above a predetermined value due to rapid charging. In particular, in order to increase the cooling capacity of the semiconductor element of the power control unit 81 that is likely to become high temperature, a structure in which the electronic cooling element 61 is directly attached to the power control unit 81 may be employed.
  • the cooling structure using the electronic cooling element 61 is adopted, but the electronic cooling element 61 is not limited as long as the electric power supplied from the first power storage unit 15 is used.
  • the cooling structure may be a combination of a radiator and an electric fan, or may be a cooling structure that uses air that is forcibly cooled by a heat exchanger.
  • FIG. 10 shows details of the stationary quick charger 11.
  • the stationary quick charger 11 includes an input side current detection sensor 11a, an AC-DC converter 11b, a three-phase AC power control unit 11c, a DC-DC converter 11d, a DC power control unit 11e, and an output side current detection.
  • a sensor 11f, an operation unit 11g, a communication unit 11h, a display unit 11i, a circuit control unit 11j, and a changeover switch 11k are provided.
  • the input-side current detection sensor 11a is provided on the input side of the AC-DC converter 11b and has a function of detecting a current value input to the AC-DC converter 11b.
  • the AC-DC converter 11b has a function of converting commercial AC power from the power source 1 into DC power.
  • the three-phase AC power control unit 11c performs harmonic suppression of the input current, power factor improvement, and the like based on the signal from the input-side current detection sensor 11a.
  • the changeover switch 11k is provided between the AC-DC converter 11b and the DC-DC converter 11d.
  • the changeover switch 11k has a mechanical switching configuration having a contact point, but may be a contactless switching configuration using a semiconductor.
  • the changeover switch 11k includes a first fixed contact a, a second fixed contact b, and a movable contact c.
  • the movable contact c is capable of contacting either the first fixed contact a or the second fixed contact b based on a signal S43 from the circuit control unit 11j.
  • the first fixed contact a provided on the output side of the AC-DC converter 11b of the changeover switch 11k is connected to the input side of the DC-DC converter 11d via the movable contact c.
  • the DC-DC converter 11d is composed of an insulating transformer type DC-DC converter.
  • the DC-DC converter 11d has a function of converting a DC voltage into another DC voltage using a switching element.
  • the DC power control unit 11e controls the output voltage and charging current of the DC-DC converter 11d based on the signal from the output side current detection sensor 11f.
  • the operation unit 11g is a part for inputting a quick charge start operation or a charge stop manually, and is disposed on the outer surface side of the stationary quick charger 11.
  • the display unit 11i has a function of displaying a display necessary for operation, a numerical value related to charging, and the like by, for example, a liquid crystal display.
  • the communication unit 11h is composed of, for example, a CAN interface and has a function of exchanging information with the vehicle 53 on which the quick charge control unit 80 is not mounted.
  • the circuit control unit 11j has a function of controlling the power supply switching unit 11m, the changeover switch 11k, and the power supply switch 120 based on the signal S40 from the opening / closing unit 30 and the signal from the communication unit 11h.
  • Each part in the stationary quick charger 11 is connected to each other via a control circuit indicated by a dotted line, and performs a predetermined operation based on a signal from each part.
  • the second fixed contact b in the changeover switch 11k of the stationary quick charger 11 is connected to the output side of the first power storage means 15 as the stationary power storage means via the power supply circuit 111.
  • the DC power output from the first power storage means 15 can be input to the input side of the DC-DC converter 11d via the movable contact c of the changeover switch 11k. That is, the DC-DC converter 11d converts the DC power from the first power storage means 15 into power suitable for rapid charging of the vehicle 53, which is the second electric mobile body, based on the switching operation of the selector switch 11k. It is possible.
  • a power supply switch 120 is connected to the power supply circuit 111.
  • the power supply switch 120 is connected to an inverter 121 that converts DC power into AC power and supplies the converted AC power to the commercial power system.
  • the power supply switch 120 is configured to open and close based on a signal S44 from the circuit control unit 11j. In the state where the power supply switch 120 is closed, the inverter 121 converts the DC power from the first power storage unit 15 into AC power suitable for the frequency of the commercial power system using the switching element, and the converted AC power is converted into the AC power. It is designed to supply the commercial power system.
  • the changeover switch 11k and the power supply switch 120 are operated under certain conditions by an interlock circuit. When the power supply switch 120 is on, the movable contact c of the changeover switch 11k is an AC-DC converter. Only the fixed contact a on the 11b side is brought into contact. Further, when the movable contact c of the changeover switch 11k is in contact with the fixed contact b, the power supply switch 120 is turned on or off.
  • the circuit controller 11j receives a signal S40 from the opening / closing means 30 and a signal S41 from the vehicle 53 via the communication section 11h, and sends the signal S41 to the power supply switching means 11m based on the signals S40 and S41.
  • a signal S42 for circuit switching is output. That is, the power supply switching unit 11m has a function of supplying the power from the stationary quick charger 11 only to the first charging circuit 20A side except when the vehicle 53 is charged.
  • the power supply switching means 11m has a mechanical switching configuration having a contact, but may be a contactless switching configuration using a semiconductor. The first fixed contact a of the power supply switching unit 11m is connected to the input side of the power supply control unit 12.
  • the second fixed contact b of the power supply switching means 11m is connected to the second charging circuit 20B for rapidly charging the vehicle 53 as the second electric mobile body.
  • the second charging circuit 20B is mainly composed of a charging cable having a power line and a communication line, and a charging plug 110 is attached to the tip of the charging cable.
  • the charging plug 110 conforms to the configuration of the charging plug 36 of the first charging circuit 20A.
  • the second charging circuit 20B is based on a signal S41 from the vehicle 53 received by the communication unit 11h, from the DC-DC converter 11d that is optimally controlled for rapid charging of the second power storage means 85c mounted on the vehicle 53. Has a function of supplying the electric power to the vehicle 53 side. Since the quick charge control on the vehicle 50 side is performed by the quick charge control means 80 mounted on the vehicle 50 as described above, the vehicle 50 need not be charged by the DC-DC converter 11d.
  • a vehicle that can be charged by the rapid charging power supply system 10 of the present invention uses a motor as a prime mover.
  • the concept of the vehicle includes a sports car 51 in addition to the passenger car type vehicle 50 of FIG.
  • a bus 52 and a track 53 are included.
  • the vehicles to be rapidly charged include a transport vehicle, a railway vehicle, a tram, a monorail, a construction vehicle, a forklift, and the like. Since the number of cells, the capacity, and the like of the second power storage unit differ depending on the type of vehicle, the sports car 51 is equipped with a second power storage unit 85a different from the vehicle 50.
  • a second power storage unit 85 b is mounted on the bus 52, and a second power storage unit 85 c is mounted on the truck 53.
  • the sports car 51 has a charge control function suitable for the second power storage means 85a
  • the bus 52 has a quick charge control function suitable for the second power storage means 85b
  • the track 53 has a quick charge control function suitable for the second power storage means 85c.
  • FIG. 7 shows an operation procedure of control in the power supply control means 12.
  • step 151 it is determined whether or not there is a charging request for the vehicle 50 as the first electric mobile body. If it is determined in step 151 that there is a charge request for the vehicle 50, the process proceeds to step 152 where the signal S 7 is output from the opening / closing means 30 to the power supply control means 12, and the DC power from the stationary quick charger 11 is output. Supply to the first power storage means 15 is stopped. If it is determined in step 151 that there is no charge request for the vehicle 50, the process proceeds to step 153, and the supply of DC power from the stationary quick charger 11 to the first power storage unit 15 is continued.
  • the vehicle 50 can be charged by the DC power only from the first power storage unit 15.
  • the power supply control unit 12 may determine that the remaining capacity of the first power storage unit 15 is equal to or less than a predetermined value even if there is a charge request from the vehicle 50 when the capacity determination unit 93 determines. The power supply to the first power storage means 15 is continued.
  • FIGS. 8 and 9 show an operation procedure from the start of charging to the end of charging in the quick charging method of the electric mobile body equipped with the quick charging control means 80.
  • the vehicle 50 As the first electric mobile body arrives at the charging station, the vehicle 50 stops near the vacant charging station 21. Before starting charging, the operation switch (not shown) of the vehicle 50 is turned off, and the vehicle 50 is fixed at the stop position by the operation of the parking brake (not shown). Thereafter, as shown in step 161, a charging card (not shown) is inserted into the card reader 23 of the charging stand 21.
  • the charging card has the same function as cash, and the charging of the vehicle 50 can be started by inserting the charging card into the card reader 23.
  • step 162 the charging cable 35 held on the charging stand 21 is removed, and the charging plug 36 at the tip of the charging cable 35 is attached to the charging connector 65 of the vehicle 50.
  • the charging plug 36 is attached by pushing the charging plug 36 into the charging connector 65.
  • the complete attachment to the charging plug 36 means that the charging circuit 20 ⁇ / b> A is connected to the vehicle 50.
  • the mounting of the charging plug 36 is confirmed by the lock sensor 71 on the vehicle 50 side.
  • step 163 the process proceeds to step 163, and the charging start switch 24 of the charging stand 21 is turned on.
  • step 164 the power supply from the stationary quick charger 11 to the first power storage unit 15 is stopped. In this state, the stationary quick charger 11 and the first power storage means 15 are electrically disconnected, and the vehicle 50 can be charged by supplying power only from the first power storage means 15.
  • step 165 it is determined whether or not all the charging start conditions of the vehicle 50 have been confirmed.
  • step 165 the signal S11 from each lock sensor 71, the signal S12 from the voltage measurement sensor 33, the signal S13 from the driving start confirmation sensor 72, and the signal S14 from the parking brake sensor 73 are input. It is determined whether or not. If it is determined in step 165 that the charging start condition confirmation has been completed, the process proceeds to step 166, where the switch 31 of the charging circuit 20A is turned on, and charging of the vehicle 50 is started in step 167.
  • step 168 when charging of the vehicle 50 is started, the process proceeds to step 168 in FIG. 9, and it is determined whether or not the temperature of the charging system has increased. If it is determined in step 168 that the temperature of the charging system has risen above a predetermined value, the process proceeds to step 169, where the cooling unit 60 cools the power control unit 81 and the second power storage unit 85. If it is determined in step 168 that the temperature of the charging system is normal, the process proceeds to step 170 to determine whether or not there is an abnormality in the charging control function of the charging system. If it is determined in step 170 that there is an abnormality in the charge control function or the like, the process proceeds to step 174 where the switch 31 is turned off and charging is stopped.
  • step 170 If it is determined in step 170 that there is no abnormality in the charge control function or the like, the process proceeds to step 171. If it is desired to forcibly terminate the charging of the vehicle 50 at step 171, the process proceeds to step 178 where the forced charging stop switch 25 is turned on. When the forced charging stop switch 25 is turned on, the routine proceeds to step 174, where the switch 31 is turned off and charging is stopped.
  • the forced termination of charging is effective when the time for charging is limited, and the timing for stopping charging can be selected with reference to the charging current value displayed on the display unit 26 of the charging stand 21.
  • the cooling unit 60 is operated after detecting the temperature rise of the charging system. However, if the cooling of the charging system is insufficient only by natural heat dissipation, the charging unit 60 is charged before the start of charging or charging.
  • the cooling unit 60 may be operated simultaneously with the start.
  • step 173 it is determined whether the second power storage means 85 has reached full charge. This determination is made based on the measured value of the charging current in the second power storage unit 85. That is, whether or not the second power storage unit 85 has reached full charge is determined by the charge information processing unit 84 based on the signal S16 from the current sensor 76. If it is determined in step 173 that the second power storage means 85 has reached full charge, the process proceeds to step 174 where the switch 31 is turned off and charging is terminated. Next, the charging plug 36 is removed from the charging connector 65 of the vehicle 50.
  • step 177 a charging fee or the like is electrically written on a charging card (not shown) inserted in the card reader 23 of the charging stand 21, and a procedure for paying the electric fee to a bank or the like is online. Done. Thereafter, the charging card is taken out from the card reader 23.
  • the vehicle 50 can be charged in a short time. That is, the first power storage means 15 can store large power, for example, several hundred times as large as the power storage capacity of the second power storage means 85 of the vehicle 50. Since no charge control function is interposed between the first and second power storage units 50, the large power stored in the first power storage unit 15 can be directly sent to the vehicle 50 side without controlling the voltage and current, as shown in FIG. Simultaneous charging of a plurality of vehicles is possible without requiring a large-scale substation facility.
  • the vehicle 50 since the vehicle 50 has the quick charge control means 80, the vehicle 50 converts the DC power supplied from the first power storage means 15 to the optimum voltage and current for charging the second power storage means 85. Can be controlled. That is, the charge control function greatly affects the life of the second power storage means 85, and the charging characteristics and charge control of the second power storage means 85 are achieved by mounting the charge control means 80 on the vehicle 50. It is possible to design to match functions. Thereby, the 2nd electrical storage means 85 can exhibit the performance as expected, and the performance of the vehicle 50 can be improved.
  • the first power storage unit 15 When the vehicle 50 is charged, the first power storage unit 15 is electrically disconnected from the stationary quick charger 11 connected to the commercial AC power supply 1 by the power supply control unit 12, and the first power storage unit 15 is charged.
  • Electric power is supplied to the vehicle 50 only from the means 15.
  • the first power storage means 15 that is electrically disconnected from the stationary quick charger 11 can output pure DC power, and the DC power from the first power storage means 15 is controlled in voltage and current. Therefore, there is almost no need to consider the noise and surge of the supplied power in the design of the electric circuit of the vehicle 50, and the electric control of the vehicle 50 is based on the assumption that high quality electric power is supplied.
  • a circuit can be designed. Therefore, there is almost no need to consider ripple, noise, and surge with respect to the DC power supplied to the vehicle 50 in the quick charge, the design of the electric control circuit of the vehicle 50 is facilitated, and the electric control function of the vehicle 50 is improved. Reliability can be increased.
  • the charging procedure of only the vehicle 50 when a plurality of vehicles are charged simultaneously, the capacity or charge amount of the second power storage means 85, 85a, 85b is different. Therefore, the time for each vehicle to reach full charge is different.
  • the charging current is I1 of the vehicle 50, and the charging current of the sports car 51 is I2.
  • the charging current of the bus 52 is I3. If each vehicle is continuously charged, the charging current is significantly reduced compared to the beginning of charging, and the charging current hardly flows when the vehicle is nearly fully charged. And when the 2nd electrical storage means 85a, 85b reaches full charge, charge of each vehicle is stopped automatically.
  • the cooling unit 60 is used for cooling the charging system in this embodiment, the electronic cooling element 61 has not only a cooling surface but also a heat generating surface, so that the temperature in the vehicle 50 is adjusted. It also has a function to Therefore, the cooling unit 60 can be used not only for cooling the charging system but also as an air conditioner in the vehicle 50. If the cooling unit 60 using the electronic cooling element 61 is also used as an air conditioner, Freon gas or the like as a refrigerant is unnecessary as in the conventional air conditioner, which is desirable from the viewpoint of improving the global environment.
  • the rapid charging of the vehicle 53 as a second electric mobile body that is not equipped with the rapid charging control means 80 will be described.
  • the vehicle 53 is not equipped with the quick charge control means 80 and the cooling unit 60.
  • the forced cooling of the charging system at the time of rapid charging is performed by an electric fan (not shown) or the like using electric power from another power storage means (not shown) mounted on the vehicle 53.
  • the vehicle 53 When the mounting of the charging plug 110 to the vehicle 53 is completed, the vehicle 53 is connected to the stationary quick charger 11 side via the second charging circuit 20B. Thereby, communication between the vehicle 53 and the stationary quick charger 11 becomes possible.
  • a charging start button (not shown) of the operation unit 11g of the stationary quick charger 11 is pressed.
  • the stationary quick charger 11 transmits a status such as a range that can be output to the vehicle 53 and requests charging permission.
  • the vehicle 53 confirms that the status of the stationary quick charger 11 satisfies the charging start condition, and sends a charging permission signal.
  • the vehicle 53 determines an optimum charging current according to the state of the in-vehicle power storage unit 85c, and sends a current command.
  • the stationary quick charger 11 outputs a charging current according to the current command.
  • the optimum charging current is determined according to the state of the stationary quick charger 11 and the in-vehicle power storage unit 85c, and the current command is sent to perform the quick charging of the in-vehicle power storage unit 85c.
  • the vehicle 53 determines the completion of charging, or when the operator presses a charging end button (not shown) of the operation unit 11g, the quick charging is ended.
  • the rapid charging power supply system 10 can simultaneously charge the vehicles 50 and 53 with different charging methods under a certain condition, and can facilitate rapid charging.
  • the rapid charging power supply system 10 includes the power supply switching means 11m that switches and supplies the DC power output from the stationary quick charger 11, so that a single stationary rapid charger is provided. 11, the vehicle 50 equipped with the rapid charge control means 80 and the vehicle 53 not equipped with the rapid charge control means 80 can be rapidly charged. Thereby, even if it is a case where the traffic society where the vehicle 50 and the vehicle 53 which use different charging methods are mixed and used is realized, rapid charging of the respective vehicles 50 and 53 can be performed smoothly without causing confusion. .
  • the power supply control means 12 performs the stationary power storage means from the stationary quick charger 11. Since the power supply to the first power storage means 15 is stopped, when the power source 1 is a commercial AC power source, only the electric power stored in the first power storage means 15 is not imposed on the power source 1 side. Thus, the vehicle 50 can be rapidly charged. Therefore, when performing quick charging using the first charging circuit 20A, the maximum power required for the vehicle 50 to be rapidly charged can be supplied from the first power storage unit 15 to the vehicle 50 at once. Super fast charging is possible. As a result, the vehicle 50 can be rapidly charged in a time comparable to the refueling time of a gasoline automobile, the charging waiting time can be shortened, and the use rotation efficiency of the charging facility can be increased.
  • the first power storage means 15 Since a part of the electric power stored in the first power storage means 15 which is a stationary power storage means can be used for quick charging of the in-vehicle power storage means 85c of the vehicle 53 via the stationary quick charger 11, for example, Even when the vehicle 53 is rapidly charged at the peak of power demand, it is possible to avoid placing a heavy burden on the power transmission and distribution system.
  • the first power storage means 15 is connected to an inverter 121 that converts DC power to AC power and supplies the converted AC power to the commercial power system. Therefore, a switch 120 that operates based on the signal S44 is provided. Thus, the power stored in the first power storage means 15 can be supplied to the commercial power system, and the power load can be leveled.
  • the stationary quick charger 11 can supply DC power, which is not controlled to a voltage for quick charging, to the vehicle side by controlling the DC-DC converter 11d.
  • the second charging circuit 20B Even when the vehicle 50 is connected to the vehicle, the voltage of the DC power that is not controlled to the voltage for the quick charge is controlled to the optimum charge voltage for the second power storage means 85 using the quick charge control means 80.
  • the vehicle 50 can be rapidly charged.
  • the electric power input to the stationary quick charger 11 is electric power generated using renewable energy, electric power that does not involve CO 2 emission can be used for rapid charging, and global warming Prevention can be achieved.
  • FIG. 11 shows Embodiment 2 of the present invention, and shows a case where the present invention is applied to rapid charging of both a vehicle and a ship as an electric mobile body.
  • the difference between the second embodiment and the first embodiment is the type of the electric mobile body, and the other parts are the same as in the first embodiment. Therefore, the same reference numerals as those in the first embodiment are applied to the conforming parts. The description of the conforming part is omitted. The same applies to other embodiments described later.
  • a vehicle 50, an electric boat 100, and a passenger ship 101 are connected to each charging circuit 20 ⁇ / b> A connected in parallel to the first power storage unit 15, and the second power storage unit 85 of the vehicle 50. Then, the second power storage means 85d of the electric boat 100 and the second power storage means 85e of the passenger ship 101 can be supplied with power for rapid charging from the first power storage means 15. From the viewpoint of improving the global environment, it is desirable to promote the use of ships that are propelled by electric power. For example, a high-performance high-temperature superconducting motor is preferably used as the motor for the ship.
  • each of the second power storage means 85d and 85e since direct current power supplied from the first power storage means 15 is controlled for each ship, each of the second power storage means 85d and 85e has an optimum charging voltage and charging current. It is controlled and enables simultaneous rapid charging of various ships.
  • FIG. 11 only a ship equipped with the quick charge control means 80 d and 80 e is shown. However, as with the vehicle 53, the power from the stationary quick charger 11 is not used for the ship not equipped with the quick charge control means 80. Can be used for quick charging.
  • FIG. 12 shows the third embodiment of the present invention, and shows a modification of the first embodiment.
  • the wind power generator 5 and the solar cell 6 are power supply devices that do not use fossil fuels, and do not emit CO 2 during power generation, and thus are excellent in the environment.
  • wind power generation and solar power generation have a problem that it is difficult to cooperate with the power system because they are easily affected by the weather and output fluctuations are large.
  • the electric power from the wind power generator 5 and the solar cell 6 with large output fluctuations is stored in the first power storage means 15 as a stationary power storage means, and the stored power is used for the vehicle 50. It performs quick charging.
  • the first power storage means 15 it is desirable to select the most suitable type in consideration of the fact that the supplied power fluctuates greatly. Moreover, as shown in FIG. 12, it is good also as a structure which uses the fuel cell 7 which operate
  • Embodiment 3 since the electric power from the wind power generator 5 and the solar battery 6 with large output fluctuations can be stored in the first power storage means 15, various vehicles are utilized using the stored electric power. 50, 51, 52 can be rapidly charged.
  • the power generated by wind power generation and solar power generation with large output fluctuations is stored in a power storage battery, and the power load is leveled for cooperation with the power system.
  • the use of storage batteries for power storage only for leveling has increased power generation costs and has been one factor hindering the promotion of the use of renewable energy.
  • the power fluctuation from the wind power generator 5 and the solar battery 6 is stored in the first power storage means 15 and used for quick charging of the various vehicles 50, 51, 52, thereby changing the output. It is possible to compensate for the disadvantages of power generation by renewable energy that is large, and it is possible to promote the use of renewable energy such as sunlight and wind power.
  • FIG. 13 shows a fourth embodiment of the present invention.
  • a method of supplying power by bringing the conductor of the charging plug 36 into direct contact with the vehicle 50 is used.
  • a non-contact power supply method wireless power supply method
  • the non-contact power feeding method includes electromagnetic induction, electric field coupling (electrostatic induction), resonator coupling (magnetic field resonance, electric field resonance), etc.
  • non-contact using electromagnetic induction The power supply method is adopted.
  • the opening / closing means 30 is connected to an inverter 40 that converts direct current into alternating current.
  • the inverter 40 has a function of converting DC power from the first power storage means 15 into high-frequency AC.
  • the output side of the inverter 40 is connected to a primary side coil 95 embedded in the ground.
  • the primary coil 95 is embedded in the ground with only the upper surface exposed on the ground surface.
  • a secondary coil 96 is mounted on the floor of the vehicle 50. At the time of rapid charging, the vehicle 50 is stopped immediately above the primary side coil 95 so that the secondary side coil 96 faces the primary side coil 95.
  • high frequency power is supplied from the inverter 40 to the primary side coil 95, and AC power is induced in the secondary side coil 96 by electromagnetic induction.
  • the AC power generated in the secondary coil 96 is converted into DC power by a power converter (converter) 97, and the converted DC power is supplied to the quick charge control means 80.
  • the power feeding method by electromagnetic induction can be changed to the power feeding method by magnetic field resonance. it can.
  • the electric power from the first power storage unit 15 is supplied to the quick charge control unit 80 of the vehicle 50 in a non-contact state, and is charged as shown in FIG. Rapid charging is possible without using the plug 36. Therefore, mechanical connection is not required for rapid charging, and the rapid charging operation is significantly facilitated.
  • the vehicle 50 in FIG. 13 has a power converter (converter) 97, so that rapid charging is possible by inputting AC power supplied from the power source 1 to the power converter 97.
  • FIG. 5 shows the fifth embodiment of the present invention, which shows a case where the present invention is applied to an existing mobile phone base station 180.
  • FIG. The existing mobile phone base station 180 is provided with a movable power storage facility 200 as a retrofit.
  • a marine container is used as the power storage facility 200. Marine containers are stipulated in international standards and can be moved by ship anywhere in the world, which is very convenient in terms of distribution.
  • the marine container used as the power storage facility 200 has been modified to have a structure particularly suitable for power storage.
  • at least a stationary quick charger (not shown), the power supply control unit 12, and the first power storage unit 15 are housed in the power storage facility 200.
  • a stationary quick charger (not shown) for rapidly charging the first power storage means 15 is a power supply switching means (not shown) similar to the power supply switching means 11m of FIG. By using this, not only the vehicle 50 but also a vehicle not equipped with the quick charge control means 80 can be rapidly charged.
  • the quick charging of the vehicle 50 is performed with the assistance of the charging robot 210.
  • three charging robots 210 are arranged in the vicinity of the power storage facility 200 in order to rapidly charge a plurality of vehicles 50 at the same time.
  • the three charging robots 210 are protected from rainwater during rainy weather by a roof (not shown) provided above.
  • the charging robot 210 includes a robot body 211, a first movable arm 212, a second movable arm 213, and a charging arm 214.
  • a charging stand 21 is provided on a side surface of the robot body 211.
  • the charging stand 21 is electrically connected to each device in the power storage facility 200 via a cable 204.
  • the first movable arm 212 is movable in the vertical direction and the horizontal direction (three-dimensional directions of the X, Y, and Z axes in FIG. 5).
  • the second movable arm 213 is provided at the tip of the first movable arm 212 and can swing up and down with respect to the first movable arm 212 around the fulcrum 213a.
  • a charging plug 30 that can be coupled to the charging connector 54 of the vehicle 50 is attached to the charging arm 214.
  • a visual sensor 214 a for visually recognizing the charging connector 54 of the vehicle 50 is provided at the tip of the charging arm 214.
  • the charging robot 210 controls the first movable arm 212 and the second movable arm 213 based on the image information from the visual sensor 214a, and couples the charging plug 36 with the charging connector 54 of the vehicle 50 in an optimal positional relationship. It has a function to make it.
  • the charging arm 214 can move forward and backward with respect to the second movable arm 213, and has a function of fitting the charging plug 36 to the charging connector 54.
  • FIG. 16 shows the charging connector 54 of the vehicle 50.
  • the charging connector 54 has a housing 54 a having electrical insulation that can be fitted to the charging plug 36.
  • the housing 54a is provided with a minus electrode 54b and a plus electrode 54c for supplying power in the left-right direction. Further, inside the housing 54a, communication terminals 54d and 54e for performing communication between the vehicle 50 and the power feeding side are respectively provided in the vertical direction.
  • the housing 54a is fixed to the vehicle front portion 51 via a bolt 54f.
  • FIG. 17 shows a mounting structure of the charging connector 54 in the vehicle 50.
  • the charging connector 54 is located in the vehicle front portion 51 of the vehicle 50 and is usually covered with a protective cover 52.
  • a license plate (automobile registration number mark) 53 for identifying the vehicle 50 is attached to the outer surface side of the protective cover 52. That is, the charging connector 54 is provided at a position facing the number plate 53.
  • the reason why the charging connector 54 is provided at a position facing the license plate 53 in the vehicle front portion 51 is that there is no significant difference in height from the ground surface GL to the license plate 53 in most vehicles, and automatic charging by the charging robot 210 is automated. This is because it becomes easy.
  • the protective cover 52 to which the number plate 53 is attached is supported so as to be swingable in the vertical direction with respect to the vehicle front portion 51.
  • One end portion 52a of the protective cover 52 is rotatable to the vehicle front portion 51 via a shaft 52b.
  • a lock fitting 52d that can be engaged with a lock mechanism portion 51a provided in the vehicle front portion 51 is provided.
  • the charging connector 54 is covered with the protective cover 52.
  • the protective cover 52 is provided with an interlocking arm 52c.
  • a cable wire 52e for opening and closing the protective cover 52 from the driver seat side of the vehicle 50 is connected to the interlocking arm 52c.
  • the cable wire 52e is interlocked with an electric motor (not shown), and the protective cover 52 can be opened and closed automatically.
  • the vehicle 50 in order to rapidly charge the vehicle 50, first, the vehicle 50 is brought close to the charging robot 210, and the front wheels of the vehicle 50 are brought into contact with the vehicle stop 205 provided on the ground surface GL. In this state, the vehicle 50 is stopped and the parking brake is operated. Thereafter, the protective cover 52 of the vehicle front portion 51 is opened by the operation from the driver's seat, and the charging connector 54 is exposed.
  • the driver gets out of the driver's seat and operates the charging robot operation switch (not shown) of the charging stand 21 to activate the charging robot 210.
  • the charging robot 210 has the visual sensor 214 a
  • the charging robot 36 is controlled by controlling the first movable arm 212 and the second movable arm 213 based on the image information from the visual sensor 214 a and the charging plug 36 of the vehicle 50.
  • the charging connector 54 is positioned so as to have an optimal positional relationship.
  • the charging arm 214 moves forward toward the vehicle front portion 51, and the charging plug 36 is fitted into the charging connector 54. In this state, the charging connector 54 and the charging plug 36 are electrically coupled, and preparation for rapid charging of the vehicle 50 is completed. Thereafter, signal exchange between the power supply side and the vehicle 50 side is performed, and when the preparation conditions are satisfied, the vehicle 50 is rapidly charged.
  • the rapid charging of the vehicle 50 is performed using the electric power stored in the first power storage unit 15, a large amount of power can be supplied from the first power storage unit 15 to the vehicle 50 at once, and the charging is very Complete in a fast time.
  • the charging arm 214 is retracted by the signal from the vehicle 50 in the charging robot 210, and the charging plug 36 is pulled out from the charging connector 54. Thereafter, the first movable arm 212 moves backward, and the first movable arm 212 returns to the initial position.
  • the quick charging of the vehicle 50 is performed with the assistance of the charging robot 210, the burden on the driver due to the quick charging can be reduced, and the charging operation is significantly easier than the quick charging by manual operation.
  • the license plate at the front part of the vehicle is mounted at almost the same position all over the world, it is possible to deal with almost all vehicle types with one charging robot 210, and the charging robot 210 can be shared. . Thereby, the charging robot 210 can be spread worldwide, and the international standardization of the charging robot 210 can be achieved.
  • Embodiment 6 show Embodiment 6 of the present invention.
  • the vehicle 50 in the sixth embodiment is equipped with a normal charger 90 that enables charging at home in addition to the quick charge control means 80.
  • the ordinary charger 90 charges the vehicle 50 over a long time (several hours to several tens of hours), and has a power conversion capability of about 2 to 3 KW, for example.
  • the normal charger 90 has a function of converting AC power of voltage 100V or 200V supplied from the AC power source 1 into DC voltage and current suitable for normal charging of the second power storage unit 85.
  • the vehicle 50 includes a charge switching circuit 91 that switches the second power storage unit 85 to either quick charge or normal charge.
  • FIG. 19 shows a common charging plug 36 ′ called a “combo method” that can perform both quick charging and normal charging with a single charging plug.
  • the common charging plug 36 ' has a quick charging connection part 36a and a normal charging connection part 36b.
  • a quick charging cable 35a capable of flowing a large current is connected to the quick charging connecting portion 36a.
  • a normal charging cable 35b is connected to the normal charging connection portion 36b.
  • a communication cable (not shown) for transmitting and receiving signals between the vehicle 50 and the AC power supply 1 side or the first power storage means 15 side is connected to the common charging plug 36 ′.
  • the charge switching circuit 91 of the vehicle 50 performs a switching operation based on a signal sent to the vehicle 50 from the AC power supply 1 side or the first power storage means 15 side via the common charging plug 36 ′.
  • the charge switching circuit 91 is switched to the quick charge control means 80 side, and the second power storage means 85 is rapidly charged with the DC power controlled by the quick charge control means 80.
  • the charge switching circuit 91 is switched to the normal charger 90 side by a signal sent from a control device (not shown) provided on the AC power source 1 side, and the second power storage means 85 is controlled by the normal charger 90. Normal charging is performed by the direct-current power. In this way, since one quick charging and normal charging can be performed with one common charging plug 36 ′, handling during charging is easier than when two charging plugs for quick charging and normal charging are provided. Thus, the charging device can be simplified.
  • Embodiment 7 has shown the case where it applies to charge of the train 300 carrying a storage battery.
  • the train 300 includes quick charge control means 80, second power storage means 85, an inverter 86, and a travel motor 87.
  • a charging pantograph 301 that can be raised and lowered is provided on the roof side of a train 300 that travels on a traveling rail 302.
  • the stationary quick charger 11, the power supply control means 12, and the first power storage means 15 are arranged.
  • a charging conductor 305 is provided at a position adjacent to the charging building 303 via an insulating column 304 fixed to the ground side.
  • the charging conductor 305 is made of a strip-shaped copper alloy extending in the horizontal direction. Charging conductor 305 is electrically connected to first power storage means 15 via charging circuit 20A.
  • the charging pantograph 301 of the train 300 is in contact with the charging conductor 305 when it is raised.
  • the stationary quick charger 11 uses a power supply switching means (not shown) similar to the power supply switching means 11m in FIG. Charging is also possible.
  • the train 300 travels on the traveling rail 302 toward the charging building 303 when the remaining capacity of the second power storage unit 85 has decreased due to operation, and is charged. Stop in front of the building 303.
  • the driver raises the charging pantograph 301 by remote control and brings it into contact with the charging pantograph 305.
  • the DC power stored in the first power storage means 15 is supplied to the train 300 via the charging conductor 305.
  • the direct-current power supplied to the train 300 is controlled by the quick charge control means 80 so that the optimum charging voltage and current for rapid charging of the second power storage means 85 are controlled, and the second power storage means 85 mounted on the train 300 is controlled. Rapid charging is performed.
  • the charging pantograph 301 is lowered and the power supply from the first power storage unit 15 to the train 300 is stopped. Then, the train 300 travels away from the charging building 303 as shown in FIG. 21 and starts operation again.
  • the first to seventh embodiments of the present invention have been described in detail.
  • the specific configuration is not limited to these embodiments, and there are design changes and the like within a range not departing from the gist of the present invention.
  • electric vehicles subject to rapid charging are so-called transportation machines including vehicles, ships, and aircraft, and are not limited to those that move over long distances, but construction machines, robots, forklifts, and other industrial machines that have a small moving range.
  • the fossil fuel used for the fuel cell 7 shown in FIG. 12 may be liquid or gas.
  • the electric power generated by renewable energy (natural energy) supplied to the stationary quick charger 11 is not limited to wind power generation and solar power generation, but also includes biomass power generation, marine energy such as wave power and ocean current, and the like. Of course, it is included.
  • the rapid charging power supply system 10 may be installed in an existing fueling station, or may be provided in a mobile phone base station having a backup large-capacity storage battery in case of a power failure.
  • the rapid charging power supply system 10 can rapidly accelerate the vehicle and the ship at the same place. Therefore, when applied to a fishing port or the like, a single stationary rapid charging is possible.
  • the vessel 11 can be used to rapidly charge an electric vehicle and an electric fishing boat that carry seafood.
  • the present invention can be applied not only to a pure electric vehicle that runs only by a motor, but also to a quick charge of a plug-in hybrid vehicle (PHV) that has an engine and a motor and can run only by the engine or the motor. is there.
  • PGV plug-in hybrid vehicle

Abstract

急速充電用電力供給システムは、電源1から供給される電力を第2の電動式移動体53に搭載された車載型蓄電手段85cの急速充電に最適な直流電力に制御する据置型急速充電器11と、据置型急速充電器11からの直流電力を第1の電動式移動体50に供給するための第1の充電回路20Aと第2の電動式移動体53に供給するための第2の充電回路20Bのいずれかに切替えて供給する電力供給切替手段11mと、据置型急速充電器11から電力供給切替手段11mを介して第1の充電回路20A側に供給される直流電力によって充電され少なくとも第1の電動式移動体50に直送するための直流電力を貯蔵可能な据置型蓄電手段15と、据置型蓄電手段15から出力される直流電力による第1の電動式移動体50の車載型蓄電手段85の充電時には据置型急速充電器11からの据置型蓄電手段15への給電を中止する給電制御手段12とを備える。

Description

急速充電用電力供給システム
 本発明は、車両や船舶等の電動式移動体を急速充電することが可能な急速充電用電力供給システムに関し、とくに充電方式が異なる二つの電動式移動体をそれぞれ急速充電することが可能な急速充電用電力供給システムに関する。
 電気自動車は、排気ガスを放出しないため環境面で優れているが、充電に比較的長い時間を要するという問題がある。充電時間を短縮するためには、短時間に大電力を電気自動車に供給する必要があり、低圧電力線のみが敷設されている地域では、電力設備の受電容量を大きくする必要がある。そこで、商用交流電力を整流して大型蓄電池に直流電力を貯蔵し、貯蔵された直流電力を利用して、充電条件が異なる複数の電気自動車を同時に急速充電する技術が知られている(例えば特許文献1参照。)。この特許文献1の電気自動車は、車載型蓄電池に適した急速充電制御手段を搭載しており、車載型蓄電池と急速充電制御手段との一体設計が可能となっている。
 電気自動車の急速充電するための方式としては、現在のところ種々の方式が提案されている。そのうちの一つとして、屋外などに設けられた据置型急速充電器で電気自動車に搭載された蓄電池に適した充電制御を行い、この充電制御された電力を介して電気自動車に供給する方式が存在する(例えば特許文献2参照。)。
特許4731607号公報 特開2007-336778号公報
 しかし、特許文献2の充電方式に対応する電気自動車は、急速充電制御手段を搭載していないため、この方式では1つの据置型急速充電器で1台ずつしか急速充電することができず、充電のための待ち時間が長くなるという問題がある。また、電気自動車は、現在のところ十分に普及していないので、特許文献2の据置型急速充電器も頻繁に使用されておらず、稼働率が低いという問題がある。したがって、据置型急速充電器を単に急速充電制御手段を搭載していない電気自動車だけに使用するのではなく、特許文献1のように、急速充電制御手段を搭載するタイプの電気自動車の急速充電にも使用できれば、据置型急速充電器の有効利用が図れ、非常に有益である。
 今日では、地球環境の改善の観点から車両、船舶などの移動体の電動化が急速に進められており、単一の据置型急速充電器を利用して異なる充電方式に対応可能な急速充電用電力供給システムの開発が求められる。
 そこで、本発明は、急速充電制御手段を搭載した電動式移動体と急速充電制御手段を搭載しない電動式移動体の双方を、単一の据置型急速充電器を用いてそれぞれ急速充電することが可能な急速充電用電力供給システムを提供することを目的とする。
 上記目的を達成するために請求項1に記載の発明は、急速充電制御手段を搭載した第一の電動式移動体と、前記急速充電制御手段を搭載しない第二の電動式移動体とに、急速充電のための電力をそれぞれ供給することが可能な急速充電用電力供給システムであって、電源から供給される電力を前記第二の電動式移動体に搭載された車載型蓄電手段の急速充電に最適な電圧および電流となる直流電力に制御する据置型急速充電器と、前記据置型急速充電器からの直流電力を、前記第一の電動式移動体に供給するための第一の充電回路と前記第二の電動式移動体に供給するための第二の充電回路のいずれかに切替えて供給する電力供給切替手段と、前記電力供給切替手段を介して前記据置型急速充電器側と接続可能で、前記第二の電動式移動体の前記車載型蓄電手段の充電時以外は、前記据置型急速充電器から前記電力供給切替手段を介して前記第一の充電回路側に供給される直流電力によって充電され、少なくとも前記第一の電動式移動体に直送するための直流電力を貯蔵可能な据置型蓄電手段と、前記電力供給切替手段と前記据置型蓄電手段との間に設けられ、前記据置型蓄電手段から出力される直流電力による前記第一の電動式移動体の車載型蓄電手段の充電時には、前記据置型急速充電器からの前記据置型蓄電手段への給電を中止する給電制御手段と、を備えたことを特徴とする急速充電用電力供給システムである。
 この発明によれば、急速充電制御手段を搭載した第一の電動式移動体へは、据置型蓄電手段に貯蔵された電力が直送され、急速充電に必要な電圧および電流は、第一の電動式移動体に搭載された急速充電制御手段によって最適に制御され、第一の電動式移動体の蓄電手段の急速充電が行われる。これに対し、急速充電制御手段を搭載しない第二の電動式移動体へは、据置型急速充電器から電圧および電流が最適に制御された電力が供給され、この制御された電力によって第二の電動式移動体の蓄電手段の急速充電が行われる。
 請求項2に記載の発明は、請求項1に記載の急速充電用電力供給システムにおいて、前記据置型蓄電手段に貯蔵された電力の一部は、前記据置型急速充電器を介して前記第二の電動式移動体の前記車載型蓄電手段の急速充電に使用可能であることを特徴としている。
 請求項3に記載の発明は、請求項1に記載の急速充電用電力供給システムにおいて、前記据置型蓄電手段には、直流電力を交流電力に変換し、変換された交流電力を商用電力系統に供給するインバータが接続されていることを特徴としている。
 請求項4に記載の発明は、請求項1に記載の急速充電用電力供給システムにおいて、前記据置型急速充電器は、前記第一の充電回路に接続された前記第一の電動式移動体に対し、急速充電のための電圧および電流が制御されていない直流電力を供給することが可能であることを特徴としている。
 請求項5に記載の発明は、請求項1に記載の急速充電用電力供給システムにおいて、前記第一の電動式移動体は、商用交流電源または前記据置型蓄電手段側に接続される非接触式給電手段からの交流電力を直流電力に変換する電力変換器を有しており、該電力変換器の出力側には、前記急速充電制御手段が接続されていることを特徴としている。
 請求項6に記載の発明は、請求項1に記載の急速充電用電力供給システムにおいて、前記据置型急速充電器に入力される電力は、再生可能エネルギーを利用して発電された電力であることを特徴としている。
 請求項1に記載の発明によれば、急速充電用電力供給システムは、据置型急速充電器から出力される直流電力を切替えて供給する電力供給切替手段を有しているので、単一の据置型急速充電器を用いて、急速充電制御手段を搭載した第一の電動式移動体と急速充電制御手段を搭載しない第二の電動式移動体とをそれぞれ急速充電することが可能となる。これにより、充電方式が異なる第一の電動式移動体と第二の電動式移動体が混在して使用される交通社会が実現した場合であっても、混乱を招くことなく円滑に各電動式移動体の急速充電を行うことができる。
 また、請求項1に記載の発明によれば、据置型蓄電手段から出力される直流電力による第一の電動式移動体の蓄電手段の充電時には、給電制御手段によって据置型急速充電器からの据置型蓄電手段への給電を中止するので、電源が商用交流電源である場合は、電力会社の送配電系統に大きな負担をかけることなく、据置型蓄電手段に貯蔵された電力のみを利用して第一の電動式移動体の急速充電が可能となる。したがって、第一の充電回路を使用して急速充電を行う場合は、第一の電動式移動体が急速充電に必要とする最大限の電力を据置型蓄電手段から一気に第一の電動式移動体に供給することができ、超高速充電が可能となる。これにより、第一の電動式移動体をガソリン自動車の給油時間と同程度の時間で急速充電することが可能となり、充電待ち時間を短縮することができるとともに、充電設備の利用回転効率を高めることができる。
 請求項2に記載の発明によれば、据置型蓄電手段に貯蔵された電力の一部は、据置型急速充電器を介して第二の電動式移動体の車載型蓄電手段の急速充電に使用可能であるので、例えば電力需要のピーク時に第二の電動式移動体を急速充電する場合であっても、送配電系統に大きな負担をかけることを回避することができる。
 請求項3に記載の発明によれば、据置型蓄電手段には、直流電力を交流電力に変換し、変換された交流電力を商用電力系統に供給するインバータが接続されているので、据置型蓄電手段に貯蔵された電力を商用電力系統に供給することが可能となり、電力負荷の平準化を図ることができる。
 請求項4に記載の発明によれば、据置型急速充電器は、急速充電のための電圧および電流が制御されていない直流電力を供給することが可能であるので、第二の充電回路に第一の電動式移動体を接続した場合でも、第一の電動式移動体の急速充電制御手段を使用して第一の電動式移動体を急速充電することが可能となる。
 請求項5に記載の発明によれば、第一の電動式移動体は、商用交流電源または据置型蓄電手段側に接続される非接触式給電手段からの交流電力を直流電力に変換する電力変換器を有しており、電力変換器の出力側には急速充電制御手段が接続されているので、充電コネクタの接続作業などが不要となり、充電作業労力を著しく軽減することができる。
 請求項6に記載の発明によれば、前記据置型急速充電器に入力される電力は、再生可能エネルギーを利用して発電された電力であるので、急速充電にCOの排出を伴わない電力を用いることができ、地球温暖化防止を図ることができる。
本発明の実施の形態1に係わる急速充電用電力供給システムの概要図である。 図1の急速充電用電力供給システムにおける据置型蓄電手段および充電スタンドの近傍の正面図である。 図1の急速充電用電力供給システムにおける開閉手段と車両との接続関係を示す電気回路図である。 図1の急速充電用電力供給システムにおける開閉手段の電気回路図である。 図1の急速充電用電力供給システムにおける車両の充電制御手段の電気回路図である。 図1の急速充電用電力供給システムにおける車両の冷却ユニットの概要図である。 図1の急速充電用電力供給システムにおける給電制御手段の制御手順を示すフローチャートである。 図1の急速充電用電力供給システムにおける充電手順を示すフローチャートである。 図1の急速充電用電力供給システムにおける充電手順を示すフローチャートであって図8に続くフローチャートである。 図1の急速充電用電力供給システムにおける据置型急速充電器の概要を示すブロック図である。 本発明の実施の形態2に係わる急速充電用電力供給システムの概要図である。 本発明の実施の形態3に係わる急速充電用電力供給システムの概要図である。 本発明の実施の形態4に係わる急速充電用電力供給システムの概要図である。 本発明の実施の形態5に係わる急速充電用電力供給システムの概要図である。 図14の充電ロボットと車両との接続状態を示す正面図である。 図15の車両における充電コネクタの拡大正面図である。 図15における充電ロボットと車両との接続関係を示す部分拡大正面図である。 本発明の実施の形態6に係わる急速充電用電力供給システムの概要図である。 図18の急速充電用電力供給システムにおける充電プラグの斜視図である。 本発明の実施の形態7に係わる急速充電用電力供給システムの概要図である。 図20の電車の急速充電完了後の運行開始状態を示す側面図である。 図20の電車の充電制御回路の概要図である。
 つぎに、この発明の実施の形態について、図面を用いて詳しく説明する。
 (実施の形態1)
 図1ないし図10は、本発明の実施の形態1を示している。図2において、符号1は電源としての商用の交流電源を示しており、交流電源1としては、例えば三相交流電源が用いられている。交流電源1からの電力は、電力線2を介して建屋3内に供給されている。建屋3内には、急速充電用電力供給システム10を構成する据置型急速充電器11と、電力供給切替手段11mと、給電制御手段12と、据置型蓄電手段としての第一の蓄電手段15と、他の機器類が配置されている。据置型急速充電器11の入力側は、建屋3内の電力線2に接続されている。据置型急速充電器11は、電力線2からの三相交流電力を所定の電圧値に調整した後、直流電力に変換する機能を有している。
 据置型急速充電器11の出力側には、電力供給切替手段11mが接続されている。この実施の形態1においては、図10に示すように電力供給切替手段11mは、据置型急速充電器11と一体化されている。電力供給切替手段11mは、第一の固定接点aと、第二の固定接点bと、可動接点cから構成されている。電力供給切替手段11mの可動接点cは、図10に示すように、回路制御部11jからの信号S42に基づき第一の固定接点aと第二の固定接点bのいずれか一方と接触可能となっている。電力供給切替手段11mの第一の固定接点a側は、給電制御手段12を介して第一の蓄電手段15と接続されている。給電制御手段12は、後述するように開閉手段30からの信号S7に基づき据置型急速充電器11から出力される直流電力の第一の蓄電手段15への供給を停止する機能を有している。
 第一の蓄電手段15は、据置型急速充電器11からの直流電力を貯蔵する機能を有する。第一の蓄電手段15は、直流電力を貯蔵できるものであればどのような種類のものであってもよいが、本実施の形態においては、蓄電池と電気二重層キャパシタの少なくともいずれか一つから構成されている。第一の蓄電手段15は、例えば多数のセルを直列に接続した制御弁式鉛蓄電池のみから構成してもよいし、蓄電池と二重層キャパシタとを併用した構成であってもよい。また、第一の蓄電手段15は、大容量の二重層キャパシタのみから構成してもよい。さらに蓄電池は、高価ではあるが大容量のリチウムイオン電池から構成してもよい。据置型急速充電器11は、急速充電制御手段80を搭載していない第二の電動式移動体である車両53を、最適な充電電圧および充電電流の制御により急速充電する機能を有すると共に、据置型蓄電手段としての第一の蓄電手段15を充電するためのものであり、第一の蓄電手段15の充電特性を考慮した充電機能を有している。第一の蓄電手段15側には、第一の蓄電手段15の充電電圧および充電電流を検出するセンサ(図示略)が設けられており、第一の蓄電手段15は検出される充電電圧および充電電流に基づき、据置型急速充電器11によって充電される。本実施の態様では、第一の蓄電手段15の開放電圧は、例えばDC380V程度となっているが、セルの増減により開放電圧を変えることができる。第一の蓄電手段15を構成する多数のセルは、パッシブセルバランス方式やアクティブセルバランス方式を用いた図示しない電池管理システム(BMS)によって、充電バランスが保たれるようになっている。
 急速充電用電力供給システム10は、第一の蓄電手段15の残存容量(残存電力量)を検知する機能を有している。図1および図10に示すように、第一の蓄電手段15には、第一の蓄電手段15の残存容量を算出する容量判定手段93が接続されている。容量判定手段93は、第一の蓄電手段15の出力側に設けられる第一の電力量センサ(図示略)と第一の蓄電手段15の入力側に設けられる第二の電力量センサ(図示略)からの情報に基づき、第一の蓄電手段15の残存容量を算出する機能を有している。容量判定手段93から判定情報は、後述する給電制御手段12に入力されるようになっている。給電制御手段12は、第一の蓄電手段15の残存容量が所定値以下であると容量判定手段93によって判定された場合は、第二の電動式移動体としての車両50からの充電要求があっても、第一の蓄電手段15への給電を継続するようになっている。
 図2に示すように、第一の蓄電手段15は、プラス端子板17とマイナス端子板18とを有している。プラス端子板17とマイナス端子板18は、給電制御手段12を介して据置型急速充電器11の出力側に接続されている。建屋3には、第一の充電回路20Aの一部を構成するプラス共通端子板13およびマイナス共通端子板14が設けられている。プラス共通端子板13およびマイナス共通端子板14は、第一の蓄電手段15からの直流電力を建屋3の外に配置された複数の充電スタンド21に供給するためのものである。プラス共通端子板13およびマイナス共通端子板14は、第一の充電回路20Aを介して充電スタンド21の開閉手段30と接続されている。ここで、第一の充電回路20Aとは、第一の蓄電手段15からの直流電力を後述する第一の電動式移動体としての車両50まで供給するための電気回路を意味する。図1に示すように、本実施の形態においては、同時に複数の車両の充電を行うことから、プラス共通端子板13およびマイナス共通端子板14には、複数の充電回路20Aが並列に接続されている。建屋3内には、年間を通じて室内の温度をほぼ一定に保つ空調機16が設けられており、年間を通じて室内温度をほぼ一定に保つことで第一の蓄電手段15の寿命を高めるようにしている。
 図2において、充電スタンド21は、建屋3の近くの充電ステーション内に設けられている。充電ステーションには、複数の充電スタンド21が設けられており、各充電スタンド21には、充電回路20Aを介して第一の蓄電手段15から直流電力が供給されるようになっている。充電スタンド21は、側面部に操作部22と表示部26を有している。操作部22には、充電カード読取器23と、充電開始スイッチ24と、充電強制停止スイッチ25が設けられている。表示部26には、充電量表示計27と、充電電流表示計28と、充電料金表示計29が設けられている。充電スタンド21に収納された開閉手段30には、充電回路20の一部を構成する充電ケーブル35が接続されている。充電ケーブル35は、充電以外の時は充電スタンド21の側面に保持されており、充電時には移動体としての車両50側に延びるようになっている。充電ケーブル35の先端部には、車両50の充電コネクタ65と接続可能な充電プラグ36が設けられている。
 図3は、充電時における充電スタンド21と車両50との接続関係を示している。充電ケーブル35の充電プラグ36は、第一の電動式移動体としての車両50の充電コネクタ65に接続されている。第一の蓄電手段15からの直流電力は、充電回路20の途中に設けられた開閉手段30を介して車両50に供給されるようになっている。開閉手段30は、充電スタンド21の操作部22からの信号または車両50からの信号により開閉動作し、第一の蓄電手段15からの直流電力の車両50への供給または停止を行う機能を有している。開閉手段30からの直流電力は、充電回路20Aを介して車両50に供給されるようになっている。
 図4は、開閉手段30の詳細を示している。開閉手段30は、開閉器31と開閉制御部32を有している。開閉器31は、第一の蓄電手段15から供給される直流電力の供給または停止を行う開閉機能を有しており、半導体素子または電磁接触器から構成されている。開閉器31は、開閉制御部32からの信号S21に基づき開閉動作するようになっている。開閉器31の出力側には、電力センサ34が設けられている。電力センサ34は、開閉器31の出力側の直流電力の電圧および電流を検出する機能を有している。開閉制御部32には、電力センサ34から信号S6が入力されるようになっている。また、開閉制御部32には、充電カード読取器23からの信号S1と、充電開始スイッチ24からの信号S2と、充電強制停止スイッチ25からの信号S3が入力可能となっている。さらに、開閉制御部32には、車両50の充電制御手段80からの信号S4、S5、S20が入力可能となっている。開閉制御部32は、入力された信号に基づき給電制御手段12へ給電停止信号S7を出力する機能を有している。すなわち、開閉制御部32は、図5および図8に示すように、充電開始スイッチ24によって入力された信号S2に基づき給電制御手段12へ給電停止信号S7を出力し、第一の蓄電手段15への直流電力の供給を停止させる機能を有している。開閉制御部32からは、充電スタンド21の表示部26へ信号S8、S9、S10が出力されるようになっている。信号S8は、充電開始からの充電量(供給電力量)を充電量表示計27に表示させるため信号であり、信号S9は、開閉器31から車両50側に流れる充電電流を充電電流表示計28表示させるための信号である。信号S10は、充電開始から充電終了までに車両50へ供給された電力量に相当する電力料金を充電料金表示計29に表示させるための信号である。なお、開閉器31は、便宜上設けたものであり、開閉器31がなくとも、第一の充電回路20Aがあれば車両50の急速充電は可能である。
 図3に示すように、車両50には急速充電制御手段80の他に種々の機器が搭載されている。車両50に供給された直流電力は、急速充電制御手段80により所定の電圧および電流に制御された後、車載型蓄電手段としての第二の蓄電手段85に供給されるようになっている。第二の蓄電手段85は、直流電力を貯蔵できる機能を有すればどのような種類のものであってもよいが、本実施の形態においては、蓄電池と電気二重層キャパシタとリチウムイオンキャパシタの少なくともいずれか一つから構成されている。本実施の形態においては、第二の蓄電手段85は、例えば多数のセルが直列に接続されたリチウムイオン電池のみから構成されるが、蓄電池と二重層キャパシタまたはリチウムイオンキャパシタとを併用した構成であってもよい。第二の蓄電手段85に貯蔵された直流電力は、コントローラ86を介して走行モーター87に供給可能となっており、車両50は走行モーター87を駆動源として走行可能となっている。第二の蓄電手段85を構成する多数のセルは、パッシブセルバランス方式やアクティブセルバランス方式を用いた図示しない電池管理システム(BMS)によって、充電バランスが保たれるようになっている。車両50には、充電系統における発熱部を冷却するための冷却ユニット60が搭載されている。
 図5は、急速充電制御手段80の詳細を示している。急速充電制御手段80は、パワー制御部81と充電情報処理部84を有している。パワー制御部81は、充電制御ユニット82と温度制御ユニット83から構成されている。充電制御ユニット82は、開閉手段30からの直流電力を第二の蓄電手段85に適合した充電電圧および充電電流に制御する急速充電制御機能を有している。充電制御ユニット82は、直流チョッパ回路(昇圧チョッパ回路と降圧チョッパ回路を併用した直流チョッパ回路)および電流制御回路を有している。充電制御ユニット82は、充電情報処理部84からの制御信号S22に基づき第一の蓄電手段15から供給される直流電力をチョッパ制御し、第二の蓄電手段85を最適充電電圧で充電する機能を有している。充電制御ユニット82から第二の蓄電手段85に出力される電圧および電流は出力センサ76により測定されており、出力センサ76からの信号S16は充電情報処理部84に入力されている。リチウムイオン電池の充電については、とくに充電電圧に対して高い制御精度が必要となるため、急速充電制御手段80ではこれを考慮した高精度の充電制御が行われるようになっている。充電制御ユニット82は、昇圧チョッパ回路と降圧チョッパ回路を併用した直流チョッパ回路を有しているので、車両50の充電時に第一の蓄電手段15の電圧が徐々に低下しても、第一の蓄電手段15からの電圧を充電制御ユニット82の直流チョッパ回路により制御することにより、第二の蓄電手段85を最適電圧で充電することができる。したがって、急速充電時における第一の蓄電手段15の出力電圧変化は、第二の蓄電手段85の充電に影響しない。このように、充電情報処理部84には、検出される第二の蓄電手段85の電池電圧、充電電流に基づき第二の蓄電手段85に対して最適な急速充電制御を行うための充電プログラムが予め入力されている。
 急速充電制御手段80には、炭化ケイ素(SiC)半導体や窒素ガリウム(GaN)半導体などのパワー半導体が用いられており、高温での使用や電力変換における低損失が図られている。また、急速充電制御手段80に、これらのパワー半導体を使用することにより、急速充電制御手段80の小型化、軽量化が可能となり、車両50への急速充電制御手段80の搭載が著しく容易となる。さらに、これらのパワー半導体は電力変換効率が高いことから、急速充電制御手段80からの発熱も少なく、後述する電子冷却素子61を使用した冷却ユニット60でも、急速充電制御手段80を十分に冷却することができる。
 車両50は、図10に示すように、急速充電制御手段80による第二の蓄電手段85の充電経歴を記憶する充電履歴記憶手段80aを有している。充電経歴記憶手段80aは、急速充電制御手段80に接続されており、急速充電制御手段80による第二の蓄電手段85の充電毎の充電結果(急速充電時における充電電圧、充電電流、充電時間などの充電データ)を記憶するようになっている。車両50は、充電履歴記憶手段80aを介して充電回数および充電結果を把握することで、第二の蓄電手段85の寿命を推測することが可能となっている。また、車両50に搭載された充電履歴記憶手段80aの情報は、無線などを介してデータセンタ(図示略)で受け取ることが可能となっており、車両50の所有者はデータセンタからの情報に基づき、第二の蓄電手段85の交換時期が迫っていることを知ることができる。
 図5に示すように、急速充電制御手段80の充電情報処理部84には、多数の信号が入力され出力される。図4の開閉器31の入力側に設けられた電圧測定センサ33は、第一の蓄電手段15の出力電圧を測定する機能を有しており、充電開始時には電圧測定センサ33からの信号S12が充電情報制御処理部84に入力される。第一の蓄電手段15の出力電圧(開放電圧)が所定範囲にある場合は、充電情報処理部84から車両50の急速充電が可能である旨の信号S5が開閉手段30の開閉制御部32に出力される。
 図3に示すように、車両50には、ロックセンサ71と、運転起動確認センサ72と、パーキングブレーキセンサ73と、充電量表示計74と、充電終了アラーム75が設けられている。ロックセンサ71は、充電プラグ36が車両50の充電コネクタ65に接続されたことを確認する機能を有している。充電開始前には、ロックセンサ71からの信号S11が充電情報制御処理部84に入力される。運転起動確認センサ72は、車両50の起動を確認する機能を有している。充電開始前には、運転起動確認センサ72からの信号S13が充電情報制御処理部84に入力される。パーキングブレーキセンサ73は、充電時に車両50が移動しないようにパーキングブレーキが動作していることを確認する機能を有している。充電開始前には、パーキングブレーキセンサ73からの信号S14が充電情報制御処理部84に入力される。充電量表示計74は、第二の蓄電手段85の残存電力量を表示する機能を有している。充電中は、充電情報制御処理部84から信号S18が充電量表示計74に出力される。
 充電終了アラーム75は、第二の蓄電手段85が満充電に到達したことを運転者88に知らせる機能を有する。充電時には、第二の蓄電手段85へ流れる充電電流が電流センサ76によって測定され、電流センサ76からの信号S16に基づき第二の蓄電手段85が満充電に到達したか否かが充電情報処理部84によって判断される。第二の蓄電手段85が満充電に到達していると判断された場合は、充電情報制御処理部84から信号S19が充電終了アラーム75に出力される。充電終了アラーム75は、無線により運転者88が所有する携帯電話機89に充電が終了した旨を通報する機能を有する。充電中に車両50に充電機能に異常が確認された場合は、充電情報制御処理部84から信号S20が開閉手段30の開閉制御部32に出力され、開閉器31の遮断動作により車両50の充電が中止される。充電終了した旨の通報は、携帯電話機89に限られず車両専用の通信手段等によって行う構成としてもよい。
 図6は、第一の電動式移動体としての車両50の充電系統を冷却するための冷却ユニット60の構成を示している。冷却ユニット60は、電子冷却素子61と、モーター62と、ファン63を有している。ファン63は、モーター62によって回転駆動され、電子冷却素子61の冷却面にむけて送風するようになっている。電子冷却素子61は、ペルチェ効果を利用したものであり、第一の蓄電手段15からの直流電力で動作する。車両50の充電系統における発熱しやすい部位には、第一の温度センサ77および第二の温度センサ78が設けられている。第一の温度センサ77は、第二の蓄電手段85の温度を検出する機能を有する。第二の温度センサ78は、パワー制御部81の温度を検出する機能を有する。第一の温度センサ77および第二の温度センサ78からの信号S15は、充電情報処理部84に入力されている。充電情報処理部84は、車両50の充電系統の特定箇所の温度が所定値よりも上昇した場合は、温度制御ユニット83に信号S17を出力するようになっている。温度制御ユニット83は、充電情報処理部84からの信号S17に基づき、開閉手段30からの直流電力を冷却ユニット60に供給するようになっている。
 パワー制御部81は、急速充電時に第一の蓄電手段15から供給される大電力を制御することから、半導体素子の温度が上昇する可能性がある。また、第二の蓄電手段85を構成するリチウムイオン電池は、収納スペースとの関係で密集した状態で収納されることから、急速充電時には温度が上昇する可能性がある。そのため、パワー制御部81および第二の蓄電手段85は、急速充電により温度が所定値よりも上昇した際は、冷却ユニット60からの冷風により強制冷却される。特に高温となりやすいパワー制御部81の半導体素子の冷却能力を高めるためには、電子冷却素子61をパワー制御部81に直に取付ける構造を採用してもよい。なお、本実施の態様では、電子冷却素子61を用いた冷却構造を採用しているが、第一の蓄電手段15から供給される電力を利用するものであれば、電子冷却素子61に限られず、ラジエータと電動ファンを組み合わせた冷却構造であってもよいし、熱交換器によって強制冷却された空気を利用する冷却構造であってもよい。
 図10は、据置型急速充電器11の詳細を示している。据置型急速充電器11は、入力側電流検出センサ11aと、AC-DCコンバータ11bと、三相交流電力制御部11cと、DC-DCコンバータ11dと、直流電力制御部11eと、出力側電流検出センサ11fと、操作部11gと、通信部11hと、表示部11iと、回路制御部11jと、切替スイッチ11kとを有している。入力側電流検出センサ11aは、AC-DCコンバータ11bの入力側に設けられており、AC-DCコンバータ11bに入力される電流値などを検出する機能を有している。AC-DCコンバータ11bは、電源1からの商用交流電力を直流電力に変換する機能を有している。三相交流電力制御部11cは、入力側電流検出センサ11aからの信号に基づき、入力電流の高調波抑制、力率改善などを行う。
 切替スイッチ11kは、AC-DCコンバータ11bとDC-DCコンバータ11dとの間に設けられている。この実施の形態1では、切替スイッチ11kは、有接点を有する機械的な切替え構成としているが、半導体を用いた無接点方式の切替え構成としてもよい。切替スイッチ11kは、第一の固定接点aと、第二の固定接点bと、可動接点cから構成されている。可動接点cは、図10に示すように、回路制御部11jからの信号S43に基づき第一の固定接点aと第二の固定接点bのいずれか一方と接触可能となっている。切替スイッチ11kのAC-DCコンバータ11bの出力側に設けられた第一の固定接点aは、可動接点cを介してDC-DCコンバータ11dの入力側と接続されている。DC-DCコンバータ11dは、絶縁トランス型DC-DCコンバータから構成されている。DC-DCコンバータ11dは、スイッチング素子を用いて直流電圧を別の直流電圧に変換する機能を有している。直流電力制御部11eは、出力側電流検出センサ11fからの信号に基づき、DC-DCコンバータ11dの出力電圧および充電電流の制御を行う。
 操作部11gは、急速充電の開始操作や充電停止などを人力によって入力する部位であり、据置型急速充電器11の外面側に配置されている。表示部11iは、操作に必要な表示や充電に関する数値などを例えば液晶表示によって表示する機能を有している。通信部11hは、例えばCAN方式のインターフェースから構成されており、急速充電制御手段80が搭載されていない車両53との情報交換を行う機能を有している。回路制御部11jは、開閉手段30からの信号S40や通信部11hからの信号に基づき、電力供給切替手段11mと切替スイッチ11kと電力供給スイッチ120をそれぞれ制御する機能を有する。据置型急速充電器11における各部は、点線で示す制御回路を介して相互に接続されており、各部からの信号に基づき所定の動作をするようになっている。
 据置型急速充電器11の切替スイッチ11kにおける第二の固定接点bは、据置型蓄電手段としての第一の蓄電手段15の出力側と電力供給回路111を介して接続されている。これにより、第一の蓄電手段15から出力される直流電力は、切替スイッチ11kの可動接点cを介してDC-DCコンバータ11dの入力側に入力可能となっている。すなわち、DC-DCコンバータ11dは、切替スイッチ11kの切替動作に基づき、第一の蓄電手段15からの直流電力を第二の電動式移動体である車両53の急速充電に適合した電力に変換することが可能となっている。また、電力供給回路111には、電力供給スイッチ120が接続されている。電力供給スイッチ120には、直流電力を交流電力に変換し、変換された交流電力を商用電力系統に供給するインバータ121が接続されている。電力供給スイッチ120は、回路制御部11jからの信号S44に基づいて、開閉動作するようになっている。電力供給スイッチ120が閉じた状態では、インバータ121は第一の蓄電手段15からの直流電力をスイッチング素子を利用して商用電力系統の周波数に適合した交流電力に変換し、変換された交流電力を商用電力系統に供給するようになっている。切替スイッチ11kと電力供給スイッチ120とは、インターロック回路によって一定の条件で動作するようになっており、電力供給スイッチ120がオンの状態では、切替スイッチ11kの可動接点cは、AC-DCコンバータ11b側の固定接点aのみと接触するようになっている。また、切替スイッチ11kの可動接点cが固定接点bと接触している状態では、電力供給スイッチ120はオンまたはオフとなる。
 図10に示すように、回路制御部11jは、開閉手段30からの信号S40および通信部11hを介して車両53からの信号S41を受け取り、この信号S40および信号S41に基づき電力供給切替手段11mに回路切替のための信号S42を出力するようになっている。すなわち、電力供給切替手段11mは、車両53の充電時を除き、据置型急速充電器11からの電力を第一の充電回路20A側にのみ供給する機能を有している。この実施の形態1では、電力供給切替手段11mは、有接点を有する機械的な切替え構成としているが、半導体を用いた無接点方式の切替え構成としてもよい。電力供給切替手段11mの第一の固定接点aは、給電制御手段12の入力側と接続されている。電力供給切替手段11mの第二の固定接点bは、第二の電動式移動体としての車両53を急速充電するための第二の充電回路20Bに接続されている。第二の充電回路20Bは、主として電力線と通信線を有する充電ケーブルから構成されており、充電ケーブルの先端部には、充電プラグ110が取付けられている。充電プラグ110は、第一の充電回路20Aの充電プラグ36の構成に準じている。第二の充電回路20Bは、通信部11hで受け取った車両53からの信号S41に基づき、車両53に搭載された第二の蓄電手段85cの急速充電に最適に制御されたDC-DCコンバータ11dからの電力を車両53側に供給する機能を有している。なお、車両50側の急速充電制御は、上述したように車両50に搭載された急速充電制御手段80によって行われるので、車両50についてはDC-DCコンバータ11dによる充電制御は不要となる。
 本発明の急速充電用電力供給システム10で充電可能な車両は、原動機としてモーターを使用するものであり、車両の概念には、図1の乗用車タイプの車両50の他に、スポーツカー51と、バス52と、トラック53が含まれる。さらに、急速充電対象の車両には、これ以外に搬送車、鉄道車両、路面電車、モノレール、建設車両、フォークリフト等も含まれる。車両の種類により第二の蓄電手段のセル個数、容量等が異なることから、スポーツカー51では車両50と異なる第二の蓄電手段85aが搭載されている。バス52には第二の蓄電手段85bが搭載されており、トラック53には第二の蓄電手段85cが搭載されている。スポーツカー51は、第二の蓄電手段85aに適合した充電制御機能を有しており、バス52は、第二の蓄電手段85bに適合した急速充電制御機能を有している。同様に、トラック53は第二の蓄電手段85cに適合した急速充電制御機能を有している。
 つぎに、実施の形態1における電動式移動体の急速充電方法について説明する。図7は、給電制御手段12おける制御の動作手順を示している。図7において、ステップ151では、第一の電動式移動体としての車両50についての充電要求があるか否か判断される。ステップ151にて車両50についての充電要求があると判断された場合は、ステップ152に進み、開閉手段30から信号S7が給電制御手段12に出力され、据置型急速充電器11からの直流電力の第一の蓄電手段15への供給が停止される。ステップ151にて車両50についての充電要求がないと判断された場合は、ステップ153に進み、据置型急速充電器11からの直流電力の第一の蓄電手段15への供給が継続される。据置型急速充電器11からの直流電力の第一の蓄電手段15への供給が停止された状態では、第一の蓄電手段15からのみの直流電力による車両50の充電が可能となる。なお、上述したように、給電制御手段12は、第一の蓄電手段15の残存容量が所定値以下であると容量判定手段93によって判定された場合は、車両50からの充電要求があっても、第一の蓄電手段15への給電を継続するようになっている。
 図8および図9は、急速充電制御手段80を搭載した電動式移動体の急速充電方法における充電開始から充電終了までの動作手順を示している。第一の電動式移動体としての車両50が充電ステーションに到着すると、空いている充電スタンド21の近傍に車両50は停車する。充電を開始する前には、車両50の運転スイッチ(図示略)がオフとされ、パーキングブレーキ(図示略)の動作により車両50は停車位置に固定される。その後、ステップ161に示すように、充電スタンド21のカード読取器23に充電カード(図示略)が挿入される。充電カードは、現金と同じ機能を有し、カード読取器23に充電カードを挿入することで車両50の充電開始が可能となる。つぎに、ステップ162に進み、充電スタンド21に保持されている充電ケーブル35が取外され、充電ケーブル35の先端部の充電プラグ36が車両50の充電コネクタ65に装着される。充電プラグ36の装着は、充電プラグ36を充電コネクタ65に押し込むことにより行われる。充電プラグ36に完全に装着されたことは、充電回路20Aが車両50に接続されたことを意味する。充電プラグ36の装着は、車両50側のロックセンサ71により確認される。
 充電プラグ36の装着が完了すると、ステップ163に進み、充電スタンド21の充電開始スイッチ24がオンとされる。つぎに、ステップ164に進み、据置型急速充電器11から第一の蓄電手段15への電力供給が停止される。この状態では、据置型急速充電器11と第一の蓄電手段15が電気的に切り離されたことになり、第一の蓄電手段15のみからの電力供給による車両50の充電が可能となる。第一の蓄電手段15への電力供給が停止されると、ステップ165に進み、車両50の充電開始条件が全て確認されたか否かが判断される。すなわち、ステップ165においては、各ロックセンサ71からの信号S11と、電圧測定センサ33からの信号S12と、運転起動確認センサ72からの信号S13と、パーキングブレーキセンサ73からの信号S14が入力されているか否か判断される。ステップ165において、充電開始条件確認が完了したと判断された場合は、ステップ166に進み、充電回路20Aの開閉器31がオンとされ、ステップ167で車両50の充電が開始される。
 つぎに、車両50の充電が開始されると、図9のステップ168に進み、充電系統の温度が上昇しているか否か判断される。ステップ168で充電系統の温度が所定値よりも上昇していると判断された場合は、ステップ169に進み、冷却ユニット60によるパワー制御部81および第二の蓄電手段85の冷却が行われる。ステップ168において、充電系統の温度が正常であると判断された場合は、ステップ170に進み、充電系統の充電制御機能等に異常があるか否か判断される。ステップ170で充電制御機能等に異常があると判断された場合は、ステップ174に進んで開閉器31がオフとされ、充電が中止される。ステップ170において、充電制御機能等に異常がないと判断された場合は、ステップ171に進む。ステップ171において、車両50の充電を強制的に終了させたい場合は、ステップ178に進み、充電強制停止スイッチ25がオンとされる。充電強制停止スイッチ25をオンにすると、ステップ174に進んで開閉器31がオフとされ、充電が中止される。充電の強制終了は、充電のための時間等が限られている場合に有効であり、充電スタンド21の表示部26に表示された充電電流値を参考に充電停止のタイミングを選択することができる。なお、本実施の形態では、充電系統の温度上昇を検知してから冷却ユニット60を動作させる構成としているが、充電系統の冷却が自然放熱のみで不十分である場合は、充電開始前または充電開始と同時に冷却ユニット60を動作させる構成としてもよい。
 ステップ171において、車両50の充電を終了させる必要がない場合は、ステップ172に進み、充電が継続される。ステップ173では、第二の蓄電手段85が満充電に到達したか否か判断される。この判断は、第二の蓄電手段85における充電電流の測定値に基づき判断される。すなわち、第二の蓄電手段85が満充電に到達したか否かは、電流センサ76からの信号S16に基づき充電情報処理部84によって判断される。ステップ173において、第二の蓄電手段85が満充電に到達したと判断された場合は、ステップ174に進んで開閉器31がオフとされ、充電が終了される。つぎに、充電プラグ36が車両50の充電コネクタ65から取外される。充電が終了した状態では、充電スタンド21の表示部26に、充電電力量および充電料金が表示される。その後、ステップ177に進み、充電スタンド21のカード読取器23に挿入されている充電カード(図示略)には充電料金等が電気的に書き込まれ、銀行等への電気料金の支払い手続きがオンラインで行われる。その後、カード読取器23からの充電カードの取出しが行われる。
 このように、第一の蓄電手段15に貯蔵されている大電力をそのまま第二の蓄電手段85の充電に利用しているので、短時間での車両50の充電が可能となる。すなわち、第一の蓄電手段15は、車両50の第二の蓄電手段85の電力貯蔵能力に対して例えば数百倍の大電力を貯蔵することが可能であり、第一の蓄電手段15と車両50との間には充電制御機能は介在していないので、第一の蓄電手段15に貯蔵された大電力を電圧および電流を制御せずに車両50側に直送でき、図1に示すように、大規模な変電設備を必要とすることなく、複数車両の同時急速充電が可能となる。
 本発明では、車両50が急速充電制御手段80を有しているので、車両50は第一の蓄電手段15から供給される直流電力を第二の蓄電手段85の充電に最適な電圧および電流に制御することができる。すなわち、充電制御機能は、第二の蓄電手段85の寿命等に非常に影響するものであり、充電制御手段80を車両50に搭載させることにより、第二の蓄電手段85の充電特性と充電制御機能とをマッチングさせる設計が可能となる。これにより、第二の蓄電手段85は期待通りの性能を発揮することができ、車両50の性能を高めることができる。また、車両50の充電時には、第一の蓄電手段15は、給電制御手段12によって商用の交流電源1と接続される据置型急速充電器11と電気的に切り離された状態となり、第一の蓄電手段15からのみ車両50へ電力が供給される。据置型急速充電器11と電気的に切り離された第一の蓄電手段15は、純粋直流電力を出力することが可能であり、第一の蓄電手段15からの直流電力は電圧および電流が制御されずに車両50に直送されるので、車両50の電気回路の設計において供給電力のノイズやサージ等をほとんど考慮する必要がなく、高品質の電力が供給されることを前提として車両50の電気制御回路を設計することができる。したがって、急速充電において車両50に供給される直流電力については、リップル、ノイズ、サージをほとんど考慮する必要がなく、車両50の電気制御回路の設計が容易になるとともに、車両50の電気制御機能の信頼性を高めることができる。
 上記は、車両50のみの充電手順について説明しているが、図1に示すように、複数の車両を同時充電した場合は、第二の蓄電手段85、85a、85bの容量または充電量が異なるため、各車両が満充電に到達する時間はそれぞれ異なってくる。充電開始当初は、車両50の充電電流I1となり、スポーツカー51の充電電流はI2となる。同様に、バス52の充電電流はI3となる。各車両の充電が継続して行われると、充電電流は充電開始当初に比べて著しく低下し、満充電に近くなると充電電流はほとんど流れなくなる。そして、第二の蓄電手段85a、85bが満充電に到達した際は、各車両の充電が自動的に停止される。
 なお、冷却ユニット60は、本実施の態様では充電系統の冷却に用いられているが、電子冷却素子61は、冷却面だけでなく発熱面も有しているので、車両50内の温度を調整する機能も有する。したがって、冷却ユニット60は、充電系統の冷却だけでなく、車両50内の空調装置としても利用することが可能である。電子冷却素子61を用いた冷却ユニット60を空調装置としても使用すれば、従来の空調装置のように冷媒としてのフロンガス等が不要となり、地球環境改善の観点からも望ましい。
 つぎに、急速充電制御手段80を搭載していない第二の電動式移動体としての車両53の急速充電について説明する。図10に示すように、車両53は、急速充電制御手段80および冷却ユニット60を搭載していない。車両53では、急速充電時の充電系統の強制冷却は、車両53に搭載されている別の蓄電手段(図示略)からの電力を利用して、電動ファン(図示略)などによって行われる。
 車両53への充電プラグ110の装着が完了すると、車両53が第二の充電回路20Bを介して据置型急速充電器11側に接続された状態となる。これにより、車両53と据置型急速充電器11との間での通信が可能となる。つぎに、据置型急速充電器11の操作部11gの充電開始ボタン(図示略)が押される。据置型急速充電器11は、充電開始ボタンが押された場合は、車両53に対しての出力可能な範囲などのステータスを送信し、充電許可を求める。車両53は、据置型急速充電器11のステータスが充電開始条件を満たすことを確認し、充電許可信号を送出する。車両53は、車載型蓄電手段85cの状態に応じて、最適な充電電流を決定し、電流指令を送出する。つぎに、据置型急速充電器11は、電流指令にしたがって充電電流を出力する。このように、据置型急速充電器11、逐次車載型蓄電手段85cの状態に応じて最適な充電電流を決定し、電流指令を送出することにより、車載型蓄電手段85cの急速充電を実行する。そして、車両53が充電完了を判断した場合、または操作者が操作部11gの充電終了ボタン(図示略)を押すことにより、急速充電が終了することになる。
 据置型蓄電手段としての第一の蓄電手段15に十分な電力が貯蔵されている場合は、図10に示すように、第二の電動式移動体である車両53の急速充電中であっても、第一の蓄電手段15からの電力供給により、第一の電動式移動体である車両50の急速充電も可能となる。これにより、急速充電用電力供給システム10においては、一定の条件の下に充電方式の異なる車両50、53を同時に充電することが可能となり、急速充電の円滑化が図れる。
 このように、急速充電用電力供給システム10は、据置型急速充電器11から出力される直流電力を切替えて供給する電力供給切替手段11mを有しているので、単一の据置型急速充電器11を用いて、急速充電制御手段80を搭載した車両50と急速充電制御手段80を搭載しない車両53とをそれぞれ急速充電することが可能となる。これにより、充電方式が異なる車両50と車両53が混在して使用される交通社会が実現した場合であっても、混乱を招くことなく円滑に各車両50、53の急速充電を行うことができる。
 また、据置型蓄電手段である第一の蓄電手段15から出力される直流電力による車両50の第二の蓄電手段85の充電時には、給電制御手段12によって据置型急速充電器11から据置型蓄電手段である第一の蓄電手段15への給電を中止するので、電源1が商用交流電源である場合は、電源1側に大きな負担をかけることなく、第一の蓄電手段15に貯蔵された電力のみを利用して車両50の急速充電が可能となる。したがって、第一の充電回路20Aを使用して急速充電を行う場合は、車両50が急速充電に必要とする最大限の電力を第一の蓄電手段15から一気に車両50に供給することができ、超高速充電が可能となる。これにより、車両50をガソリン自動車の給油時間と同程度の時間で急速充電することが可能となり、充電待ち時間を短縮することができるとともに、充電設備の利用回転効率を高めることができる。
 据置型蓄電手段である第一の蓄電手段15に貯蔵された電力の一部は、据置型急速充電器11を介して車両53の車載型蓄電手段85cの急速充電に使用可能であるので、例えば電力需要のピーク時に車両53を急速充電する場合であっても、電力送配電系統に大きな負担をかけることを回避することができる。また、第一の蓄電手段15には、直流電力を交流電力に変換し、変換された交流電力を商用電力系統に供給するインバータ121が接続されているので、信号S44に基づき動作するスイッチ120を介して第一の蓄電手段15に貯蔵された電力を商用電力系統に供給することが可能となり、電力負荷の平準化を図ることができる。
 据置型急速充電器11は、DC-DCコンバータ11dを制御することで、急速充電のための電圧に制御されていない直流電力を車両側に供給することも可能であり、第二の充電回路20Bに車両50を接続した場合でも、急速充電のための電圧に制御されていない直流電力の電圧を、急速充電制御手段80を使用して第二の蓄電手段85に最適な充電電圧に制御することができ、車両50を急速充電することが可能となる。また、据置型急速充電器11に入力される電力は、再生可能エネルギーを利用して発電された電力であるので、急速充電にCOの排出を伴わない電力を用いることができ、地球温暖化防止を図ることができる。
 (実施の形態2)
 図11は、本発明の実施の形態2を示しており、電動式移動体としての車両と船舶の双方の急速充電に適用した場合を示している。実施の形態2が実施の形態1と異なるところは、電動式移動体の種類であり、その他の部分は実施の形態1に準ずるので、準じる部分に実施の形態1と同一の符号を付すことにより、準じる部分の説明を省略する。後述する他の実施の形態についても、同様とする。
 図11に示すように、第一の蓄電手段15に並列に接続された各充電回路20Aには、車両50と電動ボート100と旅客船101が接続されており、車両50の第二の蓄電手段85と、電動ボート100の第二の蓄電手段85dと、旅客船101の第二の蓄電手段85eには、第一の蓄電手段15から急速充電用の電力が供給可能となっている。地球環境改善の観点からは、電気動力で推進する船舶の利用促進が望まれる。船舶の原動機としては、例えば高性能な高温超伝導モーターを採用するのが望ましい。本実施の態様では、第一の蓄電手段15から供給される直流電力については、船舶毎に充電制御がなされることから、各第二の蓄電手段85d、85eは最適な充電電圧および充電電流に制御され、各種船舶の同時急速充電が可能となる。図11においては、急速充電制御手段80d、80eを搭載した船舶のみを図示しているが、車両53と同様に急速充電制御手段80を搭載しない船舶については、据置型急速充電器11からの電力によって急速充電を行うことが可能である。
 (実施の形態3)
 図12は、本発明の実施の形態3を示しており、実施の形態1の変形例を示している。風力発電機5や太陽電池6は、化石燃料をしない電源装置であり、発電に際しCOを排出しないことから、環境に優れている。しかし、風力発電や太陽光発電は天候の影響を受けやすく、出力変動が大きいため、電力系統との連携が難しいという問題を有している。実施の形態3においては、出力変動が大きい風力発電機5や太陽電池6からの電力を据置型蓄電手段としての第一の蓄電手段15に貯蔵し、貯蔵された電力を利用して車両50の急速充電を行うものである。第一の蓄電手段15については、供給される電力が大きく変動することを考慮して、最も適した種類を選定するのが望ましい。また、図12に示すように、化石燃料を改質して得られた水素によって動作する燃料電池7を電源として使用する構成としてもよい。
 このように構成された実施の形態3においては、出力変動が大きい風力発電機5や太陽電池6からの電力を第一の蓄電手段15に貯蔵できるので、貯蔵された電力を利用して各種車両50、51、52の急速充電が可能となる。従来から風力発電や太陽光発電の利用価値を高めるために、出力変動の大きな風力発電や太陽光発電による電力を電力貯蔵用蓄電池に貯蔵し、電力系統との連携のために電力負荷の平準化を行うことが計画されているが、平準化のためのみに電力貯蔵用蓄電池を用いることは発電コストが高くなり、再生可能エネルギーの利用促進を妨げる一因となっていた。そこで、実施の形態3のように、風力発電機5や太陽電池6からの電力を第一の蓄電手段15に貯蔵し、各種車両50、51、52の急速充電に使用することにより、出力変動が大きいという再生可能エネルギーによる発電の欠点を補うことが可能となり、太陽光や風力などの再生可能エネルギーの利用促進を図ることができる。
 (実施の形態4)
 図13は、本発明の実施の形態4を示している。実施の形態1では、充電プラグ36の導体を直接車両50側に接触させて給電する方式を採用したが、実施の形態4では充電作業を容易にするため、非接触給電方式(ワイヤレス給電方式)を採用している。非接触給電方式には、電磁誘導、電界結合(静電誘導)、共振器結合(磁界共鳴、電界共鳴)などが存在するが、この実施の形態3においては、例えば電磁誘導を利用した非接触給電方式を採用している。
 図13に示すように、開閉手段30には直流を交流に変換するインバータ40が接続されている。インバータ40は、第一の蓄電手段15からの直流電力を高い周波数の交流に変換する機能を有している。インバータ40の出力側は、地中に埋設された一次側コイル95に接続されている。一次側コイル95は、上面のみが地表面に露出した状態で地中に埋設されている。車両50の床部には、二次側コイル96が搭載されている。急速充電時には、二次側コイル96が一次側コイル95と対向するように、車両50が一次側コイル95の直上に停車するようになっている。急速充電時には、インバータ40から一次側コイル95へ高周波電力が供給され、電磁誘導によって二次側コイル96には交流電力が誘起するようになっている。二次側コイル96に生じた交流電力は電力変換器(コンバータ)97により直流電力に変換され、変換された直流電力は急速充電制御手段80に供給されるようになっている。なお、一次側コイル95と二次側コイル96との間に、互いに共振する2個の共振器(図示略)を介在させることにより、電磁誘導による給電方式を磁界共鳴による給電方式に変えることができる。
 このように構成された実施の形態4においては、第一の蓄電手段15からの電力は、非接触状態で車両50の急速充電制御手段80に供給されることになり、図5のように充電プラグ36を用いることなく、急速充電が可能となる。したがって、急速充電に際し、機械的な連結が不要となり、急速充電作業が著しく容易となる。なお、図13の車両50は、電力変換器(コンバータ)97を有しているので、電源1から供給される交流電力を電力変換機97に入力することによって急速充電が可能となる。
 (実施の形態5)
 図14ないし図17は、本発明の実施の形態5を示しており、既存の携帯電話基地局180に適用した場合を示している。既存の携帯電話基地局180には、移動可能な電力貯蔵施設200が後付けによって設けられている。電力貯蔵施設200としては、例えば海上コンテナが用いられている。海上コンテナは、大きさが国際規格で規定されていることから、世界のどこへでも船舶によって移動することができ、流通の面で非常に便利である。電力貯蔵施設200として使用される海上コンテナは、とくに電力貯蔵に適した構造に改造されている。図14に示すように、電力貯蔵施設200内には、少なくとも据置型急速充電器(図示略)、給電制御手段12、第一の蓄電手段15が収納されている。電力貯蔵施設200に対する装置類の出し入れは、ドア201を介して行うことが可能となっている。この実施の形態5においては、第一の蓄電手段15を急速充電するための据置型急速充電器(図示略)は、図1の電力供給切替手段11mと同様の電力供給切替え手段(図示略)を用いることによって車両50だけでなく、急速充電制御手段80を搭載しないタイプの車両の急速充電も行うことが可能となっている。
 携帯電話基地局180は、通常無人で運用されることから、実施の形態5においては、車両50の急速充電は、充電ロボット210の支援よって行われるようになっている。また、この実施の形態5においては、同時に複数台の車両50を急速充電するために、例えば3台の充電ロボット210が電力貯蔵施設200の近傍に配置されている。3台の充電ロボット210は、上方に設けられた屋根(図示略)によって、雨天時における雨水から保護されている。
 充電ロボット210は、ロボット本体211と、第1の可動アーム212と、第2の可動アーム213と、充電アーム214とを有している。ロボット本体211の側面部には、充電スタンド21が設けられている。充電スタンド21は、ケーブル204を介して電力貯蔵施設200内の各装置と電気的に接続されている。第1の可動アーム212は、上下方向および水平方向(図5のX、Y、Z軸の3次元方向)に移動可能となっている。第2の可動アーム213は、第1の可動アーム212の先端部に設けられており、支点213aを中心として第1の可動アーム212に対して上下方向に揺動可能となっている。
 充電アーム214には、車両50の充電コネクタ54と結合可能な充電プラグ30が取付けられている。充電アーム214の先端部には、車両50の充電コネクタ54を視認するための視覚センサ214aが設けられている。充電ロボット210は、視覚センサ214aからの画像情報に基づき、第1の可動アーム212と第2の可動アーム213とを制御し、充電プラグ36を車両50の充電コネクタ54と最適な位置関係で結合させる機能を有している。充電アーム214は、第2の可動アーム213に対して前後方向に進退可能となっており、充電プラグ36を充電コネクタ54に嵌合させる機能を有している。
 図16は、車両50の充電コネクタ54を示している。充電コネクタ54は、充電プラグ36と嵌合可能な電気的絶縁性を有するハウジング54aを有している。ハウジング54aには、給電のためのマイナス電極54bとプラス電極54cが左右方向にそれぞれ設けられている。また、ハウジング54aの内側には、車両50と給電側との通信を行うための通信端子54d、54eが上下方向にそれぞれ設けられている。ハウジング54aは、ボルト54fを介して車両前部51に固定されている。
 図17は、車両50における充電コネクタ54の取付け構造を示している。充電コネクタ54は、車両50の車両前部51に位置しており、通常は保護カバー52によって覆われている。保護カバー52の外面側には、車両50を識別するためのナンバープレート(自動車登録番号標)53が取付けられている。すなわち、充電コネクタ54は、ナンバープレート53と対向する位置に設けられている。充電コネクタ54を車両前部51におけるナンバープレート53と対向する位置に設けた理由は、地表GLからナンバープレート53までの高さがほとんどの車両で著しい差がなく、充電ロボット210による急速充電の自動化が容易となるからである。
 図17に示すように、ナンバープレート53が取付けられる保護カバー52は、車両前部51に対して上下方向に揺動可能に支持されている。保護カバー52の一端部52aは、軸52bを介して車両前部51に回動可能となっている。保護カバー52の自由端部側には、車両前部51に設けられたロック機構部51aと係合可能なロック金具52dが設けられている。ロック金具52dがロック機構部51aと係合した状態では、充電コネクタ54が保護カバー52によって覆われるようになっている。保護カバー52には、連動用アーム52cが設けられている。連動用アーム52cには、車両50の運転席側から保護カバー52を開閉させるためのケーブルワイヤ52eが連結されている。この実施の形態2においては、ケーブルワイヤ52eは電動機(図示略)と連動しており、保護カバー52の開閉は自動で行うことが可能となっている。
 つぎに、実施の形態5における車両50の急速充電作業の手順および作用について説明する。
 図15に示すように、車両50を急速充電するためには、まず車両50を充電ロボット210に近づけ、車両50の前輪を地表GLに設けられた車止め205に接触させる。この状態で、車両50を停止させ、パーキングブレーキを動作させる。その後、運転席からの操作により、車両前部51の保護カバー52を開とし、充電コネクタ54を露出させる。
 つぎに、運転者が運転席から降り、充電スタンド21の充電ロボット操作用スイッチ(図示略)を操作することにより、充電ロボット210を起動させる。充電ロボット210は、視覚センサ214aを有しているので、視覚センサ214aからの画像情報に基づき、第1の可動アーム212と第2の可動アーム213とを制御し、充電プラグ36を車両50の充電コネクタ54と最適な位置関係になるように位置決めする。つぎに、充電アーム214が車両前部51に向かって前進し、充電プラグ36を充電コネクタ54に嵌合させる。この状態では、充電コネクタ54と充電プラグ36が電気的に結合された状態となり、車両50の急速充電の準備が完了する。その後、給電側と車両50側との信号授受が行われ、準備条件が満足した場合は車両50の急速充電が開始される。
 車両50の急速充電は、第一の蓄電手段15に貯蔵された電力を利用して行われるので、第一の蓄電手段15から車両50に大電力を一気に供給することができ、充電は非常に速い時間で完了する。車両50の急速充電が完了すると、充電ロボット210は車両50からからの信号によって充電アーム214が後退し、充電プラグ36が充電コネクタ54から引抜かれる。その後、第1の可動アーム212が後退し、第1の可動アーム212は初期の位置に復帰する。
 このように、車両50の急速充電を充電ロボット210の支援よって行うようにしているので、運転者の急速充電による負担が軽減でき、手作業による急速充電に比べて充電作業が著しく容易となる。また、車両前部のナンバープレートは、世界中においてほぼ同じ位置に取付けられるので、1台の充電ロボット210でほとんどの車種に対応することが可能となり、充電ロボット210の共用化を図ることができる。これにより、充電ロボット210を世界的に普及させることができ、充電ロボット210の国際標準化を図ることができる。
 (実施の形態6)
 図18および図19は、本発明の実施の形態6を示している。実施の形態6における車両50は、図18に示すように、急速充電制御手段80の他に家庭などでの充電を可能にする普通充電器90を搭載している。普通充電器90は、車両50を長い時間(数時間~数十時間)をかけて充電するものであり、例えば2~3KW程度の電力変換能力を有している。普通充電器90は、交流電源1から供給される電圧100Vまたは200Vの交流電力を第二の蓄電手段85の普通充電に適した直流の電圧および電流に変換する機能を有している。車両50は、第二の蓄電手段85を急速充電または普通充電のいずれかに切替える充電切替え回路91を有している。
 図19は、一つの充電プラグで急速充電と普通充電のいずれもが可能な「コンボ方式」と呼ばれる共用充電プラグ36´を示している。共用充電プラグ36´は、急速充電用接続部36aと普通充電用接続部36bを有している。急速充電用接続部36aには、大電流を流すことが可能な急速充電用ケーブル35aが接続されている。普通充電用接続部36bには、普通充電用ケーブル35bが接続されている。共用充電プラグ36´には、車両50と交流電源1側または第一の蓄電手段15側との間での信号の授受を行う通信ケーブル(図示略)が接続されている。車両50の充電切替え回路91は、共用充電プラグ36´を介して交流電源1側または第一の蓄電手段15側から車両50に送られる信号に基づき切替え動作するようになっている。
 このように構成された実施の形態6においては、車両50を急速充電する際には、車両50に共用充電プラグ36´を装着し、その後、充電スタンド21での充電開始の操作を行う。これにより、充電切替え回路91が急速充電制御手段80側に切り替わり、第二の蓄電手段85は急速充電制御手段80によって制御された直流電力により急速充電が行われる。また、車両50を普通充電する際には、車両50の急速充電を行う同じ箇所に共用充電プラグ36´を装着する。これにより、充電切替え回路91は交流電源1側に設けられた制御装置(図示略)から送られてくる信号によって普通充電器90側に切り替わり、第二の蓄電手段85は普通充電器90によって制御された直流電力により普通充電が行われる。このように、一つの共用充電プラグ36´で急速充電と普通充電のいずれもが可能となるので、急速充電と普通充電のための二つの充電プラグを備える場合よりも、充電時の取扱いが容易となり、充電装置置の簡素化も図れる。
 (実施の形態7)
 図20ないし図22は、本発明の実施の形態7を示している。実施の形態7は、蓄電池を搭載した電車300の充電に適用した場合を示している。図22に示すように、電車300は、急速充電制御手段80と、第二の蓄電手段85と、インバータ86と、走行モーター87を有している。図20に示すように、走行レール302上を走行する電車300の屋根側には、昇降可能な充電用パンタグラフ301が設けられている。充電建屋303には、据置型急速充電器11と、給電制御手段12と、第一の蓄電手段15が配置されている。充電建屋303に隣接する位置には、地上側に固定された絶縁支柱304を介して充電用導体305が設けられている。充電用導体305は、水平方向に延びる帯状の銅合金から構成されている。充電用導体305は、充電回路20Aを介して第一の蓄電手段15と電気的に接続されている。電車300の充電用パンタグラフ301は、上昇時には充電用導体305と接触するようになっている。据置型急速充電器11は、図1の電力供給切替手段11mと同様の電力供給切替え手段(図示略)を用いることによって電車300だけでなく、急速充電制御手段80を搭載しないタイプの車両の急速充電も行うことが可能となっている。
 このように構成された実施の形態7においては、電車300は、運行により第二の蓄電手段85の残存容量が低下してきた状態は、走行レール302上を充電建屋303に向かって走行し、充電建屋303の前で停止する。電車300が所定位置に停止すると、運転手は遠隔操作により充電用パンタグラフ301を上昇させ、充電用パンタグラフ305に接触させる。これにより、第一の蓄電手段15に貯蔵されていた直流電力は、充電用導体305を介して電車300に供給される。電車300に供給された直流電力は、急速充電制御手段80によって第二の蓄電手段85の急速充電に最適な充電電圧および充電電流が制御され、電車300に搭載された第二の蓄電手段85の急速充電が行われる。第二の蓄電手段85の急速充電が完了すると、充電用パンタグラフ301が降下し、第一の蓄電手段15からの電車300への電力供給が停止する。そして、電車300は、図21に示すように充電建屋303から離れる方向に走行し、再び運行を開始する。
 以上、この発明の実施の形態1ないし7を詳述してきたが、具体的な構成はこれらの実施の形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計の変更等があっても、この発明に含まれる。例えば急速充電の対象となる電動式移動体は、車両、船舶、航空機を含むいわゆる交通機械であり、長距離を移動するものに限られず、移動範囲が少ない建設機械やロボット、フォークリフトなどの産業機械も含まれる。また、図12に示す燃料電池7に用いられる化石燃料は、液体または気体を問わない。さらに、据置型急速充電器11に供給される再生可能エネルギー(自然エネルギー)で発電される電力は、風力発電、太陽光発電に限定されず、バイオマス発電、波力や海流などの海洋エネルギー等も含まれることは勿論である。
 急速充電用電力供給システム10は、既存の給油スタンドに併設してもよいし、停電時に備えたバックアップ用の大容量蓄電電池を有する携帯電話基地局などに設ける構成としてもよい。また、この急速充電用電力供給システム10は、図11に示すよう、同一の場所において車両と船舶をそれぞれ急速することが可能であるので、漁港などに適用すれば、単一の据置型急速充電器11を使用して、魚介類の運搬を行う電動車両と電動漁船をそれぞれ急速充電することができる。さらに、本発明は、モーターのみで走行する純粋な電気自動車だけでなく、エンジンとモーターをそれぞれ搭載し、エンジンまたはモーターのみで走行可能なプラグインハイブリッド車(PHV)の急速充電にも適用可能である。
 1     商用交流電源(電源)
 5     風力発電機(電源)
 6     太陽電池(電源)
 7     燃料電池(電源)
 10    急速充電用電力供給システム
 11    据置型急速充電器
 11m   電力供給切替手段
 12    給電制御手段
 15    第一の蓄電手段(据置型蓄電手段)
 20A   第一の充電回路
 20B   第二の充電回路
 21    充電スタンド
 23    操作部
 26    表示部
 30    開閉手段
 31    開閉器
 32    開閉制御部
 36    充電プラグ
 50    車両(第一の電動式移動体)
 53    車両(第二の電動式移動体)
 60    冷却ユニット
 61    電子冷却素子
 65    充電コネクタ
 80    急速充電制御手段
 81    パワー制御部
 82    充電制御ユニット
 83    温度制御ユニット
 84    充電情報処理部
 85    第二の蓄電手段(第一の電動式移動体の車載型蓄電手段)
 85c   第二の蓄電手段(第二の電動式移動体の車載型蓄電手段)
 93    容量判定手段
 100   船舶(第二の電動式移動体)
 120   電力供給スイッチ
 121   インバータ

Claims (6)

  1.  急速充電制御手段を搭載した第一の電動式移動体と、前記急速充電制御手段を搭載しない第二の電動式移動体とに、急速充電のための電力をそれぞれ供給することが可能な急速充電用電力供給システムであって、
     電源から供給される電力を前記第二の電動式移動体に搭載された車載型蓄電手段の急速充電に最適な電圧および電流となる直流電力に制御する据置型急速充電器と、
     前記据置型急速充電器からの直流電力を、前記第一の電動式移動体に供給するための第一の充電回路と前記第二の電動式移動体に供給するための第二の充電回路のいずれかに切替えて供給する電力供給切替手段と、
     前記電力供給切替手段を介して前記据置型急速充電器側と接続可能で、前記第二の電動式移動体の前記車載型蓄電手段の充電時以外は、前記据置型急速充電器から前記電力供給切替手段を介して前記第一の充電回路側に供給される直流電力によって充電され、少なくとも前記第一の電動式移動体に直送するための直流電力を貯蔵可能な据置型蓄電手段と、
     前記電力供給切替手段と前記据置型蓄電手段との間に設けられ、前記据置型蓄電手段から出力される直流電力による前記第一の電動式移動体の車載型蓄電手段の充電時には、前記据置型急速充電器からの前記据置型蓄電手段への給電を中止する給電制御手段と、
    を備えたことを特徴とする急速充電用電力供給システム。
  2.  前記据置型蓄電手段に貯蔵された電力の一部は、前記据置型急速充電器を介して前記第二の電動式移動体の前記車載型蓄電手段の急速充電に使用可能であることを特徴とする請求項1に記載の急速充電用電力供給システム。
  3.  前記据置型蓄電手段には、直流電力を交流電力に変換し、変換された交流電力を商用電力系統に供給するインバータが接続されていることを特徴とする請求項1に記載の急速充電用電力供給システム。
  4.  前記据置型急速充電器は、前記第一の充電回路に接続された前記第一の電動式移動体に対し、急速充電のための電圧および電流が制御されていない直流電力を供給することが可能であることを特徴とする請求項1に記載の急速充電用電力供給システム。
  5.  前記第一の電動式移動体は、商用交流電源または前記据置型蓄電手段側に接続される非接触式給電手段からの交流電力を直流電力に変換する電力変換器を有しており、該電力変換器の出力側には、前記急速充電制御手段が接続されていることを特徴とする請求項1に記載の急速充電用電力供給システム。
  6.  前記据置型急速充電器に入力される電力は、再生可能エネルギーを利用して発電された電力であることを特徴とする請求項1に記載の急速充電用電力供給システム。
     
PCT/JP2012/081675 2011-12-08 2012-12-06 急速充電用電力供給システム WO2013084999A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020147018782A KR101585117B1 (ko) 2011-12-08 2012-12-06 급속충전용 전원 시스템
CN201280069354.0A CN104137378B (zh) 2011-12-08 2012-12-06 快速充电电源系统
DE112012005145.9T DE112012005145T5 (de) 2011-12-08 2012-12-06 Schnelllade-Stromversorgungssystem
JP2013548297A JP5710783B2 (ja) 2011-12-08 2012-12-06 急速充電用電力供給システム
SG11201402835YA SG11201402835YA (en) 2011-12-08 2012-12-06 Rapid charging power supply system
US14/363,734 US9555715B2 (en) 2011-12-08 2012-12-06 Rapid charging power supply system
PH12014501198A PH12014501198A1 (en) 2011-12-08 2014-05-27 Rapid charging power supply system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-268911 2011-12-08
JP2011268911 2011-12-08

Publications (1)

Publication Number Publication Date
WO2013084999A1 true WO2013084999A1 (ja) 2013-06-13

Family

ID=48574354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081675 WO2013084999A1 (ja) 2011-12-08 2012-12-06 急速充電用電力供給システム

Country Status (8)

Country Link
US (1) US9555715B2 (ja)
JP (1) JP5710783B2 (ja)
KR (1) KR101585117B1 (ja)
CN (1) CN104137378B (ja)
DE (1) DE112012005145T5 (ja)
PH (1) PH12014501198A1 (ja)
SG (1) SG11201402835YA (ja)
WO (1) WO2013084999A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015020540A (ja) * 2013-07-18 2015-02-02 本田技研工業株式会社 発電機搭載車両
JP2015061510A (ja) * 2013-09-18 2015-03-30 高達能源科技股▲分▼有限公司 電池セル平衡システムを有する充電スタンド
US20160001664A1 (en) * 2014-07-07 2016-01-07 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Energy storage system and method for operating an energy storage system
CN106364360A (zh) * 2016-11-03 2017-02-01 六安市科宇专利技术开发服务有限公司 一种电动汽车充电站
CN106463994A (zh) * 2014-03-11 2017-02-22 萨普泰克知识产权股份有限公司 用于给电动车辆充电的电源系统
CN106696721A (zh) * 2016-12-16 2017-05-24 四川新筑通工汽车有限公司 纯电动汽车双源能量系统及供电控制方法、快充方法和慢充方法
CN107719160A (zh) * 2017-09-24 2018-02-23 国网山东省电力公司菏泽市定陶区供电公司 一种充电桩枪口转换系统
JP2019205302A (ja) * 2018-05-24 2019-11-28 日産自動車株式会社 充電方法及び充電装置
JP2020031472A (ja) * 2018-08-21 2020-02-27 日産自動車株式会社 充電制御方法及び充電制御システム
EP3537558B1 (en) * 2014-02-28 2022-10-19 Bombardier Primove GmbH Inductive power transfer with inductive power transfer pad

Families Citing this family (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5517313B2 (ja) * 2011-12-28 2014-06-11 株式会社豊田自動織機 車両充電システム
GB201205447D0 (en) * 2012-03-28 2012-05-09 Jaguar Cars Vehicle with wirelessly, powered device
US9878626B2 (en) * 2012-06-14 2018-01-30 Sony Corporation Electric mobile body, power supply/reception system, and power receiving method for electric mobile body
KR20140003082A (ko) * 2012-06-29 2014-01-09 엘에스산전 주식회사 전기 자동차용 충전기
JP5967374B2 (ja) * 2013-01-31 2016-08-10 株式会社エクォス・リサーチ ノイズキャンセル共振器
JP6045474B2 (ja) * 2013-11-05 2016-12-14 三菱重工業株式会社 充電制御装置、車両、車両充電システム、充電制御方法、及びプログラム
US9321362B2 (en) * 2014-02-05 2016-04-26 Tesia Motors, Inc. Cooling of charging cable
US20150288216A1 (en) * 2014-04-05 2015-10-08 Che-Min Wu Remote wireless charging system
US9592742B1 (en) * 2014-04-09 2017-03-14 FreeWire Technologies, Inc. Systems, apparatus, and methods of charging electric vehicles
KR20160149199A (ko) * 2014-04-29 2016-12-27 하이드로-퀘벡 전기 차량용 양방향 충전 시스템
CN111976507B (zh) * 2014-09-02 2021-12-24 葛炽昌 具有交换电池组的电动车
CN104553833A (zh) * 2014-12-30 2015-04-29 深圳电擎科技有限公司 电动汽车电力能量管理方法、系统及电网管理平台
CN104578372B (zh) * 2015-01-15 2018-04-27 小米科技有限责任公司 控制终端设备充电的方法及装置
FR3031846B1 (fr) * 2015-01-16 2017-02-03 Adetel Equipment Systeme de chargement d’elements de stockage d’energie electrique d’un vehicule
US9711985B1 (en) 2015-03-30 2017-07-18 Amazon Technologies, Inc. Techniques for mobile device charging using robotic devices
KR20170021044A (ko) 2015-08-17 2017-02-27 주식회사 지유디이에스 배터리 손상이 없는 급속충전기용 반도체 제작을 위한 혼합조성물
WO2017038753A1 (ja) * 2015-08-31 2017-03-09 ニチコン株式会社 給電装置
CN105375552B (zh) * 2015-09-01 2017-03-15 西安特锐德智能充电科技有限公司 一种矩阵式功率分配充电系统的功率匹配方法
JP6623306B2 (ja) * 2015-11-16 2019-12-18 モレックス エルエルシー 電力充電モジュール及びその使用方法
CN106787036A (zh) * 2015-11-23 2017-05-31 中国科学院沈阳自动化研究所 一种用于水下机器人蓄电池组均衡充电控制系统及方法
US10886583B2 (en) * 2016-03-02 2021-01-05 Gentherm Incorporated Battery and capacitor assembly for a vehicle and a method for heating and cooling the battery and capacitor assembly
US20170346322A1 (en) * 2016-05-28 2017-11-30 Shihab Kuran Transportable electrical energy storage and supply system
CN209488195U (zh) 2016-10-12 2019-10-11 Oppo广东移动通信有限公司 移动终端
EP3321120A1 (en) * 2016-11-14 2018-05-16 ABB Schweiz AG A charging power feeding system for electric vehicle station
GB2556061B (en) * 2016-11-16 2019-07-24 Ge Aviat Systems Ltd Power source for an aircraft
DE102016223715A1 (de) * 2016-11-29 2018-05-30 Whiterock Ag Ladestation für Elektrofahrzeuge, mit wenigstens vier Lademodulen mit Ladekabeln auf Kabeltrommeln
KR20180070892A (ko) * 2016-12-19 2018-06-27 현대자동차주식회사 전기 자동차, 그를 포함하는 시스템 및 전기 자동차의 배터리 충전 방법
WO2018131971A1 (ko) * 2017-01-16 2018-07-19 주식회사 엘지화학 전기자동차 충전소의 배터리 충전 시스템
CN106882062B (zh) * 2017-01-20 2023-04-18 深圳市丁旺科技有限公司 一种可平滑扩容的直流充电桩的实现方法
CN106849234A (zh) * 2017-02-07 2017-06-13 合肥市融宇电子有限公司 一种无人机能量管理系统
JP6624107B2 (ja) * 2017-02-10 2019-12-25 株式会社豊田中央研究所 車両の熱管理制御装置、熱管理制御プログラム
US10946762B2 (en) 2017-03-04 2021-03-16 Storedgeai Llc System, apparatus and methods of electricity generation to end-use for fast charging of electric vehicle
DE102017207102A1 (de) * 2017-03-13 2018-09-13 Bayerische Motoren Werke Aktiengesellschaft Stationärspeicher zum Zwischenspeichern von elektrischer Energie in einem elektrischen Versorgungsnetz sowie Betriebsverfahren und Nachrüstmodul für den Stationärspeicher
DE202017102368U1 (de) 2017-04-21 2017-05-10 Hradil Spezialkabel Gmbh Ladekabel für Elektrofahrzeuge
DE202017102535U1 (de) 2017-04-28 2018-05-03 Hradil Spezialkabel Gmbh Ladekabel für Elektrofahrzeuge
US11205994B2 (en) * 2017-05-09 2021-12-21 Churaeconet Llc Solar photovoltaic installation
CN106994912A (zh) * 2017-06-09 2017-08-01 合肥易尔智能技术有限公司 一种基于智能控制充电汽车系统
DE102017116886A1 (de) 2017-07-26 2019-01-31 Wobben Properties Gmbh Ladestation mit dynamischer Ladestromverteilung
DE102017116887A1 (de) * 2017-07-26 2019-01-31 Wobben Properties Gmbh Ladestation mit dynamischer Ladestromverteilung
GB201712725D0 (en) * 2017-08-08 2017-09-20 Sevcon Ltd Apparatus and methods
DE102017120298A1 (de) * 2017-09-04 2019-03-07 Hochschule Osnabrück Ladesäule, Anordnung mit mehreren solcher Ladesäulen sowie Verfahren zum Betreiben einer solchen Ladesäule
CN107453441B (zh) * 2017-09-13 2020-07-24 国网重庆市电力公司电力科学研究院 一种移动充电设备及其为静止电动汽车充电的方法
DE102017218165A1 (de) 2017-10-11 2019-04-11 Audi Ag Energiebereitstellungseinrichtung zum Bereitstellen elektrischer Energie für ein Kraftfahrzeug sowie Verfahren zum Betreiben einer Energiebereitstellungseinrichtung
US20220134892A1 (en) 2017-10-11 2022-05-05 Audi Ag Energy provision device
DE102017220017A1 (de) * 2017-11-10 2019-05-16 Kuka Ag Mobile Ladestation und Verfahren zum Laden eines Elektrofahrzeuges
DE102018100828B4 (de) * 2018-01-16 2023-07-27 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Ladestecker für eine Ladesäule und Ladesäule mit einem solchen Stecker
EP3776798A1 (en) * 2018-04-05 2021-02-17 Embex GmbH Input power control of charging station for electric vehicles
GB2572757A (en) * 2018-04-05 2019-10-16 Moog Unna Gmbh Switching circuit for an electric vehicle charging station
DE102018212978A1 (de) * 2018-08-02 2020-02-06 Schmidhauser Ag Ladestation zum Laden eines Elektrofahrzeugs
JP6811219B2 (ja) * 2018-09-13 2021-01-13 矢崎総業株式会社 車両電源装置
CN109466368A (zh) * 2018-11-28 2019-03-15 徐州中创电子有限公司 一种电动汽车直流快速充电桩系统
KR20200092749A (ko) 2019-01-25 2020-08-04 삼성전자주식회사 충전 회로 및 플래시 드라이버를 포함하는 집적 회로와 그 동작 방법
KR102257788B1 (ko) * 2019-02-28 2021-06-01 (주)대풍이브이자동차 배터리 충전 장치 및 방법
KR102032554B1 (ko) * 2019-03-27 2019-11-08 주식회사 위트콤 전기차를 위한 가변적 충전 제어 시스템 및 그 제어 방법
US11084388B2 (en) * 2019-05-13 2021-08-10 James Nguyen Fast charging battery pack and methods to charge fast
US10790680B1 (en) 2019-05-13 2020-09-29 James Nguyen Fast charging battery pack and methods to charge fast
DE102019209467A1 (de) * 2019-06-28 2020-12-31 Audi Ag Ladestecker für eine Ladestation zum Übertragen von elektrischer Energie sowie ein Ladesystem hierzu
CN114007894A (zh) * 2019-06-30 2022-02-01 詹姆斯·阮 快速充电电池组及其快速充电方法
DE102019117648A1 (de) * 2019-07-01 2021-01-07 Phoenix Contact E-Mobility Gmbh Temperaturüberwachtes Ladesteckverbinderteil
US11433775B1 (en) * 2019-07-03 2022-09-06 Hivespot, Inc. Aircraft charging unit
CN110795860B (zh) * 2019-11-08 2023-10-17 南京大学 一种移动受限的有向无线充电器布置方法
DE102019217829A1 (de) * 2019-11-19 2021-05-20 Siemens Aktiengesellschaft Elektrische Ladeinfrastruktur und Verfahren zum Betreiben einer elektrischen Ladeinfrastruktur
ES1240564Y (es) * 2019-11-19 2020-07-29 Movelco Mobility Sl Contenedor de transporte adaptado a estación de carga de vehículos eléctricos.
CN110806745B (zh) * 2019-12-03 2022-12-02 徐汇 一种能源供给自动化设备及控制方法
DE102020201187A1 (de) 2020-01-31 2021-08-05 Volkswagen Aktiengesellschaft Laderoboter zur induktiven Aufladung von Fahrzeugen
KR102352048B1 (ko) 2020-05-28 2022-01-17 하재청 수소연료전지 일체형 급속전용 전기차 충전기
US11518261B2 (en) 2020-12-23 2022-12-06 Brunswick Corporation Marine battery charging system for a marine vessel
US11801773B1 (en) * 2022-08-18 2023-10-31 Beta Air, Llc Methods and systems for ground-based thermal conditioning for an electric aircraft
US20230161308A1 (en) * 2021-11-19 2023-05-25 X Development Llc Watercraft servicing system
US11605964B1 (en) * 2022-03-07 2023-03-14 Beta Air, Llc Charging connector control system and method for charging an electric vehicle
KR102444972B1 (ko) * 2022-04-22 2022-09-19 주식회사아이티존 친환경 저압 냉매를 이용한 전기차 충전기의 온도제어 및 화재 대응 구조물과 상기 구조물의 온도 제어 및 화재 대응 방법
GB2619009A (en) * 2022-05-19 2023-11-29 Eaton Intelligent Power Ltd Charging apparatus and method for providing a charging power
KR20230163874A (ko) 2022-05-24 2023-12-01 손정기 수소발전을 통한 전기자동차 무선 충전시스템

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060071631A1 (en) * 2004-10-01 2006-04-06 Xantrex International Charger/jumper method and apparatus
WO2008102543A1 (ja) * 2007-02-19 2008-08-28 Institute For Energy Application Technologies Co., Ltd. 急速充電用電力供給装置および急速充電用電力供給方法
WO2010082506A1 (ja) * 2009-01-19 2010-07-22 株式会社エネルギー応用技術研究所 直流給電システム

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04358950A (ja) 1991-05-31 1992-12-11 Honda Motor Co Ltd 電動式車両
US5202617A (en) 1991-10-15 1993-04-13 Norvik Technologies Inc. Charging station for electric vehicles
JP3147257B2 (ja) * 1992-12-09 2001-03-19 日本電池株式会社 系統連系電源システム
US5498951A (en) * 1993-06-30 1996-03-12 Jeol Ltd. Method and apparatus for charging electric double layer capacitor
US5548200A (en) * 1994-07-06 1996-08-20 Norvik Traction Inc. Universal charging station and method for charging electric vehicle batteries
US5594318A (en) 1995-04-10 1997-01-14 Norvik Traction Inc. Traction battery charging with inductive coupling
US7301308B2 (en) * 2001-11-02 2007-11-27 Aker Wade Power Technologies, Llc Fast charger for high capacity batteries
GB0403020D0 (en) * 2004-02-11 2004-03-17 Pa Consulting Services Portable charging device
JP4207984B2 (ja) * 2006-06-19 2009-01-14 東京電力株式会社 充電システム及びその制御方法
DE112008000980T5 (de) 2007-04-17 2010-02-25 Institute For Energy Application Technologies Co., Ltd., Utsunomiya Elektrisch angetriebener, mobiler Körper und Boosteraufladungs-Verfahren für einen elektrisch angetriebenen, mobilen Körper
JP5291909B2 (ja) * 2007-09-21 2013-09-18 富士重工業株式会社 電気自動車の充電装置
US8872379B2 (en) 2007-11-30 2014-10-28 Johnson Controls Technology Company Efficient usage, storage, and sharing of energy in buildings, vehicles, and equipment
JP2010028913A (ja) * 2008-07-16 2010-02-04 Shikoku Electric Power Co Inc 電動車両の充電システム
JP2010041819A (ja) * 2008-08-05 2010-02-18 Kansai Electric Power Co Inc:The 太陽光発電装置用の充電制御装置
JP4954335B2 (ja) * 2010-01-08 2012-06-13 Jfeエンジニアリング株式会社 急速充電装置
JP5016121B2 (ja) * 2010-02-19 2012-09-05 Jfeエンジニアリング株式会社 急速充電装置及び移動式充電装置
JP2011205747A (ja) * 2010-03-24 2011-10-13 Sanyo Electric Co Ltd バッテリ充電装置
KR101009485B1 (ko) 2010-04-20 2011-01-19 (주)모던텍 유니버셜 충전 장치
JP5647057B2 (ja) 2010-05-19 2014-12-24 株式会社日立製作所 充電装置、充電制御ユニット及び充電制御方法
JP5533306B2 (ja) 2010-06-14 2014-06-25 株式会社豊田自動織機 充電制御装置及びその充電制御方法
CN101917046B (zh) 2010-07-23 2013-05-22 奇瑞汽车股份有限公司 一种充电机及其控制策略
US20120191517A1 (en) * 2010-12-15 2012-07-26 Daffin Jr Mack Paul Prepaid virtual card
WO2012134495A1 (en) 2011-04-01 2012-10-04 Aerovironment, Inc. Multi-use energy management and conversion system including electric vehicle charging
US9123035B2 (en) * 2011-04-22 2015-09-01 Angel A. Penilla Electric vehicle (EV) range extending charge systems, distributed networks of charge kiosks, and charge locating mobile apps
US8174235B2 (en) * 2011-07-25 2012-05-08 Lightening Energy System and method for recharging electric vehicle batteries
JP2014230301A (ja) * 2013-05-17 2014-12-08 株式会社エネルギー応用技術研究所 急速充電用電力供給システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060071631A1 (en) * 2004-10-01 2006-04-06 Xantrex International Charger/jumper method and apparatus
WO2008102543A1 (ja) * 2007-02-19 2008-08-28 Institute For Energy Application Technologies Co., Ltd. 急速充電用電力供給装置および急速充電用電力供給方法
WO2010082506A1 (ja) * 2009-01-19 2010-07-22 株式会社エネルギー応用技術研究所 直流給電システム

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015020540A (ja) * 2013-07-18 2015-02-02 本田技研工業株式会社 発電機搭載車両
JP2015061510A (ja) * 2013-09-18 2015-03-30 高達能源科技股▲分▼有限公司 電池セル平衡システムを有する充電スタンド
EP3537558B1 (en) * 2014-02-28 2022-10-19 Bombardier Primove GmbH Inductive power transfer with inductive power transfer pad
CN106463994A (zh) * 2014-03-11 2017-02-22 萨普泰克知识产权股份有限公司 用于给电动车辆充电的电源系统
US10828995B2 (en) * 2014-07-07 2020-11-10 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Energy storage system and method for operating an energy storage system
US20160001664A1 (en) * 2014-07-07 2016-01-07 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Energy storage system and method for operating an energy storage system
CN106364360A (zh) * 2016-11-03 2017-02-01 六安市科宇专利技术开发服务有限公司 一种电动汽车充电站
CN106364360B (zh) * 2016-11-03 2019-01-22 六安市科宇专利技术开发服务有限公司 一种电动汽车充电站
CN106696721A (zh) * 2016-12-16 2017-05-24 四川新筑通工汽车有限公司 纯电动汽车双源能量系统及供电控制方法、快充方法和慢充方法
CN106696721B (zh) * 2016-12-16 2023-07-04 四川新筑通工汽车有限公司 纯电动汽车双源能量系统及供电控制方法、快充方法和慢充方法
CN107719160A (zh) * 2017-09-24 2018-02-23 国网山东省电力公司菏泽市定陶区供电公司 一种充电桩枪口转换系统
JP7155606B2 (ja) 2018-05-24 2022-10-19 日産自動車株式会社 充電方法及び充電装置
JP2019205302A (ja) * 2018-05-24 2019-11-28 日産自動車株式会社 充電方法及び充電装置
JP7103056B2 (ja) 2018-08-21 2022-07-20 日産自動車株式会社 充電制御方法及び充電制御システム
JP2020031472A (ja) * 2018-08-21 2020-02-27 日産自動車株式会社 充電制御方法及び充電制御システム

Also Published As

Publication number Publication date
SG11201402835YA (en) 2014-10-30
US9555715B2 (en) 2017-01-31
PH12014501198A1 (en) 2014-09-08
CN104137378A (zh) 2014-11-05
KR101585117B1 (ko) 2016-01-21
DE112012005145T5 (de) 2014-10-16
JPWO2013084999A1 (ja) 2015-04-27
CN104137378B (zh) 2016-10-12
US20140347017A1 (en) 2014-11-27
JP5710783B2 (ja) 2015-04-30
KR20140101840A (ko) 2014-08-20

Similar Documents

Publication Publication Date Title
JP5710783B2 (ja) 急速充電用電力供給システム
JP6247382B2 (ja) 急速充電用電力供給システム
JP5386348B2 (ja) 電動式移動体および電動式移動体の急速充電方法
JP5749983B2 (ja) 電力貯蔵システム
US20180339597A1 (en) Charging connector
EP3459786A1 (en) Electrically powered vehicle and control method for electrically powered vehicle
KR102128564B1 (ko) 멀티 전력을 공급받는 전기 자동차
CN115776954A (zh) 流体交换器
CN107554317B (zh) 无线电力传输方法、无线充电方法以及电动车辆
US20180126858A1 (en) Energy Supply Vehicle for Supplying an Electrically Drivable Motor Vehicle with Electrical Energy
JP2010501158A (ja) 電気牽引による輸送手段のための急速充電式エネルギー給電システム
JP5991209B2 (ja) 無人搬送車の運行制御システム
Wu et al. An overview of a 50kW inductive charging system for electric buses
WO2014169927A1 (en) Method and arrangement for error detection during charging of an energy storage system
WO2013111790A1 (ja) 電力貯蔵システム
CN103522902A (zh) 非接触受电装置及具有该非接触受电装置的车辆
WO2013050447A2 (en) A movable structure including a charging station and a method of supplying electrical power to a vehicle
JP2020188644A (ja) 蓄電モジュールおよび蓄電モジュール搭載電気機器の急速充電ステーション
US20230020971A1 (en) Method for controlling power transfer from a grid to a vehicle
AU2021463295A1 (en) Charging system for an industrial electric vehicle, method of charging an industrial electric vehicle and use of a charging system
CN116691434A (zh) 一种智能换电系统的bms系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12855684

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013548297

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12014501198

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 14363734

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112012005145

Country of ref document: DE

Ref document number: 1120120051459

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20147018782

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12855684

Country of ref document: EP

Kind code of ref document: A1