WO2013084828A1 - アセチレン結合を有する化合物及び/又はジエンの製造方法 - Google Patents

アセチレン結合を有する化合物及び/又はジエンの製造方法 Download PDF

Info

Publication number
WO2013084828A1
WO2013084828A1 PCT/JP2012/081141 JP2012081141W WO2013084828A1 WO 2013084828 A1 WO2013084828 A1 WO 2013084828A1 JP 2012081141 W JP2012081141 W JP 2012081141W WO 2013084828 A1 WO2013084828 A1 WO 2013084828A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
group
carbon
catalyst
ring
Prior art date
Application number
PCT/JP2012/081141
Other languages
English (en)
French (fr)
Inventor
三浦 直輝
航平 関
和晃 吉村
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN201280068974.2A priority Critical patent/CN104093682B/zh
Priority to SG11201402075PA priority patent/SG11201402075PA/en
Publication of WO2013084828A1 publication Critical patent/WO2013084828A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/08Halides
    • B01J27/10Chlorides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • B01J23/04Alkali metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/138Halogens; Compounds thereof with alkaline earth metals, magnesium, beryllium, zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/207Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms from carbonyl compounds
    • C07C1/2076Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms from carbonyl compounds by a transformation in which at least one -C(=O)- moiety is eliminated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/24Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms by elimination of water
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • C07C2521/08Silica

Definitions

  • the present invention relates to a method for producing a compound having an acetylene bond and / or a diene.
  • a compound having an acetylene bond is useful, for example, as a raw material for producing alkyl methacrylate.
  • a method for producing alkyl methacrylate by reacting carbon monoxide and an alcohol compound with propyne in the presence of a catalyst is known.
  • diene is useful as a raw material for producing synthetic rubber as represented by butadiene.
  • a method for producing diene polymer rubber by copolymerizing butadiene and styrene is known (for example, Patent Document 2).
  • a compound having acetylene bond such as propyne together with ethylene and propylene, propadiene, butadiene, etc. by thermal decomposition of naphtha
  • the method of obtaining the diene of is known.
  • naphtha is introduced into a thermal cracking furnace together with steam, and the obtained hydrocarbons are rapidly cooled and then led to a rectifying column to obtain tar from the tower bottom, gas oil from the tower side, and hydrocarbons from the tower top.
  • a compound or diene having an acetylene bond is obtained as a part of the overhead fraction.
  • Patent Documents 3 and 4 disclose a catalyst in which iron oxide and nickel oxide are supported on activated carbon or iron hydroxide supported on activated carbon.
  • a method for producing propyne from 1,2-dichloropropane in the presence of the above-mentioned catalyst has been proposed.
  • Patent Document 5 discloses an alumina catalyst or the presence of a catalyst in which platinum, chromium oxide or a rare earth element is supported on alumina.
  • Patent Document 6 proposes a method for producing butadiene by performing oxidative dehydrogenation of butene in the presence of a composite oxide catalyst. Yes.
  • An object of the present invention is to provide a novel method for producing a compound having an acetylene bond and / or a diene.
  • this invention consists of the following structures.
  • At least one selected from the group consisting of a compound containing a Group 1 metal element, a compound containing a Group 2 metal element, a Group 1 metal element and a Group 2 metal element is supported on a carrier containing silica.
  • R 1 , R 2 , R 3 and R 4 each independently represents a hydrogen atom, an alkylcycloalkyl group having 4 to 10 carbon atoms, or a phenyl group, or R 1 and R 2 together Together with the carbon atom to which R 1 is bonded, the carbon atom to which R 2 is bonded, and the carbon atom to which these carbon atoms are bonded to form a ring having 5 to 15 carbon atoms
  • R 3 and R 4 are Each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, an alkyl cycloalkyl group having 4 to 10 carbon atoms, a cycloalkyl alkyl group having 4 to 10 carbon atoms
  • carbon R 7 and R 3 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkyl cycloalkyl group having 4 to 10 carbon atoms, 4-10
  • R 5 , R 6 , R 7 , R 8 and R 9 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or 4 carbon atoms.
  • R 5 , R 6 and R 7 are each independently Hydrogen atom, alkyl group having 1 to 6 carbon atoms, cycloalkyl group having 3 to 6 carbon atoms, alkyl cycloalkyl group having 4 to 10 carbon atoms, cycloalkylalkyl group having 4 to 10 carbon atoms, 7 to 10 carbon atoms
  • R 8 and R 9 together form a ring having 3 to 13 carbon atoms with the carbon atom to which R 8 and R 9 are bonded, or R 5 and R 6 are together R 5 and A ring having 3 to 13 carbon atoms is formed together with the carbon atom to which R 6 is bonded, and R 7 is a hydrogen
  • alkylcycloalkyl group a cycloalkylalkyl group having 4 to 10 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, or a phenyl group, wherein R 8 and R 9 are each independently a cycloalkyl group having 3 to 6 carbon atoms.
  • R 10 represents a hydrogen atom or a phenyl group.
  • R 11 , R 12 and R 13 each independently represent a hydrogen atom or a phenyl group, or R 11 and R 12 are combined together to form a carbon atom to which R 11 and R 12 are bonded.
  • R 13 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, an alkylcycloalkyl group having 4 to 10 carbon atoms, carbon Represents a cycloalkylalkyl group having 4 to 10 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, or a phenyl group.
  • V a compound represented by the following formula (V):
  • R 14 , R 15 , R 16 , R 17 and R 18 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or 4 carbon atoms.
  • the catalyst is a catalyst in which at least one selected from the group consisting of a compound containing a Group 1 metal element and a Group 1 metal element is supported on a support containing silica.
  • the catalyst is a catalyst in which a compound containing a Group 1 metal element is supported on a support containing silica, and the compound containing a Group 1 metal element is a halide of a Group 1 metal element, (2) which is at least one selected from the group consisting of carbonates of group metal elements, oxides of group 1 metal elements, hydroxides of group 1 metal elements, and silicates of group 1 metal elements The manufacturing method as described.
  • a novel method for producing a compound having an acetylene bond and / or a diene can be provided.
  • the catalyst used in the production method of the present invention is selected from the group consisting of a compound containing a Group 1 metal element, a compound containing a Group 2 metal element, a Group 1 metal element and a Group 2 metal element on a support containing silica. At least one kind [hereinafter sometimes referred to as a metal component. ] Is a supported catalyst.
  • At least one selected from the group consisting of a compound containing a Group 1 metal element, a compound containing a Group 2 metal element, a Group 1 metal element and a Group 2 metal element, a compound having an acetylene bond and / or a diene is In view of obtaining a high selectivity, at least one selected from the group consisting of a compound containing a Group 1 metal element and a Group 1 metal element is preferred, and a compound containing a Group 1 metal element is more preferred.
  • Examples of the compound containing a Group 1 metal element include lithium compounds, sodium compounds, potassium compounds, rubidium compounds, and cesium compounds. Among them, a compound having an acetylene bond and / or a diene can be obtained with high selectivity. Sodium compounds, potassium compounds, rubidium compounds and cesium compounds are preferred.
  • the compounds containing Group 1 metal elements Group 1 metal element halides, Group 1 metal element carbonates, Group 1 metal element oxides, Group 1 metal element hydroxides, Group metal element silicates are preferred, Group 1 metal element halides, Group 1 metal element oxides, Group 1 metal element hydroxides, Group 1 metal element silicates are more preferred. .
  • group 1 metal element halides group 1 metal element chlorides are preferred.
  • Examples of the compound containing a Group 2 metal element include magnesium compounds, calcium compounds, strontium compounds, and barium compounds. Of these, barium compounds are preferred.
  • Examples of calcium compounds include calcium fluoride (CaF 2 ), calcium chloride (CaCl 2 ), calcium bromide (CaBr 2 ), calcium iodide (CaI 2 ), and the like, calcium carbonate (CaCO 3 ), and calcium sulfate.
  • CaS calcium sulfide
  • strontium compound examples include strontium fluoride (SrF 2 ), strontium chloride (SrCl 2 ), strontium bromide (SrBr 2 ), strontium iodide (SrI 2 ) and other strontium halides, strontium carbonate (SrCO 3 ), and strontium sulfate.
  • examples of the Group 1 metal element include lithium, sodium, potassium, rubidium, and cesium, and among these, sodium, potassium, rubidium, and cesium are preferable.
  • examples of the Group 2 metal element include magnesium, calcium, strontium, and barium compounds. Among these, barium is preferable.
  • a support containing silica is used.
  • the carrier may contain oxides such as titania, zirconia, niobium oxide and tin oxide in addition to silica.
  • the carrier may be a silica alone carrier, that is, a carrier made of silica, a composite oxide of silica and an oxide other than silica, or a mixture of silica and an oxide other than silica.
  • a support made of silica is particularly preferable.
  • examples of a method for supporting a metal component on a support containing silica include an impregnation method, a coprecipitation method, and a kneading method.
  • the catalyst can be prepared by, for example, supporting a metal component on a support by an impregnation method, a coprecipitation method, a kneading method, or the like, and performing a heat treatment at 50 to 1000 ° C.
  • the supported metal component can be oxidized to be used as a supported oxide. Alternatively, the supported metal component can be reduced and used as a supported metal catalyst. Oxidation is performed, for example, by carrying a metal component on a carrier and firing in an atmosphere of an oxidizing gas.
  • the oxidizing gas is a gas containing an oxidizing substance, and examples thereof include an oxygen-containing gas.
  • the oxygen concentration is usually about 1 to 30% by volume.
  • air or pure oxygen is usually used, and diluted with an inert gas as necessary. Of these, air is preferable as the oxidizing gas.
  • the firing temperature in the oxidation is usually 100 to 1000 ° C., preferably 200 to 800 ° C.
  • the reduction is performed, for example, by carrying a metal component on a carrier and then firing in a reducing gas atmosphere.
  • the reducing gas is a gas containing a reducing substance, and examples thereof include a hydrogen-containing gas, a carbon monoxide-containing gas, and a hydrocarbon-containing gas.
  • the concentration of the hydrogen, carbon monoxide or hydrocarbon is usually about 1 to 30% by volume, and the concentration is adjusted with, for example, an inert gas or water vapor.
  • the reducing gas is preferably a hydrogen-containing gas or a carbon monoxide-containing gas.
  • the firing temperature in the reduction is usually 100 to 1000 ° C., preferably 200 to 800 ° C.
  • the supported amount of the metal component in the catalyst is preferably 0.01 to 30% by weight, more preferably 0.1 to 20% by weight, and further preferably 0.1 to 15% by weight of the metal element with respect to the total amount of the catalyst. % By weight. When two or more metal elements are included, the total content of the metal elements may be in the above range in the catalyst.
  • the BET specific surface area of the catalyst is preferably 1 to 800 m 2 / g, more preferably 1 to 400 m 2 / g. If the BET specific surface area is smaller than 1 m 2 / g, the degree of dispersion of the supported metal component may be reduced. Further, if the BET specific surface area is larger than 800 m 2 / g, the thermal stability of the catalyst may be lowered.
  • the BET specific surface area is a value obtained by measurement using a specific surface area measuring apparatus based on the nitrogen adsorption method.
  • the pore volume of the catalyst is preferably 0.05 to 2.5 ml / g, more preferably 0.1 to 1.5 ml / g. If the pore volume is smaller than 0.05 ml / g, the pore diameter may be too small and the activity may be lowered. On the other hand, if the pore volume is larger than 2.5 ml / g, the strength of the carrier is lowered and the catalyst may be easily deteriorated.
  • the pore volume is a value obtained by measurement by a mercury intrusion method.
  • the catalyst is preferably used as a molded body.
  • the shape include a spherical particle shape, a columnar shape, a pellet shape, an extruded shape, a ring shape, a honeycomb shape, and a granule shape having an appropriate size that is pulverized and classified after forming.
  • the shape of the molded body is selected in accordance with the reaction method to be used. For example, when the molded body is used as a catalyst for a fixed bed reaction, the molded body having various shapes described above is used. At this time, the diameter of the molded body is preferably 5 mm or less. If the diameter of the molded body is too large, the conversion rate of the dehydration reaction may be lowered.
  • the lower limit of the diameter of the molded body is not particularly limited, but if it becomes excessively small, pressure loss in the catalyst layer increases, so that a diameter of 0.5 mm or more is usually used.
  • a spherical granular product having an average particle diameter of about 1 to 1000 ⁇ m is preferably used.
  • a spherical granular body having an average particle diameter of 10 to 500 ⁇ m is used.
  • the molded body is preferably used.
  • the diameter of a molded object here means the diameter of a sphere for spherical particles, the diameter of a circular cross section for a cylindrical shape, and the maximum diameter of the cross section for other shapes.
  • At least one selected from the group consisting of ketone compound (I), ketone compound (II), aldehyde compound (III), aldehyde compound (IV) and aldehyde compound (V) is subjected to a dehydration reaction.
  • examples of the alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, a propyl group, a butyl group, A pentyl group, a hexyl group, etc. are mentioned. In the case of an alkyl group having 3 to 6 carbon atoms, all structural isomers are included.
  • a propyl group includes an n-propyl group and an isopropyl group
  • a butyl group includes an n-butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group.
  • examples of the cycloalkyl group having 3 to 6 carbon atoms include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and cyclohexyl. Groups and the like.
  • examples of the alkylcycloalkyl group having 4 to 10 carbon atoms include a methylcyclopropyl group, a methylcyclobutyl group, Examples include a methylcyclopentyl group, a methylcyclohexyl group, a methylcyclooctyl group, an ethylcyclohexyl group, a trimethylcyclohexyl group, and an ethylcyclooctyl group.
  • examples of the cycloalkylalkyl group having 4 to 10 carbon atoms include a cyclopropylmethyl group, a cyclobutylmethyl group, A cyclopentylmethyl group, a cyclohexylmethyl group, a cyclooctylmethyl group, a cyclohexylethyl group, a cyclooctylethyl group and the like can be mentioned.
  • examples of the aralkyl group having 7 to 10 carbon atoms include benzyl group, phenethyl group, tolylmethyl group, phenylbutyl group Etc.
  • R 1 and R 2 are combined to form a carbon atom having 5 to 5 carbon atoms together with the carbon atom to which R 1 is bonded, the carbon atom to which R 2 is bonded, and the carbon atom to which those carbon atoms are bonded.
  • the ring is preferably a 5- to 15-membered alicyclic hydrocarbon, more preferably a 5- to 8-membered alicyclic hydrocarbon.
  • the ring having 5 to 15 carbon atoms include a cyclopentane ring, a cyclohexane ring, a cyclooctane ring, and a cyclopentadecane ring.
  • the ring having 3 to 13 carbon atoms is an alicyclic hydrocarbon having 3 to 13 membered rings.
  • Preferred is a 3- to 8-membered alicyclic hydrocarbon.
  • Examples of the ring having 3 to 13 carbon atoms include a cyclopropane ring, a cyclobutane ring, a cyclopentane ring, a cyclohexane ring, a cyclooctane ring, and a cyclotridecane ring.
  • R 1 , R 2 , R 3 and R 4 each independently represents a hydrogen atom, an alkylcycloalkyl group having 4 to 10 carbon atoms or a phenyl group
  • examples of the ketone compound (I) include acetone, 1,3-diphenyl-2-propanone and the like can be mentioned.
  • R 1 and R 2 together form a ring having 5 to 15 carbon atoms together with the carbon atom to which R 1 is bonded, the carbon atom to which R 2 is bonded, and the carbon atom to which these carbon atoms are bonded;
  • R 3 and R 4 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, an alkylcycloalkyl group having 4 to 10 carbon atoms, or 4 to 10 carbon atoms.
  • examples of the ketone compound (I) include cyclopentanone, cyclohexanone, cyclooctanone, and the like.
  • R 1 and R 3 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkylcycloalkyl group having 4 to 10 carbon atoms, a cycloalkylalkyl group having 4 to 10 carbon atoms, or 7 to 7 carbon atoms.
  • 10 represents an aralkyl group or a phenyl group
  • R 2 and R 4 together form a ring having 3 to 13 carbon atoms with the carbon atom to which R 2 and R 4 are bonded, as a ketone compound (I) Examples thereof include 1-cyclopropylethanone, 1-cyclopropyl-1-propanone, 1-cyclohexyl-1-propanone and the like.
  • R 1 and R 3 together form a ring of 3 to 13 carbon atoms with the carbon atom to which R 1 and R 3 are bonded, R 2 and R 4 are together, and R 2 and R 4 are In the case of forming a ring having 3 to 13 carbon atoms together with the carbon atoms to be bonded, examples of the ketone compound (I) include dicyclopropyl ketone and dicyclohexyl ketone.
  • R 1 , R 2 and R 4 each independently represents a hydrogen atom, an alkylcycloalkyl group having 4 to 10 carbon atoms or a phenyl group, or R 1 and R 2 are taken together) , R 1 and the carbon atom to which R 2 is bonded together with the carbon atom to which these carbon atoms are bonded to form a ring having 5 to 15 carbon atoms, and R 4 is a hydrogen atom, 1 carbon atom
  • R 1 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkylcycloalkyl group having 4 to 10 carbon atoms, a cycloalkylalkyl group having 4 to 10 carbon atoms, or an aralkyl group having 7 to 10 carbon atoms.
  • R 1 , R 2 and R 4 each independently represents a hydrogen atom, an alkylcycloalkyl group having 4 to 10 carbon atoms or a phenyl group, or R 1 and R 2 are taken together) , R 1 and the carbon atom to which R 2 is bonded together with the carbon atom to which these carbon atoms are bonded to form a ring having 5 to 15 carbon atoms, and R 4 is a hydrogen atom, 1 carbon atom
  • R 1 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkylcycloalkyl group having 4 to 10 carbon atoms, a cycloalkylalkyl group having 4 to 10 carbon atoms, or an aralkyl group having 7 to 10 carbon atoms.
  • R 1 , R 2 and R 4 each independently represents a hydrogen atom, an alkylcycloalkyl group having 4 to 10 carbon atoms or a phenyl group, or R 1 and R 2 are taken together) , R 1 and the carbon atom to which R 2 is bonded together with the carbon atom to which these carbon atoms are bonded to form a ring having 5 to 15 carbon atoms, and R 4 is a hydrogen atom, 1 carbon atom
  • R 1 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkylcycloalkyl group having 4 to 10 carbon atoms, a cycloalkylalkyl group having 4 to 10 carbon atoms, or an aralkyl group having 7 to 10 carbon atoms.
  • the method of the present invention is advantageously employed in that propyne and / or propadiene can be obtained with high selectivity.
  • R 8 and R 9 together form a ring having 3 to 13 carbon atoms with the carbon atom to which R 8 and R 9 are bonded, and R 5 and R 6 are together.
  • the ring having 3 to 13 carbon atoms is an alicyclic hydrocarbon having 3 to 13 membered rings. Preferred is a 3- to 8-membered alicyclic hydrocarbon.
  • Examples of the ring having 3 to 13 carbon atoms include a cyclopropane ring, a cyclobutane ring, a cyclopentane ring, a cyclohexane ring, a cyclooctane ring, and a cyclotridecane ring.
  • R 5 , R 6 , R 7 , R 8 and R 9 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or an alkyl having 4 to 10 carbon atoms.
  • examples of the ketone compound (II) include 2-butanone, 2-pentanone, 3- Pentanone, 3-methyl-2-butanone, 4-methyl-2-pentanone, 4-methyl-3-pentanone, 2,5-dimethyl-3-hexanone, 5-cyclohexyl-4-methyl-3-hexanone, 3- And methyl-4-phenyl-2-butanone.
  • R 5 , R 6 and R 7 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, an alkylcycloalkyl group having 4 to 10 carbon atoms, Represents a cycloalkylalkyl group having 4 to 10 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, or a phenyl group, and R 8 and R 9 together have 3 to 13 carbon atoms together with the carbon atom to which R 8 and R 9 are bonded.
  • examples of the ketone compound (II) include 1-cyclopropyl-2-propanone and 1-cyclohexyl-2-propanone.
  • R 5 and R 6 together form a ring having 3 to 13 carbon atoms with the carbon atom to which R 5 and R 6 are bonded
  • R 7 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms
  • carbon Represents a cycloalkyl group having 3 to 6 carbon atoms, an alkylcycloalkyl group having 4 to 10 carbon atoms, a cycloalkylalkyl group having 4 to 10 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, or a phenyl group
  • R 8 and R 9 Each independently represents a cycloalkyl group having 3 to 6 carbon atoms, an alkylcycloalkyl group having 4 to 10 carbon atoms, a cycloalkylalkyl group having 4 to 10 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, or a phenyl group
  • examples of the ketone compound (II) include 1-
  • R 5 and R 6 together form a ring having 3 to 13 carbon atoms with the carbon atom to which R 5 and R 6 are bonded
  • R 7 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms
  • carbon Represents a cycloalkyl group having 3 to 6 carbon atoms, an alkylcycloalkyl group having 4 to 10 carbon atoms, a cycloalkylalkyl group having 4 to 10 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, or a phenyl group
  • R 8 and R 9 Together form a ring having 3 to 13 carbon atoms with the carbon atom to which R 8 and R 9 are bonded
  • examples of the ketone compound (II) include 1,2-dicyclohexylethanone and the like. .
  • R 6 , R 7 , R 8 and R 9 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or an alkyl group having 4 to 10 carbon atoms.
  • R 6 and R 7 are each independently a hydrogen atom, An alkyl group having 6 to 6, a cycloalkyl group having 3 to 6 carbon atoms, an alkylcycloalkyl group having 4 to 10 carbon atoms, a cycloalkylalkyl group having 4 to 10 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, or a phenyl group.
  • R 8 and R 9 together form a ring having 3 to 13 carbon atoms together with the carbon atom to which R 8 and R 9 are bonded.
  • R 6 , R 7 , R 8 and R 9 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or an alkyl group having 4 to 10 carbon atoms.
  • R 6 and R 7 are each independently a hydrogen atom, An alkyl group having 6 to 6, a cycloalkyl group having 3 to 6 carbon atoms, an alkylcycloalkyl group having 4 to 10 carbon atoms, a cycloalkylalkyl group having 4 to 10 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, or a phenyl group.
  • R 8 and R 9 together form a ring having 3 to 13 carbon atoms together with the carbon atom to which R 8 and R 9 are bonded.
  • R 6 , R 7 , R 8 and R 9 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or an alkyl group having 4 to 10 carbon atoms.
  • R 6 and R 7 are each independently a hydrogen atom, An alkyl group having 6 to 6, a cycloalkyl group having 3 to 6 carbon atoms, an alkylcycloalkyl group having 4 to 10 carbon atoms, a cycloalkylalkyl group having 4 to 10 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, or a phenyl group.
  • R 8 and R 9 together form a ring having 3 to 13 carbon atoms together with the carbon atom to which R 8 and R 9 are bonded.
  • R 6 , R 7 , R 8 and R 9 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or an alkyl group having 4 to 10 carbon atoms.
  • R 8 and R 9 together form a ring having 3 to 13 carbon atoms together with the carbon atom to which R 8 and R 9 are bonded.)
  • the compound which has an acetylene bond shown by this is obtained.
  • R 7 is a hydrogen atom, that is, the following formula (IIb)
  • R 5 , R 6 , R 8 and R 9 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or an alkyl group having 4 to 10 carbon atoms.
  • R 5 and R 6 are each independently a hydrogen atom, carbon number 1
  • R 8 and R 9 together form a ring of 3 to 13 carbon atoms with the carbon atom to which R 8 and R 9 are attached, or R 5 and R 6 together form R 5 And R 6 bind
  • a ring having 3 to 13 carbon atoms is formed together with a carbon atom
  • R 8 and R 9 are each independently a cycloalkyl group having 3 to 6 carbon atoms, an alkylcycloalkyl group having 4 to 10 carbon atoms, Represents a cycloalkylalkyl group having 10 to 10 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, or a phenyl group, or R 5 and R 6 together, together with the carbon atom to which R 5 and R 6 are bonded, 13 rings are formed, and R 8 and R 9 together form a ring having 3 to 13 carbon atoms together with the carbon atom to which R 8 and R 9 are bonded.)
  • VIIIb a compound represented by the following formula (VIIIb)
  • R 5 , R 6 , R 8 and R 9 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or an alkyl group having 4 to 10 carbon atoms.
  • R 5 and R 6 are each independently a hydrogen atom, carbon number 1
  • R 8 and R 9 together form a ring of 3 to 13 carbon atoms with the carbon atom to which R 8 and R 9 are attached, or R 5 and R 6 together form R 5 And R 6 bind
  • a ring having 3 to 13 carbon atoms is formed together with a carbon atom
  • R 8 and R 9 are each independently a cycloalkyl group having 3 to 6 carbon atoms, an alkylcycloalkyl group having 4 to 10 carbon atoms, Represents a cycloalkylalkyl group having 10 to 10 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, or a phenyl group, or R 5 and R 6 together, together with the carbon atom to which R 5 and R 6 are bonded, 13 rings are formed, and R 8 and R 9 together form a ring having 3 to 13 carbon atoms together with the carbon atom to which R 8 and R 9 are bonded.)
  • R 5 , R 6 , R 8 and R 9 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or an alkyl group having 4 to 10 carbon atoms.
  • R 5 and R 6 are each independently a hydrogen atom, carbon number 1
  • R 8 and R 9 together form a ring of 3 to 13 carbon atoms with the carbon atom to which R 8 and R 9 are attached, or R 5 and R 6 together form R 5 And R 6 bind
  • a ring having 3 to 13 carbon atoms is formed together with a carbon atom
  • R 8 and R 9 are each independently a cycloalkyl group having 3 to 6 carbon atoms, an alkylcycloalkyl group having 4 to 10 carbon atoms, Represents a cycloalkylalkyl group having 10 to 10 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, or a phenyl group, or R 5 and R 6 together, together with the carbon atom to which R 5 and R 6 are bonded, 13 rings are formed, and R 8 and R 9 together form a ring having 3 to 13 carbon atoms together with the carbon atom to which R 8 and R 9 are bonded.) And / or the following formula (XI)
  • R 5 , R 6 , R 8 and R 9 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or an alkyl group having 4 to 10 carbon atoms.
  • R 5 and R 6 are each independently a hydrogen atom, carbon number 1
  • R 8 and R 9 together form a ring of 3 to 13 carbon atoms with the carbon atom to which R 8 and R 9 are attached, or R 5 and R 6 together form R 5 And R 6 bind
  • a ring having 3 to 13 carbon atoms is formed together with a carbon atom
  • R 8 and R 9 are each independently a cycloalkyl group having 3 to 6 carbon atoms, an alkylcycloalkyl group having 4 to 10 carbon atoms, Represents a cycloalkylalkyl group having 10 to 10 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, or a phenyl group, or R 5 and R 6 together, together with the carbon atom to which R 5 and R 6 are bonded, 13 rings are formed, and R 8 and R 9 together form a ring having 3 to 13 carbon atoms together with the carbon atom to which R 8 and R 9 are bonded.)
  • the compound which has an acetylene bond shown by this is obtained.
  • R 6 , R 8 and R 9 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or an alkylcycloalkyl having 4 to 10 carbon atoms
  • a ring having 3 to 13 carbon atoms is formed together with the carbon atom to which R 8 and R 9 are bonded.
  • R 6 , R 8 and R 9 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or an alkylcycloalkyl having 4 to 10 carbon atoms
  • R 6 , R 8 and R 9 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or an alkylcycloalkyl having 4 to 10 carbon atoms
  • a ring having 3 to 13 carbon atoms is formed together with the carbon atom to which R 8 and R 9 are bonded.
  • R 6 , R 8 and R 9 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or an alkylcycloalkyl having 4 to 10 carbon atoms
  • R 6 , R 8 and R 9 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or an alkylcycloalkyl having 4 to 10 carbon atoms
  • ketone compounds (II) when 2-butanone is used, 1,3-butadiene, 1,2-butadiene, 1-butyne and / or 2-butyne can be obtained with high selectivity. This method is advantageously employed.
  • aldehyde compound (III) examples include acetaldehyde and phenylacetaldehyde.
  • the ring is a 3- to 13-membered ring.
  • An alicyclic hydrocarbon is preferable, and a 3- to 8-membered alicyclic hydrocarbon is more preferable.
  • the ring having 3 to 13 carbon atoms include a cyclopropane ring, a cyclobutane ring, a cyclopentane ring, a cyclohexane ring, a cyclooctane ring, and a cyclotridecane ring.
  • examples of the aldehyde compound (IV) include propanal and 3-phenylpropanal.
  • R 11 and R 12 together form a ring having 3 to 13 carbon atoms with the carbon atom to which R 11 and R 12 are bonded, and R 13 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a carbon atom
  • R 13 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a carbon atom
  • an aldehyde compound (IV ) Include, for example, cyclopropylacetaldehyde, cyclohexylacetaldehyde and the like.
  • R 11 and R 12 each independently represent a hydrogen atom or a phenyl group, or R 11 and R 12 together represent a carbon number together with the carbon atom to which R 11 and R 12 are bonded. 3 to 13 rings are formed.
  • R 11 and R 12 each independently represent a hydrogen atom or a phenyl group, or R 11 and R 12 together represent a carbon number together with the carbon atom to which R 11 and R 12 are bonded. 3 to 13 rings are formed.
  • formula (XIV) having an acetylene bond
  • R 11 and R 12 each independently represent a hydrogen atom or a phenyl group, or R 11 and R 12 together represent a carbon number together with the carbon atom to which R 11 and R 12 are bonded. 3 to 13 rings are formed.
  • the diene represented by is obtained.
  • R 11 is a phenyl group and R 12 and R 13 are hydrogen atoms, that is, the following formula (IVb)
  • R 11 represents a phenyl group.
  • R 12 and R 13 are hydrogen atoms, propyne and / or propadiene is obtained.
  • the method of the present invention is advantageously employed in that propyne and / or propadiene can be obtained with high selectivity.
  • the ring is a 3- to 13-membered ring.
  • An alicyclic hydrocarbon is preferable, and a 3- to 8-membered alicyclic hydrocarbon is more preferable.
  • the ring having 3 to 13 carbon atoms include a cyclopropane ring, a cyclobutane ring, a cyclopentane ring, a cyclohexane ring, a cyclooctane ring, and a cyclotridecane ring.
  • R 14 , R 15 , R 16 , R 17 and R 18 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or an alkyl having 4 to 10 carbon atoms.
  • examples of the aldehyde compound (V) include butanal, pentanal, 3-methylbutanal, Examples include 3,3-dimethylbutanal.
  • R 14 and R 15 together form a ring having 3 to 13 carbon atoms with the carbon atom to which R 14 and R 15 are bonded
  • R 16 , R 17 and R 18 are each independently a hydrogen atom
  • examples of the aldehyde compound (V) include 3-cyclohexylpropanal, 3-phenyl-3-cyclohexylpropanal and the like.
  • R 14 , R 15 , R 16 and R 17 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or an alkyl group having 4 to 10 carbon atoms.
  • R 16 and R 17 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, Represents an alkylcycloalkyl group having 4 to 10 carbon atoms, a cycloalkylalkyl group having 4 to 10 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, or a phenyl group.
  • R 14 , R 15 , R 16 and R 17 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or an alkyl group having 4 to 10 carbon atoms.
  • R 16 and R 17 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, Represents an alkylcycloalkyl group having 4 to 10 carbon atoms, a cycloalkylalkyl group having 4 to 10 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, or a phenyl group.) And / or a compound having the acetylene bond represented by formula (XVII):
  • R 14 , R 15 , R 16 and R 17 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or an alkyl group having 4 to 10 carbon atoms.
  • R 16 and R 17 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, Represents an alkylcycloalkyl group having 4 to 10 carbon atoms, a cycloalkylalkyl group having 4 to 10 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, or a phenyl group.)
  • the diene represented by is obtained.
  • R 16 and R 18 are hydrogen atoms, that is, the following formula (Vb)
  • R 14 , R 15 and R 17 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or an alkylcycloalkyl having 4 to 10 carbon atoms
  • R 17 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, an alkylcycloalkyl group having 4 to 10 carbon atoms
  • R 14 , R 15 and R 17 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or an alkylcycloalkyl having 4 to 10 carbon atoms
  • R 17 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, an alkylcycloalkyl group having 4 to 10 carbon atoms
  • R 14 , R 15 and R 17 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or an alkylcycloalkyl having 4 to 10 carbon atoms
  • R 17 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, an alkylcycloalkyl group having 4 to 10 carbon atoms
  • R 14 , R 15 and R 17 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or an alkylcycloalkyl having 4 to 10 carbon atoms
  • R 17 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, an alkylcycloalkyl group having 4 to 10 carbon atoms
  • R 14 , R 15 and R 16 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or an alkylcycloalkyl having 4 to 10 carbon atoms
  • R 16 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, an alkylcycloalkyl group having 4 to 10 carbon atoms
  • R 14 , R 15 and R 16 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or an alkylcycloalkyl having 4 to 10 carbon atoms
  • R 16 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, an alkylcycloalkyl group having 4 to 10 carbon atoms
  • R 14 , R 15 and R 16 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or an alkylcycloalkyl having 4 to 10 carbon atoms
  • R 16 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, an alkylcycloalkyl group having 4 to 10 carbon atoms
  • R 14 , R 15 and R 16 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or an alkylcycloalkyl having 4 to 10 carbon atoms
  • R 16 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, an alkylcycloalkyl group having 4 to 10 carbon atoms
  • R 14 and R 15 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, an alkylcycloalkyl group having 4 to 10 carbon atoms, carbon A cycloalkylalkyl group having 4 to 10 carbon atoms, an aralkyl group or a phenyl group having 7 to 10 carbon atoms, or R 14 and R 15 together, together with the carbon atom to which R 14 and R 15 are bonded, 3 to 13 rings are formed.
  • XVId a compound represented by the following formula (XVId)
  • R 14 and R 15 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, an alkylcycloalkyl group having 4 to 10 carbon atoms, carbon A cycloalkylalkyl group having 4 to 10 carbon atoms, an aralkyl group or a phenyl group having 7 to 10 carbon atoms, or R 14 and R 15 together, together with the carbon atom to which R 14 and R 15 are bonded, 3 to 13 rings are formed.
  • R 14 and R 15 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, an alkylcycloalkyl group having 4 to 10 carbon atoms, carbon A cycloalkylalkyl group having 4 to 10 carbon atoms, an aralkyl group or a phenyl group having 7 to 10 carbon atoms, or R 14 and R 15 together, together with the carbon atom to which R 14 and R 15 are bonded, 3 to 13 rings are formed.
  • R 14 and R 15 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, an alkylcycloalkyl group having 4 to 10 carbon atoms, carbon A cycloalkylalkyl group having 4 to 10 carbon atoms, an aralkyl group or a phenyl group having 7 to 10 carbon atoms, or R 14 and R 15 together, together with the carbon atom to which R 14 and R 15 are bonded, 3 to 13 rings are formed.
  • XIXd the following formula (XIXd)
  • R 14 and R 15 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, an alkylcycloalkyl group having 4 to 10 carbon atoms, carbon A cycloalkylalkyl group having 4 to 10 carbon atoms, an aralkyl group or a phenyl group having 7 to 10 carbon atoms, or R 14 and R 15 together, together with the carbon atom to which R 14 and R 15 are bonded, 3 to 13 rings are formed.)
  • the compound which has an acetylene bond shown by this is obtained.
  • ketone compound (I), a ketone compound (II), an aldehyde compound (III), an aldehyde compound (IV), and an aldehyde compound (V) that are raw materials in the reaction system.
  • water vapor, carbon monoxide, carbon dioxide, methane, ethane, ethylene, acetylene, propane, propylene, propyne, propadiene, butane, butene, butyne, isobutylene, butadiene, nitrogen and the like may be present.
  • the reaction temperature is usually 200 to 1200 ° C., preferably 250 to 1000 ° C., more preferably 400 to 800 ° C. If the reaction temperature is lower than 200 ° C, the activity of the catalyst may be reduced. On the other hand, if the reaction temperature is higher than 1200 ° C, the activity of the catalyst may be deteriorated.
  • the reaction pressure is 0.001 to 5 MPa, preferably 0.005 to 0.3 MPa. If the reaction pressure is lower than 0.001 MPa, the productivity may be low, and if it is higher than 5 MPa, the equilibrium conversion rate in the reaction may be low.
  • the reaction method of the present invention can be carried out by various methods such as a fixed bed method, a fluidized bed method, and a moving bed method, but a fixed bed or a fluidized bed method is preferable.
  • the catalyst may be used alone, or may be used by diluting and mixing with a substance substantially inert to the reaction.
  • the feed rate of the feed gas is 1 to 20000 h ⁇ 1 , preferably 10 in terms of feed gas feed rate per liter of catalyst (L / h; 0 ° C., 0.1 MPa conversion), that is, GHSV (Gas Hourly Space Velocity). ⁇ 10000h -1 .
  • the gas supply rate (ml / min) is a converted value of 0 ° C. and 0.1 MPa unless otherwise specified.
  • Example 1 ⁇ Manufacture of catalyst> Silica spheres (1.7 to 4.0 mm spheres) [manufactured by Fuji Silysia Chemical Ltd., Q-50] were used as the carrier. 10.0 g of carrier was impregnated with an aqueous solution prepared by dissolving 0.095 g of potassium chloride (manufactured by Wako Pure Chemical Industries, Ltd.) in 7.63 g of pure water, and air-dried at 20 to 30 ° C. for 15 hours or more. The obtained solid was heated from room temperature to 400 ° C. over 1.1 hours under air flow, and then calcined by maintaining at the same temperature for 2 hours. Next, the obtained fired product was crushed into granules of 0.85 to 1.4 mm to obtain a catalyst (potassium chloride content: 0.94 wt%) in which potassium chloride was supported on silica.
  • acetone compound in which R 1 , R 2 , R 3 and R 4 are hydrogen atoms in the formula (I)] (manufactured by Wako Pure Chemical Industries, Ltd.) was charged into a gas absorption bottle and cooled to 0 ° C. Thereafter, nitrogen gas is supplied to the gas absorption bottle at a rate of 32 ml / min, and nitrogen gas entrained with acetone obtained by circulating the nitrogen gas through acetone is supplied as 156 ml / min. The reaction was started from the reaction tube inlet (acetone supply rate: 0.0088 mol / h, acetone concentration in the supply gas: 1.7% by volume), and the reaction was started at a reaction pressure of 0.1 MPa. The ratio of total gas flow to catalyst volume (GHSV) was 9564 h ⁇ 1 .
  • the temperature of the catalyst layer is maintained at 600 ° C. ⁇ 2 ° C., and when 90 minutes have elapsed from the start of the reaction, the reactor outlet gas is collected in a Tedlar bag and subjected to gas chromatography having a TCD and FID detector. Each product was quantified.
  • the two traps containing monochlorobenzene are used to absorb acetone and high-boiling components, and the first and second absorption liquids are subjected to gas chromatography having an FID detector. And acetone and high-boiling components were quantified. The results are shown in Table 1.
  • the selectivity (%) of each product was calculated using the following formula (ii).
  • Selectivity of each product (%) [Production rate of each product (mol / h) ⁇ Total production rate of all products (mol / h)] ⁇ 100 (ii)
  • the product refers to propyne, propadiene, propane, propylene, methane, ethane, ethylene, isobutylene, carbon monoxide, and carbon dioxide.
  • Example 2 ⁇ Manufacture of catalyst> Silica spheres (1.7 to 4.0 mm spheres) [manufactured by Fuji Silysia Chemical Ltd., Q-50] were used as the carrier. 10.0 g of carrier was impregnated with an aqueous solution prepared by dissolving 0.29 g of potassium chloride (manufactured by Wako Pure Chemical Industries, Ltd.) in 8.16 g of pure water, and air-dried at 20 to 30 ° C. for 15 hours or more. The obtained solid was heated from room temperature to 400 ° C. over 1.1 hours under air flow, and then calcined by maintaining at the same temperature for 2 hours. Next, the obtained fired product was crushed into 0.85 to 1.4 mm granules to obtain a catalyst (potassium chloride content: 2.8% by weight) in which potassium chloride was supported on silica.
  • a catalyst potassium chloride content: 2.8% by weight
  • Example 3 ⁇ Manufacture of catalyst> Silica spheres (1.7 to 4.0 mm spheres) [manufactured by Fuji Silysia Chemical Ltd., Q-50] were used as the carrier. 10.0 g of carrier was impregnated with an aqueous solution prepared by dissolving 1.04 g of potassium chloride (manufactured by Wako Pure Chemical Industries, Ltd.) in 8.25 g of pure water, and air-dried at 20-30 ° C. for 15 hours or more. The obtained solid was heated from room temperature to 400 ° C. over 1.1 hours under air flow, and then calcined by maintaining at the same temperature for 2 hours. Next, the obtained fired product was crushed into granules of 0.85 to 1.4 mm to obtain a catalyst (potassium chloride content: 9.4% by weight) in which potassium chloride was supported on silica.
  • Example 4 ⁇ Manufacture of catalyst> Silica spheres (1.7 to 4.0 mm spheres) [manufactured by Fuji Silysia Chemical Ltd., Q-50] were used as the carrier. 10.0 g of a carrier was impregnated with an aqueous solution prepared by dissolving 0.22 g of cesium chloride (manufactured by Wako Pure Chemical Industries, Ltd.) in 9.88 g of pure water, and air-dried at 20 to 30 ° C. for 15 hours or more. The obtained solid was heated from room temperature to 400 ° C. over 1.1 hours under air flow, and then calcined by maintaining at the same temperature for 2 hours. Next, the obtained fired product was crushed into granules of 0.85 to 1.4 mm to obtain a catalyst (cesium chloride content: 2.2% by weight) in which cesium chloride was supported on silica.
  • Example 5 ⁇ Manufacture of catalyst> Silica spheres (1.7 to 4.0 mm spheres) [manufactured by Fuji Silysia Chemical Ltd., Q-50] were used as the carrier. 10.0 g of a carrier was impregnated with an aqueous solution prepared by dissolving 0.075 g of sodium chloride (manufactured by Wako Pure Chemical Industries, Ltd.) in 9.42 g of pure water, and air-dried at 20-30 ° C. for 15 hours or more. The obtained solid was heated from room temperature to 400 ° C. over 1.1 hours under air flow, and then calcined by maintaining at the same temperature for 2 hours. Subsequently, the obtained fired product was crushed into granules of 0.85 to 1.4 mm to obtain a catalyst (sodium chloride content: 0.74% by weight) in which sodium chloride was supported on silica.
  • a catalyst sodium chloride content: 0.74% by weight
  • Example 6 Manufacture of catalyst> Silica spheres (1.7 to 4.0 mm spheres) [manufactured by Fuji Silysia Chemical Ltd., Q-50] were used as the carrier. 10.0 g of a carrier was impregnated with an aqueous solution prepared by dissolving 0.13 g of rubidium chloride (manufactured by Wako Pure Chemical Industries, Ltd.) in 9.77 g of pure water, and air-dried at 20 to 30 ° C. for 15 hours or more. The obtained solid was heated from room temperature to 400 ° C. over 1.1 hours under air flow, and then calcined by maintaining at the same temperature for 2 hours. Next, the obtained fired product was crushed into granules of 0.85 to 1.4 mm to obtain a catalyst (rubidium chloride content: 1.3% by weight) in which rubidium chloride was supported on silica.
  • aqueous solution prepared by dissolving 0.13 g of rubidium chloride (manufactured by Wak
  • Example 7 ⁇ Manufacture of catalyst> Silica spheres (1.7 to 4.0 mm spheres) [manufactured by Fuji Silysia Chemical Ltd., Q-50] were used as the carrier. 10.0 g of a carrier was impregnated with an aqueous solution prepared by dissolving 0.054 g of lithium chloride (manufactured by Wako Pure Chemical Industries, Ltd.) in 9.87 g of pure water, and air-dried at 20 to 30 ° C. for 15 hours or more. The obtained solid was heated from room temperature to 400 ° C. over 1.1 hours under air flow, and then calcined by maintaining at the same temperature for 2 hours. Next, the obtained fired product was crushed into granules of 0.85 to 1.4 mm to obtain a catalyst (lithium chloride content: 0.54% by weight) in which lithium chloride was supported on silica.
  • a catalyst lithium chloride content: 0.54% by weight
  • Example 8 ⁇ Manufacture of catalyst> Silica spheres (1.7 to 4.0 mm spheres) [manufactured by Fuji Silysia Chemical Ltd., Q-50] were used as the carrier. 10.0 g of the carrier was impregnated with an aqueous solution prepared by dissolving 0.31 g of barium chloride (manufactured by Wako Pure Chemical Industries, Ltd.) in 9.86 g of pure water, and air-dried at 20 to 30 ° C. for 15 hours or more. The obtained solid was heated from room temperature to 400 ° C. over 1.1 hours under air flow, and then calcined by maintaining at the same temperature for 2 hours. Next, the obtained fired product was crushed into granules of 0.85 to 1.4 mm to obtain a catalyst (barium chloride content: 3.0% by weight) in which barium chloride was supported on silica.
  • barium chloride content 3.0% by weight
  • Example 9 ⁇ Manufacture of catalyst>
  • Example 2 A catalyst (potassium chloride content: 2.8% by weight) obtained by supporting potassium chloride on silica was obtained in the same manner as in ⁇ Production of catalyst>.
  • Acetone manufactured by Wako Pure Chemical Industries, Ltd.
  • nitrogen gas is supplied to the gas absorption bottle at a rate of 173.5 ml / min.
  • Nitrogen gas entrained with acetone obtained by circulating in acetone is supplied from the reaction tube inlet instead of supply nitrogen gas at the time of temperature increase (acetone supply rate: 0.048 mol / h, acetone concentration in supply gas) : 9.3 vol%), and the reaction was started at a reaction pressure of 0.1 MPa.
  • the ratio of total gas flow to catalyst volume (GHSV) was 9564 h ⁇ 1 .
  • the temperature of the catalyst layer is maintained at 600 ° C. ⁇ 2 ° C., and when 90 minutes have elapsed from the start of the reaction, the reactor outlet gas is collected in a Tedlar bag and subjected to gas chromatography having a TCD and FID detector. Each product was quantified.
  • the two traps containing monochlorobenzene are used to absorb acetone and high-boiling components, and the first and second absorption liquids are subjected to gas chromatography having an FID detector. And acetone and high-boiling components were quantified. The results are shown in Table 1.
  • Example 10 ⁇ Manufacture of catalyst> Silica spheres (1.7 to 4.0 mm spheres) [manufactured by Fuji Silysia Chemical Ltd., Q-50] were used as the carrier. 10.0 g of the carrier was impregnated with an aqueous solution prepared by dissolving 0.27 g of potassium carbonate (manufactured by Wako Pure Chemical Industries, Ltd.) in 10.0 g of pure water, and air-dried at 20 to 30 ° C. for 15 hours or more. The obtained solid was heated from room temperature to 400 ° C. over 1.1 hours under air flow, and then calcined by maintaining at the same temperature for 2 hours. Next, the obtained fired product was crushed into granules of 0.85 to 1.4 mm to obtain a catalyst (potassium carbonate content: 2.6% by weight) in which potassium carbonate was supported on silica.
  • Comparative Example 1 ⁇ Manufacture of catalyst> Silica spheres (1.7 to 4.0 mm spheres) (Q-50 manufactured by Fuji Silysia Chemical Ltd.) were crushed into 0.85 to 1.4 mm granules to obtain a silica catalyst.
  • Comparative Example 2 ⁇ Manufacture of catalyst> ⁇ -alumina spheres (2-4 mm spheres) (GO-24, manufactured by Sumitomo Chemical Co., Ltd.) were crushed into 0.85-1.4 mm granules to obtain an alumina catalyst.
  • Examples 1 to 10 using a catalyst in which a metal component is supported on silica are compared with Comparative Examples 1 and 2 in which silica or alumina on which a metal component is not supported is used as a catalyst. It can be seen that the total selectivity of propyne and propadiene is high.
  • Example 11 ⁇ Manufacture of catalyst> Silica spheres (1.7 to 4.0 mm spheres) [manufactured by Fuji Silysia Chemical Ltd., Q-50] were used as the carrier.
  • the carrier 20.0 g, potassium silicate solution [manufactured by Wako Pure Chemical Industries, Ltd., an aqueous solution of K 2 O ⁇ 3.9SiO 2, K 2 O ⁇ 3.9SiO 2 content 28.1 wt%] 4.54g was impregnated with an aqueous solution prepared by dissolving 26.5 g of pure water and air-dried at 20-30 ° C. for 15 hours or longer. The obtained solid was heated from room temperature to 200 ° C.
  • liquid acetone manufactured by Wako Pure Chemical Industries, Ltd.
  • acetone gas flow rate 34.2 ml / min, acetone supply rate: 0.092 mol / h.
  • the reaction was started at an acetone concentration in the supply gas of 92.7% by volume) and a reaction pressure of 0.008 MPa.
  • the ratio of total gas flow to catalyst volume (GHSV) was 375 h- 1 .
  • the temperature of the catalyst layer is maintained at 598 ° C. ⁇ 4 ° C., and when 60 minutes have elapsed from the start of the reaction, the reactor outlet gas is sampled with a gas tight syringe and subjected to gas chromatography having an FID detector. Furthermore, after filling the reactor outlet gas into the sampling loop, each product was quantified by online analysis with a gas chromatography having a TCD detector. Next, the trap made of SUS connected to the outlet of the reaction tube is cooled in an ethanol / dry ice bath, and acetone and high-boiling components are condensed and recovered, and then the obtained condensate is subjected to gas chromatography having an FID detector. And acetone and high-boiling components were quantified. The results are shown in Table 2.
  • the selectivity (%) of each product was calculated using the following formula (iv).
  • Selectivity of each product (%) [Production rate of each product (mol / h) ⁇ Total production rate of all products (mol / h)] ⁇ 100
  • the products are propyne, propadiene, methane, ethane, ethylene, propylene, propane, isobutylene, 2-methyl-1-penten-3-yne, 2-hexene-4-yne, 4-methyl-3- Penten-2-one, 4-methyl-4-penten-2-one, 2-methylfuran, methylcyclopentadiene, 3,5,5-trimethyl-2-cyclohexen-1-one, phenol, methylphenol, 3, Refers to 5-dimethylphenol, carbon monoxide and carbon dioxide.
  • Example 12 ⁇ Manufacture of catalyst> Silica spheres (1.7 to 4.0 mm spheres) [manufactured by Fuji Silysia Chemical Ltd., Q-50] were used as the carrier. 30.2 g of support was impregnated with an aqueous solution prepared by dissolving 0.71 g of sodium metasilicate [manufactured by Wako Pure Chemical Industries, Ltd., Na 2 SiO 3 (Na 2 O ⁇ SiO 2 )] in 30.0 g of pure water. And air-dried at 20-30 ° C. for 15 hours or longer. The obtained solid was heated from room temperature to 200 ° C. over 0.5 hours under air flow, and then calcined by maintaining at the same temperature for 2 hours. Next, the obtained fired product was crushed into granules of 0.85 to 1.4 mm to obtain a catalyst (sodium metasilicate content: 2.3% by weight) in which sodium metasilicate was supported on silica. .
  • Example 13 ⁇ Manufacture of catalyst> Silica spheres (1.7 to 4.0 mm spheres) [manufactured by Fuji Silysia Chemical Ltd., Q-50] were used as the carrier. 32.6 g of a carrier was impregnated with an aqueous solution prepared by dissolving 0.71 g of potassium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd.) in 32.6 g of pure water, and air-dried at 20 to 30 ° C. for 15 hours or more. The obtained solid was heated from room temperature to 200 ° C. over 0.5 hours under air flow, and then calcined by maintaining at the same temperature for 2 hours. Subsequently, the obtained fired product was crushed into granules of 0.85 to 1.4 mm to obtain a catalyst (potassium hydroxide content: 2.1% by weight) in which potassium hydroxide was supported on silica. .
  • Example 14 ⁇ Manufacture of catalyst> Silica powder [ER-R, manufactured by Tosoh Silica Co., Ltd.] was used as the carrier. 32.0 g of a carrier was impregnated with an aqueous solution prepared by dissolving 0.70 g of potassium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd.) in 58.5 g of pure water, and air-dried at 20 to 30 ° C. for 15 hours or more. The obtained solid was press-molded, heated from room temperature to 200 ° C. over 0.5 hours under air circulation, then held at the same temperature for 2 hours and fired. Subsequently, the obtained fired product was crushed into granules of 0.85 to 1.4 mm to obtain a catalyst (potassium hydroxide content: 2.1% by weight) in which potassium hydroxide was supported on silica. .
  • Example 15 Manufacture of catalyst> A catalyst (potassium hydroxide content: 2.1% by weight) in which potassium hydroxide was supported on silica was obtained in the same manner as in Example 14 ⁇ Production of catalyst>.
  • 2-butanone [a compound in which R 5 , R 6 , R 7 , R 8 and R 9 are hydrogen atoms in the formula (II)] (manufactured by Wako Pure Chemical Industries, Ltd.) was charged into a gas absorption bottle, After cooling to 0 ° C., nitrogen gas is supplied to the gas absorption bottle at a rate of 189 ml / min, and nitrogen gas accompanied by 2-butanone obtained by circulating nitrogen gas through 2-butanone is increased. Instead of supplying nitrogen gas at the time of warming, it was supplied from the reaction tube inlet (2-butanone supply rate: 0.017 mol / h, 2-butanone concentration in the supply gas: 3.2% by volume), and the reaction pressure was 0.1 MPa. The reaction started. The ratio of total gas flow to catalyst volume (GHSV) was 1747h- 1 .
  • the temperature of the catalyst layer is maintained at 550 ° C. ⁇ 3 ° C.
  • the reactor outlet gas is collected in a Tedlar bag and subjected to gas chromatography having a TCD and FID detector. Each product was quantified.
  • 2-butanone and a high-boiling component are absorbed using two traps containing acetonitrile, and the first and second absorption liquids are gas chromatographs having an FID detector. 2-butanone and high-boiling components were quantified. The results are shown in Table 3.
  • the selectivity (%) of each product was calculated using the following formula (vi).
  • Selectivity of each product (%) [Production rate of each product (mol / h) ⁇ Total production rate of all products (mol / h)] ⁇ 100 (vi)
  • the products are 1,3-butadiene, 1,2-butadiene, 1-butyne, 2-butyne, propyne, propadiene, propane, propylene, methane, ethane, ethylene, isobutylene, carbon monoxide and carbon dioxide.
  • Example 16 Manufacture of catalyst> A catalyst (potassium hydroxide content: 2.1% by weight) in which potassium hydroxide was supported on silica was obtained in the same manner as in Example 14 ⁇ Production of catalyst>.
  • Example 17 ⁇ Manufacture of catalyst> Silica spheres (1.7 to 4.0 mm spheres) [manufactured by Fuji Silysia Chemical Ltd., Q-50] were used as the carrier. 30.0 g of the carrier was impregnated with an aqueous solution prepared by dissolving 0.66 g of cesium chloride (manufactured by Wako Pure Chemical Industries, Ltd.) in 30.0 g of pure water, and air-dried at 20 to 30 ° C. for 15 hours or more. The obtained solid was heated from room temperature to 200 ° C. over 0.5 hours under air flow, and then calcined by maintaining at the same temperature for 2 hours. Next, the obtained fired product was crushed into granules of 0.85 to 1.4 mm to obtain a catalyst (cesium chloride content: 2.1% by weight) in which cesium chloride was supported on silica.
  • aqueous solution prepared by dissolving 0.66 g of cesium chloride (manufactured by Wako Pure Chemical
  • the temperature of the catalyst layer is maintained at 600 ° C. ⁇ 4 ° C.
  • the reactor outlet gas is collected in a Tedlar bag and subjected to gas chromatography having a TCD and FID detector. Each product was quantified.
  • the trap with water is then used in two stages to absorb the propanal and high-boiling components, and the first and second absorption liquids are subjected to gas chromatography having an FID detector. Were analyzed to quantify propanal and high-boiling components. The results are shown in Table 4.
  • the conversion rate (%) of propanal was calculated using the following formula (vii).
  • Propanal conversion (%) [h / g] ⁇ 100
  • g Propanal supply rate (mol / h)
  • h Production rate of all products in the reaction tube outlet gas (mol / h)
  • the supply rate of propanal was calculated from the change in weight of the gas absorption bottle from the start to the end of supply.
  • the selectivity (%) of each product was calculated using the following formula (viii).
  • Selectivity of each product (%) [Production rate of each product (mol / h) ⁇ Total production rate of all products (mol / h)] ⁇ 100 (viii)
  • the product means propyne, propadiene, methane, ethane, ethylene, propane, acetylene, propylene, isobutylene, carbon monoxide, carbon dioxide and a high-boiling component.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 アセチレン結合を有する化合物及び/又はジエンの新規な製造方法を提供する。アセチレン結合を有する化合物及び/又はジエンの製造方法であって、シリカを含む担体に、第1族金属元素を含む化合物、第2族金属元素を含む化合物、第1族金属元素及び第2族金属元素からなる群より選ばれる少なくとも一種が担持されてなる触媒の存在下に、ケトン化合物(I)、ケトン化合物(II)、アルデヒド化合物(III)、アルデヒド化合物(IV)及びアルデヒド化合物(V)からなる群より選ばれる少なくとも一種を脱水反応させることを特徴とする。

Description

アセチレン結合を有する化合物及び/又はジエンの製造方法
 本発明は、アセチレン結合を有する化合物及び/又はジエンを製造する方法に関する。
 アセチレン結合を有する化合物は、例えば、アルキルメタクリレートの製造用原料として有用であり、例えば、触媒の存在下、一酸化炭素及びアルコール化合物をプロピンと反応させてアルキルメタクリレートを製造する方法が知られている(例えば特許文献1)。また、ジエンは、ブタジエンに代表されるように合成ゴムの製造用原料として有用であり、例えば、ブタジエンとスチレンとを共重合し、ジエン系重合体ゴムを製造する方法が知られている(例えば特許文献2)。
 アセチレン結合を有する化合物及び/又はジエンの製造方法としては、例えば、オレフィン類製造設備(スチームクラッキング法)において、ナフサの熱分解によりエチレン、プロピレンと共にプロピン等のアセチレン結合を有する化合物やプロパジエン、ブタジエン等のジエンを得る方法が知られている。すなわち、ナフサをスチームと共に加熱分解炉に導入し、得られた炭化水素類を急冷した後、精留塔に導き、塔底部よりタール、塔側部よりガスオイル、塔頂部より炭化水素類を得る方法において、アセチレン結合を有する化合物やジエンは塔頂留分の一部として得られる。
 しかしながら、アセチレン結合を有する化合物やジエンはエチレン、プロピレンと共に得られる生成物であるため、ナフサの熱分解プラントの稼働状況に応じてその供給量は変動するため、安定的に供給されないという懸念がある。そのため、スチームクラッキング法以外でアセチレン結合を有する化合物やジエンを製造できる技術が必要とされている。
 かかる状況下において、アセチレン結合を有する化合物及び/又はジエンの製造方法として、例えば、特許文献3及び4には、酸化鉄及び酸化ニッケルを活性炭に担持した触媒又は活性炭に担持した水酸化鉄を焼成した触媒の存在下に、1,2-ジクロロプロパンからプロピンを製造する方法が提案され、特許文献5には、アルミナ触媒、あるいはアルミナに白金、酸化クロム又は希土類元素が担持されてなる触媒の存在下に、アセトンからプロパジエン及びプロピンを製造する方法が提案され、特許文献6には、複合酸化物触媒の存在下に、ブテンの酸化脱水素反応を行うことによりブタジエンを製造する方法が提案されている。
特開2007-269707号公報 特開2003-246816号公報 東独国特許出願公開第240740号明細書 東独国特許出願公開第240741号明細書 米国特許第4301319号明細書 特開2012-77076号公報
 本発明の目的は、アセチレン結合を有する化合物及び/又はジエンの新規な製造方法を提供することにある。
 かかる状況下、本発明者らは、鋭意検討した結果、本発明を完成するに至った。すなわち、本発明は、以下の構成からなる。
 (1)シリカを含む担体に、第1族金属元素を含む化合物、第2族金属元素を含む化合物、第1族金属元素及び第2族金属元素からなる群より選ばれる少なくとも一種が担持されてなる触媒の存在下に、下記式(I)
Figure JPOXMLDOC01-appb-C000006
(式中、R、R、R及びRは、それぞれ独立して、水素原子、炭素数4~10のアルキルシクロアルキル基又はフェニル基を表すか、あるいは
及びRは一緒になって、Rが結合する炭素原子と、Rが結合する炭素原子と、それらの炭素原子が結合する炭素原子と共に炭素数5~15の環を形成し、R及びRは、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表すか、あるいは
及びRは、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表し、R及びRは一緒になって、R及びRが結合する炭素原子と共に炭素数3~13の環を形成するか、あるいは
及びRは一緒になって、R及びRが結合する炭素原子と共に炭素数3~13の環を形成し、R及びRは一緒になって、R及びRが結合する炭素原子と共に炭素数3~13の環を形成する。)
で示される化合物〔以下、ケトン化合物(I)ということがある〕、下記式(II)
Figure JPOXMLDOC01-appb-C000007
(式中、R、R、R、R及びRは、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表すか、あるいは
、R及びRは、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表し、R及びRは一緒になって、R及びRが結合する炭素原子と共に炭素数3~13の環を形成するか、あるいは
及びRは一緒になって、R及びRが結合する炭素原子と共に炭素数3~13の環を形成し、Rは、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表し、R及びRは、それぞれ独立して、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表すか、あるいは
及びRは一緒になって、R及びRが結合する炭素原子と共に炭素数3~13の環を形成し、Rは、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表し、R及びRは一緒になって、R及びRが結合する炭素原子と共に炭素数3~13の環を形成する。)
で示される化合物〔以下、ケトン化合物(II)ということがある〕、下記式(III)
Figure JPOXMLDOC01-appb-C000008
(式中、R10は、水素原子又はフェニル基を表す。)
で示される化合物〔以下、アルデヒド化合物(III)ということがある〕、下記式(IV)
Figure JPOXMLDOC01-appb-C000009
(式中、R11、R12及びR13は、それぞれ独立して、水素原子又はフェニル基を表すか、あるいは
11及びR12は一緒になって、R11及びR12が結合する炭素原子と共に炭素数3~13の環を形成し、R13は、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表す。)
で示される化合物〔以下、アルデヒド化合物(IV)ということがある〕及び下記式(V)
Figure JPOXMLDOC01-appb-C000010
(式中、R14、R15、R16、R17及びR18は、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表すか、あるいは
14及びR15は一緒になって、R14及びR15が結合する炭素原子と共に炭素数3~13の環を形成し、R16、R17及びR18は、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表す。)
で示される化合物〔以下、アルデヒド化合物(V)ということがある〕からなる群より選ばれる少なくとも一種を脱水反応させることを特徴とするアセチレン結合を有する化合物及び/又はジエンの製造方法。
 (2)前記触媒が、シリカを含む担体に第1族金属元素を含む化合物及び第1族金属元素からなる群より選ばれる少なくとも一種が担持されてなる触媒である前記(1)に記載の製造方法。
 (3)前記触媒が、シリカを含む担体に第1族金属元素を含む化合物が担持されてなる触媒であり、第1族金属元素を含む化合物が、第1族金属元素のハロゲン化物、第1族金属元素の炭酸塩、第1族金属元素の酸化物、第1族金属元素の水酸化物及び第1族金属元素のケイ酸塩からなる群より選ばれる少なくとも一種である前記(2)に記載の製造方法。
 (4)第1族金属元素が、ナトリウム、カリウム、ルビジウム又はセシウムである前記(3)に記載の製造方法。
 (5)式(I)で示される化合物がアセトンである前記(1)~(4)のいずれかに記載の製造方法。
 (6)式(II)で示される化合物が2-ブタノンである前記(1)~(5)のいずれかに記載の製造方法。
 (7)式(IV)で示される化合物がプロパナールである前記(1)~(6)のいずれかに記載の製造方法。
 (8)前記担体が、シリカからなるものである前記(1)~(7)のいずれかに記載の製造方法。
 本発明によれば、アセチレン結合を有する化合物及び/又はジエンの新規な製造方法を提供することができる。
 以下、本発明について詳細に説明する。本発明の製造方法に用いる触媒は、シリカを含む担体に、第1族金属元素を含む化合物、第2族金属元素を含む化合物、第1族金属元素及び第2族金属元素からなる群より選ばれる少なくとも一種〔以下、金属成分ということがある。〕が担持されてなる触媒である。第1族金属元素を含む化合物、第2族金属元素を含む化合物、第1族金属元素及び第2族金属元素からなる群より選ばれる少なくとも一種の中でも、アセチレン結合を有する化合物及び/又はジエンが高い選択率で得られる点で、第1族金属元素を含む化合物及び第1族金属元素からなる群より選ばれる少なくとも一種が好ましく、第1族金属元素を含む化合物がより好ましい。
 第1族金属元素を含む化合物としては、リチウム化合物、ナトリウム化合物、カリウム化合物、ルビジウム化合物、セシウム化合物が挙げられ、中でも、アセチレン結合を有する化合物及び/又はジエンが高い選択率で得られる点で、ナトリウム化合物、カリウム化合物、ルビジウム化合物、セシウム化合物が好ましい。第1族金属元素を含む化合物の中でも、第1族金属元素のハロゲン化物、第1族金属元素の炭酸塩、第1族金属元素の酸化物、第1族金属元素の水酸化物、第1族金属元素のケイ酸塩が好ましく、第1族金属元素のハロゲン化物、第1族金属元素の酸化物、第1族金属元素の水酸化物、第1族金属元素のケイ酸塩がより好ましい。第1族金属元素のハロゲン化物の中でも、第1族金属元素の塩化物が好ましい。
 リチウム化合物としては、フッ化リチウム(LiF)、塩化リチウム(LiCl)、臭化リチウム(LiBr)、ヨウ化リチウム(LiI)等のハロゲン化リチウム、炭酸リチウム(LiCO)、炭酸水素リチウム(LiHCO)、硫酸リチウム(LiSO)、硫酸水素リチウム(LiHSO)、亜硫酸リチウム(LiSO)、亜硫酸水素リチウム(LiHSO)、硝酸リチウム(LiNO)、亜硝酸リチウム(LiNO)、チオ硫酸リチウム(Li)、ケイ酸リチウム(LiO・nSiO、n=1~4[モル比])、リン酸三リチウム(LiPO)、ホウ酸リチウム(LiBO)、次亜塩素酸リチウム(LiClO)、亜塩素酸リチウム(LiClO)、塩素酸リチウム(LiClO)、過塩素酸リチウム(LiClO)等のオキソ酸塩、酸化リチウム(LiO)、過酸化リチウム(Li)、水酸化リチウム(LiOH)等の酸化物及び水酸化物、酢酸リチウム(CHCOOLi)、クエン酸リチウム等の有機酸塩、水素化リチウム(LiH)、硫化リチウム(LiS)、硫化水素リチウム(水硫化リチウム)(LiHS)、水素化ホウ素リチウム(LiBH)等が挙げられ、それらの水和物が存在する場合は水和物も用いることができる。また、必要に応じて、それらの2種以上を用いてもよい。
 ナトリウム化合物としては、フッ化ナトリウム(NaF)、塩化ナトリウム(NaCl)、臭化ナトリウム(NaBr)、ヨウ化ナトリウム(NaI)等のハロゲン化ナトリウム、炭酸ナトリウム(NaCO)、炭酸水素ナトリウム(NaHCO)、硫酸ナトリウム(NaSO)、硫酸水素ナトリウム(NaHSO)、亜硫酸ナトリウム(NaSO)、亜硫酸水素ナトリウム(NaHSO)、硝酸ナトリウム(NaNO)、亜硝酸ナトリウム(NaNO)、チオ硫酸ナトリウム(Na)、ケイ酸ナトリウム(NaO・nSiO、n=1~4[モル比])、リン酸三ナトリウム(NaPO)、ホウ酸ナトリウム(NaBO)、次亜塩素酸ナトリウム(NaClO)、亜塩素酸ナトリウム(NaClO)、塩素酸ナトリウム(NaClO)、過塩素酸ナトリウム(NaClO)等のオキソ酸塩、酸化ナトリウム(NaO)、過酸化ナトリウム(Na)、水酸化ナトリウム(NaOH)等の酸化物及び水酸化物、酢酸ナトリウム(CHCOONa)、クエン酸ナトリウム等の有機酸塩、水素化ナトリウム(NaH)、硫化ナトリウム(NaS)、硫化水素ナトリウム(水硫化ナトリウム)(NaHS)、水素化ホウ素ナトリウム(NaBH)等が挙げられ、それらの水和物が存在する場合は水和物も用いることができる。また、必要に応じて、それらの2種以上を用いてもよい。
 カリウム化合物としては、フッ化カリウム(KF)、塩化カリウム(KCl)、臭化カリウム(KBr)、ヨウ化カリウム(KI)等のハロゲン化カリウム、炭酸カリウム(KCO)、炭酸水素カリウム(KHCO)、硫酸カリウム(KSO)、硫酸水素カリウム(KHSO)、亜硫酸カリウム(KSO)、亜硫酸水素カリウム(KHSO)、硝酸カリウム(KNO)、亜硝酸カリウム(KNO)、チオ硫酸カリウム(K)、ケイ酸カリウム(KO・nSiO、n=1~4[モル比])、リン酸三カリウム(KPO)、ホウ酸カリウム(KBO)、次亜塩素酸カリウム(KClO)、亜塩素酸カリウム(KClO)、塩素酸カリウム(KClO)、過塩素酸カリウム(KClO)等のオキソ酸塩、酸化カリウム(KO)、過酸化カリウム(K)、水酸化カリウム(KOH)等の酸化物及び水酸化物、酢酸カリウム(CHCOOK)、クエン酸カリウム等の有機酸塩、水素化カリウム(KH)、硫化カリウム(KS)、硫化水素カリウム(水硫化カリウム)(KHS)、水素化ホウ素カリウム(KBH)等が挙げられ、それらの水和物が存在する場合は水和物も用いることができる。また、必要に応じて、それらの2種以上を用いてもよい。
 ルビジウム化合物としては、フッ化ルビジウム(RbF)、塩化ルビジウム(RbCl)、臭化ルビジウム(RbBr)、ヨウ化ルビジウム(RbI)等のハロゲン化ルビジウム、炭酸ルビジウム(RbCO)、炭酸水素ルビジウム(RbHCO)、硫酸ルビジウム(RbSO)、硫酸水素ルビジウム(RbHSO)、亜硫酸ルビジウム(RbSO)、亜硫酸水素ルビジウム(RbHSO)、硝酸ルビジウム(RbNO)、亜硝酸ルビジウム(RbNO)、チオ硫酸ルビジウム(Rb)、ケイ酸ルビジウム(RbO・nSiO、n=1~4[モル比])、リン酸三ルビジウム(RbPO)、ホウ酸ルビジウム(RbBO)、次亜塩素酸ルビジウム(RbClO)、亜塩素酸ルビジウム(RbClO)、塩素酸ルビジウム(RbClO)、過塩素酸ルビジウム(RbClO)等のオキソ酸塩、酸化ルビジウム(RbO)、過酸化ルビジウム(Rb)、水酸化ルビジウム(RbOH)等の酸化物及び水酸化物、酢酸ルビジウム(CHCOORb)、クエン酸ルビジウム等の有機酸塩、水素化ルビジウム(RbH)、硫化ルビジウム(RbS)、硫化水素ルビジウム(水硫化ルビジウム)(RbHS)、水素化ホウ素ルビジウム(RbBH)等が挙げられ、それらの水和物が存在する場合は水和物も用いることができる。また、必要に応じて、それらの2種以上を用いてもよい。
 セシウム化合物としては、フッ化セシウム(CsF)、塩化セシウム(CsCl)、臭化セシウム(CsBr)、ヨウ化セシウム(CsI)等のハロゲン化セシウム、炭酸セシウム(CsCO)、炭酸水素セシウム(CsHCO)、硫酸セシウム(CsSO)、硫酸水素セシウム(CsHSO)、亜硫酸セシウム(CsSO)、亜硫酸水素セシウム(CsHSO)、硝酸セシウム(CsNO)、亜硝酸セシウム(CsNO)、チオ硫酸セシウム(Cs)、ケイ酸セシウム(CsO・nSiO、n=1~4[モル比])、リン酸三セシウム(CsPO)、ホウ酸セシウム(CsBO)、次亜塩素酸セシウム(CsClO)、亜塩素酸セシウム(CsClO)、塩素酸セシウム(CsClO)、過塩素酸セシウム(CsClO)等のオキソ酸塩、酸化セシウム(CsO)、過酸化セシウム(Cs)、水酸化セシウム(CsOH)等の酸化物及び水酸化物、酢酸セシウム(CHCOOCs)、クエン酸セシウム等の有機酸塩、水素化セシウム(CsH)、硫化セシウム(CsS)、硫化水素セシウム(水硫化セシウム)(CsHS)、水素化ホウ素セシウム(CsBH)等が挙げられ、それらの水和物が存在する場合は水和物も用いることができる。また、必要に応じて、それらの2種以上を用いてもよい。
 第2族金属元素を含む化合物としては、マグネシウム化合物、カルシウム化合物、ストロンチウム化合物、バリウム化合物が挙げられ、中でも、バリウム化合物が好ましい。
 マグネシウム化合物としては、フッ化マグネシウム(MgF)、塩化マグネシウム(MgCl)、臭化マグネシウム(MgBr)、ヨウ化マグネシウム(MgI)等のハロゲン化マグネシウム、炭酸マグネシウム(MgCO)、硫酸マグネシウム(MgSO)、亜硫酸マグネシウム(MgSO)、硝酸マグネシウム(Mg(NO)、亜硝酸マグネシウム(Mg(NO)、チオ硫酸マグネシウム(MgS)、ケイ酸マグネシウム(MgO・nSiO、n=1~4[モル比])、リン酸マグネシウム(MgHPO)、ホウ酸マグネシウム(MgB)等のオキソ酸塩、酸化マグネシウム(MgO)、過酸化マグネシウム(MgO)、水酸化マグネシウム(Mg(OH))等の酸化物及び水酸化物、酢酸マグネシウム(Mg(CHCOO))、クエン酸マグネシウム等の有機酸塩、水素化マグネシウム(MgH)、硫化マグネシウム(MgS)等が挙げられ、それらの水和物が存在する場合は水和物も用いることができる。また、必要に応じて、それらの2種以上を用いてもよい。
 カルシウム化合物としては、フッ化カルシウム(CaF)、塩化カルシウム(CaCl)、臭化カルシウム(CaBr)、ヨウ化カルシウム(CaI)などのハロゲン化カルシウム、炭酸カルシウム(CaCO)、硫酸カルシウム(CaSO)、亜硫酸カルシウム(CaSO)、硝酸カルシウム(Ca(NO)、亜硝酸カルシウム(Ca(NO)、チオ硫酸カルシウム(CaS)、ケイ酸カルシウム(CaO・nSiO、n=1~4[モル比])、リン酸カルシウム(CaHPO)、ホウ酸カルシウム(CaB)等のオキソ酸塩、酸化カルシウム(CaO)、過酸化カルシウム(CaO)、水酸化カルシウム(Ca(OH))等の酸化物及び水酸化物、酢酸カルシウム(Ca(CHCOO))、クエン酸カルシウム等の有機酸塩、水素化カルシウム(CaH)、硫化カルシウム(CaS)等が挙げられ、それらの水和物が存在する場合は水和物も用いることができる。また、必要に応じて、それらの2種以上を用いてもよい。
 ストロンチウム化合物としては、フッ化ストロンチウム(SrF)、塩化ストロンチウム(SrCl)、臭化ストロンチウム(SrBr)、ヨウ化ストロチウム(SrI)等のハロゲン化ストロンチウム、炭酸ストロンチウム(SrCO)、硫酸ストロンチウム(SrSO)、亜硫酸ストロンチウム(SrSO)、硝酸ストロンチウム(Sr(NO)、亜硝酸ストロンチウム(Sr(NO)、チオ硫酸ストロンチウム(SrS)、ケイ酸ストロンチウム(SrO・nSiO、n=1~4[モル比])、リン酸ストロンチウム(SrHPO)、ホウ酸ストロンチウム(SrB)等のオキソ酸塩、酸化ストロンチウム(SrO)、過酸化ストロンチウム(SrO)、水酸化ストロンチウム(Sr(OH))等の酸化物及び水酸化物、酢酸ストロンチウム(Sr(CHCOO))、クエン酸ストロンチウム等の有機酸塩、水素化ストロンチウム(SrH)、硫化ストロンチウム(SrS)等が挙げられ、それらの水和物が存在する場合は水和物も用いることができる。また、必要に応じて、それらの2種以上を用いてもよい。
 バリウム化合物としては、フッ化バリウム(BaF)、塩化バリウム(BaCl)、臭化バリウム(BaBr)、ヨウ化ストロチウム(BaI)等のハロゲン化バリウム、炭酸バリウム(BaCO)、硫酸バリウム(BaSO)、亜硫酸バリウム(BaSO)、硝酸バリウム(Ba(NO)、亜硝酸バリウム(Ba(NO)、チオ硫酸バリウム(BaS)、ケイ酸バリウム(BaO・nSiO、n=1~4[モル比])、リン酸バリウム(BaHPO)、ホウ酸バリウム(BaB)等のオキソ酸塩、酸化バリウム(BaO)、過酸化バリウム(BaO)、水酸化バリウム(Ba(OH))等の酸化物及び水酸化物、酢酸バリウム(Ba(CHCOO))、クエン酸バリウム等の有機酸塩、水素化バリウム(BaH)、硫化バリウム(BaS)等が挙げられ、それらの水和物が存在する場合は水和物も用いることができる。また、必要に応じて、それらの2種以上を用いてもよい。
 前記触媒において、第1族金属元素が担持されてなる場合、第1族金属元素としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウムが挙げられ、中でも、ナトリウム、カリウム、ルビジウム、セシウムが好ましい。前記触媒において、第2族金属元素が担持されてなる場合、第2族金属元素としては、マグネシウム、カルシウム、ストロンチウム、バリウム化合物が挙げられ、中でも、バリウムが好ましい。
 前記触媒においては、シリカを含む担体を使用する。前記担体においては、シリカ以外に、チタニア、ジルコニア、酸化ニオブ、酸化スズ等の酸化物が含まれていてもよい。前記担体は、シリカ単独の担体、すなわちシリカからなる担体であってもよいし、シリカとシリカ以外の酸化物との複合酸化物であってもよいし、シリカとシリカ以外の酸化物との混合物であってもよいが、特に、シリカからなる担体が好ましい。
 前記触媒において、シリカを含む担体に金属成分を担持させる方法としては、含浸法、共沈法、混練法等が挙げられる。前記触媒は、例えば、金属成分を含浸法、共沈法又は混練法等により担体に担持させ、50℃~1000℃で熱処理することにより調製することができる。また、担持した金属成分を酸化して担持酸化物として用いることもできる。また、担持した金属成分を還元して担持金属触媒として用いることもできる。酸化は、例えば、担体に金属成分を担持した後、酸化性ガスの雰囲気下で焼成することにより行われる。酸化性ガスとは、酸化性物質を含むガスであり、例えば、酸素含有ガスが挙げられる。その酸素濃度は通常1~30容量%程度である。この酸素源としては、通常、空気や純酸素が用いられ、必要に応じて不活性ガスで希釈される。酸化性ガスは、中でも、空気が好ましい。酸化における焼成温度は、通常100~1000℃、好ましくは200~800℃である。還元は、例えば、担体に金属成分を担持した後、還元性ガスの雰囲気下で焼成することにより行われる。還元性ガスとは、還元性物質を含むガスであり、例えば、水素含有ガス、一酸化炭素含有ガス、炭化水素含有ガス等が挙げられる。その水素、一酸化炭素又は炭化水素の濃度としては、通常、1~30容量%程度であり、例えば、不活性ガスや水蒸気で濃度調整される。還元性ガスは、中でも、水素含有ガス、一酸化炭素含有ガスが好ましい。また、還元における焼成温度は、通常、100~1000℃、好ましくは200~800℃である。
 前記触媒における金属成分の担持量は、触媒総量に対して、金属元素の重量として0.01~30重量%が好ましく、より好ましくは0.1~20重量%、さらに好ましくは0.1~15重量%である。2種以上の金属元素が含まれる場合、金属元素の合計含有量が、前記触媒において上記範囲となればよい。
 前記触媒のBET比表面積は、好ましくは1~800m/g、より好ましくは1~400m/gである。BET比表面積が1m/gより小さいと、担持した金属成分の分散度が低下するおそれがある。また、BET比表面積が800m/gより大きいと、触媒の熱安定性が低下するおそれがある。ここで、BET比表面積は、窒素吸着法を原理とする比表面積測定装置を用いて測定して得られる値である。
 前記触媒の細孔容積としては、好ましくは0.05~2.5ml/g、より好ましくは0.1~1.5ml/gである。細孔容積が0.05ml/gより小さいと、細孔径が小さくなりすぎて活性が低くなるおそれがある。また、細孔容積が2.5ml/gより大きいと、担体の強度が低下して触媒が劣化し易くなるおそれがある。尚、細孔容積は、水銀圧入法で測定して得られる値である。
 前記触媒は、好ましくは成形体として使用される。その形状としては、例えば、球形粒状、円柱状、ペレット状、押出形状、リング形状、ハニカム状あるいは成形後に粉砕分級した適度の大きさの顆粒状等が挙げられる。成形体は、使用される反応方式に合わせて形状が選択され、例えば、固定床反応の触媒として使用する場合は、上述の各種形状の成形体が使用される。この際、成形体の直径としては5mm以下であることが好ましい。成形体の直径が大きすぎると、脱水反応の転化率が低くなることがある。成形体の直径の下限は特に制限はないが、過度に小さくなると、触媒層での圧力損失が大きくなるため、通常は0.5mm以上のものが用いられる。また、流動床反応や移動床反応の触媒として使用する場合は、平均粒径1~1000μm程度の球形粒状の成形体が好ましく使用され、特に流動床反応においては平均粒径10~500μmの球形粒状の成形体が好ましく使用される。なお、ここでいう成形体の直径とは、球形粒状では球の直径、円柱状では円形断面の直径、その他の形状では断面の最大直径を意味する。
 前記触媒の存在下に、ケトン化合物(I)、ケトン化合物(II)、アルデヒド化合物(III)、アルデヒド化合物(IV)及びアルデヒド化合物(V)からなる群より選ばれる少なくとも一種を脱水反応させる。
 ケトン化合物(I)、ケトン化合物(II)、アルデヒド化合物(IV)及びアルデヒド化合物(V)において、炭素数1~6のアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等が挙げられる。尚、炭素数3~6のアルキル基の場合は、全ての構造異性体を含む。例えば、プロピル基の場合は、n-プロピル基及びイソプロピル基を含み、ブチル基の場合は、n-ブチル基、イソブチル基、sec-ブチル基及びtert-ブチル基を含む。
 ケトン化合物(I)、ケトン化合物(II)、アルデヒド化合物(IV)及びアルデヒド化合物(V)において、炭素数3~6のシクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等が挙げられる。
 ケトン化合物(I)、ケトン化合物(II)、アルデヒド化合物(IV)及びアルデヒド化合物(V)において、炭素数4~10のアルキルシクロアルキル基としては、例えば、メチルシクロプロピル基、メチルシクロブチル基、メチルシクロペンチル基、メチルシクロヘキシル基、メチルシクロオクチル基、エチルシクロヘキシル基、トリメチルシクロヘキシル基、エチルシクロオクチル基等が挙げられる。
 ケトン化合物(I)、ケトン化合物(II)、アルデヒド化合物(IV)及びアルデヒド化合物(V)において、炭素数4~10のシクロアルキルアルキル基としては、例えば、シクロプロピルメチル基、シクロブチルメチル基、シクロペンチルメチル基、シクロヘキシルメチル基、シクロオクチルメチル基、シクロヘキシルエチル基、シクロオクチルエチル基等が挙げられる。
 ケトン化合物(I)、ケトン化合物(II)、アルデヒド化合物(IV)及びアルデヒド化合物(V)において、炭素数7~10のアラルキル基としては、例えば、ベンジル基、フェネチル基、トリルメチル基、フェニルブチル基等が挙げられる。
 ケトン化合物(I)において、R及びRが一緒になって、Rが結合する炭素原子と、Rが結合する炭素原子と、それらの炭素原子が結合する炭素原子と共に炭素数5~15の環を形成する場合、その環は5~15員環の脂環式炭化水素が好ましく、より好ましくは5~8員環の脂環式炭化水素である。炭素数5~15の環としては、例えば、シクロペンタン環、シクロヘキサン環、シクロオクタン環、シクロペンタデカン環等が挙げられる。
 ケトン化合物(I)において、R及びRが一緒になって、R及びRが結合する炭素原子と共に炭素数3~13の環を形成する場合、及び、R及びRが一緒になって、R及びRが結合する炭素原子と共に炭素数3~13の環を形成する場合のそれぞれにおいて、炭素数3~13の環は3~13員環の脂環式炭化水素が好ましく、より好ましくは3~8員環の脂環式炭化水素である。炭素数3~13の環としては、例えば、シクロプロパン環、シクロブタン環、シクロペンタン環、シクロヘキサン環、シクロオクタン環、シクロトリデカン環等が挙げられる。
 R、R、R及びRは、それぞれ独立して、水素原子、炭素数4~10のアルキルシクロアルキル基又はフェニル基を表す場合、ケトン化合物(I)としては、例えば、アセトン、1,3-ジフェニル-2-プロパノン等が挙げられる。
 R及びRは一緒になって、Rが結合する炭素原子と、Rが結合する炭素原子と、それらの炭素原子が結合する炭素原子と共に炭素数5~15の環を形成し、R及びRは、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表す場合、ケトン化合物(I)としては、例えば、シクロペンタノン、シクロヘキサノン、シクロオクタノン等が挙げられる。
 R及びRは、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表し、R及びRは一緒になって、R及びRが結合する炭素原子と共に炭素数3~13の環を形成する場合、ケトン化合物(I)としては、例えば、1-シクロプロピルエタノン、1-シクロプロピル-1-プロパノン、1-シクロヘキシル-1-プロパノン等が挙げられる。
 R及びRは一緒になって、R及びRが結合する炭素原子と共に炭素数3~13の環を形成し、R及びRは一緒になって、R及びRが結合する炭素原子と共に炭素数3~13の環を形成する場合、ケトン化合物(I)としては、例えば、ジシクロプロピルケトン、ジシクロヘキシルケトン等が挙げられる。
 ケトン化合物(I)を脱水反応させることにより、下記式(VI)
Figure JPOXMLDOC01-appb-C000011
(式中、R、R、R及びRは、それぞれ前記と同じ意味を表す。)
で示されるジエンが得られる。また、ケトン化合物(I)において、Rが水素原子である場合、すなわち、下記式(Ia)
Figure JPOXMLDOC01-appb-C000012
(式中、R、R及びRは、それぞれ独立して、水素原子、炭素数4~10のアルキルシクロアルキル基又はフェニル基を表すか、あるいは
及びRは一緒になって、Rが結合する炭素原子と、Rが結合する炭素原子と、それらの炭素原子が結合する炭素原子と共に炭素数5~15の環を形成し、Rは、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表すか、あるいは
は、水素原子、炭素数1~6のアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表し、R及びRは一緒になって、R及びRが結合する炭素原子と共に炭素数3~13の環を形成する。)
で示される化合物である場合には、下記式(VI’)
Figure JPOXMLDOC01-appb-C000013
(式中、R、R及びRは、それぞれ独立して、水素原子、炭素数4~10のアルキルシクロアルキル基又はフェニル基を表すか、あるいは
及びRは一緒になって、Rが結合する炭素原子と、Rが結合する炭素原子と、それらの炭素原子が結合する炭素原子と共に炭素数5~15の環を形成し、Rは、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表すか、あるいは
は、水素原子、炭素数1~6のアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表し、R及びRは一緒になって、R及びRが結合する炭素原子と共に炭素数3~13の環を形成する。)
で示されるジエン及び/又は下記式(VII)
Figure JPOXMLDOC01-appb-C000014
(式中、R、R及びRは、それぞれ独立して、水素原子、炭素数4~10のアルキルシクロアルキル基又はフェニル基を表すか、あるいは
及びRは一緒になって、Rが結合する炭素原子と、Rが結合する炭素原子と、それらの炭素原子が結合する炭素原子と共に炭素数5~15の環を形成し、Rは、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表すか、あるいは
は、水素原子、炭素数1~6のアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表し、R及びRは一緒になって、R及びRが結合する炭素原子と共に炭素数3~13の環を形成する。)
で示されるアセチレン結合を有する化合物が得られる。
 ケトン化合物(I)の中でも、アセトンを使用する場合に、高い選択率でプロピン及び/又はプロパジエンが得られる点で、本発明の方法は有利に採用される。
 ケトン化合物(II)において、R及びRは一緒になって、R及びRが結合する炭素原子と共に炭素数3~13の環を形成する場合、及び、R及びRは一緒になって、R及びRが結合する炭素原子と共に炭素数3~13の環を形成する場合のそれぞれにおいて、炭素数3~13の環は3~13員環の脂環式炭化水素が好ましく、より好ましくは3~8員環の脂環式炭化水素である。炭素数3~13の環としては、例えば、シクロプロパン環、シクロブタン環、シクロペンタン環、シクロヘキサン環、シクロオクタン環、シクロトリデカン環等が挙げられる。
 R、R、R、R及びRは、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表す場合、ケトン化合物(II)としては、例えば、2-ブタノン、2-ペンタノン、3-ペンタノン、3-メチル-2-ブタノン、4-メチル-2-ペンタノン、4-メチル-3-ペンタノン、2,5-ジメチル-3-ヘキサノン、5-シクロヘキシル-4-メチル-3-ヘキサノン、3-メチル-4-フェニル-2-ブタノン等が挙げられる。
 R、R及びRは、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表し、R及びRは一緒になって、R及びRが結合する炭素原子と共に炭素数3~13の環を形成する場合、ケトン化合物(II)としては、例えば、1-シクロプロピル-2-プロパノン、1-シクロヘキシル-2-プロパノン等が挙げられる。
 R及びRは一緒になって、R及びRが結合する炭素原子と共に炭素数3~13の環を形成し、Rは、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表し、R及びRは、それぞれ独立して、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表す場合、ケトン化合物(II)としては、例えば、1-シクロヘキシル-2,3,3-トリフェニル-1-プロパノン等が挙げられる。
 R及びRは一緒になって、R及びRが結合する炭素原子と共に炭素数3~13の環を形成し、Rは、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表し、R及びRは一緒になって、R及びRが結合する炭素原子と共に炭素数3~13の環を形成する場合、ケトン化合物(II)としては、例えば、1,2-ジシクロヘキシルエタノン等が挙げられる。
 ケトン化合物(II)を脱水反応させることにより、下記式(VIII)
Figure JPOXMLDOC01-appb-C000015
(式中、R、R、R、R及びRは、それぞれ前記と同じ意味を表す。)
で示されるジエン及び/又は下記式(IX)
Figure JPOXMLDOC01-appb-C000016
(式中、R、R、R、R及びRは、それぞれ前記と同じ意味を表す。)
で示されるジエンが得られる。また、ケトン化合物(II)において、Rが水素原子である場合、すなわち、下記式(IIa)
Figure JPOXMLDOC01-appb-C000017
(式中、R、R、R及びRは、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表すか、あるいは
及びRは、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表し、R及びRは一緒になって、R及びRが結合する炭素原子と共に炭素数3~13の環を形成する。)
で示される化合物である場合には、下記式(VIIIa)
Figure JPOXMLDOC01-appb-C000018
(式中、R、R、R及びRは、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表すか、あるいは
及びRは、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表し、R及びRは一緒になって、R及びRが結合する炭素原子と共に炭素数3~13の環を形成する。)
で示されるジエン、下記式(IXa)
Figure JPOXMLDOC01-appb-C000019
(式中、R、R、R及びRは、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表すか、あるいは
及びRは、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表し、R及びRは一緒になって、R及びRが結合する炭素原子と共に炭素数3~13の環を形成する。)
で示されるジエン及び/又は下記式(X)
Figure JPOXMLDOC01-appb-C000020
(式中、R、R、R及びRは、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表すか、あるいは
及びRは、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表し、R及びRは一緒になって、R及びRが結合する炭素原子と共に炭素数3~13の環を形成する。)
で示されるアセチレン結合を有する化合物が得られる。また、ケトン化合物(II)において、Rが水素原子である場合、すなわち、下記式(IIb)
Figure JPOXMLDOC01-appb-C000021
(式中、R、R、R及びRは、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表すか、あるいは
及びRは、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表し、R及びRは一緒になって、R及びRが結合する炭素原子と共に炭素数3~13の環を形成するか、あるいは
及びRは一緒になって、R及びRが結合する炭素原子と共に炭素数3~13の環を形成し、R及びRは、それぞれ独立して、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表すか、あるいは
及びRは一緒になって、R及びRが結合する炭素原子と共に炭素数3~13の環を形成し、R及びRは一緒になって、R及びRが結合する炭素原子と共に炭素数3~13の環を形成する。)
で示される化合物である場合には、下記式(VIIIb)
Figure JPOXMLDOC01-appb-C000022
(式中、R、R、R及びRは、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表すか、あるいは
及びRは、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表し、R及びRは一緒になって、R及びRが結合する炭素原子と共に炭素数3~13の環を形成するか、あるいは
及びRは一緒になって、R及びRが結合する炭素原子と共に炭素数3~13の環を形成し、R及びRは、それぞれ独立して、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表すか、あるいはR及びRは一緒になって、R及びRが結合する炭素原子と共に炭素数3~13の環を形成し、R及びRは一緒になって、R及びRが結合する炭素原子と共に炭素数3~13の環を形成する。)
で示されるジエン、下記式(IXb)
Figure JPOXMLDOC01-appb-C000023
(式中、R、R、R及びRは、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表すか、あるいは
及びRは、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表し、R及びRは一緒になって、R及びRが結合する炭素原子と共に炭素数3~13の環を形成するか、あるいは
及びRは一緒になって、R及びRが結合する炭素原子と共に炭素数3~13の環を形成し、R及びRは、それぞれ独立して、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表すか、あるいは
及びRは一緒になって、R及びRが結合する炭素原子と共に炭素数3~13の環を形成し、R及びRは一緒になって、R及びRが結合する炭素原子と共に炭素数3~13の環を形成する。)
で示されるジエン及び/又は下記式(XI)
Figure JPOXMLDOC01-appb-C000024
(式中、R、R、R及びRは、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表すか、あるいは
及びRは、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表し、R及びRは一緒になって、R及びRが結合する炭素原子と共に炭素数3~13の環を形成するか、あるいは
及びRは一緒になって、R及びRが結合する炭素原子と共に炭素数3~13の環を形成し、R及びRは、それぞれ独立して、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表すか、あるいは
及びRは一緒になって、R及びRが結合する炭素原子と共に炭素数3~13の環を形成し、R及びRは一緒になって、R及びRが結合する炭素原子と共に炭素数3~13の環を形成する。)
で示されるアセチレン結合を有する化合物が得られる。ケトン化合物(II)において、R及びRが水素原子である場合、すなわち、下記式(IIc)
Figure JPOXMLDOC01-appb-C000025
(式中、R、R及びRは、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表すか、あるいは
は、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表し、R及びRは一緒になって、R及びRが結合する炭素原子と共に炭素数3~13の環を形成する。)
で示される化合物である場合には、下記式(VIIIc)
Figure JPOXMLDOC01-appb-C000026
(式中、R、R及びRは、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表すか、あるいは
は、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表し、R及びRは一緒になって、R及びRが結合する炭素原子と共に炭素数3~13の環を形成する。)
で示されるジエン、下記式(IXc)
Figure JPOXMLDOC01-appb-C000027
(式中、R、R及びRは、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表すか、あるいは
は、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表し、R及びRは一緒になって、R及びRが結合する炭素原子と共に炭素数3~13の環を形成する。)
で示されるジエン、下記式(X’)
Figure JPOXMLDOC01-appb-C000028
(式中、R、R及びRは、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表すか、あるいは
は、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表し、R及びRは一緒になって、R及びRが結合する炭素原子と共に炭素数3~13の環を形成する。)
で示されるアセチレン結合を有する化合物及び/又は下記式(XI’)
Figure JPOXMLDOC01-appb-C000029
(式中、R、R及びRは、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表すか、あるいは
は、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表し、R及びRは一緒になって、R及びRが結合する炭素原子と共に炭素数3~13の環を形成する。)で示されるアセチレン結合を有する化合物が得られる。
 ケトン化合物(II)の中でも、2-ブタノンを使用する場合に、高い選択率で1,3-ブタジエン、1,2-ブタジエン、1-ブチン及び/又は2-ブチンが得られる点で、本発明の方法は有利に採用される。
 アルデヒド化合物(III)としては、アセトアルデヒド、フェニルアセトアルデヒドが挙げられる。アルデヒド化合物(III)を脱水反応させることにより、下記式(XII)
Figure JPOXMLDOC01-appb-C000030
(R10は、前記と同じ意味を表す。)
で示されるアセチレン結合を有する化合物が得られる。
 アルデヒド化合物(IV)において、R11及びR12は一緒になって、R11及びR12が結合する炭素原子と共に炭素数3~13の環を形成する場合、その環は3~13員環の脂環式炭化水素が好ましく、より好ましくは3~8員環の脂環式炭化水素である。炭素数3~13の環としては、例えば、シクロプロパン環、シクロブタン環、シクロペンタン環、シクロヘキサン環、シクロオクタン環、シクロトリデカン環等が挙げられる。
 R11、R12及びR13は、それぞれ独立して、水素原子又はフェニル基を表す場合、アルデヒド化合物(IV)としては、例えば、プロパナール、3-フェニルプロパナール等が挙げられる。
 R11及びR12は一緒になって、R11及びR12が結合する炭素原子と共に炭素数3~13の環を形成し、R13は、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表す場合、アルデヒド化合物(IV)としては、例えば、シクロプロピルアセトアルデヒド、シクロヘキシルアセトアルデヒド等が挙げられる。
 アルデヒド化合物(IV)を脱水反応させることにより、下記式(XIII)
Figure JPOXMLDOC01-appb-C000031
(式中、R11、R12及びR13は、それぞれ前記と同じ意味を表す。)
で示されるアセチレン結合を有する化合物が得られる。また、アルデヒド化合物(IV)において、R13が水素原子である場合、すなわち、下記式(IVa)
Figure JPOXMLDOC01-appb-C000032
(式中、R11及びR12は、それぞれ独立して、水素原子又はフェニル基を表すか、あるいは
11及びR12は一緒になって、R11及びR12が結合する炭素原子と共に炭素数3~13の環を形成する。)
で示される化合物である場合には、下記式(XIIIa)
Figure JPOXMLDOC01-appb-C000033
(式中、R11及びR12は、それぞれ独立して、水素原子又はフェニル基を表すか、あるいは
11及びR12は一緒になって、R11及びR12が結合する炭素原子と共に炭素数3~13の環を形成する。)
で示されるアセチレン結合を有する化合物及び/又は下記式(XIV)
Figure JPOXMLDOC01-appb-C000034
(式中、R11及びR12は、それぞれ独立して、水素原子又はフェニル基を表すか、あるいは
11及びR12は一緒になって、R11及びR12が結合する炭素原子と共に炭素数3~13の環を形成する。)
で示されるジエンが得られる。また、アルデヒド化合物(IV)において、R11がフェニル基であり、R12及びR13が水素原子である場合、すなわち、下記式(IVb)
Figure JPOXMLDOC01-appb-C000035
(式中、R11は、フェニル基を表す。)
で示される化合物である場合には、下記式(XIIIb)
Figure JPOXMLDOC01-appb-C000036
(式中、R11は、フェニル基を表す。)
で示されるアセチレン結合を有する化合物、下記式(XIVb)
Figure JPOXMLDOC01-appb-C000037
(式中、R11は、フェニル基を表す。)
で示されるジエン及び/又は下記式(XV)
Figure JPOXMLDOC01-appb-C000038
(式中、R11は、フェニル基を表す。)
で示されるアセチレン結合を有する化合物が得られ、アルデヒド化合物(IV)において、R11、R12及びR13が水素原子である場合には、プロピン及び/又はプロパジエンが得られる。
 アルデヒド化合物(IV)の中でも、プロパナールを使用する場合に、高い選択率でプロピン及び/又はプロパジエンが得られる点で、本発明の方法は有利に採用される。
 アルデヒド化合物(V)において、R14及びR15は一緒になって、R14及びR15が結合する炭素原子と共に炭素数3~13の環を形成する場合、その環は3~13員環の脂環式炭化水素が好ましく、より好ましくは3~8員環の脂環式炭化水素である。炭素数3~13の環としては、例えば、シクロプロパン環、シクロブタン環、シクロペンタン環、シクロヘキサン環、シクロオクタン環、シクロトリデカン環等が挙げられる。
 R14、R15、R16、R17及びR18は、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表す場合、アルデヒド化合物(V)としては、例えば、ブタナール、ペンタナール、3-メチルブタナール、3,3-ジメチルブタナール等が挙げられる。
 R14及びR15は一緒になって、R14及びR15が結合する炭素原子と共に炭素数3~13の環を形成し、R16、R17及びR18は、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表す場合、アルデヒド化合物(V)としては、例えば、3-シクロヘキシルプロパナール、3-フェニル-3-シクロヘキシルプロパナール等が挙げられる。
 アルデヒド化合物(V)を脱水反応させることにより、下記式(XVI)
Figure JPOXMLDOC01-appb-C000039
(式中、R14、R15、R16、R17及びR18は、それぞれ前記と同じ意味を表す。)
で示されるアセチレン結合を有する化合物が得られる。また、アルデヒド化合物(V)において、R18が水素原子である場合、すなわち、下記式(Va)
Figure JPOXMLDOC01-appb-C000040
(式中、R14、R15、R16及びR17は、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表すか、あるいは
14及びR15は一緒になって、R14及びR15が結合する炭素原子と共に炭素数3~13の環を形成し、R16及びR17は、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表す。)
で示される化合物である場合には、下記式(XVIa)
Figure JPOXMLDOC01-appb-C000041
(式中、R14、R15、R16及びR17は、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表すか、あるいは
14及びR15は一緒になって、R14及びR15が結合する炭素原子と共に炭素数3~13の環を形成し、R16及びR17は、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表す。)
で示されるアセチレン結合を有する化合物及び/又は下記式(XVII)
Figure JPOXMLDOC01-appb-C000042
(式中、R14、R15、R16及びR17は、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表すか、あるいは
14及びR15は一緒になって、R14及びR15が結合する炭素原子と共に炭素数3~13の環を形成し、R16及びR17は、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表す。)
で示されるジエンが得られる。また、アルデヒド化合物(V)において、R16及びR18が水素原子である場合、すなわち、下記式(Vb)
Figure JPOXMLDOC01-appb-C000043
(式中、R14、R15及びR17は、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表すか、あるいは
14及びR15は一緒になって、R14及びR15が結合する炭素原子と共に炭素数3~13の環を形成し、R17は、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表す。)
で示される化合物である場合には、下記式(XVIb)
Figure JPOXMLDOC01-appb-C000044
(式中、R14、R15及びR17は、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表すか、あるいは
14及びR15は一緒になって、R14及びR15が結合する炭素原子と共に炭素数3~13の環を形成し、R17は、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表す。)
で示されるアセチレン結合を有する化合物、下記式(XVIIb)
Figure JPOXMLDOC01-appb-C000045
(式中、R14、R15及びR17は、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表すか、あるいは
14及びR15は一緒になって、R14及びR15が結合する炭素原子と共に炭素数3~13の環を形成し、R17は、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表す。)
で示されるジエン及び/又は下記式(XVIII)
Figure JPOXMLDOC01-appb-C000046
(式中、R14、R15及びR17は、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表すか、あるいは
14及びR15は一緒になって、R14及びR15が結合する炭素原子と共に炭素数3~13の環を形成し、R17は、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表す。)
で示されるジエンが得られる。また、アルデヒド化合物(V)において、R17及びR18が水素原子である場合、すなわち、下記式(Vc)
Figure JPOXMLDOC01-appb-C000047
(式中、R14、R15及びR16は、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表すか、あるいは
14及びR15は一緒になって、R14及びR15が結合する炭素原子と共に炭素数3~13の環を形成し、R16は、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表す。)
で示される化合物である場合には、下記式(XVIc)
Figure JPOXMLDOC01-appb-C000048
(式中、R14、R15及びR16は、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表すか、あるいは
14及びR15は一緒になって、R14及びR15が結合する炭素原子と共に炭素数3~13の環を形成し、R16は、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表す。)
で示されるアセチレン結合を有する化合物、下記式(XVIIc)
Figure JPOXMLDOC01-appb-C000049
(式中、R14、R15及びR16は、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表すか、あるいは
14及びR15は一緒になって、R14及びR15が結合する炭素原子と共に炭素数3~13の環を形成し、R16は、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表す。)
で示されるジエン及び/又は下記式(XIX)
Figure JPOXMLDOC01-appb-C000050
(式中、R14、R15及びR16は、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表すか、あるいは
14及びR15は一緒になって、R14及びR15が結合する炭素原子と共に炭素数3~13の環を形成し、R16は、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表す。)
で示されるアセチレン結合を有する化合物が得られる。また、アルデヒド化合物(V)において、R16、R17及びR18が水素原子である場合、すなわち、下記式(Vd)
Figure JPOXMLDOC01-appb-C000051
(式中、R14及びR15は、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表すか、あるいは
14及びR15は一緒になって、R14及びR15が結合する炭素原子と共に炭素数3~13の環を形成する。)
で示される化合物である場合には、下記式(XVId)
Figure JPOXMLDOC01-appb-C000052
(式中、R14及びR15は、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表すか、あるいは
14及びR15は一緒になって、R14及びR15が結合する炭素原子と共に炭素数3~13の環を形成する。)
で示されるアセチレン結合を有する化合物、下記式(XVIId)
Figure JPOXMLDOC01-appb-C000053
(式中、R14及びR15は、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表すか、あるいは
14及びR15は一緒になって、R14及びR15が結合する炭素原子と共に炭素数3~13の環を形成する。)
で示されるジエン、下記式(XVIIId)
Figure JPOXMLDOC01-appb-C000054
(式中、R14及びR15は、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表すか、あるいは
14及びR15は一緒になって、R14及びR15が結合する炭素原子と共に炭素数3~13の環を形成する。)
で示されるジエン及び/又は下記式(XIXd)
Figure JPOXMLDOC01-appb-C000055
(式中、R14及びR15は、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表すか、あるいは
14及びR15は一緒になって、R14及びR15が結合する炭素原子と共に炭素数3~13の環を形成する。)
で示されるアセチレン結合を有する化合物が得られる。
 脱水反応においては、反応系内に、原料であるケトン化合物(I)、ケトン化合物(II)、アルデヒド化合物(III)、アルデヒド化合物(IV)及びアルデヒド化合物(V)からなる群より選ばれる少なくとも一種とともに、水蒸気、一酸化炭素、二酸化炭素、メタン、エタン、エチレン、アセチレン、プロパン、プロピレン、プロピン、プロパジエン、ブタン、ブテン、ブチン、イソブチレン、ブタジエン、窒素等が存在してもよい。
 脱水反応において、反応温度は、通常200~1200℃、好ましくは250~1000℃、より好ましくは400~800℃である。反応温度が200℃よりも低いと触媒の活性が低下するおそれがあり、一方、反応温度が1200℃よりも高いと触媒の活性劣化を引き起こすおそれがある。
 脱水反応において、反応圧力は、0.001~5MPa、好ましくは0.005~0.3MPaである。反応圧力が0.001MPaより低いと生産性が低くなるおそれがあり、5MPaより高いと反応における平衡転化率が低くなるおそれがある。
 本発明の反応方式としては、固定床方式、流動床方式、移動床方式等の各種の方式で実施することができるが、固定床又は流動床方式が好ましい。触媒は単独で使用してもよいし、反応に実質的に不活性な物質と希釈、混合して使用してもよい。
 なお、反応を固定床方式で行う場合、ケトン化合物(I)、ケトン化合物(II)、アルデヒド化合物(III)、アルデヒド化合物(IV)及びアルデヒド化合物(V)からなる群より選ばれる少なくとも一種を含む原料ガスの供給速度は、触媒1Lあたりの原料ガス供給速度(L/h;0℃、0.1MPa換算)、すなわちGHSV(Gas Hourly Space Velocity)で表して、1~20000h-1、好ましくは10~10000h-1である。ケトン化合物(I)、ケトン化合物(II)、アルデヒド化合物(III)、アルデヒド化合物(IV)及びアルデヒド化合物(V)からなる群より選ばれる少なくとも一種を含む原料ガス中のケトン化合物(I)、ケトン化合物(II)、アルデヒド化合物(III)、アルデヒド化合物(IV)及びアルデヒド化合物(V)からなる群より選ばれる少なくとも一種の濃度は、生産性及び触媒活性を考慮して適宜設定される。
 以上、本発明にかかる好ましい実施形態について示したが、本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で変更や改良したものにも適用できることは言うまでもない。
 以下、実施例を挙げて本発明を詳細に説明するが、本発明は以下の実施例のみに限定されるものではない。なお、以下の実施例中、ガスの供給速度である(ml/分)は、特別に断らない限り、0℃、0.1MPaの換算値である。
実施例1
<触媒の製造>
 担体にシリカ球(1.7~4.0mm球)〔富士シリシア化学(株)製、Q-50〕を用いた。担体10.0gに、塩化カリウム〔和光純薬工業(株)製〕0.095gを純水7.63gに溶解して調製した水溶液を含浸させ、20~30℃で15時間以上風乾した。得られた固体を、空気流通下、室温から400℃まで1.1時間かけて昇温した後、同温度で2時間保持して焼成した。次いで、得られた焼成物を、0.85~1.4mmの顆粒状に破砕し、塩化カリウムがシリカに担持されてなる触媒(塩化カリウム含有量:0.94重量%)を得た。
<触媒充填>
 外径4mmの温度計鞘管が設けられた内径14mmの石英製の反応管の下部に石英ウールを仕切り剤として充填し、ついで得られた触媒0.48g(体積1.2mL)を反応管上部より充填した。
<脱水反応>
 触媒充填済みの反応管を電気炉で加熱し、反応管入口から窒素ガスを156ml/分の速度で反応管内に供給しながら、反応管を昇温した。
 そして、アセトン〔式(I)中、R、R、R及びRが水素原子である化合物〕(和光純薬工業(株)製)をガス吸収ビンに仕込み、0℃に冷却した後、該ガス吸収ビンに32ml/分の速度で窒素ガスを供給して、窒素ガスをアセトンに流通させることにより得られるアセトンを同伴させた窒素ガスを、昇温時の供給窒素ガス156ml/分に加えて反応管入口から供給し(アセトン供給速度:0.0088mol/h、供給ガス中のアセトン濃度:1.7体積%)、反応圧力0.1MPaにて反応を開始した。触媒体積に対する全ガス流量の比(GHSV)は9564h-1であった。
 反応開始後、触媒層の温度を600℃±2℃に維持し、反応開始から90分経過した時点で、反応器出口ガスをテドラーバッグに捕集し、TCDおよびFID検出器を有するガスクロマトグラフィーにて分析し、各生成物を定量した。一旦サンプリングを終了した後、次いで、モノクロロベンゼンの入ったトラップを2段用いて、アセトン及び高沸点成分を吸収し、1段目、2段目の吸収液をFID検出器を有するガスクロマトグラフィーにて分析し、アセトン及び高沸点成分を定量した。結果を表1に示した。
 ここで、アセトンの転化率(%)は、以下の式(i)を用いて算出した。
 アセトンの転化率(%)=[b/a]×100   (i)
 a:アセトンの供給速度(mol/h)
 b:反応管出口ガスにおける全生成物の生成速度(mol/h)
 なお、アセトンの供給速度は供給開始から終了までのガス吸収ビンの重量変化から計算した。
 また、各生成物の選択率(%)は、以下の式(ii)を用いて算出した。
 各生成物の選択率(%)=〔各生成物の生成速度(mol/h)÷全生成物の合計生成速度(mol/h)〕×100   (ii)
 ここで、生成物とは、プロピン、プロパジエン、プロパン、プロピレン、メタン、エタン、エチレン、イソブチレン、一酸化炭素、及び二酸化炭素をいう。
実施例2
<触媒の製造>
 担体にシリカ球(1.7~4.0mm球)〔富士シリシア化学(株)製、Q-50〕を用いた。担体10.0gに、塩化カリウム〔和光純薬工業(株)製〕0.29gを純水8.16gに溶解して調製した水溶液を含浸させ、20~30℃で15時間以上風乾した。得られた固体を、空気流通下、室温から400℃まで1.1時間かけて昇温した後、同温度で2時間保持して焼成した。次いで、得られた焼成物を、0.85~1.4mmの顆粒状に破砕し、塩化カリウムがシリカに担持されてなる触媒(塩化カリウム含有量:2.8重量%)を得た。
<触媒充填、脱水反応>
 上記で得られた触媒を用いた以外は、実施例1と同様の方法で触媒の充填及び反応を行った。結果を表1に示した。
実施例3
<触媒の製造>
 担体にシリカ球(1.7~4.0mm球)〔富士シリシア化学(株)製、Q-50〕を用いた。担体10.0gに、塩化カリウム〔和光純薬工業(株)製〕1.04gを純水8.25gに溶解して調製した水溶液を含浸させ、20~30℃で15時間以上風乾した。得られた固体を、空気流通下、室温から400℃まで1.1時間かけて昇温した後、同温度で2時間保持して焼成した。次いで、得られた焼成物を、0.85~1.4mmの顆粒状に破砕し、塩化カリウムがシリカに担持されてなる触媒(塩化カリウム含有量:9.4重量%)を得た。
<触媒充填、脱水反応>
 上記で得られた触媒を用いた以外は、実施例1と同様の方法で触媒の充填及び反応を行った。結果を表1に示した。
実施例4
<触媒の製造>
 担体にシリカ球(1.7~4.0mm球)〔富士シリシア化学(株)製、Q-50〕を用いた。担体10.0gに、塩化セシウム〔和光純薬工業(株)製〕0.22gを純水9.88gに溶解して調製した水溶液を含浸させ、20~30℃で15時間以上風乾した。得られた固体を、空気流通下、室温から400℃まで1.1時間かけて昇温した後、同温度で2時間保持して焼成した。次いで、得られた焼成物を、0.85~1.4mmの顆粒状に破砕し、塩化セシウムがシリカに担持されてなる触媒(塩化セシウム含有量:2.2重量%)を得た。
<触媒充填、脱水反応>
 上記で得られた触媒を用いた以外は、実施例1と同様の方法で触媒の充填及び反応を行った。結果を表1に示した。
実施例5
<触媒の製造>
 担体にシリカ球(1.7~4.0mm球)〔富士シリシア化学(株)製、Q-50〕を用いた。担体10.0gに、塩化ナトリウム〔和光純薬工業(株)製〕0.075gを純水9.42gに溶解して調製した水溶液を含浸させ、20~30℃で15時間以上風乾した。得られた固体を、空気流通下、室温から400℃まで1.1時間かけて昇温した後、同温度で2時間保持して焼成した。次いで、得られた焼成物を、0.85~1.4mmの顆粒状に破砕し、塩化ナトリウムがシリカに担持されてなる触媒(塩化ナトリウム含有量:0.74重量%)を得た。
<触媒充填、脱水反応>
 上記で得られた触媒を用いた以外は、実施例1と同様の方法で触媒の充填及び反応を行った。結果を表1に示した。
実施例6
<触媒の製造>
 担体にシリカ球(1.7~4.0mm球)〔富士シリシア化学(株)製、Q-50〕を用いた。担体10.0gに、塩化ルビジウム〔和光純薬工業(株)製〕0.13gを純水9.77gに溶解して調製した水溶液を含浸させ、20~30℃で15時間以上風乾した。得られた固体を、空気流通下、室温から400℃まで1.1時間かけて昇温した後、同温度で2時間保持して焼成した。次いで、得られた焼成物を、0.85~1.4mmの顆粒状に破砕し、塩化ルビジウムがシリカに担持されてなる触媒(塩化ルビジウム含有量:1.3重量%)を得た。
<触媒充填、脱水反応>
 上記で得られた触媒を用いた以外は、実施例1と同様の方法で触媒の充填及び反応を行った。結果を表1に示した。
実施例7
<触媒の製造>
 担体にシリカ球(1.7~4.0mm球)〔富士シリシア化学(株)製、Q-50〕を用いた。担体10.0gに、塩化リチウム〔和光純薬工業(株)製〕0.054gを純水9.87gに溶解して調製した水溶液を含浸させ、20~30℃で15時間以上風乾した。得られた固体を、空気流通下、室温から400℃まで1.1時間かけて昇温した後、同温度で2時間保持して焼成した。次いで、得られた焼成物を、0.85~1.4mmの顆粒状に破砕し、塩化リチウムがシリカに担持されてなる触媒(塩化リチウム含有量:0.54重量%)を得た。
<触媒充填、脱水反応>
 上記で得られた触媒を用いた以外は、実施例1と同様の方法で触媒の充填及び反応を行った。結果を表1に示した。
実施例8
<触媒の製造>
 担体にシリカ球(1.7~4.0mm球)〔富士シリシア化学(株)製、Q-50〕を用いた。担体10.0gに、塩化バリウム〔和光純薬工業(株)製〕0.31gを純水9.86gに溶解して調製した水溶液を含浸させ、20~30℃で15時間以上風乾した。得られた固体を、空気流通下、室温から400℃まで1.1時間かけて昇温した後、同温度で2時間保持して焼成した。次いで、得られた焼成物を、0.85~1.4mmの顆粒状に破砕し、塩化バリウムがシリカに担持されてなる触媒(塩化バリウム含有量:3.0重量%)を得た。
<触媒充填、脱水反応>
 上記で得られた触媒を用いた以外は、実施例1と同様の方法で触媒の充填及び反応を行った。結果を表1に示した。
実施例9
<触媒の製造>
 実施例2<触媒の製造>と同様の方法で、塩化カリウムがシリカに担持されてなる触媒(塩化カリウム含有量:2.8重量%)を得た。
<触媒充填>
 上記で得られた触媒を用いた以外は、実施例1<触媒充填>と同様の方法で触媒の充填を行った。
<脱水反応>
 触媒充填済みの反応管を電気炉で加熱し、反応管入口から窒素ガスを173.5ml/分の速度で反応管内に供給しながら、反応管を昇温した。
 そして、アセトン(和光純薬工業(株)製)をガス吸収ビンに仕込み、0℃に冷却した後、該ガス吸収ビンに173.5ml/分の速度で窒素ガスを供給して、窒素ガスをアセトンに流通させることにより得られるアセトンを同伴させた窒素ガスを、昇温時の供給窒素ガスに代えて反応管入口から供給し(アセトン供給速度:0.048mol/h、供給ガス中のアセトン濃度:9.3体積%)、反応圧力0.1MPaにて反応を開始した。触媒体積に対する全ガス流量の比(GHSV)は9564h-1であった。
 反応開始後、触媒層の温度を600℃±2℃に維持し、反応開始から90分経過した時点で、反応器出口ガスをテドラーバッグに捕集し、TCDおよびFID検出器を有するガスクロマトグラフィーにて分析し、各生成物を定量した。一旦サンプリングを終了した後、次いで、モノクロロベンゼンの入ったトラップを2段用いて、アセトン及び高沸点成分を吸収し、1段目、2段目の吸収液をFID検出器を有するガスクロマトグラフィーにて分析し、アセトン及び高沸点成分を定量した。結果を表1に示した。
実施例10
<触媒の製造>
 担体にシリカ球(1.7~4.0mm球)〔富士シリシア化学(株)製、Q-50〕を用いた。担体10.0gに、炭酸カリウム〔和光純薬工業(株)製〕0.27gを純水10.0gに溶解して調製した水溶液を含浸させ、20~30℃で15時間以上風乾した。得られた固体を、空気流通下、室温から400℃まで1.1時間かけて昇温した後、同温度で2時間保持して焼成した。次いで、得られた焼成物を、0.85~1.4mmの顆粒状に破砕し、炭酸カリウムがシリカに担持されてなる触媒(炭酸カリウム含有量:2.6重量%)を得た。
<触媒充填、脱水反応>
 上記で得られた触媒を用いた以外は、実施例9と同様の方法で触媒の充填及び反応を行った。結果を表1に示した。
比較例1
<触媒の製造>
 シリカ球(1.7~4.0mm球)〔富士シリシア化学(株)製、Q-50〕を、0.85~1.4mmの顆粒状に破砕し、シリカ触媒を得た。
<触媒充填、脱水反応>
 上記で得られた触媒を用いた以外は、実施例1と同様の方法で触媒の充填及び反応を行った。結果を表1に示した。
比較例2
<触媒の製造>
 γ-アルミナ球(2~4mm球)〔住友化学(株)製、GO-24〕を、0.85~1.4mmの顆粒状に破砕し、アルミナ触媒を得た。
<触媒充填>
 外径4mmの温度計鞘管が設けられた内径14mmの石英製の反応管の下部に石英ウールを仕切り剤として充填し、ついで得られた触媒0.48g(体積0.71mL)を反応管上部より充填した。
<脱水反応>
 上記で得られた触媒を用いた以外は、実施例1と同様の方法で反応を行った。結果を表1に示した。触媒体積に対する全ガス流量の比(GHSV)は16164h-1であった。
Figure JPOXMLDOC01-appb-T000056
 表1に示すとおり、金属成分がシリカに担持されてなる触媒を使用した実施例1~10では、金属成分が担持されていないシリカ又はアルミナを触媒として使用した比較例1及び2と比較して、プロピン及びプロパジエンの合計選択率が高いことがわかる。
 実施例11
<触媒の製造>
 担体にシリカ球(1.7~4.0mm球)〔富士シリシア化学(株)製、Q-50〕を用いた。担体20.0gに、ケイ酸カリウム溶液〔和光純薬工業(株)製、KO・3.9SiOの水溶液、KO・3.9SiO含有量28.1重量%〕4.54gを純水26.5gに溶解して調製した水溶液を含浸させ、20~30℃で15時間以上風乾した。得られた固体を、空気流通下、室温から200℃まで0.5時間かけて昇温した後、同温度で2時間保持して焼成した。次いで、得られた焼成物を、0.85~1.4mmの顆粒状に破砕し、ケイ酸カリウムがシリカに担持されてなる触媒(ケイ酸カリウム含有量:6.0重量%)を得た。
<触媒充填>
 外径4mmの温度計鞘管が設けられた内径14mmの石英製の反応管の下部に石英ウールを仕切り剤として充填し、SiCを7.1mL充填後、さらに石英ウールを仕切り剤として充填し、ついで得られた触媒2.4g(体積5.9mL)を充填後、さらに石英ウールを仕切り剤として充填し、ついでSiCを12.7mL充填した。
<脱水反応>
 触媒充填済みの反応管の入口から窒素ガスを2.7ml/分の速度で反応管内に供給しながら、ダイヤフラムポンプを用いて反応管内を0.01MPa以下に減圧した後、反応管を電気炉で加熱し、昇温した。
 そして、液状のアセトン(和光純薬工業(株)製)をポンプにて反応管の入口から供給してガス化させ(アセトンガス流量:34.2ml/分、アセトン供給速度:0.092mol/h、供給ガス中のアセトン濃度:92.7体積%)、反応圧力0.008MPaにて反応を開始した。触媒体積に対する全ガス流量の比(GHSV)は375h-1であった。
 反応開始後、触媒層の温度を598℃±4℃に維持し、反応開始から60分経過した時点で、反応器出口ガスをガスタイトシリンジにて採取し、FID検出器を有するガスクロマトグラフィーにて分析し、さらに、反応器出口ガスをサンプリングループに充填後、TCD検出器を有するガスクロマトグラフィーにてオンライン分析することにより、各生成物を定量した。次いで、反応管出口に接続したSUS製のトラップをエタノール/ドライアイス浴で冷却し、アセトン及び高沸点成分を凝縮させて回収した後、得られた凝縮液をFID検出器を有するガスクロマトグラフィーにて分析し、アセトン及び高沸点成分を定量した。結果を表2に示した。
 ここで、アセトンの転化率(%)は、以下の式(iii)を用いて算出した。
 アセトンの転化率(%)=[d/(c+d)]×100   (iii)
 c:反応器出口ガスにおけるアセトン流量(mol/h)
 d:反応管出口ガスにおける全生成物の生成速度(mol/h)
 また、各生成物の選択率(%)は、以下の式(iv)を用いて算出した。
 各生成物の選択率(%)=〔各生成物の生成速度(mol/h)÷全生成物の合計生成速度(mol/h)〕×100   (iv)
 ここで、生成物とは、プロピン、プロパジエン、メタン、エタン、エチレン、プロピレン、プロパン、イソブチレン、2-メチル-1-ペンテン-3-イン、2-ヘキセン-4-イン、4-メチル-3-ペンテン-2-オン、4-メチル-4-ペンテン-2-オン、2-メチルフラン、メチルシクロペンタジエン、3,5,5-トリメチル-2-シクロヘキセン-1-オン、フェノール、メチルフェノール、3,5-ジメチルフェノール、一酸化炭素及び二酸化炭素をいう。
 実施例12
<触媒の製造>
 担体にシリカ球(1.7~4.0mm球)〔富士シリシア化学(株)製、Q-50〕を用いた。担体30.2gに、メタケイ酸ナトリウム〔和光純薬工業(株)製、NaSiO(NaO・SiO)〕0.71gを純水30.0gに溶解して調製した水溶液を含浸させ、20~30℃で15時間以上風乾した。得られた固体を、空気流通下、室温から200℃まで0.5時間かけて昇温した後、同温度で2時間保持して焼成した。次いで、得られた焼成物を、0.85~1.4mmの顆粒状に破砕し、メタケイ酸ナトリウムがシリカに担持されてなる触媒(メタケイ酸ナトリウム含有量:2.3重量%)を得た。
<触媒充填、脱水反応>
 上記で得られた触媒を用いた以外は、実施例11と同様の方法で触媒の充填及び反応を行った。結果を表2に示した。
 実施例13
<触媒の製造>
 担体にシリカ球(1.7~4.0mm球)〔富士シリシア化学(株)製、Q-50〕を用いた。担体32.6gに、水酸化カリウム〔和光純薬工業(株)製〕0.71gを純水32.6gに溶解して調製した水溶液を含浸させ、20~30℃で15時間以上風乾した。得られた固体を、空気流通下、室温から200℃まで0.5時間かけて昇温した後、同温度で2時間保持して焼成した。次いで、得られた焼成物を、0.85~1.4mmの顆粒状に破砕し、水酸化カリウムがシリカに担持されてなる触媒(水酸化カリウム含有量:2.1重量%)を得た。
<触媒充填、脱水反応>
 上記で得られた触媒を2.4g(体積6.2mL)用い、アセトンガス流量を25.6ml/分(アセトン供給速度:0.069mol/h、供給ガス中のアセトン濃度:90.5体積%、触媒体積に対する全ガス流量の比(GHSV):257h-1)としたこと以外は、実施例11と同様の方法で触媒の充填及び反応を行った。結果を表2に示した。
 実施例14
<触媒の製造>
 担体にシリカ粉末〔東ソー・シリカ(株)製、ER-R〕を用いた。担体32.0gに、水酸化カリウム〔和光純薬工業(株)製〕0.70gを純水58.5gに溶解して調製した水溶液を含浸させ、20~30℃で15時間以上風乾した。得られた固体を、プレス成型し、空気流通下、室温から200℃まで0.5時間かけて昇温した後、同温度で2時間保持して焼成した。次いで、得られた焼成物を、0.85~1.4mmの顆粒状に破砕し、水酸化カリウムがシリカに担持されてなる触媒(水酸化カリウム含有量:2.1重量%)を得た。
<触媒充填、脱水反応>
 上記で得られた触媒を2.4g(体積6.7mL)用いた以外は、実施例11と同様の方法で触媒の充填及び反応を行った。結果を表2に示した。
比較例3
<触媒の製造>
 シリカ球(1.7~4.0mm球)〔富士シリシア化学(株)製、Q-50〕を、0.85~1.4mmの顆粒状に破砕し、シリカ触媒を得た。
<触媒充填、脱水反応>
 上記で得られた触媒を用いた以外は、実施例11と同様の方法で触媒の充填及び反応を行った。結果を表2に示した。
Figure JPOXMLDOC01-appb-T000057
 実施例15
<触媒の製造>
 実施例14<触媒の製造>と同様の操作で水酸化カリウムがシリカに担持されてなる触媒(水酸化カリウム含有量:2.1重量%)を得た。
<触媒充填>
 外径4mmの温度計鞘管が設けられた内径14mmの石英製の反応管の下部に石英ウールを仕切り剤として充填し、SiCを7.1mL充填後、さらに石英ウールを仕切り剤として充填し、ついで得られた触媒2.4g(体積6.7mL)を充填後、さらに石英ウールを仕切り剤として充填し、ついでSiCを12.7mL充填した。
<脱水反応>
 触媒充填済みの反応管を電気炉で加熱し、反応管入口から窒素ガスを189ml/分の速度で反応管内に供給しながら、反応管を昇温した。
 そして、2-ブタノン〔式(II)中、R、R、R、R及びRが水素原子である化合物〕(和光純薬工業(株)製)をガス吸収ビンに仕込み、0℃に冷却した後、該ガス吸収ビンに189ml/分の速度で窒素ガスを供給して、窒素ガスを2-ブタノンに流通させることにより得られる2-ブタノンを同伴させた窒素ガスを、昇温時の供給窒素ガスに代えて反応管入口から供給し(2-ブタノン供給速度:0.017mol/h、供給ガス中の2-ブタノン濃度:3.2体積%)、反応圧力0.1MPaにて反応を開始した。触媒体積に対する全ガス流量の比(GHSV)は1747h-1であった。
 反応開始後、触媒層の温度を550℃±3℃に維持し、反応開始から60分経過した時点で、反応器出口ガスをテドラーバッグに捕集し、TCDおよびFID検出器を有するガスクロマトグラフィーにて分析し、各生成物を定量した。一旦サンプリングを終了した後、次いで、アセトニトリルの入ったトラップを2段用いて、2-ブタノン及び高沸点成分を吸収し、1段目、2段目の吸収液をFID検出器を有するガスクロマトグラフィーにて分析し、2-ブタノン及び高沸点成分を定量した。結果を表3に示した。
 ここで、2-ブタノンの転化率(%)は、以下の式(v)を用いて算出した。
 2-ブタノンの転化率(%)=[f/e]×100   (v)
 e:2-ブタノンの供給速度(mol/h)
 f:反応管出口ガスにおける全生成物の生成速度(mol/h)
 なお、2-ブタノンの供給速度は供給開始から終了までのガス吸収ビンの重量変化から計算した。
 また、各生成物の選択率(%)は、以下の式(vi)を用いて算出した。
 各生成物の選択率(%)=〔各生成物の生成速度(mol/h)÷全生成物の合計生成速度(mol/h)〕×100   (vi)
 ここで、生成物とは、1,3-ブタジエン、1,2-ブタジエン、1-ブチン、2-ブチン、プロピン、プロパジエン、プロパン、プロピレン、メタン、エタン、エチレン、イソブチレン、一酸化炭素及び二酸化炭素をいう。
 実施例16
<触媒の製造>
 実施例14<触媒の製造>と同様の操作で水酸化カリウムがシリカに担持されてなる触媒(水酸化カリウム含有量:2.1重量%)を得た。
<触媒充填>
 実施例15<触媒充填>と同様の操作で触媒の充填を行った。
<脱水反応>
 触媒層の温度を600℃±9℃に維持したこと以外は、実施例15と同様の方法で反応を行った。結果を表3に示した。
Figure JPOXMLDOC01-appb-T000058
 実施例17
<触媒の製造>
 担体にシリカ球(1.7~4.0mm球)〔富士シリシア化学(株)製、Q-50〕を用いた。担体30.0gに、塩化セシウム〔和光純薬工業(株)製〕0.66gを純水30.0gに溶解して調製した水溶液を含浸させ、20~30℃で15時間以上風乾した。得られた固体を、空気流通下、室温から200℃まで0.5時間かけて昇温した後、同温度で2時間保持して焼成した。次いで、得られた焼成物を、0.85~1.4mmの顆粒状に破砕し、塩化セシウムがシリカに担持されてなる触媒(塩化セシウム含有量:2.1重量%)を得た。
<触媒充填>
 外径4mmの温度計鞘管が設けられた内径14mmの石英製の反応管の下部に石英ウールを仕切り剤として充填し、ついで得られた触媒2.4g(体積6.4mL)を反応管上部より充填した。
<脱水反応>
 触媒充填済みの反応管を電気炉で加熱し、反応管入口から窒素ガスを42ml/分の速度で反応管内に供給しながら、反応管を昇温した。
 そして、プロパナール〔式(IV)中、R11、R12及びR13が水素原子である化合物〕(和光純薬工業(株)製)をガス吸収ビンに仕込み、0℃に冷却した後、該ガス吸収ビンに132ml/分の速度で窒素ガスを供給して、窒素ガスをプロパナールに流通させることにより得られるプロパナールを同伴させた窒素ガスを、昇温時の供給窒素ガス42ml/分に加えて反応管入口から供給し(プロパナール供給速度:0.057mol/h、供給ガス中のプロパナール濃度:10.9体積%)、反応圧力0.1MPaにて反応を開始した。触媒体積に対する全ガス流量の比(GHSV)は1886h-1であった。
 反応開始後、触媒層の温度を600℃±4℃に維持し、反応開始から60分経過した時点で、反応器出口ガスをテドラーバッグに捕集し、TCDおよびFID検出器を有するガスクロマトグラフィーにて分析し、各生成物を定量した。一旦サンプリングを終了した後、次いで、水の入ったトラップを2段用いて、プロパナール及び高沸点成分を吸収し、1段目、2段目の吸収液をFID検出器を有するガスクロマトグラフィーにて分析し、プロパナール及び高沸点成分を定量した。結果を表4に示した。
 ここで、プロパナールの転化率(%)は、以下の式(vii)を用いて算出した。
 プロパナールの転化率(%)=[h/g]×100   (vii)
 g:プロパナールの供給速度(mol/h)
 h:反応管出口ガスにおける全生成物の生成速度(mol/h)
 なお、プロパナールの供給速度は供給開始から終了までのガス吸収ビンの重量変化から計算した。
 また、各生成物の選択率(%)は、以下の式(viii)を用いて算出した。
 各生成物の選択率(%)=〔各生成物の生成速度(mol/h)÷全生成物の合計生成速度(mol/h)〕×100   (viii)
 ここで、生成物とは、プロピン、プロパジエン、メタン、エタン、エチレン、プロパン、アセチレン、プロピレン、イソブチレン、一酸化炭素、二酸化炭素及び高沸点成分をいう。
Figure JPOXMLDOC01-appb-T000059

Claims (8)

  1.  シリカを含む担体に、第1族金属元素を含む化合物、第2族金属元素を含む化合物、第1族金属元素及び第2族金属元素からなる群より選ばれる少なくとも一種が担持されてなる触媒の存在下に、下記式(I)
    Figure JPOXMLDOC01-appb-C000001
    (式中、R、R、R及びRは、それぞれ独立して、水素原子、炭素数4~10のアルキルシクロアルキル基又はフェニル基を表すか、あるいは
    及びRは一緒になって、Rが結合する炭素原子と、Rが結合する炭素原子と、それらの炭素原子が結合する炭素原子と共に炭素数5~15の環を形成し、R及びRは、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表すか、あるいは
    及びRは、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表し、R及びRは一緒になって、R及びRが結合する炭素原子と共に炭素数3~13の環を形成するか、あるいは
    及びRは一緒になって、R及びRが結合する炭素原子と共に炭素数3~13の環を形成し、R及びRは一緒になって、R及びRが結合する炭素原子と共に炭素数3~13の環を形成する。)
    で示される化合物、下記式(II)
    Figure JPOXMLDOC01-appb-C000002
    (式中、R、R、R、R及びRは、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表すか、あるいは
    、R及びRは、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表し、R及びRは一緒になって、R及びRが結合する炭素原子と共に炭素数3~13の環を形成するか、あるいは
    及びRは一緒になって、R及びRが結合する炭素原子と共に炭素数3~13の環を形成し、Rは、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表し、R及びRは、それぞれ独立して、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表すか、あるいは
    及びRは一緒になって、R及びRが結合する炭素原子と共に炭素数3~13の環を形成し、Rは、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表し、R及びRは一緒になって、R及びRが結合する炭素原子と共に炭素数3~13の環を形成する。)
    で示される化合物、下記式(III)
    Figure JPOXMLDOC01-appb-C000003
    (式中、R10は、水素原子又はフェニル基を表す。)
    で示される化合物、下記式(IV)
    Figure JPOXMLDOC01-appb-C000004
    (式中、R11、R12及びR13は、それぞれ独立して、水素原子又はフェニル基を表すか、あるいは
    11及びR12は一緒になって、R11及びR12が結合する炭素原子と共に炭素数3~13の環を形成し、R13は、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表す。)
    で示される化合物及び下記式(V)
    Figure JPOXMLDOC01-appb-C000005
    (式中、R14、R15、R16、R17及びR18は、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表すか、あるいは
    14及びR15は一緒になって、R14及びR15が結合する炭素原子と共に炭素数3~13の環を形成し、R16、R17及びR18は、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素数4~10のアルキルシクロアルキル基、炭素数4~10のシクロアルキルアルキル基、炭素数7~10のアラルキル基又はフェニル基を表す。)
    で示される化合物からなる群より選ばれる少なくとも一種を脱水反応させることを特徴とするアセチレン結合を有する化合物及び/又はジエンの製造方法。
  2.  前記触媒が、シリカを含む担体に第1族金属元素を含む化合物及び第1族金属元素からなる群より選ばれる少なくとも一種が担持されてなる触媒である請求項1に記載の製造方法。
  3.  前記触媒が、シリカを含む担体に第1族金属元素を含む化合物が担持されてなる触媒であり、第1族金属元素を含む化合物が、第1族金属元素のハロゲン化物、第1族金属元素の炭酸塩、第1族金属元素の酸化物、第1族金属元素の水酸化物及び第1族金属元素のケイ酸塩からなる群より選ばれる少なくとも一種である請求項2に記載の製造方法。
  4.  第1族金属元素が、ナトリウム、カリウム、ルビジウム又はセシウムである請求項3に記載の製造方法。
  5.  式(I)で示される化合物がアセトンである請求項1~4のいずれか一つに記載の製造方法。
  6.  式(II)で示される化合物が2-ブタノンである請求項1~5のいずれか一つに記載の製造方法。
  7.  式(IV)で示される化合物がプロパナールである請求項1~6のいずれか一つに記載の製造方法。
  8.  前記担体が、シリカからなるものである請求項1~7のいずれか一つに記載の製造方法。
PCT/JP2012/081141 2011-12-07 2012-11-30 アセチレン結合を有する化合物及び/又はジエンの製造方法 WO2013084828A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280068974.2A CN104093682B (zh) 2011-12-07 2012-11-30 具有炔键的化合物及/或二烯的制造方法
SG11201402075PA SG11201402075PA (en) 2011-12-07 2012-11-30 Method for producing compound having acetylene bonds and/or diene

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011267594 2011-12-07
JP2011-267594 2011-12-07

Publications (1)

Publication Number Publication Date
WO2013084828A1 true WO2013084828A1 (ja) 2013-06-13

Family

ID=48574195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081141 WO2013084828A1 (ja) 2011-12-07 2012-11-30 アセチレン結合を有する化合物及び/又はジエンの製造方法

Country Status (5)

Country Link
JP (1) JP2013139428A (ja)
CN (1) CN104093682B (ja)
SG (1) SG11201402075PA (ja)
TW (1) TWI554489B (ja)
WO (1) WO2013084828A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157432A1 (ja) * 2013-03-26 2014-10-02 住友化学株式会社 メタクリル酸エステルの製造方法
CN105531246A (zh) * 2013-09-10 2016-04-27 东丽株式会社 1,3-丁二烯及/或3-丁烯-2-醇的制造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6229721B2 (ja) * 2013-09-12 2017-11-15 東レ株式会社 ブタジエンの製造方法
JP6271331B2 (ja) * 2014-04-22 2018-01-31 住友化学株式会社 アセチレン結合を有する化合物及び/又はジエンの製造方法
CN104449679A (zh) * 2014-12-25 2015-03-25 英特美光电(苏州)有限公司 一种led荧光粉助溶剂及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4301319A (en) * 1980-05-16 1981-11-17 Standard Oil Company Manufacture of allene from acetone
JPS63233931A (ja) * 1986-12-24 1988-09-29 ユニオン・カーバイド・コーポレーシヨン ジエンの製造方法
JPH0291030A (ja) * 1988-09-29 1990-03-30 Union Carbide Corp 化学転化方法
JPH08239332A (ja) * 1994-12-29 1996-09-17 Nippon Petrochem Co Ltd シクロペンタジエン類の製造方法
JP2000128807A (ja) * 1998-04-07 2000-05-09 Mitsui Chemicals Inc アセチレン誘導体の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5723708A (en) * 1994-09-29 1998-03-03 Nippon Petrochemicals Company, Limited Method for producing cyclopentadienes
IL129219A0 (en) * 1998-04-07 2000-02-17 Mitsui Chemicals Inc Preparation process of acetylene derivatives

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4301319A (en) * 1980-05-16 1981-11-17 Standard Oil Company Manufacture of allene from acetone
JPS63233931A (ja) * 1986-12-24 1988-09-29 ユニオン・カーバイド・コーポレーシヨン ジエンの製造方法
JPH0291030A (ja) * 1988-09-29 1990-03-30 Union Carbide Corp 化学転化方法
JPH08239332A (ja) * 1994-12-29 1996-09-17 Nippon Petrochem Co Ltd シクロペンタジエン類の製造方法
JP2000128807A (ja) * 1998-04-07 2000-05-09 Mitsui Chemicals Inc アセチレン誘導体の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157432A1 (ja) * 2013-03-26 2014-10-02 住友化学株式会社 メタクリル酸エステルの製造方法
US9682915B2 (en) 2013-03-26 2017-06-20 Sumitomo Chemical Company, Limited Method for producing methacrylic acid ester
CN105531246A (zh) * 2013-09-10 2016-04-27 东丽株式会社 1,3-丁二烯及/或3-丁烯-2-醇的制造方法
CN105531246B (zh) * 2013-09-10 2017-12-19 东丽株式会社 1,3-丁二烯及/或3-丁烯-2-醇的制造方法

Also Published As

Publication number Publication date
CN104093682A (zh) 2014-10-08
SG11201402075PA (en) 2014-09-26
TW201331154A (zh) 2013-08-01
CN104093682B (zh) 2016-05-18
TWI554489B (zh) 2016-10-21
JP2013139428A (ja) 2013-07-18

Similar Documents

Publication Publication Date Title
WO2013084828A1 (ja) アセチレン結合を有する化合物及び/又はジエンの製造方法
JP5235873B2 (ja) オレフィンの製造方法
US10464860B2 (en) Method for producing isobutylene from isobutanol
JP6217441B2 (ja) イソプレンの製造方法
JPWO2018092780A1 (ja) 1−クロロ−2,3,3−トリフルオロプロペンの製造方法
Ismagilov et al. Oxidative condensation of methane in the presence of modified MnNaW/SiO 2 catalysts
Gu et al. Styrene epoxidation with hydrogen peroxide over calcium oxide catalysts prepared from various precursors
JP2014181201A (ja) アセチレン結合を有する化合物及び/又はジエンの製造方法
Yilmaz et al. Bromine mediated partial oxidation of ethane over nanostructured zirconia supported metal oxide/bromide
JP6271331B2 (ja) アセチレン結合を有する化合物及び/又はジエンの製造方法
RU2019131826A (ru) Катализатор превращения синтез-газа в спирты
JP6085206B2 (ja) メタクリル酸エステルの製造方法
Suzuki et al. Oxidative methylation of toluene with methane over basic oxide catalysts promoted with alkali metal bromide
US20180072636A1 (en) Catalyst for isobutylene production and method for producing isobutylene
WO2016152324A1 (ja) ジエンの製造方法
TW201033173A (en) Method and apparatus for purifying paraffin
JP2017144359A (ja) 1,3−ブタジエン合成用触媒、1,3−ブタジエンの製造装置及び1,3−ブタジエンの製造方法
RU2647844C1 (ru) Катализатор для окислительной конденсации метана и способ его получения
RU2485088C1 (ru) Способ прямой конверсии низших парафинов c1-c4 в оксигенаты
Duthoit Study of Oxidative Coupling of Methane catalysts’ performance for CO2-assisted Oxidative Dehydrogenation of Ethane
JP2012162486A (ja) メチルアセチレンおよびプロパジエンの製造方法
Zhou et al. Methane oxidative coupling over promoted Pb/Ca catalysts
JP2020040065A (ja) 1,3−ブタジエン合成用触媒、1,3−ブタジエンの製造装置及び1,3−ブタジエンの製造方法
CN104529693B (zh) 一种甲烷氯化物制备氯乙烯单体的方法
Lapidus et al. Kinetics of propane dehydrogenation in CO {sub 2} presence over chromium and gallium oxide catalysts based on MCM-41

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12856031

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12856031

Country of ref document: EP

Kind code of ref document: A1