WO2013081369A2 - 리튬-니켈-코발트-알루미늄 복합 산화물의 제조 방법, 이에 의하여 제조된 리튬-니켈-코발트-알루미늄 복합 산화물 및 이를 포함하는 리튬 이차 전지 - Google Patents

리튬-니켈-코발트-알루미늄 복합 산화물의 제조 방법, 이에 의하여 제조된 리튬-니켈-코발트-알루미늄 복합 산화물 및 이를 포함하는 리튬 이차 전지 Download PDF

Info

Publication number
WO2013081369A2
WO2013081369A2 PCT/KR2012/010159 KR2012010159W WO2013081369A2 WO 2013081369 A2 WO2013081369 A2 WO 2013081369A2 KR 2012010159 W KR2012010159 W KR 2012010159W WO 2013081369 A2 WO2013081369 A2 WO 2013081369A2
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
cobalt
nickel
composite oxide
aluminum composite
Prior art date
Application number
PCT/KR2012/010159
Other languages
English (en)
French (fr)
Other versions
WO2013081369A3 (ko
Inventor
김유정
이민영
고형신
Original Assignee
주식회사 포스코이에스엠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코이에스엠 filed Critical 주식회사 포스코이에스엠
Publication of WO2013081369A2 publication Critical patent/WO2013081369A2/ko
Publication of WO2013081369A3 publication Critical patent/WO2013081369A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a lithium-nickel-cobalt-aluminum composite oxide, a lithium-nickel-cobalt-aluminum composite oxide prepared thereby, and a lithium secondary battery comprising the same.
  • lithium ion secondary batteries have already been put into practical use as power sources for small electronic devices such as notebook PCs, PDAs, mobile phones, video cameras, and the like.
  • lithium cobalt oxide LiCoO 2
  • other alternative materials include lithium nickel oxide (LiNiO 2 ), lithium manganese oxide (LiMnO 2 ), or lithium nickel cobalt having a layered structure.
  • Manganese oxides LiNi 1-xy Co x Mn y O 2
  • spinel structure lithium manganese oxides LiMn 2 O 4
  • olivine structure lithium iron phosphate LiFePO 4
  • the dual lithium nickel cobalt aluminum compound exhibits excellent electrochemical activity in terms of high capacity, electron conductivity, cycle characteristics, and high current performance.
  • a raw material mixture was mixed in a solid phase, and a ball mill pulverization after firing at 700-1000 ° C was used. This is because the solid state method generally uses inexpensive raw materials such as metal oxides, hydroxides, and carbonates as raw materials, and is suitable for mass production and generally has excellent cycle performance.
  • this method requires a high synthesis temperature because the solid phase reaction of the raw material, as can be seen in the synthesis process, and the heat treatment time is also long because the diffusion distance between the raw material is far. Furthermore, to achieve homogeneity during the synthesis process, several heat treatment / grinding processes are required.
  • the present invention is to solve the above problems, an object of the present invention to provide a new manufacturing method for producing a lithium nickel cobalt aluminum compound having a particle size of 10 ⁇ m or more.
  • Another object of the present invention is to provide a lithium nickel cobalt aluminum compound having a particle size of 10 ⁇ m or more and a lithium secondary battery including the same.
  • the present invention to solve the above problems
  • the aluminum compound of step i) is characterized in that one or more selected from the group consisting of sodium aluminate, alkali aluminate, aluminum nitrate and aluminum hydroxide.
  • the wet grinding of the step (ii) is characterized in that stirring for 30 to 60 minutes at a stirring speed of 3000 to 4000 rpm.
  • the grinding is made at the time of mixing the raw materials.
  • pulverization although the particle diameter of the raw material particle after grinding
  • pulverization is too large, reactivity will fall at the time of spray drying, and it will become difficult to make a composition uniform.
  • the means for realizing such a grinding degree is not particularly limited, but a wet grinding method is preferable, and a milling method of mixing zirconium particles is preferable.
  • the particle diameter can be controlled by appropriately selecting the spray type, pressurized gas flow rate, slurry supply rate, drying temperature and the like.
  • the atmosphere temperature during the spray drying of step iii) is characterized in that 160 ⁇ 220 °C. It is preferable to carry out at the temperature of 180 degrees C or less preferably.
  • the temperature at the time of spray drying is too high, the obtained granulated particle will have many hollow structures, and there exists a possibility that the tap density of a particle may rather fall.
  • the temperature during spray drying is too low, problems such as particle sticking and blocking due to moisture condensation at the outlet portion of the particles may occur.
  • the spray pressure of the spray drying in step iii) is characterized in that the spray pressure of 1 ⁇ 5 bar.
  • the reactivity with the lithium compound decreases during the calcination reaction with the lithium compound, which is the next step, by means such as pulverizing the starting material before spray drying as described above. It is desirable to increase the surface area as much as possible.
  • the lithium compound in step iv) is lithium oxide, lithium hydroxide, lithium carbonate, orthosilicate, metasilicate or polysilicate of lithium, lithium sulfate, oxalate lithium, lithium acetate, or mixtures thereof Characterized in that selected from the group consisting of.
  • the heat treatment in the step (v) is a temperature increase rate of 1 °C / min to 5 °C / min, the temperature is raised to a temperature of 700 to 1000 °C, for 10 to 25 hours, 1 to 10 L / min Characterized in that it is carried out under the conditions of injecting air at a rate. It is 1125 degrees C or less.
  • the firing temperature is low, various materials having different structures are mixed, and the crystal structure does not develop, and the lattice strain is increased.
  • the specific surface area becomes too large.
  • the firing temperature is too high, the primary particles grow excessively, sintering between the particles proceeds excessively, and the specific surface area becomes too small.
  • a temperature raising process raises a temperature at the temperature increase rate of 1 degreeC / min or more and 5 degrees C / min or less normally. Although it takes time even if this temperature increase rate is too slow, even if it is too fast, there exists a possibility that the temperature in a baking furnace may not reach a preset temperature.
  • the temperature increase rate is preferably 1 ° C / minute or more and 5 ° C / minute or less.
  • the holding time in a maximum temperature holding process changes also with temperature, it is 10 hours or more and 25 hours or less normally if it is the above-mentioned temperature range. If the firing time is too short, it becomes difficult to obtain lithium-nickel-cobalt-aluminum composite oxide particles having good crystallinity. If the firing time is too long, it is not practical because disintegration is necessary or difficult to disintegrate after that.
  • the crystal secondary particles maintain a spherical shape, are manufactured by a spray drying method, and the pore capacity between the crystal particles is large, and voids are formed efficiently, thereby using the battery.
  • the contact area of the surface of a positive electrode active material and electrolyte solution can be increased, a surface state can improve output characteristics, and can exhibit the outstanding characteristic balance as a positive electrode active material.
  • the lithium-nickel-cobalt-aluminum composite oxide of the present invention is characterized by having a particle diameter of 10 to 20 ⁇ m.
  • the lithium-nickel-cobalt-aluminum composite oxide represented by 0 ⁇ e ⁇ 0.5) is prepared by spray drying after solid phase mixing of the raw materials as described above, so that the particle size is 10-20 ⁇ m while having sufficiently high crystallinity. It can grow greatly.
  • the particle diameter formed by the collection of primary particles of the lithium-nickel-cobalt-aluminum composite oxide exceeds 20 ⁇ m adversely affects the filling properties of the particles, or the specific surface area decreases, thereby improving battery performance such as rate characteristics and output characteristics. There is a possibility of deterioration.
  • the crystal since the crystal is not developed when the particle diameter is less than 10 ⁇ m, reversibility of charge and discharge may be inferior.
  • the lithium-nickel-cobalt-aluminum composite oxide of the present invention is characterized in that the tap density is 2.5 g / cc to 2.6 g / cc.
  • the tap density is increased than the lithium-nickel-cobalt-aluminum composite oxide prepared by the conventional liquid phase reaction, and thus, the lithium-nickel-cobalt-aluminum composite oxide of the present invention is preferable in terms of powder filling or electrode density improvement.
  • the tap density is 2.6 g / cc or more, the specific surface area may be lowered and battery performance may be lowered.
  • the tap density is 2.5 g / cc or less, there is a possibility that it may adversely affect powder filling and electrode production. .
  • the present invention also provides a lithium secondary battery comprising a negative electrode capable of storing and releasing lithium, a nonaqueous electrolyte containing a lithium salt, and a positive electrode produced by the manufacturing method of the present invention.
  • the lithium- When wet-mixing and spray-drying the raw materials of the lithium-nickel-cobalt-aluminum composite oxide by the production method of the present invention, the lithium- has a particle diameter of 10 to 20 ⁇ m and a tap density of 2.5 g / cc to 2.6 g / cc.
  • the nickel-cobalt-aluminum composite oxide can be stably produced.
  • FIG. 1 shows SEM photographs of the nickel-cobalt-aluminum composite oxide precursors prepared in Example 1, Comparative Example 1, and Comparative Example 2 of the present invention.
  • FIG. 2 is a SEM photograph of a lithium-nickel-cobalt-aluminum composite oxide prepared by reacting and baking a nickel-cobalt-aluminum composite oxide precursor prepared in Example 1, Comparative Example 1 and Comparative Example 2 with a lithium compound. The result of the measurement is shown.
  • FIG. 4 and 5 show the results of high rate and life characteristics experiments of the battery using the positive electrode active materials of Example 1 and Comparative Examples 1 and 2.
  • FIG. 4 and 5 show the results of high rate and life characteristics experiments of the battery using the positive electrode active materials of Example 1 and Comparative Examples 1 and 2.
  • 6 to 8 show the rate characteristics obtained by charging and discharging the battery using the positive electrode active material of Example 1, Comparative Examples 1, 2 while changing the discharge current in the voltage range of 2.8-4.4V.
  • Nickel hydroxide as a nickel compound, cobalt hydroxide as a cobalt compound, and aluminum hydroxide as an aluminum compound were mixed so that solid / liquid ratio was 4: 6 in distilled water.
  • the particle size (D50) of the pulverized particles was less than 0.3 ⁇ m, the viscosity was 500cp or less.
  • Zirconia bead of 0.65mm diameter was used for the wet mill.
  • Completed pulverized mixed slurry is generated at a pressure of 4.0 bar in a pneumatic atomizer-type spraying device in a lab spray dryer (Ein system, Input temp .: 270 ⁇ 300 °C, Output temp .: 100-120 °C).
  • Spherical positive electrode active material precursor particles 13 ⁇ m, Tap 1.3g / ml, water content less than 1%) was produced.
  • the cathode active material precursor mixed with lithium was put in a crucible and heated to a temperature of 700 to 1000 ° C. at a rate of 1 to 5 ° C./min, and then calcined for 10 to 25 hours in an atmosphere of oxygen 2 L / min.
  • the particle size (secondary particle) of the positive electrode active material produced was 13 ⁇ m, and the tap density was 2.5 g / cm. 2 , BET 0.3m 2 / g, water was 300 ppm.
  • Example 2 The same procedure as in Example 1 was carried out, and the pressure was increased to 2.0 bar pressure in the nozzle type two-fluid nozzle type spraying device, and only the size of the secondary particles was 7 ⁇ m (Tap: 1.1 g / ml, water content less than 1%). Phosphorus nickel-cobalt-aluminum composite oxide precursor was prepared.
  • the cathode active material precursor mixed with lithium was put in a crucible, heated to a temperature of 700 to 1000 ° C. at a rate of 2 ° C./min, and then calcined in an atmosphere of 2 L / min of oxygen for 10 to 25 hours.
  • the size of the secondary particles of the positive electrode active material is 7 ⁇ m, tap density is 2.3g / cm 2 , BET 0.7 m 2 / g, moisture was less than 300ppm.
  • a nickel-cobalt-aluminum composite oxide precursor having a particle size of 7 ⁇ m (Tap: 1.6 g / ml, water content of 1% or less) was prepared by coprecipitation of a nickel compound, cobalt compound, and aluminum compound in the presence of ammonia and a basic compound. .
  • the positive electrode active material precursor mixed with lithium was put in a crucible, heated to a temperature of 700 to 1000 ° C. at a rate of 2 / min, and then calcined in an atmosphere of 2 L / min of oxygen for 10 to 25 hours.
  • the particle size (secondary particle) of the positive electrode active material produced was 7 ⁇ m, and the tap density was 2.3 g / cm. 2 , BET 0.8m 2 / g, 300ppm or less.
  • Example 1 The nickel-cobalt-aluminum composite oxide precursors prepared in Example 1, Comparative Example 1, and Comparative Example 2 were measured in SEM, and are shown in FIG. 1. It can be seen that the precursors of Example 1 and Comparative Example 1 prepared by spray drying are more spherical than the precursor of Comparative Example 2 prepared by coprecipitation in FIG. 1.
  • Example 1 Each positive electrode active material prepared in Example 1, Comparative Examples 1 and 2, acetylene black as a conductive agent, and polyvinylidene fluoride (PVdF) as a binder were mixed in a weight ratio of 94: 3: 3 to prepare a slurry for the positive electrode.
  • a slurry for the positive electrode Prepared.
  • the slurry for the positive electrode was uniformly coated on a 20 ⁇ m thick aluminum foil, dried at 110 ° C., and rolled by roll press. The rolled formed product was cut out to 16 ⁇ and dried under reduced pressure at 120 ° C. for 24 hours to prepare a positive electrode.
  • Lithium metal was used as the cathode of 1.1t, and a porous polyethylene membrane (Celgard 2300, manufactured by Celgard ELC) having a thickness of 25 ⁇ m was used as a separator, and ethylene carbonate and dimethyl carbonate were mixed in a volume ratio of 1: 1.
  • a test cell having a coin cell (R2016) structure was prepared using a solution obtained by adding 1 M LiPF6 solution to the mixed solvent as an electrolyte.
  • An electrochemical analyzer (TOSCAT 3100, manufactured by Toyo Co., Ltd.) was used to evaluate the electrochemical characteristics of the test cells made of the cathode active materials of Example 1 and Comparative Examples 1 and 2. The results are shown in FIGS. 4 and 5.
  • Example 1 prepared by spray drying after wet grinding and having a particle size of 13 ⁇ m is Comparative Example 1 and coprecipitation prepared by spray drying after wet grinding and having a particle size of 7 ⁇ m.
  • Comparative Example 2 prepared by the reaction and having a particle size of 7 ⁇ m the efficiency of the lifespan is improved by 10% or more.
  • the lithium- When wet-mixing and spray-drying the raw materials of the lithium-nickel-cobalt-aluminum composite oxide by the production method of the present invention, the lithium- has a particle diameter of 10 to 20 ⁇ m and a tap density of 2.5 g / cc to 2.6 g / cc.
  • the nickel-cobalt-aluminum composite oxide can be stably produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

본 발명은 리튬-니켈-코발트-알루미늄계 복합 산화물의 제조 방법, 이에 의하여 제조된 리튬-니켈-코발트-알루미늄계 복합 산화물 및 이를 포함하는 리튬 이차 전지에 관한 것이다.

Description

리튬-니켈-코발트-알루미늄 복합 산화물의 제조 방법, 이에 의하여 제조된 리튬-니켈-코발트-알루미늄 복합 산화물 및 이를 포함하는 리튬 이차 전지
본 발명은 리튬-니켈-코발트-알루미늄 복합 산화물의 제조 방법, 이에 의하여 제조된 리튬-니켈-코발트-알루미늄 복합 산화물 및 이를 포함하는 리튬 이차 전지에 관한 것이다.
최근에 가정용 전자기기에 있어서 휴대화가 급속히 진행함에 따라 노트북 PC, PDA, 휴대전화, 비디오카메라 등과 같은 소형 전자기기의 전원으로서 리튬이온 이차전지가 이미 실용화되고 있다.
이러한 리튬이차전지의 양극 활성 물질로 사용되는 대표적인 물질은 리튬코발트산화물(LiCoO2)이며, 그밖에 대체 물질로 층상구조의 리튬니켈산화물(LiNiO2), 리튬망간산화물(LiMnO2), 혹은 리튬니켈코발트망간산화물(LiNi1-x-yCoxMnyO2), spinel 구조의 리튬망간산화물(LiMn2O4), olivine 구조의 리튬철인산화물(LiFePO4) 등이 활발히 연구되고 있다. 이중 리튬 니켈 코발트 알루미늄 화합물의 경우 고용량, 전자 전도성, 사이클 특성 향상 및 대전류 성능 등 모든 면에서 우수한 전기화학적 활성을 나타내고 있다.
상기 리튬 니켈 코발트 알루미늄 화합물의 합성방법으로는 원료 화합물을 고상 혼합하고 700 - 1000℃ 에서 소성후 볼밀 분쇄하는 방법이 사용되었다. 이는 고상법이 대체로 원료물질로 금속의 산화물이나 수산화물, 탄산화물 등 저가의 원료 물질을 사용하고, 대량생산에 적합하며 사이클 성능이 대체로 우수한 공정이기 때문이다.
하지만 이 방법은 상기 합성 과정에서 알 수 있듯이, 원료 물질의 고상 반응을 이용하여야 하기 때문에 합성 온도가 높아야 하고, 원료물질간 확산거리가 멀기 때문에 열처리 시간 또한 길어지게 된다. 더욱이 합성 과정동안 균질성을 맞추기 위하여 여러 차례의 열처리/분쇄 과정을 거쳐야 한다.
이러한 고상법의 문제점을 해결하기 위하여, 저온에서 합성 가능하거나 원료 물질들의 액상 반응을 이용하거나 혹은 액상으로부터 균질한 전구체 물질을 제조하여 이를 열처리하여 리튬금속산화물을 합성하는 방법 등 다양한 합성 공정들이 연구되고 있다. 대표적으로 졸겔법(sol-gel method), 공침법(co-precipitation method), 수열법(hydrothermal synthesis), 이온교환법(ion exchange reaction under hydrothermal condition), 기계적 합금법(mechanical alloying), 초음파 분무 열분해법(ultrasonic spray pyrolysis), 리플럭스반응법(reflux reaction) 등이 연구되고 있다.
그러나, 이러한 방법들은 대부분은 종래의 고상법보다 대부분 원료 물질이 고가이거나 공정 조건이 까다로워 합성 방법이 난이하고 결국 이는 비용증가와 관련된다. 이러한 특징들로 인하여 액상제조법은 취급이 난이하고 생산속도가 낮아 대량 생산에는 부적합한 특징을 가지고 있다.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로서, 입자의 크기가 10㎛ 이상인 리튬 니켈 코발트 알루미늄 화합물을 제조하기 위한 새로운 제조방법을 제공하는 것을 목적으로 한다.
본 발명은 또한, 본 발명의 제조 방법에 의하여 제조된 입자의 크기가 10㎛ 이상인 리튬 니켈 코발트 알루미늄 화합물 및 이를 포함하는 리튬 이차 전지를 제공하는 것을 목적으로 한다.
본 발명은 상기와 같은 과제를 해결하기 위하여
i)용매에 니켈 화합물, 코발트 화합물, 알루미늄 화합물을 양론비로 혼합하고 분산시키는 단계;
ii)상기 i)의 혼합물을 약 0.3㎛ 미만의 평균입자 직경을 갖는 입자를 함유할 때까지 습식 분쇄하여 슬러리를 제조하는 단계;
iii)상기 ii)의 슬러리를 분무건조하는 단계:
iv)상기 iii)의 분무 건조된 슬러리에 리튬 화합물을 혼합하는 단계; 및
v)상기 iv)의 혼합물을 소성하는 단계로 구성되는 것인 LiaNibCocAldO2-e (0.96≤a≤1.05, 0≤b≤1, 0≤c≤0.2 ,0≤d≤0.1, b+c+d=1. 0≤e≤0.5) 로 표시되는 리튬-니켈-코발트-알루미늄 복합 산화물의 제조 방법을 제공한다.
본 발명에 있어서, 상기 i) 단계의 알루미늄 화합물은 알루민산 탄산 나트륨, 알루민산 알칼리, 질산 알루미늄 및 수산화 알루미늄으로 이루어진 그룹에서 선택되는 1개 또는 복수개인 것을 특징으로 특징으로 한다.
본 발명에 있어서, 상기 (ii) 단계의 습식 분쇄는 3000 내지 4000 rpm의 교반 속도에서, 30 내지 60분간 교반하는 것을 특징으로 한다.
본 발명에서는 원료의 혼합시 분쇄가 이루어져 있는 것이 바람직하다. 분쇄의 정도로서는, 분쇄 후의 원료 입자의 입자 직경이 지표가 되지만, 평균 입자 직경 (메디안 직경) 으로서 통상 0.3㎛ 이하로 한다. 분쇄 후의 원료 입자의 평균 입자 직경이 지나치게 크면, 분무 건조시 반응성이 저하되고, 조성이 균일화되기 어려워진다. 단, 필요 이상으로 소립자화하는 것은, 분쇄의 비용 상승으로 연결되어 바람직하지 않다. 이와 같은 분쇄 정도를 실현하기 위한 수단으로서는 특별히 한정되지 않지만, 습식 분쇄법이 바람직하며, 지르코늄 입자를 혼합하는 밀링 방법이 바람직하다.
본 발명에 있어서, 상기 iii)단계에서 분무 건조법으로 입자를 제조하는 경우, 그 입자 직경은 분무 형식, 가압 기체류 공급 속도, 슬러리 공급 속도, 건조 온도 등을 적절히 선정함으로써 제어할 수 있다.
구체적으로 본 발명에 있어서, 상기 iii)단계의 분무 건조시 분위기 온도가 160~220℃ 인 것을 특징으로 한다. 바람직하게는 180℃ 이하의 온도에서 실시하는 것이 바람직하다. 분무 건조시 온도가 지나치게 높으면 얻어진 조립 입자가 중공 구조가 많아져서, 오히려 입자의 탭밀도가 저하될 우려가 있다. 한편, 분무 건조시 온도가 지나치게 낮으면 입자의 출구 부분에서의 수분 결로에 의한 입자 고착·폐색 등의 문제가 발생할 가능성이 있다.
본 발명에 있어서, 상기 iii)단계의 분무 건조시 상기 분무 건조의 분무압력이 1~5 bar 인 것을 특징으로 한다.
분무 건조에 의해 얻어지는 입자는 비표면적이 작으면, 다음 공정인 리튬 화합물과의 소성 반응시에, 리튬 화합물과의 반응성이 저하되기 때문에 상기와 같이 분무 건조 전에 출발 원료를 분쇄하는 등의 수단에 의해 가능한 표면적을 크게 증가시키는 것이 바람직하다.
본 발명에 있어서, 상기 iv)단계에서의 리튬 화합물이 산화 리튬, 수산화 리튬, 탄산 리튬, 리튬의 오르토실리케이트, 메타실리케이트 또는 폴리실리케이트, 황산 리튬, 옥살산(oxalate) 리튬, 아세트산 리튬, 또는 이것들의 혼합물로 구성되는 그룹에서 선택되는 것을 특징으로 한다.
본 발명에 있어서, 상기 (v)단계의 열처리는 1℃/min 내지 5℃/min의 승온 속도로, 700 내지 1000℃의 온도로 승온 후, 10 내지 25시간 동안, 1 내지 10 L/min의 속도로 공기를 주입하는 조건 하에서 수행하는 것을 특징으로 한다. 1125 ℃이하이다. 소성 온도가 낮으면 구조가 다른 여러 가지 물질이 혼재하게 되고, 또 결정 구조가 발달하지 않아 격자 변형이 증대된다. 또 비표면적이 지나치게 커진다. 반대로 소성 온도가 지나치게 높으면 일차 입자가 과도하게 성장하고, 입자 간의 소결이 지나치게 진행되어 비표면적이 지나치게 작아진다.
승온 공정은 통상 1℃/분 이상 5℃/분 이하의 승온 속도로 온도를 승온시킨다. 이 승온 속도가 지나치게 느려도 시간이 걸려 공업적으로 불리하지만, 지나치게 빨라도 소성노 안의 온도가 설정 온도에 도달하지 않게 될 염려가 있다. 승온 속도는, 바람직하게는 1℃/분 이상, 5℃/분 이하이다.
최고 온도 유지 공정에서의 유지 시간은, 온도에 따라서도 상이하지만, 통상 전술한 온도 범위이면 10 시간 이상, 25 시간 이하이다. 소성 시간이 지나치게 짧으면 결정성이 양호한 리튬-니켈-코발트-알루미늄 복합 산화물 입자를 얻기 어려워지고, 지나치게 길면, 그 후 해쇄가 필요해지거나, 해쇄가 곤란해지기 때문에 실용적이지 않다.
본 발명은 상기와 같은 본 발명의 제조 방법에 의하여 제조되고, LiaNibCocAldO2-e (0.96≤a≤1.05, 0≤b≤1, 0≤c≤0.2 ,0≤d≤0.1, b+c+d=1. 0≤e≤0.5) 로 표시되는 리튬-니켈-코발트-알루미늄 복합 산화물을 제공한다.
본 발명의 리튬-니켈-코발트-알루미늄 복합 산화물은 결정 이차 입자가 구상의 형체를 유지하고 있고, 분무 건조법에 의해 제조되어 결정 입자 간의 세공 용량이 크고 공극이 효율적으로 형성되기 때문에 이것을 이용하여 전지를 제조한 경우에 정극 활물질 표면과 전해액의 접촉 면적을 증가시킬 수 있으며, 표면 상태가 출력 특성을 향상시켜, 정극 활물질로서 우수한 특성 밸런스를 나타낼 수 있다.
본 발명의 상기 리튬-니켈-코발트-알루미늄 복합 산화물은 입경이 10 내지 20㎛ 인 것을 특징으로 한다. 본 발명에 있어서, LiaNibCocAldO2-e (0.96≤a≤1.05, 0≤b≤1, 0≤c≤0.2 ,0≤d≤0.1, b+c+d=1. 0≤e≤0.5) 로 표시되는 리튬-니켈-코발트-알루미늄 복합 산화물을 상기에서와 같이 원료 물질의 고상 혼합후 분무건조에 의하여 제조함으로써, 충분히 결정성이 높으면서도 입자의 크기가 10 내지 20㎛ 로 크게 성장시킬 수 있게 된다.
상기 리튬-니켈-코발트-알루미늄 복합 산화물의 1차 입자가 모여서 만들어진 입자 직경이 상기 20㎛ 를 초과하면 입자의 충전성에 악영향을 미치거나, 비표면적이 저하되어 레이트 특성이나 출력 특성 등의 전지 성능이 저하될 가능성이 있다. 또한, 입자 직경이 상기 10㎛ 미만이 되면 결정이 미발달되기 때문에 충방전의 가역성이 떨어질 수 있다.
본 발명에 있어서, 본 발명의 상기 리튬-니켈-코발트-알루미늄 복합 산화물은 탭밀도가 2.5 g/cc 내지 2.6 g/cc 인 것을 특징으로 한다. 탭밀도가 기존 액상 반응에 의하여 제조된 리튬-니켈-코발트-알루미늄 복합 산화물보다 증가되며, 이에 따라 본 발명의 상기 리튬-니켈-코발트-알루미늄 복합 산화물은 분체 충전성이나 전극 밀도 향상에 있어서 바람직하다. 그러나, 탭밀도가 상기 2.6 g/cc 이상이 되면 비표면적이 낮아져서 전지 성능이 저하될 가능성이 있고, 탭밀도가 상기 2.5 g/cc 이하가 되면 분체 충전성이나 전극 제조시 악영향을 미칠 가능성이 있다.
본 발명은 또한, 리튬을 흡장방출할 수 있는 음극, 리튬염을 함유하는 비수전해질 및 본 발명의 제조 방법에 의하여 제조된 양극을 구비한 것을 특징으로 하는 리튬 이차전지를 제공한다.
본 발명의 제조 방법에 의해 리튬-니켈-코발트-알루미늄 복합 산화물의 원료 물질들을 습식 혼합하고 분무 건조하는 경우 입경이 10 내지 20㎛ 이고, 탭밀도가 2.5 g/cc 내지 2.6 g/cc 인 리튬-니켈-코발트-알루미늄 복합 산화물을 안정적으로 제조할 수 있게 된다.
도 1은 본 발명의 실시예 1, 비교예 1 및 비교예 2 에서 제조된 니켈-코발트-알루미늄 복합 산화물 전구체를 SEM 사진을 측정한 결과를 나타낸다.
도 2는 본 발명의 실시예 1, 비교예 1 및 비교예 2 에서 제조된 니켈-코발트-알루미늄 복합 산화물 전구체를 리튬화합물과 반응시키고 소성하여 제조된 리튬-니켈-코발트-알루미늄 복합 산화물의 SEM 사진을 측정한 결과를 나타낸다.
도 3은 본 발명의 실시예 1 및 비교예 1, 2의 리튬-니켈-코발트-알루미늄 복합 산화물의 XRD 를 측정한 결과를 나타낸다.
도 4, 도 5는 실시예 1, 및 비교예 1, 2의 양극 활물질을 사용하는 전지의 고율 특성 및 수명 특성 실험 결과를 도시하였다.
도 6 내지 도 8은 실시예 1, 비교예 1, 2의 양극 활물질을 사용하는 전지를 2.8-4.4V 전압 영역에서 방전 전류를 변화시키면서 충방전 실험하여 얻은 율 특성을 나타내었다.
이하, 실시예에 의하여 본 발명을 상세히 설명한다. 그러나, 본 발명이 이하 실시예에 의하여 한정되는 것은 아니다.
<실시예 1> 니켈-코발트-알루미늄 복합 산화물의 제조
니켈 화합물로서 수산화 니켈, 코발트 화합물로서 수산화 코발트, 알루미늄 화합물로서 수산화 알루미늄을 양론 혼합후 증류수에 고체/액체 비율이 4:6이 되도록 넣어주었다. 교반기에서 400rpm으로 10분간 교반 후 습식분쇄장치(상표명:Netzsch ,Mincer)에서 3800rpm으로 40분간 분쇄시켜 분쇄된 입자의 입경(D50)이 0.3㎛이하, 점도는 500cp이하가 되도록 하였다. 습식분쇄장치에는 0.65mm의 직경의 Zirconia bead를 사용하였다.
분쇄를 완료한 혼합슬러리를 Lab용 분무 건조장치(아인시스템, Input temp.: 270~300℃, Output temp. : 100-120℃)에서 공압식 Atomizer타입의 분무장치에 4.0 bar의 압력으로 액적을 발생시켜 구형의 양극활물질 전구체입자(13㎛, Tap 1.3g/ml, 함수율 1%이하)를 생성하였다.
이후 상기 리튬을 혼합한 양극활물질 전구체를 도가니에 일정량을 담아 1~5℃/min의 속도로 700 내지 1000℃의 온도로 승온 후, 10내지 25시간 동안을 산소 2L/min의 분위기에서 소성하였다. 만들어진 양극활물질의 입자(2차입자)의 크기가 13㎛ , 탭밀도는 2.5g/cm2, BET 0.3m2/g, 수분 300ppm 였다.
<비교예 1>
상기 실시예 1과 과정은 동일하게 하고, 노즐식 2류체 노즐타입의 분무 장치에 2.0bar의 압력으로 상승시켜, 2차 입자의 크기만 7㎛ (Tap:1.1g/ml, 함수율 1%이하) 인 니켈-코발트-알루미늄 복합 산화물 전구체를 제조하였다.
이후 상기 리튬을 혼합한 양극활물질 전구체를 도가니에 일정량을 담아 2℃/min의 속도로 700 내지 1000℃의 온도로 승온 후, 10 내지 25시간 동안 산소 2 L/min의 분위기에서 소성하였다. 만들어진 양극활물질의 2차 입자의 크기가 7㎛ , 탭밀도는 2.3g/cm2, BET 0.7m2/g, 수분 300ppm이하 였다.
<비교예 2>
니켈 화합물, 코발트 화합물, 알루미늄 화합물을 암모니아와 염기성 화합물 존재하에 공침 반응에 의하여 입자의 크기가 7㎛ (Tap:1.6g/ml, 함수율 1%이하) 인 니켈-코발트-알루미늄 복합 산화물 전구체를 제조하였다.
이후 상기 리튬을 혼합한 양극활물질 전구체를 도가니에 일정량을 담아 2/min의 속도로 속도로 700 내지 1000℃의 온도로 승온 후, 10내지 25시간 동안 산소 2L/min의 분위기에서 소성하였다. 만들어진 양극활물질의 입자(2차입자)의 크기가 7㎛ , 탭밀도는 2.3g/cm2, BET 0.8m2/g, 300ppm이하 였다.
<실험예 1> SEM 사진 측정
상기 실시예 1, 비교예 1 및 비교예 2 에서 제조된 니켈-코발트-알루미늄 복합 산화물 전구체를 SEM 사진을 측정하여 도 1에 나타내었다. 도 1에서 공침법으로 제조된 비교예 2의 전구체의 경우보다 분무 건조에 의하여 제조된 실시예 1, 비교예 1의 전구체가 좀더 구형을 나타내는 것을 확인할 수 있다.
상기 실시예 1, 비교예 1 및 비교예 2 에서 제조된 니켈-코발트-알루미늄 복합 산화물 전구체를 리튬화합물과 반응시키고 소성하여 제조된 리튬-니켈-코발트-알루미늄 복합 산화물의 SEM 사진을 측정하여 도 2에 나타내었다.
<실험예 2> 리튬-니켈-코발트-알루미늄 복합 산화물의 XRD 결과
상기 실시예 1 및 비교예 1, 2의 리튬-니켈-코발트-알루미늄 복합 산화물의 XRD 를 측정하여 도 3에 나타내었다.
도 3에서 보는 바와 같이 분무건조에 의한 실시예 1, 비교예 1, 공침법으로 제조된 비교예 2의 경우 모두 같은 층상 구조를 나타냄을 확인할 수 있다.
<제조예> 전지의 제조
상기 실시예 1, 비교예 1, 2 에서 제조된 각각의 양극 활물질, 도전제로 아세틸렌블랙, 및 바인더로 폴리비닐리덴 플루오라이드(PVdF)를 94 : 3: 3 의 중량비가 되도록 혼합하여 양극용 슬러리를 제조하였다. 상기 양극용 슬러리를 20㎛ 두께의 알루미늄 호일에 균일하게 도포하고, 110℃에서 건조한 후 롤프레스에 의해 압연하였다. 상기 압연하여 얻은 형성물을 16π로 절취하고, 120℃에서 24시간 감압 건조하여 양극을 제조하였다.
음극으로는 리튬메탈을 1.1t를 사용했으며, 세퍼레이터로는 두께가 25㎛인 다공성 폴리에틸렌막(Celgard 2300 , 셀가르드 엘엘씨 제)을 사용하고, 에틸렌 카보네이트와 디메틸 카보네이트가 1 : 1의 부피비로 혼합된 혼합용매에 1M의 LiPF6 용액을 첨가한 용액을 전해액으로 하여 코인셀(R2016) 구조의 테스트 셀을 제조하였다.
<실험예 3> 고율 특성 및 수명 특성
상기 실시예 1, 비교예 1, 2의 양극활물질로 제조된 테스트셀의 전기화학적 특성을 평가하기 위하여 전기화학 분석장치(TOSCAT 3100, Toyo 사 제품)을 이용하였으며 전지의 고율 특성 및 수명 특성 실험을 하여 그 결과를 도 4 및 도 5 에 도시하였다.
도 4 및 도 5 에서 보는 바와 같이 습식 분쇄 후 분무 건조에 의하여 제조되고 입자의 크기가 13㎛인 실시예 1은 습식 분쇄 후 분무 건조에 의하여 제조되고 입자의 크기가 7㎛인 비교예 1 및 공침 반응에 의하여 제조되고 입자의 크기가 7㎛ 인 비교예 2 에 비하여 수명 특성이 10% 이상 개선된 정도의 효율을 보이고 있다.
<실험예 4> 율 특성
실시예 1, 비교예 1 및 비교예 2의 양극 활물질을 사용하는 전지를 2.8-4.4V 전압 영역에서 방전전류를 변화시키면서 충방전 실험하므로써 얻은 율 특성을
도 6 내지 도 8에 나타내었다. 실시예 1의 양극활물질을 사용하는 전지에서 율 특성이 향상 되었으며, 특히 고율 특성이 크게 향상되는 것을 확인할 수 있다.
본 발명의 제조 방법에 의해 리튬-니켈-코발트-알루미늄 복합 산화물의 원료 물질들을 습식 혼합하고 분무 건조하는 경우 입경이 10 내지 20㎛ 이고, 탭밀도가 2.5 g/cc 내지 2.6 g/cc 인 리튬-니켈-코발트-알루미늄 복합 산화물을 안정적으로 제조할 수 있게 된다.

Claims (11)

  1. i)용매에 니켈 화합물, 코발트 화합물, 알루미늄 화합물을 양론비로 혼합하고 분산시키는 단계;
    ii)상기 i)의 혼합물을 약 0.3㎛ 미만의 평균입자 직경을 갖는 입자를 함유할 때까지 습식 분쇄하여 슬러리를 제조하는 단계;
    iii)상기 ii)의 슬러리를 분무건조하는 단계:
    iv)상기 iii)의 분무 건조된 슬러리에 리튬 화합물을 혼합하는 단계; 및
    v)상기 iv)의 혼합물을 소성하는 단계로 구성되는 것인 LiaNibCocAldO2-e (0.96≤a≤1.05, 0≤b≤1, 0≤c≤0.2 ,0≤d≤0.1, b+c+d=1. 0≤e≤0.5) 로 표시되는 리튬-니켈-코발트-알루미늄 복합 산화물의 제조 방법.
  2. 제 1 항에 있어서,
    상기 i) 단계의 알루미늄 화합물은 알루민산 탄산 나트륨, 알루민산 알칼리, 질산 알루미늄 및 수산화 알루미늄으로 이루어진 그룹에서 선택되는 1개 또는 복수개인 것을 특징으로 하는 리튬-니켈-코발트-알루미늄 복합 산화물의 제조 방법.
  3. 제 1 항에 있어서,
    상기 (ii) 단계의 습식 분쇄는 3000 내지 4000 rpm의 교반 속도에서, 30 내지 60분간 교반하는 것을 특징으로 하는 리튬-니켈-코발트-알루미늄 복합 산화물의 제조 방법.
  4. 제 1 항에 있어서,
    상기 iii)단계의 분무 건조시 분위기 온도가 160~220℃ 인 것을 특징으로 하는 리튬-니켈-코발트-알루미늄 복합 산화물의 제조 방법.
  5. 제 1 항에 있어서,
    상기 iii)단계의 분무 건조시 상기 분무 건조의 분무 압력이 1~5 bar 인 것을 특징으로 하는 리튬-니켈-코발트-알루미늄 복합 산화물의 제조 방법.
  6. 제 1 항에 있어서,
    상기 iv)단계에서의 리튬 화합물이 산화 리튬, 수산화 리튬, 탄산 리튬, 리튬의 오르토실리케이트, 메타실리케이트 또는 폴리실리케이트, 황산 리튬, 옥살산(oxalate) 리튬, 아세트산 리튬, 또는 이것들의 혼합물로 구성되는 그룹에서 선택되는 것을 특징으로 하는 리튬-니켈-코발트-알루미늄 복합 산화물의 제조 방법.
  7. 제 1항에 있어서,
    상기 (iv)단계의 열처리는 1℃/min 내지 5℃/min의 승온 속도로, 700 내지 1000℃의 온도로 승온 후, 10 내지 25시간 동안, 1 내지 10 L/min의 속도로 산소, 공기, 산소와 공기의 혼합 가스를 주입하는 조건 하에서 수행하는 것인 리튬-니켈-코발트-알루미늄 복합 산화물의 제조 방법.
  8. 제 1 항 내지 제 7 항 중 어느 하나의 항에 의한 제조 방법에 의하여 제조되고, LiaNibCocAldO2-e (0.96≤a≤1.05, 0≤b≤1, 0≤c≤0.2 ,0≤d≤0.1, b+c+d=1. 0≤e≤0.5) 로 표시되는 리튬-니켈-코발트-알루미늄 복합 산화물.
  9. 제 8 항에 있어서,
    상기 리튬-니켈-코발트-알루미늄 복합 산화물은 입경이 10 내지 20㎛ 인 것을 특징으로 하는 리튬-니켈-코발트-알루미늄 복합 산화물.
  10. 제 8 항에 있어서,
    상기 리튬-니켈-코발트-알루미늄 복합 산화물은 탭밀도가 2.5 g/cc 내지 2.6 g/cc 인 것을 특징으로 하는 리튬-니켈-코발트-알루미늄 복합 산화물.
  11. 리튬을 흡장방출할 수 있는 음극, 리튬염을 함유하는 비수전해질 및 제 8 항에 기재된 양극을 구비한 것을 특징으로 하는 리튬 이차전지.
PCT/KR2012/010159 2011-11-28 2012-11-28 리튬-니켈-코발트-알루미늄 복합 산화물의 제조 방법, 이에 의하여 제조된 리튬-니켈-코발트-알루미늄 복합 산화물 및 이를 포함하는 리튬 이차 전지 WO2013081369A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0125324 2011-11-28
KR1020110125324A KR101338371B1 (ko) 2011-11-28 2011-11-28 리튬-니켈-코발트-알루미늄 복합 산화물의 제조 방법, 이에 의하여 제조된 리튬-니켈-코발트-알루미늄 복합 산화물 및 이를 포함하는 리튬 이차 전지

Publications (2)

Publication Number Publication Date
WO2013081369A2 true WO2013081369A2 (ko) 2013-06-06
WO2013081369A3 WO2013081369A3 (ko) 2013-07-25

Family

ID=48536205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/010159 WO2013081369A2 (ko) 2011-11-28 2012-11-28 리튬-니켈-코발트-알루미늄 복합 산화물의 제조 방법, 이에 의하여 제조된 리튬-니켈-코발트-알루미늄 복합 산화물 및 이를 포함하는 리튬 이차 전지

Country Status (2)

Country Link
KR (1) KR101338371B1 (ko)
WO (1) WO2013081369A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115261988A (zh) * 2021-07-19 2022-11-01 上海华谊(集团)公司 单晶锂镍钴铝氧化物及其用途

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101510179B1 (ko) * 2012-04-26 2015-04-08 주식회사 포스코이에스엠 리튬 망간 복합 산화물의 제조 방법, 그 제조 방법에 의하여 제조된 리튬 망간 복합 산화물, 및 이를 포함하는 리튬 이온 이차 전지
KR101868663B1 (ko) * 2014-09-17 2018-06-18 주식회사 엘지화학 리튬 이차 전지용 양극활물질 및 이를 포함하는 리튬 이차전지
WO2019132087A1 (ko) * 2017-12-29 2019-07-04 주식회사 엘 앤 에프 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
KR101911219B1 (ko) * 2018-07-05 2018-10-24 주식회사 포스코이에스엠 리튬 티탄 복합 산화물의 제조 방법, 이에 의해 제조된 리튬 티탄 복합 산화물, 및 이를 포함하는 리튬 이차 전지

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990034749A (ko) * 1997-10-30 1999-05-15 손욱 리튬 복합산화물, 그 제조방법 및 그것을 활물질로 하는 양극을 채용한 리튬 이온 이차전지
KR100277796B1 (ko) * 1998-02-10 2001-02-01 김순택 리튬 이차 전지용 양극 활물질 및 그 제조 방법
KR100495865B1 (ko) * 2000-08-11 2005-06-16 에스케이씨 주식회사 리튬 니켈 복합 산화물, 그 제조방법 및 그를 캐소드활물질로서 채용하고 있는 리튬 2차전지
KR101066185B1 (ko) * 2009-12-31 2011-09-20 주식회사 에코프로 리튬 복합 산화물 및 그 제조 방법
KR20110108566A (ko) * 2010-03-29 2011-10-06 주식회사 휘닉스소재 리튬 이온 이차 전지용 리튬 망간 복합 산화물의 제조 방법, 그 제조 방법에 의하여 제조된 리튬 이온 이차 전지용 리튬 망간 복합 산화물, 및 이를 포함하는 리튬 이온 이차 전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990034749A (ko) * 1997-10-30 1999-05-15 손욱 리튬 복합산화물, 그 제조방법 및 그것을 활물질로 하는 양극을 채용한 리튬 이온 이차전지
KR100277796B1 (ko) * 1998-02-10 2001-02-01 김순택 리튬 이차 전지용 양극 활물질 및 그 제조 방법
KR100495865B1 (ko) * 2000-08-11 2005-06-16 에스케이씨 주식회사 리튬 니켈 복합 산화물, 그 제조방법 및 그를 캐소드활물질로서 채용하고 있는 리튬 2차전지
KR101066185B1 (ko) * 2009-12-31 2011-09-20 주식회사 에코프로 리튬 복합 산화물 및 그 제조 방법
KR20110108566A (ko) * 2010-03-29 2011-10-06 주식회사 휘닉스소재 리튬 이온 이차 전지용 리튬 망간 복합 산화물의 제조 방법, 그 제조 방법에 의하여 제조된 리튬 이온 이차 전지용 리튬 망간 복합 산화물, 및 이를 포함하는 리튬 이온 이차 전지

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115261988A (zh) * 2021-07-19 2022-11-01 上海华谊(集团)公司 单晶锂镍钴铝氧化物及其用途

Also Published As

Publication number Publication date
KR20130059158A (ko) 2013-06-05
WO2013081369A3 (ko) 2013-07-25
KR101338371B1 (ko) 2014-01-10

Similar Documents

Publication Publication Date Title
JP6108249B2 (ja) 正極活物質、この製造方法、及びこれを含むリチウム二次電池
KR101746187B1 (ko) 리튬 이차 전지용 양극 활물질, 및 이를 포함하는 리튬 이차 전지
WO2016052820A1 (ko) 리튬 이차 전지용 양극활물질 및 이를 포함하는 리튬 이차 전지
KR101264333B1 (ko) 양극활물질, 이를 채용한 양극과 리튬전지 및 그 제조방법
Xiang et al. Effects of synthesis conditions on the structural and electrochemical properties of the Li-rich material Li [Li0. 2Ni0. 17Co0. 16Mn0. 47] O2 via the solid-state method
WO2016039511A1 (ko) 리튬 이차 전지용 양극활물질 및 이를 포함하는 리튬 이차 전지
KR20190065963A (ko) 리튬이차전지용 양극활물질, 그 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지
WO2018090956A1 (zh) 高电压锂电池正极材料、电池及制法和应用
KR101409191B1 (ko) 리튬이차전지용 양극 활물질의 제조방법
WO2013002457A1 (ko) 양극활물질, 상기 양극활물질을 포함하는 전극, 및 리튬 전기 화학 전지
WO2013081231A1 (ko) 이종 금속이 도핑된 리튬 티탄 복합 산화물의 제조 방법, 및 이에 의하여 제조된 이종 금속이 도핑된 리튬 티탄 복합 산화물
CN104078669B (zh) 一种多元正极材料的制备方法
CN101320807A (zh) 多元复合锂离子电池正极材料及其制备方法
WO2014104811A1 (ko) 리튬 이차전지용 양극활물질의 제조 방법 및 그에 의한 리튬 이차전지용 양극 활물질
KR20160083638A (ko) 리튬 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2013081369A2 (ko) 리튬-니켈-코발트-알루미늄 복합 산화물의 제조 방법, 이에 의하여 제조된 리튬-니켈-코발트-알루미늄 복합 산화물 및 이를 포함하는 리튬 이차 전지
CN103474647A (zh) 改性尖晶石型锰酸锂正极材料的制备方法
CN112768645A (zh) 正极活性物质的制造方法和锂离子电池的制造方法
KR20180111552A (ko) 금속이 코팅된 리튬 이차 전지용 양극활물질의 제조방법 및 이의 의하여 제조된 리튬 이차 전지용 양극활물질
CN107978744B (zh) 一种高容量锂二次电池用正极材料及其制备方法
KR20160002187A (ko) 2차 전지 양극활물질용 리튬-니켈 복합산화물 및 이의 제조 방법
JP7143611B2 (ja) 非水系電解質二次電池用正極活物質の製造方法、成形体、集合体、及び、非水系電解質二次電池の製造方法
WO2023205993A1 (zh) 尖晶石镍锰酸锂材料及其制备方法
CN113328071B (zh) 一种磷酸钒锂/碳电池正极材料及其制备方法
CN115312727A (zh) 一种双包覆的正极材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12853227

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 12853227

Country of ref document: EP

Kind code of ref document: A2