WO2013081021A2 - アルミニウム合金と銅合金との接合体及びその接合方法 - Google Patents
アルミニウム合金と銅合金との接合体及びその接合方法 Download PDFInfo
- Publication number
- WO2013081021A2 WO2013081021A2 PCT/JP2012/080779 JP2012080779W WO2013081021A2 WO 2013081021 A2 WO2013081021 A2 WO 2013081021A2 JP 2012080779 W JP2012080779 W JP 2012080779W WO 2013081021 A2 WO2013081021 A2 WO 2013081021A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aluminum alloy
- mass
- joining
- joined
- liquid phase
- Prior art date
Links
- 229910000881 Cu alloy Inorganic materials 0.000 title claims abstract description 45
- 238000000034 method Methods 0.000 title claims abstract description 45
- 229910052782 aluminium Inorganic materials 0.000 title abstract description 11
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title abstract description 11
- 239000004411 aluminium Substances 0.000 title abstract 3
- 229910000838 Al alloy Inorganic materials 0.000 claims abstract description 107
- 239000010949 copper Substances 0.000 claims abstract description 18
- 239000012535 impurity Substances 0.000 claims abstract description 3
- 238000005304 joining Methods 0.000 claims description 91
- 239000007791 liquid phase Substances 0.000 claims description 73
- 230000004907 flux Effects 0.000 claims description 25
- 239000012298 atmosphere Substances 0.000 claims description 12
- 230000001590 oxidative effect Effects 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 239000000463 material Substances 0.000 abstract description 21
- 229910052802 copper Inorganic materials 0.000 abstract description 7
- 239000000956 alloy Substances 0.000 description 43
- 238000010438 heat treatment Methods 0.000 description 30
- 238000012360 testing method Methods 0.000 description 28
- 238000005219 brazing Methods 0.000 description 15
- 229910045601 alloy Inorganic materials 0.000 description 14
- 238000004519 manufacturing process Methods 0.000 description 12
- 239000011159 matrix material Substances 0.000 description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- 230000008859 change Effects 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 230000005496 eutectics Effects 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 8
- 238000010587 phase diagram Methods 0.000 description 8
- 238000003466 welding Methods 0.000 description 8
- 239000013078 crystal Substances 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 238000005096 rolling process Methods 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 230000009471 action Effects 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 5
- 239000012299 nitrogen atmosphere Substances 0.000 description 5
- 239000007790 solid phase Substances 0.000 description 5
- 239000006104 solid solution Substances 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- XJHCXCQVJFPJIK-UHFFFAOYSA-M caesium fluoride Chemical compound [F-].[Cs+] XJHCXCQVJFPJIK-UHFFFAOYSA-M 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 229910000765 intermetallic Inorganic materials 0.000 description 4
- 239000000155 melt Substances 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 238000005057 refrigeration Methods 0.000 description 4
- 229910021364 Al-Si alloy Inorganic materials 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 3
- 239000012300 argon atmosphere Substances 0.000 description 3
- 229910052797 bismuth Inorganic materials 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 239000006023 eutectic alloy Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- 229910052712 strontium Inorganic materials 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052792 caesium Inorganic materials 0.000 description 2
- 238000005097 cold rolling Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 239000011856 silicon-based particle Substances 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 229910018125 Al-Si Inorganic materials 0.000 description 1
- 229910016569 AlF 3 Inorganic materials 0.000 description 1
- 229910018182 Al—Cu Inorganic materials 0.000 description 1
- 229910018473 Al—Mn—Si Inorganic materials 0.000 description 1
- 229910018520 Al—Si Inorganic materials 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910013647 LiCl—LiF Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- QQHSIRTYSFLSRM-UHFFFAOYSA-N alumanylidynechromium Chemical compound [Al].[Cr] QQHSIRTYSFLSRM-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 150000002222 fluorine compounds Chemical group 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 230000003381 solubilizing effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/28—Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
- B23K35/286—Al as the principal constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K31/00—Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
- B23K31/02—Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K20/00—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
- B23K20/22—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
- B23K20/233—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded without ferrous layer
- B23K20/2333—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded without ferrous layer one layer being aluminium, magnesium or beryllium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/001—Interlayers, transition pieces for metallurgical bonding of workpieces
- B23K35/002—Interlayers, transition pieces for metallurgical bonding of workpieces at least one of the workpieces being of light metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/001—Interlayers, transition pieces for metallurgical bonding of workpieces
- B23K35/007—Interlayers, transition pieces for metallurgical bonding of workpieces at least one of the workpieces being of copper or another noble metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/38—Selection of media, e.g. special atmospheres for surrounding the working area
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/017—Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of aluminium or an aluminium alloy, another layer being formed of an alloy based on a non ferrous metal other than aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/02—Alloys based on aluminium with silicon as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/12—Alloys based on aluminium with copper as the next major constituent
- C22C21/14—Alloys based on aluminium with copper as the next major constituent with silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/12—Alloys based on aluminium with copper as the next major constituent
- C22C21/16—Alloys based on aluminium with copper as the next major constituent with magnesium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/12—Alloys based on aluminium with copper as the next major constituent
- C22C21/18—Alloys based on aluminium with copper as the next major constituent with zinc
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/04—Alloys based on copper with zinc as the next major constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2101/00—Articles made by soldering, welding or cutting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/08—Non-ferrous metals or alloys
- B23K2103/10—Aluminium or alloys thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/08—Non-ferrous metals or alloys
- B23K2103/12—Copper or alloys thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/18—Dissimilar materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12736—Al-base component
- Y10T428/1275—Next to Group VIII or IB metal-base component
Definitions
- the present invention relates to a joined body in which both members to be joined are joined using an aluminum alloy as one member to be joined and a copper alloy as the other member to be joined, and a joining method thereof.
- the aluminum alloy includes pure aluminum
- the copper alloy includes pure copper.
- a joined body obtained by joining an aluminum alloy material and a copper alloy material is excellent in thermal conductivity and the like, it is used in a heat exchange device such as a finned tube heat exchanger or piping in a refrigeration circuit of a refrigeration air conditioner.
- Patent Document 1 one of the aluminum tube and the copper tube is rotated in a contacted state, one of them is rotated, the oxide film on the aluminum surface is mechanically removed by friction on the contact surface, and the joint portion is melted and softened by frictional heat. The rotation is rapidly stopped and bonding is performed.
- bonding is performed by sandwiching and heating an Al—Si brazing material between an aluminum fin and a copper plate in a state where nickel plating is applied to the copper side.
- Patent Document 3 an aluminum tube and a copper tube are brought into contact with each other in the vicinity of 550 to 660 ° C. to melt the bonding interface by a mechanism of generating a eutectic melt from solid phase diffusion, thereby performing bonding (eutectic welding). Is going.
- the present invention has good bondability and almost no deformation due to the flow of materials during bonding in a bonded body of an aluminum alloy material and a copper alloy material and its bonding method.
- An object of the present invention is to provide a joined body of an aluminum alloy material and a copper alloy material joined by a highly reliable new method and a joining method thereof.
- the present inventors pay attention to the metallographic characteristics of the aluminum alloy that is the member to be joined, and use the liquid phase generated when the aluminum alloy is heated for joining with the copper alloy material. A new joining method has been found and the present invention has been completed.
- the member to be bonded contains Cu: 3.0 mass% to 8.0 mass% (hereinafter simply referred to as “%”) and Si: 0.1% to 10%, and consists of an aluminum alloy composed of the balance Al and inevitable impurities.
- % 3.0 mass% to 8.0 mass%
- Si 0.1% to 10%
- the one member to be joined includes Mg: 0.05% to 2.0%, Ni: 0.05% to 2.0%, and Zn: 0.05. It is characterized by being made of an aluminum alloy further containing one or more of% to 6.0%.
- the aluminum alloy that is the one member to be joined is Mg: 0.5% or less
- the flux is between the joining members. Bonding is performed in a non-oxidizing atmosphere in a coated state.
- the aluminum alloy that is the one member to be joined is Mg: 0.2% to 2.
- the ratio of the mass of the liquid phase generated in the aluminum alloy to the total mass of the aluminum alloy that is one of the members to be joined is 5% or more and 35% or less It is characterized by bonding in a sex atmosphere.
- the ratio of the mass of the liquid phase generated in the aluminum alloy to the total mass of the aluminum alloy is 5%.
- the above time is 30 seconds or more and 3600 seconds or less.
- the maximum stress generated in the aluminum alloy as one member to be joined is P (kPa), and the aluminum relative to the total mass of the aluminum alloy
- the ratio of the mass of the liquid phase produced in the alloy is V (%)
- the joining is performed under the condition satisfying P ⁇ 460-12V.
- the joining method of the aluminum alloy and the copper alloy according to the present invention is performed by utilizing a slight liquid phase generated inside the aluminum alloy to be joined.
- joining of an aluminum alloy and a copper alloy is made possible by highly reliable metal bonding.
- the member to be joined itself does not flow greatly due to melting and does not use a solder material, a brazing material, a solubilizing material, or the like, a dimensional change due to joining is small, and a shape change hardly occurs.
- good joining can be performed without clogging the flow paths due to inflow or deformation of the liquid phase.
- the present invention is similar to the diffusion bonding in that the deformation due to bonding is small and simultaneous multi-point bonding is possible. However, compared to the diffusion bonding, no pressure is required, and the time required for bonding can be shortened. Even if it is joining of the aluminum alloy material which does not contain, there exists an advantage that the special process for the cleaning process of a joint surface is not required.
- FIG. 3 is a schematic diagram showing a phase diagram of an Al—Si alloy as a binary eutectic alloy. It is explanatory drawing which shows the production
- a predetermined amount of liquid phase generated during heating of an aluminum alloy that is one member to be joined is used for joining with a copper alloy that is the other member to be joined. Therefore, first, the formation mechanism of the liquid phase will be described using an Al—Si alloy which is a binary eutectic alloy.
- the joining using the liquid phase generated by the aluminum alloy is referred to as “seeding joining”.
- FIG. 1 schematically shows a phase diagram of an Al—Si alloy which is a typical binary eutectic alloy.
- an aluminum alloy having a Si concentration of c1 is heated, generation of a liquid phase starts at a temperature T1 near the eutectic temperature (solidus temperature) Te.
- T1 near the eutectic temperature (solidus temperature) Te.
- Te eutectic temperature
- FIG. 2A crystal precipitates are distributed in the matrix divided by the grain boundaries.
- FIG. 2B shows the crystal grain boundary with a large segregation of the crystal precipitate distribution melts to become a liquid phase.
- the periphery of the Si crystal precipitate particles and intermetallic compounds which are the main additive element components dispersed in the matrix of the aluminum alloy, melts into a spherical shape to form a liquid phase.
- this spherical liquid phase generated in the matrix is re-dissolved in the matrix with the passage of time and temperature due to the interfacial energy, and the grain boundary and the surface are diffused by the solid phase diffusion. Move to.
- FIG. 1 when the temperature rises to T2, the liquid phase amount increases from the state diagram.
- the seepage joining of the present invention utilizes a liquid phase generated by local melting inside the aluminum alloy. And it can implement
- the copper alloy material that is the other member to be joined in the present invention needs to be below the solidus temperature at the heating temperature. When the copper alloy material exceeds the solidus temperature, the copper alloy material starts to melt, reacts with the aluminum alloy in the vicinity of the joint interface, and the liquid phase generation rapidly accelerates in the vicinity of the joint interface. This is because the shape may not be maintained.
- A. Component Cu of aluminum alloy material 3.0% to 8.0% When the content of Cu in the aluminum alloy is less than 3.0%, there is no sufficient liquid phase oozing and bonding is incomplete. On the other hand, if the Cu content exceeds 8.0%, the amount of Al—Cu compound in the aluminum alloy increases and the amount of liquid phase generated increases, so that the material strength during heating decreases extremely. It becomes difficult to maintain the shape of the structure. On the other hand, if it exceeds 8.0%, rolling may be difficult and materials may not be produced. Therefore, the content of Cu in the aluminum alloy material in the present invention is set to 3.0 to 8.0%. The amount of liquid phase that oozes out increases as the plate thickness increases and the heating temperature increases, but the amount of liquid phase required during heating depends on the shape of the structure. It is desirable to adjust the bonding conditions (temperature, time, etc.).
- Si 0.1% to 10%
- the Si content of the aluminum alloy is less than 0.1%, there is no sufficient liquid phase oozing and bonding is incomplete.
- the Si content exceeds 10.0%, the amount of Si particles in the aluminum alloy material increases and the amount of liquid phase generated increases, so that the material strength during heating decreases extremely, and the structure It becomes difficult to maintain the shape.
- the content of Si in the aluminum alloy in the present invention is 0.1% to 10%.
- the amount of liquid phase that oozes out increases as the plate thickness increases and the heating temperature increases, but the amount of liquid phase required during heating depends on the shape of the structure. It is desirable to adjust the joining conditions (temperature, time, etc.).
- the amounts of Cu and Si may be specified, but other elements can be added alone or in combination to improve the bondability. Each selective additive element is described below.
- one or more of Mg, Zn and Ni may be further added in a predetermined amount.
- Mg 0.05% to 2.0% Mg can lower the solidus temperature of the alloy and enables reliable bonding at lower temperatures. This effect is hardly obtained when the Mg content is less than 0.05%. Moreover, when it exceeds 2.0%, rolling becomes difficult and there is a possibility that the material cannot be manufactured. Therefore, Mg is preferably added in an amount of 0.05% to 2.0%. A more preferable amount of Mg is 0.1% to 1.0%.
- Zn 0.05% to 6.0%
- Zn can lower the solidus temperature of the alloy and enables reliable bonding at lower temperatures. This effect is hardly obtained when the Zn content is less than 0.05%. On the other hand, if it exceeds 6.0%, rolling becomes difficult and the material may not be produced. Accordingly, Zn is preferably added in an amount of 0.05% to 6.0%. A more preferable Zn addition amount is 0.5% to 2.0%.
- Ni 0.05% to 2.0% Ni can lower the solidus temperature of the alloy and enables reliable bonding at lower temperatures. This effect is hardly obtained when the Ni addition amount is less than 0.05%. Moreover, when it exceeds 2.0%, an intermetallic compound may produce
- the following predetermined amounts of elements may be added alone or in combination.
- Fe 0.1% to 2.0%
- the amount of Fe added is preferably in the range of 0.1% to 2.0% in view of strength and ease of manufacture.
- Mn 0.1% to 2.0% Mn forms an Al—Mn—Si intermetallic compound with Si and acts as dispersion strengthening, or has an effect of improving the strength by solid solution strengthening by solid solution in the aluminum matrix.
- the amount of Mn added is preferably in the range of 0.1% to 2.0% in view of strength and ease of manufacture.
- Ti 0.01% to 0.3%
- V 0.01% to 0.3%
- the addition amount of Ti and V is preferably in the range of 0.01% to 0.3% in view of strength and ease of manufacture.
- Cr 0.05% to 0.3% Cr improves strength by solid solution strengthening, and Al—Cr-based intermetallic compounds are precipitated, which acts on coarsening of crystal grains after heating.
- the amount of Cr added is preferably in the range of 0.05% to 0.3% from the standpoint of strength and ease of manufacture.
- In and Sn have an effect of adding a sacrificial anodic action.
- the addition amount of In and Sn is preferably in the range of 0.05% to 0.3% from the viewpoint of corrosion resistance and ease of manufacture.
- Be: 0.0001% to 0.1%, Sr: 0.0001% to 0.1%, Bi: 0.0001% to 0.1%, Na: 0.0001% to 0% 1%, Ca: 0.0001% to 0.05%, or two or more of these elements may be added, but these trace elements are bonded by finely dispersing Si particles, improving fluidity of the liquid phase, etc. Can improve sex.
- all of the added components are within the above-described component ranges from the balance of corrosion resistance and ease of manufacture. It is preferable.
- the liquid phase ratio defined in the present invention is usually based on this principle (level) based on the alloy composition and the maximum temperature achieved using an equilibrium diagram. rule).
- the liquid phase ratio can be determined using the phase diagram using the phase diagram.
- the liquid phase ratio is obtained using equilibrium calculation phase diagram software.
- the equilibrium calculation phase diagram software incorporates a technique for determining the liquid phase ratio based on the lever principle using the alloy composition and temperature.
- the equilibrium calculation phase diagram software includes Thermo-Calc; manufactured by Thermo-Calc Software AB.
- a flux is applied to at least the joint portion in order to destroy the oxide film.
- the flux is fluoride flux such as KAlF 4 , K 2 AlF 5 , K 2 AlF 5 .H 2 O, K 3 AlF 6 , AlF 3 , KZnF 3 , K 2 SiF 6 used for brazing of aluminum alloys, Cs Cesium flux such as 3 AlF 6 , CsAlF 4 .2H 2 O, Cs 2 AlF 5 .H 2 O, or chloride flux such as KCl, NaCl, LiCl, ZnCl 2 is used. These fluxes melt before the liquid phase melts or reaches the joining temperature in the seepage joining, and react with the oxide film to destroy the oxide film.
- bonding is performed in a non-oxidizing atmosphere such as nitrogen gas or argon gas.
- a fluoride-based flux is used, bonding is preferably performed in a non-oxidizing gas atmosphere in which the oxygen concentration is suppressed to 250 ppm or less and the dew point is suppressed to ⁇ 25 ° C. or less.
- the exudation joining method according to the present invention can perform reliable joining while minimizing the deformation of the members to be joined by the basic configuration described above.
- preferable joining is obtained by appropriately setting the joining time, the stress applied to both the joined members, and the heating temperature during joining as the joining conditions in consideration of maintaining the shape of the joined members. be able to.
- joining time is the time during which the liquid phase ratio in an aluminum alloy, which is one member to be joined that produces a liquid phase, is 5% or more. And this joining time is preferably within 3600 seconds. When it is within 3600 seconds, a joined body with little shape change from before joining can be obtained, and when within 1800 seconds, a precise joined body with further less shape change can be obtained.
- the joining time is preferably 30 seconds or longer. If it is 30 seconds or more, a bonded body reliably bonded can be obtained, and if it is 60 seconds, a bonded body bonded more reliably can be obtained.
- the stress generated in each part in each member to be joined is obtained from the shape and the load.
- This stress can be calculated using, for example, a structure calculation program.
- P (kPa) is the maximum stress (maximum stress) among the stresses generated in each part of the bonded member that generates a liquid phase during bonding, and the liquid phase ratio of the aluminum alloy that is the bonded member
- V V
- the value shown on the right side of this equation is the critical stress, and if a stress exceeding this is applied to the member to be joined that generates a liquid phase, large deformation occurs in the member to be joined even if the liquid phase ratio is within 35%. There is a fear.
- Heating temperature at the time of bonding when the heating temperature at the time of bonding is 548 ° C. or higher, the member to be bonded may be deformed due to the eutectic reaction between the aluminum alloy and the copper alloy.
- the heating temperature at the time of joining the alloy is preferably less than 548 ° C.
- Table 1 shows the composition of the aluminum alloy material used as one of the materials to be joined. After preparing the alloy ingot shown in Table 1, a rolled plate having a thickness of 2 mm was obtained by hot rolling and cold rolling. The rolled plate was subjected to a leveler and then annealed at 380 ° C. for 2 hours to obtain a rolled plate sample.
- Table 2 shows the composition of the copper alloy material used as the other member to be joined. After preparing the alloy ingot shown in Table 2, a rolled plate having a thickness of 3 mm was obtained by hot rolling and cold rolling.
- a joining test was performed to evaluate the joining rate and the deformation rate.
- this joining test first, two plates having a width of 20 mm and a length of 50 mm are cut out from the rolled plate sample, the respective end surfaces are smoothed by milling, and the aluminum alloy is used as the upper plate and the copper alloy is used as the lower plate.
- a reverse T-shaped joining test piece shown in FIG. 4 was produced.
- Table 3 shows combinations of the upper and lower plates of each test piece. A cesium fluoride-based or chloride-based flux was applied to the bonding surface of the bonding test piece, or no flux was applied. Table 3 shows the presence and type of flux application.
- Cs is a cesium fluoride-based flux (CsAlF 4 )
- Cl is a chloride-based flux (containing 40 mass% or more of ZnCl 2 , and other components are NaCl—KCl—LiCl—LiF).
- - Indicates that the flux was not applied.
- the test piece is heated to a predetermined temperature in a nitrogen atmosphere, an argon atmosphere or a vacuum atmosphere and held at that temperature (joining temperature shown in Table 3) for a predetermined time, and then naturally in a furnace. Cooled down.
- the nitrogen atmosphere and the argon atmosphere were controlled at an oxygen concentration of 100 ppm or less and a dew point of ⁇ 45 ° C. or less.
- the vacuum atmosphere was controlled at 10 ⁇ 5 torr. In any atmosphere, the heating rate was 10 ° C./min at 500 ° C. or higher.
- a joining rate, a deformation rate, and comprehensive evaluation were evaluated as follows.
- the joining rate was calculated
- the maximum stress P is applied to the base of the protruding portion.
- the maximum stress P applied to the test piece in this test was 31 kPa as a result of calculation by assigning a numerical value to the above equation. Such stress P is the same also in the second embodiment described later.
- the test piece was heated to a predetermined temperature in the atmosphere shown in Table 3 and held at that temperature (joining temperature shown in the same table) for a predetermined time shown in the same table, and then naturally cooled in a furnace.
- the nitrogen atmosphere and the argon atmosphere were controlled at an oxygen concentration of 100 ppm or less and a dew point of ⁇ 45 ° C. or less.
- the vacuum atmosphere was controlled at 10 ⁇ 5 torr. In any atmosphere, the heating rate was 10 ° C./min at 500 ° C. or higher.
- the deformation rate was determined from the test piece after heating as follows. As shown in FIG. 5 (b), the amount of droop of the test piece after heating was measured. Using the protrusion length (20 mm), the deformation rate (%) deformation rate was calculated by ⁇ hang amount (mm) / 20 (mm) ⁇ ⁇ 100. Deformation rates of 50% or less were evaluated as ⁇ , over 50% and 70% or less as ⁇ , over 70% and 80% or less as ⁇ , and over 80% as x.
- Examples 50 to 64, Reference Examples 1 to 4 Here, a sag test was performed to evaluate the stress P that the bonded member can withstand during heating.
- conditions alloys, heating conditions
- the comprehensive evaluation are selected, and only the deformation rate of the aluminum alloy is evaluated in more detail.
- the test piece the aluminum alloy shown in Table 1 was selected and used.
- the test piece had a plate thickness of 1 mm, a width of 15 mm, and a length of 60 mm.
- the protruding length of this test piece was changed to 20 to 50 mm, and the sag test jig shown in FIG. 5A was attached and set.
- the concrete test method was that the test piece was heated to a predetermined temperature in a nitrogen atmosphere and held at that temperature for 180 seconds, and then naturally cooled in a furnace.
- the nitrogen atmosphere was controlled at an oxygen concentration of 100 ppm or less and a dew point of ⁇ 45 ° C. or less.
- the heating rate was 10 ° C./min at 500 ° C. or higher.
- the deformation rate was determined from the test piece after heating as follows. As shown in FIG. 5 (b), the amount of droop of the test piece after heating was measured. Using each protrusion length, the deformation rate (%) was calculated by ⁇ the amount of droop (mm) / the protrusion length (mm) ⁇ ⁇ 100. A deformation rate of less than 50% was evaluated as ⁇ , 50% or more and less than 70% as ⁇ , and 70% or more as x. ⁇ and ⁇ were accepted, and x was rejected. Deformation rate, protrusion length, stress and critical stress are shown in Table 4 together with heating conditions (heating temperature, liquid phase rate, holding time at heating temperature).
- the stress P was not more than the critical stress (460-12 V) with the liquid phase ratio being V (%).
- the amount of sag was less than 70% with respect to the protruding length, and a good deformation rate was obtained.
- the stress P was larger than the critical stress (460-12V).
- the drooping amount was 70% or more with respect to the protruding length, and the deformation rate was large.
- the present invention is a joined body of an aluminum alloy material and a copper alloy material joined by a highly reliable new method with good joining properties and almost no deformation due to joining, and its joining method, and has industrial value. large. According to the present invention, it is possible to efficiently manufacture members / parts having features such as having many joints and having a complicated shape, for example, a fin tube type heat exchanger in a refrigeration circuit of a refrigeration air conditioner, It is useful for joined bodies such as heat exchange devices such as piping.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
Abstract
Description
Cu:3.0%~8.0%
アルミニウム合金のCuの含有量が3.0%未満の場合は、充分な液相のしみ出しが無く、接合が不完全となる。一方、Cuの含有量が8.0%を越えると、アルミニウム合金中のAl-Cu系化合物の量が多くなり、液相の生成量が多くなるため、加熱中の材料強度が極端に低下し、構造体の形状維持が困難となる。また、8.0%を越えると、圧延が困難となり材料を製造できないおそれがある。したがって、本発明におけるアルミニウム合金材中のCuの含有量は3.0~8.0%とする。なお、しみ出す液相の量は板厚が厚く、加熱温度が高いほど多くなるが、加熱時に必要とする液相の量は構造体の形状に依存するので、必要に応じてCuの含有量や接合条件(温度、時間等)を調整することが望ましい。
アルミニウム合金のSiの含有量が0.1%未満の場合は、充分な液相のしみ出しが無く、接合が不完全となる。一方、Siの含有量が10.0%を越えると、アルミニウム合金材中のSi粒子が多くなり、液相の生成量が多くなるため、加熱中の材料強度が極端に低下し、構造体の形状維持が困難となる。また、10.0%を越えると、圧延が困難となり材料を製造できないおそれがある。したがって、本発明におけるアルミニウム合金中のSiの含有量は0.1%~10%とする。なお、しみ出す液相の量は板厚が厚く、加熱温度が高いほど多くなるが、加熱時に必要とする液相の量は構造体の形状に依存するので、必要に応じてSiの含有量、接合条件(温度、時間等)を調整することが望ましい。
アルミニウム合金のCuの含有量が3.0%~8.0%で、且つSiの含有量が0.1%~10%であっても、Cu濃度をC(%)、Si濃度をS(%)としたとき、C+2.4×Sが7.8未満では液相が充分生成されず、液相の供給量が不充分となり、接合が不完全となる。したがって、本発明におけるアルミニウム合金中のC+2.4×Sは7.8以上とする。
Mgは合金の固相線温度を低下させることができ、より低温での確実な接合を可能にする。この効果はMg量0.05%未満ではほとんど得られない。また、2.0%を超えると圧延が困難となり材料を製造できないおそれがある。従って、Mgは0.05%~2.0%添加するのが好ましい。より好ましいMg添加量は、0.1%~1.0%である。
Znは合金の固相線温度を低下させることができ、より低温での確実な接合を可能にする。この効果はZn添加量0.05%未満ではほとんど得られない。また、6.0%を超えると圧延が困難となり材料を製造できないおそれがある。従って、Znは0.05%~6.0%添加することが好ましい。より好ましいZn添加量は、0.5%~2.0%である。
Niは合金の固相線温度を低下させることができ、より低温での確実な接合を可能にする。この効果はNi添加量0.05%未満ではほとんど得られない。また、2.0%を超えると材料製造中に金属間化合物が過大に生成し圧延が困難になるおそれがある。従って、Niは0.05%~2.0%添加することが好ましい。より好ましい添加量は0.2%~1.0%である。
Feは、固溶して強度を上げる効果があるのに加えて晶出物として分散して、特に高温での強度低下を防ぐ効果がある。Feの添加量は強度および製造の容易さの兼合いから、0.1%~2.0%の範囲とすることが好ましい。
Mnは、SiとともにAl-Mn-Si系の金属間化合物を形成し、分散強化として作用し、或いはアルミニウム母相中に固溶して固溶強化により強度を向上させる効果がある。Mnの添加量は強度および製造の容易さの兼合いから、0.1%~2.0%の範囲とすることが好ましい。
Ti、Vは固溶して強度向上させる他に、層状に分布して板厚方向の腐食の進展を防ぐ効果がある。Ti及びVの添加量は強度および製造の容易さの兼合いから、0.01%~0.3%の範囲とすることが好ましい。
Crは、固溶強化により強度を向上させ、またAl-Cr系の金属間化合物が析出し、加熱後の結晶粒粗大化に作用する。Crの添加量は強度および製造の容易さの兼合いから、0.05%~0.3%の範囲とすることが好ましい。
In、Snは、犠牲陽極作用を付加する効果がある。In及びSnの添加量は耐食性および製造の容易さの兼合いから、0.05%~0.3%の範囲とすることが好ましい。
また、必要に応じてBe:0.0001%~0.1%、Sr:0.0001%~0.1%、Bi:0.0001%~0.1%、Na:0.0001%~0.1%、Ca:0.0001%~0.05%の1種又は2種以上を添加しても良いが、これらの微量元素はSi粒子の微細分散、液相の流動性向上等によって接合性を改善することができる。なお、Be、Sr、Bi、Na、Caの1種又は2種以上が添加される場合には、耐食性および製造の容易さの兼合いから、各添加成分のいずれもが上記成分範囲内にあることが好ましい。
本発明に係るアルミニウム合金と銅合金とのしみ出し接合では、一方の被接合部材であるアルミニウム合金の全質量に対する当該アルミニウム合金内に生成する液相の質量の比(以下、「液相率」と記す)が5%以上35%以下となる温度で接合する必要がある。液相率が35%を超えると、生成する液相の量が多過ぎてアルミニウム合金が形状を維持できなくなり大きな変形をしてしまう。一方、液相率が5%未満では接合が困難となる。好ましい液相率は5~30%であり、より好ましい液相率は10~20%である。
rule)によって求めることができる。すでに状態図が明らかになっている合金系においては、その状態図を使い、てこの原理を用いて液相率を求めることができる。一方、平衡状態図が公表されていない合金系に関しては、平衡計算状態図ソフトを利用して液相率を求める。平衡計算状態図ソフトには、合金組成と温度を用いて、てこの原理で液相率を求める手法が組み込まれている。平衡計算状態図ソフトには、Thermo-Calc;Thermo-Calc Software AB社製などがある。平衡状態図が明らかになっている合金系においても、平衡計算状態図ソフトを用いて液相率を計算しても、平衡状態図からてこの原理を用いて液相率を求めた結果と同じ結果となるので、簡便化のために、平衡計算状態図ソフトを利用しても良い。
アルミニウム合金の表層には強固な酸化皮膜が形成されており、これによって接合が阻害される。従って、接合においては酸化皮膜を破壊する必要がある。そこで次に、酸化皮膜除去の具体的方法を説明する。尚、以下の説明ではアルミニウム合金の酸化皮膜の破壊について説明するものであるが、アルミニウム合金の酸化皮膜は極めて強固であり、アルミニウム合金に比べると銅合金は通常、酸化皮膜が生じても酸化皮膜が還元・破壊されやすい。よって、アルミニウム合金の酸化皮膜が破壊されれば、銅合金の酸化皮膜も同時に破壊され、接合が可能である。
この方法は、酸化皮膜を破壊する為に少なくとも接合部にフラックスを塗布するものである。フラックスはアルミニウム合金のろう付で用いるKAlF4、K2AlF5、K2AlF5・H2O、K3AlF6、AlF3、KZnF3、K2SiF6等のフッ化物系フラックスや、Cs3AlF6、CsAlF4・2H2O、Cs2AlF5・H2O等のセシウム系フラックス、又はKClやNaCl、LiCl、ZnCl2等の塩化物系フラックスが用いられる。これらフラックスは、しみ出し接合において液相が溶融する前に又は接合温度に至る前に溶融し、酸化皮膜と反応して酸化皮膜を破壊する。
この方法は、アルミニウム合金のMg含有量が0.2%~2.0%である材料を適用するものであり、この場合は接合部にフラックスを塗布しなくても、酸化被膜が破壊されて接合が可能になる。このとき、アルミニウム合金が溶融し液相が表層に出てくるときに、アルミニウム合金中より蒸発するMgのゲッター作用によって酸化皮膜が破壊される。アルミニウム合金材において、Mgが0.2%未満ではMgのゲッター作用が期待できない。2.0%を超えると、前述の通り圧延が困難になり、材料の製造が出来ない。
本発明に係るしみ出し接合法は、以上説明した基本的構成により、被接合部材の変形を最小限としつつ確実な接合を行うことができる。ここで、本発明においては、被接合部材の形状維持を考慮した接合条件として、接合時間、及び、両被接合部材に加わる応力、接合時の加熱温度を適宜に設定することで好ましい接合を得ることができる。
本発明において接合時間の意義は、液相を生じる一方の被接合部材であるアルミニウム合金における液相率が5%以上である時間である。そして、この接合時間は3600秒以内であるのが好ましい。3600秒以内とすると接合前からの形状変化が少ない接合体を得ることができ、さらに1800秒以内とすると、さらに形状変化の少ない精緻な接合体を得ることができる。
また接合時間は30秒以上であることが好ましい。30秒以上であれば確実に接合された接合体を得ることができ、さらに60秒であればより確実に接合された接合体を得ることができる。
本発明の接合においては、接合部で両被接合部材が接していれば接合面に圧力を加える必要は必ずしもない。但し、実際の製品の製造過程では、被接合部材同士を固定したりクリアランスを縮めたりする為に、冶具等で両被接合部材に応力が加わる場合が多い。また、自重によっても被接合部材内に応力が発生する。
本発明の接合においては、接合時の加熱温度が548℃以上では、アルミニウム合金と銅合金の共晶反応により、被接合部材が変形する可能性があるため、アルミニウム合金と銅合金の接合時の加熱温度は548℃未満とすることが好ましい。
表1に、一方の被接合材として用いたアルミニウム合金材の組成を示す。表1に示す合金鋳塊を調製した後、熱間圧延及び冷間圧延により厚さ2mmの圧延板を得た。この圧延板をレベラーに掛けた後に380℃で2時間焼鈍して、圧延板試料とした。
接合率は次のようにして求めた。超音波探傷装置を用い、接合部での接合がなされている部分の長さを測定した。逆T字試験片の接合部の全長を50mmとして、{接合部での接合がなされている部分の長さ(mm)/50(mm)}×100によって接合率(%)を算出した。接合率が、95%以上を◎とし、90%以上95%未満を○とし、25%以上90%未満を△とし、25%未満を×として判定した。
表1に示した組成の上記圧延板試料から幅10mm×長さ30mmの板を切り出して、変形率測定用の試験片とした。図5(a)に示すように、この試験片を突き出し長さ20mmをもってサグ試験用冶具に取り付けてセットした(図には、3枚の試験片がセットされている)。サグ試験のような片持ち梁の形状での最大応力P(N/m2)は、曲げモーメントMと断面係数Zより、以下のように求めた。
=((g×ρ×I×b×h/I)×I2/2)/(bh2/6)
=3×g×ρ×I2/h
M:曲げモーメント(N・m)
等分布荷重の片持ち梁の場合W×I2/2
Z:断面係数(m3)
断面形状が長方形の場合bh2/6
W:等分布荷重(N/m)
g:重力加速度(m/s2)
ρ:アルミニウムの密度(kg/m3)
I:突き出し長さ(m)
b:板幅(m)
h:板厚(m)
以上の結果より、各評価の判定に対して◎を5点、○を3点、△を0点、×を-5点として点数をつけ、合計点が10点を◎とし、6点以上9点以下を○とし、1点以上5点以下を△とし、0点以下を×として総合判定を行った。総合判定が◎、○、△を合格とし、×を不合格とした。接合率、変形率及び総合判定の結果を、接合条件(温度、平衡液相率の計算値)と共に表3に示す。
ここでは、サグ試験を行い、加熱中に被接合部材が耐えられる応力Pを評価した。この評価は、第1実施形態での評価において、総合評価が合格となる条件(合金、加熱条件)を選んで、アルミニウム合金の変形率の評価のみを更に詳細に行なったものである。試験片には、表1のアルミニウム合金を選んで用いた。試験片は、板厚1mm、幅15mm、長さ60mmとした。この試験片について突き出し長さを20~50mmに変化させて、図5(a)に示すサグ試験用冶具に取り付けてセットした。
Claims (6)
- アルミニウム合金を一方の被接合部材とし、銅合金を他方の被接合部材として、前記一方の被接合部材と他方の被接合部材が金属的に接合された接合体であって、前記一方の被接合部材はCu:3.0mass%~8.0mass%及びSi:0.1mass%~10mass%を含有し、残部Al及び不可避不純物からなるアルミニウム合金からなり、Cu濃度をC(mass%)、Si濃度をS(mass%)としたとき、C+2.4×S≧7.8を満たし、前記他方の被接合部材は前記一方の被接合部材よりも固相線温度が高い銅合金であることを特徴とするアルミニウム合金と銅合金とからなる接合体。
- 前記一方の被接合部材が、Mg:0.05mass%~2.0mass%、Ni:0.05mass%~2.0mass%及びZn:0.05mass%~6.0mass%のうち1種または2種以上を更に含有するアルミニウム合金からなる、請求項1に記載のアルミニウム合金と銅合金とからなる接合体。
- 請求項1または2に記載のアルミニウム合金と銅合金とからなる接合体の接合方法であって、前記一方の被接合部材であるアルミニウム合金はMg:0.5mass%以下に規制されており、前記一方の被接合部材であるアルミニウム合金の全質量に対する当該アルミニウム合金内に生成する液相の質量の比が5%以上35%以下となる温度において、フラックスが接合部材間に塗布された状態で非酸化性雰囲気中で接合することを特徴とするアルミニウム合金と銅合金との接合方法。
- 請求項1または2に記載のアルミニウム合金と銅合金とからなる接合体の接合方法であって、前記一方の被接合部材であるアルミニウム合金はMg:0.2mass%~2.0mass%を含有し、前記一方の被接合部材であるアルミニウム合金の全質量に対する当該アルミニウム合金内に生成する液相の質量の比が5%以上35%以下となる温度において、真空中又は非酸化性雰囲気中で接合することを特徴とするアルミニウム合金と銅合金との接合方法。
- 一方の被接合部材であるアルミニウム合金において、アルミニウム合金の全質量に対する当該アルミニウム合金内に生成する液相の質量の比が5%以上である時間が、30秒以上3600秒以内である、請求項3または4に記載のアルミニウム合金と銅合金との接合方法。
- 一方の被接合部材であるアルミニウム合金に発生する最大応力をP(kPa)とし、前記アルミニウム合金の全質量に対する当該アルミニウム合金内に生成する液相の質量の比をV(%)としたときに、P≦460-12Vを満たす条件で接合する、請求項3乃至5のいずれか一項に記載のアルミニウム合金と銅合金との接合方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12853569.7A EP2786831B1 (en) | 2011-12-02 | 2012-11-28 | Aluminium alloy-copper alloy bond, and bonding method for same |
IN1030MUN2014 IN2014MN01030A (ja) | 2011-12-02 | 2012-11-28 | |
JP2013547193A JP6060090B2 (ja) | 2011-12-02 | 2012-11-28 | アルミニウム合金と銅合金との接合体及びその接合方法 |
US14/361,951 US20140308541A1 (en) | 2011-12-02 | 2012-11-28 | Bonded body of aluminum alloy and copper alloy, and bonding method for same |
CN201280059087.9A CN103958113B (zh) | 2011-12-02 | 2012-11-28 | 铝合金与铜合金的接合体及其接合方法 |
KR1020147018292A KR20140098844A (ko) | 2011-12-02 | 2012-11-28 | 알루미늄 합금과 구리 합금과의 접합체 및 그 접합 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011265341 | 2011-12-02 | ||
JP2011-265341 | 2011-12-02 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2013081021A2 true WO2013081021A2 (ja) | 2013-06-06 |
WO2013081021A3 WO2013081021A3 (ja) | 2013-08-08 |
Family
ID=48536202
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/080779 WO2013081021A2 (ja) | 2011-12-02 | 2012-11-28 | アルミニウム合金と銅合金との接合体及びその接合方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20140308541A1 (ja) |
EP (1) | EP2786831B1 (ja) |
JP (1) | JP6060090B2 (ja) |
KR (1) | KR20140098844A (ja) |
CN (1) | CN103958113B (ja) |
IN (1) | IN2014MN01030A (ja) |
WO (1) | WO2013081021A2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019206011A (ja) * | 2018-05-28 | 2019-12-05 | オリンパス株式会社 | 異種金属材料の接合構造、および異種金属材料の接合方法 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6432466B2 (ja) * | 2014-08-26 | 2018-12-05 | 三菱マテリアル株式会社 | 接合体、ヒートシンク付パワーモジュール用基板、ヒートシンク、接合体の製造方法、ヒートシンク付パワーモジュール用基板の製造方法、及び、ヒートシンクの製造方法 |
US20180364199A1 (en) * | 2015-12-18 | 2018-12-20 | Nederlandse Organisatie Voor Toegepast- Natuurwetenschappelijk Onderzoek Tno | Method and device for determining quality of a bond |
JP6186455B2 (ja) * | 2016-01-14 | 2017-08-23 | 株式会社Uacj | 熱交換器及びその製造方法 |
JP6565710B2 (ja) * | 2016-01-27 | 2019-08-28 | 三菱マテリアル株式会社 | 銅部材接合体の製造方法 |
CN108265206B (zh) * | 2018-02-01 | 2022-01-11 | 深圳市铭利达精密机械有限公司 | 高强度高散热铝合金压铸件 |
CN108754250A (zh) * | 2018-06-03 | 2018-11-06 | 深圳市鑫申新材料科技有限公司 | 一种高强度压铸铝合金及其制造方法 |
CN108907606B (zh) * | 2018-07-10 | 2020-02-11 | 郑州煤矿机械集团股份有限公司 | Cloos焊接机器人焊枪修复方法 |
JP7167642B2 (ja) * | 2018-11-08 | 2022-11-09 | 三菱マテリアル株式会社 | 接合体、ヒートシンク付絶縁回路基板、及び、ヒートシンク |
TWI730529B (zh) * | 2019-12-05 | 2021-06-11 | 財團法人金屬工業研究發展中心 | 水五金模具之銅合金及其製造方法 |
US20230286083A1 (en) * | 2020-08-21 | 2023-09-14 | Nippon Light Metal Company, Ltd. | Aluminum alloy filler metal, aluminum alloy welded structure, and method for welding aluminum material |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5248542A (en) | 1975-10-16 | 1977-04-18 | Matsushita Refrigeration | Method of welding copper conduit to aluminum tube |
JPH0985467A (ja) | 1995-09-25 | 1997-03-31 | Mori Shigeo | 銅管とアルミニウム管との接合体及び接合方法 |
JP2002361408A (ja) | 2001-06-11 | 2002-12-18 | Denso Corp | 異種金属接合品の接合方法 |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2606362A (en) * | 1947-10-29 | 1952-08-12 | United Aircraft Corp | Method of maintaining the desired joint thickness during a soldering operation |
DE1452226A1 (de) * | 1965-11-03 | 1969-01-23 | Benteler Werke Ag | Stahlrohr-Herstellung |
US3597958A (en) * | 1969-02-04 | 1971-08-10 | Rock Mill Inc | Machine for removing the bead from the joint of a welded railway rail |
US3795041A (en) * | 1970-09-24 | 1974-03-05 | Siemens Ag | Process for the production of metal-ceramic bond |
US3795042A (en) * | 1972-08-22 | 1974-03-05 | United Aircraft Corp | Method for producing composite materials |
US4064914A (en) * | 1974-05-08 | 1977-12-27 | Union Carbide Corporation | Porous metallic layer and formation |
JPS54133450A (en) * | 1978-04-10 | 1979-10-17 | Hitachi Ltd | Diffusion bonding method for different kind metal |
JPS58168487A (ja) * | 1982-03-31 | 1983-10-04 | Nippon Sanso Kk | インナ−フイン付伝熱管の製造方法 |
US4753685A (en) * | 1983-02-25 | 1988-06-28 | Kabushiki Kaisha Kobe Seiko Sho | Aluminum alloy sheet with good forming workability and method for manufacturing same |
US4634041A (en) * | 1984-06-29 | 1987-01-06 | International Business Machines Corporation | Process for bonding current carrying elements to a substrate in an electronic system, and structures thereof |
US5223349A (en) * | 1992-06-01 | 1993-06-29 | Sumitomo Electric Industries, Ltd. | Copper clad aluminum composite wire |
CN1069070C (zh) * | 1993-12-16 | 2001-08-01 | 川崎制铁株式会社 | 金属板带的连接方法与连接装置 |
US5422191A (en) * | 1994-02-14 | 1995-06-06 | Kaiser Aluminum & Chemical Corporation | Aluminum-lithium filler alloy for brazing |
JP3096615B2 (ja) * | 1995-06-02 | 2000-10-10 | 三洋電機株式会社 | アルミニウム外装缶の二次電池 |
JP3757506B2 (ja) * | 1996-12-24 | 2006-03-22 | 株式会社日立製作所 | 耐熱合金の接合法 |
US6036083A (en) * | 1998-01-26 | 2000-03-14 | General Motors Corporation | Method for braze flux application |
US6120848A (en) * | 1998-11-17 | 2000-09-19 | Ford Motor Company | Method of making a braze sheet |
CN1106242C (zh) * | 2000-04-28 | 2003-04-23 | 哈尔滨工业大学 | 铝基复合材料的液相扩散焊连接新工艺 |
JP2001334371A (ja) * | 2000-05-25 | 2001-12-04 | Showa Denko Kk | 銅−アルミニウムパイプの共晶接合方法 |
JP2003048077A (ja) * | 2001-07-31 | 2003-02-18 | Kobe Steel Ltd | AlまたはAl合金部材の接合法 |
US7159757B2 (en) * | 2002-09-26 | 2007-01-09 | Dowa Mining Co., Ltd. | Metal/ceramic bonding article and method for producing same |
CN1254345C (zh) * | 2003-12-08 | 2006-05-03 | 哈尔滨工业大学 | 铝基复合材料液相冲击扩散焊接新工艺 |
JP5048996B2 (ja) * | 2006-11-10 | 2012-10-17 | 昭和電工株式会社 | 加工性に優れた耐摩耗性アルミニウム合金材およびその製造方法 |
JP4477668B2 (ja) * | 2007-12-25 | 2010-06-09 | 株式会社神戸製鋼所 | アルミニウム合金製ブレージングシート |
KR101285511B1 (ko) * | 2010-06-04 | 2013-07-17 | 후루카와 스카이 가부시키가이샤 | 알루미늄 합금재의 접합 방법 |
CN104080569B (zh) * | 2011-11-30 | 2017-05-31 | 株式会社Uacj | 金属成型方法以及其成型品 |
-
2012
- 2012-11-28 CN CN201280059087.9A patent/CN103958113B/zh not_active Expired - Fee Related
- 2012-11-28 KR KR1020147018292A patent/KR20140098844A/ko not_active Application Discontinuation
- 2012-11-28 EP EP12853569.7A patent/EP2786831B1/en not_active Not-in-force
- 2012-11-28 JP JP2013547193A patent/JP6060090B2/ja not_active Expired - Fee Related
- 2012-11-28 IN IN1030MUN2014 patent/IN2014MN01030A/en unknown
- 2012-11-28 WO PCT/JP2012/080779 patent/WO2013081021A2/ja active Application Filing
- 2012-11-28 US US14/361,951 patent/US20140308541A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5248542A (en) | 1975-10-16 | 1977-04-18 | Matsushita Refrigeration | Method of welding copper conduit to aluminum tube |
JPH0985467A (ja) | 1995-09-25 | 1997-03-31 | Mori Shigeo | 銅管とアルミニウム管との接合体及び接合方法 |
JP2002361408A (ja) | 2001-06-11 | 2002-12-18 | Denso Corp | 異種金属接合品の接合方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2786831A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019206011A (ja) * | 2018-05-28 | 2019-12-05 | オリンパス株式会社 | 異種金属材料の接合構造、および異種金属材料の接合方法 |
Also Published As
Publication number | Publication date |
---|---|
JP6060090B2 (ja) | 2017-01-11 |
EP2786831A4 (en) | 2016-01-20 |
WO2013081021A3 (ja) | 2013-08-08 |
KR20140098844A (ko) | 2014-08-08 |
CN103958113B (zh) | 2017-05-03 |
US20140308541A1 (en) | 2014-10-16 |
EP2786831B1 (en) | 2018-06-13 |
IN2014MN01030A (ja) | 2015-05-01 |
EP2786831A2 (en) | 2014-10-08 |
CN103958113A (zh) | 2014-07-30 |
JPWO2013081021A1 (ja) | 2015-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6060090B2 (ja) | アルミニウム合金と銅合金との接合体及びその接合方法 | |
JP5302751B2 (ja) | 熱交換器用アルミニウム合金クラッド材 | |
JP5021097B2 (ja) | アルミニウム合金材の接合方法 | |
JP6243837B2 (ja) | 熱交換器用アルミニウム合金製ブレージングシート、ならびに熱交換器用アルミニウム合金製ろう付け体およびその製造方法 | |
EP3459676B1 (en) | Brazing sheet for flux-free brazing, flux-free brazing method and method for producing heat exchanger | |
EP3563968B1 (en) | Brazing sheet for flux-free brazing, method for flux-free brazing, and method for heat manufacturing heat exchanger | |
JP2012050993A (ja) | アルミニウム材のフラックスレスろう付け方法およびフラックスレスろう付け用アルミニウムクラッド材 | |
JP5284542B1 (ja) | アルミニウム合金クラッド材の製造方法 | |
US11229978B2 (en) | Brazing sheet for flux-free brazing, method for flux-free brazing and method for manufacturing heat exchanger | |
JP3704632B2 (ja) | アルミニウム製熱交換器用フィン材およびアルミニウム製熱交換器の製造方法 | |
JP5629130B2 (ja) | 金属材料の接合方法 | |
KR20130069433A (ko) | 열교환기의 제조방법 및 그 제조방법에 의해 제조된 열교환기 | |
KR101545530B1 (ko) | 알루미늄계 재료의 경납땜 플럭스 | |
JP2016098405A (ja) | 熱交換器用アルミニウム合金クラッド材 | |
JP6426883B2 (ja) | 耐食性に優れた接合体の製造方法 | |
JP2013086103A (ja) | アルミニウム合金ブレージングシート | |
JP2013103265A (ja) | アルミニウム合金ブレージングシートおよびろう付け方法 | |
JP6033542B2 (ja) | 接合体及びその製造方法 | |
JP6023078B2 (ja) | アルミニウム合金材の接合方法 | |
JP6218903B2 (ja) | 接合体及びその製造方法 | |
JP2013116483A (ja) | アルミニウム合金材と異種金属材との接合方法 | |
JP5901251B2 (ja) | 構造体の製造方法 | |
JP2006326621A (ja) | アルミニウム合金ろう付け用ろう材ワイヤ | |
JP2013116474A (ja) | アルミニウム合金材の接合方法、アルミニウム合金接合体の製造方法、ならびに、アルミニウム合金接合体 | |
JP2012040610A (ja) | アルミニウム合金材を用いた構造体とその接合方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12853569 Country of ref document: EP Kind code of ref document: A2 |
|
ENP | Entry into the national phase |
Ref document number: 2013547193 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14361951 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20147018292 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012853569 Country of ref document: EP |