WO2013077418A1 - ガス分離膜、その製造方法、それを用いたガス分離膜モジュール - Google Patents
ガス分離膜、その製造方法、それを用いたガス分離膜モジュール Download PDFInfo
- Publication number
- WO2013077418A1 WO2013077418A1 PCT/JP2012/080351 JP2012080351W WO2013077418A1 WO 2013077418 A1 WO2013077418 A1 WO 2013077418A1 JP 2012080351 W JP2012080351 W JP 2012080351W WO 2013077418 A1 WO2013077418 A1 WO 2013077418A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- gas separation
- separation membrane
- hydrophilic
- gas
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/58—Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/22—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
- B01D53/228—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0002—Organic membrane manufacture
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/10—Supported membranes; Membrane supports
- B01D69/107—Organic support material
- B01D69/1071—Woven, non-woven or net mesh
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
- B01D69/1216—Three or more layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/40—Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
- B01D71/42—Polymers of nitriles, e.g. polyacrylonitrile
- B01D71/421—Polyacrylonitrile
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/44—Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of groups B01D71/26-B01D71/42
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/52—Polyethers
- B01D71/521—Aliphatic polyethers
- B01D71/5211—Polyethylene glycol or polyethyleneoxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/58—Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
- B01D71/62—Polycondensates having nitrogen-containing heterocyclic rings in the main chain
- B01D71/64—Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/22—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
- B01D2053/221—Devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/50—Carbon oxides
- B01D2257/504—Carbon dioxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/36—Hydrophilic membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/22—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/08—Polysaccharides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/08—Polysaccharides
- B01D71/12—Cellulose derivatives
- B01D71/14—Esters of organic acids
- B01D71/16—Cellulose acetate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/56—Polyamides, e.g. polyester-amides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
Definitions
- the present invention relates to a gas separation membrane, a production method thereof, and a gas separation membrane module using the same.
- the mixed gas to be subjected to the separation operation as described above may contain a considerable amount of moisture, and it is necessary to protect the separation membrane against this. From this point of view, it has been proposed to make the surface of the gas separation membrane hydrophobic (see Patent Document 3).
- the inventors of the present invention focused on technical issues when separating carbon dioxide from methane, etc., and conducted research and analysis on various gas separation characteristics, changes in physical properties of membranes, separation behavior, and conducted research on materials. Then, as a factor affecting the life of the gas separation membrane, it was found that BTX (benzene, toluene, xylene-based organic components) was involved in the mixed gas rather than moisture. Especially in membrane materials that use dissolution / diffusion mechanisms as gas separation membranes, the effect is significant, and high gas separation characteristics were maintained by configuring the surface of the separation membrane with a hydrophilic polymer layer in a specific manner. It was confirmed that the film life could be extended.
- BTX benzene, toluene, xylene-based organic components
- An object of the present invention is to provide a gas separation membrane, a method for producing the same, and a gas separation membrane module using the same.
- a gas separation membrane comprising a support layer and a separation layer formed on the upper side of the support layer, wherein the separation layer has a hydrophilic polymer disposed on the side opposite to the support layer
- a gas separation membrane comprising a hydrophilic layer and a separation layer body on the support layer side.
- the hydrophilic polymer contains at least one selected from polyvinyl alcohol, polyacrylic acid, polystyrene sulfonic acid, polyacrylamide, polyethylene glycol, polysaccharides, and gelatin.
- the polysaccharide is agarose, dextran, chitosan, or cellulose.
- any one of (1) to (6), wherein a mixed layer in which a constituent component of the hydrophilic layer and a constituent component of the separation layer body are mixed is provided between the hydrophilic layer and the separation layer body.
- a gas separation membrane according to item 1. (8) The gas separation membrane according to any one of (1) to (7), wherein the thickness of the separation layer body is 0.05 to 20 ⁇ m.
- the resin constituting the separation layer body is any one of (1) to (8) selected from the group consisting of a polyimide resin, a polyamide resin, a cellulose resin, a polydimethylsiloxane resin, and a polyethylene glycol resin. The gas separation membrane described.
- a hydrophilic layer comprising a support layer and a separation layer formed on the upper side of the support layer, the separation layer having a hydrophilic polymer disposed on the side opposite to the support layer, and the support
- a method for producing a gas separation membrane comprising a separation layer body on the layer side, Preparing a solution of a hydrophilic polymer constituting the hydrophilic layer; Preparing a solution of a resin constituting the separation layer body; and A process for producing a gas separation membrane, comprising the step of applying the two solutions in a multilayer manner.
- the gas separation membrane of the present invention achieve high gas separation selectivity while having excellent gas permeability, and also a mixed gas in which BTX is mixed It has an excellent effect of exhibiting a long life with respect to separation.
- the gas separation membrane of the present invention is a composite membrane having a gas separation function comprising a support layer and a separation layer formed above the support layer, wherein the separation layer is hydrophilic on the side opposite to the support layer. It comprises a hydrophilic layer having a polymer and a separation layer body on the support layer side.
- FIG. 1 is a cross-sectional view schematically showing a gas separation composite membrane 10 which is a preferred embodiment of the present invention.
- 1 is a gas separation layer
- 2 is a support layer which consists of a porous layer.
- FIG. 2 is a cross-sectional view schematically showing a gas separation composite membrane 20 which is a preferred embodiment of the present invention.
- a nonwoven fabric layer 3 is added as a support layer in addition to the gas separation layer 1 and the porous layer 2.
- the coating liquid (dope) that forms the gas separation layer is applied to at least the surface of the porous support layer (in this specification, coating is attached to the surface by dipping).
- the upper side of the support layer means that another layer may be interposed between the support layer and the gas separation layer.
- the direction in which the gas to be separated is supplied is “upper”, and the direction in which the separated gas is emitted is “lower”.
- the hydrophilic layer 1a is disposed on the upper side of the gas separation layer.
- the lower separation layer body 1b exhibits a gas separation function, and in combination with the BTX blocking effect of the hydrophilic layer 1a, achieves both excellent gas separation properties and a long lifetime of the membrane.
- a mixed layer 1c is further formed between the hydrophilic layer 1a and the separation layer 1b. Details of the mixed layer will be described later.
- the material for forming the hydrophilic layer 1a in the gas separation membrane of the present invention is not particularly limited as long as it contains a hydrophilic polymer.
- the hydrophilic layer refers to a form that can be considered as a thick layer composed of specific components, such as dry treatment such as plasma treatment and electron beam treatment, chemical treatment using a specific compound, and graft treatment. It is distinguished from the formed processing surface.
- a layer formed by application of a solution containing a resin component described later is preferable.
- the component adjacent to the hydrophilic layer does not need to be clearly distinguished from the component, and the component composition may be changed in a gradient, but the state modified in the molecule of the component as in the grafting process is Not included.
- the hydrophilic polymer preferably contains at least one selected from polyvinyl alcohol, polyacrylic acid, polystyrene sulfonic acid, polyacrylamide, polyethylene glycol, polysaccharide, and gelatin.
- polyvinyl alcohol RS2117 (molecular weight; 74,800), PVA103 (molecular weight; 13,200, degree of saponification; 98 to 99), PVA117 (molecular weight; 74,800, degree of saponification; 98 to 99), PVA-HC (degree of saponification; 99.
- PVA-205C molecular weight; 22,000, high purity, degree of saponification; 87 to 89
- M-205 molecular weight; 22,000, degree of saponification; 87 to 89
- M-115 molecular weight; 66 , Saponification degree: 97-98
- agarose dextran
- chitosan a polysaccharide
- cellulose a polysaccharide
- Agarose is UM-11, ZY-6, SY-4 from Inagarten
- aldrich is 00891 from dextran
- aldrich is 740179
- chitosan is Daicel's L-70, LT -105 and the like.
- the polysaccharide or gelatin may be a derivative thereof, and examples thereof are not particularly limited, but typically, a compound into which an arbitrary substituent is introduced may be mentioned.
- the substituent is preferably a carboxyl group, phosphonyl group, phosphoryl group, sulfo group, boric acid group, hydroxyl group, amino group or the like.
- the molecular weight of the hydrophilic polymer of this embodiment is not particularly limited, it is referred to as a hydrophilic polymer including those normally classified as oligomers in the present invention.
- the weight average molecular weight is preferably 1.0 ⁇ 10 4 to 1.0 ⁇ 10 7 , and more preferably 1.0 ⁇ 10 4 to 5.0 ⁇ 10 6 .
- the amount is not more than the above upper limit value because it can be easily dissolved in a solvent at the time of liquid preparation and the production suitability can be improved.
- the molecular weight and the degree of dispersion are values measured using a GPC (gel filtration chromatography) method, and the molecular weight is a weight average molecular weight in terms of polystyrene.
- the gel packed in the column used in the GPC method is preferably a gel having an aromatic compound as a repeating unit, and examples thereof include a gel made of a styrene-divinylbenzene copolymer. Two to six columns are preferably connected and used.
- the solvent used include ether solvents such as tetrahydrofuran, amide solvents of N-methylpyrrolidone, halogen solvents such as chloroform, and aromatic solvents such as 1,2-dichlorobenzene.
- the measurement is preferably performed at a solvent flow rate in the range of 0.1 to 2 mL / min, and most preferably in the range of 0.5 to 1.5 mL / min. By performing the measurement within this range, the apparatus is not loaded and the measurement can be performed more efficiently.
- the measurement temperature is preferably 10 to 50 ° C, most preferably 20 to 40 ° C.
- the measurement can also be performed at 50 ° C. to 200 ° C. using a column having a high usable temperature.
- the column and carrier to be used can be appropriately selected according to the physical properties of the polymer compound to be measured.
- the hydrophilicity is not particularly limited, and can be defined as the contact angle ( ⁇ s ) with respect to water on the outermost surface being 60 ° or less after the surface modification. Preferably there is. Although there is no particular lower limit, it is practical to be 4 ° or more.
- a droplet method can be selected. In the droplet method, 1 to 4 ⁇ L of water is dropped on the film surface, and the state of the droplet 10 seconds after the dropping is photographed as an image.
- the center of the circle can be obtained, and the angle formed by the tangent and straight line of the circle can be obtained as the contact angle. If necessary, measurement conditions and the like may be set with reference to JIS R 3257.
- the difference ( ⁇ i ⁇ s ) between the water surface contact angle ( ⁇ s ) of the hydrophilic layer and the water contact angle ( ⁇ i ) of the separation layer body is not particularly limited, but is relatively separated. It is preferable that the hydrophilicity of the hydrophilic layer 1a is enhanced with respect to the layer body 1b (FIGS. 1 and 2).
- the difference ( ⁇ i ⁇ ) between the water surface contact angle ( ⁇ s ) of the hydrophilic layer and the water contact angle ( ⁇ i ) when the separation layer body is surfaced. s ) is preferably 10 ° or more, and more preferably 20 ° or more.
- the surface means to cut off the hydrophilic layer 1a from the separation layer 1 and further scrape off a part of the separation layer body b to form an exposed surface thereof.
- the water contact angle ( ⁇ i ) of the separation layer body is a value obtained by measuring the water contact angle on the exposed surface, and the measurement method is based on the above. When ( ⁇ i - ⁇ s ) was below the above range, no clear effect on performance / lifetime improvement was observed.
- an upper limit is not specifically limited, It is practical that it is 100 degrees or less.
- the thickness T 1 in the depth direction of the modified portion in the hydrophilic layer of the separation layer is preferably 0.5 ⁇ m or less, and preferably 0.2 ⁇ m or less. Is more preferably 0.1 ⁇ m or less, further preferably 0.08 ⁇ m or less, and particularly preferably 0.05 ⁇ m or less. Although there is no particular lower limit, it is practical that it is 0.01 ⁇ m or more considering that the layer is composed of a polymer. By making this thickness below the upper limit, the life can be improved while maintaining high gas permeability, which is preferable.
- the thickness of the separation layer body is preferably 0.05 to 20 ⁇ m, and more preferably 0.1 to 10 ⁇ m. By setting the thickness to be equal to or more than the lower limit, defects such as foreign matter and repellency can be reduced, and this is preferable in terms of stable performance. On the other hand, it is preferable that the gas permeation performance is kept high by setting it to the upper limit value or less.
- the thickness of the membrane or each layer is a sample obtained by cleaving the entire membrane including the support layer with liquid nitrogen and then cleaving or cutting with an ultramicrotome. Is analyzed by observing with a high-magnification TEM or SEM.
- the separation layer body contains a resin, and materials applied thereto are as follows, but are not limited thereto. Specifically, polyimide resin, polyamide resin, cellulose resin, polydimethylsiloxane resin, and polyethylene glycol resin are preferable.
- some types of resin such as cellulose resin may overlap with those constituting the hydrophilic layer, but in that case, those used for the hydrophilic layer may have relatively higher hydrophilicity.
- sex is given. That is, taking cellulose as an example, it is possible to say that hydrophilic cellulose is suitable for the hydrophilic layer, and that suitable for the separation membrane body is non-hydrophilic or hydrophobic cellulose.
- a conventional method may be used as appropriate.
- a polymer having a substituent having a polar group such as a hydroxyl group or a carboxyl group in the structural unit of the polymer should be used. Is mentioned.
- an embodiment in which a nonpolar substituent of an alkyl group or an acetyl group is introduced into the structural unit can be mentioned.
- Matrimid (Matrimid (registered trademark) 5218 sold under the Matrimid (registered trademark) trademark by Huntsman Advanced Materials is a specific polyimide sold under the Matrimid (registered trademark) trademark. Polymer)) and polyimides such as P84 or P84HT sold under the trade name P84 and trade name P84HT from HP Polymers GmbH, respectively, cellulose acetate, cellulose triacetate, cellulose acetate butyrate, cellulose propionate, ethyl cellulose, methyl cellulose , Celluloses such as nitrocellulose, polydimethylsiloxanes, polyethylene glycol # 200 diacrylate (new Polyethylene glycols such as polymerized polymer village Chemical Co., Ltd.), also can be selected such as a polymer described in JP-T 2010-513021.
- the molecular weight of the resin constituting the separation layer body is not particularly limited, but is preferably 1.0 ⁇ 10 4 to 1.0 ⁇ 10 7 in terms of weight average molecular weight, more preferably 1.0 ⁇ 10 4 to 5.0 ⁇ 10 6. preferable.
- this molecular weight is more than the said lower limit, the defect by a repelling etc. can be reduced and performance can be stabilized, and it is preferable.
- the amount is not more than the above upper limit value because it can be easily dissolved in a solvent at the time of liquid preparation and the production suitability can be improved.
- the porous support preferably applied to the support layer is not particularly limited as long as it has the purpose of meeting the provision of mechanical strength and high gas permeability.
- a porous film of an organic polymer is preferable, and the thickness thereof is 1 to 3000 ⁇ m, preferably 5 to 500 ⁇ m, and more preferably 5 to 300 ⁇ m.
- the porous structure of this porous membrane has an average pore diameter of usually 10 ⁇ m or less, preferably 5 ⁇ m or less, more preferably 2 ⁇ m or less, and a porosity of preferably 20 to 90%, more preferably 30 to 30%. 90%.
- the gas permeability is preferably 3 ⁇ 10 ⁇ 5 cm 3 (STP) / cm ⁇ sec ⁇ cmHg or more in terms of carbon dioxide permeation rate.
- porous membrane materials include conventionally known polymers such as polyolefin resins such as polyethylene and polypropylene, fluorine-containing resins such as polytetrafluoroethylene, polyvinyl fluoride, and polyvinylidene fluoride, polystyrene, cellulose acetate, and polyurethane. And various resins such as polyacrylonitrile, polyphenylene oxide, polysulfone, polyethersulfone, polyimide, and polyaramid.
- the support layer is preferably made of polyacrylonitrile, polysulfone, or polyphenylene oxide.
- the shape of the porous membrane can be any shape such as a flat plate shape, a spiral shape, a tubular shape, and a hollow fiber shape.
- the support layer is a thin and porous material because sufficient gas permeability can be secured.
- the thin film porous form is preferable.
- severe reaction conditions such as high temperature and long time are imposed on the formation of the gas separation membrane, the above-mentioned thin and porous support layer may be damaged, and sufficient performance as a composite membrane may not be exhibited.
- the gas separation composite membrane using the radically crosslinkable polyimide compound adopted by the present invention can be formed under mild conditions, exhibits excellent effects, and is suitable for both production suitability and product quality. It can exhibit high performance.
- a support be formed in order to further impart mechanical strength to the lower part of the support layer forming the gas separation layer.
- the support include woven fabric, non-woven fabric, and net, and the non-woven fabric is preferably used from the viewpoint of film forming property and cost.
- the nonwoven fabric fibers made of polyester, polypropylene, polyacrylonitrile, polyethylene, polyamide or the like may be used alone or in combination.
- the nonwoven fabric can be produced, for example, by making a main fiber and a binder fiber uniformly dispersed in water using a circular net or a long net, and drying with a dryer.
- it is also preferable to apply a heat treatment by sandwiching a non-woven fabric between two rolls for the purpose of removing fluff and improving mechanical properties.
- the separation membrane of the present invention preferably has a mixed layer in which the constituent components of the hydrophilic layer and the constituent components of the separation layer body are mixed between the hydrophilic layer and the separation layer body.
- Preferable components constituting the mixed layer are the same as those described as preferable materials for the hydrophilic layer and the separation layer main body.
- the mixing ratio of the constituent component of the hydrophilic layer and the constituent component of the separation layer main body is not particularly limited, but the mass of the constituent component of the hydrophilic layer (w1) and the mass of the constituent component of the separation layer main body (w2) are as follows. It is preferable that it exists in.
- the thickness T 2 of the mixing layer is not particularly limited, but is preferably 0.01 ⁇ 1 [mu] m, and more preferably 0.01 ⁇ 0.5 [mu] m.
- the present mixed layer has a function of stabilizing the performance by imparting adhesion between the hydrophilic layer and the main body of the separation layer in the separation membrane.
- the gas separation membrane of the present invention comprises a support layer and a separation layer formed on the upper side of the support layer, and the separation layer has a hydrophilic polymer disposed on the side opposite to the support layer.
- hydrophilic solvent refers to a solvent having an SP value of 25 (MPa 0.5 ) or more described in Polymer Handbook (P.688 to 694). Specific examples include water, alcohols such as methanol and ethanol, and pyrrolidine.
- the concentration of the hydrophilic polymer is not particularly limited, but is more preferably 0.05% by mass or more, more preferably 0.075% by mass or more, and 0.1% by mass or more. Is particularly preferred. Although an upper limit is not specifically limited, It is preferable that it is 5 mass% or less, It is more preferable that it is 2.5 mass% or less, It is especially preferable that it is 1 mass% or less. It is preferable that the concentration be not less than the lower limit value because a film can be formed without defects due to repelling or the like. On the other hand, it is preferable that the thickness is not more than the upper limit because a thin film can be formed. In the present invention, as long as the effects of the present invention are not hindered, two or more of the above hydrophilic polymers may be used in combination, or other additives may be used.
- the solvent for dissolving the resin constituting the separation layer body is not particularly limited, (1) Esters such as ethyl acetate, n-butyl acetate, isobutyl acetate, amyl formate, isoamyl acetate, isobutyl acetate, butyl propionate, isopropyl butyrate, ethyl butyrate, butyl butyrate, alkyl esters, methyl lactate, ethyl lactate 3-, such as methyl oxyacetate, ethyl oxyacetate, butyl oxyacetate, methyl methoxyacetate, ethyl methoxyacetate, butyl methoxyacetate, methyl ethoxyacetate, ethyl ethoxyacetate, methyl 3-oxypropionate, ethyl 3-oxypropionate Oxypropionic acid alkyl esters; methyl 3-methoxy
- the concentration at which the constituent resin of the separation layer body is contained is not particularly limited, but is preferably 0.5% by mass or more, more preferably 0.75% by mass or more, and 1% by mass or more. It is particularly preferred. Although an upper limit is not specifically limited, It is preferable that it is 30 mass% or less, It is more preferable that it is 25 mass% or less, It is especially preferable that it is 20 mass% or less. By setting this concentration to be equal to or higher than the lower limit value, it is preferable that a film can be formed without being soaked into the support. On the other hand, it is preferable that the amount is not more than the above upper limit value because the liquid viscosity is not improved excessively and the film can be formed while maintaining the coating suitability. In the present invention, two or more of the above specific monomers may be used in combination as long as the effects of the present invention are not hindered, and other additives and the like may be used.
- a preferable method for producing a gas separation membrane of the present invention includes a step of preparing a solution of a hydrophilic polymer constituting the hydrophilic layer, a step of preparing a solution of a resin constituting the separation layer body, And a step of applying a liquid in multiple layers.
- the hydrophilic polymer solution constituting the hydrophilic layer is applied thereon.
- a solution of the resin that constitutes the separation layer body is applied on the support, and a solution of the hydrophilic polymer that constitutes the hydrophilic layer is applied before the solvent is completely dried. It is preferable to do so.
- the hydrophilic polymer solution constituting the hydrophilic layer before the resin solution constituting the separation layer body is applied and the solution does not mix.
- the said mixed layer can be formed suitably and it is preferable.
- the dry state which does not produce the said mixed layer does not need to be exact
- strict it can be said that it is a dry state to which formation is not substantially recognized to such an extent that the effect of a mixed layer is not expressed.
- the extent of formation of the mixed layer See the preferred range of dry, it may be evaluated based on the preferred range of the second thickness T 2 as described above.
- the mixed layer is identified by element mapping (Energy Dispersive x-ray Spectroscopy (EDX) or Time-of-flight). secondary ion mass spectrometer [TOF-SIMS]).
- element mapping Energy Dispersive x-ray Spectroscopy (EDX) or Time-of-flight).
- TOF-SIMS secondary ion mass spectrometer
- the method for separating a gas mixture of the present invention is a method of separating an acidic gas from a gas mixture containing at least one kind of acidic gas by a gas separation membrane, wherein the acidic gas capable of using the gas separation membrane of the present invention or the composite membrane is Carbon dioxide or hydrogen sulfide is preferred.
- the separation membrane of the present invention is a membrane for separating a gas (gas), but may be a separation membrane such as a supercritical fluid. Supercritical carbon dioxide is an example of the supercritical fluid to be used.
- the components of the raw gas mixture are not particularly defined, but the main components of the gas mixture are preferably carbon dioxide and methane, or carbon dioxide and hydrogen. .
- the gas mixture exhibits particularly excellent performance in the presence of acidic gases such as carbon dioxide and hydrogen sulfide, and preferably in the separation of hydrocarbons such as carbon dioxide and methane, carbon dioxide and nitrogen, and carbon dioxide and hydrogen. Demonstrate.
- acidic gases such as carbon dioxide and hydrogen sulfide
- hydrocarbons such as carbon dioxide and methane, carbon dioxide and nitrogen, and carbon dioxide and hydrogen.
- the supplied gas is a mixed gas of carbon dioxide and methane
- the permeation rate of carbon dioxide at 40 ° C. and 8 atm is preferably more than 5 GPU, more preferably 5 to 500 GPU.
- the permeation rate ratio of carbon dioxide to methane (P CO2 / P CH4 ) is preferably 10 or more, and more preferably 15 or more.
- the gas separation membrane of the present invention is preferably a composite membrane combined with a porous support, and more preferably a separation membrane module using this. Moreover, it can be set as the gas separation apparatus which has a means for carrying out separation collection
- the gas separation membrane of the present invention can be suitably used in a modular form. Examples of modules include spiral type, hollow fiber type, pleated type, tubular type, plate & frame type and the like. Further, the polymer membrane of the present invention may be applied to a gas separation / recovery device as a membrane / absorption hybrid method used in combination with an absorbing solution as described in JP-A-2007-297605, for example.
- Example 1 and Comparative Example 1 ⁇ Preparation of separation membrane> A THF (tetrahydrofuran) solution containing 5% by mass of commercially available Matrimide (manufactured by Huntsman Advanced Materials, Matrimid (registered trademark) 5218) was prepared as Composition A. An aqueous solution containing 0.1% by mass of commercially available PVA117 (trade name, manufactured by Kuraray Co., Ltd.) was prepared as Composition B.
- composition sets 101a are simultaneously applied to a polyacrylonitrile porous membrane (manufactured by GMT, polyacrylonitrile porous membrane is present on a non-woven fabric, the thickness is about 180 ⁇ m including the non-woven fabric) and dried simultaneously.
- the separation membrane 101 was produced (Table 2).
- Separation membranes 102 to 104 were prepared in the same manner as the separation membrane 101 except that the compositions A and B were changed to those in Table 1 (composition sets 102a, 103a, and 104a) (Table 2).
- TAC Triacetyl cellulose (trade name: NAC manufactured by Daicel)
- MEK Methyl ethyl ketone MC / MeOH: Methylene chloride / methanol (volume ratio 9: 1)
- PEG Polyethylene glycol (trade name: 81310, manufactured by Aldrich)
- Agarose trade name: Agarose H, manufactured by Nippon Gene Co., Ltd.)
- a separation membrane c11 was produced in the same manner as in Example 1 except that the composition set c11a in Table 1 without using the composition B was used (Table 2).
- the contact angle on the surface of the separation layer in this separation membrane can be evaluated as the surface contact angle of the separated separation layer body in the example.
- a lower surface contact angle means higher hydrophilicity.
- the separation membrane of the present invention has a hydrophilic layer to which high hydrophilicity is imparted, and exhibits a significantly prolonged membrane life with good separation selectivity (Examples 101 to 104, Comparative Example c11). See contrast). From this result, in the gas separation in the system containing BTX, the separation membrane of the present invention exhibits high performance, and it can reduce the operation cost due to the long life of the membrane and improve the work related to maintenance. I understand that there is.
- Example 2 (Example 2) -modularization- Using the separation membrane produced in Example 1, a spiral module was produced with reference to JP-A-5-168869. It was confirmed that the manufactured separation module of the present invention was good according to the performance of the built-in separation membrane.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Manufacturing & Machinery (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
支持層と該支持層の上側に形成された分離層とを具備するガス分離膜であって、前記分離層は前記支持層とは反対側に配置された親水性ポリマーを有してなる親水性層と支持層側の分離層本体とを具備してなるガス分離膜。
Description
本発明は、ガス分離膜、その製造方法、それを用いたガス分離膜モジュールに関する。
特定の高分子化合物から構成された膜によって、所望の気体成分を選択的に透過させ、その気体成分を分離する分離膜がある。その産業上の利用態様として、地球温暖化の問題と関連し、火力発電所やセメントプラント、製鉄所高炉等の大規模な二酸化炭素発生源からこれを分離回収することが検討されている。この膜分離技術は、比較的小さなエネルギーで達成できる環境問題の解決手段として着目されている。一方、天然ガスやバイオガス(生物の排泄物、有機質肥料、生分解性物質、汚水、ゴミ、エネルギー作物などの発酵、嫌気性消化により発生するガス)は主としてメタンと二酸化炭素の混合ガスである。その二酸化炭素等を除去する手段としても、上記膜分離法の利用が検討されている(特許文献1、2等参照)。
上述したような分離操作を施すべき混合ガスには相当量の水分が含まれていることがあり、これに対し分離膜を保護する必要がある。その観点から、ガス分離膜の表面を疎水性にする処理を施すことが提案されている(特許文献3参照)。
本発明者らは、特に二酸化炭素をメタン等から分離する際の技術課題に着目し、さまざまなガス分離特性や膜の物性変化、分離挙動について調査分析を行い、素材等に関する研究を行った。すると、ガス分離膜の寿命を左右する因子として、水分ではなく、むしろこの系の混合ガスにおいては、BTX(ベンゼン、トルエン、キシレン系有機成分)が関与していることを突き止めた。特に、ガス分離膜として溶解・拡散機構を利用する膜素材においてはその影響が大きく、特定の態様で分離膜の表面側を親水性ポリマーの層で構成することで、高いガス分離特性を維持したまま、膜寿命を長期化することができることを確認した。
上記の点を考慮し、本発明は、優れたガス透過性を有しながら、高いガス分離選択性をも実現し、さらにBTXが混入している混合ガスの分離に対して膜寿命が長期化されたガス分離膜、その製造方法、それを用いたガス分離膜モジュールの提供を目的とする。
上記の課題は以下の手段により達成された。
(1)支持層と該支持層の上側に形成された分離層とを具備するガス分離膜であって、前記分離層は前記支持層とは反対側に配置された親水性ポリマーを有してなる親水性層と支持層側の分離層本体とを具備してなるガス分離膜。
(2)前記親水性ポリマーが、ポリビニルアルコール、ポリアクリル酸、ポリスチレンスルホン酸、ポリアクリルアミド、ポリエチレングリコール、多糖類、及びゼラチンから選ばれる少なくとも一つを含む(1)に記載のガス分離膜。
(3)前記多糖類が、アガロース、デキストラン、キトサン、又はセルロースである(1)又は(2)に記載のガス分離膜。
(4)前記親水性層の膜厚が0.5μm以下である(1)~(3)のいずれか1項に記載のガス分離膜。
(5)前記親水性層の水を用いた表面接触角が60°以下である記載の(1)~(4)のいずれか1項に記載のガス分離膜。
(6)前記親水性層の水の表面接触角(αs)と前記分離層本体の水の接触角(αi)との差(αi-αs)が10°以上である(1)~(5)のいずれか1項に記載のガス分離膜。
(7)前記親水性層と分離層本体との間に、前記親水性層の構成成分と前記分離層本体の構成成分とが混合された混合層を有する(1)~(6)のいずれか1項に記載のガス分離膜。
(8)前記分離層本体の膜厚が0.05~20μmである記載の(1)~(7)のいずれか1項に記載のガス分離膜。
(9)前記分離層本体を構成する樹脂が、ポリイミド樹脂、ポリアミド樹脂、セルロース樹脂、ポリジメチルシロキサン樹脂、及びポリエチレングリコール樹脂からなる群から選ばれる(1)~(8)のいずれか1項に記載のガス分離膜。
(10)前記混合層の厚さが0.01~1μmである(1)~(9)のいずれか1項に記載のガス分離膜。。
(11)支持層と該支持層の上側に形成された分離層とを具備し、前記分離層が前記支持層とは反対側に配置された親水性ポリマーを有してなる親水性層と支持層側の分離層本体とを具備してなるガス分離膜の製造方法であって、
前記親水性層を構成する親水性ポリマーの溶液を調液する工程と、
前記分離層本体を構成する樹脂の溶液を調液する工程と、
前記両液を多層塗布する工程と
を含むガス分離膜の製造方法。
(12)前記親水性層を構成する親水性ポリマーの溶液を、前記分離層本体を構成する樹脂の溶液が塗布され両液が混合しない乾燥状態となる前に塗布する(11)に記載のガス分離膜の製造方法。
(13)前記親水性層を構成する親水性ポリマーの溶液における、該親水性ポリマーの濃度が、0.05質量%以上5質量%以下である(11)又は(12)に記載のガス分離膜の製造方法。
(14)前記分離層本体を構成する樹脂の溶液における、該樹脂の濃度が、0.5質量%以上30質量%以下である(11)~(13)のいずれか1項に記載のガス分離膜の製造方法。
(15)(1)~(10)のいずれかに記載のガス分離膜を有するガス分離膜モジュール。
(1)支持層と該支持層の上側に形成された分離層とを具備するガス分離膜であって、前記分離層は前記支持層とは反対側に配置された親水性ポリマーを有してなる親水性層と支持層側の分離層本体とを具備してなるガス分離膜。
(2)前記親水性ポリマーが、ポリビニルアルコール、ポリアクリル酸、ポリスチレンスルホン酸、ポリアクリルアミド、ポリエチレングリコール、多糖類、及びゼラチンから選ばれる少なくとも一つを含む(1)に記載のガス分離膜。
(3)前記多糖類が、アガロース、デキストラン、キトサン、又はセルロースである(1)又は(2)に記載のガス分離膜。
(4)前記親水性層の膜厚が0.5μm以下である(1)~(3)のいずれか1項に記載のガス分離膜。
(5)前記親水性層の水を用いた表面接触角が60°以下である記載の(1)~(4)のいずれか1項に記載のガス分離膜。
(6)前記親水性層の水の表面接触角(αs)と前記分離層本体の水の接触角(αi)との差(αi-αs)が10°以上である(1)~(5)のいずれか1項に記載のガス分離膜。
(7)前記親水性層と分離層本体との間に、前記親水性層の構成成分と前記分離層本体の構成成分とが混合された混合層を有する(1)~(6)のいずれか1項に記載のガス分離膜。
(8)前記分離層本体の膜厚が0.05~20μmである記載の(1)~(7)のいずれか1項に記載のガス分離膜。
(9)前記分離層本体を構成する樹脂が、ポリイミド樹脂、ポリアミド樹脂、セルロース樹脂、ポリジメチルシロキサン樹脂、及びポリエチレングリコール樹脂からなる群から選ばれる(1)~(8)のいずれか1項に記載のガス分離膜。
(10)前記混合層の厚さが0.01~1μmである(1)~(9)のいずれか1項に記載のガス分離膜。。
(11)支持層と該支持層の上側に形成された分離層とを具備し、前記分離層が前記支持層とは反対側に配置された親水性ポリマーを有してなる親水性層と支持層側の分離層本体とを具備してなるガス分離膜の製造方法であって、
前記親水性層を構成する親水性ポリマーの溶液を調液する工程と、
前記分離層本体を構成する樹脂の溶液を調液する工程と、
前記両液を多層塗布する工程と
を含むガス分離膜の製造方法。
(12)前記親水性層を構成する親水性ポリマーの溶液を、前記分離層本体を構成する樹脂の溶液が塗布され両液が混合しない乾燥状態となる前に塗布する(11)に記載のガス分離膜の製造方法。
(13)前記親水性層を構成する親水性ポリマーの溶液における、該親水性ポリマーの濃度が、0.05質量%以上5質量%以下である(11)又は(12)に記載のガス分離膜の製造方法。
(14)前記分離層本体を構成する樹脂の溶液における、該樹脂の濃度が、0.5質量%以上30質量%以下である(11)~(13)のいずれか1項に記載のガス分離膜の製造方法。
(15)(1)~(10)のいずれかに記載のガス分離膜を有するガス分離膜モジュール。
本発明のガス分離膜、その製造方法、それを用いたガス分離膜モジュールは、優れたガス透過性を有しながら、高いガス分離選択性をも実現し、さらにBTXが混入している混合ガスの分離に対して長寿命を示すという優れた作用効果を奏する。
本発明の上記及び他の特徴および利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
本発明の上記及び他の特徴および利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
本発明のガス分離膜は、支持層と該支持層の上側に形成された分離層とを具備するガス分離機能を有する複合膜であって、前記分離層が、支持層と反対側の親水性ポリマーを有してなる親水性層と、支持層側の分離層本体とを具備してなる。以下に、本発明について、その好ましい実施形態を中心に図面を参照しながら詳細に説明する。
[複合膜の構成]
図1は、本発明の好ましい実施形態であるガス分離複合膜10を模式的に示す断面図である。1はガス分離層、2は多孔質層からなる支持層である。図2は、本発明の好ましい実施形態であるガス分離複合膜20を模式的に示す断面図である。この実施形態では、ガス分離層1及び多孔質層2に加え、支持層として不織布層3が追加されている。このような形態の複合膜は、多孔質性の支持層の少なくとも表面に、上記のガス分離層をなす塗布液(ドープ)を塗布し(本明細書において塗布とは浸漬により表面に付着される態様を含む意味である。)、任意の方法で硬化させることが好ましい。なお、支持層上側とは、支持層とガス分離層との間に他の層が介在してもよい意味である。なお、上下の表現については、特に断らない限り、分離対象となるガスが供給される方向を「上」とし、分離されたガスが出される方向を「下」とする。
図1は、本発明の好ましい実施形態であるガス分離複合膜10を模式的に示す断面図である。1はガス分離層、2は多孔質層からなる支持層である。図2は、本発明の好ましい実施形態であるガス分離複合膜20を模式的に示す断面図である。この実施形態では、ガス分離層1及び多孔質層2に加え、支持層として不織布層3が追加されている。このような形態の複合膜は、多孔質性の支持層の少なくとも表面に、上記のガス分離層をなす塗布液(ドープ)を塗布し(本明細書において塗布とは浸漬により表面に付着される態様を含む意味である。)、任意の方法で硬化させることが好ましい。なお、支持層上側とは、支持層とガス分離層との間に他の層が介在してもよい意味である。なお、上下の表現については、特に断らない限り、分離対象となるガスが供給される方向を「上」とし、分離されたガスが出される方向を「下」とする。
本実施形態のガス分離複合膜10,20においては、ガス分離層の上側には親水性層1aが配置されている。その下側の分離層本体1bはガス分離機能を発揮し、上記親水性層1aのもつBTX遮断効果と相まって、優れたガス分離性と膜の長寿命とを両立して実現する。なお、本実施形態においては、さらに親水性層1aと分離層1bとの間に混合層1cが形成されている。混合層の詳細については後述する。
[親水性層]
本発明のガス分離膜において親水性層1aを形成する材料は、親水性ポリマーを含んでいれば特に限定されない。ここで親水性層とは、特定の成分で構成された厚みのある層として観念できる形態を指し、プラズマ処理や電子線処理のようなドライ処理、特定の化合物を用いた化学処理やグラフト処理で形成された処理面とは区別されるものである。典型的には後述する樹脂成分を含む溶液の塗布により形成された層であることが好ましい。親水性層に隣接する層と構成成分において明確に区別される必要はなく、成分組成が傾斜的に変化していてもよいが、グラフト処理のように構成成分の分子内で修飾された状態は含まない。
本発明のガス分離膜において親水性層1aを形成する材料は、親水性ポリマーを含んでいれば特に限定されない。ここで親水性層とは、特定の成分で構成された厚みのある層として観念できる形態を指し、プラズマ処理や電子線処理のようなドライ処理、特定の化合物を用いた化学処理やグラフト処理で形成された処理面とは区別されるものである。典型的には後述する樹脂成分を含む溶液の塗布により形成された層であることが好ましい。親水性層に隣接する層と構成成分において明確に区別される必要はなく、成分組成が傾斜的に変化していてもよいが、グラフト処理のように構成成分の分子内で修飾された状態は含まない。
(親水性ポリマー)
本実施形態において、親水性ポリマーは、ポリビニルアルコール、ポリアクリル酸、ポリスチレンスルホン酸、ポリアクリルアミド、ポリエチレングリコール、多糖類、及びゼラチンから選ばれる少なくとも一つを含むことが好ましい。ポリビニルアルコールの例としては下記などが挙げられる。RS2117(分子量;74,800)、PVA103(分子量;13,200、鹸化度;98~99)、PVA117(分子量;74,800、鹸化度;98~99)、PVA-HC(鹸化度;99.85以上)、PVA-205C(分子量;22,000、高純度、鹸化度;87~89)、M-205(分子量;22,000、鹸化度;87~89)、M-115(分子量;66,000、鹸化度;97~98)<以上、クラレ社製、商品名>。前記多糖類としては、アガロース、デキストラン、キトサン、セルロースが挙げられる。アガロースとしては、伊那寒天社製UM―11、ZY―6、SY―4、デキストランとしては、aldrich社製00891、キトサンとしては、aldrich社製740179、セルロースとしては、ダイセル社製L-70、LT-105などがあげられる。
本実施形態において、親水性ポリマーは、ポリビニルアルコール、ポリアクリル酸、ポリスチレンスルホン酸、ポリアクリルアミド、ポリエチレングリコール、多糖類、及びゼラチンから選ばれる少なくとも一つを含むことが好ましい。ポリビニルアルコールの例としては下記などが挙げられる。RS2117(分子量;74,800)、PVA103(分子量;13,200、鹸化度;98~99)、PVA117(分子量;74,800、鹸化度;98~99)、PVA-HC(鹸化度;99.85以上)、PVA-205C(分子量;22,000、高純度、鹸化度;87~89)、M-205(分子量;22,000、鹸化度;87~89)、M-115(分子量;66,000、鹸化度;97~98)<以上、クラレ社製、商品名>。前記多糖類としては、アガロース、デキストラン、キトサン、セルロースが挙げられる。アガロースとしては、伊那寒天社製UM―11、ZY―6、SY―4、デキストランとしては、aldrich社製00891、キトサンとしては、aldrich社製740179、セルロースとしては、ダイセル社製L-70、LT-105などがあげられる。
多糖類ないしゼラチンはその誘導体であってもよく、その例は特に限定されないが、典型的には、任意の置換基を導入した化合物が挙げられる。なかでも親水性を付与する観点から置換基としては、カルボキシル基、ホスホニル基、ホスホリル基、スルホ基、ホウ酸基、ヒドロキシル基、アミノ基などが好ましい。
(分子量)
本実施形態の親水性ポリマーの分子量は特に限定されないが、本発明では通常オリゴマーとして分類されるものも含めて親水性ポリマーという。具体的に、重量平均分子量で1.0×104~1.0×107が好ましく、1.0×104~5.0×106がより好ましい。この分子量を前記下限値以上とすることで、はじきなどによる欠陥を低減でき、性能を安定させることができ好ましい。一方、前記上限値以下とすることで、調液時に溶媒に溶解しやすくなり、製造適性が向上させることができ好ましい。
本実施形態の親水性ポリマーの分子量は特に限定されないが、本発明では通常オリゴマーとして分類されるものも含めて親水性ポリマーという。具体的に、重量平均分子量で1.0×104~1.0×107が好ましく、1.0×104~5.0×106がより好ましい。この分子量を前記下限値以上とすることで、はじきなどによる欠陥を低減でき、性能を安定させることができ好ましい。一方、前記上限値以下とすることで、調液時に溶媒に溶解しやすくなり、製造適性が向上させることができ好ましい。
分子量及び分散度は特に断らない限りGPC(ゲルろ過クロマトグラフィー)法を用いて測定した値とし、分子量はポリスチレン換算の重量平均分子量とする。GPC法に用いるカラムに充填されているゲルは芳香族化合物を繰り返し単位に持つゲルが好ましく、例えばスチレン-ジビニルベンゼン共重合体からなるゲルが挙げられる。カラムは2~6本連結させて用いることが好ましい。用いる溶媒は、テトラヒドロフラン等のエーテル系溶媒、N-メチルピロリドンのアミド系溶媒、クロロホルム等のハロゲン系溶媒、1,2-ジクロロベンゼン等の芳香族系溶媒が挙げられる。測定は、溶媒の流速が0.1~2mL/minの範囲で行うことが好ましく、0.5~1.5mL/minの範囲で行うことが最も好ましい。この範囲内で測定を行うことで、装置に負荷がかからず、さらに効率的に測定ができる。測定温度は10~50℃で行うことが好ましく、20~40℃で行うことが最も好ましい。使用可能温度が高いカラムを用いて50℃~200℃で測定をおこなうこともできる。なお、使用するカラム及びキャリアは測定対象となる高分子化合物の物性に応じて適宜選定することができる。
[接触角]
本発明において親水性とは、特に制限はなく、表面改質後に、最表面の水に対する接触角(αs)が、60°以下になっていることと定義することができ、50°以下であることが好ましい。下限値は特にないが、4°以上であることが実際的である。
水に対する接触角の測定方法としては、液滴法を選択することができる。液滴法は、1~4μLの水を膜表面に滴下し、滴下後、10秒後の液滴の様子を画像として撮影する。その際、液滴の画像の輪郭形状を円の一部と仮定し、円の中心を求め、円の接線と直線でなす角度を接触角として求めることができる。必要により、JIS R 3257を参照して測定条件等を設定してもよい。
本発明において親水性とは、特に制限はなく、表面改質後に、最表面の水に対する接触角(αs)が、60°以下になっていることと定義することができ、50°以下であることが好ましい。下限値は特にないが、4°以上であることが実際的である。
水に対する接触角の測定方法としては、液滴法を選択することができる。液滴法は、1~4μLの水を膜表面に滴下し、滴下後、10秒後の液滴の様子を画像として撮影する。その際、液滴の画像の輪郭形状を円の一部と仮定し、円の中心を求め、円の接線と直線でなす角度を接触角として求めることができる。必要により、JIS R 3257を参照して測定条件等を設定してもよい。
前記親水性層の水の表面接触角(αs)と、前記分離層本体の水の接触角(αi)との差(αi-αs)は、特に限定されないが、相対的に分離層本体1b(図1、図2)に対して、親水性層1aの親水性が高められていることが好ましい。より定量的に評価するなら、前記親水性層の水の表面接触角(αs)と、前記分離層本体を表面出ししたときの水の接触角(αi)との差(αi-αs)は、10°以上であることが好ましく、20°以上であることがより好ましい。表面出しするとは、分離層1から親水性層1aを剥ぎ取るように切除し、分離層本体bの一部をさらに削ぎ落とし、その露出面を形成することを言う。上記分離層本体の水の接触角(αi)は、その露出面について水の接触角を測定した値をいい、その測定方法は上記に準ずるものとする。(αi-αs)が前記範囲を下回る場合には、性能・寿命向上に対する明確な効果はみられなかった。上限値は特に限定されないが、100°以下であることが実際的である。
[親水性層及び分離層本体の厚さ]
前記分離層の親水性層において改質処理された部分の深さ方向の膜厚T1(図1、図2参照)は、0.5μm以下であることが好ましく、0.2μm以下であることがより好ましく、0.1μm以下であることがさらに好ましく、0.08μm以下であることがさらに好ましく、0.05μm以下であることが特に好ましい。下限値は特にないが、ポリマーで構成された層であることを考慮すると0.01μm以上であることが実際的である。この厚さを前記上限値以下とすることで、高いガス透過性を保ったまま、寿命を向上させることができ好ましい。
前記分離層の親水性層において改質処理された部分の深さ方向の膜厚T1(図1、図2参照)は、0.5μm以下であることが好ましく、0.2μm以下であることがより好ましく、0.1μm以下であることがさらに好ましく、0.08μm以下であることがさらに好ましく、0.05μm以下であることが特に好ましい。下限値は特にないが、ポリマーで構成された層であることを考慮すると0.01μm以上であることが実際的である。この厚さを前記上限値以下とすることで、高いガス透過性を保ったまま、寿命を向上させることができ好ましい。
分離層本体の厚さとしては、0.05~20μmであることが好ましく、0.1~10μmであることがより好ましい。この厚さを前記下限値以上とすることで、異物やはじきなどの欠陥が低減でき、性能が安定する点で好ましい。一方、前記上限値以下とすることで、ガス透過性能が高く保つことができ好ましい。
本明細書において膜ないし各層の厚さは、特に断らない限り、支持層を含めた膜全体を液体窒素で凍結した後、割断したサンプル、もしくは、ウルトラミクロトームによる切削などにより作成した超薄切片サンプルを、高倍率のTEMやSEMにより観察することで解析する。
[分離層本体の構成材料]
本発明のガス分離膜において、分離層本体は樹脂を含有してなることが好ましく、これに適用される材料は、以下にあげられるが、これらに限定されるわけではない。具体的には、ポリイミド樹脂、ポリアミド樹脂、セルロース樹脂、ポリジメチルシロキサン樹脂、ポリエチレングリコール樹脂であることが好ましい。
本発明のガス分離膜において、分離層本体は樹脂を含有してなることが好ましく、これに適用される材料は、以下にあげられるが、これらに限定されるわけではない。具体的には、ポリイミド樹脂、ポリアミド樹脂、セルロース樹脂、ポリジメチルシロキサン樹脂、ポリエチレングリコール樹脂であることが好ましい。
なお、セルロース樹脂など、樹脂の種類としてみると上記親水性層を構成するものと重複しうるものがあるが、その場合には、親水性層に用いるものには、相対的にみてより高い親水性が付与されていることが前提である。すなわち、セルロースを例にとると、親水性層に適したものは、親水性セルロースであり、分離膜本体に適したものは、非親水性ないしは疎水性セルロースということができる。親水性ないし疎水性の付与は適宜定法によればよく、例えば親水性を付与するためには、ヒドロキシル基やカルボキシル基などの極性基を有する置換基をポリマーの構成単位に有するものを利用することが挙げられる。逆に疎水性を高めるためには、アルキル基やアセチル基の非極性の置換基を構成単位に導入する態様が挙げられる。
また、より具体的には、Huntsman Advanced Materials社よりMatrimid(登録商標)の商標で販売されているMatrimid(Matrimid(登録商標)5218は、Matrimid(登録商標)の商標で販売されている特定のポリイミドポリマーを指す)およびHP Polymers GmbH社よりそれぞれ商品名P84および商品名P84HTで販売されているP84またはP84HT等のポリイミド類、セルロースアセテート、セルローストリアセテート、セルロースアセテートブチレート、セルロースプロピオネート、エチルセルロース、メチルセルロース、ニトロセルロース等のセルロース類、ポリジメチルシロキサン類、ポリエチレングリコール#200ジアクリレート(新中村化学社製)の重合したポリマーなどのポリエチレングリコール類、また、特表2010-513021に記載のポリマーなどを選択することができる。
上記分離層本体をなす樹脂の分子量は特に限定されないが、重量平均分子量で1.0×104~1.0×107が好ましく、1.0×104~5.0×106がより好ましい。この分子量を前記下限値以上とすることで、はじきなどによる欠陥を低減でき、性能を安定させることができ好ましい。一方、前記上限値以下とすることで、調液時に溶媒に溶解しやすくなり、製造適性が向上することができ好ましい。
[支持層]
支持層に好ましく適用される多孔質支持体は、機械的強度及び高気体透過性の付与に合致する目的のものであれば、特に限定されるものではなく有機、無機どちらの素材であっても構わないが、好ましくは有機高分子の多孔質膜であり、その厚さは1~3000μm、好ましくは5~500μmであり、より好ましくは5~300μmである。この多孔質膜の細孔構造は、通常平均細孔直径が10μm以下、好ましくは5μm以下、より好ましくは2μm以下であり、空孔率は好ましくは20~90%であり、より好ましくは30~90%である。また、その気体透過率は二酸化炭素透過速度で3×10-5cm3(STP)/cm・sec・cmHg以上であることが好ましい。多孔質膜の素材としては、従来公知の高分子、例えばポリエチレン、ポリプロピレン等のポリオレフィン系樹脂等、ポリテトラフルオロエチレン、ポリフッ化ビニル、ポリフッ化ビニリデン等の含フッ素樹脂等、ポリスチレン、酢酸セルロース、ポリウレタン、ポリアクリロニトリル、ポリフェニレンオキシド、ポリスルホン、ポリエーテルスルホン、ポリイミド、ポリアラミド等の各種樹脂を挙げることができる。なかでも、高い膜強度、高いガス透過性と分離選択性とを同時に達成する観点から、支持層が、ポリアクリロニトリル、ポリスルホン、ポリフェニレンオキシドからなるものであることが好ましい。多孔質膜の形状としては、平板状、スパイラル状、管状、中空糸状などいずれの形状をとることができる。
支持層に好ましく適用される多孔質支持体は、機械的強度及び高気体透過性の付与に合致する目的のものであれば、特に限定されるものではなく有機、無機どちらの素材であっても構わないが、好ましくは有機高分子の多孔質膜であり、その厚さは1~3000μm、好ましくは5~500μmであり、より好ましくは5~300μmである。この多孔質膜の細孔構造は、通常平均細孔直径が10μm以下、好ましくは5μm以下、より好ましくは2μm以下であり、空孔率は好ましくは20~90%であり、より好ましくは30~90%である。また、その気体透過率は二酸化炭素透過速度で3×10-5cm3(STP)/cm・sec・cmHg以上であることが好ましい。多孔質膜の素材としては、従来公知の高分子、例えばポリエチレン、ポリプロピレン等のポリオレフィン系樹脂等、ポリテトラフルオロエチレン、ポリフッ化ビニル、ポリフッ化ビニリデン等の含フッ素樹脂等、ポリスチレン、酢酸セルロース、ポリウレタン、ポリアクリロニトリル、ポリフェニレンオキシド、ポリスルホン、ポリエーテルスルホン、ポリイミド、ポリアラミド等の各種樹脂を挙げることができる。なかでも、高い膜強度、高いガス透過性と分離選択性とを同時に達成する観点から、支持層が、ポリアクリロニトリル、ポリスルホン、ポリフェニレンオキシドからなるものであることが好ましい。多孔質膜の形状としては、平板状、スパイラル状、管状、中空糸状などいずれの形状をとることができる。
この支持層は上述したように薄く、多孔質な素材であることが、十分なガス透過性を確保することができ好ましい。また、後述するガス分離層の優れたガス分離選択性を最大限に引き出すためにも、薄膜多孔質の形態が好ましい。一方、ガス分離膜の成形に高温・長時間等のシビアな反応条件が課される場合には、上述した薄く多孔質の支持層を損傷し、複合膜として十分な性能を発揮できない場合がある。かかる観点から、本発明が採用するラジカル架橋性のポリイミド化合物を利用したガス分離複合膜は穏和な条件で製膜することができ、優れた効果を発揮し、製造適正と、製品質との両面で高い性能を発揮しうるものである。
本発明においては、ガス分離層を形成する支持層の下部にさらに機械的強度を付与するために支持体が形成されていることが望ましい。その支持体としては、織布、不織布、ネット等が挙げられるが、製膜性およびコスト面から不織布が好適に用いられる。不織布としてはポリエステル、ポリプロピレン、ポリアクリロニトリル、ポリエチレン、ポリアミド等からなる繊維を単独あるいは複数を組み合わせて用いてもよい。不織布は、例えば、水に均一に分散した主体繊維とバインダー繊維を円網や長網等で抄造し、ドライヤーで乾燥することにより製造できる。また、毛羽を除去したり機械的性質を向上させたり等の目的で、不織布を2本のロール挟んで圧熱加工を施すことも好ましい。
[混合層]
本発明の分離膜においては、前記親水性層と分離層本体との間に、前記親水性層の構成成分と前記分離層本体の構成成分とが混合された混合層を有することが好ましい。混合層を構成する成分の好ましいものは、前記親水性層及び分離層本体の好ましい材料として述べたものと同じである。親水性層の構成成分と分離層本体の構成成分との混合比は特に限定されないが、親水性層の構成成分の質量(w1)及び分離層本体の構成成分の質量(w2)が次の関係にあることが好ましい。すなわち、w1:w2=5:95~50:50であることが好ましく、5:95~40:60であることがより好ましい。
混合層の厚さT2は特に限定されないが、0.01~1μmであることが好ましく、0.01~0.5μmであることがより好ましい。本混合層は、分離膜において親水性層と分離層本体との密着性付与による性能安定化という機能を有するが、上記厚さとすることによりその機能が一層良好に発揮され好ましい。
本発明の分離膜においては、前記親水性層と分離層本体との間に、前記親水性層の構成成分と前記分離層本体の構成成分とが混合された混合層を有することが好ましい。混合層を構成する成分の好ましいものは、前記親水性層及び分離層本体の好ましい材料として述べたものと同じである。親水性層の構成成分と分離層本体の構成成分との混合比は特に限定されないが、親水性層の構成成分の質量(w1)及び分離層本体の構成成分の質量(w2)が次の関係にあることが好ましい。すなわち、w1:w2=5:95~50:50であることが好ましく、5:95~40:60であることがより好ましい。
混合層の厚さT2は特に限定されないが、0.01~1μmであることが好ましく、0.01~0.5μmであることがより好ましい。本混合層は、分離膜において親水性層と分離層本体との密着性付与による性能安定化という機能を有するが、上記厚さとすることによりその機能が一層良好に発揮され好ましい。
[ガス分離膜の製造方法]
本発明のガス分離膜は、支持層と該支持層の上側に形成された分離層とを具備し、前記分離層が前記支持層とは反対側に配置された親水性ポリマーを有してなる親水性層と支持層側の分離層本体とを具備してなり、
前記親水性層を構成する親水性ポリマーの溶液を調液する工程と、
前記分離層本体を構成する樹脂の溶液を調液する工程と、
前記両液を多層塗布する工程とを含む製造方法により製造されることが好ましい。
本発明のガス分離膜は、支持層と該支持層の上側に形成された分離層とを具備し、前記分離層が前記支持層とは反対側に配置された親水性ポリマーを有してなる親水性層と支持層側の分離層本体とを具備してなり、
前記親水性層を構成する親水性ポリマーの溶液を調液する工程と、
前記分離層本体を構成する樹脂の溶液を調液する工程と、
前記両液を多層塗布する工程とを含む製造方法により製造されることが好ましい。
(親水性ポリマーの溶液)
・溶媒
前記親水性ポリマーを溶解させる溶媒は特に限定されないが、親水性溶媒であることが好ましい。ここでいう親水性溶媒とは、ポリマーハンドブック(P.688~694)に掲載されているSP値が25(MPa0.5)以上の溶媒をいう。具体的には、水や、メタノール、エタノールなどのアルコール類や、ピロリジンなどがあげられる。
・溶媒
前記親水性ポリマーを溶解させる溶媒は特に限定されないが、親水性溶媒であることが好ましい。ここでいう親水性溶媒とは、ポリマーハンドブック(P.688~694)に掲載されているSP値が25(MPa0.5)以上の溶媒をいう。具体的には、水や、メタノール、エタノールなどのアルコール類や、ピロリジンなどがあげられる。
・濃度
親水性ポリマーを含有させる濃度は特に限定されないが、0.05質量%以上であることがより好ましく、0.075質量%以上であることがより好ましく、0.1質量%以上であることが特に好ましい。上限値は特に限定されないが、5質量%以下であることが好ましく、2.5質量%以下であることがより好ましく、1質量%以下であることが特に好ましい。この濃度を前記下限値以上とすることで、はじきなどによる欠陥なく製膜ができ好ましい。一方、前記上限値以下とすることで、薄く製膜することができ好ましい。なお、本発明においては、本発明の効果を妨げない限り、上記親水性ポリマーを二種以上併用してもよく、これ以外の添加剤等を使用してもよい。
親水性ポリマーを含有させる濃度は特に限定されないが、0.05質量%以上であることがより好ましく、0.075質量%以上であることがより好ましく、0.1質量%以上であることが特に好ましい。上限値は特に限定されないが、5質量%以下であることが好ましく、2.5質量%以下であることがより好ましく、1質量%以下であることが特に好ましい。この濃度を前記下限値以上とすることで、はじきなどによる欠陥なく製膜ができ好ましい。一方、前記上限値以下とすることで、薄く製膜することができ好ましい。なお、本発明においては、本発明の効果を妨げない限り、上記親水性ポリマーを二種以上併用してもよく、これ以外の添加剤等を使用してもよい。
(分離層本体樹脂の溶液)
・溶媒
前記分離層本体を構成する樹脂を溶解させる溶媒は特に限定されないが、
(1)エステル類、例えば酢酸エチル、酢酸-n-ブチル、酢酸イソブチル、ギ酸アミル、酢酸イソアミル、酢酸イソブチル、プロピオン酸ブチル、酪酸イソプロピル、酪酸エチル、酪酸ブチル、アルキルエステル類、乳酸メチル、乳酸エチル、オキシ酢酸メチル、オキシ酢酸エチル、オキシ酢酸ブチル、メトキシ酢酸メチル、メトキシ酢酸エチル、メトキシ酢酸ブチル、エトキシ酢酸メチル、エトキシ酢酸エチル、3-オキシプロピオン酸メチル、3-オキシプロピオン酸エチルなどの3-オキシプロピオン酸アルキルエステル類;3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、2-オキシプロピオン酸メチル、2-オキシプロピオン酸エチル、2-オキシプロピオン酸プロピル、2-メトキシプロピオン酸メチル、2-メトキシプロピオン酸エチル、2-メトキシプロピオン酸プロピル、2-エトキシプロピオン酸メチル、2-エトキシプロピオン酸エチル、2-オキシ-2-メチルプロピオン酸メチル、2-オキシ-2-メチルプロピオン酸エチル、2-メトキシ-2-メチルプロピオン酸メチル、2-エトキシ-2-メチルプロピオン酸エチル、ピルビン酸メチル、ピルビン酸エチル、ピルビン酸プロピル、アセト酢酸メチル、アセト酢酸エチル、2-オキソブタン酸メチル、2-オキソブタン酸エチル等;
(2)エーテル類、例えばジエチレングリコールジメチルエーテル、テトラヒドロフラン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、メチルセロソルブアセテート、エチルセロソルブアセテート、ジエチレングリコールモノメチルエーテル、プロピレングリコールメチルエーテルアセテート、等;
(3)ケトン類、例えばメチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、2-ヘプタノン、3-ヘプタノン等;芳香族炭化水素類、例えばトルエン、キシレシ
等が挙げられる。
・溶媒
前記分離層本体を構成する樹脂を溶解させる溶媒は特に限定されないが、
(1)エステル類、例えば酢酸エチル、酢酸-n-ブチル、酢酸イソブチル、ギ酸アミル、酢酸イソアミル、酢酸イソブチル、プロピオン酸ブチル、酪酸イソプロピル、酪酸エチル、酪酸ブチル、アルキルエステル類、乳酸メチル、乳酸エチル、オキシ酢酸メチル、オキシ酢酸エチル、オキシ酢酸ブチル、メトキシ酢酸メチル、メトキシ酢酸エチル、メトキシ酢酸ブチル、エトキシ酢酸メチル、エトキシ酢酸エチル、3-オキシプロピオン酸メチル、3-オキシプロピオン酸エチルなどの3-オキシプロピオン酸アルキルエステル類;3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、2-オキシプロピオン酸メチル、2-オキシプロピオン酸エチル、2-オキシプロピオン酸プロピル、2-メトキシプロピオン酸メチル、2-メトキシプロピオン酸エチル、2-メトキシプロピオン酸プロピル、2-エトキシプロピオン酸メチル、2-エトキシプロピオン酸エチル、2-オキシ-2-メチルプロピオン酸メチル、2-オキシ-2-メチルプロピオン酸エチル、2-メトキシ-2-メチルプロピオン酸メチル、2-エトキシ-2-メチルプロピオン酸エチル、ピルビン酸メチル、ピルビン酸エチル、ピルビン酸プロピル、アセト酢酸メチル、アセト酢酸エチル、2-オキソブタン酸メチル、2-オキソブタン酸エチル等;
(2)エーテル類、例えばジエチレングリコールジメチルエーテル、テトラヒドロフラン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、メチルセロソルブアセテート、エチルセロソルブアセテート、ジエチレングリコールモノメチルエーテル、プロピレングリコールメチルエーテルアセテート、等;
(3)ケトン類、例えばメチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、2-ヘプタノン、3-ヘプタノン等;芳香族炭化水素類、例えばトルエン、キシレシ
等が挙げられる。
・濃度
分離層本体の構成樹脂を含有させる濃度は特に限定されないが、0.5質量%以上であることがより好ましく、0.75質量%以上であることがより好ましく、1質量%以上であることが特に好ましい。上限値は特に限定されないが、30質量%以下であることが好ましく、25質量%以下であることがより好ましく、20質量%以下であることが特に好ましい。この濃度を前記下限値以上とすることで、支持体へ染み込みすぎず製膜することができ好ましい。一方、前記上限値以下とすることで、液粘度が向上しすぎず塗布適性を保ったまま製膜することができ好ましい。なお、本発明においては、本発明の効果を妨げない限り、上記特定モノマーを二種以上併用してもよく、これ以外の添加剤等を使用してもよい。
分離層本体の構成樹脂を含有させる濃度は特に限定されないが、0.5質量%以上であることがより好ましく、0.75質量%以上であることがより好ましく、1質量%以上であることが特に好ましい。上限値は特に限定されないが、30質量%以下であることが好ましく、25質量%以下であることがより好ましく、20質量%以下であることが特に好ましい。この濃度を前記下限値以上とすることで、支持体へ染み込みすぎず製膜することができ好ましい。一方、前記上限値以下とすることで、液粘度が向上しすぎず塗布適性を保ったまま製膜することができ好ましい。なお、本発明においては、本発明の効果を妨げない限り、上記特定モノマーを二種以上併用してもよく、これ以外の添加剤等を使用してもよい。
(製膜方法)
本発明の好ましいガス分離膜の製造方法は、前記親水性層を構成する親水性ポリマーの溶液を調液する工程と、前記分離層本体を構成する樹脂の溶液を調液する工程と、前記両液を多層塗布する工程とを含んでなる。本実施形態においては、前記両液を準備した後、多層塗布、すなわち適切な時期及び順序で支持体上に両液を塗布して塗布膜を設けることが好ましい。前記親水性層を構成する親水性ポリマーの溶液と、前記分離層本体を構成する樹脂の溶液を同時に塗布する場合は、支持体上に、前記分離層本体を構成する樹脂の溶液が塗布されて、さらにその上に、前記親水性層を構成する親水性ポリマーの溶液が塗布されるように行うことが好ましい。
また、逐次塗布する場合は、支持体上に、前記分離層本体を構成する樹脂の溶液を塗布し、溶媒が完全に乾燥する前に前記親水性層を構成する親水性ポリマーの溶液を塗布するようにすることが好ましい。
本発明の好ましいガス分離膜の製造方法は、前記親水性層を構成する親水性ポリマーの溶液を調液する工程と、前記分離層本体を構成する樹脂の溶液を調液する工程と、前記両液を多層塗布する工程とを含んでなる。本実施形態においては、前記両液を準備した後、多層塗布、すなわち適切な時期及び順序で支持体上に両液を塗布して塗布膜を設けることが好ましい。前記親水性層を構成する親水性ポリマーの溶液と、前記分離層本体を構成する樹脂の溶液を同時に塗布する場合は、支持体上に、前記分離層本体を構成する樹脂の溶液が塗布されて、さらにその上に、前記親水性層を構成する親水性ポリマーの溶液が塗布されるように行うことが好ましい。
また、逐次塗布する場合は、支持体上に、前記分離層本体を構成する樹脂の溶液を塗布し、溶媒が完全に乾燥する前に前記親水性層を構成する親水性ポリマーの溶液を塗布するようにすることが好ましい。
本実施形態においては、前記親水性層を構成する親水性ポリマーの溶液を、前記分離層本体を構成する樹脂の溶液が塗布され両液が混合しない乾燥状態となる前に塗布することが好ましい。このようにすることで、前記の混合層を好適に形成することができ好ましい。上記混合層を生じない乾燥状態とは厳密なものでなくてもよいが、混合層の効果が発現しない程度で形成が実質的に認められない程度の乾燥状態と言うことができる。混合層の形成の程度で乾燥状態の好ましい範囲をみるとき、上述のようにその厚さT2の好ましい範囲に基づいて評価してもよい。なお、混合層の同定は、元素マッピング(Energy Dispersive x-ray Spectroscopy(EDX)あるいはTime- of-flight
secondary ion mass spectrometer[TOF-SIMS])により行うことができる。上層と下層に存在する独自の元素をマッピングした際に、各元素が均一に分散していればよく、海島のようになっている場合やどちらか一方の元素のみあるような場合は、混合層とはみなさないという形で評価することができる。
secondary ion mass spectrometer[TOF-SIMS])により行うことができる。上層と下層に存在する独自の元素をマッピングした際に、各元素が均一に分散していればよく、海島のようになっている場合やどちらか一方の元素のみあるような場合は、混合層とはみなさないという形で評価することができる。
[ガス混合物の分離方法]
本発明のガス混合物の分離方法は、少なくとも一種の酸性ガスを含むガス混合物から酸性ガスを気体分離膜によって分離する方法において、本発明のガス分離膜又は前記複合膜を用いることができる酸性ガスが二酸化炭素又は硫化水素であることが好ましい。このように、本発明の分離膜はガス(気体)を分離する膜であるが、超臨界流体等の分離膜であってもよい。対象となる超臨界流体としては、超臨界二酸化炭素が挙げられる。
本発明のガス混合物の分離方法は、少なくとも一種の酸性ガスを含むガス混合物から酸性ガスを気体分離膜によって分離する方法において、本発明のガス分離膜又は前記複合膜を用いることができる酸性ガスが二酸化炭素又は硫化水素であることが好ましい。このように、本発明の分離膜はガス(気体)を分離する膜であるが、超臨界流体等の分離膜であってもよい。対象となる超臨界流体としては、超臨界二酸化炭素が挙げられる。
本発明の分離膜を用いる気体の分離方法において、原料の気体混合物の成分は特に規定されるものではないが、ガス混合物の主成分が二酸化炭素及びメタン、又は二酸化炭素及び水素であることが好ましい。ガス混合物が二酸化炭素や硫化水素のような酸性ガス共存下で特に優れた性能を発揮し、好ましくは二酸化炭素とメタン等の炭化水素、二酸化炭素と窒素、二酸化炭素と水素の分離において優れた性能を発揮する。そして、上述のとおり、分離する混合ガス中にBTXが含まれるような場合に本発明が高い効果を発揮して、良好なガス分離性を維持して、膜の長寿命化を図ることができる。
とりわけ、供給されるガスが二酸化炭素とメタンとの混合ガスであり、40℃、8気圧における二酸化炭素の透過速度が5GPU超であることが好ましく、5~500GPUであることがより好ましい。二酸化炭素とメタンとの透過速度比(PCO2/PCH4)は10以上であることが好ましく、15以上であることがより好ましい。
[ガス分離膜モジュール・気体分離装置]
本発明のガス分離膜は多孔質支持体と組み合わせた複合膜とすることが好ましく、更にはこれを用いた分離膜モジュールとすることが好ましい。また、本発明のガス分離膜、複合膜又は分離膜モジュールを用いて、ガスを分離回収又は分離精製させるための手段を有する気体分離装置とすることができる。
本発明のガス分離膜はモジュール化して好適に用いることができる。モジュールの例としては、スパイラル型、中空糸型、プリーツ型、管状型、プレート&フレーム型などが挙げられる。また本発明の高分子膜は、例えば、特開2007-297605号に記載のような吸収液と併用した膜・吸収ハイブリッド法としての気体分離回収装置に適用してもよい。
本発明のガス分離膜は多孔質支持体と組み合わせた複合膜とすることが好ましく、更にはこれを用いた分離膜モジュールとすることが好ましい。また、本発明のガス分離膜、複合膜又は分離膜モジュールを用いて、ガスを分離回収又は分離精製させるための手段を有する気体分離装置とすることができる。
本発明のガス分離膜はモジュール化して好適に用いることができる。モジュールの例としては、スパイラル型、中空糸型、プリーツ型、管状型、プレート&フレーム型などが挙げられる。また本発明の高分子膜は、例えば、特開2007-297605号に記載のような吸収液と併用した膜・吸収ハイブリッド法としての気体分離回収装置に適用してもよい。
以下に実施例に基づき本発明についてさらに詳細に説明するが、本発明がこれに限定して解釈されるものではない。
(実施例1・比較例1)
<分離膜の作製>
市販のMatrimide(Huntsman Advanced Materials社製、Matrimid(登録商標)5218)5質量%を含むTHF(テトラヒドロフラン)溶液を組成物Aとして調製した。市販のPVA117(クラレ社製、商品名)の0.1質量%を含む水溶液を組成物Bとして調製した。これら組成物セット101aを、ポリアクリロニトリル多孔質膜(GMT社製、不織布上にポリアクリロニトリル多孔質膜が存在、不織布含め、膜厚は約180μm厚)を支持体として、多層同時塗布し、乾燥させることで、分離膜101を作製した(表2)。
組成物A、組成物Bを表1のもの(組成物セット102a,103a、104a)に変更した以外は分離膜101と同様にして、分離膜102~104を作製した(表2)。
(実施例1・比較例1)
<分離膜の作製>
市販のMatrimide(Huntsman Advanced Materials社製、Matrimid(登録商標)5218)5質量%を含むTHF(テトラヒドロフラン)溶液を組成物Aとして調製した。市販のPVA117(クラレ社製、商品名)の0.1質量%を含む水溶液を組成物Bとして調製した。これら組成物セット101aを、ポリアクリロニトリル多孔質膜(GMT社製、不織布上にポリアクリロニトリル多孔質膜が存在、不織布含め、膜厚は約180μm厚)を支持体として、多層同時塗布し、乾燥させることで、分離膜101を作製した(表2)。
組成物A、組成物Bを表1のもの(組成物セット102a,103a、104a)に変更した以外は分離膜101と同様にして、分離膜102~104を作製した(表2)。
MEK:メチルエチルケトン
MC/MeOH:塩化メチレン/メタノール(体積比 9:1)
PEG:ポリエチレングリコール(アルドリッチ社製 商品名:81310)
アガロース(ニッポンジーン社製 商品名:AgaroseH)
組成物Bを用いない表1の組成物セットc11aを用いる以外は、実施例1と同様にして、分離膜c11を作製した(表2)。なお、この分離膜における分離層表面の接触角は、実施例のものにおいて、表面出しした分離層本体の表面接触角として評価することができる。
-ガス分離評価1-
前記で製膜した各分離膜を用いて二酸化炭素ガスの分離性能について、以下のように評価した。
支持層ごと直径47mmに切り取り、透過側にPTFEメンブレンフィルターを置いて透過試験サンプルを作製した。テストガスとしてCO2/CH4:50/50(体積比)の混合ガスを相対湿度0%、流量300ml/分、温度40℃、全圧200kPaで、前記の各サンプル(有効面積2.40cm2)に供給し、透過側にArガス(流量90ml/分)をフローさせた。透過してきたガスをガスクロマトグラフで分析し、CO2透過速度と分離係数を算出した。その値を表2に示す。
前記で製膜した各分離膜を用いて二酸化炭素ガスの分離性能について、以下のように評価した。
支持層ごと直径47mmに切り取り、透過側にPTFEメンブレンフィルターを置いて透過試験サンプルを作製した。テストガスとしてCO2/CH4:50/50(体積比)の混合ガスを相対湿度0%、流量300ml/分、温度40℃、全圧200kPaで、前記の各サンプル(有効面積2.40cm2)に供給し、透過側にArガス(流量90ml/分)をフローさせた。透過してきたガスをガスクロマトグラフで分析し、CO2透過速度と分離係数を算出した。その値を表2に示す。
-ガス分離評価2-
ガス組成をCO2/CH4/BTX:13/86.9/0.1(体積比)にした以外は、ガス分離評価1と同様にし、分離性能を測定した。その値を表2に示す。
BTX:ベンゼン、トルエン、キシレンの等量(質量)混合物
ガス組成をCO2/CH4/BTX:13/86.9/0.1(体積比)にした以外は、ガス分離評価1と同様にし、分離性能を測定した。その値を表2に示す。
BTX:ベンゼン、トルエン、キシレンの等量(質量)混合物
-層厚評価-
製膜した各分離膜を、液体窒素中で凍結割断することにより、膜断面を出し、断面SEM画像を撮影・解析することで、親水性層(T1)、混合層(T2)、分離層本体の厚みを評価した。その結果を表2に示す。
製膜した各分離膜を、液体窒素中で凍結割断することにより、膜断面を出し、断面SEM画像を撮影・解析することで、親水性層(T1)、混合層(T2)、分離層本体の厚みを評価した。その結果を表2に示す。
-接触角評価-
前記で製膜した各分離膜の平滑をとり、水を対象液とし、接触角計(DM-501[商品名]、協和界面科学社製)を用いることで、表面接触角を測定した(測定温度:25℃)。その結果を表2に示す。
前記で製膜した各分離膜の平滑をとり、水を対象液とし、接触角計(DM-501[商品名]、協和界面科学社製)を用いることで、表面接触角を測定した(測定温度:25℃)。その結果を表2に示す。
-膜寿命-
ガス分離評価2において、10時間後の分離選択性の減少率を、本願の膜寿命として、評価した。その結果を表2に示す。
ガス分離評価2において、10時間後の分離選択性の減少率を、本願の膜寿命として、評価した。その結果を表2に示す。
*1 透過流速単位:1×10-6cm3(STP)/(s・cm2・cmHg)
*2 α=Q(CO2)/Q(CH4)
*2 α=Q(CO2)/Q(CH4)
表面接触角が低い方が親水性が高いことを意味する。
本発明の分離膜は、高い親水性が付与された親水性層を有し、良好な分離選択性とともに、大幅に長期化された膜寿命を示した(実施例101~104、比較例c11を対比参照)。この結果より、BTXを含む系におけるガス分離において、本発明の分離膜は高い性能を発揮し、しかもその膜寿命の長さからオペレーションコストを削減するとともに、メンテナンスに係る作業を改善しうるものであることが分かる。
本発明の分離膜は、高い親水性が付与された親水性層を有し、良好な分離選択性とともに、大幅に長期化された膜寿命を示した(実施例101~104、比較例c11を対比参照)。この結果より、BTXを含む系におけるガス分離において、本発明の分離膜は高い性能を発揮し、しかもその膜寿命の長さからオペレーションコストを削減するとともに、メンテナンスに係る作業を改善しうるものであることが分かる。
(実施例2)
-モジュール化-
実施例1で作製した分離膜を用いて、特開平5-168869を参考に、スパイラル型モジュールを作製した。作製した本発明の分離モジュールは、内蔵する分離膜の性能の通り良好なものであることを確認した。
-モジュール化-
実施例1で作製した分離膜を用いて、特開平5-168869を参考に、スパイラル型モジュールを作製した。作製した本発明の分離モジュールは、内蔵する分離膜の性能の通り良好なものであることを確認した。
本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものでなく、添付の請求項の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
本願は、2011年11月25日に日本で特許出願された特願2011-258325に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。
1 ガス分離層
1a 親水性層
1b 分離層本体
1c 混合層
2 支持層(多孔質層)
3 不織布層
10、20 ガス分離膜
1a 親水性層
1b 分離層本体
1c 混合層
2 支持層(多孔質層)
3 不織布層
10、20 ガス分離膜
Claims (15)
- 支持層と該支持層の上側に形成された分離層とを具備するガス分離膜であって、前記分離層は前記支持層とは反対側に配置された親水性ポリマーを有してなる親水性層と支持層側の分離層本体とを具備してなるガス分離膜。
- 前記親水性ポリマーが、ポリビニルアルコール、ポリアクリル酸、ポリスチレンスルホン酸、ポリアクリルアミド、ポリエチレングリコール、多糖類、及びゼラチンから選ばれる少なくとも一つを含む請求項1に記載のガス分離膜。
- 前記多糖類が、アガロース、デキストラン、キトサン、又はセルロースである請求項1又は2に記載のガス分離膜。
- 前記親水性層の膜厚が0.5μm以下である請求項1~3のいずれか1項に記載のガス分離膜。
- 前記親水性層の水を用いた表面接触角が60°以下である記載の請求項1~4のいずれか1項に記載のガス分離膜。
- 前記親水性層の水の表面接触角(αs)と前記分離層本体の水の接触角(αi)との差(αi-αs)が10°以上である請求項1~5のいずれか1項に記載のガス分離膜。
- 前記親水性層と分離層本体との間に、前記親水性層の構成成分と前記分離層本体の構成成分とが混合された混合層を有する請求項1~6のいずれか1項に記載のガス分離膜。
- 前記分離層本体の膜厚が0.05~20μmである請求項1~7のいずれか1項に記載のガス分離膜。
- 前記分離層本体を構成する樹脂が、ポリイミド樹脂、ポリアミド樹脂、セルロース樹脂、ポリジメチルシロキサン樹脂、及びポリエチレングリコール樹脂からなる群から選ばれる請求項1~8のいずれか1項に記載のガス分離膜。
- 前記混合層の厚さが0.01~1μmである請求項7~9のいずれか1項に記載のガス分離膜。
- 支持層と該支持層の上側に形成された分離層とを具備し、前記分離層が前記支持層とは反対側に配置された親水性ポリマーを有してなる親水性層と支持層側の分離層本体とを具備してなるガス分離膜の製造方法であって、
前記親水性層を構成する親水性ポリマーの溶液を調液する工程と、
前記分離層本体を構成する樹脂の溶液を調液する工程と、
前記両液を多層塗布する工程と
を含むガス分離膜の製造方法。 - 前記親水性層を構成する親水性ポリマーの溶液を、前記分離層本体を構成する樹脂の溶液が塗布され両液が混合しない乾燥状態となる前に塗布する請求項11に記載のガス分離膜の製造方法。
- 前記親水性層を構成する親水性ポリマーの溶液における、該親水性ポリマーの濃度が、0.05質量%以上5質量%以下である請求項11又は12に記載のガス分離膜の製造方法。
- 前記分離層本体を構成する樹脂の溶液における、該樹脂の濃度が、0.5質量%以上30質量%以下である請求項11~13のいずれか1項に記載のガス分離膜の製造方法。
- 請求項1~10のいずれかに記載のガス分離膜を有するガス分離膜モジュール。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/287,273 US9498755B2 (en) | 2011-11-25 | 2014-05-27 | Gas separation membrane, method of producing the same, and gas separating membrane module using the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-258325 | 2011-11-25 | ||
JP2011258325A JP2013111507A (ja) | 2011-11-25 | 2011-11-25 | ガス分離膜、その製造方法、それを用いたガス分離膜モジュール |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/287,273 Continuation US9498755B2 (en) | 2011-11-25 | 2014-05-27 | Gas separation membrane, method of producing the same, and gas separating membrane module using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013077418A1 true WO2013077418A1 (ja) | 2013-05-30 |
Family
ID=48469859
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/080351 WO2013077418A1 (ja) | 2011-11-25 | 2012-11-22 | ガス分離膜、その製造方法、それを用いたガス分離膜モジュール |
Country Status (3)
Country | Link |
---|---|
US (1) | US9498755B2 (ja) |
JP (1) | JP2013111507A (ja) |
WO (1) | WO2013077418A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014001796A1 (en) * | 2012-06-26 | 2014-01-03 | Fujifilm Manufacturing Europe Bv | Gas separation membranes with intermixed layers |
WO2015015802A1 (ja) * | 2013-07-30 | 2015-02-05 | 富士フイルム株式会社 | 酸性ガス分離用積層体および該積層体を備えた酸性ガス分離用モジュール |
WO2015015803A1 (ja) * | 2013-07-30 | 2015-02-05 | 富士フイルム株式会社 | 酸性ガス分離用積層体および該積層体を備えた酸性ガス分離用モジュール |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2682178B1 (en) | 2011-02-28 | 2021-01-27 | Nitto Denko Corporation | Oil-repellant ventilation filter |
JP6222625B2 (ja) * | 2012-02-16 | 2017-11-01 | 富士フイルム株式会社 | 複合型分離膜、それを用いた分離膜モジュール |
JP6037643B2 (ja) * | 2012-04-06 | 2016-12-07 | 日東電工株式会社 | 撥油性が付与された通気フィルム |
JP5490281B2 (ja) * | 2012-06-20 | 2014-05-14 | 富士フイルム株式会社 | 酸性ガス分離モジュール、及び酸性ガス分離システム |
CN103537205B (zh) * | 2013-09-27 | 2016-03-16 | 中国科学院广州化学研究所 | 一种芳纶ⅲ/聚乙烯醇共混气体分离膜及其制备方法 |
JP6130607B2 (ja) | 2014-08-11 | 2017-05-17 | 住友化学株式会社 | Co2ガス分離膜用組成物、co2ガス分離膜及びその製造方法並びにco2ガス分離膜モジュール |
US10744454B2 (en) | 2014-11-18 | 2020-08-18 | Sumitomo Chemical Company, Limited | Carbon dioxide gas separation membrane, method for manufacturing same, and carbon dioxide gas separation membrane module |
WO2017030923A1 (en) * | 2015-08-17 | 2017-02-23 | Emd Millipore Corporation | Agarose ultrafiltration membrane composites for size based separations |
MY186087A (en) * | 2015-10-22 | 2021-06-21 | Uop Llc | Dual layer-coated membranes for gas separations |
WO2017098916A1 (ja) * | 2015-12-07 | 2017-06-15 | 東洋ゴム工業株式会社 | 酸性ガス含有ガス処理用分離膜、及び酸性ガス含有ガス処理用分離膜の製造方法 |
WO2018159563A1 (ja) * | 2017-02-28 | 2018-09-07 | 富士フイルム株式会社 | 分離用複合膜、分離膜モジュール、分離装置、分離膜形成用組成物、及び分離用複合膜の製造方法 |
JP6996049B2 (ja) | 2017-12-04 | 2022-01-17 | エルジー・ケム・リミテッド | 気体分離膜活性層形成用の組成物の製造方法、これによって製造された気体分離膜活性層形成用の組成物、気体分離膜の製造方法および気体分離膜 |
CN112703395A (zh) * | 2018-08-10 | 2021-04-23 | 费加罗技研株式会社 | 气体检测器 |
JP7057576B2 (ja) * | 2019-05-17 | 2022-04-20 | フィガロ技研株式会社 | ガス検出装置及びガス検出方法 |
CN115768545A (zh) * | 2020-07-06 | 2023-03-07 | 株式会社新生能源研究 | 气体分离方法和装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5811006A (ja) * | 1981-07-10 | 1983-01-21 | Ube Ind Ltd | ポリイミド複合分離膜の製造方法 |
JPH06154541A (ja) * | 1992-11-20 | 1994-06-03 | Agency Of Ind Science & Technol | 二酸化炭素分離膜の製造方法 |
JPH1176778A (ja) * | 1997-09-05 | 1999-03-23 | Nok Corp | ポリエーテルイミド除湿膜 |
JP2005254087A (ja) * | 2004-03-10 | 2005-09-22 | Konica Minolta Medical & Graphic Inc | 多層同時塗布方法 |
JP2006130453A (ja) * | 2004-11-08 | 2006-05-25 | Niigata Univ | ガス・蒸気分離用液体膜及びその製造方法、ガス・蒸気膜分離装置 |
Family Cites Families (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS593508B2 (ja) * | 1975-04-14 | 1984-01-24 | インスチチユ−ト.オブ.ガス.テクノロジ− | メタンをスイ−トニングする方法 |
GB2104411B (en) | 1981-07-08 | 1985-02-20 | Ube Industries | Aromatic polyimide composite separating membrane |
JPS5895539A (ja) * | 1981-11-30 | 1983-06-07 | Mitsubishi Chem Ind Ltd | 気体分離膜 |
US5156740A (en) * | 1982-06-01 | 1992-10-20 | Gft Ingenieurburo Fur Industrieanlagenbau | Multi-layer membrane and the use thereof for the separation of liquid mixtures according to the pervaporation process |
JPS6291543A (ja) * | 1985-10-17 | 1987-04-27 | Fuji Photo Film Co Ltd | 多層の微孔性膜の製造方法 |
JPS62227422A (ja) * | 1986-03-28 | 1987-10-06 | Nitto Electric Ind Co Ltd | 複合膜及びその製造方法 |
JPS63194701A (ja) * | 1987-02-06 | 1988-08-11 | Nitto Electric Ind Co Ltd | 複合膜 |
US5015270A (en) * | 1989-10-10 | 1991-05-14 | E. I. Du Pont De Nemours And Company | Phenylindane-containing polyimide gas separation membranes |
JPH0427427A (ja) * | 1990-05-23 | 1992-01-30 | Kurita Water Ind Ltd | 分離材およびその製造方法 |
JP2615375B2 (ja) * | 1994-07-08 | 1997-05-28 | 財団法人地球環境産業技術研究機構 | 表面改質気体分離膜及びその製造方法 |
JPH09225273A (ja) * | 1996-02-23 | 1997-09-02 | Nitto Denko Corp | 積層非対称膜及びその製造方法 |
JP3234885B2 (ja) * | 1996-10-02 | 2001-12-04 | 独立行政法人産業技術総合研究所 | 気体分離膜 |
WO2007001405A2 (en) * | 2004-10-06 | 2007-01-04 | Research Foundation Of Suny | High flux and low fouling filtration media |
WO2006046189A1 (en) * | 2004-10-28 | 2006-05-04 | Koninklijke Philips Electronics N.V. | Copolymer for charge transport layer in opto-electronic device |
JP4857593B2 (ja) | 2005-04-25 | 2012-01-18 | 宇部興産株式会社 | 非対称中空糸ガス分離膜、及びガス分離方法 |
JP5061328B2 (ja) | 2006-04-04 | 2012-10-31 | 大陽日酸株式会社 | メタン分離方法、メタン分離装置及びメタン利用システム |
WO2008012872A1 (fr) * | 2006-07-25 | 2008-01-31 | Toray Industries, Inc. | Membrane de séparation à base de polymère de fluororésine et procédé de production de celle-ci |
RU2464074C2 (ru) * | 2008-01-24 | 2012-10-20 | Ренессанс Энерджи Рисерч Корпорейшн | Мембрана облегченного переноса co2 и способ ее получения |
US20090191398A1 (en) * | 2008-01-25 | 2009-07-30 | General Electric Company | Membranes comprising hydrophilic coatings |
TWI377978B (en) * | 2008-05-21 | 2012-12-01 | Mitsubishi Rayon Co | Hollow porous film and manufacturing method thereof |
JP2010142881A (ja) * | 2008-12-16 | 2010-07-01 | Fujifilm Corp | 有機−無機複合体層を備える構造体、およびその製造方法 |
JP5281986B2 (ja) * | 2009-08-26 | 2013-09-04 | 富士フイルム株式会社 | 積層フィルムおよび複合フィルム |
KR101768434B1 (ko) * | 2009-12-28 | 2017-08-16 | 주식회사 쿠라레 | 모자이크 하전 복층막 및 그 제조 방법 |
JP5523382B2 (ja) * | 2010-03-19 | 2014-06-18 | 富士フイルム株式会社 | ガスバリアフィルムの製造方法及びガスバリアフィルム |
US20130062285A1 (en) * | 2010-05-11 | 2013-03-14 | The Regents Of The University Of California | Oil-Tolerant Polymer Membranes for Oil-Water Separations |
JP2013049042A (ja) * | 2011-01-12 | 2013-03-14 | Fujifilm Corp | 二酸化炭素分離膜形成用組成物、二酸化炭素分離膜及びその製造方法、並びに二酸化炭素分離装置 |
JP2013046902A (ja) * | 2011-07-28 | 2013-03-07 | Fujifilm Corp | ガス分離複合膜、それを用いたガス分離モジュール、ガス分離装置およびガス分離方法 |
JP2013046903A (ja) * | 2011-07-28 | 2013-03-07 | Fujifilm Corp | ガス分離複合膜、それを用いたガス分離モジュール、ガス分離装置およびガス分離方法 |
JP2013046904A (ja) * | 2011-07-28 | 2013-03-07 | Fujifilm Corp | ガス分離複合膜、その製造方法、それを用いたガス分離モジュール、ガス分離装置およびガス分離方法 |
JP2013075264A (ja) * | 2011-09-30 | 2013-04-25 | Fujifilm Corp | ガス分離膜、その製造方法、それを用いたガス分離膜モジュール |
JP5895539B2 (ja) | 2012-01-12 | 2016-03-30 | 大日本印刷株式会社 | 蒸着マスク |
JP6222625B2 (ja) * | 2012-02-16 | 2017-11-01 | 富士フイルム株式会社 | 複合型分離膜、それを用いた分離膜モジュール |
JP5490281B2 (ja) * | 2012-06-20 | 2014-05-14 | 富士フイルム株式会社 | 酸性ガス分離モジュール、及び酸性ガス分離システム |
JP5865201B2 (ja) * | 2012-07-11 | 2016-02-17 | 富士フイルム株式会社 | 二酸化炭素分離用複合体の製造方法、二酸化炭素分離用複合体及び二酸化炭素分離用モジュール |
JP5829227B2 (ja) * | 2012-09-28 | 2015-12-09 | 富士フイルム株式会社 | 酸性ガス分離モジュール、酸性ガス分離装置、及びテレスコープ防止板 |
JP6071004B2 (ja) * | 2013-03-29 | 2017-02-01 | 富士フイルム株式会社 | 酸性ガス分離複合膜の製造方法及び酸性ガス分離膜モジュール |
-
2011
- 2011-11-25 JP JP2011258325A patent/JP2013111507A/ja active Pending
-
2012
- 2012-11-22 WO PCT/JP2012/080351 patent/WO2013077418A1/ja active Application Filing
-
2014
- 2014-05-27 US US14/287,273 patent/US9498755B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5811006A (ja) * | 1981-07-10 | 1983-01-21 | Ube Ind Ltd | ポリイミド複合分離膜の製造方法 |
JPH06154541A (ja) * | 1992-11-20 | 1994-06-03 | Agency Of Ind Science & Technol | 二酸化炭素分離膜の製造方法 |
JPH1176778A (ja) * | 1997-09-05 | 1999-03-23 | Nok Corp | ポリエーテルイミド除湿膜 |
JP2005254087A (ja) * | 2004-03-10 | 2005-09-22 | Konica Minolta Medical & Graphic Inc | 多層同時塗布方法 |
JP2006130453A (ja) * | 2004-11-08 | 2006-05-25 | Niigata Univ | ガス・蒸気分離用液体膜及びその製造方法、ガス・蒸気膜分離装置 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014001796A1 (en) * | 2012-06-26 | 2014-01-03 | Fujifilm Manufacturing Europe Bv | Gas separation membranes with intermixed layers |
US9731248B2 (en) | 2012-06-26 | 2017-08-15 | Fujifilm Manufacturing Europe B.V. | Gas separation membranes with intermixed layers |
US10005043B2 (en) | 2012-06-26 | 2018-06-26 | Fujifilm Manufacturing Europe B.V. | Gas separation membranes with intermixed layers |
WO2015015802A1 (ja) * | 2013-07-30 | 2015-02-05 | 富士フイルム株式会社 | 酸性ガス分離用積層体および該積層体を備えた酸性ガス分離用モジュール |
WO2015015803A1 (ja) * | 2013-07-30 | 2015-02-05 | 富士フイルム株式会社 | 酸性ガス分離用積層体および該積層体を備えた酸性ガス分離用モジュール |
JP2015044187A (ja) * | 2013-07-30 | 2015-03-12 | 富士フイルム株式会社 | 酸性ガス分離用積層体および該積層体を備えた酸性ガス分離用モジュール |
JP2015044189A (ja) * | 2013-07-30 | 2015-03-12 | 富士フイルム株式会社 | 酸性ガス分離用積層体および該積層体を備えた酸性ガス分離用モジュール |
US9452384B2 (en) | 2013-07-30 | 2016-09-27 | Fujifilm Corporation | Acidic gas separation laminate and acidic gas separation module provided with laminate |
US9457319B2 (en) | 2013-07-30 | 2016-10-04 | Fujifilm Corporation | Acidic gas separation laminate and acidic gas separation module provided with laminate |
Also Published As
Publication number | Publication date |
---|---|
US20140260986A1 (en) | 2014-09-18 |
JP2013111507A (ja) | 2013-06-10 |
US9498755B2 (en) | 2016-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013077418A1 (ja) | ガス分離膜、その製造方法、それを用いたガス分離膜モジュール | |
US9314736B2 (en) | Separation composite membrane and separating membrane module using the same | |
Castro-Muñoz et al. | High-performance pervaporation chitosan-based membranes: New insights and perspectives | |
Yang et al. | Dual-activation interfacial polymerization based anionic covalent organic framework nanofiltration membrane for high-flux dye separation | |
Wang et al. | Ceramic tubular MOF hybrid membrane fabricated through in situ layer‐by‐layer self‐assembly for nanofiltration | |
US20100147763A1 (en) | Modified porous membranes, methods of membrane pore modification, and methods of use thereof | |
Lei et al. | Screening cellulose spinning parameters for fabrication of novel carbon hollow fiber membranes for gas separation | |
Zhang et al. | Self-assembly of polyelectrolyte multilayer pervaporation membranes by a dynamic layer-by-layer technique on a hydrolyzed polyacrylonitrile ultrafiltration membrane | |
Yuan et al. | Dehydration of ethyl acetate aqueous solution by pervaporation using PVA/PAN hollow fiber composite membrane | |
Zhang et al. | Self-assembly of inner skin hollow fiber polyelectrolyte multilayer membranes by a dynamic negative pressure layer-by-layer technique | |
Deng et al. | Fabrication and evaluation of a blend facilitated transport membrane for CO2/CH4 separation | |
Masuelli et al. | SPC/PVDF membranes for emulsified oily wastewater treatment | |
Jee et al. | Preparation and characterization of siloxane composite membranes for n-butanol concentration from ABE solution by pervaporation | |
Zhou et al. | Cellulose acetate ultrafiltration membranes reinforced by cellulose nanocrystals: Preparation and characterization | |
EP3231501B1 (en) | Carbon dioxide gas separation membrane, method for manufacturing same, and carbon dioxide gas separation membrane module | |
Shi et al. | Teflon AF2400/polyethylene membranes for organic solvent nanofiltration (OSN) | |
WO2014141868A1 (ja) | ガス分離複合膜、ガス分離モジュール、ガス分離装置及びガス分離方法 | |
WO2015046141A1 (ja) | ガス分離膜およびガス分離膜の製造方法ならびにガス分離膜モジュール | |
JP2018526211A (ja) | ガス分離用膜 | |
Ulbricht | 1.5 State-of-the-art and perspectives of organic materials for membrane preparation | |
Hong et al. | Integral PVA-PES composite membranes by surface segregation method for pervaporation dehydration of ethanol | |
Contreras-Martinez et al. | High-flux thin film composite PIM-1 membranes for butanol recovery: Experimental study and process simulations | |
CN109621751B (zh) | 两亲性耐溶剂脂肪族聚酰胺超滤膜及其制备方法和用途 | |
Jansen et al. | Poly (ether ether ketone) derivative membranes—A review of their preparation, properties and potential | |
JP7486102B2 (ja) | 架橋ポリマー膜 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12852090 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12852090 Country of ref document: EP Kind code of ref document: A1 |