WO2013077387A1 - 酸化物超電導線材と酸化物超電導線材の製造方法 - Google Patents

酸化物超電導線材と酸化物超電導線材の製造方法 Download PDF

Info

Publication number
WO2013077387A1
WO2013077387A1 PCT/JP2012/080246 JP2012080246W WO2013077387A1 WO 2013077387 A1 WO2013077387 A1 WO 2013077387A1 JP 2012080246 W JP2012080246 W JP 2012080246W WO 2013077387 A1 WO2013077387 A1 WO 2013077387A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide superconducting
layer
metal tape
superconducting wire
tape
Prior art date
Application number
PCT/JP2012/080246
Other languages
English (en)
French (fr)
Inventor
哲雄 竹本
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to CN201280056614.0A priority Critical patent/CN103959401B/zh
Priority to JP2013545957A priority patent/JP5753589B2/ja
Priority to EP12850982.5A priority patent/EP2770513B1/en
Priority to RU2014120161/05A priority patent/RU2570047C1/ru
Publication of WO2013077387A1 publication Critical patent/WO2013077387A1/ja
Priority to US14/281,249 priority patent/US9697930B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/20Permanent superconducting devices
    • H10N60/203Permanent superconducting devices comprising high-Tc ceramic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • H01B12/06Films or wires on bases or cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0801Manufacture or treatment of filaments or composite wires

Definitions

  • the present invention relates to an oxide superconducting wire and a method for producing an oxide superconducting wire.
  • This application claims priority based on Japanese Patent Application No. 2011-253776 filed in Japan on November 21, 2011 and Japanese Patent Application No. 2012-086409 filed in Japan on April 5, 2012. , The contents of which are incorporated herein.
  • the RE-123 oxide superconductor (REBa 2 Cu 3 O 7-X : RE is a rare earth element including Y) exhibits superconductivity at a liquid nitrogen temperature. Since the RE-123 oxide superconductor has low current loss, it is processed into a superconducting wire to produce a superconducting conductor or a superconducting coil for power supply. As a method of processing this oxide superconductor into a wire, there is a method in which an oxide superconducting layer is formed on a base material of a metal tape via an intermediate layer, and a stabilization layer is formed on the oxide superconducting layer. is there.
  • a typical oxide superconducting wire has a two-layer structure in which a thin silver stabilizing layer is formed on an oxide superconducting layer, and a thick stabilizing layer formed of a highly conductive metal material such as copper is provided thereon.
  • a structure in which a stabilizing layer having a structure is laminated is employed.
  • the silver stabilizing layer is also provided for the purpose of adjusting fluctuations in the amount of oxygen when the oxide superconducting layer is subjected to oxygen heat treatment, and the copper stabilizing layer is formed from the oxide superconducting layer in a superconducting state. When transitioning to the normal conducting state, it functions as a bypass that commutates the current in the oxide superconducting layer.
  • the RE-123 oxide superconductor having a specific composition is easily deteriorated by moisture, and when the superconducting wire is stored in an environment with a lot of moisture, or when the superconducting wire is left with moisture attached, the oxide superconducting If moisture enters the layer, it may cause a decrease in superconducting properties. Therefore, in order to ensure long-term reliability of the superconducting wire, it is necessary to adopt a structure in which the entire circumference of the superconducting layer is protected by some layer.
  • the high-temperature superconductor wire As a structure for protecting the entire conventional superconducting layer, two layers of superconducting inserts having a laminated structure are laminated as in a high-temperature superconductor wire described in Patent Document 1 below, and these are made of a conductive non-porous material such as solder. A structure covered with a filler is known.
  • the high-temperature superconductor wire is configured by surrounding each side or four circumferences of the above-described laminate with a metal stabilizer strip and filling the inside of the stabilizer strip with a conductive non-porous filler.
  • a tape-shaped high-temperature superconducting wire in which an intermediate layer and an oxide superconducting layer are laminated on a metal substrate is used.
  • a structure in which a high-temperature superconducting wire is covered with a C-shaped reinforcing tape wire having both ends bent and at least a part of the high-temperature superconducting wire is soldered to the reinforcing tape wire is known.
  • an oxide superconducting layer is laminated on a base material of a metal tape via an intermediate layer, and a thin silver stabilizing layer is laminated thereon.
  • this silver stabilization layer is formed thin so as to be able to adjust the amount of oxygen during oxygen heat treatment, pinholes may exist.
  • the silver stabilization layer is formed by a film forming method such as sputtering, there is a problem that peeling or chipping is likely to occur when a long superconducting wire is manufactured.
  • the surface of the oxide superconducting layer is covered with a silver stabilizing layer, the side surface side of the oxide superconducting layer is not covered with any layer.
  • FIG. 8 shows an example of a structure assuming a structure in which this type of oxide superconductor is surrounded by a copper tape.
  • a tape-shaped oxide superconducting laminate is formed by laminating an oxide superconducting layer 102 and a silver stabilizing layer 103 via an intermediate layer 101 on one surface side of a metal tape-like substrate 100.
  • 104 is configured.
  • the oxide superconducting conductor 106 having a covering structure is formed by surrounding the oxide superconducting laminate 104 with a copper tape 105.
  • the solder layer 107 is formed on the edge portion of the copper tape 105, and the copper tapes 105 having the edge portions overlapped are soldered to each other on the back surface side of the substrate 100.
  • the edges of the copper tape 105 are integrated.
  • the tape-like oxide superconducting laminate 104 is slightly in the entire length.
  • the thickness of the oxide superconducting conductor 106 having the structure shown in FIG. 8 varies greatly at the portion where one end of the copper tape 105 overlaps the other end.
  • the present invention has been made in view of the conventional background as described above, and provides an oxide superconducting wire in which a structure capable of preventing the ingress of moisture is formed so as not to deteriorate the internal oxide superconducting layer. Objective. It is another object of the present invention to provide an oxide superconducting wire that does not cause turbulence when the oxide superconducting wire is wound into a coil for superconducting coils.
  • an oxide superconducting wire includes a metal tape-like substrate having a substrate surface and a substrate back surface, and an intermediate layer provided on the substrate surface.
  • a tape-like oxide superconducting laminate having an oxide superconducting layer provided on the intermediate layer, and a protective layer having a protective surface and provided on the oxide superconducting layer, and a tape
  • a metal tape having an end portion and a low melting point metal layer, and the metal tape is wider than the oxide superconducting laminate, and the protective surface and the oxide.
  • both end portions in the width direction of the metal tape are provided to cover both end portions of the back surface, and the low melting point metal layer is formed of the oxide Superconducting laminate and the gold provided around it
  • the metal tape and the oxide superconducting laminate are bonded to each other between the tape and a part of the filled low melting point metal layer is formed between both ends in the width direction of the metal tape. It extends into the recess.
  • the oxide superconducting wire according to the first aspect of the present invention is used, the low melting point metal layer filled between the oxide superconducting laminate and the surrounding metal tape covers the periphery of the oxide superconducting laminate.
  • both ends of the metal tape are covered with the low melting point metal covering portion which is exposed to the outside from the end portion of the metal tape covered on the back surface end portion of the base material. Since the gap portion between the portion and the back surface of the base material is covered, it is possible to prevent moisture from entering from the end side of the metal tape to the inside of the metal tape.
  • the coating formed of the low melting point metal that extends outward from the end of the metal tape only protrudes into the recess between both ends of the metal tape, and the thickness is improved compared to the thickness of the metal tape. I don't mean. Therefore, when the oxide superconducting wire having the low melting point metal coating portion on the back side of the base material is coiled, a large step is not generated and the winding disturbance is hardly generated.
  • the recessed portion is formed of the low melting point metal layer which does not bulge outward from the surface positions of both ends of the metal tape constituting the recessed portion. It may be formed to be covered with a layer.
  • the low melting point metal reliably covers the gap between the both ends of the metal tape and the back surface of the base material. Accordingly, it is possible to prevent moisture from entering the inside of the metal tape from the end side of the metal tape. Furthermore, the buried layer of the low melting point metal does not bulge outside from the surface position of both ends of the metal tape constituting the recess.
  • the entire outer peripheral surface of the metal tape may be covered with the low melting point metal layer.
  • a gap portion between both end portions of the metal tape covering the back surface end portion of the substrate is filled with the low melting point metal embedding layer, and the low melting point metal layer is formed thereon. Therefore, the low melting point metal layer is provided on the gap between the both ends of the metal tape without causing a large step. Therefore, when the oxide superconducting wire is coil-wound, a large step does not occur, and it is difficult to cause turbulence during coil winding.
  • the respective covering widths of both end portions of the metal tape covering the substrate rear surface end portion side may be 0.75 mm or more.
  • the width of the recess is preferably 2.0 mm or less.
  • the metal tape may be a copper tape having a thickness of 15 ⁇ m or more.
  • a copper tape having a thickness of 15 ⁇ m or more is desirable because the oxide superconducting layer becomes a current bypass when the oxide superconducting layer attempts to transition from the superconducting state to the normal conducting state.
  • the buried layer is externally added to a part of the low melting point metal layer filled between the oxide superconducting laminate and the metal tape. The low melting point metal added from the above may be included.
  • the amount of the low melting point metal may be insufficient.
  • the buried layer can be formed by adding a low melting point metal from the outside. In this case, even if there is a concern that the interval between the recesses is large and the amount of the low melting point metal is insufficient, a sufficient amount of the low melting point metal can be filled in the recesses to form the buried layer.
  • the superconducting coil according to the second aspect of the present invention includes the oxide superconducting wire according to the first aspect of the present invention.
  • the superconducting cable according to the third aspect of the present invention includes the oxide superconducting wire according to the first aspect of the present invention.
  • an intermediate layer is provided on the surface side of a metal tape-like substrate, an oxide superconducting layer is provided on the intermediate layer, Tape-shaped oxide superconducting laminate formed by providing a protective layer on the oxide superconducting layer, and wider than the oxide superconducting laminate, forming a low melting point metal plating layer on the peripheral surface
  • the metal tape is covered with the oxide superconductivity so that the metal tape covers the protective layer side, both side surfaces of the oxide superconducting laminate, and both ends of the back surface of the substrate in the width direction.
  • the low melting point Cover part of the back surface of the base material with a part of the metal layer It is extended to the outside from an end portion of the metal tape forming the covering portion.
  • both ends of the metal tape It is possible to prevent moisture from entering the inside of the metal tape from between the substrate and the back surface of the substrate.
  • the coating formed of low melting point metal that has been exposed to the outside from the end of the metal tape only protrudes into the gap between the two ends of the metal tape. Is not improving. Therefore, when the oxide superconducting wire having the low melting point metal covering portion on the back side of the base material is coiled, a large level difference is not generated, and it is difficult to cause turbulence during coil winding.
  • the recess is formed between the both end portions of the metal tape that covers the substrate back end portion side. May be covered with a buried layer of a low-melting-point metal that does not bulge outward.
  • the recesses between both ends of the metal tape covering the back end of the base material are filled with the low melting point metal embedding layer.
  • the low melting point metal layer filled between the oxide superconducting laminate and the surrounding metal tape covers the periphery of the oxide superconducting laminate. Therefore, it is possible to provide an oxide superconducting wire that can prevent moisture from entering the oxide superconducting layer located inside the metal tape from the outside. Since the metal tape covered on the back surface edge of the base material and the concave portion formed by both ends of the metal tape and the back surface of the base material are covered with the low melting point metal coating portion exposed to the outside, It is possible to prevent moisture from entering the metal tape from the end side.
  • FIG. 1 The perspective view which made a part of oxide superconducting wire of a 1st embodiment concerning the present invention a cross section is shown.
  • the partial cross-section perspective view which shows an example of the oxide superconducting laminated body provided in the oxide superconducting wire shown in FIG. 1 is shown. It is a manufacturing method of the oxide superconducting wire shown in FIG. 1, Comprising: Sectional drawing which shows the state which put the copper tape along the oxide superconducting laminated body is shown.
  • FIG. 2 is a cross-sectional view showing an example of a state in which the copper tape along the oxide superconducting laminate is bent, in the method for manufacturing the oxide superconducting wire shown in FIG. 1.
  • FIG. 1 The partial cross-section perspective view which shows an example of the oxide superconducting laminated body provided in the oxide superconducting wire shown in FIG. 1 is shown. It is a manufacturing method of the oxide superconducting wire shown in FIG. 1, Comprising: Sectional drawing which shows the state which put the copper
  • FIG. 2 is a cross-sectional view showing a method for manufacturing the oxide superconducting wire shown in FIG. 1 and showing a state in which a copper tape is soldered to the oxide superconducting laminate.
  • the cross-sectional view of the oxide superconducting wire according to the second embodiment of the present invention is shown.
  • the cross-sectional view of the oxide superconducting wire according to the third embodiment of the present invention is shown.
  • the perspective view which made a part of oxide superconducting wire of a 4th embodiment concerning the present invention a cross section is shown.
  • FIG. 7 is a manufacturing method of the oxide superconducting wire shown in FIG. 6, showing a cross-sectional view showing a state in which a copper tape is placed along the oxide superconducting laminate.
  • FIG. 7 is a manufacturing method of the oxide superconducting wire shown in FIG. 6, showing a cross-sectional view illustrating an example of a state in which a copper tape along the oxide superconducting laminate is bent.
  • FIG. 7 is a manufacturing method of the oxide superconducting wire shown in FIG. 6, showing a cross-sectional view showing a state in which a copper tape is soldered to the oxide superconducting laminate.
  • the cross-sectional view which shows an example of the conventional oxide superconducting wire is shown.
  • the superconducting coil provided with the oxide superconducting wire which concerns on this invention is shown.
  • the superconducting cable provided with the oxide superconducting wire which concerns on this invention is shown.
  • FIG. 1 is a perspective view in which a part of the oxide superconducting wire according to the first embodiment of the present invention is shown in cross section.
  • a tape-like oxide provided inside is shown.
  • Superconducting laminate 1 is covered with a metal tape 2 formed of a conductive material such as copper.
  • the oxide superconducting laminate 1 of this example has an intermediate layer 4, an oxide superconducting layer 5 and a protective layer 6 on one surface side (the lower surface side in FIG. 1) of the tape-shaped substrate 3 as shown in FIG. It is formed by laminating in this order.
  • the substrate 3 is preferably in the form of a tape in order to obtain a flexible superconducting wire, and is preferably formed of a heat-resistant metal. Among various refractory metals, it is preferably formed of a nickel alloy. Especially, if it is a commercial item, Hastelloy (US Haynes Corporation brand name) is suitable. The thickness of the substrate 3 is usually 10 to 500 ⁇ m. Further, as the base material 3, an oriented Ni—W alloy tape base material in which a texture is introduced into a nickel alloy can be applied.
  • a structure formed by an underlayer, an alignment layer, and a cap layer described below can be applied as an example.
  • a multi-layer structure formed of a diffusion prevention layer and a bed layer, which will be described below, or a structure formed of one of these layers can be employed.
  • a diffusion prevention layer as an underlayer, it is composed of silicon nitride (Si 3 N 4 ), aluminum oxide (Al 2 O 3 , also referred to as “alumina”), GZO (Gd 2 Zr 2 O 7 ), or the like.
  • a layer having a single-layer structure or a multilayer structure is desirable, and the thickness of the diffusion prevention layer is, for example, 10 to 400 nm.
  • a bed layer When a bed layer is provided as an underlayer, the bed layer has high heat resistance, reduces interfacial reactivity, and is used for obtaining the orientation of a film disposed thereon.
  • a bed layer is, for example, a rare earth oxide such as yttria (Y 2 O 3 ), and more specifically, Er 2 O 3 , CeO 2 , Dy 2 O 3 , Er 2 O 3 , Eu 2. Examples include O 3 , Ho 2 O 3 , La 2 O 3 and the like, and a single layer structure or a multilayer structure formed of these materials can be employed.
  • the thickness of the bed layer is, for example, 10 to 100 nm.
  • the crystallinity of the diffusion preventing layer and the bed layer is not particularly limited, and may be formed by a film forming method such as a normal sputtering method.
  • the alignment layer functions as a buffer layer for controlling the crystal orientation of the oxide superconducting layer 5 formed on the alignment layer.
  • the alignment layer is preferably formed of a metal oxide having good lattice matching with the oxide superconducting layer.
  • preferable materials for the alignment layer include Gd 2 Zr 2 O 7 , MgO, ZrO 2 —Y 2 O 3 (YSZ), SrTiO 3 , CeO 2 , Y 2 O 3 , Al 2 O 3 , Gd 2. Examples thereof include metal oxides such as O 3 , ZrO 2 , Ho 2 O 3 , and Nd 2 O 3 .
  • the alignment layer may have a single layer structure or a multilayer structure.
  • the alignment layer is formed by a physical vapor deposition method such as sputtering, vacuum vapor deposition, laser vapor deposition, electron beam vapor deposition, or ion beam assisted vapor deposition (hereinafter abbreviated as IBAD method); chemical vapor deposition (CVD). Method); organometallic coating pyrolysis method (MOD method); lamination can be performed using a known method for forming an oxide thin film such as thermal spraying.
  • the metal oxide layer formed by the IBAD method is particularly preferable because of its high crystal orientation and high effect of controlling the crystal orientation of the oxide superconducting layer and the cap layer.
  • the IBAD method is a method of orienting crystal axes by irradiating an ion beam at a predetermined angle with respect to a crystal deposition surface during deposition.
  • an argon (Ar) ion beam is used as the ion beam.
  • full width at half maximum
  • the cap layer is preferably formed through a process of epitaxially growing on the surface of the alignment layer and then selectively growing crystal grains in the in-plane direction.
  • the cap layer formed in this way may have a higher in-plane orientation degree than the orientation layer.
  • the material of the cap layer is not particularly limited as long as the above function can be exhibited. Specifically, preferred materials include CeO 2 , Y 2 O 3 , Al 2 O 3 , Gd 2 O 3 , ZrO 2 , Ho 2. Examples thereof include O 3 and Nd 2 O 3 .
  • the cap layer may include a Ce—M—O-based oxide in which part of Ce is substituted with another metal atom or metal ion.
  • the cap layer can be formed by a PLD method (pulse laser deposition method), a sputtering method, or the like.
  • the film formation can be performed in an oxygen gas atmosphere at a substrate temperature of about 500 to 1000 ° C. and about 0.6 to 100 Pa.
  • the thickness of the CeO 2 cap layer 5 may be 50 nm or more, but is preferably 100 nm or more in order to obtain sufficient orientation. However, if the thickness is too large, the crystal orientation deteriorates, so the thickness is preferably in the range of 50 to 5000 nm.
  • the oxide superconducting layer 5 can be widely applied with a composition of a generally known oxide superconductor, and REBa 2 Cu 3 O y (RE is a rare earth element such as Y, La, Nd, Sm, Er, and Gd).
  • RE is a rare earth element such as Y, La, Nd, Sm, Er, and Gd.
  • Y123 YBa 2 Cu 3 O y
  • Gd123 GaBa 2 Cu 3 O y
  • other oxide superconductors for example, a Bi 2 Sr 2 Ca n-1 Cu n O 4 + 2n + ⁇ materials which are formed in high other oxide superconductors having a critical temperature represented by the composition or the like formed by using Of course, it may be.
  • the oxide superconducting layer 5 has a thickness of about 0.5 to 5 ⁇ m and preferably a uniform thickness.
  • the protective layer 6 formed so as to cover the upper surface of the oxide superconducting layer 5 is made of Ag, and is formed by a film forming apparatus such as a DC sputtering apparatus or an RF sputtering apparatus.
  • the oxide superconducting layer 5 has a thickness of about 1 to 30 ⁇ m.
  • the protective layer 6 of this embodiment is mainly formed on the upper surface side of the oxide superconducting layer 5 by a film forming apparatus, but the tape-like base material 3 is run inside the chamber of the film forming apparatus. Since the film is formed, the film-forming particles of the protective layer 6 wrap around the both side surfaces of the substrate 3, both side surfaces of the intermediate layer 4, both side surfaces of the oxide superconducting laminate 5 and the back surface of the substrate 3.
  • the constituent element particles of the protective layer 6 are slightly deposited on both side surfaces of the base material 3, both side surfaces of the intermediate layer 4, both side surfaces of the oxide superconducting laminate 5, and the back surface of the base material 3.
  • the solder layer 7 is in close contact with the back side and the side surface of the Hastelloy base material 3 formed of a nickel alloy, but when there is no deposition due to the wraparound of Ag particles, the nickel alloy The solder layer 7 may not be satisfactorily adhered to the Hastelloy base material 3 formed by
  • a metal tape 2 formed of a conductive material such as copper is provided so as to cover both end portions 3a (back end portions) on the back surface side of the base material 3.
  • the metal tape 2 is formed of a highly conductive metal material as an example, and functions as a bypass that commutates current together with the protective layer 6 when the oxide superconducting layer 5 transitions from the superconducting state to the normal conducting state.
  • the material constituting the metal tape 2 is not particularly limited as long as it has good electrical conductivity, but copper alloys such as copper, brass (Cu—Zn alloy), Cu—Ni alloy, Al, Cu—Al alloy, etc. It is preferable to use a material formed of a relatively inexpensive material. Among these, copper is preferable because it has high conductivity and is inexpensive.
  • the oxide superconducting wire A is used for a superconducting fault current limiter
  • the metal tape 2 is made of a high resistance metal material, and is made of, for example, a Ni alloy such as Ni—Cr.
  • the thickness of the metal tape 2 is not particularly limited and can be adjusted as appropriate, but is preferably 15 to 300 ⁇ m, and more preferably 20 to 300 ⁇ m.
  • solder layers (low melting point metal layers) 7 are formed on both the front and back surfaces of the metal tape 2.
  • the solder layer 7 includes an outer coating layer 7 a covering the outer surface of the metal tape 2, and an inner coating layer 7 b that is in close contact with the inner surface of the metal tape 2 and covers the periphery of the oxide superconducting laminate 1. And a covering portion 7c covering the tip portions of both end portions of the metal tape 2.
  • the metal tape 2 and the solder layer 7 will be described in more detail.
  • the metal tape 2 is bent to have a substantially C-shaped cross section, and is formed of a front wall 2a, a side wall 2b, and a back wall 2c.
  • the superconducting laminate 1 is covered with solder 7 from the protective layer 6 side to the back end portions 3a of the substrate 3. That is, the surface and both side surfaces of the protective layer 6, both side surfaces of the oxide superconducting layer 5, both side surfaces of the intermediate layer 4, both side surfaces of the base material 3, and both ends of the back surface 3 a of the base material 3 are metal tape. 2 is covered. Therefore, the inner side coating layer 7b of the solder layer 7 is provided so as to cover all of the portion covered by the metal tape 2 in the entire peripheral surface of the oxide superconducting laminate 1, and further, The space between the oxide superconducting laminate 1 is completely filled. The central portion in the width direction on the back surface side of the base material 3 is not covered with the back wall 2 c of the metal tape 2. Therefore, a recess 2 d is provided between the pair of back wall 2 c of the metal tape 2 on the back surface center of the base material 3.
  • the covering portion 7c of the solder layer 7 is formed to be thicker than the covering layers 7a and 7b so as to slightly swell from the tip of the back wall 2c of the metal tape 2 toward the concave portion 2d. Furthermore, the covering portion 7 c of the solder layer 7 is provided so as to close a gap between the tip end portion of the back wall 2 c of the metal tape 2 and the back surface of the base material 3.
  • the solder layer (low melting point metal layer) 7 is formed of solder in this embodiment.
  • the low melting point metal layer is formed of a metal having a melting point of 240 to 400 ° C., for example, Sn, Sn alloy, or indium. May be.
  • solder When using solder, it is formed of Sn—Pb, Pb—Sn—Sb, Sn—Pb—Bi, Sn—Bi, Sn—Cu, Sn—Pb—Cu, or Sn—Ag. Solder may be used.
  • solder layer 7 When the solder layer 7 is melted, if the melting point is high, the superconducting properties of the oxide superconducting layer 5 are adversely affected. Therefore, it is preferable that the solder layer 7 has a low melting point. In this respect, a material having a melting point of 350 ° C. or lower, more preferably about 240 to 300 ° C. is desirable.
  • the thickness of the solder layer 7 is preferably 1 ⁇ m to 10 ⁇ m, and more preferably 2 ⁇ m to 6 ⁇ m.
  • the thickness of the solder layer 7 is less than 1 ⁇ m, the gap between the oxide superconducting laminate 1 and the metal tape 2 cannot be completely filled, and a gap may be generated. Furthermore, the constituent elements of the solder layer 7 may diffuse while the solder is melted, and an alloy layer may be formed between the copper tape 2 or the Ag protective layer 6.
  • the thickness of the solder layer 7 exceeds 10 ⁇ m, the solder is melted by heating and pressurizing with a roll as will be described later, and soldering is performed from the front end side of the back wall 2c of the metal tape 2 when soldering. As a result, the thickness of the covering portion 7c becomes larger than necessary. As a result, there is a high possibility that turbulence will occur when the oxide superconducting wire A is wound.
  • a solder layer 7 filled between the oxide superconducting laminate 1 and the metal tape 2 surrounding it covers the periphery of the oxide superconducting laminate 1. Therefore, it is possible to prevent moisture from entering the oxide superconducting layer 1 located inside the metal tape 2 from the outside. Further, both ends of the metal tape 2 are covered by the covering portion 7c of the solder layer 7 formed thicker than the covering layers 7a and 7b so as to protrude outside from the back wall 2c of the metal tape 2 covered on the back surface end portion of the base material 3. The gap between the portion and the back surface of the substrate 3 is covered.
  • the covering portion 7c formed of solder covering the end portion of the back wall 2c of the metal tape 2 extends only slightly into the recess 2d formed between the both end portions of the metal tape 2. Compared with the thickness of 2, the thickness of the extended portion is not particularly improved. Therefore, when the oxide superconducting wire A provided with the covering portion 7c on the back surface side of the base material 3 is coiled, a large step does not occur and it is difficult to cause turbulence during coil winding. Further, even when a superconducting cable is formed by winding a plurality of layers of this oxide superconducting wire on a former, turbulence hardly occurs.
  • solder layers 8 and 9 are formed on the front and back surfaces of the metal tape 2 used here by plating. These solder layers 8 and 9 are preferably about 2 ⁇ m to 6 ⁇ m thick.
  • the metal tape 2 provided with the solder layer only on one side covering the protective layer 6 may be used. good.
  • the central portion of the metal tape 2 is aligned and arranged at the center lower portion of the oxide superconducting laminate 1, and the metal tape 2 is shaped using a forming roll or the like, and the metal along the both end sides of the substrate 3 is formed.
  • the both ends of the tape 2 are bent upward.
  • the metal tape 2 is further bent inward along both ends of the base material 3 and bent so as to wrap both ends of the base material 3 with the metal tape 2 to bend the metal tape 2 into a C-shaped cross section.
  • the whole is heated to the melting temperature of the solder layers 8 and 9 in a heating furnace.
  • the metal tape 2 bent into a C shape and the oxide superconducting laminate 1 are pressed using a pressure roll heated to a temperature about 50 ° C. lower than the melting temperature of the solder layers 8 and 9.
  • the melting points of the solder layers 8 and 9 used here are 240 ° C. to 350 ° C. as an example, it is preferable to select a temperature in the range of 190 ° C. to 300 ° C. which is 50 ° C. lower than the melting point.
  • the melted solder layers 8 and 9 are melted and spread so as to completely fill the gap between the oxide superconducting laminate 1 and the metal tape 2, and are filled in the gap between them. Thereafter, when the whole is cooled and the melted solder is solidified, an oxide superconducting wire A having a structure similar to the structure shown in FIG. 1 having the solder layer 7 as shown in FIG. 3C can be obtained. .
  • FIG. 4 shows a cross-sectional view of the oxide superconducting wire according to the second embodiment of the present invention.
  • the oxide superconducting wire B according to the second embodiment is formed by forming a tape-shaped oxide superconducting laminate 1 provided therein with a conductive material such as copper. Covered with metal tape 2.
  • the inner side coating layer 17a of the solder layer (low melting point metal layer) 17 is formed only on the inner peripheral surface side of the metal tape 2.
  • a portion of the edge of the recess 2d formed between the tip edges of the pair of back walls 2c of the C-shaped metal tape 2 is formed by a buried layer 17c formed of a solder layer (low melting point metal layer). It differs in that it is embedded.
  • the other structure of the oxide superconducting wire B having the structure shown in FIG. 4 is the same as that of the oxide superconducting wire A of the first embodiment. The same structure is denoted by the same reference numeral, and the description of the structure is omitted. To do.
  • the space between the oxide superconducting laminate 1 and the metal tape 2 is filled with the inner coating layer 17a, and the gap between the back wall 2c of the metal tape 2 is embedded. Filled with layer 17c. Therefore, the buried layer 17c suppresses the intrusion of moisture and prevents the ingress of moisture into the oxide superconducting layer 5 inside the metal tape 2.
  • the inner coating layer 17a is provided on the inner surface side of the metal tape 2, and the embedded layer 17c is provided. This makes it possible to achieve a structure that prevents moisture from entering the interior.
  • the same process as shown in FIGS. 3A to 3C is employed and the metal tape 2 provided with the solder layer only on one side is used. Similar to the case described with reference to FIGS. 3A to 3C, bending may be performed, and the solder layer may be heated and melted and pressed by a roll. The gap portion between the pair of back walls 2c of the metal tape 2 is embedded by adjusting the thickness of the solder layer provided on one side of the metal tape 2 or by separately supplying solder to the pressure roll.
  • the oxide superconducting wire B having the structure shown in FIG. 4 can be obtained by setting the amount of solder so as to be filled with the layer 17c.
  • the thickness of the solder layer provided on one surface of the metal tape 2 needs to be at least about 2 ⁇ m. Further, in order to supply the solder layer, a method is adopted in which Sn foil or Sn wire is supplied to the gap portion between the pair of back wall 2c of the metal tape 2, and these are melted to fill and bond the gap portion. You can also
  • FIG. 5 shows a cross-sectional view of the oxide superconducting wire according to the third embodiment of the present invention.
  • the tape-shaped oxide superconducting laminate 1 provided inside is formed of a conductive material such as copper. Covered with metal tape 2.
  • the outer side coating layer 17b of the solder layer (low melting point metal layer) 17 is formed on the outer peripheral surface side of the metal tape 2. Is different.
  • the recess 2d formed between the front edges of the back walls 2c and 2c of the C-shaped metal tape 2 is embedded by an embedded layer 17c formed of a solder layer (low melting point metal layer).
  • a solder layer low melting point metal layer
  • the space between the oxide superconducting laminate 1 and the metal tape 2 is filled with the inner side coating layer 17a, and the entire outer peripheral surface of the metal tape 2 is covered with the outer side coating layer 17b.
  • the gap between the pair of back walls 2c of the metal tape 2 is filled with the buried layer 17c. Therefore, the inner side coating layer 17a, the outer side coating layer 17b, and the buried layer 17c suppress the entry of moisture, and prevent moisture from entering the oxide superconducting layer 5 disposed inside the metal tape 2. .
  • the structure can be realized.
  • a metal tape 2 having a solder layer provided on both sides by using the same process as shown in FIGS. 3A to 3C is used.
  • the bending may be performed in the same manner as described in FIG. 3C, the solder layer may be heated and melted, and pressed by a roll.
  • the gap between the pair of back walls 2c of the metal tape 2 is buried by using means such as adjusting the thickness of the solder layer provided on both surfaces of the metal tape 2 or supplying solder separately to the pressure roll.
  • the oxide superconducting wire C having the structure shown in FIG. 5 can be obtained by using an amount of solder that can be filled with 17c.
  • the space between the oxide superconducting laminate 1 and the metal tape 2 is filled with the inner side coating layer 17a, and the entire outer peripheral surface of the metal tape 2 is covered with the outer side coating layer 17b.
  • a portion of the recess 2d formed between the pair of back wall 2c of the metal tape 2 is filled with the buried layer 17d. Therefore, the inner side coating layer 17a, the outer side coating layer 17b, and the buried layer 17d suppress the entry of moisture, and prevent the moisture from entering the oxide superconducting layer 5 disposed inside the metal tape 2. .
  • the upper end edge position of the recess 2d (the opening position of the recess 2d formed by the pair of upper end edges 2e of the pair of back walls 2c of the metal tape 2) does not bulge outward. Then, a buried layer 17d is formed. That is, the embedded layer 17d is formed in the recess 2d so that the surface thereof is located inside the opening position of the recess 2d formed by the pair of upper end edges 2e of the pair of back walls 2c of the metal tape 2. .
  • FIG. 6 As in the oxide superconducting wire D shown in FIG. 6, a structure in which a solder layer is provided on the outer surface side and the inner surface side of the metal tape 2 is further provided with a buried layer 17d so that moisture does not enter the inside. it can.
  • the steps shown in FIGS. 7A to 7C which are the same steps as the steps shown in FIGS. 3A to 3C are employed. That is, the metal tape 2 provided with solder layers on both sides is used, and the metal tape 2 is bent as shown in FIGS. 7A to 7C in the same manner as described in FIGS. 3A to 3C, and the solder layers are heated and melted.
  • the oxide superconducting wire D can be manufactured by pressurizing with a roll. A recess 2d provided between the pair of back walls 2c of the metal tape 2 is embedded by adjusting the thickness of the solder layer provided on both surfaces of the metal tape 2 and supplying solder separately to the pressure roll.
  • the oxide superconducting wire D having the structure shown in FIG. 6 can be obtained by using an amount of solder that is buried in the layer 17c. By adding the solder in this way, a sufficient amount of the buried layer 17c can be secured.
  • the embedded layer 17d that does not bulge outside from the opening position of the recess 2d (the upper end position corresponding to the end surface of the metal tape 2), moisture is transferred to the inner side of the metal tape. Intrusion can be prevented.
  • the substantial surface of the metal tape 2 becomes the surface of the outer side coating layer 17b. Therefore, the buried layer 17d is formed with a thickness that does not protrude outward from the surface of the outer covering layer 17b.
  • the present inventors have made various studies. As a result, the contact length on the back side of the metal tape 2 and the oxide superconducting laminate 1 is ensured to be a certain value or more. However, it has been found that it is important to fill the gap with molten solder. That is, when the recess 2d formed in the gap between the folded edges of the metal tape 2 is sealed with solder by a method such as dipping on the back side of the oxide superconducting laminate 1, the width of the gap in the width direction It was found that when the thickness (width of the recess 2d) is equal to or less than a certain value, the gap can be reliably sealed with solder.
  • the width of the recess 2d is preferably 2.0 mm or less.
  • the low melting point metal sufficiently expands in the concave portion 2d by its surface tension and fills the gap, so that a highly reliable structure can be provided in terms of preventing moisture penetration.
  • the superconducting coil 20 may be formed by winding the oxide superconducting wire according to the present invention to form the coil body 21 and laminating a necessary number of these (FIG. 9). Furthermore, the first oxide superconducting wire according to the present invention, the electrical insulating layer 32, the second oxide superconducting wire, copper, and the like sequentially on the outer peripheral side of the former 31 such as a stranded wire structure disposed in the center.
  • the superconducting cable 30 may be formed by providing a shield layer 33 made of a highly conductive metal material (FIG. 10).
  • the oxide superconducting laminate was subjected to oxygen annealing at 500 ° C. Thereafter, a copper tape having a thickness of 20 ⁇ m and a width of 10 mm in which a Sn plating layer having a thickness of 2 ⁇ m is formed on both sides is placed along the outer surface of the protective layer of Ag as shown in FIG. 3A, and both ends in the width direction of the copper tape are bent. It was processed into a U shape, and then shaped so that both ends of the copper tape were bent to the back side of the substrate. After that, while passing through a 260 ° C. heating furnace and melting Sn, the whole was pressed in the thickness direction using a pressure roll heated to 200 ° C. and melted on the front and back surfaces.
  • the Sn was made to have a uniform thickness.
  • the gap between the copper tape and the oxide superconducting laminate provided on the inner side thereof is filled with molten tin, and part of the molten tin is covered with both ends of the copper tape and the substrate.
  • the oxide superconducting wire having the covering portion shown in FIG. 3C was obtained by slightly extending outward from the gap with the back surface side.
  • the maximum value and the minimum value of the thickness dimension were measured using a laser displacement meter. Since the range that the laser displacement meter scans at a time is 1 mm in the width direction, the average value of the measured value is obtained.
  • the range scanned with the laser displacement meter is measured so that it always includes the end of the copper tape on the back side of the substrate, and the measured value is data including the thickness information of the gap between the ends of the copper tape on the back side of the substrate Asked.
  • the dimensions of the sample in which Sn plating is formed on both surfaces are ⁇ 10 ⁇ m or less (7%) tolerance, and the copper tape thickness tolerance and the metal substrate thickness tolerance are Considering that the copper tape and the base material used within 5% are used, the dimensional tolerance of the copper tape produced by the above-described manufacturing method can be regarded as almost zero.
  • the results of a reliability test pressure cooker test, 1 atm, 100 ° C., humidity 100%, test time 25 to 100 (h; time)
  • the number of characteristic-decreasing samples is the number of oxide superconducting wires whose current value has decreased by 10% or more with respect to the current value of the original oxide superconducting wire (number of tests) measured before the test.
  • the pressure cooker test is an extremely severe acceleration test in consideration of the conditions for testing the water resistance of the oxide superconducting wire. That is, enduring 50 hours in this pressure cooker test means that the water resistance has no problem in normal use, and enduring 100 hours has no problem in terms of reliability in the use form as an industrial material. It means that there is no state.
  • the oxide superconducting wire of the present invention was able to obtain an excellent moisture intrusion prevention effect in both the single-sided Sn-coated type structure and the double-sided Sn-coated type structure.
  • the thickness after forming the Sn plating layer having a thickness of 2 ⁇ m on both surfaces after the oxygen annealing similar to the above Are each 20 ⁇ m, and a plurality of copper tapes having different widths were used to fit the outer surface of the protective layer of Ag as shown in FIG. 7A.
  • both ends of the copper tape in the width direction are bent into a U shape, and then shaped into a C shape so that both ends of the copper tape are bent to the back side of the substrate as shown in FIG. 7C.
  • a plurality of superconducting wire samples coated with copper tapes having different widths were obtained.
  • Table 3 below shows the thicknesses of the copper tapes used for coating for these oxide superconducting wires.
  • Ten superconducting wires coated with copper tapes of these widths were prepared, and a pressure cooker test (PCT test) was performed for 100 hours at 100 ° C., 100% humidity, and 1 atmosphere.
  • PCT test pressure cooker test
  • the coating length (Coating width in case the edge part of a copper tape coat
  • the thickness of the copper tape was fixed at 20 ⁇ m so that the test was not affected by the change in the copper tape thickness.
  • covered by producing the said pressure roll was produced.
  • the structure used for this test is a structure provided with a covering portion that does not completely cover the concave portions formed between the end portions of the copper tape as shown in FIG.
  • the coating length of the copper tape covering the superconducting laminate was changed as shown in Table 4 below, and was subjected to a pressure cooker test equivalent to the conditions performed in the previous test.
  • the covering length shown here is the total width that covers both ends of the C-shaped copper tape
  • the length (width) covered by one end of the C-shaped copper tape is the covering length. It is half of the numerical value indicating the length. Therefore, the coating length covered by one edge of the copper tape is half of the numerical value in Table 4.
  • Table 4 The above results are shown in Table 4 below.
  • the dye penetrant flaw detection test applies a red penetrant for inspection to a sample, removes one end penetrant adhering to the sample after application by washing with water, drys the surface of the sample, and then develops the sample.
  • This is a test method (JISZ2343 regulation) that can detect the presence of a crack by drawing an indication pattern when a penetrating liquid that has soaked into a crack or the like existing at the application site oozes out to the surface.
  • the width of the recess is larger than 2.1 mm
  • solder is further added to the recess to form an embedded layer, and a structure in which the recess is completely embedded with solder is produced. Then, the state of the back surface sealing was tested.
  • the samples of Examples 20 and 21 having a large recess width use an oxide superconducting laminate having a width of 12 mm instead of the oxide superconducting laminate having a width of 5 mm.
  • any recess width from 1.5 to 9.0 mm can be obtained. It has been found that reliability can be secured if the recess is filled with solder and sealed. From this, it was found that a more complete moisture intrusion prevention structure can be provided by filling a sufficient amount of solder in the recess.
  • the technology of the present invention can be used for oxide superconducting wires used in various power devices such as superconducting power transmission lines, superconducting motors, and current limiters.
  • A, B, C, D ... oxide superconducting wire, 1 ... oxide superconducting laminate, 2 ... metal tape, 2a ... surface wall, 2b ... side wall, 2c ... back wall, 2d ... recess, 3 ... substrate, 3a ... both ends of the back surface, 4 ... intermediate layer, 5 ... oxide superconducting layer, 6 ... protective layer, 7 ... solder layer (low melting point metal layer), 7a ... outer side coating layer, 7b ... inner side coating layer, 7c ... Covering portion, 8, 9, 17 ... solder layer (low melting point metal layer), 17a ... inner side coating layer, 17b ... outer side coating layer, 17c, 17d ... buried layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

 酸化物超電導線材が、金属製のテープ状の基材の表面側に中間層が設けられ、前記中間層の上に酸化物超電導層が設けられ、前記酸化物超電導層の上に保護層が設けられることで形成されるテープ状の酸化物超電導積層体と、金属テープと低融点金属層とで形成される被覆部と、を有し、前記金属テープは、前記酸化物超電導積層体よりも幅が広く、前記酸化物超電導積層体の前記保護層側と両側面側と幅方向における基材裏面側の両端部とを覆い、前記金属テープの幅方向両端部は、前記基材裏面側の両端部に被せて設けられ、前記低融点金属層は、前記酸化物超電導積層体とその周囲に設けられた前記金属テープとの間に充填されることで前記金属テープと前記酸化物超電導積層体とを接合し、充填された前記低融点金属層の一部が前記金属テープの幅方向の両端部の間に形成される。

Description

酸化物超電導線材と酸化物超電導線材の製造方法
 本発明は、酸化物超電導線材と酸化物超電導線材の製造方法に関する。
 本願は、2011年11月21日に、日本に出願された特願2011-253796号、及び2012年4月5日に、日本に出願された特願2012-086409号に基づき優先権を主張し、その内容をここに援用する。
 RE-123系酸化物超電導体(REBaCu7-X:REはYを含む希土類元素)は、液体窒素温度で超電導性を示す。RE-123系酸化物超電導体は、電流損失が低いため、これを超電導線材に加工して電力供給用の超電導導体あるいは超電導コイルが製造されている。この酸化物超電導体を線材に加工する方法としては、金属テープの基材上に中間層を介して酸化物超電導層を形成し、この酸化物超電導層の上に安定化層を形成する方法がある。
 従来一般的な酸化物超電導線材は、酸化物超電導層上に薄い銀の安定化層を形成し、その上に銅などの良導電性金属材料で形成される厚い安定化層を設けた2層構造の安定化層を積層する構造が採用されている。前記銀の安定化層は、酸化物超電導層を酸素熱処理する際に酸素量の変動を調節する目的のためにも設けられており、銅の安定化層は、酸化物超電導層が超電導状態から常電導状態に遷移するとき、該酸化物超電導層の電流を転流させるバイパスとして機能する。
 また、特定組成のRE-123系酸化物超電導体は水分により劣化しやすく、超電導線材を水分の多い環境に保管した場合、あるいは、超電導線材に水分を付着させたまま放置した場合、酸化物超電導層に水分が浸入すると、超電導特性が低下する要因となるおそれがある。従って、超電導線材の長期的信頼性を確保するためには、超電導層の全周を何らかの層で保護する構造を採用する必要がある。
 従来の超電導層の全体を保護する構造として、以下の特許文献1に記載される高温超電導体ワイヤのように、積層構造の超電導インサートを2層積層し、これらを半田等の導電性非多孔質充填剤で覆った構造が知られている。また、この高温超電導体ワイヤは、金属製のスタビライザストリップで上述の積層体の両側あるいは4周を取り囲み、スタビライザストリップの内側に導電性非多孔質充填剤を充填して構成される。
 また、特許文献2に記載されるテープ状の酸化物超電導導体を補強構造とした補強高温超電導線のように、金属基板上に中間層と酸化物超電導層を積層したテープ状の高温超電導線を備え、両端を折り曲げたC型形状の補強テープ線で高温超電導線を覆い、高温超電導線の少なくとも一部を補強テープ線と半田付けした構造が知られている。
特表2009-503794号公報 特開2011-003494号公報
 上述のRE-123系酸化物超電導層を備えた超電導線材は、金属テープの基材上に中間層を介し酸化物超電導層を積層し、その上に薄い銀の安定化層を積層している。しかし、この銀の安定化層は酸素熱処理時の酸素量変動を調節できるように薄く形成されるので、ピンホールが存在している場合がある。また、銀の安定化層はスパッタ法などの成膜法により形成されているため、長尺の超電導線材を製造する場合に、剥離または欠けなどを生じ易い問題がある。更に、酸化物超電導層の表面を銀の安定化層で覆ってはいるものの、酸化物超電導層の側面側を何らかの層で覆っている訳ではない。従って、側面側からの水分の浸入に対策を講じる必要がある。
 このため、上述の特許文献に示すように、金属のスタビライザストリップで積層構造の超電導インサートを囲む構造、またはC字形状の補強テープで高温超電導線材を囲む構造が有望と思われる。ところが、テープ状の酸化物超電導体を金属テープなどで取り囲み、半田で固定する構造は、銅テープと酸化物超電導体との界面の半田密着性が問題となり、長尺の超電導線材の全長において、わずかでも隙間が生じていると、その隙間部分から水分が浸入するおそれがある。
 図8は、この種の酸化物超電導体を銅テープで取り囲む構造を想定した場合の構造の一例を示す。図8に示す構造では、金属製のテープ状の基材100の一面側に中間層101を介し酸化物超電導層102と銀の安定化層103とを積層してテープ状の酸化物超電導積層体104を構成する。さらに、この酸化物超電導積層体104の周囲を銅テープ105で取り囲むことにより被覆構造の酸化物超電導導体106が形成されている。この例の酸化物超電導導体106は、例えば、銅テープ105の端縁部に半田層107を形成し、基材100の裏面側において、端縁部を重ねた銅テープ105を互いに半田付けすることで銅テープ105の端縁どうしが一体化されている。
 一方、図8に示す構造の銅テープ105により酸化物超電導積層体104を取り囲んだ構造では、銅テープ105の重ね合わせ部分を半田付けした場合、テープ状の酸化物超電導積層体104の全長においてわずかでも半田接合の不良部分が生じていると水分の浸入を許すおそれがあり、水分の浸入を完全には阻止できない。
 また、図8に示す構造の酸化物超電導導体106は、銅テープ105の一方の端部と他方の端部が重なった部分で厚みが大幅に変わる。従って、超電導コイルなどを構成する場合に、巻胴に超電導導体106を巻回すると、1層巻きでは問題を生じないものの、多層巻きする場合に銅テープ105の重なり部分で巻き乱れが生じ易い問題がある。
 本発明は、以上のような従来の背景に鑑みなされたもので、水分の浸入を阻止できる構造を形成して内部の酸化物超電導層を劣化させないようにした酸化物超電導線材を提供することを目的とする。また、超電導コイル用などのために酸化物超電導線材をコイル状に巻き付ける場合、巻き乱れを生じない酸化物超電導線材の提供を目的とする。
 上記課題を解決するため、本発明の第1態様に係る酸化物超電導線材は、基材表面と基材裏面を有する金属製のテープ状の基材と、前記基材表面に設けられた中間層と、前記中間層の上に設けられた酸化物超電導層と、保護表面を有するとともに前記酸化物超電導層の上に設けられた保護層と、を有するテープ状の酸化物超電導積層体と、テープ端部を有する金属テープと、低融点金属層と、で形成される被覆部と、を有し、前記金属テープは、前記酸化物超電導積層体よりも幅が広く、前記保護表面と前記酸化物超電導積層体の両側面と前記裏面の幅方向における両端部とを覆い、前記金属テープの幅方向における両端部が前記裏面の両端部に被せて設けられ、前記低融点金属層は、前記酸化物超電導積層体とその周囲に設けられた前記金属テープとの間に充填されて前記金属テープと前記酸化物超電導積層体とを接合し、充填された前記低融点金属層の一部が前記金属テープの幅方向の両端部の間に形成される凹部に延出している。
 本発明の第1態様である酸化物超電導線材を用いた場合、酸化物超電導積層体とその周囲の金属テープとの間に充填された低融点金属層が酸化物超電導積層体の周囲を覆っている構造であるので、金属テープの内側に位置する酸化物超電導層に対し外部からの水分の浸入を防止できる。さらに、本発明の第1態様である酸化物超電導線材を用いた場合、基材裏面端部に被せられた金属テープの端部から外部に出された低融点金属の被覆部で金属テープの両端部と基材裏面との隙間部分を覆うので、金属テープの端部側から金属テープの内側へ水分が浸入することを防止できる。
 金属テープの端部から外部に延出した低融点金属で形成される被覆部は、金属テープの両端部間の凹部内に出ているのみであり、金属テープの厚さに比べ厚みが向上している訳ではない。したがって、低融点金属の被覆部を基材裏面側に備えた酸化物超電導線材をコイル巻きする場合、大きな段差を生じることがなく、コイル巻き加工時の巻き乱れを生じ難い。
 本発明の第1態様に係る酸化物超電導線材においては、前記凹部が前記凹部を構成する前記金属テープの両端部表面位置から外方に膨れ出ていない前記低融点金属層で形成される埋込層により覆われて形成されていてもよい。
 基材裏面端部を覆った金属テープの両端部間の凹部を低融点金属の埋込層で充填すると、金属テープの両端部と基材裏面との隙間部分を低融点金属が確実に覆う。したがって、金属テープの端部側から金属テープの内側へ水分が浸入することを防止できる。更に、低融点金属の埋込層が凹部を構成する金属テープ両端部表面位置から外部に膨出することがない。したがって、金属テープ両端部間の凹部の部分を低融点金属の埋込層で埋めた酸化物超電導線材をコイル巻きする場合、大きな段差を生じることがなく、コイル巻き加工時の巻き乱れを生じ難い。
 本発明の第1態様に係る酸化物超電導線材においては、前記金属テープの外周面全体が前記低融点金属層により覆われていてもよい。
 この構造により、基材裏面端部を覆った金属テープの両端部間の隙間部分を低融点金属の埋込層で充填し、その上に低融点金属層が形成される。したがって、金属テープの両端部間の隙間部分の上に大きな段差を生じることなく低融点金属層を設けた構造となる。よって、酸化物超電導線材をコイル巻きする場合、大きな段差を生じることがなく、コイル巻き加工時の巻き乱れを生じ難い。
 本発明の第1態様に係る酸化物超電導線材においては、前記基材裏面端部側を覆った前記金属テープの両端部のそれぞれの被覆幅が0.75mm以上であってもよい。
 基材を覆う金属テープにおいて基材裏面端部側を覆う構造の被覆幅を0.75mm以上とすることで、水分の浸入を防止する上で信頼性の高い構造とすることができる。
 本発明の第1態様に係る酸化物超電導線材においては、前記凹部の幅が2.0mm以下であることが好ましい。凹部の幅が、上記の範囲である場合、埋込層を構成する低融点金属が表面張力で充分に凹部の内側に拡がり、信頼性の高い埋め込み構造を実現できる。
 本発明の第1態様に係る酸化物超電導線材においては、前記金属テープが厚さ15μm以上の銅テープであってもよい。
 厚さ15μm以上の銅テープであるならば、酸化物超電導層が超電導状態から常電導状態に転移しようとした場合に電流のバイパスとなるため望ましい。
 本発明の第1態様に係る酸化物超電導線材においては、前記埋込層が、前記酸化物超電導積層体と前記金属テープとの間に充填された前記低融点金属層の一部に加え、外部から追加された低融点金属を含んでいてもよい。
 酸化物超電導積層体とその周囲の金属テープとの間に充填された低融点金属層の一部のみで埋込層を形成する場合、低融点金属の量が不足する場合もあるので、追加で外部から低融点金属を追加して埋込層を構成することができる。この場合、凹部の間隔が大きく低融点金属の量が不足する懸念がある場合であっても、充分な量の低融点金属を凹部に充填して埋込層を形成することができる。
 本発明の第2態様に係る超電導コイルにおいては、本発明の第1態様に係る酸化物超電導線材を備える。
 本発明の第3態様に係る超電導ケーブルにおいては、本発明の第1態様に係る酸化物超電導線材を備える。
 本発明の第4態様に係る酸化物超電導線材の製造方法は、金属製のテープ状の基材の表面側に中間層が設けられ、前記中間層の上に酸化物超電導層が設けられ、前記酸化物超電導層の上に保護層が設けられたることで形成されるテープ状の酸化物超電導積層体と、前記酸化物超電導積層体よりも幅が広く、周面に低融点金属めっき層を形成した金属テープとを準備し、前記金属テープで前記酸化物超電導積層体の前記保護層側と両側面側と幅方向における基材裏面側の両端部とを覆うように前記金属テープを酸化物超電導積層体に被せ、前記低融点金属めっき層を溶融状態とする温度に加熱し、ロールで加圧して前記酸化物超電導積層体と前記金属テープとの間を低融点金属層で埋め込み、前記低融点金属層の一部を前記基材裏面端部を覆った前記金属テープの端部から外部に延出させて被覆部を形成する。
 上記方法を用いることで、酸化物超電導積層体の周囲を低融点金属層で覆ってその外側に金属テープを配置した構造を作製できるので、金属テープの内側に位置する酸化物超電導層に対し外部から水分が浸入することを防止できる。また、基材裏面端部に被せられた金属テープの端部と基材裏面との間から外部に出した低融点金属製の被覆部で金属テープの端部を覆うので、金属テープの両端部と基材裏面の間から金属テープ内側へ水分が浸入することを防止できる。
 金属テープの端部から外部に出した低融点金属で形成される被覆部は金属テープの両端部間の隙間部分に突出しているのみであり、この部分の影響により金属テープの厚さに比べ厚みが向上している訳ではない。したがって、低融点金属の被覆部を基材裏面側に備えた酸化物超電導線材をコイル巻きする場合、大きな段差を生じることがなく、コイル巻き加工時の巻き乱れを生じ難い。
 本発明の第4態様に係る酸化物超電導線材に製造方法においては、前記基材裏面端部側を覆った前記金属テープの両端部間に形成される凹部を、この凹部が開口している位置から外方に膨出していない低融点金属の埋込層により覆っていてもよい。
 この構造により、基材裏面端部を覆った金属テープの両端部間の凹部を低融点金属の埋込層で充填しているので、金属テープの両端部間の凹部の上に突出する部分を生じることなく低融点金属の埋込層を設けた構造となる。したがって、酸化物超電導線材をコイル巻きする場合、大きな段差を生じることがなく、コイル巻き加工時の巻き乱れを生じ難い。
 前記本発明の態様に係る酸化物超電導線材によれば、酸化物超電導積層体とその周囲の金属テープとの間に充填された低融点金属層が酸化物超電導積層体の周囲を覆っている構造を有しているので、金属テープの内側に位置する酸化物超電導層に対し、外部から水分が浸入することを防止できる酸化物超電導線材を提供できる。
 基材裏面端部に被せられた金属テープの端部及び金属テープの両端部と基材裏面とで形成される凹部の部分を外部に露出する低融点金属の被覆部で覆うので、金属テープの端部側から金属テープの内側への水分の浸入を防止できる。
本発明に係る第1実施形態の酸化物超電導線材の一部を横断面とした斜視図を示す。 図1に示す酸化物超電導線材に設けられている酸化物超電導積層体の一例を示す部分断面斜視図を示す。 図1に示す酸化物超電導線材の製造方法であって、酸化物超電導積層体に銅テープを沿わせた状態を示す断面図を示す。 図1に示す酸化物超電導線材の製造方法であって、酸化物超電導積層体に沿わせた銅テープを折り曲げた状態の一例を示す断面図を示す。 図1に示す酸化物超電導線材の製造方法であって、酸化物超電導積層体に銅テープを半田付けした状態を示す断面図を示す。 本発明に係る第2実施形態の酸化物超電導線材の横断面図を示す。 本発明に係る第3実施形態の酸化物超電導線材の横断面図を示す。 本発明に係る第4実施形態の酸化物超電導線材の一部を横断面とした斜視図を示す。 図6に示す酸化物超電導線材の製造方法であって、酸化物超電導積層体に銅テープを沿わせた状態を示す断面図を示す。 図6に示す酸化物超電導線材の製造方法であって、酸化物超電導積層体に沿わせた銅テープを折り曲げた状態の一例を示す断面図を示す。 図6に示す酸化物超電導線材の製造方法であって、酸化物超電導積層体に銅テープを半田付けした状態を示す断面図を示す。 従来の酸化物超電導線材の一例を示す横断面図を示す。 本発明に係る酸化物超電導線材を備えた超電導コイルを示す。 本発明に係る酸化物超電導線材を備えた超電導ケーブルを示す。
 以下、本発明に係る酸化物超電導線材の実施形態について、図面に基づいて説明する。
 図1は本発明に係る第1実施形態の酸化物超電導線材の一部を断面とした斜視図であり、この実施形態の酸化物超電導線材Aにおいては、内部に設けられたテープ状の酸化物超電導積層体1が、銅などの導電性材料で形成される金属テープ2で覆われている。
 この例の酸化物超電導積層体1は、図2に示すようにテープ状の基材3の一面側(図1では下面側)に、中間層4と酸化物超電導層5と保護層6とがこの順に積層されて形成される。
 前記基材3は、可撓性を有する超電導線材とするためにテープ状であることが好ましく、耐熱性の金属で形成されることが好ましい。各種耐熱性金属の中でも、ニッケル合金で形成されることが好ましい。なかでも、市販品であれば、ハステロイ(米国ヘインズ社製商品名)が好適である。基材3の厚さは、通常は、10~500μmである。また、基材3として、ニッケル合金に集合組織を導入した配向Ni-W合金テープ基材等を適用することもできる。
 中間層4は、以下に説明する下地層と配向層とキャップ層とで形成される構造を一例として適用できる。
 下地層を設ける場合は、以下に説明する拡散防止層とベッド層とで形成される複層構造あるいは、これらのうちどちらか1層で形成される構造を採用することができる。
 下地層として拡散防止層を設ける場合、窒化ケイ素(Si)、酸化アルミニウム(Al、「アルミナ」とも呼ぶ)、あるいは、GZO(GdZr)等から構成される単層構造あるいは複層構造の層が望ましく、拡散防止層の厚さは、例えば10~400nmである。
 下地層としてベッド層を設ける場合、ベッド層は、耐熱性が高く、界面反応性を低減し、その上に配される膜の配向性を得るために用いる。このようなベッド層は、例えば、イットリア(Y)などの希土類酸化物であり、より具体的には、Er、CeO、Dy、Er、Eu、Ho、La等を例示することができ、これらの材料で形成される単層構造あるいは複層構造を採用できる。ベッド層の厚さは、例えば10~100nmである。また、拡散防止層とベッド層の結晶性は特に問われないので、通常のスパッタ法等の成膜法により形成すれば良い。
 配向層は、配向層の上に形成する酸化物超電導層5の結晶配向性を制御するバッファー層として機能する。配向層は、酸化物超電導層と格子整合性の良い金属酸化物で形成されることが好ましい。配向層の好ましい材料として、具体的には、GdZr、MgO、ZrO-Y(YSZ)、SrTiO、CeO、Y、Al、Gd、ZrO、Ho、Nd等の金属酸化物を例示できる。配向層は、単層構造でも良いし、複層構造でも良い。
 配向層は、スパッタ法、真空蒸着法、レーザ蒸着法、電子ビーム蒸着法、またはイオンビームアシスト蒸着法(以下、IBAD法と略記する。)等の物理的蒸着法;化学気相成長法(CVD法);有機金属塗布熱分解法(MOD法);溶射等、酸化物薄膜を形成する公知の方法を用いて積層できる。これらの方法の中でも特に、IBAD法で形成された前記金属酸化物層は、結晶配向性が高く、酸化物超電導層及びキャップ層の結晶配向性を制御する効果が高い点で好ましい。IBAD法とは、蒸着時に、結晶の蒸着面に対して所定の角度でイオンビームを照射することにより、結晶軸を配向させる方法である。通常は、イオンビームとして、アルゴン(Ar)イオンビームを使用する。例えば、GdZr、MgO又はZrO-Y(YSZ)で形成される配向層は、IBAD法における配向度を表す指標であるΔΦ(FWHM:半値全幅)の値を小さくできるため、特に好適である。
 キャップ層は、前記配向層の表面に対してエピタキシャル成長し、その後、結晶粒が面内方向に選択成長するという過程を経て形成されることが好ましい。このように形成されるキャップ層は、前記配向層よりも高い面内配向度が得られる可能性がある。
 キャップ層の材料は、上記機能を発現し得れば特に限定されないが、好ましい材料として具体的には、CeO、Y、Al、Gd、ZrO、Ho、Nd等が例示できる。キャップ層の材料がCeOである場合、キャップ層は、Ceの一部が他の金属原子又は金属イオンで置換されたCe-M-O系酸化物を含んでいても良い。
 キャップ層は、PLD法(パルスレーザ蒸着法)、スパッタリング法等で成膜することができる。PLD法によるCeO層の成膜条件としては、基材温度約500~1000℃、約0.6~100Paの酸素ガス雰囲気中で成膜することができる。CeOのキャップ層5の膜厚は、50nm以上であればよいが、十分な配向性を得るには100nm以上であることが好ましい。但し、厚すぎると結晶配向性が悪くなるので、50~5000nmの範囲とすることが好ましい。
 酸化物超電導層5は通常知られている酸化物超電導体の組成を広く適用することができ、REBaCu(REはY、La、Nd、Sm、Er、Gd等の希土類元素を表す)で形成される材料、具体的には、Y123(YBaCu)又はGd123(GdBaCu)を例示することができる。また、その他の酸化物超電導体、例えば、BiSrCan-1Cu4+2n+δで形成される組成等に代表される臨界温度の高い他の酸化物超電導体で形成される材料を用いても良いのは勿論である。酸化物超電導層5の厚みは、0.5~5μm程度であって、均一な厚みであることが好ましい。
 酸化物超電導層5の上面を覆うように形成されている保護層6は、Agで形成され、DCスパッタ装置またはRFスパッタ装置などの成膜装置により成膜されている。また、酸化物超電導層5の厚さは1~30μm程度である。なお、本実施形態の保護層6は、成膜装置により酸化物超電導層5の上面側に主体に形成されているが、成膜装置のチャンバの内部でテープ状の基材3を走行させながら成膜されているので、基材3の両側面と中間層4の両側面と酸化物超電導積層5の両側面および基材3の裏面に対し保護層6の成膜粒子が回り込む。したがって、基材3の両側面と中間層4の両側面と酸化物超電導積層5の両側面および基材3の裏面にも保護層6の構成元素粒子が若干堆積されている。
 このAg粒子の回り込み堆積が生じる場合、ニッケル合金で形成されるハステロイ製の基材3の裏面側と側面側に半田層7が密着するが、Ag粒子の回り込みによる堆積が無い場合は、ニッケル合金で形成されるハステロイ製の基材3に半田層7が満足に密着しなくなるおそれがある。
 また、前記保護層6の表面(保護表面)及び両側面と、その下に形成される酸化物超電導積層5の両側面と、中間層4の両側面と、基材3の両側面とを覆うとともに、基材3の裏面側の両端部3a(裏面両端部)を覆うように銅などの導電性材料で形成される金属テープ2が設けられている。
 金属テープ2は、一例として良導電性の金属材料で形成され、酸化物超電導層5が超電導状態から常電導状態に転移した時に、保護層6とともに、電流を転流するバイパスとして機能する。金属テープ2を構成する材料としては、良導電性を有すればよく、特に限定されないが、銅、黄銅(Cu-Zn合金)、Cu-Ni合金等の銅合金、Al、Cu-Al合金等の比較的安価な材料で形成される材料を用いることが好ましい。中でも、高い導電性を有し、安価であることから銅で形成されることが好ましい。なお、酸化物超電導線材Aを超電導限流器用途に使用する場合、金属テープ2は高抵抗金属材料より構成され、例えば、Ni-Cr等のNi系合金などで形成される。金属テープ2の厚さは特に限定されず、適宜調整可能であるが、15~300μmとすることが好ましく、20~300μmとすることがより好ましい。
 前記金属テープ2の表面と裏面の両方には半田層(低融点金属層)7が形成されている。この半田層7は、金属テープ2の外面を覆っている外部側被覆層7aと、金属テープ2の内面側に密着して酸化物超電導積層体1の周囲を覆っている内部側被覆層7bと、金属テープ2の両端部の先端部分を覆っている被覆部7cとで形成される。
 金属テープ2と半田層7とについてより詳しく説明すると、金属テープ2は、横断面が略C字型となるように折り曲げられ、表面壁2aと側壁2bと裏面壁2cとで形成され、酸化物超電導積層体1の保護層6側から基材3の裏面両端部3aまでが半田7で覆われている。即ち、保護層6の表面及び両側面と、酸化物超電導層5の両側面と、中間層4の両側面と、基材3の両側面と、基材3の裏面両端部3aとが金属テープ2に覆われている。よって、半田層7の内部側被覆層7bは、酸化物超電導積層体1の全周面のうち、金属テープ2が覆っている部分の全てを被覆するように設けられ、さらに、金属テープ2と酸化物超電導積層体1との間を完全に埋めるように充填されている。前記基材3の裏面側の幅方向中央部は、金属テープ2の裏面壁2cに覆われていない。従って、基材3の裏面中央部上であって金属テープ2の一対の裏面壁2c間には、凹部2dが設けられている。
 また、半田層7の被覆部7cは、金属テープ2の裏面壁2cの先端から凹部2d側に若干膨れ出るように被覆層7a、7bよりも肉厚に形成される。さらに、半田層7の被覆部7cは、金属テープ2の裏面壁2cの先端部と基材3の裏面との間の隙間を閉じるように設けられている。
 この半田層(低融点金属層)7は、この実施形態では半田から形成されているが、低融点金属層として、融点240~400℃の金属、例えば、Sn、Sn合金、またはインジウム等で形成されていても良い。半田を用いる場合、Sn-Pb系、Pb-Sn-Sb系、Sn-Pb-Bi系、Sn-Bi系、Sn-Cu系、Sn-Pb-Cu系、またはSn-Ag系などで形成される半田を用いても良い。なお、半田層7を溶融させる場合、その融点が高いと、酸化物超電導層5の超電導特性に悪影響を及ぼす。したがって、半田層7の融点は低い方が好ましく、この点、融点350℃以下、より好ましくは240~300℃前後の融点を有する材料が望ましい。
 半田層7の厚さは、1μm~10μmの厚さ範囲が好ましく、2μm~6μmの範囲であることがより好ましい。半田層7の厚さが1μm未満の場合、酸化物超電導積層体1と金属テープ2との間の隙間を完全に充填できずに、隙間を生じるおそれがある。更に、半田を溶融させている間に半田層7の構成元素が拡散して、銅テープ2と、あるいはAgの保護層6との間に合金層を生成するおそれがある。逆に、半田層7の厚さを10μmを超える厚さにすると、後述するようにロールにより加熱加圧して半田を溶融し、半田付けする際、金属テープ2の裏面壁2cの先端側から半田が延出する量が多くなり、被覆部7cの厚さが必要以上に大きくなる。その結果、酸化物超電導線材Aの巻回時に巻き乱れを生じる可能性が高くなる。
 図1に示す構造の酸化物超電導線材Aは、酸化物超電導積層体1とその周囲の金属テープ2との間に充填された半田層7が酸化物超電導積層体1の周囲を覆っている。したがって、金属テープ2の内側に位置する酸化物超電導層1に対し外部からの水分の浸入を防止できる。
また、基材3の裏面端部に被せられた金属テープ2の裏面壁2cから外部に突出するように被覆層7a、7bより厚く形成された半田層7の被覆部7cで金属テープ2の両端部と基材3の裏面との隙間を覆っている。したがって、金属テープ2の端部側から金属テープ2の内側へ水分が浸入することを確実に防止できる効果がある。
 また、金属テープ2の裏面壁2cの端部を被覆する半田で形成される被覆部7cは、金属テープ2の両端部間に形成される凹部2dに多少延出している程度であり、金属テープ2の厚さに比べこの延出部分の厚みが特に向上している訳ではない。したがって、基材3の裏面側に被覆部7cを備えた酸化物超電導線材Aをコイル巻きする場合、大きな段差を生じることがなく、コイル巻き加工時の巻き乱れを生じ難い。
 また、フォーマ上にこの酸化物超電導線材を複数層巻き付けて超電導ケーブルを形成する場合でも巻き乱れが生じ難くなる。
 図1に示す構造の酸化物超電導線材Aを製造するには、図3Aに示すように基材3と中間層4と酸化物超電導層5と保護層6とを積層したテープ状の酸化物超電導積層体1を用意し、この酸化物超電導積層体1の保護層6を下にして、その下方に金属テープ2を配置する。ここで用いる金属テープ2の表裏面にはめっきにより半田層8、9が形成されている。これらの半田層8、9は2μm~6μm程度の厚さとすることが好ましい。なお、本発明では、必ずしも金属テープ2の表裏面の両方に半田層が設けられている必要はなく、保護層6を覆う側の一方にのみ半田層が設けられた金属テープ2を用いても良い。
 次に、酸化物超電導積層体1の中央下部に金属テープ2の中央部を位置合わせして配置し、フォーミングロールなどを用いて金属テープ2を整形して基材3の両端側に沿って金属テープ2の両端側を上方に折り曲げる。続いて、基材3の両端に沿って更に内側に折り曲げて、金属テープ2により基材3の両端部を包むように曲げ加工して金属テープ2を横断面C字状に折り曲げ加工する。
 この状態から加熱炉で全体を半田層8、9の溶融温度に加熱する。続いて半田層8、9の溶融温度から50℃程度低い温度に加熱した加圧ロールを用いてC字状に曲げ加工した金属テープ2と酸化物超電導積層体1とを加圧する。ここで用いる半田層8、9の融点が一例として240℃~350℃であるならば、この融点より50℃低い190℃~300℃の範囲の温度を選択することが好ましい。
 この処理により、溶融した半田層8、9は酸化物超電導積層体1と金属テープ2との間を完全に埋めるように溶融して拡がり、それらの間の間隙に充填される。この後、全体を冷却し、溶融している半田を固化させると、図3Cに示すように半田層7を備えた図1に示す構造と同様の構造の酸化物超電導線材Aを得ることができる。
 図4は本発明に係る第2実施形態の酸化物超電導線材の横断面図を示す。第2実施形態の酸化物超電導線材Bは、第1実施形態の酸化物超電導線材Aと同様に、内部に設けられたテープ状の酸化物超電導積層体1を銅などの導電性材料で形成される金属テープ2で覆われている。
 この実施形態の酸化物超電導線材Bと第1実施形態の酸化物超電導線材Aとは、金属テープ2の内周面側のみに半田層(低融点金属層)17の内部側被覆層17aが形成されるとともに、C字型の金属テープ2の一対の裏面壁2cの先端縁の間に形成される凹部2dの縁の部分が半田層(低融点金属層)で形成される埋込層17cにより埋め込まれている点で異なる。
 図4に示す構造の酸化物超電導線材Bにおいて、その他の構造は第1実施形態の酸化物超電導線材Aと同様であり、同様の構造については同一の符号を付し、それら構造の説明を略する。
 図4に示す酸化物超電導線材Bは、酸化物超電導積層体1と金属テープ2との間が内部側被覆層17aにより充填されるとともに、金属テープ2の裏面壁2c間の間隙部分が埋込層17cにより埋められている。従って、この埋込層17cが水分の浸入を抑制し、金属テープ2の内側の酸化物超電導層5側への水分浸入を防止する。
 図4に示す酸化物超電導線材Bのように、金属テープ2の外面に半田層を設けない構造としても、金属テープ2の内面側に内部側被覆層17aを設け、埋込層17cを設けることで水分が内部に浸入しない構造を実現できる。
 図4に示す酸化物超電導線材Bを製造するには、図3A~図3Cに示す工程と同様の工程を採用して片面のみに半田層を設けた金属テープ2を用い、この金属テープ2を図3A~図3Cにおいて説明した場合と同様に折り曲げ加工し、半田層を加熱溶融させてロールにより加圧すれば良い。
 金属テープ2の片面に設ける半田層の厚さを調整するか、加圧ロールに別途半田を供給するなどの手段を用いて金属テープ2の一対の裏面壁2cの間の間隙部分が、埋込層17cによって埋まる程度の半田量とすることにより、図4に示す構造の酸化物超電導線材Bを得ることができる。金属テープ2の一面に設ける半田層の厚さは、最低2μm程度であることが必要である。また、半田層の供給のために、Sn箔またはSnワイヤを金属テープ2の一対の裏面壁2cの間の間隙部分に供給し、これらを溶融して間隙部分を埋め込み、接合する方法を採用することもできる。
 図5は本発明に係る第3実施形態の酸化物超電導線材の横断面図を示している。この実施形態の酸化物超電導線材Cは、第1実施形態の酸化物超電導線材Aと同様に、内部に設けられたテープ状の酸化物超電導積層体1が銅などの導電性材料で形成される金属テープ2で覆われている。
 この実施形態の酸化物超電導線材Cと第2実施形態の酸化物超電導線材Bとは、金属テープ2の外周面側に半田層(低融点金属層)17の外部側被覆層17bが形成されている点で異なっている。その他、C字型の金属テープ2の裏面壁2c、2cの先端縁の間に形成される凹部2dが半田層(低融点金属層)で形成される埋込層17cにより埋め込まれている点については第2実施形態と同様である。
 図4に示す構造の酸化物超電導線材Cにおいて、その他の構造は第2実施形態の酸化物超電導線材Bと同様であり、同様の構造については同一の符号を付し、それら構造の説明を略する。
 図5に示す酸化物超電導線材Cは、酸化物超電導積層体1と金属テープ2との間が内部側被覆層17aにより充填され、金属テープ2の外周面全体が外部側被覆層17bにより覆われるとともに、金属テープ2の一対の裏面壁2cの間の間隙部分が埋込層17cにより埋められている。したがって、内部側被覆層17aと外部側被覆層17bと埋込層17cとが水分の浸入を抑制し、金属テープ2の内側に配置される酸化物超電導層5へ水分が浸入することを防止する。
 図5に示す酸化物超電導線材Cのように、金属テープ2の外面側と内面側とに半田層を設けた構造として、更に埋込層17cを設けることで水分を内部に浸入させることのない構造を実現できる。
 図5に示す酸化物超電導線材Cを製造するには、図3A~Cに示す工程と同様の工程を採用して両面に半田層を設けた金属テープ2を用い、この金属テープ2を図3A~図3Cに説明した場合と同様に折り曲げ加工し、半田層を加熱溶融させてロールにより加圧すれば良い。
 金属テープ2の両面に設ける半田層の厚さを調整するか、加圧ロールに別途半田を供給するなどの手段を用いて金属テープ2の一対の裏面壁2cの間の間隙部分が埋込層17cによって埋まる程度の量の半田を用いることにより、図5に示す構造の酸化物超電導線材Cを得ることができる。
 図6に示す酸化物超電導線材Dは、酸化物超電導積層体1と金属テープ2の間が内部側被覆層17aにより充填され、金属テープ2の外周面全体が外部側被覆層17bにより覆われるとともに、金属テープ2の一対の裏面壁2c間に形成される凹部2dの部分が埋込層17dにより埋められている。従って、内部側被覆層17aと外部側被覆層17bと埋込層17dとが水分の浸入を抑制し、金属テープ2の内側に配置される酸化物超電導層5へ水分が浸入することを防止する。
 なお、本実施形態の構造では、凹部2dの上端縁位置(金属テープ2の一対の裏面壁2cの一対の先端上縁2eが構成する凹部2dの開口位置)よりも外部側に膨れ出ないように、埋込層17dが形成される。即ち、埋込層17dはその表面を金属テープ2の一対の裏面壁2cの一対の先端上縁2eが構成する凹部2dの開口位置よりも内側に位置するように凹部2d内に形成されている。
 図6に示す酸化物超電導線材Dのように、金属テープ2の外面側と内面側とに半田層を設けた構造として、更に埋込層17dを設けることで水分が内部に浸入しない構造を実現できる。
 図6に示す酸化物超電導線材Dを製造するには、図3A~図3Cに示す工程と同様の工程である図7A~図7Cに示す工程を採用する。つまり、両面に半田層を設けた金属テープ2を用い、この金属テープ2を図3A~図3Cに説明した場合と同様に図7A~図7Cに示すように折り曲げ加工し、半田層を加熱溶融させてロールにより加圧することで酸化物超電導線材Dを製造することができる。
 金属テープ2の両面に設ける半田層の厚さを調整し、加圧ロールに別途半田を供給するなどの方法を用いて金属テープ2の一対の裏面壁2cの間に設けられる凹部2dが埋込層17cによって埋まる程度の量の半田を用いることにより、図6に示す構造の酸化物超電導線材Dを得ることができる。このように半田を追加することによって、埋込層17cの量を充分に確保することができる。
 図6に示す構造のように凹部2dの開口位置(金属テープ2の端部表面に相当する上端位置)から外部に膨れ出ていない埋込層17dを設けることで金属テープの内部側へ水分が浸入することを防止できる。なお、金属テープ2として表面に外部側被覆層17bを設けた構造を採用した場合、金属テープ2の実質的な表面は外部側被覆層17bの表面となる。従って、埋込層17dは外部被覆層17bの表面から外方に突出しない厚さで形成される。
 また、コイル加工して1層目の上に2層目以降を巻き付ける場合、1層目及び2層目の酸化物超電導線材Dを重ねて配置したとしても膨れ出している部分が無いので巻き乱れを生じることがない。
 また、水分の浸入を防止できる構造の信頼性をより高めることを考慮し、本発明者が種々研究した結果、金属テープ2と酸化物超電導積層体1の裏面側の接触長を一定値以上確保しつつ溶融半田で隙間を埋めることが重要であることが分かった。即ち、酸化物超電導積層体1の裏面側において、金属テープ2の折返し端縁どうしの隙間の部分に形成される凹部2dをディッピング法などの方法で半田により封止する際、隙間の幅方向長さ(凹部2dの幅)が一定値以下である場合、半田により隙間を確実に封止できることが分かった。この封止のメカニズムと隙間の幅方向長さとの相関は、主に半田の表面張力によって決定されるものであると考えられる。
 この背景から、凹部2dの幅は2.0mm以下であることが好ましい。凹部2dの幅を2.0mm以下に設定することで低融点金属がその表面張力で凹部2d内に充分に拡がり、隙間を埋めるので、水分浸入防止の面で信頼性の高い構造を提供できる。
 また、本発明にかかる酸化物超電導線材を巻回することでコイル体21を構成し、これらを必要数積層して超電導コイル20を形成してもよい(図9)。
 さらに、中心部に配置された撚線構造等のフォーマ31の外周側に順次本発明に係る第1の酸化物超電導線材と、電気絶縁層32と、第2の酸化物超電導線材と、銅などの良導電性金属材料からなるシールド層33と、を備えることで、超電導ケーブル30を形成してもよい(図10)。
 以下、実施例を示して本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
 ハステロイC-276(米国ヘインズ社商品名)で形成される厚さ100μm、幅5mm、長さ10mのテープ状の基材上に、Alの拡散防止層(厚さ80nm)と、Yのベッド層(厚さ30nm)と、イオンビームアシスト蒸着法によるMgOの中間層(厚さ10nm)と、PLD法によるCeOのキャップ層(厚さ300nm)と、YBaCu7-xで示される組成の酸化物超電導層(厚さ1μm)と、DCスパッタ法によるAgの保護層(厚さ10μm)を積層したテープ状の酸化物超電導積層体を用意した。基材から保護層までを含めた酸化物超電導積層体の厚さは約110μmである。
 前記酸化物超電導積層体に500℃で酸素アニール処理を行った。この後、両面に厚さ2μmのSnめっき層を形成した厚さ20μm、幅10mmの銅テープを図3Aに示すようにAgの保護層外面に沿わせ、銅テープの幅方向両端側を曲げてコ字型に加工し、次いで銅テープの両端側を基材裏面側に折り曲げるように整形した。
 その後、260℃の加熱炉を通過させてSnを溶融させている間に、200℃に加熱している加圧ロールを用いて全体を厚さ方向に加圧して表裏面に溶融して存在しているSnを均一の厚さにした。この加圧ロールによる加熱加圧処理により、銅テープとその内側に設けた酸化物超電導積層体との間の隙間を溶融スズで埋めるとともに、溶融スズの一部を銅テープの両端部と基材裏面側との隙間から外側に若干延出させ、図3Cに示す被覆部を有した酸化物超電導線材を得た。
 得られた酸化物超電導線材10mについて、レーザ変位計を用いて厚み寸法の最大値と最小値を測定した。このレーザ変位計が、1回でスキャンする範囲は幅方向1mmであるので、計測値はその範囲の平均値が求められている。レーザ変位計でスキャンする範囲は、基材裏面側の銅テープの端部を必ず含むように計測し、基材裏面側において銅テープの端部間の隙間部分の厚み情報を含むデータとして計測値を求めた。
 図8に示すように銅テープを酸化物超電導積層体の周囲に被せて銅テープの幅方向両端部を重ね合わせた構造について、比較のために同様の試験を行った。
 これら各試料の測定結果について、以下の表1にまとめて記載する。
Figure JPOXMLDOC01-appb-T000001
 
 表1に示す試験結果のように両面にSnめっきを形成した試料の寸法は、±10μm以下(7%)の公差であり、銅テープの厚み寸法公差、金属製の基材の厚み寸法公差を5%以内とした銅テープ、基材を用いていることを考慮すると、上述の製造方法により生成する銅テープの寸法公差は、ほぼ0とみなすことができる。
 また、片面Snめっきした試料と両面Snめっきした試料を用い、信頼性試験(プレッシャークッカー試験、1気圧、100℃、湿度100%、試験時間25~100(h;時間))を行った結果を以下の表2に示す。
 表2において特性低下試料数とは、試験前に計測した元の酸化物超電導線材(試験数)の電流値に対して10%以上電流値が低下した酸化物超電導線材の試料数である。
Figure JPOXMLDOC01-appb-T000002
 
 表2に示す試験結果から、片面をSnめっきした試料において、50時間までのプレッシャークッカー試験で電流値の低下が見られず、両面をSnめっきした試料において、100時間までのプレッシャークッカー試験で電流値の低下が見られなかった。なお、プレッシャークッカー試験は、酸化物超電導線材の耐水性を試験する場合の条件を考慮すると、極めて過酷な加速試験である。すなわち、このプレッシャークッカー試験において50時間に耐えることは、通常使用において全く問題のない耐水性であることを意味し、100時間に耐えることは工業材料としての使用形態において信頼性の面で全く問題のない状態であることを意味する。
 この面から鑑み、本発明の酸化物超電導線材は、片面Sn被覆型の構造と両面Sn被覆型のいずれの構造においても優れた水分浸入防止効果を得ることができた。
 次に、先に説明したAgの保護層までを備えた酸化物超電導積層体(長さ1m)を用い、先と同様の酸素アニール後、両面に厚さ2μmのSnめっき層を形成した厚さがそれぞれ20μmであって、幅が異なる複数の銅テープをそれぞれ用いて図7Aに示すようにAgの保護層外面に沿わせた。次いで図7Bに示すように銅テープの幅方向両端側を曲げてコ字型に加工し、次いで図7Cに示すように銅テープの両端側を基材裏面側に折り曲げるようにC字型に整形し、幅の異なる銅テープで被覆した複数の超電導線材試料を得た。
 その後、260℃の加熱炉を通過させてSnを溶融させている間に、200℃に加熱している加圧ロールを用いて全体を厚さ方向に加圧して表裏面に溶融して存在しているSnの厚さを均一にした。この加圧ロールによる加熱加圧処理により、銅テープとその内側に設けた酸化物超電導積層体との間の隙間を溶融スズで埋めるとともに、溶融スズの一部を銅テープの両端部と基材裏面側との隙間から外側に若干延出させた。更に、個々の超電導線材の凹部に、半田こてにより手作業で図7Cに示す埋込層を形成し、各酸化物超電導線材を得た。
 これらの複数の酸化物超電導線材について、被覆に使用した銅テープの厚さを以下の表3に示す。
 これら各幅の銅テープを被覆した超電導線材を10本用意し、100℃、湿度100%、1気圧下でのプレッシャークッカー試験(PCT試験)を100時間行なった。
Figure JPOXMLDOC01-appb-T000003
 
 表3に示す結果から分かるように、銅テープ厚が20μm未満の場合、銅テープが薄いほど特性が低下する試料数が増大している。また、銅テープ厚が15μm以上で特性試験結果が格段に改善されており、銅テープ厚が20μm以上の試料では特性が低下する試料は生じなかった。なお、銅テープ厚が10μm以下ではテープが薄すぎて作業中に破断するおそれも増大する。
 次に、酸化物超電導積層体の基材裏面端部側を銅テープが覆う被覆長(銅テープの端部が基材裏面端部側を被覆する場合の被覆幅)について、試験した。
 銅テープ厚さの変化により試験に影響が出ないように銅テープの厚みを20μmに固定した。また、前記加圧ロールを行うことで、上述の酸化物超電導積層体をC字型に成形した銅テープが被覆する構造の酸化物超電導線材を作製した。なお、この試験に供した構造は、図3Cに示すように銅テープの端部間に形成される凹部を半田が完全には覆っていない被覆部を設けた構造であり、埋込層の無い構造である。
 超電導積層体を被覆する銅テープの被覆長は以下の表4に示すように変更されており、先の試験で行った条件と同等のプレッシャークッカー試験に供した。なお、ここで示す被覆長とは、C字型の銅テープの両端部が基材裏面を覆う合計幅なので、C字型の銅テープの一側端が被覆する長さ(幅)は、被覆長を示す数値の半分である。よって、銅テープの一方の端縁が覆う被覆長は表4の数値の半分となる。以上の結果を以下の表4に示す。
Figure JPOXMLDOC01-appb-T000004
 
 表4に示す試験結果から、金属テープの被覆長を金属テープの両端側合わせて1.5mm未満にすると特性低下する試料数が増大するが、被覆長1.5mm以上では特性低下する試料数が少なくなる。また、2.5mm以上では特性低下する試料が発生しなかった。このことから、超電導積層体を金属テープにより被覆する場合、金属テープ幅方向両端側の被覆長を1.5mm以上とすることが望ましいと考えられる。なお、金属テープの一側の端部の被覆長としては、0.75mm以上で特性が低下する試料数が少なくなり、1.25mm以上で特性が低下する試料が発生しなくなる。
 次に、超電導積層体を被覆する金属テープの非被覆長(凹部幅)を変化させた場合の信頼性について試験した。なお、銅テープ被覆長は、表3に示す結果から、被覆長1.5mmの場合の結果が優れていたので被覆長1.5mmに条件を固定し、非被覆長(凹部幅)を変更する条件で試験した。なお、非被覆長の長い比較例6、7の試料は幅5mmの酸化物超電導積層体に代えて幅12mmの酸化物超電導積層体を用いた。
 裏面封止の結果を示す欄に記載の○印は図6に示すように凹部を半田の埋込層で覆うことができた場合を示し、×印は見かけ上は半田の埋込層が形成されているが、染色浸透探傷試験を実施すると、銅テープが密着していない部分が存在することを知見できた試料である。
 なお、染色浸透探傷試験とは、検査用の赤色などの浸透液を試料に塗布し、塗布後に試料に付着した一端浸透液を水洗して除去し、試料の表面を乾燥した後、試料に現像液を塗布すると、塗布部位に存在するクラックなどに染みこんでいた浸透液が表面ににじみ出し、指示模様を描くことにより、クラックの存在を検出できる試験方法(JISZ2343規定)である。
Figure JPOXMLDOC01-appb-T000005
 
 表5に示す試験結果から、半田により埋込層を凹部内に形成する場合、凹部の幅が広すぎると、半田により凹部内に密着した埋込層を形成できないことが分かった。したがって、凹部内に密着した埋込層を得るためには、凹部幅を2.0mm以下にする必要があることが判明した。
これは、溶融した半田が表面張力で凹部内に均一に広がるうちは、良好な埋込層となるが、凹部幅が大きくなりすぎると、表面張力が作用しても半田が凹部内に行き渡らなくなることを意味している。
 次に、酸化物超電導線材を用いて超電導コイルを製造する場合、コイルを巻く場合に作業性及び寸法影響性を考慮すると、酸化物超電導線材の表面側と裏面側とで突部が形成されていない状態が望ましい。このため、銅テープを成形後に加熱して半田を融かした後、ロール圧着した場合の影響を試験した。
 上述の表5に示す結果から判断すると、半田の表面張力の影響により、金属テープ非被覆長(凹部幅)を2.1mm以上にすると、完全には基材を封止できなくなる結果が得られた。
 そこで、凹部幅が2.1mmより大きい場合を想定し、加熱ロールで圧着した上に、更に凹部内に半田を追加して埋込層を形成し、凹部内を完全に半田で埋め込む構造を作製して裏面封止の状態を試験した。なお、凹部幅が大きい実施例20、21の試料は幅5mmの酸化物超電導積層体に代えて幅12mmの酸化物超電導積層体を用いている。
Figure JPOXMLDOC01-appb-T000006
 
 表6に示す結果から、凹部に半田をロールで圧着し、更に凹部に半田を追加して埋込層を形成した場合は、1.5~9.0mmまでのいかなる凹部幅であっても、凹部を半田で埋めて封止しているならば、信頼性を確保できることが判明した。このことから、凹部に半田を充分な量充填することで、より完全な水分浸入防止構造を提供できることが分かった。
 本発明技術は、例えば超電導用送電線、超電導モータ、限流器など、各種電力機器に用いられる酸化物超電導線材に利用できる。
 A、B、C、D…酸化物超電導線材、1…酸化物超電導積層体、2…金属テープ、2a…表面壁、2b…側面壁、2c…裏面壁、2d…凹部、3…基材、3a…裏面両端部、4…中間層、5…酸化物超電導層、6…保護層、7…半田層(低融点金属層)、7a…外部側被覆層、7b…内部側被覆層、7c…被覆部、8、9、17…半田層(低融点金属層)、17a…内部側被覆層、17b…外部側被覆層、17c、17d…埋込層。

Claims (11)

  1.  酸化物超電導線材であって、
     基材表面と基材裏面を有する金属製のテープ状の基材と、前記基材表面に設けられた中間層と、前記中間層の上に設けられた酸化物超電導層と、保護表面を有するとともに前記酸化物超電導層の上に設けられた保護層と、を有するテープ状の酸化物超電導積層体と、
     金属テープと、低融点金属層と、で形成される被覆部と、を有し、
     前記金属テープは、前記酸化物超電導積層体よりも幅が広く、前記保護表面と前記酸化物超電導積層体の両側面と前記裏面の幅方向における両端部とを覆い、
     前記金属テープの幅方向における両端部が前記裏面の両端部に被せて設けられ、
     前記低融点金属層は、前記酸化物超電導積層体とその周囲に設けられた前記金属テープとの間に充填されて前記金属テープと前記酸化物超電導積層体とを接合し、
     充填された前記低融点金属層の一部が前記金属テープの幅方向の両端部の間に形成される凹部に延出していることを特徴とする酸化物超電導線材。
  2.  請求項1に記載の酸化物超電導線材であって、
     前記凹部が前記凹部を構成する前記金属テープの両端部表面位置から外方に膨れ出ていない前記低融点金属層で形成される埋込層により覆われて形成されることを特徴とする酸化物超電導線材。
  3.  請求項1または2に記載の酸化物超電導線材であって、
     前記基材裏面端部側を覆った前記金属テープの両端部のそれぞれの被覆幅が0.75mm以上であることを特徴とする酸化物超電導線材。
  4.  請求項1または2に記載の酸化物超電導線材であって、
     前記凹部の幅が2.0mm以下であることを特徴とする酸化物超電導線材。
  5.  請求項1または2に記載の酸化物超電導線材であって、
     前記金属テープが厚さ15μm以上の銅テープであることを特徴とする酸化物超電導線材。
  6.  請求項1または2に記載の酸化物超電導線材であって、
     前記埋込層が、前記酸化物超電導積層体と前記金属テープとの間に充填された前記低融点金属層の一部に加え、外部から追加された低融点金属を含むことを特徴とする酸化物超電導線材。
  7.  請求項1~6のいずれか一項に記載の酸化物超電導線材であって、
     前記金属テープの外周面全体が前記低融点金属層により覆われていることを特徴とする酸化物超電導線材。
  8.  請求項1~7のいずれか一項に記載の酸化物超電導線材を備える超電導コイル。
  9.  請求項1~7のいずれか一項に記載の酸化物超電導線材を備える超電導ケーブル。
  10.  酸化物超電導線材の製造方法であって、
     金属製のテープ状の基材の表面側に中間層が設けられ、前記中間層の上に酸化物超電導層が設けられ、前記酸化物超電導層の上に保護層が設けられたることで形成されるテープ状の酸化物超電導積層体と、前記酸化物超電導積層体よりも幅が広く、周面に低融点金属めっき層を形成した金属テープとを準備し、
     前記金属テープで前記酸化物超電導積層体の前記保護層側と両側面側と幅方向における基材裏面側の両端部とを覆うように前記金属テープを酸化物超電導積層体に被せ、
     前記低融点金属めっき層を溶融状態とする温度に加熱し、ロールで加圧して前記酸化物超電導積層体と前記金属テープとの間を低融点金属層で埋め込み、前記低融点金属層の一部を前記基材裏面端部を覆った前記金属テープの端部から外部に延出させて被覆部を形成することを特徴とする酸化物超電導線材の製造方法。
  11.  請求項10に記載の酸化物超電導線材の製造方法であって、
     前記基材裏面端部側を覆った前記金属テープの両端部間に形成される凹部を、この凹部が開口している位置から外方に膨出していない低融点金属の埋込層により覆うことを特徴とする酸化物超電導線材の製造方法。
PCT/JP2012/080246 2011-11-21 2012-11-21 酸化物超電導線材と酸化物超電導線材の製造方法 WO2013077387A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280056614.0A CN103959401B (zh) 2011-11-21 2012-11-21 氧化物超导电线材及其制造方法、超导电线圈和超导电缆
JP2013545957A JP5753589B2 (ja) 2011-11-21 2012-11-21 酸化物超電導線材の製造方法
EP12850982.5A EP2770513B1 (en) 2011-11-21 2012-11-21 Oxide superconductor wire and method of manufacturing oxide superconductor wire
RU2014120161/05A RU2570047C1 (ru) 2011-11-21 2012-11-21 Оксидный сверхпроводящий провод и способ изготовления оксидного сверхпроводящего провода
US14/281,249 US9697930B2 (en) 2011-11-21 2014-05-19 Oxide superconductor wire and method of manufacturing oxide superconductor wire

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011253796 2011-11-21
JP2011-253796 2011-11-21
JP2012086409 2012-04-05
JP2012-086409 2012-04-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/281,249 Continuation US9697930B2 (en) 2011-11-21 2014-05-19 Oxide superconductor wire and method of manufacturing oxide superconductor wire

Publications (1)

Publication Number Publication Date
WO2013077387A1 true WO2013077387A1 (ja) 2013-05-30

Family

ID=48469829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080246 WO2013077387A1 (ja) 2011-11-21 2012-11-21 酸化物超電導線材と酸化物超電導線材の製造方法

Country Status (6)

Country Link
US (1) US9697930B2 (ja)
EP (1) EP2770513B1 (ja)
JP (2) JP5753589B2 (ja)
CN (1) CN103959401B (ja)
RU (1) RU2570047C1 (ja)
WO (1) WO2013077387A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015028912A (ja) * 2013-07-05 2015-02-12 中部電力株式会社 超電導線材及びそれを用いた超電導コイル
JP2015065116A (ja) * 2013-09-26 2015-04-09 株式会社フジクラ 酸化物超電導線材、酸化物超電導線材の接続構造体、酸化物超電導線材と電極端子の接続構造体、及びこれを備えた超電導機器、並びにこれらの製造方法
US20150357092A1 (en) * 2013-02-15 2015-12-10 Fujikura Ltd. Oxide superconducting wire
CN105940465A (zh) * 2014-03-07 2016-09-14 住友电气工业株式会社 氧化物超导薄膜线材及其制造方法
CN106537523A (zh) * 2014-07-31 2017-03-22 住友电气工业株式会社 超导线材
EP3046116A4 (en) * 2013-09-11 2017-04-26 Sunam Co. Ltd. Superconductor and method of manufacturing same
WO2017104297A1 (ja) 2015-12-18 2017-06-22 株式会社フジクラ 酸化物超電導線材の製造方法及び超電導コイルの製造方法
US10128025B2 (en) * 2014-08-05 2018-11-13 Fujikura Ltd. Oxide superconducting wire, superconducting device, and method for producing oxide superconducting wire

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6225851B2 (ja) * 2014-07-31 2017-11-08 住友電気工業株式会社 超電導線材
WO2017077788A1 (ja) * 2015-11-06 2017-05-11 株式会社フジクラ 酸化物超電導線材
CN106298060B (zh) * 2016-08-09 2018-12-11 成都力为超导科技有限公司 采用多层高温超导带材叠成的高温超导块及制备方法
JP2018026233A (ja) 2016-08-09 2018-02-15 株式会社フジクラ 酸化物超電導線材
CN106671822B (zh) * 2016-12-01 2023-10-27 西南交通大学 高温超导磁悬浮机构及高温超导磁悬浮列车
US11282620B2 (en) * 2018-03-09 2022-03-22 Ohio State Innovation Foundation Electroplating process for connectorizing superconducting cables
JP6743233B1 (ja) * 2019-03-28 2020-08-19 株式会社フジクラ 酸化物超電導線材
US11894508B2 (en) * 2021-05-06 2024-02-06 Shanghai Superconductor Technology Co., Ltd. Second-generation HTS strip and preparation method thereof
EP4246602A1 (de) 2022-03-14 2023-09-20 Theva Dünnschichttechnik GmbH Hermetisch dichter hochtemperatursupraleitender bandleiter

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009503794A (ja) 2005-07-29 2009-01-29 アメリカン・スーパーコンダクター・コーポレーション 高温超電導体ワイヤのためのアーキテクチャ
JP2010267822A (ja) * 2009-05-14 2010-11-25 Toshiba Corp 超電導コイル装置
JP2011003494A (ja) 2009-06-22 2011-01-06 Toshiba Corp 補強高温超電導線およびそれを巻線した高温超電導コイル
JP2011008949A (ja) * 2009-06-23 2011-01-13 Fujikura Ltd 超電導線材及びその製造方法
JP2011009098A (ja) * 2009-06-26 2011-01-13 Fujikura Ltd 超電導線材
JP2012169237A (ja) * 2011-01-25 2012-09-06 Fujikura Ltd 酸化物超電導線材およびその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3852426T2 (de) * 1987-05-13 1995-05-24 Sumitomo Electric Industries Gemischter Supraleiter und Verfahren zu seiner Herstellung.
US5620798A (en) * 1995-05-17 1997-04-15 The Babcock & Wilcox Company Aluminum stabilized superconductor supported by aluminum alloy sheath
JP4984466B2 (ja) 2005-09-21 2012-07-25 住友電気工業株式会社 超電導テープ線材の製造方法
JP4643522B2 (ja) * 2006-08-23 2011-03-02 財団法人国際超電導産業技術研究センター テープ状厚膜ybco超電導体の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009503794A (ja) 2005-07-29 2009-01-29 アメリカン・スーパーコンダクター・コーポレーション 高温超電導体ワイヤのためのアーキテクチャ
JP2010267822A (ja) * 2009-05-14 2010-11-25 Toshiba Corp 超電導コイル装置
JP2011003494A (ja) 2009-06-22 2011-01-06 Toshiba Corp 補強高温超電導線およびそれを巻線した高温超電導コイル
JP2011008949A (ja) * 2009-06-23 2011-01-13 Fujikura Ltd 超電導線材及びその製造方法
JP2011009098A (ja) * 2009-06-26 2011-01-13 Fujikura Ltd 超電導線材
JP2012169237A (ja) * 2011-01-25 2012-09-06 Fujikura Ltd 酸化物超電導線材およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2770513A4

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150357092A1 (en) * 2013-02-15 2015-12-10 Fujikura Ltd. Oxide superconducting wire
US10163549B2 (en) * 2013-02-15 2018-12-25 Fujikura Ltd. Oxide superconducting wire
JP2015028912A (ja) * 2013-07-05 2015-02-12 中部電力株式会社 超電導線材及びそれを用いた超電導コイル
EP3046116A4 (en) * 2013-09-11 2017-04-26 Sunam Co. Ltd. Superconductor and method of manufacturing same
US10262776B2 (en) 2013-09-11 2019-04-16 Sunam Co., Ltd. Superconductor and method of manufacturing same
JP2015065116A (ja) * 2013-09-26 2015-04-09 株式会社フジクラ 酸化物超電導線材、酸化物超電導線材の接続構造体、酸化物超電導線材と電極端子の接続構造体、及びこれを備えた超電導機器、並びにこれらの製造方法
CN105940465A (zh) * 2014-03-07 2016-09-14 住友电气工业株式会社 氧化物超导薄膜线材及其制造方法
US9978481B2 (en) 2014-03-07 2018-05-22 Sumitomo Electric Industries, Ltd. Oxide superconducting thin film wire and method for producing same
US20170011824A1 (en) * 2014-03-07 2017-01-12 Sumitomo Electric Industries, Ltd. Oxide superconducting thin film wire and method for producing same
CN106537523B (zh) * 2014-07-31 2018-06-12 住友电气工业株式会社 超导线材
CN106537523A (zh) * 2014-07-31 2017-03-22 住友电气工业株式会社 超导线材
US10128025B2 (en) * 2014-08-05 2018-11-13 Fujikura Ltd. Oxide superconducting wire, superconducting device, and method for producing oxide superconducting wire
WO2017104297A1 (ja) 2015-12-18 2017-06-22 株式会社フジクラ 酸化物超電導線材の製造方法及び超電導コイルの製造方法

Also Published As

Publication number Publication date
JP5753589B2 (ja) 2015-07-22
JP5933781B2 (ja) 2016-06-15
EP2770513B1 (en) 2016-03-02
US9697930B2 (en) 2017-07-04
EP2770513A1 (en) 2014-08-27
RU2570047C1 (ru) 2015-12-10
EP2770513A4 (en) 2015-06-24
JP2015146318A (ja) 2015-08-13
JPWO2013077387A1 (ja) 2015-04-27
CN103959401A (zh) 2014-07-30
US20140323314A1 (en) 2014-10-30
CN103959401B (zh) 2016-11-02

Similar Documents

Publication Publication Date Title
JP5933781B2 (ja) 酸化物超電導線材
US10163549B2 (en) Oxide superconducting wire
US9362026B2 (en) Oxide superconductor wire, connection structure thereof, and superconductor equipment
JP6012658B2 (ja) 酸化物超電導線材とその製造方法
JP6101490B2 (ja) 酸化物超電導線材の接続構造体及び超電導機器
JP5775785B2 (ja) 酸化物超電導線材及びその製造方法
RU2597211C1 (ru) Провод из оксидного сверхпроводника
JP5732345B2 (ja) 酸化物超電導線材の接続構造体及び酸化物超電導線材の接続方法
JP6002602B2 (ja) 酸化物超電導線材の接続構造体及びその製造方法
WO2012039444A1 (ja) 酸化物超電導線材およびその製造方法
JP2015228357A (ja) 酸化物超電導線材、超電導機器及び酸化物超電導線材の製造方法
JP5775808B2 (ja) 酸化物超電導線材とその製造方法
JP5775810B2 (ja) 酸化物超電導線材の製造方法
JP2014107149A (ja) 酸化物超電導線材並びに当該酸化物超電導線材の接続構造体
JP2012150914A (ja) 高抵抗材複合酸化物超電導線材
WO2014104333A1 (ja) 酸化物超電導線材の接続構造体およびその製造方法と超電導機器
JP2015011860A (ja) 酸化物超電導線材とその製造方法
JP2017183038A (ja) 超電導線材の製造方法および超電導線材
JP2014167847A (ja) 酸化物超電導線材及び超電導コイル並びに酸化物超電導線材の製造方法
RU2575664C1 (ru) Сверхпроводящий провод и сверхпроводящая катушка
JP2014154331A (ja) 酸化物超電導線材及び酸化物超電導線材の接続構造体並びに酸化物超電導線材の製造方法
JP2012209189A (ja) 酸化物超電導線材及びその製造方法
JP2017117674A (ja) 酸化物超電導線材およびその製造方法、ならびに超電導機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12850982

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013545957

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012850982

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014120161

Country of ref document: RU

Kind code of ref document: A