WO2013077182A1 - 熱間鍛造用圧延棒鋼 - Google Patents

熱間鍛造用圧延棒鋼 Download PDF

Info

Publication number
WO2013077182A1
WO2013077182A1 PCT/JP2012/078789 JP2012078789W WO2013077182A1 WO 2013077182 A1 WO2013077182 A1 WO 2013077182A1 JP 2012078789 W JP2012078789 W JP 2012078789W WO 2013077182 A1 WO2013077182 A1 WO 2013077182A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
content
hot forging
hot
steel bar
Prior art date
Application number
PCT/JP2012/078789
Other languages
English (en)
French (fr)
Inventor
真志 東田
松本 斉
直樹 松井
根石 豊
泰三 牧野
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to US14/358,733 priority Critical patent/US9574255B2/en
Priority to KR1020147013616A priority patent/KR20140079853A/ko
Priority to CN201280057256.5A priority patent/CN103958714B/zh
Priority to EP12852067.3A priority patent/EP2784169B1/en
Publication of WO2013077182A1 publication Critical patent/WO2013077182A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/003Selecting material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/06Heating or cooling methods or arrangements specially adapted for performing forging or pressing operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/002Hybrid process, e.g. forging following casting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0075Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rods of limited length

Definitions

  • the present invention relates to a rolled steel bar for hot forging. More specifically, the present invention relates to a rolled steel bar for hot forging that can be suitably used as a material for high-strength non-tempered hot forged parts such as automobiles and industrial machines.
  • hot forging is applied to steel bars manufactured by hot rolling (hereinafter referred to as “rolled steel bars”).
  • Hot forging parts that are molded without any tempering treatment hereinafter referred to as “hot forging”
  • the application of “parts called non-tempered hot forged parts”) is the mainstream.
  • hot forged parts that are formed by being pressed substantially in the vertical direction of the axis of the rolled steel bar, that is, in the direction perpendicular to the rolling direction, with little reduction in the axial direction of the rolled steel bar.
  • hot forged parts formed by pressing in such a direction distribution of inclusions and / or precipitates formed by hot rolling (that is, inclusions and / or precipitates stretched in the axial direction)
  • the distribution state in the rolled steel bar is inherited even after hot forging.
  • the fatigue strength against the stress in the direction perpendicular to the axis of the hot forged part (hereinafter, the fatigue strength against the stress in the direction perpendicular to the axis of the hot forged part is referred to as “lateral fatigue strength”) tends to be low. .
  • the fatigue strength of the transverse eye can also be increased.
  • increasing the tensile strength of a non-tempered hot forged part manufactured without performing a tempering treatment leads to a reduction in tool life in a cutting process performed after hot forging. For this reason, there arises a problem that the cutting cost increases and the cutting time becomes long.
  • Patent Document 1 and Patent Document 2 describe the following “high strength high toughness non-heat treated steel for hot forging and manufacturing method thereof” and “non-heat treated steel for high strength hot forging”. Is disclosed.
  • Patent Document 1 In mass%, Si: 2% or less (not including 0%), S: 0.10% or less (not including 0%), N: 0.02% or less (not including 0%), O: 0 In steel containing 0.010% or less (excluding 0%) and inevitable impurities, C: 0.10 to 0.6%, Mn: 0.3 to 2.5%, Cr: 0.05 to 2.5%, V: 0.03 to 0.5%, Al: 0.060% or less (excluding 0%), Ti: 0.005 to 0.03%, and if necessary Furthermore, Pb: 0.3% or less (not including 0%), Ca: 0.01% or less (not including 0%), Te: 0.3% or less (not including 0%), Bi: 0 .3% or less (excluding 0%), Zr: 0.1% or less (not including 0%), Hf: 0.1% or less (not including 0%), Y: 0.1% or less ( 0% 1), rare earth element: 0.1% or less (not including 0%), Mg: 0.1% or less (not including 0%), and at least one
  • a non-tempered hot forged part can be provided with a tensile strength of 90 kgf / mm 2 (882.6 MPa) or more.
  • a Ti acid having an average crystal grain size of 0.1 to 5 ⁇ m is simply used.
  • -Rolling steel bars can be formed only by containing nitride, MnS, and inclusions that are composite compounds mainly composed of Ti acid / nitride and MnS at 1 ⁇ 10 2 to 1 ⁇ 10 6 pieces / mm 2 .
  • the fatigue strength of the side is reduced by Ti nitrides arranged in the axial direction of the hot forged parts.
  • a non-tempered hot forged part can be provided with a tensile strength of 900 MPa or more.
  • the non-tempered hot forged part is made of a mixed structure of ferrite and pearlite that avoids the formation of bainite (hereinafter referred to as “ferrite / pearlite”), and therefore has excellent machinability.
  • the steel specifically disclosed in Patent Document 2 contains at least 0.033% S.
  • S the number of S is contained in the steel, when the rolled steel bar is used by being formed by hot forging while being rolled down in the vertical direction of the shaft, There is a possibility that the fatigue strength of the lateral eye may be reduced by the coarse MnS arranged.
  • the present invention has been made in view of the above situation, and obtains a high strength non-tempered hot forged part having a tensile strength of 900 MPa or more and a durability ratio (fatigue strength / tensile strength) of 0.47 or more.
  • An object of the present invention is to provide a rolled steel bar for hot forging that can be used.
  • the durability ratio of the transverse is a value obtained by dividing the fatigue strength against the stress in the vertical direction of the hot forged part by the tensile strength in the vertical direction of the hot forged part.
  • the present inventors conducted various studies in order to solve the above-described problems. As a result, the following findings (a) to (f) were obtained.
  • (C) It is effective to contain a precipitation strengthening element in order to obtain high transverse fatigue strength in a hot forged part that is formed by being rolled in the direction perpendicular to the axis of the rolled steel bar. However, it is not preferable to add Ti that easily forms coarse nitrides during solidification.
  • V does not form coarse nitrides during solidification like Ti. Therefore, the N content can also be increased, whereby V carbide, nitride, or carbonitride can be precipitated in the cooling process during hot forging, and high lateral fatigue strength can be imparted.
  • the present invention has been completed based on the above findings, and the gist thereof is the rolled steel bar for hot forging shown below.
  • Y2 C + (1/10) Si + (1/5) Mn + (5/22) Cr + 1.65V- (5/7) S + (1/5) Cu + (1/5) Ni + (1/4) Mo. ⁇ ⁇ 2>
  • C, Si, Mn, Cr, V, S, Cu, Ni, and Mo in the above formula ⁇ 2> represent the content in mass% of each element.
  • Impurity refers to what is mixed from ore, scrap, or the production environment as raw materials when industrially producing steel materials.
  • a high-strength non-tempered hot forged part having a tensile strength of 900 MPa or more and a durability ratio of 0.47 or more can be obtained.
  • C 0.27 to 0.37%
  • C is an element that strengthens steel, and must be contained by 0.27% or more.
  • the C content is set to 0.27 to 0.37%.
  • the C content is preferably 0.29% or more, and more preferably 0.35% or less.
  • Si 0.30 to 0.75%
  • Si is a deoxidizing element and is an element necessary for strengthening ferrite by solid solution strengthening and increasing the tensile strength after hot forging. In order to ensure such an effect, it is necessary to contain 0.30% or more of Si. On the other hand, when the Si content exceeds 0.75%, not only the effect is saturated, but also surface decarburization of the rolled steel bar becomes remarkable. Therefore, the Si content is set to 0.30 to 0.75%.
  • the Si content is preferably 0.35% or more, and preferably 0.70% or less.
  • Mn 1.00 to 1.45%
  • Mn is an element necessary for strengthening ferrite and pearlite by solid solution strengthening and increasing the tensile strength after hot forging, and must be contained by 1.00% or more.
  • the Mn content is set to 1.00 to 1.45%.
  • the Mn content is preferably 1.10% or more, and preferably 1.40% or less.
  • S 0.008% or more and less than 0.030%
  • S is an important element in the present invention. Since S combines with Mn to form MnS and increases the number of ferrite nuclei in the austenite grains after hot forging, the formation of bainite can be suppressed. Furthermore, machinability is also improved by MnS. Therefore, 0.008% or more of S must be contained.
  • the S content needs to be strictly controlled and is set to be 0.008% or more and less than 0.030%.
  • the S content is desirably 0.010% or more, and desirably 0.027% or less.
  • Cr 0.05-0.30% Cr, like Mn, is an element that strengthens ferrite and pearlite by solid solution strengthening and increases the tensile strength after hot forging, and must be contained by 0.05% or more.
  • the Cr content is set to 0.05 to 0.30%.
  • the Cr content is preferably 0.08% or more, and preferably 0.20% or less. More preferably, the Cr content is less than 0.20%.
  • Al 0.005 to 0.050%
  • Al not only has a deoxidizing action, but also binds to N to form AlN, and by its pinning effect, it suppresses the growth of austenite grains during hot forging and suppresses the formation of bainite. For this reason, Al must be contained 0.005% or more.
  • the Al content is set to 0.005 to 0.050%.
  • the Al content is preferably 0.010% or more.
  • V 0.200-0.320%
  • V combines with C and N to form carbides, nitrides, or carbonitrides, and has the effect of effectively increasing the durability ratio of the hot-forged parts. For this reason, 0.200% or more of V is contained. On the other hand, when the content of V exceeds 0.320%, the effect is saturated and the cost is increased. Therefore, the V content is set to 0.200 to 0.320%.
  • the V content is preferably 0.220% or more, and more preferably 0.300% or less.
  • N 0.0080 to 0.0200%
  • N is an important element in the present invention.
  • N combines with V to form a nitride or carbonitride to effectively increase the durability ratio of the cross-section of the hot forged part, and also combines with Al to form AlN.
  • the pinning effect suppresses the growth of austenite grains during hot forging and suppresses the formation of bainite. For this reason, it is necessary to contain 0.0080% or more of N.
  • the N content is set to 0.0080 to 0.0200%.
  • the N content is preferably 0.0090% or more, and preferably 0.0150% or less.
  • the rolled steel bar for hot forging of the present invention is composed of the above-described elements C to N, the balance being Fe and impurities, and P, Ti and O in the impurities are P: 0.030% or less, Ti : 0.0040% or less and O: 0.0020% or less, and Y1 represented by the above formula ⁇ 1> has a chemical composition of 1.05 to 1.18.
  • impurities refer to those mixed from ore, scrap, or the production environment as raw materials when industrially producing steel materials.
  • P 0.030% or less
  • P is an element contained as an impurity in steel.
  • the content of P in the impurities is set to 0.030% or less.
  • the content of P in the impurities is preferably 0.025% or less.
  • the content of P contained as an impurity is desirably as small as possible within a range that does not increase the cost in the steelmaking process.
  • Ti 0.0040% or less
  • Ti is an element whose content must be limited.
  • Ti cannot avoid mixing from ores and scraps.
  • the amount of mixed Ti becomes high although it is an impurity.
  • the content of Ti in the impurities is set to 0.0040% or less.
  • the content of Ti in the impurities is preferably 0.0035% or less, and more preferably less than 0.0030%.
  • O oxygen
  • oxygen is an impurity element that exists mainly in the steel as oxide inclusions and causes a reduction in the fatigue strength of the transverse.
  • the content of O in the impurities is set to 0.0020% or less. Note that the content of O in the impurities is preferably 0.0015% or less.
  • the rolled steel bar for hot forging of the present invention may contain one or more elements selected from Cu, Ni, and Mo as needed, instead of a part of the above-mentioned Fe.
  • Y2 represented by the above formula ⁇ 2> is 1.05 to 1.18.
  • Cu 0.30% or less
  • Cu is an element that strengthens ferrite and pearlite by solid solution strengthening. For this reason, you may contain Cu. However, if the Cu content exceeds 0.30%, not only the effect is saturated, but the hardenability becomes high, and bainite is generated after hot forging, which may cause a decrease in the fatigue strength of the transverse eye. . Therefore, an upper limit is set for the amount of Cu in the case of inclusion, and is set to 0.30% or less. When Cu is contained, the amount of Cu is preferably 0.20% or less.
  • the amount of Cu is preferably 0.03% or more, and more preferably 0.05% or more.
  • Ni 0.30% or less
  • Ni is an element that strengthens ferrite and pearlite by solid solution strengthening. For this reason, Ni may be contained. However, if the Ni content exceeds 0.30%, not only the effect is saturated, but the hardenability becomes high, and bainite is generated after hot forging, which may cause a decrease in fatigue strength of the side. . Therefore, an upper limit is set for the amount of Ni in the case of inclusion, and it is set to 0.30% or less. When Ni is contained, the amount of Ni is preferably 0.20% or less.
  • the amount of Ni is preferably 0.03% or more, and more preferably 0.05% or more.
  • Mo 0.10% or less
  • Mo is an element that strengthens ferrite and pearlite by solid solution strengthening. For this reason, you may contain Mo. However, if the Mo content exceeds 0.10%, bainite may be generated after hot forging, leading to a decrease in the fatigue strength of the cross. Therefore, an upper limit is set for the amount of Mo in the case of inclusion, and the content is made 0.10% or less. When Mo is contained, the amount of Mo is preferably 0.08% or less.
  • the amount of Mo when contained is preferably 0.03% or more.
  • the above Cu, Ni and Mo can be contained alone or in combination of two or more.
  • the total content of Cu, Ni and Mo is preferably 0.30% or less.
  • Y1 or Y2 1.05 to 1.18
  • the rolled steel bar for hot forging which is the material of the non-tempered hot forged part
  • Y1 C + (1/10) Si + (1/5) Mn + (5/22) Cr + 1.65V ⁇ (5/7] represented by the above formula ⁇ 1> )
  • Y2 C + (1/10) Si + (1/5) Mn + (5/22) Cr + 1 represented by the above formula ⁇ 2> .65V- (5/7)
  • Y1 or Y2 exceeds 1.18, the hardness after hot forging becomes high, which may lead to a decrease in machinability. Furthermore, hardenability becomes high, bainite is generated after hot forging, and the endurance ratio may decrease. On the other hand, if Y1 or Y2 is less than 1.05, it is not possible to ensure a tensile strength of 900 MPa or more in the non-tempered hot forged part made of the hot forged rolled steel bar.
  • Y1 or Y2 is preferably 1.08 or more, and preferably 1.16 or less.
  • the rolled steel bar for hot forging of the present invention is a steel of 180 mm ⁇ 180 mm obtained by heating a cast slab having the chemical composition defined in the present invention, for example, at 1200-1300 ° C. for 120-180 minutes and then rolling it in pieces. It can be obtained by producing a piece, and then heating the steel piece at 1150 to 1250 ° C. for 90 to 150 minutes and rolling it to a predetermined size, for example, a diameter of 40 mm, in a temperature range of 1100 to 1000 ° C. .
  • the rolled steel bar for hot forging of the present invention having a predetermined size, for example, a diameter of 40 mm, is cut into, for example, a length of 100 mm, heated to 1200 to 1250 ° C. with a high-frequency heating device, and then 1150 to 1100.
  • a hot forging machine in the temperature range of °C, press forging in the direction perpendicular to the axis of the rolled steel bar to a thickness of 18 mm, and cooling the temperature range of 800-550 °C at a cooling rate of 30-50 °C / min
  • a non-tempered hot forged part having a tensile strength of 900 MPa or more and a durability ratio of 0.47 or more can be easily obtained.
  • the “heating temperature” of the above slab and steel slab means the temperature in the furnace when the slab and steel slab are heated.
  • Bar steel rolling temperature refers to the surface temperature of the material to be rolled.
  • the “heating temperature” of a steel bar using a high-frequency heating device means the surface temperature of the steel bar.
  • the press forging temperature using a hot forging machine and the temperature for cooling at a cooling rate of 30 to 50 ° C./min after forging also refer to the surface temperature of the material to be forged.
  • the “cooling rate” in the temperature range of 800 to 550 ° C. after forging is a value obtained by dividing 250 ° C. as a temperature difference by the time required for the surface temperature of the forged material to decrease from 800 ° C. to 550 ° C. Point to.
  • a slab having a cross section of 300 mm ⁇ 400 mm made of steel A to U having the chemical composition shown in Table 1 was heated at 1250 ° C. for 120 minutes, and then subjected to ingot rolling to produce a 180 mm ⁇ 180 mm steel slab. Thereafter, the steel slab was heated at 1200 ° C. for 90 minutes and hot-rolled in a temperature range of 1100 to 1000 ° C. to produce a steel bar having a diameter of 40 mm.
  • Steels A to J in Table 1 are steels whose chemical compositions are within the range defined by the present invention.
  • steels K to U are steels whose chemical compositions deviate from the conditions defined in the present invention.
  • a forged product having a thickness of 18 mm was produced by hot forging using each steel bar having a diameter of 40 mm as a raw material.
  • each steel bar having a diameter of 40 mm was cut into a length of 110 mm.
  • a steel bar having a diameter of 40 mm and a length of 110 mm was heated to 1250 ° C. with a high-frequency heating device, and then hot forging was performed by pressing at 1150 to 1100 ° C. in the direction perpendicular to the axis of the bar steel to a thickness of 18 mm
  • the forged product was finished, allowed to cool in the air, and cooled to room temperature.
  • the cooling rate in the temperature range of 800 to 550 ° C. was 30 ° C./min.
  • microstructure, tensile properties and fatigue properties of the above forged products were investigated by the methods ⁇ 1> to ⁇ 3> below.
  • the number of tests was set to 8, and a rotating bending fatigue test was performed under the conditions that the stress ratio was ⁇ 1 at room temperature and in the atmosphere.
  • the minimum value of the stress amplitude that was durable when the number of repetitions was 1.0 ⁇ 10 7 or more was defined as fatigue strength. Further, the fatigue strength was divided by the tensile strength to determine the endurance ratio of the transverse eye.
  • the target for the endurance ratio of the forged product was 0.47 or more.
  • Table 2 summarizes the above test results. “ ⁇ ” mark in the “Evaluation” column of Table 2 indicates that the tensile strength and the endurance ratio of the forged product both satisfy the above-mentioned target, and “ ⁇ ” mark indicates that at least one characteristic is the target. Indicates that it has not reached.
  • test numbers 11 to 21 of comparative examples that do not satisfy the chemical composition defined in the present invention either of the tensile strength of the forged product or the durability ratio of the transverse does not reach the target.
  • Test No. 11 has a V content of 0.177% in steel K used, which is below the range specified in the present invention. For this reason, the endurance ratio of the forged product is as low as 0.44.
  • Test No. 12 is that the content of each element of the steel L used satisfies the conditions specified in the present invention, but Y1 is as high as 1.24, which is outside the range specified in the present invention. For this reason, in addition to ferrite and pearlite, bainite is recognized in the microstructure of the forged product, and the durability ratio of the lateral eye is as low as 0.41.
  • Test No. 13 has a Ni content of 0.35% in the steel M used, which exceeds the range specified in the present invention. For this reason, in addition to ferrite and pearlite, bainite is recognized in the microstructure of the forged product, and the durability ratio of the lateral eye is as low as 0.40.
  • Test No. 14 has a Ti content of the steel N used of 0.0098%, which exceeds the range specified in the present invention. For this reason, the endurance ratio of the forged product is as low as 0.44.
  • Test No. 15 has a Mn content of the steel O used of 1.53%, which exceeds the range specified in the present invention. For this reason, in addition to ferrite and pearlite, bainite is recognized in the microstructure of the forged product, and the durability ratio of the lateral eye is as low as 0.41.
  • Test No. 16 shows that the content of each element of the steel P used satisfies the conditions specified in the present invention, but Y2 is as high as 1.23, which is outside the range specified in the present invention. For this reason, in addition to ferrite and pearlite, bainite is recognized in the microstructure of the forged product, and the durability ratio of the lateral eye is as low as 0.41.
  • Test No. 17 is that the content of each element of steel Q used satisfies the conditions specified in the present invention, but Y1 is as low as 0.96, which is outside the range specified in the present invention. For this reason, the tensile strength of a forged product is as low as 868 MPa.
  • Test No. 18 has an S content of 0.043% in the steel R used, which exceeds the range defined in the present invention. For this reason, the endurance ratio of the forged product is as low as 0.42.
  • Test No. 19 shows that the content of each element of the steel S used satisfies the conditions specified in the present invention, but Y2 is as low as 0.99, which is outside the range specified in the present invention. For this reason, the tensile strength of a forged product is as low as 874 MPa.
  • Test No. 20 has an O content of the steel T used of 0.0031%, which exceeds the range specified in the present invention. For this reason, the endurance ratio of the forged product is as low as 0.42.
  • Test No. 21 has a C content of 0.45% in the steel U used, which exceeds the range specified in the present invention. For this reason, the endurance ratio of the forged product is as low as 0.45.
  • a high-strength non-tempered hot forged part having a tensile strength of 900 MPa or more and a durability ratio of 0.47 or more can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

 C:0.27~0.37%、Si:0.30~0.75%、Mn:1.00~1.45%、S:0.008%以上で0.030%未満、Cr:0.05~0.30%、Al:0.005~0.050%、V:0.200~0.320%、N:0.0080~0.0200%と、残部がFe及び不純物とからなり、不純物中のP≦0.030%、Ti≦0.0040%及びO≦0.0020%で、かつ〔1.05≦C+(1/10)Si+(1/5)Mn+(5/22)Cr+1.65V-(5/7)S≦1.18〕である熱間鍛造用圧延棒鋼を素材として用いることにより、900MPa以上の引張強度及び0.47以上の横目の耐久比を有する高強度非調質熱間鍛造部品を得ることができる。素材の熱間鍛造用圧延棒鋼は、上記のFeの一部に代えてCu、Ni及びMoの1種以上を含んでもよいが、その場合は〔1.05≦C+(1/10)Si+(1/5)Mn+(5/22)Cr+1.65V-(5/7)S+(1/5)Cu+(1/5)Ni+(1/4)Mo≦1.18〕を満たす必要がある。

Description

熱間鍛造用圧延棒鋼
 本発明は、熱間鍛造用圧延棒鋼に関する。詳しくは、本発明は、自動車、産業機械等の高強度非調質熱間鍛造部品の素材として好適に使用できる、熱間鍛造用圧延棒鋼に関する。
 近年、CO削減の観点から燃費向上のニーズが高まっており、自動車、産業機械等に用いる機械構造用部品においては部品の小型化を目的に、部品の高強度化が望まれている。
 また、製造コスト削減の観点から、熱間圧延で製造された棒鋼(以下、熱間圧延で製造された熱間圧延ままの状態の棒鋼を、「圧延棒鋼」という。)に、熱間鍛造で成形加工を行い、その後、焼入れおよび焼戻しの熱処理(つまり、「調質処理」)を施さずとも所望の強度を与えられる熱間鍛造部品(以下、調質処理を施さずに製造した熱間鍛造部品を、「非調質熱間鍛造部品」という。)の適用が主流となっている。
 熱間鍛造部品には、主に素材である圧延棒鋼の軸方向に圧下して成形加工されるものが多い。
 しかしながら、一部には圧延棒鋼の軸方向にはほとんど圧下を施さず、主に圧延棒鋼の軸の垂直方向、すなわち圧延方向と垂直方向に圧下して成形加工される熱間鍛造部品もある。このような方向に圧下して成形加工される熱間鍛造部品では、熱間圧延で形成された介在物または/および析出物の分布状態(すなわち軸方向に延伸された介在物または/および析出物の圧延棒鋼での分布状態)が、熱間鍛造後も引き継がれてしまう。そのため、熱間鍛造部品の軸の垂直方向の応力に対する疲労強度(以下、熱間鍛造部品の軸の垂直方向の応力に対する疲労強度を、「横目の疲労強度」という。)が低くなる傾向にある。
 熱間鍛造部品の引張強度を高くすれば、横目の疲労強度も高くすることができる。しかしながら、調質処理を施さずに製造した非調質熱間鍛造部品の引張強度を高めるということは、熱間鍛造後に施される切削工程において、工具寿命の低下を招いてしまう。このため、切削コストが上昇するとともに切削時間が長くなるという問題が生じる。
 したがって、引張強度を高めることにより熱間鍛造部品の横目の疲労強度を向上させるのは必ずしも望ましいことではない。
 このような状況の下、特許文献1および特許文献2にそれぞれ、次の「熱間鍛造用高強度高靱性非調質鋼とその製造方法」および「高強度熱間鍛造用非調質鋼」が開示されている。
 すなわち、特許文献1に、
 質量%で、Si:2%以下(0%を含まない)、S:0.10%以下(0%を含まない)、N:0.02%以下(0%を含まない)、O:0.010%以下(0%を含まない)および不可避的不純物を含む鋼において、さらに、C:0.10~0.6%、Mn:0.3~2.5%、Cr:0.05~2.5%、V:0.03~0.5%、Al:0.060%以下(0%を含まない)、Ti:0.005~0.03%を含有するとともに、必要に応じてさらに、Pb:0.3%以下(0%を含まない)、Ca:0.01%以下(0%を含まない)、Te:0.3%以下(0%を含まない)、Bi:0.3%以下(0%を含まない)、Zr:0.1%以下(0%を含まない)、Hf:0.1%以下(0%を含まない)、Y:0.1%以下(0%を含まない)、希土類元素:0.1%以下(0%を含まない)、Mg:0.1%以下(0%を含まない)のうちから選ばれる1種以上を含有し、残部がFeおよび不可避的不純物元素からなるとともに、平均結晶粒径が0.1~5μmである介在物を1×10~1×10個/mm含有し、
上記介在物がTi酸・窒化物、MnS、および該Ti酸・窒化物とMnSを主体とする複合化合物である「熱間鍛造用高強度高靱性非調質鋼」およびその製造方法が開示されている。
 特許文献2に、
 質量%で、C:0.25~0.50%、Si:0.40~2.00%、Mn:0.50~2.50%、Cr:0.10~1.00%、S:0.03~0.10%、V:0.05~0.30%、N:0.0050~0.0200%、さらにAl:0.005~0.050%とTi:0.002~0.050%の1種または2種を含み、必要に応じてさらに、Ca:0.0004~0.0050%を含有し、残部がFeおよび不可避的不純物からなり、
  Ceq.(%)=%C+(%Si)/20+(%Mn)/5+(%Cr)/9+1.54(%V)
の式で表される炭素当量Ceq.(%)が0.83~1.23%、
 Bt=31.2-100(%C)-6.7(%Si)+9.0(%Mn)+4.9(%Cr)-81(%V)
の式で表されるベイナイト変態指数Btが0以下、
である高強度熱間鍛造用非調質鋼が開示されている。
特開平8-92687号公報 特開平6-287677号公報
 特許文献1に開示されている技術によって、非調質熱間鍛造部品に90kgf/mm(882.6MPa)以上の引張強度を具備させることができる。しかしながら、特許文献1で提案された技術のように、必須元素として0.005%以上のTiを含有している鋼の場合、単に、平均結晶粒径が0.1~5μmである、Ti酸・窒化物、MnS、および該Ti酸・窒化物とMnSを主体とする複合化合物である介在物を、1×10~1×10個/mm含有するだけでは、圧延棒鋼を軸の垂直方向に圧下して熱間鍛造により成形加工して使用される場合には、熱間鍛造部品の軸方向に並んだTi窒化物によって横目の疲労強度が低下してしまう。
 特許文献2に開示されている技術によって、非調質熱間鍛造部品に900MPa以上の引張強度を具備させることができる。しかも、その非調質熱間鍛造部品は、ベイナイトの生成を回避したフェライトとパーライトの混合組織(以下、「フェライト・パーライト」という。)からなるため、被削性に優れている。しかしながら、特許文献2に具体的に開示されている鋼には、Sが少なくとも0.033%含有されている。このように鋼に多量のSを含有させた場合には、圧延棒鋼を軸の垂直方向に圧下して熱間鍛造により成形加工して使用される場合には、熱間鍛造部品の軸方向に並んだ粗大なMnSによって横目の疲労強度が低下してしまう可能性がある。
 本発明は、上記現状に鑑みてなされたもので、900MPa以上の引張強度および0.47以上の横目の耐久比(疲労強度/引張強度)を有する高強度非調質熱間鍛造部品を得ることができる熱間鍛造用圧延棒鋼を提供することを目的とする。
 なお、横目の耐久比とは、熱間鍛造部品の軸の垂直方向の応力に対する疲労強度を、熱間鍛造部品の軸の垂直方向の引張強度で除した値である。
 本発明者らは、前記した課題を解決するために種々の検討を実施した。その結果、下記(a)~(f)の知見を得た。
 (a)非調質熱間鍛造部品において、高い横目の耐久比を得るためには、内部組織(つまり、熱間鍛造時の加熱段階で脱炭層の生成する可能性がある表層部分を除いた組織)を、フェライト・パーライトにする必要がある。一方、内部組織にベイナイトとマルテンサイトのいずれかまたは双方が混在する場合は、高い横目の耐久比を得ることができない。
 (b)熱間鍛造後にベイナイトの生成を避けるとともに、非調質熱間鍛造部品において900MPa以上の引張強度を確保するためには、焼入れ性を向上させる元素の含有量を厳密に管理する必要がある。
 (c)圧延棒鋼の軸の垂直方向に圧下して成形加工される熱間鍛造部品において高い横目の疲労強度を得るためには、析出強化元素を含有させることが有効である。しかしながら、凝固時に粗大な窒化物を形成しやすいTiを添加することは好ましくない。
 (d)一方、Vは、Tiのように凝固時に粗大な窒化物を形成しない。したがって、Nの含有量も増やすことができ、それにより、熱間鍛造時の冷却過程でVの炭化物、窒化物または炭窒化物を析出させ、高い横目の疲労強度を付与することができる。
 (e)微量のSを含有させることにより、横目の疲労強度に悪影響を及ぼすと考えられていたMnSを粗大化させずに棒鋼中に微細に分散させることができるので、熱間鍛造後のオーステナイト粒内にもフェライトの生成核を増やし、ベイナイトの生成を抑制することができる。
 (f)その結果、熱間鍛造後に引張強度900MPa以上、横目の耐久比0.47以上の熱間鍛造部品を得ることができる。
 本発明は、上記の知見に基づいて完成されたものであり、その要旨は、下記に示す熱間鍛造用圧延棒鋼にある。
 (1)質量%で、C:0.27~0.37%、Si:0.30~0.75%、Mn:1.00~1.45%、S:0.008%以上で0.030%未満、Cr:0.05~0.30%、Al:0.005~0.050%、V:0.200~0.320%およびN:0.0080~0.0200%と、
残部がFeおよび不純物とからなり、
不純物中のP、TiおよびOがそれぞれ、質量%で、P:0.030%以下、Ti:0.0040%以下およびO:0.0020%以下であり、
かつ、下記の<1>式で表されるY1が1.05~1.18の化学組成であることを特徴とする、熱間鍛造用圧延棒鋼。
 Y1=C+(1/10)Si+(1/5)Mn+(5/22)Cr+1.65V-(5/7)S・・・<1>
 ただし、上記<1>式におけるC、Si、Mn、Cr、VおよびSは、それぞれの元素の質量%での含有量を表す。
 (2)質量%で、C:0.27~0.37%、Si:0.30~0.75%、Mn:1.00~1.45%、S:0.008%以上で0.030%未満、Cr:0.05~0.30%、Al:0.005~0.050%、V:0.200~0.320%およびN:0.0080~0.0200%と、
Cu:0.30%以下、Ni:0.30%以下およびMo:0.10%以下から選択される1種以上と、
残部がFeおよび不純物とからなり、
不純物中のP、TiおよびOがそれぞれ、質量%で、P:0.030%以下、Ti:0.0040%以下およびO:0.0020%以下であり、
かつ、下記の<2>式で表されるY2が1.05~1.18の化学組成であることを特徴とする、熱間鍛造用圧延棒鋼。
 Y2=C+(1/10)Si+(1/5)Mn+(5/22)Cr+1.65V-(5/7)S+(1/5)Cu+(1/5)Ni+(1/4)Mo・・・<2>
 ただし、上記<2>式におけるC、Si、Mn、Cr、V、S、Cu、NiおよびMoは、それぞれの元素の質量%での含有量を表す。
 「不純物」とは、鉄鋼材料を工業的に製造する際に、原料としての鉱石、スクラップ、または製造環境などから混入するものを指す。
 本発明の熱間鍛造用圧延棒鋼を素材として用いることにより、900MPa以上の引張強度および0.47以上の横目の耐久比を有する高強度非調質熱間鍛造部品を得ることができる。
 以下、本発明の各要件について詳しく説明する。なお、以下の説明における各元素の含有量の「%」表示は「質量%」を意味する。
 C:0.27~0.37%
 Cは、鋼を強化する元素であり、0.27%以上含有させなくてはならない。一方、Cの含有量が0.37%を超えると、熱間鍛造後の引張強度は高くなるものの、横目の耐久比の低下を招いてしまう場合がある。したがって、Cの含有量を0.27~0.37%とした。Cの含有量は0.29%以上とすることが好ましく、0.35%以下とすることが好ましい。
 Si:0.30~0.75%
 Siは、脱酸元素であるとともに、固溶強化によってフェライトを強化し、熱間鍛造後の引張強度を高めるのに必要な元素である。こうした効果を確保するには、Siを0.30%以上含有させる必要がある。一方、Siの含有量が0.75%を超えると、その効果が飽和するばかりか、圧延棒鋼の表面脱炭が著しくなる。したがって、Siの含有量を0.30~0.75%とした。Siの含有量は0.35%以上とすることが好ましく、0.70%以下とすることが好ましい。
 Mn:1.00~1.45%
 Mnは、固溶強化によってフェライトおよびパーライトを強化し、熱間鍛造後の引張強度を高めるのに必要な元素であり、1.00%以上含有させなくてはならない。一方、Mnの含有量が1.45%を超えると、その効果が飽和するばかりか、焼入れ性が高くなり、熱間鍛造後にベイナイトが生成して、横目の疲労強度の低下を招く場合がある。したがって、Mnの含有量を1.00~1.45%とした。Mnの含有量は1.10%以上とすることが好ましく、1.40%以下とすることが好ましい。
 S:0.008%以上で0.030%未満
 Sは、本発明における重要な元素である。Sは、Mnと結合してMnSを形成し、熱間鍛造後のオーステナイト粒内にもフェライトの生成核を増やすので、ベイナイトの生成を抑制することができる。さらには、MnSによって被削性も向上する。そのため、Sを0.008%以上含有させなくてはならない。一方、Sの含有量が0.030%以上になると、MnSは延伸された粗大な形態となるため、横目の疲労強度が低下して、横目の耐久比が低下する。したがって、Sの含有量は厳しく管理する必要があり、0.008%以上で0.030%未満とした。Sの含有量は0.010%以上であることが望ましく、0.027%以下であることが望ましい。
 Cr:0.05~0.30%
 Crは、Mnと同様に、固溶強化によってフェライトおよびパーライトを強化し、熱間鍛造後の引張強度を高める元素であり、0.05%以上含有させなければならない。一方、Crの含有量が0.30%を超えると、その効果が飽和するばかりか、焼入れ性が高くなり、熱間鍛造後にベイナイトが生成して、横目の疲労強度の低下を招く場合がある。したがって、Crの含有量を0.05~0.30%とした。Crの含有量は0.08%以上とすることが好ましく、0.20%以下とすることが好ましい。Crの含有量は0.20%未満とすることがより好ましい。
 Al:0.005~0.050%
 Alは、脱酸作用を有するだけでなく、Nと結合してAlNを形成し、そのピンニング効果により熱間鍛造時のオーステナイト粒の成長を抑制し、ベイナイト生成を抑制する作用を有する。このため、Alは0.005%以上含有させなくてはならない。一方、Alの含有量が0.050%を超えると、その効果が飽和してしまう。したがって、Alの含有量を0.005~0.050%とした。Alの含有量は0.010%以上とすることが好ましい。
 V:0.200~0.320%
 Vは、CおよびNと結合して、炭化物、窒化物または炭窒化物を形成して、熱間鍛造部品の横目の耐久比を有効に高める作用を有する。このため、0.200%以上のVを含有させる。一方、Vの含有量が0.320%を超えると、その効果が飽和するばかりか、コストの上昇を招く。したがって、Vの含有量を0.200~0.320%とした。Vの含有量は0.220%以上とすることが好ましく、0.300%以下とすることが好ましい。
 N:0.0080~0.0200%
 Nは、本発明における重要な元素である。Nは、Vと結合して窒化物または炭窒化物を形成して、熱間鍛造部品の横目の耐久比を有効に高める作用を有するだけでなく、Alと結合してAlNを形成し、そのピンニング効果により熱間鍛造時のオーステナイト粒の成長を抑制し、ベイナイト生成を抑制する作用を有する。このため、0.0080%以上のNを含有させる必要がある。しかしながら、Nの含有量が多くなって、特に0.0200%を超えると、鋼中にピンホールが形成される場合がある。したがって、Nの含有量は0.0080~0.0200%とした。Nの含有量は0.0090%以上とすることが好ましく、0.0150%以下とすることが好ましい。
 本発明の熱間鍛造用圧延棒鋼は、上述のCからNまでの元素と、残部がFeおよび不純物とからなり、不純物中のP、TiおよびOがそれぞれ、P:0.030%以下、Ti:0.0040%以下およびO:0.0020%以下であり、かつ、前記の<1>式で表されるY1が1.05~1.18である化学組成の鋼である。
 既に述べたように、「不純物」とは、鉄鋼材料を工業的に製造する際に、原料としての鉱石、スクラップ、または製造環境などから混入するものを指す。
 以下、本発明において、不純物中のP、TiおよびOの含有量をそれぞれ、上記の範囲に限定する理由について説明する。
 P:0.030%以下
 Pは、鋼中に不純物として含まれる元素であり、特に、その含有量が0.030%を超えると、偏析が著しくなり、疲労強度の低下を招く場合がある。したがって、不純物中のPの含有量を0.030%以下とした。不純物中のPの含有量は0.025%以下とすることが好ましい。不純物として含まれるPの含有量は、製鋼工程でのコスト上昇をきたさない範囲で、できる限り少なくすることが望ましい。
 Ti:0.0040%以下
 本発明において、Tiは、その含有量を制限しなければならない元素である。しかしながら、Tiは鉱石、スクラップ等からの混入を避けることができない。特に原料価格の抑制を重視して、スクラップの配合比率を増すと、不純物とはいえTiの混入量が高くなる。Tiの混入量が増えて、粗大なTi窒化物が形成されると、該Ti窒化物が熱間鍛造部品の軸方向に並んでしまい、特に0.0040%を上回ると、横目の疲労強度が低下し、0.47以上の横目の耐久比を得ることができない。そのため、不純物中のTiの含有量は、0.0040%以下とした。不純物中のTiの含有量は0.0035%以下とすることが好ましく、0.0030%未満とすることがより好ましい。
 O:0.0020%以下
 O(酸素)は、鋼中において、主として酸化物系介在物として存在し、横目の疲労強度の低下を招く不純物元素である。Oの含有量が多くなって、特に0.0020%を超えると、粗大な酸化物の発生頻度が高くなり、横目の疲労強度が低下し、横目の耐久比の低下を招く。したがって、不純物中のOの含有量を0.0020%以下とした。なお、不純物中のOの含有量は0.0015%以下とすることが好ましい。
 <1>式で表されるY1の限定理由については、<2>式で表されるY2の限定理由とともに後述する。
 本発明の熱間鍛造用圧延棒鋼は、上述のFeの一部に代えて、必要に応じて、Cu、NiおよびMoから選択される1種以上の元素を含有させてもよい。その場合は、前記の<2>式で表されるY2が1.05~1.18である。
 以下、任意元素であるCu、NiおよびMoの作用効果と、含有量の限定理由について説明する。
 Cu:0.30%以下
 Cuは、固溶強化によってフェライトおよびパーライトを強化する元素である。このため、Cuを含有させてもよい。しかしながら、Cuの含有量が0.30%を超えると、その効果が飽和するばかりか、焼入れ性が高くなり、熱間鍛造後にベイナイトが生成して、横目の疲労強度の低下を招く場合がある。したがって、含有させる場合のCuの量に上限を設け、0.30%以下とした。含有させる場合のCuの量は0.20%以下であることが好ましい。
 一方、前記したCuの効果を安定して得るためには、Cuの量は0.03%以上であることが好ましく、0.05%以上であれば一層好ましい。
 Ni:0.30%以下
 Niは、固溶強化によってフェライトおよびパーライトを強化する元素である。このため、Niを含有させてもよい。しかしながら、Niの含有量が0.30%を超えると、その効果が飽和するばかりか、焼入れ性が高くなり、熱間鍛造後にベイナイトが生成して、横目の疲労強度の低下を招く場合がある。したがって、含有させる場合のNiの量に上限を設け、0.30%以下とした。含有させる場合のNiの量は0.20%以下であることが好ましい。
 一方、前記したNiの効果を安定して得るためには、Niの量は0.03%以上であることが好ましく、0.05%以上であれば一層好ましい。
 Mo:0.10%以下
 Moは、固溶強化によってフェライトおよびパーライトを強化する元素である。このため、Moを含有させてもよい。しかしながら、Moの含有量が0.10%を超えると、熱間鍛造後にベイナイトが生成して、横目の疲労強度の低下を招く場合がある。したがって、含有させる場合のMoの量に上限を設け、0.10%以下とした。含有させる場合のMoの量は0.08%以下であることが好ましい。
 一方、前記したMoの効果を安定して得るためには、含有させる場合のMoの量は0.03%以上であることが好ましい。
 上記のCu、NiおよびMoは、そのうちのいずれか1種のみ、または2種以上の複合で含有させることができる。Cu、NiおよびMoの合計の含有量は、0.30%以下であることが好ましい。
 Y1またはY2:1.05~1.18
 非調質熱間鍛造部品に、900MPa以上の引張強度を具備させるためには、該非調質熱間鍛造部品の素材である熱間鍛造用圧延棒鋼は、
Cu、NiおよびMoを含まない場合には、前記<1>式で表されるY1〔=C+(1/10)Si+(1/5)Mn+(5/22)Cr+1.65V-(5/7)S〕が、
また、Cu、NiおよびMoのうちの1種以上を含む場合には、前記<2>式で表されるY2〔=C+(1/10)Si+(1/5)Mn+(5/22)Cr+1.65V-(5/7)S+(1/5)Cu+(1/5)Ni+(1/4)Mo〕が、
それぞれ、1.05~1.18でなければならない。
 Y1またはY2が1.18を超えると、熱間鍛造後の硬さが高くなって、切削性の低下を招く場合がある。さらには焼入れ性が高くなって、熱間鍛造後にベイナイトが生成し、横目の耐久比が低下する可能性がある。一方、Y1またはY2が1.05を下回ると、その熱間鍛造用圧延棒鋼を素材とする非調質熱間鍛造部品に900MPa以上の引張強度を確保させることができない。
 Y1またはY2は、1.08以上であることが好ましく、1.16以下であることが好ましい。
 本発明の熱間鍛造用圧延棒鋼は、本発明で規定された化学組成を有する鋳片を、例えば、1200~1300℃で120~180分加熱した後、分塊圧延して180mm×180mmの鋼片を作製し、その後、該鋼片を1150~1250℃で90~150分加熱して、1100~1000℃の温度域で所定のサイズ、例えば、直径40mmに棒鋼圧延することで得ることができる。
 そして、上記所定のサイズ、例えば、直径40mmにした本発明の熱間鍛造用圧延棒鋼を、例えば、長さ100mmに切断し、高周波加熱装置にて1200~1250℃に加熱した後、1150~1100℃の温度域で熱間鍛造機を用いて、厚さ18mmまで圧延棒鋼の軸の垂直方向にプレス鍛造して、800~550℃の温度域を30~50℃/分の冷却速度で冷却することによって、容易に900MPa以上の引張強度と0.47以上の横目の耐久比を有する非調質熱間鍛造部品を得ることができる。
 なお、上記の鋳片および鋼片の「加熱温度」は、鋳片および鋼片を熱する際の炉内の温度を意味する。
 棒鋼圧延温度は、被圧延材の表面温度を指す。
 高周波加熱装置を用いた棒鋼の「加熱温度」は、棒鋼の表面温度を意味する。熱間鍛造機を用いたプレス鍛造温度、鍛造後に30~50℃/分の冷却速度で冷却する温度も被鍛造材の表面温度を指す。
 鍛造後の800~550℃の温度域における「冷却速度」は、温度差としての250℃を、被鍛造材の表面温度が800℃から550℃まで低下するのに要した時間で除した値を指す。
 以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 表1に示す化学組成を有する鋼A~Uからなる断面が300mm×400mmの鋳片を、1250℃で120分加熱した後、分塊圧延して180mm×180mmの鋼片を作製した。その後、該鋼片を1200℃で90分加熱して、1100~1000℃の温度域で熱間圧延し、直径40mmの棒鋼を製造した。
 表1における鋼A~Jは、化学組成が本発明で規定する範囲内にある鋼である。一方、鋼K~Uは、化学組成が本発明で規定する条件から外れた鋼である。
Figure JPOXMLDOC01-appb-T000001
 次に、上記直径40mmの各棒鋼を素材として、熱間鍛造により厚さ18mmの鍛造品を作製した。
 具体的には、先ず、直径40mmの各棒鋼を長さ110mmに切断した。
 次いで、直径40mmで長さ110mmの棒鋼を、高周波加熱装置にて1250℃に加熱した後、1150~1100℃で、プレスにより棒鋼の軸の垂直方向に圧下する熱間鍛造を行って厚さ18mmの鍛造品に仕上げ、大気中で放冷して室温まで冷却した。なお、800~550℃の温度域における冷却速度は30℃/分であった。
 上記の鍛造品について、下記〈1〉~〈3〉の方法でミクロ組織、引張特性および疲労特性を調査した。
 〈1〉鍛造品のミクロ組織の調査:
 上記厚さ18mmの鍛造品の、幅方向1/2の位置で、かつ厚さ方向1/2の位置から、10mm×10mmの横断面を有する試料を切り出した。次いで、上記の横断面が被検面になるように樹脂に埋め込み、鏡面研磨した後、3%硝酸アルコール(ナイタル)で腐食してミクロ組織を現出させた。その後、倍率を500倍として光学顕微鏡を用いて5視野についてミクロ組織画像を撮影し、「相」を同定した。
 〈2〉鍛造品の引張特性の調査:
 上記厚さ18mmの鍛造品の厚さ方向1/2の位置から、試験片の長手方向が鍛造品の幅方向、すなわち鍛造品の軸の垂直方向となり、また試験片の平行部の中心が鍛造品の幅方向1/2になるように、2011年1月21日に財団法人日本規格協会発行のJISハンドブック[1]鉄鋼IのJIS Z 2201(1998)に規定される14A号試験片(ただし、平行部直径:5mm)を採取した。そして、標点距離を25mmとして室温で引張試験を実施し、引張強度を求めた。鍛造品の引張強度の目標は、900MPa以上であることとした。
 〈3〉鍛造品の疲労特性の調査:
 また、上記厚さ18mmの鍛造品の幅の両端をフライス加工して、スケールを除去するとともに平面に仕上げた。次いで、上記のフライス加工した鍛造品の両端とJIS G 4051(2009)に規定された市販のS10Cを電子ビーム溶接によって溶接し、幅130mmの板材を作製した。その後、上記板材の厚さ方向1/2の位置から、試験片の長手方向が板材の幅方向、すなわち鍛造品の軸の垂直方向となるように、また試験片の平行部の中心が板材の幅方向1/2になるように、平行部の直径が8mm、長さが106mmの小野式回転曲げ疲労試験片を作製した。
 そして、試験数を8として、室温、大気中で、応力比が-1となる条件で回転曲げ疲労試験を実施した。繰り返し数が1.0×10以上で耐久した応力振幅の最低値を疲労強度とした。さらに、この疲労強度を引張強度で除して横目の耐久比を求めた。鍛造品の横目の耐久比の目標は、0.47以上であることとした。
 表2に、上記の各試験結果をまとめて示す。表2の「評価」欄における「○」印は、鍛造品の引張強度と横目の耐久比が、いずれも上述した目標を満たしていることを示し、「×」印は少なくとも1つの特性が目標に達していないことを示す。
Figure JPOXMLDOC01-appb-T000002
 表2から、本発明で規定する条件を満たす本発明例の試験番号1~10の場合、その評価は「○」である。すなわち、各棒鋼を素材とする鍛造品のミクロ組織はいずれも、フェライト・パーライトであって、目標とする900MPa以上の引張強度と0.47以上の横目の耐久比を有していることが明らかである。
 これに対して、本発明で規定する化学組成を満たさない比較例の試験番号11~21の場合、鍛造品の引張強度と横目の耐久比のうちのいずれかが目標に達していない。
 試験番号11は、用いた鋼KのVの含有量が0.177%であり、本発明で規定する範囲を下回っている。このため、鍛造品の横目の耐久比が0.44と低い。
 試験番号12は、用いた鋼Lの個々の元素の含有量は本発明で規定する条件を満たすものの、Y1が1.24と高く、本発明で規定する範囲を外れている。このため、鍛造品のミクロ組織にはフェライトとパーライトに加えてベイナイトが認められ、横目の耐久比が0.41と低い。
 試験番号13は、用いた鋼MのNiの含有量が0.35%であり、本発明で規定する範囲を上回っている。このため、鍛造品のミクロ組織にはフェライトとパーライトに加えてベイナイトが認められ、横目の耐久比が0.40と低い。
 試験番号14は、用いた鋼NのTiの含有量が0.0098%であり、本発明で規定する範囲を上回っている。このため、鍛造品の横目の耐久比が0.44と低い。
 試験番号15は、用いた鋼OのMnの含有量が1.53%であり、本発明で規定する範囲を上回っている。このため、鍛造品のミクロ組織にはフェライトとパーライトに加えてベイナイトが認められ、横目の耐久比が0.41と低い。
 試験番号16は、用いた鋼Pの個々の元素の含有量は本発明で規定する条件を満たすものの、Y2が1.23と高く、本発明で規定する範囲を外れている。このため、鍛造品のミクロ組織にはフェライトとパーライトに加えてベイナイトが認められ、横目の耐久比が0.41と低い。
 試験番号17は、用いた鋼Qの個々の元素の含有量は本発明で規定する条件を満たすものの、Y1が0.96と低く、本発明で規定する範囲を外れている。このため、鍛造品の引張強度が868MPaと低い。
 試験番号18は、用いた鋼RのSの含有量が0.043%であり、本発明で規定する範囲を上回っている。このため、鍛造品の横目の耐久比が0.42と低い。
 試験番号19は、用いた鋼Sの個々の元素の含有量は本発明で規定する条件を満たすものの、Y2が0.99と低く、本発明で規定する範囲を外れている。このため、鍛造品の引張強度が874MPaと低い。
 試験番号20は、用いた鋼TのOの含有量が0.0031%であり、本発明で規定する範囲を上回っている。このため、鍛造品の横目の耐久比が0.42と低い。
 試験番号21は、用いた鋼UのCの含有量が0.45%であり、本発明で規定する範囲を上回っている。このため、鍛造品の横目の耐久比が0.45と低い。
 本発明の熱間鍛造用圧延棒鋼を素材として用いることにより、900MPa以上の引張強度および0.47以上の横目の耐久比を有する高強度非調質熱間鍛造部品を得ることができる。
 
 

Claims (2)

  1.  質量%で、C:0.27~0.37%、Si:0.30~0.75%、Mn:1.00~1.45%、S:0.008%以上で0.030%未満、Cr:0.05~0.30%、Al:0.005~0.050%、V:0.200~0.320%およびN:0.0080~0.0200%と、
    残部がFeおよび不純物とからなり、
    不純物中のP、TiおよびOがそれぞれ、質量%で、P:0.030%以下、Ti:0.0040%以下およびO:0.0020%以下であり、
    かつ、下記の<1>式で表されるY1が1.05~1.18の化学組成であることを特徴とする、熱間鍛造用圧延棒鋼。
     Y1=C+(1/10)Si+(1/5)Mn+(5/22)Cr+1.65V-(5/7)S・・・<1>
     ただし、上記<1>式におけるC、Si、Mn、Cr、VおよびSは、それぞれの元素の質量%での含有量を表す。
  2.  質量%で、C:0.27~0.37%、Si:0.30~0.75%、Mn:1.00~1.45%、S:0.008%以上で0.030%未満、Cr:0.05~0.30%、Al:0.005~0.050%、V:0.200~0.320%およびN:0.0080~0.0200%と、
    Cu:0.30%以下、Ni:0.30%以下およびMo:0.10%以下から選択される1種以上と、
    残部がFeおよび不純物とからなり、
    不純物中のP、TiおよびOがそれぞれ、質量%で、P:0.030%以下、Ti:0.0040%以下およびO:0.0020%以下であり、
    かつ、下記の<2>式で表されるY2が1.05~1.18の化学組成であることを特徴とする、熱間鍛造用圧延棒鋼。
     Y2=C+(1/10)Si+(1/5)Mn+(5/22)Cr+1.65V-(5/7)S+(1/5)Cu+(1/5)Ni+(1/4)Mo・・・<2>
     ただし、上記<2>式におけるC、Si、Mn、Cr、V、S、Cu、NiおよびMoは、それぞれの元素の質量%での含有量を表す。
     
     
PCT/JP2012/078789 2011-11-21 2012-11-07 熱間鍛造用圧延棒鋼 WO2013077182A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/358,733 US9574255B2 (en) 2011-11-21 2012-11-07 Rolled steel bar for hot forging
KR1020147013616A KR20140079853A (ko) 2011-11-21 2012-11-07 열간 단조용 압연 봉강
CN201280057256.5A CN103958714B (zh) 2011-11-21 2012-11-07 热锻用轧制棒钢
EP12852067.3A EP2784169B1 (en) 2011-11-21 2012-11-07 Rolled steel bar for hot forging

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011253412A JP5716640B2 (ja) 2011-11-21 2011-11-21 熱間鍛造用圧延棒鋼
JP2011-253412 2011-11-21

Publications (1)

Publication Number Publication Date
WO2013077182A1 true WO2013077182A1 (ja) 2013-05-30

Family

ID=48469630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078789 WO2013077182A1 (ja) 2011-11-21 2012-11-07 熱間鍛造用圧延棒鋼

Country Status (7)

Country Link
US (1) US9574255B2 (ja)
EP (1) EP2784169B1 (ja)
JP (1) JP5716640B2 (ja)
KR (1) KR20140079853A (ja)
CN (1) CN103958714B (ja)
HU (1) HUE043166T2 (ja)
WO (1) WO2013077182A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017188284A1 (ja) * 2016-04-26 2017-11-02 新日鐵住金株式会社 高周波焼入れ用非調質鋼

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101322067B1 (ko) 2009-12-28 2013-10-25 주식회사 포스코 용접 후 열처리 저항성이 우수한 고강도 강판 및 그 제조방법
JP5778055B2 (ja) * 2012-02-15 2015-09-16 新日鐵住金株式会社 熱間鍛造用圧延棒鋼および熱間鍛造素形材ならびにコモンレールおよびその製造方法
CN106661688B (zh) * 2014-07-03 2018-05-08 新日铁住金株式会社 机械结构用轧制棒钢及其制造方法
CN106536775B (zh) * 2014-07-03 2018-05-04 新日铁住金株式会社 机械结构用轧制棒钢及其制造方法
JP6551224B2 (ja) * 2015-12-25 2019-07-31 日本製鉄株式会社 鋼管の製造方法
US11274354B2 (en) 2016-04-05 2022-03-15 Daido Steel Co., Ltd. Steel material, crankshaft, and automobile component
CN106978565A (zh) * 2017-04-05 2017-07-25 宝钢特钢韶关有限公司 一种高强度非调质钢
US11261511B2 (en) * 2017-10-31 2022-03-01 Nippon Steel Corporation Hot forged steel material
CN113355596B (zh) * 2021-05-22 2024-05-03 江苏铸鸿重工股份有限公司 一种合金钢锻圆调质处理工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06287677A (ja) 1993-04-01 1994-10-11 Nippon Steel Corp 高強度熱間鍛造用非調質鋼
JPH0892687A (ja) 1994-09-22 1996-04-09 Kobe Steel Ltd 熱間鍛造用高強度高靭性非調質鋼とその製造方法
JPH09143610A (ja) * 1995-11-15 1997-06-03 Kobe Steel Ltd 高疲労強度を有する熱間鍛造非調質鋼および鍛造品の製造方法
JP2000239782A (ja) * 1999-02-16 2000-09-05 Aichi Steel Works Ltd 被削性と圧縮加工後の疲労強度に優れた非調質鍛造品の製造方法
JP2004137542A (ja) * 2002-10-17 2004-05-13 Sumitomo Metal Ind Ltd 非調質鋼熱間鍛造部材の製造方法
JP2010007143A (ja) * 2008-06-27 2010-01-14 Kobe Steel Ltd 疲労限度比と被削性に優れた機械構造用鋼

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09176875A (ja) * 1995-12-21 1997-07-08 Meidensha Corp 薬剤投入酸洗装置
JP3235442B2 (ja) * 1995-12-26 2001-12-04 住友金属工業株式会社 高強度・低延性非調質鋼
DE602005016522D1 (de) 2005-03-09 2009-10-22 Ovako Bar Oy Ab Hochfester luftgekühlter Stahl und daraus resultiertes warmverformte Produkt.
WO2009054530A1 (ja) * 2007-10-24 2009-04-30 Nippon Steel Corporation 高温での面圧疲労強度に優れた浸炭窒化高周波焼入れ鋼部品及びその製造方法
RU2431694C2 (ru) 2008-02-26 2011-10-20 Ниппон Стил Корпорейшн Горячештампованная микролегированная сталь с превосходным разрушением при изломе и обрабатываемостью
JP5778055B2 (ja) * 2012-02-15 2015-09-16 新日鐵住金株式会社 熱間鍛造用圧延棒鋼および熱間鍛造素形材ならびにコモンレールおよびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06287677A (ja) 1993-04-01 1994-10-11 Nippon Steel Corp 高強度熱間鍛造用非調質鋼
JPH0892687A (ja) 1994-09-22 1996-04-09 Kobe Steel Ltd 熱間鍛造用高強度高靭性非調質鋼とその製造方法
JPH09143610A (ja) * 1995-11-15 1997-06-03 Kobe Steel Ltd 高疲労強度を有する熱間鍛造非調質鋼および鍛造品の製造方法
JP2000239782A (ja) * 1999-02-16 2000-09-05 Aichi Steel Works Ltd 被削性と圧縮加工後の疲労強度に優れた非調質鍛造品の製造方法
JP2004137542A (ja) * 2002-10-17 2004-05-13 Sumitomo Metal Ind Ltd 非調質鋼熱間鍛造部材の製造方法
JP2010007143A (ja) * 2008-06-27 2010-01-14 Kobe Steel Ltd 疲労限度比と被削性に優れた機械構造用鋼

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017188284A1 (ja) * 2016-04-26 2017-11-02 新日鐵住金株式会社 高周波焼入れ用非調質鋼

Also Published As

Publication number Publication date
EP2784169B1 (en) 2019-01-09
EP2784169A1 (en) 2014-10-01
EP2784169A4 (en) 2016-03-16
CN103958714A (zh) 2014-07-30
JP2013108129A (ja) 2013-06-06
KR20140079853A (ko) 2014-06-27
CN103958714B (zh) 2016-03-23
HUE043166T2 (hu) 2019-08-28
US9574255B2 (en) 2017-02-21
JP5716640B2 (ja) 2015-05-13
US20140322066A1 (en) 2014-10-30

Similar Documents

Publication Publication Date Title
JP5716640B2 (ja) 熱間鍛造用圧延棒鋼
KR101486680B1 (ko) 인성이 우수한 고강도 열연 강판 및 그 제조 방법
JP5034308B2 (ja) 耐遅れ破壊特性に優れた高強度厚鋼板およびその製造方法
JP5231101B2 (ja) 疲労限度比と被削性に優れた機械構造用鋼
WO2016148037A1 (ja) 冷間加工性と浸炭熱処理後の靱性に優れる浸炭用鋼板
JP5363922B2 (ja) 伸びと伸びフランジ性のバランスに優れた高強度冷延鋼板
CN111971407A (zh) 耐磨损钢及其制造方法
CN111051553B (zh) 高Mn钢及其制造方法
JP5974623B2 (ja) 時効硬化型ベイナイト非調質鋼
WO2015060311A1 (ja) 絞り加工性と浸炭熱処理後の表面硬さに優れる熱延鋼板
JP2012246527A (ja) 高疲労強度、高靭性機械構造用鋼部品およびその製造方法
KR20190028781A (ko) 고주파 담금질용 강
JP2017197787A (ja) 延性に優れた高張力厚鋼板及びその製造方法
JP5801529B2 (ja) 曲げ疲労強度が高く、繰り返し応力による変形量の小さい熱間鍛造用非調質鋼およびその部品の製造方法
JP2003147478A (ja) 非調質鋼
JP6536673B2 (ja) 時効硬化用鋼及び時効硬化用鋼を用いた部品の製造方法
JP5304507B2 (ja) 高周波焼入れ用非調質鋼
JP2004027334A (ja) 高周波焼もどし用鋼およびその製造方法
JP2019011510A (ja) 冷間加工性と浸炭熱処理後の靱性に優れる浸炭用鋼板
JP5737152B2 (ja) 熱間鍛造用圧延棒鋼
JP6844943B2 (ja) 高周波焼入れ用非調質鋼
JP4192109B2 (ja) 延性に優れた高炭素鋼レールの製造方法
JP6791179B2 (ja) 非調質鋼およびその製造方法
JP2004124190A (ja) ねじり特性に優れる高周波焼もどし鋼
WO2018139671A1 (ja) 自動車足回り部品用鋼管および自動車足回り部品

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280057256.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12852067

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14358733

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147013616

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012852067

Country of ref document: EP