WO2013077143A1 - 車両用走行制御装置 - Google Patents

車両用走行制御装置 Download PDF

Info

Publication number
WO2013077143A1
WO2013077143A1 PCT/JP2012/077844 JP2012077844W WO2013077143A1 WO 2013077143 A1 WO2013077143 A1 WO 2013077143A1 JP 2012077844 W JP2012077844 W JP 2012077844W WO 2013077143 A1 WO2013077143 A1 WO 2013077143A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction force
vehicle
accelerator pedal
control device
state
Prior art date
Application number
PCT/JP2012/077844
Other languages
English (en)
French (fr)
Inventor
丸山耕平
堀内泰
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to DE112012004922.5T priority Critical patent/DE112012004922B4/de
Priority to US14/359,627 priority patent/US9145130B2/en
Priority to JP2013545858A priority patent/JP5756185B2/ja
Priority to CN201280055659.6A priority patent/CN103958303B/zh
Publication of WO2013077143A1 publication Critical patent/WO2013077143A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K26/00Arrangements or mounting of propulsion unit control devices in vehicles
    • B60K26/02Arrangements or mounting of propulsion unit control devices in vehicles of initiating means or elements
    • B60K26/021Arrangements or mounting of propulsion unit control devices in vehicles of initiating means or elements with means for providing feel, e.g. by changing pedal force characteristics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • B60W50/16Tactile feedback to the driver, e.g. vibration or force feedback to the driver on the steering wheel or the accelerator pedal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K26/00Arrangements or mounting of propulsion unit control devices in vehicles
    • B60K26/02Arrangements or mounting of propulsion unit control devices in vehicles of initiating means or elements
    • B60K26/021Arrangements or mounting of propulsion unit control devices in vehicles of initiating means or elements with means for providing feel, e.g. by changing pedal force characteristics
    • B60K2026/023Arrangements or mounting of propulsion unit control devices in vehicles of initiating means or elements with means for providing feel, e.g. by changing pedal force characteristics with electrical means to generate counter force or torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/93Conjoint control of different elements

Definitions

  • the present invention relates to a vehicle travel control device that applies a reaction force to an accelerator pedal. More specifically, the present invention switches the operating states of a plurality of driving sources that generate driving force according to the opening degree of the accelerator pedal and the like, and the timing of the switching is given to the driver by the reaction force to the accelerator pedal.
  • the present invention relates to a vehicular travel control device for notification.
  • JP 2005-271618 A discloses an accelerator reaction force control device used in a hybrid electric vehicle. Specifically, JP 2005-271618 A has a motor travel region driven by the vehicle drive motor 7 and an engine travel region driven by the engine 6, and the motor travel region shifts to the engine travel region. In this case, the depression reaction force of the accelerator pedal 2 is increased (summary). Thus, when the drive source is switched from the motor 7 to the engine 6, the driver is notified by the reaction force against the accelerator pedal ([0005]).
  • JP 272005-271618 A discloses a control for charging the battery by driving only the engine 6 when the battery charge amount is not equal to or greater than a predetermined value (S1: NO ⁇ S9 in FIG. 4, [0018]). , Claim 2).
  • JP 2005-271618 A when the battery charge amount is not equal to or greater than a predetermined value, the battery is charged by being driven only by the engine 6. For this reason, even when the driver depresses the accelerator pedal as much as possible within a movable range and demands a large driving force, only the engine 6 can travel and the motor 7 is driven together with the engine 6. Therefore, the driving force requested by the driver may not be obtained.
  • the present invention has been made in consideration of such problems. Even when the remaining amount of power of the power storage device is small, the vehicle is driven by both the internal combustion engine and the electric motor as drive sources as necessary. It is an object of the present invention to provide a vehicular travel control device that enables the above.
  • the vehicle travel control apparatus supplies an electric motor that supplies a first driving force for driving the vehicle to the driving wheel side, and a second driving force that drives the vehicle to the driving wheel side or the motor side.
  • the first traveling state is set corresponding to an opening degree of the accelerator pedal smaller than the second traveling state, and the vehicle traveling control device is further switched.
  • a remaining power detection means for detecting the remaining power of the power storage device, and when the remaining power detected by the remaining power detection means falls below a first predetermined value, the reaction force application means comprises: Before the first traveling state is switched to the second traveling state, a first accelerator pedal opening threshold value for increasing a reaction force to the accelerator pedal is set.
  • the state is switched from the first traveling state in which the vehicle is driven only by the internal combustion engine to the second traveling state in which the vehicle is driven by the internal combustion engine and the electric motor. That is, the reaction force of the accelerator pedal is increased in the first traveling state. For this reason, when the accelerator pedal is depressed beyond the opening degree at which the reaction force increases, the vehicle can be driven by the internal combustion engine and the electric motor. Thereby, it becomes possible to generate a large driving force according to the driver's intention to accelerate.
  • the accelerator pedal is held without exceeding the threshold for increasing the reaction force, the motor is not driven. For this reason, it becomes possible to suppress the electric power consumption of the electrical storage apparatus accompanying the drive of an electric motor.
  • charging of the power storage device can be promoted through driving by an internal combustion engine or regeneration by an electric motor.
  • the vehicle travel control device further includes a generator that generates electric power in response to driving of the internal combustion engine, and charges the generated electric power to the power storage device, and the first accelerator pedal opening threshold value is a unit amount.
  • the power generation amount of the generator may be set in a region where the power generation amount of the generator is equal to or greater than a first power generation amount threshold by driving the internal combustion engine with fuel.
  • the vehicular travel control device further includes electric motor control means for controlling driving and regeneration or power generation of the electric motor, and the electric motor regenerates or generates electric power according to the driving of the internal combustion engine, and regenerates or generates electric power.
  • the power storage device is charged, and the motor control means causes the internal combustion engine to perform regeneration or power generation in the first running state, and the first accelerator pedal opening threshold is a fuel per unit amount.
  • the electric power generation amount of the electric motor may be set within a region where the electric power generation amount is equal to or greater than a second power generation amount threshold value by driving the internal combustion engine. As a result, when the accelerator pedal is held at or near the first accelerator pedal opening threshold value, the amount of power generated by the electric motor can be relatively increased. Accordingly, charging of the power storage device can be promoted.
  • a third driving state in which the vehicle is driven only by the electric motor is set corresponding to the opening degree of the accelerator pedal smaller than the first driving state, and is detected by the remaining power detection means.
  • the reaction force applying means applies a reaction force to the accelerator pedal before the switching from the third traveling state to the first traveling state.
  • a second accelerator pedal opening threshold value to be increased may be set.
  • the state immediately before switching from the third traveling state in which the vehicle travels only with the electric motor to the first traveling state in which the vehicle travels only with the internal combustion engine, that is, the first The reaction force of the accelerator pedal is increased in the 3 running state.
  • traveling with only an electric motor has higher fuel efficiency than traveling using an internal combustion engine.
  • the use of the third traveling state is permitted, and when the remaining electric power is less than the second predetermined value, the use of the third traveling state is prohibited.
  • Switching between the control when the remaining amount of power exceeds the second predetermined value and the control when the remaining amount of power falls below the second predetermined value is performed when the opening of the accelerator pedal is zero. You may perform, when the said reaction force by a force provision means is not produced
  • an all-cylinder operating state in which all cylinders of the internal combustion engine are operated and a cylinder deactivation state in which only some cylinders of the internal combustion engine are operated may be set.
  • the cylinder deactivation state may be set in a region higher than the vehicle speed at which the third traveling state is set.
  • the third traveling state in which the vehicle is driven only by the electric motor is switched to the first traveling state (cylinder deactivation state) in which the vehicle is driven only by the internal combustion engine, the internal combustion engine operates only a part of the cylinders.
  • the reaction force applying means may set a cylinder deactivation assist threshold value that increases a reaction force to the accelerator pedal before the cylinder deactivation state and the all cylinder operation state are switched. This makes it possible to notify the driver of the switching between the cylinder deactivation state and the all cylinder operation state. As a result, for example, it is possible to improve fuel efficiency by trying to maintain the cylinder deactivation state by the driver.
  • the cylinder deactivation assist threshold value may be set lower than the first accelerator pedal opening threshold value. As a result, a reaction force based on energy efficiency can be applied.
  • the second accelerator pedal opening threshold and the cylinder deactivation assist threshold are determined based on the accelerator pedal opening, the required driving force or actual driving force of the vehicle, or the throttle valve opening, the vehicle speed, or the rotational speed of the internal combustion engine.
  • the second accelerator pedal opening threshold and the cylinder deactivation assist threshold are switched according to the vehicle speed or the rotational speed of the internal combustion engine.
  • a continuous value may be set.
  • FIG. 1 is a block diagram of a vehicle equipped with a vehicle travel control apparatus according to an embodiment of the present invention. It is a figure which shows the selection characteristic (high residual amount map) of a drive source when a battery remaining amount is large. It is a figure which shows the selection characteristic (low residual amount map) when the said battery remaining amount is small.
  • the pedal opening and the reaction force applied to the accelerator pedal (the pedal reaction) when the accelerator pedal opening (pedal opening) is increased and then the pedal opening is decreased.
  • the 1st example of the relationship of force is shown in the pedal opening and the reaction force applied to the accelerator pedal (the pedal reaction) when the accelerator pedal opening (pedal opening) is increased and then the pedal opening is decreased.
  • FIG. 1 is a block diagram of a vehicle 10 equipped with a vehicle travel control device 12 (hereinafter referred to as “travel control device 12” or “control device 12”) according to an embodiment of the present invention.
  • the vehicle 10 is a so-called hybrid vehicle, and includes an engine 14 and a travel motor 16 (hereinafter also referred to as “motor 16”) as a drive source.
  • the vehicle 10 in addition to an engine 14 (internal combustion engine) and a motor 16 (electric motor), the vehicle 10 includes an alternator 18 (generator), an inverter 20, a battery 22 (power storage device), an SOC sensor 24, and motor electronic control.
  • Device 26 hereinafter referred to as “motor ECU 26”
  • transmission 28 transmission electronic control device 30
  • drive state ECU 32 drive state ECU 32
  • accelerator The pedal 34, the pedal side arm 36, the opening degree sensor 38, the reaction force motor 40, the motor side arm 42, the vehicle speed sensor 44, and a reaction force electronic control device 46 (hereinafter referred to as “reaction force ECU 46”).
  • the drive source is selected according to the opening of the accelerator pedal 34 (hereinafter referred to as “pedal opening ⁇ ”) or the like (that is, either or both of the engine 14 and the travel motor 16).
  • the driver preferably uses the reaction force applied to the accelerator pedal 34 from the reaction force motor 40 (hereinafter referred to as “pedal reaction force Fr”) so that the driver suitably selects the drive source.
  • the operation of the accelerator pedal 34 is guided so that it can be selected.
  • the accelerator pedal 34 controls the output of the drive source, and is fixed to the pedal side arm 36.
  • the pedal side arm 36 is connected to a return spring (not shown) so as to be able to turn.
  • the accelerator pedal 34 is returned to the original position by the urging force (spring reaction force Fr_sp) from the return spring.
  • the opening sensor 38 detects the depression amount (pedal opening ⁇ ) from the original position of the accelerator pedal 34 and transmits it to the drive state ECU 32 and the reaction force ECU 46.
  • the pedal opening ⁇ is used for controlling the drive source (the engine 14 and the traveling motor 16) and for controlling the reaction force (pedal reaction force Fr) against the accelerator pedal 34.
  • the motor side arm 42 is disposed so as to be able to turn at a position where it can come into contact with the pedal side arm 36.
  • the reaction force motor 40 drives the motor side arm 42 to apply the pedal reaction force Fr to the pedal side arm 36 and the accelerator pedal 34.
  • the reaction force ECU 46 includes an input / output unit, a calculation unit, and a storage unit (not shown), and generates a reaction force generation command for the driving force of the reaction force motor 40 (ie, the pedal reaction force Fr) based on the pedal opening ⁇ and the vehicle speed V. Control by Sr.
  • the reaction force motor 40 may be other driving force generation means (for example, a pneumatic actuator).
  • the reaction force motor 40 and the reaction force ECU 46 function as a reaction force applying unit that applies a pedal reaction force Fr to the accelerator pedal 34.
  • the engine 14 (internal combustion engine) generates a driving force Fe [N] (or torque [N ⁇ m]) as a driving source for traveling of the vehicle 10 and supplies it to a driving wheel (not shown), and operates the alternator 18. To generate power.
  • the electric power (hereinafter referred to as “generated power Pgen”) [W] generated by the alternator 18 is supplied to the battery 22, a 12-volt system (not shown) or an auxiliary machine.
  • the engine 14 of the present embodiment is an 8-cylinder type, and can perform a cylinder deactivation operation in which only some cylinders are operated and other cylinders are not operated.
  • the traveling motor 16 (electric motor) is a three-phase alternating current brushless type, and generates the driving force Fm [N] (or torque [N ⁇ m]) of the vehicle 10 based on the electric power supplied from the battery 22 via the inverter 20. Generated and supplied to the drive wheel. Further, the traveling motor 16 charges the battery 22 by outputting electric power (hereinafter referred to as “regenerative power Preg”) [W] generated by collecting deceleration energy as regenerative energy to the battery 22.
  • the regenerative power Preg may be output to a 12 volt system or an auxiliary machine (not shown).
  • the inverter 20 is configured as a three-phase bridge type, performs DC / AC conversion, converts DC to three-phase AC, and supplies it to the traveling motor 16, while DC after AC / DC conversion accompanying the regenerative operation. Is supplied to the battery 22.
  • the SOC sensor 24 (remaining electric power detection means) is configured by a current sensor or the like (not shown), detects the remaining amount (SOC: StateSOof Charge) of the battery 22 and transmits it to the motor ECU 26, the drive state ECU 32, and the reaction force ECU 46. .
  • the motor ECU 26 (electric motor control means) controls the inverter 20 based on commands from the drive state ECU 32 and outputs from various sensors (not shown) such as a voltage sensor and a current sensor, thereby outputting the driving motor 16 (propulsion power). To control.
  • the motor ECU 26 controls the operation of the transmission 28 via the T / M ECU 30.
  • the drive state ECU 32 plays a role of an engine electronic control unit (hereinafter referred to as “engine ECU”) for controlling the engine 14 and drives the engine 14 and the traveling motor 16 together using the pedal opening ⁇ and the vehicle speed V. Control the entire source.
  • engine ECU engine electronic control unit
  • the drive motor 16 is selected according to the vehicle speed V and the required drive force Freq [N] (or the required torque [N ⁇ m]) of the travel motor 16 as the selection of the drive source (selection of the travel state of the vehicle 10). Travel by only the operation (hereinafter referred to as “MOT travel”), travel by only the operation of the engine 14 (herein, the operation of all cylinders) (hereinafter referred to as “ENG travel”), and both the travel motor 16 and the engine 14.
  • MOT travel travel only the operation
  • ENG travel travel by only the operation of the engine 14
  • ENG travel both the travel motor 16 and the engine 14.
  • Travel by operation (hereinafter referred to as “ENG + MOT travel”) and travel (hereinafter referred to as “cylinder deactivation travel”) by only the operation of the engine 14 (operation in the cylinder deactivation state) are possible.
  • the switching is performed according to the vehicle speed V, the remaining amount (SOC) of the battery 22, and the pedal opening degree ⁇ .
  • the pedal opening degree ⁇ can be handled as substantially indicating the required driving force Freq of the traveling motor 16.
  • FIG. 2 is a diagram illustrating a drive source selection characteristic (a large remaining amount map) when the remaining amount of the battery 22 is large.
  • “when the remaining amount is large” means, for example, that the battery 22 has sufficient power to travel only by the traveling motor 16, and the specific value of the remaining amount is It can be set as appropriate according to the specifications of the traveling motor 16 and the like.
  • MOT traveling is selected.
  • ENG travel is selected when the pedal opening ⁇ is relatively larger than in MOT travel (that is, when the required driving force Freq is greater than in MOT travel) or when the vehicle speed V is higher than in MOT travel. Is done.
  • the pedal opening degree ⁇ is larger than that in ENG traveling (that is, when the required driving force Freq is larger than ENG traveling) or when the vehicle speed V is high, ENG + MOT traveling is selected.
  • cylinder deactivation traveling is selected.
  • FIG. 3 is a diagram showing a drive source selection characteristic (low remaining amount map) used when the remaining amount of the battery 22 is small.
  • “when the remaining amount is small” means, for example, that the battery 22 does not have enough power to travel only by the traveling motor 16, and the specific value of the remaining amount is It can be set as appropriate according to the specifications of the traveling motor 16 and the like.
  • FIG. 3 shows characteristics used when the remaining amount of the battery 22 is small. Therefore, avoiding traveling by only the traveling motor 16 in which the amount of power supplied from the battery 22 is increased, the vehicle speed V is low, and the required driving force Freq. This is because the engine 14 is driven even when the engine speed is small. As a result, while the power consumption of the battery 22 is suppressed, the alternator 18 can be operated by driving the engine 14 to charge the battery 22.
  • MOT travel assistance In general, when the vehicle 10 is at a low speed and the required driving force Freq is low, traveling by the engine 14 has low fuel efficiency, and traveling by the traveling motor 16 has higher energy efficiency. Therefore, in the present embodiment, if the remaining amount of the battery 22 is large and the vehicle 10 is at a low speed and the required driving force Freq is low, MOT traveling is selected (FIG. 2). In this case, the pedal reaction force Fr is increased at the pedal opening ⁇ at which MOT travel and ENG travel are switched, and the driver is notified of the pedal opening ⁇ at which MOT travel and ENG travel are switched. This prompts selection of MOT travel.
  • the pedal opening ⁇ is a line indicated by “TH1” (hereinafter referred to as “MOT travel assist threshold TH1,” “first reaction force increase threshold TH1,” or “ When it is above the threshold value TH1 "), the reaction force ECU 46 increases the pedal reaction force Fr.
  • the first reaction force increase threshold TH1 is a curve that extends so as to straddle a third reaction force increase threshold TH3 (to be described later) (in other words, the first reaction force increase threshold TH1 is temporarily interrupted and the curve of the third reaction force increase threshold TH3 is interrupted in the meantime). (Curved curve). Accordingly, the first reaction force increase threshold value TH1 and the third reaction force increase threshold value TH3 are continuous (the values have continuity and do not change greatly).
  • the pedal reaction force Fr is increased at the pedal opening ⁇ where the energy efficiency is higher among the pedal opening ⁇ smaller than the pedal opening ⁇ at which the ENG traveling and the ENG + MOT traveling are switched.
  • the pedal opening ⁇ is indicated by a line indicated by “TH2” (hereinafter referred to as “high efficiency output assist threshold TH2”, “second reaction force increase threshold TH2”).
  • TH2 high efficiency output assist threshold
  • second reaction force increase threshold TH2 second reaction force increase threshold
  • the high-efficiency output assist threshold TH2 is a value within a region (hereinafter, referred to as “high-efficiency power generation region” or “charging promotion region”) in which the energy torque obtained by fuel per unit amount (for example, 1 cc) is maximum. Is set. Thereby, the power generation amount of the alternator 18 when the engine 14 is driven by the fuel per unit amount becomes relatively high.
  • the high-efficiency output assist threshold TH2 is based on the net fuel consumption rate (BSFC: Brake : Specific Fuel Consumption) from the relationship between the pedal opening ⁇ and the vehicle speed V (or engine speed [rpm]).
  • BSFC Brake : Specific Fuel Consumption
  • the best fuel consumption point or the pedal opening ⁇ within the best fuel consumption range can be set as the high efficiency output assist threshold TH2.
  • the pedal opening ⁇ is a line indicated by “TH3” (hereinafter referred to as “cylinder deactivation assist threshold TH3”, “third reaction force increase threshold TH3” or “ When it is above the threshold value TH3 "), the reaction force ECU 46 increases the pedal reaction force Fr.
  • TH3 cylinder deactivation assist threshold
  • TH3 third reaction force increase threshold
  • the reaction force ECU 46 increases the pedal reaction force Fr.
  • the first to third reaction force increase thresholds TH1, TH2, and TH3 are collectively referred to as “a large remaining amount threshold value”.
  • FIG. 4 shows a first example of the relationship between the pedal opening ⁇ and the pedal reaction force Fr when the pedal opening ⁇ is increased and then the pedal opening ⁇ is decreased when the remaining amount of the battery 22 is large.
  • FIG. 5 shows a second example of the relationship between the pedal opening ⁇ and the pedal reaction force Fr when the pedal opening ⁇ is increased and then the pedal opening ⁇ is decreased when the remaining amount of the battery 22 is large.
  • the pedal opening ⁇ is a line indicated by “TH4” (hereinafter referred to as “charging acceleration assist threshold TH4”, “fourth reaction force increase threshold TH4” or “ When it is above the threshold value TH4 "), the reaction force ECU 46 increases the pedal reaction force Fr.
  • the charging promotion assist threshold value TH4 is not limited as long as it can notify the driver of the pedal opening ⁇ at which the MOT traveling and the ENG traveling are switched and can prompt the battery 22 to be rapidly charged. These may be the same as or different from the high-efficiency output assist threshold TH2 in FIG.
  • a line TH5 in FIG. 3 indicates a threshold value for rapidly increasing the pedal reaction force Fr before switching from the cylinder deactivation travel to the ENG travel, similarly to the cylinder deactivation assist threshold TH3 (third reaction force increase threshold TH3) in FIG. (Hereinafter referred to as “cylinder deactivation assist threshold TH5”, “fifth reaction force increase threshold TH5”, or “threshold TH5”).
  • the fourth and fifth reaction force increase thresholds TH4 and TH5 are collectively referred to as “low remaining amount threshold”.
  • FIG. 6 is a diagram illustrating an example of the relationship between the pedal opening ⁇ and the pedal reaction force Fr when the pedal opening ⁇ is increased and then the pedal opening ⁇ is decreased when the remaining amount of the battery 22 is small. It is.
  • FIG. 7 is a flowchart in which the reaction force ECU 46 sets the pedal reaction force Fr.
  • step S1 the reaction force ECU 46 determines whether to permit switching between the reaction force large map (FIG. 2) and the reaction force small map (FIG. 3). If it is always allowed to switch between the two maps, there is a possibility that the driver may feel uncomfortable. Therefore, in this embodiment, switching between both maps is performed only when a predetermined condition is satisfied. Specifically, when the pedal opening ⁇ is zero (that is, when the accelerator pedal 34 is in the original position), when the pedal reaction force Fr by the reaction force motor 40 is not generated, and when the reaction force from the reaction force ECU 46 is increased. When the reaction force generation command Sr is not output to the motor 40, switching between both maps is permitted.
  • permission conditions can be used in combination as appropriate, and other permission conditions may be set.
  • step S2 When switching between both maps is permitted (S1: YES), the process proceeds to step S2, and when switching between both maps is not permitted (S1: NO), the process proceeds to step S10.
  • step S2 the reaction force ECU 46 acquires the remaining amount (SOC) of the battery 22 from the SOC sensor 24.
  • the reaction force ECU 46 determines whether or not the remaining amount of the battery 22 is large. Specifically, it is determined whether or not the SOC acquired in step S2 exceeds a predetermined value (SOC threshold value THsoc).
  • step S4 the reaction force ECU 46 selects the large remaining amount map (FIG. 2).
  • step S ⁇ b> 5 the reaction force ECU 46 acquires the vehicle speed V from the vehicle speed sensor 44.
  • step S6 the reaction force ECU 46 sets the remaining amount threshold value (first to third reaction force increase threshold values TH1, TH2, TH3) from the relationship with the vehicle speed V in the remaining amount amount map. As is apparent from FIG. 2, depending on the vehicle speed V, one or more of the first to third reaction force increase thresholds TH1, TH2, and TH3 may not be set.
  • step S7 the reaction force ECU 46 selects the small remaining amount map (FIG. 3).
  • step S ⁇ b> 8 the reaction force ECU 46 acquires the vehicle speed V from the vehicle speed sensor 44.
  • step S9 the reaction force ECU 46 sets the remaining amount threshold (fourth and fifth reaction force increase thresholds TH4 and TH5) from the relationship with the vehicle speed V in the remaining amount map. As is apparent from FIG. 3, depending on the vehicle speed V, either one or both of the fourth and fifth reaction force increase thresholds TH4 and TH5 may not be set.
  • step S10 the reaction force ECU 46 acquires the pedal opening degree ⁇ from the opening degree sensor 38.
  • step S11 the reaction force ECU 46 determines whether or not the pedal opening degree ⁇ acquired in step S10 is greater than or equal to the remaining amount large threshold set in step S6 or the remaining amount small threshold set in step S9. .
  • the pedal opening degree ⁇ is equal to or larger than the threshold value (high remaining amount threshold value or low residual amount threshold value) set in step S6 or S9 (S11: YES)
  • the pedal reaction force Fr is increased in step S12.
  • the pedal opening ⁇ and the first and second The reaction force increase thresholds TH1 and TH2 are compared.
  • the reaction force ECU 46 increases the pedal reaction force Fr by one step (see FIGS. 4 and 5).
  • the reaction force ECU 46 increases the pedal reaction force Fr by two steps (see FIG. 4).
  • the reaction force ECU 46 uses a normal pedal reaction force Fr (see FIGS. 4 and 5).
  • the pedal opening degree ⁇ and the fourth reaction force increase threshold value TH4 are set. Compare. When the pedal opening degree ⁇ is equal to or greater than the fourth reaction force increase threshold TH4, the reaction force ECU 46 increases the pedal reaction force Fr by one step (see FIG. 6). When the pedal opening ⁇ is not equal to or greater than the fourth reaction force increase threshold TH4, the reaction force ECU 46 uses a normal pedal reaction force Fr (see FIG. 6).
  • the traveling motor 16 is not driven. For this reason, it becomes possible to suppress the power consumption of the battery 22 accompanying the drive of the traveling motor 16.
  • the charge promotion assist threshold TH4 is set within a charge promotion region in which the power generation amount of the alternator 18 is maximized when the engine 14 is driven by fuel per unit amount.
  • the amount of power generated by the alternator 18 can be relatively increased. Accordingly, charging of the battery 22 can be promoted.
  • ENG traveling all cylinder operating state
  • cylinder deactivation traveling in which only some cylinders of the engine 14 are activated.
  • the cylinder deactivation travel (cylinder deactivation state) is set in a region higher than the vehicle speed V at which the MOT travel (third travel state) is set (FIG. 2).
  • the reaction force ECU 46 (a part of the reaction force applying means) is a cylinder that increases the pedal reaction force Fr before switching between cylinder deactivation travel (cylinder deactivation state) and ENG travel (all cylinder operation state).
  • the pause assist thresholds TH3 and TH5 are set. As a result, it is possible to notify the driver of switching between cylinder deactivation travel and ENG travel. As a result, for example, it becomes possible for the driver to improve fuel efficiency by trying to maintain cylinder deactivation.
  • the cylinder deactivation assist threshold TH3 is set lower than the high efficiency output assist threshold TH2 (first accelerator pedal opening threshold), and the cylinder deactivation assist threshold TH5 is set as the charge acceleration assist threshold TH4 (first accelerator pedal open). Is set lower than (degree threshold). Thereby, it is possible to apply the pedal reaction force Fr based on energy efficiency.
  • the MOT travel assist threshold TH1 (second accelerator pedal opening threshold) and the cylinder deactivation assist threshold TH3 are set based on the pedal opening ⁇ (required driving force Freq) and the vehicle speed V (FIG. 2).
  • the threshold value TH1 and the threshold value TH3 are switched according to the vehicle speed V, continuous values are set to the threshold value TH1 and the threshold value TH3 (FIG. 2).
  • the pedal reaction force Fr does not change greatly, and it is possible to prevent the driver from feeling uncomfortable.
  • the travel control device 12 is mounted on the vehicle 10 having the engine 14 and the travel motor 16 as the drive source (the one that generates the driving force).
  • the travel control device 12 includes a plurality of drive sources. If it is the vehicle 10 which switches a drive state according to a user's operation, it will not restrict to this.
  • the travel motor 16 in a configuration in which the travel motor 16 is directly connected to the engine 14 to drive drive wheels (for example, front wheels), another travel motor that drives another drive wheel (for example, rear wheels).
  • One or two (second traveling motors) may be provided.
  • the present invention may be applied to a four-wheel drive hybrid vehicle. In this case, in “ENG + MOT traveling”, the engine 14 may be assisted by the second traveling motor.
  • traveling motor 16 when the engine 14 is being driven, the travel motor 16 stops driving (ENG travel) or is driven together with the engine 14 (ENG + MOT travel). Regeneration or power generation may be performed. In other words, the traveling motor 16 may serve as the alternator 18.
  • the charge promotion assist threshold TH4 can be set, for example, in a region where the power generation amount of the travel motor 16 is equal to or greater than a predetermined power generation amount threshold when the engine 14 is driven by fuel per unit amount.
  • the accelerator pedal 34 is held at or near the charge promotion assist threshold TH4
  • the amount of power generated by the travel motor 16 can be relatively increased. Accordingly, charging of the battery 22 can be promoted.
  • the traveling motor 16 can also regenerate or generate electric power by the driving force of the engine 14 to charge the battery 22.
  • Switching of running state [3-1. Characteristics according to the remaining amount of the battery 22]
  • the switching characteristics of the running states (MOT running, ENG running, ENG + MOT running, and cylinder deactivation running) are set separately for two cases when the remaining amount of the battery 22 is large and small (FIG. 2 and FIG. 2). 3), if a plurality of driving state switching characteristics are set according to the remaining amount of the battery 22, three or more characteristics can be provided.
  • MOT travel, ENG travel, ENG + MOT travel, and cylinder deactivation travel are set as switching characteristics when the remaining amount of the battery 22 is large (FIG. 2), and as switching characteristics when the remaining amount of the battery 22 is small.
  • ENG travel, ENG + MOT travel, and cylinder deactivation travel were set (FIG. 3).
  • the combination of switching characteristics is not limited to this.
  • a combination of MOT traveling, ENG traveling and ENG + MOT traveling, a combination of ENG traveling and ENG + MOT traveling, or a combination of MOT traveling and ENG + MOT traveling may be set.
  • a combination of ENG traveling and ENG + MOT traveling may be set.
  • FIG. 8 shows a modified example of the relationship between the pedal opening ⁇ and the pedal reaction force Fr when the pedal opening ⁇ is increased and then the pedal opening ⁇ is decreased when the remaining amount of the battery 22 is large.
  • the switching characteristics of the running state are set according to the vehicle speed V and the pedal opening ⁇ (required driving force Freq).
  • the setting of the switching characteristic is not limited to this as long as it is set according to the pedal opening degree ⁇ (required driving force Freq).
  • MOT travel assist threshold TH1 In the above embodiment, the MOT travel assist threshold value TH1 is used. However, for example, when attention is paid to the use of the high efficiency output assist threshold value TH2 and the charge acceleration assist threshold value TH4, a configuration in which the MOT travel assist threshold value TH1 is not used is also possible.
  • the threshold value similar to the MOT travel assist threshold value TH1 is not used (FIG. 3). It is also possible to set a threshold value similar to the threshold value TH1.
  • the high-efficiency output assist threshold TH2 and the charge acceleration assist threshold TH4 for notifying the switching from ENG traveling to ENG + MOT traveling are set as values in the high-efficiency power generation region (charging promotion region).
  • the present invention is not limited to this as long as it is a value that informs switching from ENG traveling to ENG + MOT traveling. For example, a value immediately before switching from ENG traveling to ENG + MOT traveling may be set.
  • both the high-efficiency output assist threshold value TH2 and the charge acceleration assist threshold value TH4 that notify the switching from the ENG traveling to the ENG + MOT traveling are used, but only one of them can be used. .
  • the high-efficiency output assist threshold TH2 and the charge acceleration assist threshold TH4 are regions (high-efficiency power generation region or charge acceleration region) in which the energy torque obtained from fuel per unit amount (for example, 1 cc) is maximized.
  • it may be set by another method.
  • both threshold values TH2 and TH4 are obtained from the relationship between the pedal opening degree ⁇ (required driving force Freq) and the vehicle speed V, or the best fuel consumption point obtained based on the net fuel consumption rate (BSFC) or The pedal opening degree ⁇ within the best fuel consumption range can be set as the thresholds TH2 and TH4.
  • the thresholds TH2 and TH4 are set corresponding to the best fuel consumption point P1. can do.
  • Other values within the best fuel efficiency region R1 may be set as the thresholds TH2 and TH4.
  • the pedal opening degree ⁇ is the threshold value TH2 or TH4
  • the required driving force Freq is Freq1
  • the driving force that contributes to the traveling of the vehicle 10 is Freq2.
  • the driving force (Freq1-Freq2) which is the difference between Freq1 and Freq2 can be used for power generation by the traveling motor 16 or driving of the alternator 18.
  • the best fuel efficiency region R1 and the best fuel efficiency point P1 obtained based on the BSFC change according to the vehicle speed V and the required driving force Freq ( ⁇ the torque of the engine 14), and are shown as an optimal fuel efficiency curve C1 in FIG.
  • a line shown together with “WOT” is a line showing a relationship between the vehicle speed V and the required driving force Freq in the WOT (Wide Open Throttle) state.
  • the vehicle speed V in FIG. 9 may be replaced with, for example, the engine speed [rpm].
  • the required driving force Freq in FIG. 9 can be replaced with, for example, the torque of the engine 14.
  • the relationship between the pedal opening degree ⁇ and the vehicle speed V or the relationship between the pedal opening degree ⁇ and the engine speed may be changed according to the gear ratio (speed stage).
  • the high-efficiency output assist threshold TH2 and the charge acceleration assist threshold TH4 are set based on the relationship between the vehicle speed V and the pedal opening degree ⁇ (required driving force Freq) (FIGS. 2 and 3).
  • the thresholds TH2 and TH4 may be set based on other relationships as long as the battery voltage is high or the battery 22 can be charged.
  • Both thresholds TH2 and TH4 can be set according to the relationship with the throttle valve opening, or the relationship between the gear ratio (speed), the engine speed, the pedal opening ⁇ or the throttle valve opening.
  • the cylinder deactivation assist threshold TH3 is set to a region where the vehicle speed V is higher than the MOT travel assist threshold TH1 (TH1 on the left side in FIG. 2).
  • the present invention is not limited to this.
  • the cylinder deactivation assist threshold value TH3 may be set in a region where the pedal opening degree ⁇ (required driving force Freq) is higher than the MOT travel assist threshold value TH1 (TH1 on the left side in FIG. 2).
  • the MOT travel assist threshold value TH1 and the cylinder deactivation assist threshold value TH3 are set to continuous values according to the vehicle speed V (FIG. 2), but they are not necessarily set to continuous values.
  • the cylinder deactivation assist thresholds TH3 and TH5 are used, but only one of them can be used.
  • a configuration in which neither the cylinder deactivation assist threshold TH3 nor TH5 is used is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Auxiliary Drives, Propulsion Controls, And Safety Devices (AREA)
  • Mechanical Control Devices (AREA)

Abstract

 車両用走行制御装置(12)は、内燃機関(14)のみで車両(10)を走行させる第1走行状態と、内燃機関(14)及び電動機(16)で車両(10)を走行させる第2走行状態とを設定する。第1走行状態及び第2走行状態は、アクセルペダル(34)の開度を含む車両情報に基づいて互いに切り替えられる。電力残量検出手段(24)により検出された電力残量が第1所定値を下回る場合、反力付与手段(40、46)は、第1走行状態から第2走行状態に切り替わる手前で、アクセルペダル(34)の反力を増大させる第1アクセルペダル開度閾値(TH4)を設定する。

Description

車両用走行制御装置
 この発明は、アクセルペダルへの反力を付与する車両走行制御装置に関する。より詳細には、この発明は、駆動力を生成する複数の駆動源の作動状態をアクセルペダルの開度等に応じて切り替えると共に、当該切替えのタイミングを前記アクセルペダルへの反力により運転者に通知する車両用走行制御装置に関する。
 特開2005-271618号公報(以下「JP 2005-271618 A」という。)では、ハイブリッド電気自動車で用いるアクセル反力制御装置が開示されている。具体的には、JP 2005-271618 Aでは、車両駆動用モータ7により駆動走行するモータ走行領域と、エンジン6により駆動走行するエンジン走行領域とを有し、モータ走行領域からエンジン走行領域に移行する際には、アクセルペダル2の踏込反力を増加させる(要約)。これにより、駆動源がモータ7からエンジン6に切り替わる際にアクセルペダルに対する反力で運転者に知らせる([0005])。
 また、JP 2005-271618 Aでは、バッテリ充電量が所定値以上でない場合、エンジン6のみにより駆動走行させ、バッテリを充電する制御が開示されている(図4のS1:NO→S9、[0018]、請求項2)。
 上記のように、JP 2005-271618 Aでは、バッテリ充電量が所定値以上でない場合、エンジン6のみにより駆動走行させ、バッテリを充電する。このため、運転者がアクセルペダルを、例えば可動範囲内で最大限踏み込み、大きな駆動力を求めている場合であっても、エンジン6のみによる走行しかできず、エンジン6と一緒にモータ7を駆動することができないため、運転者の要求する駆動力を得られないおそれがある。
 この発明はこのような課題を考慮してなされたものであり、蓄電装置の電力残量が小さい場合であっても、必要に応じて、駆動源としての内燃機関及び電動機の両方による車両の駆動を可能とする車両用走行制御装置を提供することを目的とする。
 この発明に係る車両用走行制御装置は、車両を走行させる第1駆動力を駆動輪側に供給する電動機と、前記車両を走行させる第2駆動力を前記駆動輪側又は前記電動機側に供給する内燃機関と、前記電動機に電力を供給する充放電可能な蓄電装置と、アクセルペダルに反力を付与する反力付与手段とを有するものであって、前記車両の運転状態として、前記内燃機関のみで前記車両を走行させる第1走行状態と、前記内燃機関及び前記電動機で前記車両を走行させる第2走行状態とを設定し、前記アクセルペダルの開度を含む車両情報に基づいて前記第1走行状態及び前記第2走行状態を互いに切り替え、前記第1走行状態は、前記第2走行状態よりも小さい前記アクセルペダルの開度に対応させて設定し、さらに、前記車両用走行制御装置は、前記蓄電装置の電力残量を検出する電力残量検出手段を備え、前記電力残量検出手段により検出された前記電力残量が第1所定値を下回る場合、前記反力付与手段は、前記第1走行状態から前記第2走行状態に切り替わる手前で、前記アクセルペダルへの反力を増大させる第1アクセルペダル開度閾値を設定することを特徴とする。
 この発明によれば、蓄電装置の電力残量が第1所定値を下回る場合、内燃機関のみで車両を走行させる第1走行状態から内燃機関及び電動機で車両を走行させる第2走行状態に切り替わる手前、すなわち、前記第1走行状態でアクセルペダルの反力を増大させる。このため、反力が増大する開度を超えてアクセルペダルを踏み込んだ場合には、内燃機関及び電動機により車両を走行させることが可能となる。これにより、運転者の加速意図に応じた大きな駆動力を発生させることが可能となる。
 また、反力が増大する閾値を超えないでアクセルペダルを保持した場合、電動機を駆動させない。このため、電動機の駆動に伴う蓄電装置の電力消費を抑制することが可能となる。或いは、内燃機関による駆動又は電動機による回生を通じて蓄電装置への充電を促進することが可能となる。
 前記車両用走行制御装置は、さらに、前記内燃機関の駆動に応じて発電し、発電した電力を前記蓄電装置に充電する発電機を備え、前記第1アクセルペダル開度閾値は、単位量当たりの燃料により前記内燃機関が駆動することで前記発電機の発電量が第1発電量閾値以上となる領域内で設定されてもよい。これにより、アクセルペダルを第1アクセルペダル開度閾値又はその近傍で保持した場合、発電機による発電量を相対的に多くすることが可能となる。従って、蓄電装置への充電を促進することが可能となる。
 前記車両用走行制御装置は、さらに、前記電動機の駆動及び回生又は発電を制御する電動機制御手段を備え、前記電動機は、前記内燃機関の駆動に応じて回生又は発電し、回生又は発電した電力を前記蓄電装置に充電し、前記電動機制御手段は、前記第1走行状態の際、前記内燃機関により前記電動機に回生又は発電を実行させ、前記第1アクセルペダル開度閾値は、単位量当たりの燃料により前記内燃機関が駆動することで前記電動機の発電量が第2発電量閾値以上となる領域内で設定されてもよい。これにより、アクセルペダルを第1アクセルペダル開度閾値又はその近傍で保持した場合、電動機による発電量を相対的に多くすることが可能となる。従って、蓄電装置への充電を促進することが可能となる。
 前記車両の運転状態として、前記電動機のみで前記車両を走行させる第3走行状態を前記第1走行状態よりも小さい前記アクセルペダルの開度に対応させて設定し、前記電力残量検出手段により検出された前記電力残量が第2所定値を上回ると検出された場合、前記反力付与手段は、前記第3走行状態から前記第1走行状態に切り替わる手前で、前記アクセルペダルへの反力を増大させる第2アクセルペダル開度閾値を設定してもよい。
 これにより、蓄電装置の電力残量が第2所定値を上回るときには、電動機のみで車両を走行させる第3走行状態から内燃機関のみで車両を走行させる第1走行状態に切り替わる手前、すなわち、前記第3走行状態でアクセルペダルの反力を増大させる。一般に、低速領域では、電動機のみの走行の方が内燃機関を用いた走行よりも燃費が高くなる。このため、上記構成によれば、電動機のみの駆動と内燃機関のみの駆動の切替えを運転者に認識させることで電動機のみの駆動を促し、燃費の高い走行を促進することが可能となる。
 前記電力残量が前記第2所定値を上回るとき、前記第3走行状態の利用を許可し、前記電力残量が前記第2所定値を下回るとき、前記第3走行状態の利用を禁止し、前記電力残量が前記第2所定値を上回るときの制御と前記電力残量が前記第2所定値を下回るときの制御との切替えは、前記アクセルペダルの開度がゼロであるとき、前記反力付与手段による前記反力が生成されていないとき又は前記反力付与手段において反力生成指令が出力されていないときに実行してもよい。これにより、電力残量が第2所定値を上回るときの制御と電力残量が第2所定値を下回るときの制御との切替えにより運転者に違和感を与えることを防止することが可能となる。
 前記第1走行状態として、前記内燃機関の全気筒を作動させる全気筒作動状態と、前記内燃機関の一部の気筒のみを作動させる気筒休止状態とを設定してもよい。全気筒作動状態と併せて気筒休止状態を用いることで、燃費を考慮した運転が可能となる。
 前記気筒休止状態は、前記第3走行状態が設定される車速よりも高い領域で設定されてもよい。これにより、電動機のみで車両を走行させる第3走行状態から内燃機関のみで車両を走行させる第1走行状態(気筒休止状態)に切り替わった際、内燃機関は、一部の気筒のみを作動させることで、燃費を向上することが可能となる。
 前記反力付与手段は、前記気筒休止状態と前記全気筒作動状態とが切り替わる手前で、前記アクセルペダルヘの反力を増大させる気筒休止アシスト閾値を設定してもよい。これにより、気筒休止状態と全気筒作動状態の切り替わりを運転者に知らせることが可能となる。その結果、例えば、運転者が気筒休止状態を維持するように努めることで燃費の向上を図ることが可能となる。
 前記気筒休止アシスト閾値は、前記第1アクセルペダル開度閾値より低く設定されてもよい。これにより、エネルギ効率を踏まえた反力を付与することが可能となる。
 前記第2アクセルペダル開度閾値及び前記気筒休止アシスト閾値は、前記アクセルペダルの開度、前記車両の要求駆動力若しくは実駆動力又はスロットル弁開度と、車速又は前記内燃機関の回転数とに基づいて設定され、前記第2アクセルペダル開度閾値及び前記気筒休止アシスト閾値が前記車速又は前記内燃機関の回転数に応じて切り替わる際、前記第2アクセルペダル開度閾値及び前記気筒休止アシスト閾値には、連続した値が設定されてもよい。これにより、第2アクセルペダル開度閾値と気筒休止アシスト閾値とが切り替わる際、反力が大きく変化することがなく、運転者に違和感を与えることを防ぐことが可能となる。
この発明の一実施形態に係る車両用走行制御装置を搭載した車両のブロック図である。 バッテリ残量が大きいときの駆動源の選択特性(残量大用マップ)を示す図である。 前記バッテリ残量が小さいときの駆動源の選択特性(残量小用マップ)を示す図である。 前記バッテリ残量が大きい場合において、アクセルペダルの開度(ペダル開度)を増加させ、その後、前記ペダル開度を減少させた場合の前記ペダル開度とアクセルペダルに付与する反力(ペダル反力)の関係の第1例を示す図である。 前記バッテリ残量が大きい場合において、前記ペダル開度を増加させ、その後、前記ペダル開度を減少させた場合の前記ペダル開度と前記ペダル反力の関係の第2例を示す図である。 前記バッテリ残量が小さい場合において、前記ペダル開度を増加させ、その後、前記ペダル開度を減少させた場合の前記ペダル開度と前記ペダル反力の関係の一例を示す図である。 反力電子制御装置が前記ペダル反力を設定するフローチャートである。 前記バッテリ残量が大きい場合において、前記ペダル開度を増加させ、その後、前記ペダル開度を減少させた場合の前記ペダル開度と前記ペダル反力の関係の変形例を示す図である。 高効率出力アシスト閾値及び充電促進アシスト閾値の設定方法の変形例を説明するための図である。
A.一実施形態
1.車両10の構成
[1-1.全体構成]
 図1は、この発明の一実施形態に係る車両用走行制御装置12(以下「走行制御装置12」又は「制御装置12」という。)を搭載した車両10のブロック図である。車両10は、いわゆるハイブリッド車両であり、駆動源として、エンジン14及び走行モータ16(以下「モータ16」ともいう。)を有する。
 図1に示すように、車両10は、エンジン14(内燃機関)及びモータ16(電動機)に加え、オルタネータ18(発電機)、インバータ20、バッテリ22(蓄電装置)、SOCセンサ24、モータ電子制御装置26(以下「モータECU26」という。)、トランスミッション28、トランスミッション電子制御装置30(以下「T/M ECU30」という。)、駆動状態電子制御装置32(以下「駆動状態ECU32」という。)、アクセルペダル34、ペダル側アーム36、開度センサ38、反力モータ40、モータ側アーム42、車速センサ44及び反力電子制御装置46(以下「反力ECU46」という。)を有する。
 後に詳述するように、本実施形態では、アクセルペダル34の開度(以下「ペダル開度θ」という。)等に応じて駆動源の選択(すなわち、エンジン14及び走行モータ16のいずれ又は両方を用いるか)を設定する。本実施形態の走行制御装置12によれば、反力モータ40からアクセルペダル34に対して付与する反力(以下「ペダル反力Fr」という、)を用いて、運転者が好適に駆動源を選択することができるようにアクセルペダル34の操作を誘導する。
[1-2.アクセルペダル34及びその関連部品]
 アクセルペダル34は、駆動源の出力を制御するものであり、ペダル側アーム36に固定されている。ペダル側アーム36は、旋回可能な状態で図示しないリターンスプリングに連結されている。これにより、運転者がアクセルペダル34を戻すとき、アクセルペダル34は前記リターンスプリングからの付勢力(スプリング反力Fr_sp)により原位置まで戻される。
 開度センサ38は、アクセルペダル34の原位置からの踏込み量(ペダル開度θ)を検出し、駆動状態ECU32及び反力ECU46に送信する。ペダル開度θは、駆動源(エンジン14及び走行モータ16)の制御に用いられると共に、アクセルペダル34に対する反力(ペダル反力Fr)の制御に用いられる。
 モータ側アーム42は、ペダル側アーム36と当接可能な位置で旋回可能に配置されている。反力モータ40は、モータ側アーム42を駆動してペダル側アーム36及びアクセルペダル34にペダル反力Frを付与する。反力ECU46は、図示しない入出力部、演算部及び記憶部を備え、ペダル開度θ及び車速V等に基づいて反力モータ40の駆動力(すなわち、ペダル反力Fr)を反力生成指令Srにより制御する。なお、反力モータ40は、その他の駆動力生成手段(例えば、空気圧アクチュエータ)であってもよい。反力モータ40及び反力ECU46は、アクセルペダル34にペダル反力Frを付与する反力付与手段として機能する。
[1-3.駆動源及びその関連部品]
 エンジン14(内燃機関)は、車両10の走行用の駆動源として駆動力Fe[N](又はトルク[N・m])を生成して図示しない駆動輪側に供給すると共に、オルタネータ18を作動させて電力を発生させる。オルタネータ18で発生した電力(以下「発電電力Pgen」という。)[W]は、バッテリ22、図示しない12ボルト系又は補機等に供給される。本実施形態のエンジン14は、8気筒型であり、一部の気筒のみを作動させ、その他の気筒を作動させない気筒休止運転が可能である。
 走行モータ16(電動機)は、3相交流ブラシレス式であり、インバータ20を介してバッテリ22から供給される電力に基づいて車両10の駆動力Fm[N](又はトルク[N・m])を生成して前記駆動輪に供給する。また、走行モータ16は、減速エネルギを回生エネルギとして回収することで生成した電力(以下「回生電力Preg」という。)[W]をバッテリ22に出力することでバッテリ22を充電する。回生電力Pregは、図示しない12ボルト系又は補機に対して出力してもよい。
 インバータ20は、3相ブリッジ型の構成とされて、直流/交流変換を行い、直流を3相の交流に変換して走行モータ16に供給する一方、回生動作に伴う交流/直流変換後の直流をバッテリ22に供給する。
 SOCセンサ24(電力残量検出手段)は、図示しない電流センサ等により構成され、バッテリ22の残量(SOC:State of Charge)を検出してモータECU26、駆動状態ECU32及び反力ECU46に送信する。
 モータECU26(電動機制御手段)は、駆動状態ECU32からの指令、図示しない電圧センサ及び電流センサ等の各種センサからの出力に基づいてインバータ20を制御することにより、走行モータ16の出力(推進動力)を制御する。また、モータECU26は、T/M ECU30を介してトランスミッション28の作動を制御する。
 駆動状態ECU32は、エンジン14を制御するエンジン電子制御装置(以下「エンジンECU」という。)の役割を担うと共に、ペダル開度θ及び車速V等を用いてエンジン14及び走行モータ16を合わせた駆動源全体の制御を行う。
2.本実施形態における制御
[2-1.駆動源の切替え]
(2-1-1.概要)
 本実施形態では、駆動源の選択(車両10の走行状態の選択)として、車速Vと走行モータ16の要求駆動力Freq[N](又は要求トルク[N・m])に応じて走行モータ16のみの作動による走行(以下「MOT走行」という。)と、エンジン14のみの作動(ここでは全気筒の作動)による走行(以下「ENG走行」という。)と、走行モータ16及びエンジン14両方の作動による走行(以下「ENG+MOT走行」という。)と、エンジン14のみの作動(気筒休止状態での作動)による走行(以下「気筒休止走行」という。)とが可能である。当該切替えは、車速V、バッテリ22の残量(SOC)及びペダル開度θに応じて行う。ペダル開度θは、実質的に走行モータ16の要求駆動力Freqを示すものとして扱うことができる。
(2-1-2.バッテリ22の残量が大きいときの駆動源の切替え特性)
 図2は、バッテリ22の残量が大きいときの駆動源の選択特性(残量大用マップ)を示す図である。ここにいう「残量が大きいとき」とは、例えば、走行モータ16のみによる走行に回すのに十分な電力をバッテリ22が有していることを意味し、当該残量の具体的な値は、走行モータ16の仕様等に応じて適宜設定することが可能である。
 図2に示すように、車速Vが相対的に低く且つペダル開度θが相対的に小さい場合(すなわち、要求駆動力Freqが小さい場合)、MOT走行が選択される。また、MOT走行の場合よりもペダル開度θが相対的に大きい場合(すなわち、MOT走行よりも要求駆動力Freqが大きい場合)又はMOT走行の場合よりも車速Vが高い場合、ENG走行が選択される。さらに、ENG走行の場合よりもペダル開度θが大きい場合(すなわち、ENG走行よりも要求駆動力Freqが大きい場合)又は車速Vが高い場合、ENG+MOT走行が選択される。さらにまた、ペダル開度θが相対的に低く且つMOT走行よりも車速Vが高い場合(すなわち、低速走行時に要求駆動力Freqが小さい場合)、気筒休止走行が選択される。
(2-1-3.バッテリ22の残量が小さいときの駆動源の切替え特性)
 図3は、バッテリ22の残量が小さいときに用いる駆動源の選択特性(残量小用マップ)を示す図である。ここにいう「残量が小さいとき」とは、例えば、走行モータ16のみによる走行に回すのに十分な電力をバッテリ22が有していないことを意味し、当該残量の具体的な値は、走行モータ16の仕様等に応じて適宜設定することが可能である。
 図2と比較して、図3では、MOT走行の領域が存在しない。これは、図3は、バッテリ22の残量が小さいときに用いる特性であるため、バッテリ22からの電力供給量が大きくなる走行モータ16のみによる走行を避け、車速Vが低く且つ要求駆動力Freqが小さい場合にもエンジン14を駆動させるためである。これにより、バッテリ22の電力消費を抑制しつつ、エンジン14を駆動させることでオルタネータ18を作動させ、バッテリ22を充電することが可能となる。
[2-2.ペダル反力Frの制御]
 本実施形態では、運転者が好適に駆動源(エンジン14及び走行モータ16)を選択することができるようにペダル反力Frを用いてアクセルペダル34の操作を誘導する。
(2-2-1.バッテリ22の残量が大きい場合)
(2-2-1-1.MOT走行アシスト)
 一般に、車両10が低速であり且つ要求駆動力Freqが低いときはエンジン14での走行は燃費効率が低く、走行モータ16での走行の方がエネルギ効率が高い。そこで、本実施形態では、バッテリ22の残量が大きい状態で、車両10が低速であり且つ要求駆動力Freqが低ければ、MOT走行を選択する(図2)。この場合、MOT走行とENG走行とが切り替わるペダル開度θにおいてペダル反力Frを増大させ、運転者にMOT走行とENG走行とが切り替わるペダル開度θを知らせる。これにより、MOT走行の選択を促す。
 より具体的には、図2において、車速Vとの関係で、ペダル開度θが「TH1」で示される線(以下「MOT走行アシスト閾値TH1」、「第1反力増大閾値TH1」又は「閾値TH1」という。)上にあるとき、反力ECU46は、ペダル反力Frを増大させる。なお、図2では、第1反力増大閾値TH1は、後述する第3反力増大閾値TH3を跨ぐように伸びる曲線(換言すると、一旦途切れて、その間に第3反力増大閾値TH3の曲線を挟む曲線)として設定される。従って、第1反力増大閾値TH1及び第3反力増大閾値TH3は連続している(値が連続性を持っており、大きく変化することがない。)。
(2-2-1-2.高効率出力アシスト)
 車両10の急加速等のため、車両10の出力を大きくするためには、エンジン14と走行モータ16の両方を同時に作動させることが考えられる。その一方、エンジン14と走行モータ16の両方を同時に作動させると、エネルギ効率が低くなることが通常である。そこで、エネルギ効率の観点からすれば、可能な限り、エンジン14と走行モータ16の両方を同時に作動させることを避けることが好ましい。このため、本実施形態では、バッテリ22の残量が大きい場合、ENG走行とENG+MOT走行とが切り替わるペダル開度θよりも小さいペダル開度θにおいてペダル反力Frを増大させ、運転者にENG走行とENG+MOT走行とが切り替わるペダル開度θを知らせる。これにより、ENG+MOT走行の選択を避けることを促す。
 また、エンジン14のみにより走行する場合でも、エネルギ効率が高い状態での走行と、エネルギ効率が低い状態での走行がある。そこで、本実施形態では、ENG走行とENG+MOT走行とが切り替わるペダル開度θよりも小さいペダル開度θのうちエネルギ効率が高くなるペダル開度θにおいてペダル反力Frを増大させる。
 より具体的には、図2において、車速Vとの関係で、ペダル開度θが「TH2」で示される線(以下「高効率出力アシスト閾値TH2」、「第2反力増大閾値TH2」又は「閾値TH2」という。)上にあるとき、反力ECU46は、ペダル反力Frを増大させる。高効率出力アシスト閾値TH2は、単位量(例えば、1cc)当たりの燃料により得られるエネルギ・トルクが最大となる領域(以下「高効率発電領域」又は「充電促進領域」という。)内の値として設定される。これにより、当該単位量当たりの燃料によりエンジン14が駆動した場合のオルタネータ18の発電量が相対的に高くなる。
 或いは、後述するように、高効率出力アシスト閾値TH2は、ペダル開度θと車速V(又はエンジン回転数[rpm])との関係から、正味燃料消費率(BSFC:Brake Specific Fuel Consumption)に基づいて得られる最良燃費点又は最良燃費領域内となるペダル開度θを、高効率出力アシスト閾値TH2として設定することもできる。
(2-2-1-3.気筒休止アシスト)
 車両10が高速走行している場合であっても、要求駆動力Freqが低い場合、気筒休止運転を行うことにより燃費を改善することが可能となる。このため、燃費の観点からすれば、全気筒運転よりも気筒休止運転をする方が好ましい。そこで、本実施形態では、バッテリ22の残量が大きい場合、気筒休止走行とENG走行とが切り替わる手前のペダル開度θにおいてペダル反力Frを増大させ、運転者に気筒休止とENG走行とが切り替わるペダル開度θを知らせる。これにより、気筒休止走行の選択を促す。
 より具体的には、図2において、車速Vとの関係で、ペダル開度θが「TH3」で示される線(以下「気筒休止アシスト閾値TH3」、「第3反力増大閾値TH3」又は「閾値TH3」という。)上にあるとき、反力ECU46は、ペダル反力Frを増大させる。なお、以下では、第1~第3反力増大閾値TH1、TH2、TH3を「残量大用閾値」と総称する。
(2-2-1-4.具体例)
 図4は、バッテリ22の残量が大きい場合において、ペダル開度θを増加させ、その後、ペダル開度θを減少させた場合のペダル開度θとペダル反力Frの関係の第1例を示す図である。
 図4から明らかなように、ペダル開度θをゼロから増加させて行くと、まずMOT走行が選択され、さらにペダル開度θを増加させると、MOT走行からENG走行に切り替わる。この際、MOT走行からENG走行に切り替わる手前(MOT走行アシスト閾値TH1)において、ペダル反力Frが急激に増加する。これにより、運転者は、MOT走行からENG走行への切り替わりを認識することが可能となる。
 さらにペダル開度θを増加させると、ENG走行からENG+MOT走行に切り替わる。この際、ENG走行からENG+MOT走行に切り替わる手前(高効率出力アシスト閾値TH2)において、ペダル反力Frが急激に増加する。これにより、運転者は、ENG走行からENG+MOT走行への切り替わりを認識することが可能となる。
 図5は、バッテリ22の残量が大きい場合において、ペダル開度θを増加させ、その後、ペダル開度θを減少させた場合のペダル開度θとペダル反力Frの関係の第2例を示す図である。
 図5から明らかなように、ペダル開度θをゼロから増加させて行くと、まずMOT走行が選択され、さらにペダル開度θを増加させると、MOT走行からENG走行に切り替わる。この際、MOT走行からENG走行に切り替わる手前(MOT走行アシスト閾値TH1)において、ペダル反力Frが急激に増加する。これにより、運転者は、MOT走行からENG走行への切り替わりを認識することが可能となる。なお、図5の場合、ENG走行からENG+MOT走行への切替えは行われない。
(2-2-2.バッテリ22の残量が小さい場合)
(2-2-2-1.充電促進アシスト)
 バッテリ22の残量が小さい場合、バッテリ22を充電することが望まれる。そこで、本実施形態では、バッテリ22の残量が小さい場合、エンジン14によるオルタネータ18の発電効率が高くなり、バッテリ22を充電し易くなるペダル開度θにおいてペダル反力Frを増大させる。これにより、運転者にMOT走行とENG走行とが切り替わるペダル開度θを知らせると共に、バッテリ22の急速な充電を促す。
 より具体的には、図3において、車速Vとの関係で、ペダル開度θが「TH4」で示される線(以下「充電促進アシスト閾値TH4」、「第4反力増大閾値TH4」又は「閾値TH4」という。)上にあるとき、反力ECU46は、ペダル反力Frを増大させる。
 なお、充電促進アシスト閾値TH4は、運転者にMOT走行とENG走行とが切り替わるペダル開度θを知らせること、及びバッテリ22の急速な充電を促すことの少なくとも一方を行うことができるものであれば、図2の高効率出力アシスト閾値TH2と同じでも異なっていてもよい。
(2-2-2-2.気筒休止アシスト)
 図3の線TH5は、図2の気筒休止アシスト閾値TH3(第3反力増大閾値TH3)と同様、気筒休止走行からENG走行に切り替わる手前において、ペダル反力Frを急激に増加させるための閾値(以下「気筒休止アシスト閾値TH5」、「第5反力増大閾値TH5」又は「閾値TH5」という。)を示す。なお、以下では、第4・第5反力増大閾値TH4、TH5を「残量小用閾値」と総称する。
(2-2-2-3.具体例)
 図6は、バッテリ22の残量が小さい場合において、ペダル開度θを増加させ、その後、ペダル開度θを減少させた場合のペダル開度θとペダル反力Frの関係の一例を示す図である。
 図6から明らかなように、ペダル開度θをゼロから増加させて行くと、MOT走行なしにENG走行が選択され、さらにペダル開度θを増加させると、ENG走行からENG+MOT走行に切り替わる。この際、ENG走行からENG+MOT走行に切り替わる手前(充電促進領域内における充電促進アシスト閾値TH4)において、ペダル反力Frが急激に増加する。これにより、運転者は、ENG走行からENG+MOT走行への切り替わり及び充電促進領域の存在を認識することが可能となる。加えて、本実施形態では、エンジン14が8気筒であるため、エンジン14のみを利用する上限付近で走行することでスポーティ感(走り感)を演出することが可能となる。
(2-2-3.ペダル反力Frの設定)
 図7は、反力ECU46がペダル反力Frを設定するフローチャートである。ステップS1において、反力ECU46は、反力大用マップ(図2)と反力小用マップ(図3)の切替えを許可するか否かを判定する。両マップの切替えを常に許可することとすると、運転者に違和感を与える可能性もある。そこで、本実施形態では、両マップの切替えは、所定の条件が満たされるときのみ行う。具体的には、ペダル開度θがゼロであるとき(すなわち、アクセルペダル34が原位置にあるとき)、反力モータ40によるペダル反力Frが生成されていないとき及び反力ECU46から反力モータ40に対して反力生成指令Srが出力されていないときに両マップの切替えを許可する。これらの許可条件は、適宜組み合わせて用いることが可能であり、また、別の許可条件を設定してもよい。
 両マップの切替えを許可する場合(S1:YES)、ステップS2に進み、両マップの切替えを許可しない場合(S1:NO)、ステップS10に進む。
 ステップS2において、反力ECU46は、SOCセンサ24からバッテリ22の残量(SOC)を取得する。ステップS3において、反力ECU46は、バッテリ22の残量が大きいか否かを判定する。具体的には、ステップS2で取得したSOCが所定値(SOC閾値THsoc)を上回るか否かを判定する。
 バッテリ22の残量が大きい場合(S3:YES)、ステップS4において、反力ECU46は、残量大用マップ(図2)を選択する。ステップS5において、反力ECU46は、車速センサ44から車速Vを取得する。
 ステップS6において、反力ECU46は、残量大用マップにおいて、車速Vとの関係から残量大用閾値(第1~第3反力増大閾値TH1、TH2、TH3)を設定する。図2から明らかなように、車速Vによっては第1~第3反力増大閾値TH1、TH2、TH3のいずれか1つ又は複数が設定されない場合もある。
 ステップS3に戻り、バッテリ22の残量が大きくない場合(S3:NO)、ステップS7において、反力ECU46は、残量小用マップ(図3)を選択する。ステップS8において、反力ECU46は、車速センサ44から車速Vを取得する。
 ステップS9において、反力ECU46は、残量小用マップにおいて、車速Vとの関係から残量小用閾値(第4・第5反力増大閾値TH4、TH5)を設定する。図3から明らかなように、車速Vによっては第4・第5反力増大閾値TH4、TH5のいずれか一方又は両方が設定されない場合もある。
 ステップS10において、反力ECU46は、開度センサ38からペダル開度θを取得する。ステップS11において、反力ECU46は、ステップS10で取得したペダル開度θが、ステップS6で設定した残量大用閾値又はステップS9で設定した残量小用閾値以上であるか否かを判定する。ペダル開度θが、ステップS6又はS9で設定された閾値(残量大用閾値又は残量小用閾値)以上である場合(S11:YES)、ステップS12において、ペダル反力Frを増大させる。ペダル開度θが、ステップS6又はS9で選択された閾値(残量大用閾値又は残量小用閾値)以上でない場合(S11:NO)、ペダル反力Frを増大させずに今回の演算周期を終え、次の演算周期に移る(S1に戻る)。
 例えば、残量大用マップ(図2)が選択され、車速Vに応じて第1・第2反力増大閾値TH1、TH2が設定されている場合、ペダル開度θと、第1・第2反力増大閾値TH1、TH2とを比較する。ペダル開度θが第1反力増大閾値TH1以上であり且つ第2反力増大閾値TH2以上でない場合、反力ECU46は、ペダル反力Frを1段階増加させる(図4及び図5参照)。また、ペダル開度θが第1・第2反力増大閾値TH1、TH2以上である場合、反力ECU46は、ペダル反力Frを2段階増加させる(図4参照)。さらに、ペダル開度θが第1・第2反力増大閾値TH1、TH2いずれも下回る場合、反力ECU46は、通常のペダル反力Frを用いる(図4及び図5参照)。
 また、残量小用マップ(図3)が選択され、車速Vに応じて第4反力増大閾値TH4のみが設定されている場合、ペダル開度θと、第4反力増大閾値TH4とを比較する。ペダル開度θが第4反力増大閾値TH4以上である場合、反力ECU46は、ペダル反力Frを1段階増加させる(図6参照)。また、ペダル開度θが第4反力増大閾値TH4以上でない場合、反力ECU46は、通常のペダル反力Frを用いる(図6参照)。
3.本実施形態の効果
 以上のように、本実施形態によれば、バッテリ22の残量が小さい場合(図7のS3:NO)、エンジン14のみで車両10を走行させるENG走行(第1走行状態)からエンジン14及び走行モータ16で車両10を走行させるENG+MOT走行(第2走行状態)に切り替わる手前、すなわち、ENG走行中にペダル反力Frを増大させる(図3)。このため、ペダル反力Frが増大するペダル開度θ(充電促進アシスト閾値TH4)を超えてアクセルペダル34を踏み込んだ場合には、エンジン14及び走行モータ16により車両10を走行させることが可能となる。これにより、運転者の加速意図に応じた大きな駆動力を発生させることが可能となる。
 また、充電促進アシスト閾値TH4を超えないでアクセルペダル34を保持した場合、走行モータ16を駆動させない。このため、走行モータ16の駆動に伴うバッテリ22の電力消費を抑制することが可能となる。
 本実施形態において、充電促進アシスト閾値TH4は、単位量当たりの燃料によりエンジン14が駆動することでオルタネータ18の発電量を最大とする充電促進領域内で設定される。これにより、アクセルペダル34を充電促進アシスト閾値TH4又はその近傍で保持した場合、オルタネータ18による発電量を相対的に多くすることが可能となる。従って、バッテリ22への充電を促進することが可能となる。
 本実施形態において、バッテリ22の残量(SOC)が大きい場合(図7のS3:YES)、反力ECU46は、MOT走行(第3走行状態)からENG走行(第1走行状態)に切り替わる手前で、ペダル反力Frを増大させるMOT走行アシスト閾値TH1を設定する(図2)。これにより、バッテリ22の残量が大きいときには、走行モータ16のみで車両10を走行させるMOT走行(第3走行状態)からエンジン14のみで車両10を走行させるENG走行(第1走行状態)に切り替わる手前、すなわち、MOT走行中にペダル反力Frを増大させる。一般に、車両10の低速領域では、走行モータ16のみの走行の方がエンジン14を用いた走行よりも燃費が高くなる。このため、上記構成によれば、走行モータ16のみの駆動とエンジン14のみの駆動の切替えを運転者に認識させることで走行モータ16のみの駆動を促し、燃費の高い走行を促進することが可能となる。
 本実施形態において、バッテリ22の残量が大きいとき、MOT走行(第3走行状態)の利用を許可し(図2)、バッテリ22の残量が小さいとき、MOT走行の利用を禁止する(図3)。そして、残量が大きいときの制御と残量が小さいときの制御との切替え(図7のS3~S9)は、ペダル開度θがゼロであるとき、反力モータ40によるペダル反力Frが生成されていないとき又は反力ECU46から反力モータ40に対する反力生成指令Srが出力されていないとき(S1:YES)に実行する。これにより、バッテリ22の残量が大きいときの制御と残量が小さいときの制御との切替えにより運転者に違和感を与えることを防止することが可能となる。
 本実施形態において、車両10の運転状態(第1走行状態)として、エンジン14の全気筒を作動させるENG走行(全気筒作動状態)と、エンジン14の一部の気筒のみを作動させる気筒休止走行とが設定される(図2及び図3)。ENG走行と併せて気筒休止走行を用いることで、燃費を考慮した運転が可能となる。
 本実施形態において、気筒休止走行(気筒休止状態)は、MOT走行(第3走行状態)が設定される車速Vよりも高い領域で設定される(図2)。これにより、モータ16のみで車両10を走行させるMOT走行から気筒休止走行に切り替わった際、エンジン14は、一部の気筒のみを作動させることで、燃費を向上することが可能となる。
 本実施形態において、反力ECU46(反力付与手段の一部)は、気筒休止走行(気筒休止状態)とENG走行(全気筒作動状態)とが切り替わる手前で、ペダル反力Frを増大させる気筒休止アシスト閾値TH3、TH5を設定する。これにより、気筒休止走行とENG走行の切り替わりを運転者に知らせることが可能となる。その結果、例えば、運転者が気筒休止走行を維持するように努めることで燃費の向上を図ることが可能となる。
 本実施形態において、気筒休止アシスト閾値TH3は、高効率出力アシスト閾値TH2(第1アクセルペダル開度閾値)より低く設定され、気筒休止アシスト閾値TH5は、充電促進アシスト閾値TH4(第1アクセルペダル開度閾値)より低く設定される。これにより、エネルギ効率を踏まえたペダル反力Frを付与することが可能となる。
 本実施形態において、MOT走行アシスト閾値TH1(第2アクセルペダル開度閾値)及び気筒休止アシスト閾値TH3は、ペダル開度θ(要求駆動力Freq)と車速Vとに基づいて設定され(図2)、閾値TH1と閾値TH3とが車速Vに応じて切り替わる際、閾値TH1及び閾値TH3には、連続した値が設定される(図2)。これにより、閾値TH1と閾値TH3とが切り替わる際、ペダル反力Frが大きく変化することがなく、運転者に違和感を与えることを防ぐことが可能となる。
B.変形例
 なお、この発明は、上記実施形態に限らず、この明細書の記載内容に基づき、種々の構成を採り得ることはもちろんである。例えば、以下の構成を採用することができる。
1.適用対象
 上記実施形態では、駆動源(駆動力を生成するもの)としてエンジン14及び走行モータ16を有する車両10に走行制御装置12を搭載したが、複数の駆動源を有し、当該駆動源の駆動状態をユーザの操作に応じて切り替える車両10であれば、これに限らない。例えば、図1のように走行モータ16がエンジン14に直結して駆動輪(例えば、前輪)を駆動している構成において、さらに別の駆動輪(例えば、後輪)を駆動する別の走行モータ(第2走行モータ)を1つ又は2つ設けてもよい。換言すると、四輪駆動のハイブリッド車両にこの発明を適用してもよい。この場合、「ENG+MOT走行」においては、当該第2走行モータによってエンジン14をアシストしてもよい。
 或いは、駆動源として走行モータを複数有する車両にも適用可能である。また、車両10でなくても、複数の駆動源を有し、当該駆動源の駆動状態をユーザの操作に応じて切り替える装置(例えば、クレーン、ヒトが操作する工作機械等)にも適用可能である。
2.走行モータ16
 上記実施形態では、エンジン14が駆動中である場合、走行モータ16は駆動を止めるか(ENG走行)又はエンジン14と共に駆動した(ENG+MOT走行)が、エンジン14の駆動力を用いて走行モータ16を回生又は発電させてもよい。換言すると、走行モータ16にオルタネータ18の役割を担わせてもよい。この場合、充電促進アシスト閾値TH4は、例えば、単位量当たりの燃料によりエンジン14が駆動することで走行モータ16の発電量が所定の発電量閾値以上となる領域内で設定することができる。これにより、アクセルペダル34を充電促進アシスト閾値TH4又はその近傍で保持した場合、走行モータ16による発電量を相対的に多くすることが可能となる。従って、バッテリ22への充電を促進することが可能となる。
 なお、上記のようにエンジン14及び走行モータ16に加え、第2走行モータを設ける構成(四輪駆動のハイブリッド車両)の場合、「ENG+MOT走行」においては、例えば、エンジン14と第2モータで「ENG+MOT走行」を行いつつ、走行モータ16は、エンジン14の駆動力により回生又は発電してバッテリ22を充電することも可能である。
3.走行状態の切替え
[3-1.バッテリ22の残量に応じた特性]
 上記実施形態では、走行状態(MOT走行、ENG走行、ENG+MOT走行及び気筒休止走行)の切替え特性を、バッテリ22の残量が大きい場合と小さい場合の2つに分けて設定したが(図2及び図3)、走行状態の切替え特性の設定は、バッテリ22の残量に応じて複数設ければ、3つ以上の特性を設けることもできる。
 上記実施形態では、バッテリ22の残量が大きい場合の切替え特性として、MOT走行、ENG走行、ENG+MOT走行及び気筒休止走行を設定し(図2)、バッテリ22の残量が小さい場合の切替え特性として、ENG走行、ENG+MOT走行及び気筒休止走行を設定した(図3)。しかしながら、切替え特性の組合せは、これに限らない。例えば、バッテリ22の残量が大きい場合の切替え特性として、MOT走行、ENG走行及びENG+MOT走行の組合せ、ENG走行及びENG+MOT走行の組合せ又はMOT走行及びENG+MOT走行の組合せを設定してもよい。また、バッテリ22の残量が小さい場合の切替え特性として、ENG走行及びENG+MOT走行の組合せを設定してもよい。
 図8は、バッテリ22の残量が大きい場合において、ペダル開度θを増加させ、その後、ペダル開度θを減少させた場合のペダル開度θとペダル反力Frの関係の変形例を示す図である。
 図8の変形例では、ペダル開度θをゼロから増加させて行くと、まずMOT走行が選択され、さらにペダル開度θを増加させると、MOT走行からENG+MOT走行に切り替わる。この際、MOT走行からENG+MOT走行に切り替わる手前(MOT走行アシスト閾値TH1)において、ペダル反力Frが急激に増加する。これにより、運転者は、ENG走行からENG+MOT走行への切り替わりを認識することが可能となる。なお、図8の特性は、例えば、アクセルペダル34の踏込み速度[°/sec]が大きく(所定の踏込み速度閾値を上回り)、且つペダル開度θが大きいとき(所定の開度閾値を上回るとき)に適用することができる。これにより、急加速を要する場面で車両10の加速度を急速に高めることが可能となる。
[3-2.切替えの指標]
 上記実施形態(図2及び図3)では、走行状態(MOT走行、ENG走行、ENG+MOT走行及び気筒休止走行)の切替え特性を、車速Vとペダル開度θ(要求駆動力Freq)に応じて設定したが、切替え特性の設定は、ペダル開度θ(要求駆動力Freq)に応じて設定するものであれば、これに限らない。例えば、ペダル開度θ(要求駆動力Freq)のみに応じて設定してもよい。或いは、ペダル開度θ(要求駆動力Freq)と加速度[km/h/s]に応じて設定することもできる。
[3-3.MOT走行アシスト閾値TH1]
 上記実施形態では、MOT走行アシスト閾値TH1を用いたが、例えば、高効率出力アシスト閾値TH2及び充電促進アシスト閾値TH4の利用に着目すれば、MOT走行アシスト閾値TH1を用いない構成も可能である。
 上記実施形態では、バッテリ残量が小さいとき、MOT走行アシスト閾値TH1と同様の閾値を用いなかったが(図3)、これに限らず、例えば、バッテリ残量が大きいときよりも値を小さくして閾値TH1と同様の閾値を設定することも可能である。
[3-4.高効率出力アシスト閾値TH2及び充電促進アシスト閾値TH4]
 上記実施形態(図2及び図3)では、ENG走行からENG+MOT走行への切替えを知らせる高効率出力アシスト閾値TH2及び充電促進アシスト閾値TH4を高効率発電領域(充電促進領域)内の値として設定したが、ENG走行からENG+MOT走行への切替えを知らせる値であれば、これに限らない。例えば、ENG走行からENG+MOT走行への切替え直前の値を設定してもよい。
 上記実施形態(図2及び図3)では、ENG走行からENG+MOT走行への切替えを知らせる高効率出力アシスト閾値TH2及び充電促進アシスト閾値TH4の両方を用いたが、いずれか一方のみを用いることもできる。
 上記実施形態では、高効率出力アシスト閾値TH2及び充電促進アシスト閾値TH4は、単位量(例えば、1cc)当たりの燃料により得られるエネルギ・トルクが最大となる領域(高効率発電領域又は充電促進領域)内の値として設定したが、別の方法により設定してもよい。例えば、図9に示すように、両閾値TH2、TH4は、ペダル開度θ(要求駆動力Freq)と車速Vとの関係から、正味燃料消費率(BSFC)に基づいて得られる最良燃費点又は最良燃費領域内となるペダル開度θを、閾値TH2、TH4として設定することもできる。
 図9において、車速VがV1であり、BSFCに基づいて得られる最良燃費点(最良燃費領域R1内の中心)がP1であるとき、閾値TH2、TH4は、最良燃費点P1に対応して設定することができる。最良燃費領域R1内のその他の値を閾値TH2、TH4として設定してもよい。図9においてペダル開度θが閾値TH2又はTH4であるとき、要求駆動力Freqは、Freq1となるが、このうち車両10の走行に寄与する駆動力はFreq2となる。そして、Freq1とFreq2の差分の駆動力(Freq1-Freq2)を、走行モータ16による発電又はオルタネータ18の駆動に回すことができる。
 BSFCに基づいて得られる最良燃費領域R1及び最良燃費点P1は、車速Vと要求駆動力Freq(≒エンジン14のトルク)に応じて変化し、図9では、最適燃費曲線C1として示される。また、「WOT」と共に示される線は、WOT(Wide Open Throttle)状態の際の車速Vと要求駆動力Freqとの関係を示す線である。上記のようにBSFCに基づいて得られる最良燃費領域R1又は最良燃費点P1を用いることにより、エンジン14の効率が高い状態で、バッテリ22の充電を促進することが可能となる。
 なお、図9の車速Vを、例えば、エンジン回転数[rpm]に置き換えてもよい。また、図9の要求駆動力Freqを、例えば、エンジン14のトルクに置き替えることもできる。さらに、ペダル開度θと車速Vの関係又はペダル開度θとエンジン回転数の関係は、変速比(変速段)に応じて変化させてもよい。
 上記実施形態では、高効率出力アシスト閾値TH2及び充電促進アシスト閾値TH4を車速Vとペダル開度θ(要求駆動力Freq)との関係から設定したが(図2及び図3)、エンジン14の効率が高い状態又はバッテリ22の充電を促進できる状態であれば、その他の関係から両閾値TH2、TH4を設定してもよい。例えば、正味燃料消費率(BSFC)に基づいて最良燃費点又は最良燃費領域を求める場合、車速Vとペダル開度θの関係の代わりに、例えば、エンジン回転数[rpm]とペダル開度θ若しくはスロットル弁開度との関係、又は変速比(変速段)とエンジン回転数とペダル開度θ若しくはスロットル弁開度との関係により両閾値TH2、TH4を設定することができる。
[3-5.気筒休止アシスト閾値TH3、TH5]
 上記実施形態では、気筒休止アシスト閾値TH3をMOT走行アシスト閾値TH1(図2の左側のTH1)よりも車速Vが高い領域に設定した。しかしながら、MOT走行(第3走行状態)と気筒休止走行(気筒休止状態)との切替えの観点からすれば、これに限らない。例えば、気筒休止アシスト閾値TH3をMOT走行アシスト閾値TH1(図2の左側のTH1)よりもペダル開度θ(要求駆動力Freq)が高い領域に設定してもよい。
 上記実施形態では、MOT走行アシスト閾値TH1と気筒休止アシスト閾値TH3とを車速Vに応じて連続した値としたが(図2)、必ずしも連続した値としなくてもよい。
 上記実施形態では、気筒休止アシスト閾値TH3、TH5を用いたが、いずれか一方のみ用いることも可能である。或いは、例えば、高効率出力アシスト閾値TH2及び充電促進アシスト閾値TH4の利用に着目すれば、気筒休止アシスト閾値TH3、TH5の両方を用いない構成も可能である。

Claims (10)

  1.  車両(10)を走行させる第1駆動力を駆動輪側に供給する電動機(16)と、
     前記車両(10)を走行させる第2駆動力を前記駆動輪側又は前記電動機(16)側に供給する内燃機関(14)と、
     前記電動機(16)に電力を供給する充放電可能な蓄電装置(22)と、
     アクセルペダル(34)に反力を付与する反力付与手段(40、46)と
     を有する車両用走行制御装置(12)であって、
     前記車両(10)の運転状態として、前記内燃機関(14)のみで前記車両(10)を走行させる第1走行状態と、前記内燃機関(14)及び前記電動機(16)で前記車両(10)を走行させる第2走行状態とを設定し、
     前記アクセルペダル(34)の開度を含む車両情報に基づいて前記第1走行状態及び前記第2走行状態を互いに切り替え、
     前記第1走行状態は、前記第2走行状態よりも小さい前記アクセルペダル(34)の開度に対応させて設定し、
     さらに、前記車両用走行制御装置(12)は、前記蓄電装置(22)の電力残量を検出する電力残量検出手段(24)を備え、
     前記電力残量検出手段(24)により検出された前記電力残量が第1所定値を下回る場合、前記反力付与手段(40、46)は、前記第1走行状態から前記第2走行状態に切り替わる手前で、前記アクセルペダル(34)への反力を増大させる第1アクセルペダル開度閾値を設定する
     ことを特徴とする車両用走行制御装置(12)。
  2.  請求項1記載の車両用走行制御装置(12)において、
     前記内燃機関(14)の駆動に応じて発電し、発電した電力を前記蓄電装置(22)に充電する発電機(18)を備え、
     前記第1アクセルペダル開度閾値は、単位量当たりの燃料により前記内燃機関(14)が駆動することで前記発電機(18)の発電量が第1発電量閾値以上となる領域内で設定される
     ことを特徴とする車両用走行制御装置(12)。
  3.  請求項1又は2記載の車両用走行制御装置(12)において、
     さらに、前記電動機(16)の駆動及び回生又は発電を制御する電動機制御手段(26)を備え、
     前記電動機(16)は、前記内燃機関(14)の駆動に応じて回生又は発電し、回生又は発電した電力を前記蓄電装置(22)に充電し、
     前記電動機制御手段(26)は、前記第1走行状態の際、前記内燃機関(14)により前記電動機(16)に回生又は発電を実行させ、
     前記第1アクセルペダル開度閾値は、単位量当たりの燃料により前記内燃機関(14)が駆動することで前記電動機(16)の発電量が第2発電量閾値以上となる領域内で設定される
     ことを特徴とする車両用走行制御装置(12)。
  4.  請求項1~3のいずれか1項に記載の車両用走行制御装置(12)において、
     前記車両(10)の運転状態として、前記電動機(16)のみで前記車両(10)を走行させる第3走行状態を前記第1走行状態よりも小さい前記アクセルペダル(34)の開度に対応させて設定し、
     前記電力残量検出手段(24)により検出された前記電力残量が第2所定値を上回ると検出された場合、前記反力付与手段(40、46)は、前記第3走行状態から前記第1走行状態に切り替わる手前で、前記アクセルペダル(34)への反力を増大させる第2アクセルペダル開度閾値を設定する
     ことを特徴とする車両用走行制御装置(12)。
  5.  請求項4記載の車両用走行制御装置(12)において、
     前記電力残量が前記第2所定値を上回るとき、前記第3走行状態の利用を許可し、
     前記電力残量が前記第2所定値を下回るとき、前記第3走行状態の利用を禁止し、
     前記電力残量が前記第2所定値を上回るときの制御と前記電力残量が前記第2所定値を下回るときの制御との切替えは、前記アクセルペダル(34)の開度がゼロであるとき、前記反力付与手段(40、46)による前記反力が生成されていないとき又は前記反力付与手段(40、46)において反力生成指令が出力されていないときに実行する
     ことを特徴とする車両用走行制御装置(12)。
  6.  請求項1~5のいずれか1項に記載の車両用走行制御装置(12)において、
     前記第1走行状態として、前記内燃機関(14)の全気筒を作動させる全気筒作動状態と、前記内燃機関(14)の一部の気筒のみを作動させる気筒休止状態とが設定される
     ことを特徴とする車両用走行制御装置(12)。
  7.  請求項4又は5に従属する請求項6記載の車両用走行制御装置(12)において、
     前記気筒休止状態は、前記第3走行状態が設定される車速よりも高い領域で設定される
     こと特徴とする車両用走行制御装置(12)。
  8.  請求項6又は7記載の車両用走行制御装置(12)において、
     前記反力付与手段(40、46)は、前記気筒休止状態と前記全気筒作動状態とが切り替わる手前で、前記アクセルペダル(34)ヘの反力を増大させる気筒休止アシスト閾値を設定する
     ことを特徴とする車両用走行制御装置(12)。
  9.  請求項8に記載の車両用走行制御装置(12)において、
     前記気筒休止アシスト閾値は、前記第1アクセルペダル開度閾値より低く設定される
     ことを特徴とする車両用走行制御装置(12)。
  10.  請求項4若しくは5に従属する請求項6に従属する請求項8若しくは請求項7に従属する請求項8又は請求項9記載の車両用走行制御装置(12)において、
     前記第2アクセルペダル開度閾値及び前記気筒休止アシスト閾値は、前記アクセルペダル(34)の開度、前記車両(10)の要求駆動力若しくは実駆動力又はスロットル弁開度と、車速又は前記内燃機関(14)の回転数とに基づいて設定され、
     前記第2アクセルペダル開度閾値及び前記気筒休止アシスト閾値が前記車速又は前記内燃機関(14)の回転数に応じて切り替わる際、前記第2アクセルペダル開度閾値及び前記気筒休止アシスト閾値には、連続した値が設定される
     ことを特徴とする車両用走行制御装置(12)。
PCT/JP2012/077844 2011-11-25 2012-10-29 車両用走行制御装置 WO2013077143A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112012004922.5T DE112012004922B4 (de) 2011-11-25 2012-10-29 Fahrzeug-Fahrsteuer-/Regelvorrichtung
US14/359,627 US9145130B2 (en) 2011-11-25 2012-10-29 Vehicle travel control device
JP2013545858A JP5756185B2 (ja) 2011-11-25 2012-10-29 車両用走行制御装置
CN201280055659.6A CN103958303B (zh) 2011-11-25 2012-10-29 车辆用行驶控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-257991 2011-11-25
JP2011257991 2011-11-25

Publications (1)

Publication Number Publication Date
WO2013077143A1 true WO2013077143A1 (ja) 2013-05-30

Family

ID=48469591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077844 WO2013077143A1 (ja) 2011-11-25 2012-10-29 車両用走行制御装置

Country Status (5)

Country Link
US (1) US9145130B2 (ja)
JP (2) JP5756185B2 (ja)
CN (1) CN103958303B (ja)
DE (1) DE112012004922B4 (ja)
WO (1) WO2013077143A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013077143A1 (ja) * 2011-11-25 2015-04-27 本田技研工業株式会社 車両用走行制御装置
WO2015068482A1 (ja) * 2013-11-11 2015-05-14 本田技研工業株式会社 ハイブリッド車両の制御装置
CN105034818A (zh) * 2015-07-13 2015-11-11 北京现代汽车有限公司 一种电动汽车能量回收方法及装置
JP5843412B2 (ja) * 2012-11-21 2016-01-13 本田技研工業株式会社 アクセルペダル反力制御装置及び車両
WO2016141933A1 (de) 2015-03-11 2016-09-15 Schaeffler Technologies AG & Co. KG Hybrid-antriebseinheit

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6155917B2 (ja) * 2013-07-11 2017-07-05 トヨタ自動車株式会社 ハイブリッド車両の制御装置
US9176516B2 (en) * 2014-04-01 2015-11-03 Atieva, Inc. Dual stage accelerator assembly with selectable stroke transition
JP2016005929A (ja) * 2014-06-20 2016-01-14 トヨタ自動車株式会社 車両の制御装置
DE112015000177T5 (de) * 2014-08-29 2016-06-16 Mazda Motor Corporation Fahrzeugbeschleunigungspedal-Reaktionskraft-Steuerungsgerät
DE102014017836A1 (de) * 2014-12-03 2016-01-14 Audi Ag Fahrzeug mit einem Effizienzmodus
DE102015109810A1 (de) * 2015-06-19 2016-12-22 Hella Kgaa Hueck & Co. Fahrpedaleinheit für ein Kraftfahrzeug
DE102015010047B4 (de) * 2015-08-01 2024-05-02 Audi Ag Verfahren und Steuervorrichtung zum Steuern einer Vorrichtung
JP6412522B2 (ja) * 2016-05-23 2018-10-24 本田技研工業株式会社 動力システム及び輸送機器、並びに、電力伝送方法
JP6733385B2 (ja) * 2016-07-20 2020-07-29 スズキ株式会社 ハイブリッド車両の制御装置
CN108138673B (zh) * 2016-09-09 2021-03-02 马自达汽车株式会社 车辆的控制装置
GB2557333B (en) * 2016-12-07 2022-04-13 Bentley Motors Ltd Braking system
US10439427B2 (en) * 2017-08-03 2019-10-08 Ford Global Technologies, Llc Determining a fuel quantity to charge a vehicle battery
JP7075958B2 (ja) * 2020-02-28 2022-05-26 本田技研工業株式会社 車両の制御装置
JP6975278B2 (ja) * 2020-03-02 2021-12-01 本田技研工業株式会社 車両の制御装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005271618A (ja) * 2004-03-23 2005-10-06 Nissan Motor Co Ltd ハイブリッド電気自動車のアクセル反力制御装置
JP2008261346A (ja) * 2008-07-14 2008-10-30 Toyota Motor Corp 車両の制御装置
JP2009107619A (ja) * 2007-10-31 2009-05-21 Ford Global Technologies Llc 自動車運転者への機関作動報知方法及びシステム
JP2009162291A (ja) * 2008-01-07 2009-07-23 Nissan Motor Co Ltd 車両の発進制御装置
JP2010000815A (ja) * 2008-06-18 2010-01-07 Mazda Motor Corp 車両の駆動制御装置及び制御方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7028793B2 (en) * 2002-02-08 2006-04-18 Green Vision Technology, Llc Internal combustion engines for hybrid powertrain
JP2006180626A (ja) * 2004-12-22 2006-07-06 Toyota Motor Corp ハイブリッド車両の制御装置
DE102007011739B4 (de) 2007-03-10 2019-03-28 Bayerische Motoren Werke Aktiengesellschaft Kraftfahrzeug mit Hybridantrieb
DE102008000577A1 (de) 2008-03-10 2009-09-17 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines Fahrzeuges mit Hybridantrieb
JP5338426B2 (ja) 2009-03-27 2013-11-13 日産自動車株式会社 ハイブリッド車両のアクセル踏込反力制御装置
JP2010283968A (ja) 2009-06-03 2010-12-16 Toyota Motor Corp 車両用制御装置
US8630785B2 (en) 2009-12-02 2014-01-14 GM Global Technology Operations LLC Fuel management systems and methods for variable displacement engines
US9145130B2 (en) * 2011-11-25 2015-09-29 Honda Motor Co., Ltd. Vehicle travel control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005271618A (ja) * 2004-03-23 2005-10-06 Nissan Motor Co Ltd ハイブリッド電気自動車のアクセル反力制御装置
JP2009107619A (ja) * 2007-10-31 2009-05-21 Ford Global Technologies Llc 自動車運転者への機関作動報知方法及びシステム
JP2009162291A (ja) * 2008-01-07 2009-07-23 Nissan Motor Co Ltd 車両の発進制御装置
JP2010000815A (ja) * 2008-06-18 2010-01-07 Mazda Motor Corp 車両の駆動制御装置及び制御方法
JP2008261346A (ja) * 2008-07-14 2008-10-30 Toyota Motor Corp 車両の制御装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013077143A1 (ja) * 2011-11-25 2015-04-27 本田技研工業株式会社 車両用走行制御装置
JP5843412B2 (ja) * 2012-11-21 2016-01-13 本田技研工業株式会社 アクセルペダル反力制御装置及び車両
US9365112B2 (en) 2012-11-21 2016-06-14 Honda Motor Co., Ltd. Accelerator-pedal-counterforce control device and vehicle
WO2015068482A1 (ja) * 2013-11-11 2015-05-14 本田技研工業株式会社 ハイブリッド車両の制御装置
WO2016141933A1 (de) 2015-03-11 2016-09-15 Schaeffler Technologies AG & Co. KG Hybrid-antriebseinheit
DE102016202117A1 (de) 2015-03-11 2016-09-15 Schaeffler Technologies AG & Co. KG Hybrid-Antriebseinheit
CN105034818A (zh) * 2015-07-13 2015-11-11 北京现代汽车有限公司 一种电动汽车能量回收方法及装置

Also Published As

Publication number Publication date
JP5898354B2 (ja) 2016-04-06
US9145130B2 (en) 2015-09-29
CN103958303B (zh) 2016-08-31
US20140323265A1 (en) 2014-10-30
DE112012004922T5 (de) 2014-08-14
JPWO2013077143A1 (ja) 2015-04-27
JP5756185B2 (ja) 2015-07-29
DE112012004922B4 (de) 2019-06-27
JP2015171888A (ja) 2015-10-01
CN103958303A (zh) 2014-07-30

Similar Documents

Publication Publication Date Title
JP5756185B2 (ja) 車両用走行制御装置
JP5843412B2 (ja) アクセルペダル反力制御装置及び車両
CN102673376B (zh) 混合动力车辆的控制装置
JP4211831B2 (ja) ハイブリッド車両、ハイブリッド車両の制御方法およびその制御方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体
CN107020940B (zh) 混合动力车辆
CN104816638B (zh) 车辆
CN103328291B (zh) 车辆及车辆用控制方法
JP5729475B2 (ja) 車両および車両の制御方法
JP2010058579A (ja) ハイブリッド車両
JP2007210418A (ja) 車両の制御装置
JP3566142B2 (ja) ハイブリッド車両の制御装置
JP5644868B2 (ja) 車両および車両の制御方法
JP6686384B2 (ja) ハイブリッド車両の回生電力量制御システム、ハイブリッド車両及びハイブリッド車両の回生電力量制御方法
JP2011234540A (ja) 回生制動制御装置
JP5304957B2 (ja) 電動車両およびその制御方法
JP6382512B2 (ja) 車両
JP2012162097A (ja) 車両
JP2012224304A (ja) 車両の制振制御装置
KR102354195B1 (ko) Phev 청소차 주행 제어장치
WO2012105019A1 (ja) 車両および車両の制御方法
JP5724840B2 (ja) ハイブリッド車両
US20200361474A1 (en) Electric vehicle
JP2019188981A (ja) 車両の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12852315

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013545858

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14359627

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120120049225

Country of ref document: DE

Ref document number: 112012004922

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12852315

Country of ref document: EP

Kind code of ref document: A1