WO2012105019A1 - 車両および車両の制御方法 - Google Patents

車両および車両の制御方法 Download PDF

Info

Publication number
WO2012105019A1
WO2012105019A1 PCT/JP2011/052224 JP2011052224W WO2012105019A1 WO 2012105019 A1 WO2012105019 A1 WO 2012105019A1 JP 2011052224 W JP2011052224 W JP 2011052224W WO 2012105019 A1 WO2012105019 A1 WO 2012105019A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
output shaft
electric motor
internal combustion
switch
Prior art date
Application number
PCT/JP2011/052224
Other languages
English (en)
French (fr)
Inventor
英明 矢口
干場 健
木村 秋広
聖裕 内藤
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2011554005A priority Critical patent/JPWO2012105019A1/ja
Priority to US13/518,959 priority patent/US20130311015A1/en
Priority to PCT/JP2011/052224 priority patent/WO2012105019A1/ja
Publication of WO2012105019A1 publication Critical patent/WO2012105019A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/93Conjoint control of different elements

Definitions

  • the present invention relates to a vehicle and a vehicle control method, and more particularly to a technique for starting an internal combustion engine mounted on a vehicle.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2007-23919
  • the brake pedal is depressed when the push switch is pressed.
  • a technique for restarting the engine even if it is not disclosed is disclosed.
  • a hybrid vehicle equipped with a motor generator and an engine has attracted attention as one of countermeasures for environmental problems.
  • a hybrid vehicle for example, a vehicle in which elements of a drive wheel, an engine, and a motor generator are mechanically connected is known.
  • the output shaft of the motor generator may be negatively rotated even when the engine is stopped.
  • the motor generator when the motor generator is driven to crank the engine, the motor generator can generate power.
  • the power generation at this time is not intended. Therefore, electric power can be generated more than necessary.
  • the purpose of the present invention is to limit the power generated.
  • the vehicle includes a switch that is operated by a driver, an internal combustion engine that is started when the switch is operated, and an electric motor that is coupled to an output shaft of the internal combustion engine.
  • the electric motor increases the output shaft rotation speed of the internal combustion engine with lower torque as the output shaft rotation speed of the electric motor is higher.
  • a control method for a vehicle equipped with a switch operated by a driver, an internal combustion engine started by operating the switch, and an electric motor connected to an output shaft of the internal combustion engine is provided as a switch.
  • the vehicle includes a switch operated by the driver, an internal combustion engine that starts when the switch is operated, and an electric motor coupled to the output shaft of the internal combustion engine.
  • the electric motor increases the output shaft rotation speed of the internal combustion engine at a lower speed as the output shaft rotation speed of the electric motor is higher.
  • a control method for a vehicle on which a switch operated by a driver, an internal combustion engine that starts when the switch is operated, and an electric motor that is coupled to an output shaft of the internal combustion engine are mounted.
  • the electric motor increases the output shaft rotational speed of the internal combustion engine with a lower torque as the output shaft rotational speed of the electric motor increases.
  • the output shaft rotation speed of the internal combustion engine is increased at a lower change speed (change rate) as the output shaft rotation speed of the electric motor is higher, the torque of the electric motor is reduced to reduce the change speed. Therefore, in any case, the torque is reduced as the output shaft rotational speed of the electric motor is higher. Therefore, when the output shaft of the electric motor is rotating negatively, the electric power generated by the electric motor is limited.
  • FIG. 1 is an overall block diagram of a vehicle. It is a figure (the 1) which shows the alignment chart of a power split device. It is a functional block diagram of ECU. It is a figure which shows the flowchart of the process which ECU performs. It is a whole block diagram of vehicles of other embodiments. It is a figure which shows the operation
  • FIG. 4 is a diagram (No. 4) illustrating a nomographic chart of the power split device; It is a figure (the 5) which shows an alignment chart of a power split device. It is a figure (the 6) which shows an alignment chart of a power split device.
  • the vehicle 1 includes an engine 10, a drive shaft 16, a first motor generator (hereinafter referred to as a first MG) 20, a second motor generator (hereinafter referred to as a second MG) 30, and a power split device 40. , A reduction gear 58, a PCU (Power Control Unit) 60, a battery 70, a drive wheel 80, a start switch 150, a braking device 151, and an ECU (Electronic Control Unit) 200.
  • the vehicle 1 travels by driving force output from at least one of the engine 10 and the second MG 30.
  • the power generated by the engine 10 is divided into two paths by the power split device 40.
  • One of the two routes is a route transmitted to the drive wheel 80 via the speed reducer 58, and the other route is a route transmitted to the first MG 20.
  • the first MG 20 and the second MG 30 are, for example, three-phase AC rotating electric machines.
  • First MG 20 and second MG 30 are driven by PCU 60.
  • the first MG 20 has a function as a generator that generates power using the power of the engine 10 divided by the power split device 40 and charges the battery 70 via the PCU 60. Further, first MG 20 receives electric power from battery 70 and rotates a crankshaft that is an output shaft of engine 10. Thus, the first MG 20 has a function as a starter for starting the engine 10.
  • the second MG 30 has a function as a driving motor that applies driving force to the driving wheels 80 using at least one of the electric power stored in the battery 70 and the electric power generated by the first MG 20. Second MG 30 also has a function as a generator for charging battery 70 via PCU 60 using electric power generated by regenerative braking.
  • the engine 10 is an internal combustion engine such as a gasoline engine or a diesel engine.
  • the engine 10 includes a plurality of cylinders 102 and a fuel injection device 104 that supplies fuel to each of the plurality of cylinders 102. Based on the control signal S1 from the ECU 200, the fuel injection device 104 injects an appropriate amount of fuel to each cylinder at an appropriate time, or stops fuel injection to each cylinder.
  • the engine 10 is provided with an engine rotation speed sensor 11 for detecting the rotation speed of the crankshaft of the engine 10 (hereinafter referred to as engine rotation speed) Ne.
  • the engine rotation speed sensor 11 transmits a signal indicating the detected engine rotation speed Ne to the ECU 200.
  • the power split device 40 mechanically connects each of the three elements of the drive shaft 16 for rotating the drive wheel 80, the output shaft of the engine 10, and the rotation shaft (output shaft) of the first MG 20.
  • the power split device 40 enables transmission of power between the other two elements by using any one of the three elements described above as a reaction force element.
  • the rotation shaft (output shaft) of second MG 30 is connected to drive shaft 16.
  • the power split device 40 is a planetary gear mechanism including a sun gear 50, a pinion gear 52, a carrier 54, and a ring gear 56.
  • Pinion gear 52 meshes with each of sun gear 50 and ring gear 56.
  • the carrier 54 supports the pinion gear 52 so as to be capable of rotating, and is connected to the crankshaft of the engine 10.
  • Sun gear 50 is coupled to the rotation shaft of first MG 20.
  • Ring gear 56 is coupled to the rotation shaft of second MG 30 and reduction gear 58 via drive shaft 16.
  • first MG 20 and second MG 30 are connected by power split device 40, rotation speed Nm1 of first MG 20, engine rotation speed Ne, and rotation speed Nm2 of second MG 30 are on the collinear diagram of FIG.
  • the rotational speeds Nm1, Ne, and Nm2 of each element change so as to maintain the relationship connected by one straight line.
  • the left vertical axis of the three vertical axes in the nomograph shows the rotational speed of the sun gear 50, that is, the rotational speed Nm1 of the first MG 20.
  • the vertical axis at the center of the alignment chart shown in FIG. 2 indicates the rotational speed of the carrier 54, that is, the engine rotational speed Ne.
  • the vertical axis on the right side of the alignment chart shown in FIG. 2 indicates the rotational speed of the ring gear 56, that is, the rotational speed Nm2 of the second MG 30.
  • shaft of the alignment chart of FIG. 2 shows a normal rotation direction, and the direction opposite to the arrow direction shows a negative rotation direction.
  • the vehicle 1 has a rotation speed Nm1 of the first MG 20 of Nm1 (0), an engine rotation speed Ne of Ne (0), and a rotation of the second MG 30. Assume that the speed Nm2 is Nm2 (0).
  • Power split device 40 rotates the rotating shaft of first MG 20 even when the vehicle travels and engine 10 stops.
  • the engine rotational speed Ne is reduced to zero.
  • the rotation speed Nm1 of the first MG 20 increases in the negative rotation direction from Nm1 (0) to Nm1 (1). Therefore, the higher the vehicle speed, the higher the rotational speed Nm1 of the first MG 20 when the engine rotational speed Ne becomes zero (when the rotation of the engine 10 stops).
  • the first MG 20 In order to increase the rotation speed of the first MG 20 from Nm1 (1) to Nm1 (0), when a torque in the positive rotation direction opposite to the rotation direction (negative rotation direction) of the first MG 20 is generated, the first MG 20 moves in the negative rotation direction. Since it is rotating, the first MG 20 generates power. In the present embodiment, as will be described later, the power generated by first MG 20 when cranking engine 10 is limited.
  • the speed reducer 58 transmits the power from the power split device 40 and the second MG 30 to the drive wheels 80. Reducer 58 transmits the reaction force from the road surface received by drive wheels 80 to power split device 40 and second MG 30.
  • PCU 60 converts the DC power stored in battery 70 into AC power for driving first MG 20 and second MG 30.
  • PCU 60 includes a converter and an inverter (both not shown) controlled based on control signal S2 from ECU 200.
  • the converter boosts the voltage of the DC power received from battery 70 and outputs it to the inverter.
  • the inverter converts the DC power output from the converter into AC power and outputs the AC power to first MG 20 and / or second MG 30.
  • first MG 20 and / or second MG 30 are driven using the electric power stored in battery 70.
  • the inverter converts AC power generated by the first MG 20 and / or the second MG 30 into DC power and outputs the DC power to the converter.
  • the converter steps down the voltage of the DC power output from the inverter and outputs the voltage to battery 70. Thereby, battery 70 is charged using the electric power generated by first MG 20 and / or second MG 30.
  • the converter may be omitted.
  • the battery 70 is a power storage device and a rechargeable DC power source.
  • a secondary battery such as nickel metal hydride or lithium ion is used.
  • the voltage of the battery 70 is about 200V, for example.
  • Battery 70 may be charged using electric power supplied from an external power source (not shown) in addition to being charged using electric power generated by first MG 20 and / or second MG 30 as described above.
  • the battery 70 is not limited to a secondary battery, but may be a battery capable of generating a DC voltage, such as a capacitor, a solar battery, or a fuel battery.
  • the battery 70 includes a battery temperature sensor 156 for detecting the battery temperature TB of the battery 70, a current sensor 158 for detecting the current IB of the battery 70, and a voltage sensor 160 for detecting the voltage VB of the battery 70. And are provided.
  • the battery temperature sensor 156 transmits a signal indicating the battery temperature TB to the ECU 200.
  • Current sensor 158 transmits a signal indicating current IB to ECU 200.
  • Voltage sensor 160 transmits a signal indicating voltage VB to ECU 200.
  • the start switch 150 is, for example, a push-type switch.
  • the start switch 150 may be configured to insert a key into a key cylinder and rotate it to a predetermined position.
  • Start switch 150 is connected to ECU 200.
  • the start switch 150 transmits a signal ST to the ECU 200.
  • the ECU200 judges that it received the start instruction, for example, when signal ST is received when the system of vehicle 1 is a stop state, and makes the system of vehicle 1 shift from a stop state to a start state. Further, when the signal ST is received when the system of the vehicle 1 is in the activated state, the ECU 200 determines that the stop instruction has been received, and shifts the system of the vehicle 1 from the activated state to the stopped state.
  • the operation of the start switch 150 by the driver when the system of the vehicle 1 is in the activated state is referred to as an IG off operation, and the driver operates the start switch 150 when the system of the vehicle 1 is in the stopped state.
  • the operation is called IG on operation.
  • the vehicle 1 becomes operable by supplying power to a plurality of devices necessary for the vehicle 1 to travel.
  • the system of the vehicle 1 shifts to the stop state, the supply of power to a part of the plurality of devices necessary for the vehicle 1 to travel is stopped, so that the operation stop state Become.
  • the first resolver 12 detects the rotational speed Nm1 of the first MG 20.
  • the first resolver 12 transmits a signal indicating the detected rotation speed Nm1 to the ECU 200.
  • the second resolver 13 detects the rotational speed Nm2 of the second MG 30.
  • the second resolver 13 transmits a signal indicating the detected rotation speed Nm2 to the ECU 200.
  • the wheel speed sensor 14 detects the rotational speed Nw of the drive wheel 80.
  • the wheel speed sensor 14 transmits a signal indicating the detected rotation speed Nw to the ECU 200.
  • ECU 200 calculates vehicle speed V based on the received rotational speed Nw.
  • ECU 200 may calculate vehicle speed V based on rotation speed Nm2 of second MG 30 instead of rotation speed Nw.
  • the braking device 151 includes a brake actuator 152 and a disc brake 154.
  • the disc brake 154 includes a brake disc that rotates integrally with the wheel, and a brake caliper that restricts rotation of the brake disc using hydraulic pressure.
  • the brake caliper includes a brake pad provided so as to sandwich the brake disc in a direction parallel to the rotation shaft, and a wheel cylinder for transmitting hydraulic pressure to the brake pad.
  • the brake actuator 152 Based on the control signal S3 received from the ECU 200, the brake actuator 152 adjusts the hydraulic pressure generated when the driver depresses the brake pedal and the hydraulic pressure generated using a pump, a solenoid valve, and the like, and supplies the hydraulic pressure to the wheel cylinder. Adjust the hydraulic pressure.
  • the braking device 151 is illustrated only on the right side of the rear wheel, but the braking device 151 is provided for each wheel.
  • the ECU 200 generates a control signal S1 for controlling the engine 10 and outputs the generated control signal S1 to the engine 10.
  • ECU 200 also generates a control signal S2 for controlling PCU 60 and outputs the generated control signal S2 to PCU 60.
  • ECU 200 generates a control signal S3 for controlling brake actuator 152, and outputs the generated control signal S3 to brake actuator 152.
  • the ECU 200 controls the entire hybrid system, that is, the charging / discharging state of the battery 70 and the operating states of the engine 10, the first MG 20 and the second MG 30 so that the vehicle 1 can operate most efficiently by controlling the engine 10, the PCU 60, and the like. .
  • ECU 200 calculates the required driving force corresponding to the amount of depression of an accelerator pedal (not shown) provided in the driver's seat. ECU 200 determines the torque of first MG 20 and second MG 30 according to the calculated required driving force. And the output of the engine 10 is controlled.
  • the vehicle 1 when the engine 10 is inefficient at the time of starting or running at a low speed, the vehicle 1 travels only by the second MG 30. Further, during normal travel, for example, the power split device 40 divides the power of the engine 10 into two paths of power.
  • the drive wheel 80 is directly driven by one power.
  • the first MG 20 is driven with the other power to generate power.
  • ECU 200 drives second MG 30 using the generated electric power. In this way, driving of the driving wheel 80 is performed by driving the second MG 30.
  • the second MG 30 driven by the rotation of the drive wheel 80 functions as a generator to perform regenerative braking.
  • the electric power recovered by regenerative braking is stored in the battery 70.
  • ECU 200 increases the output of engine 10 to increase the first MG 20 when the remaining capacity of the power storage device (described in the following description as SOC (State of Charge)) decreases and charging is particularly necessary. Increase the amount of power generated by Thereby, the SOC of the battery 70 is increased.
  • the ECU 200 may perform control to increase the driving force from the engine 10 as necessary even during low-speed traveling. For example, the battery 70 needs to be charged as described above, an auxiliary machine such as an air conditioner is driven, or the temperature of the cooling water of the engine 10 is raised to a predetermined temperature.
  • the ECU 200 determines the input power allowed when the battery 70 is charged based on the battery temperature TB and the current SOC (in the following description, “charging power upper limit value”). Output power (to be described as “discharge power upper limit value Wout” in the following description). For example, when the current SOC decreases, discharge power upper limit Wout is set to be gradually lower. On the other hand, when the current SOC increases, charging power upper limit value Win is set to gradually decrease.
  • the secondary battery used as the battery 70 has a temperature dependency in which the internal resistance increases at a low temperature. Further, at a high temperature, it is necessary to prevent the temperature from excessively rising due to further heat generation. For this reason, it is preferable to reduce each of the discharge power upper limit value Wout and the charge power upper limit value Win when the battery temperature TB is low and high. ECU 200 sets charge power upper limit value Win and discharge power upper limit value Wout by using, for example, a map or the like according to battery temperature TB and the current SOC.
  • the torque of first MG 20 is limited so that the power generated by first MG 20 is smaller than charging power upper limit Win. Is done.
  • FIG. 3 shows a functional block diagram of ECU 200 mounted on vehicle 1 according to the present embodiment.
  • ECU 200 includes a determination unit 202 and a first MG control unit 204.
  • the determination unit 202 determines whether or not the IG on operation has been performed.
  • the determination unit 202 determines that the IG ON operation has been performed when the signal ST is received from the start switch 150 when the system of the vehicle 1 is in a stopped state, for example. Note that the determination unit 202 may turn on the IG ON determination flag when, for example, an IG ON operation is performed.
  • the determination unit 202 determines whether or not the vehicle 1 is traveling. The determination unit 202 determines that the vehicle 1 is traveling when the vehicle speed V is higher than the predetermined vehicle speed V (0). Note that the determination unit 202 may turn on the travel determination flag when it is determined that the vehicle 1 is traveling.
  • the first MG control unit 204 When it is determined by the determination unit 202 that the IG ON operation has been performed, that is, when the start switch 150 is operated by the driver, the first MG control unit 204 has a lower torque as the rotational speed Nm1 of the rotation shaft of the first MG 20 is higher.
  • the first MG 20 is controlled so as to increase the engine rotational speed Ne.
  • the first MG 20 increases the engine rotation speed Ne at a lower speed as the rotation speed Nm1 of the rotation shaft of the first MG 20 is higher. More specifically, the first MG 20 is controlled so that lower torque is generated in the forward rotation direction as the vehicle speed is higher. As described above, the torque of first MG 20 is limited so that the power generated by first MG 20 is smaller than charging power upper limit Win.
  • Tm1 (v0) be the torque of the first MG 20 when cranking the engine 10 in a state where the vehicle speed is zero.
  • Tm1 (v0) the torque of the first MG 20 when cranking the engine 10 in a state where the vehicle speed is zero.
  • the torque of the first MG 20 is also lowered by Tm1 (v0). The torque of the first MG 20 is reduced until the power generated by the first MG 20 becomes smaller than the charging power upper limit Win.
  • the electric power generated by first MG 20 may be calculated using a known technique such as calculating from a map having torque and rotational speed as parameters, and therefore detailed description of the calculation method will not be repeated here. .
  • the method for controlling the torque of the first MG 20 may similarly use a known technique.
  • both the determination unit 202 and the first MG control unit 204 are described as functioning as software realized by the CPU of the ECU 200 executing a program stored in the memory. It may be realized by hardware. Such a program is recorded on a storage medium and mounted on the vehicle.
  • step (hereinafter, step is referred to as S) 100 ECU 200 determines whether or not an IG on operation has been performed. If the IG-on operation has been performed (YES in S100), ECU 200 determines in S102 whether vehicle 1 is traveling.
  • ECU 200 causes first MG 20 to increase engine rotational speed Ne with a lower torque as rotational speed Nm1 of the rotating shaft of first MG 20 is higher. Control.
  • the electric power generated by the first MG 20 is limited as the engine rotational speed Ne is increased. Therefore, it is possible to protect the electric device such as the first MG 20 from heat generation or to protect the battery 70 from overcharging.
  • the ECU 200 controls the engine 10 so as to start fuel injection and ignition. That is, the engine 10 is started.
  • the first MG 20 increases the engine rotation speed with a lower torque as the rotation speed Nm1 of the first MG 20 is higher. Therefore, when the first MG 20 is rotating negatively when starting the engine 10, the electric power generated by the first MG 20 is limited.
  • planetary gear mechanism including sun gear 310, pinion gear 312, carrier 314, and ring gear 316 is mounted on vehicle 1 of the present embodiment as power split device 300.
  • Sun gear 310 is connected to the rotation shaft of second MG 30.
  • Pinion gear 312 meshes with each of sun gear 310 and ring gear 316.
  • the carrier 314 supports the pinion gear 312 so that it can rotate, and is connected to the speed reducer 58 via the drive shaft 18.
  • FIG. 6 shows an operation table of the C1 clutch 321, the C2 clutch 322, and the C3 clutch 323.
  • “1 motor” in FIG. 6 means a control mode in which only one motor generator runs as a drive source. “Two motors” means a control mode in which two motor generators are used as driving sources. “Series” means a control mode that gives the vehicle 1 a function as a series hybrid vehicle. “Series + Parallel” means a control mode that gives the vehicle 1 a function as a series hybrid vehicle and a function as a parallel hybrid vehicle. “X” means “engaged state”.
  • the ring gear 316 is fixed to be non-rotatable when the C1 clutch 321 is engaged, the C2 clutch 322 is released, and the C3 clutch 323 is released. That is, as shown in the alignment chart of FIG. 7, the rotational speed of the ring gear 316 is zero. In this state, the vehicle 1 travels using only the second MG 30 as a drive source.
  • the vehicle 1 When the C1 clutch 321 is engaged, the C2 clutch 322 is released, and the C3 clutch 323 is engaged, as shown in the collinear diagram of FIG. 8, the vehicle 1 generates the second MG 30 while generating power with the first MG 20. It can run as a drive source.
  • the ring gear 316 is connected to the first MG 20 when the C1 clutch 321 is released, the C2 clutch 322 is engaged, and the C3 clutch 323 is released. As shown in the nomograph of FIG. 9, in this state, the vehicle 1 can travel using the first MG 20 and the second MG 30 as drive sources.
  • Ring gear 316 is connected to first MG 20 and engine 10 when C1 clutch 321 is released, C2 clutch 322 is engaged, and C3 clutch 323 is engaged. As shown in the alignment chart of FIG. 10, in this state, the vehicle 1 can travel using the engine 10 and the second MG 30 as drive sources while generating power with the first MG 20.
  • the left vertical axis among the three vertical axes represents the rotational speed of the sun gear 310, that is, the rotational speed Nm2 of the second MG 20.
  • the central vertical axis indicates the rotational speed of the carrier 314, that is, the rotational speed Nout of the drive shaft 18.
  • the right vertical axis indicates the rotational speed of the ring gear 316.
  • the rotation speed of the ring gear 316 may be the same as the rotation speed Ne of the engine 10 or the rotation speed Nm1 of the first MG 20.
  • the second MG 30 outputs torque in the negative rotation direction, as shown in FIG.
  • the engine speed Ne can be increased from zero.
  • the engine speed Ne can be increased in order to start the engine 10.
  • the rotational speed Nm2 of the second MG 30 is higher as the rotational speed of the drive shaft 18, that is, the vehicle speed is higher.
  • the second MG 30 is controlled to increase the engine rotational speed Ne with a lower torque as the vehicle speed is higher. That is, the second MG 30 increases the engine rotation speed Ne with a lower torque as the rotation speed Nm1 of the second MG 30 is higher. Thereby, the electric power generated by the second MG 30 is limited.

Abstract

 車両(1)は、スタートスイッチ(150)と、エンジン(10)と、エンジン(10)の回転軸に連結される第1モータジェネレータ(20)とを備える。第1モータジェネレータは、スタッチスイッチ(150)が操作されると、第1モータジェネレータ(20)の出力軸回転速度が高いほどより低いトルクでエンジン(10)の出力軸回転速度を上昇させる。

Description

車両および車両の制御方法
 本発明は、車両および車両の制御方法に関し、特に、車両に搭載された内燃機関を始動する技術に関する。
 特開2007-23919号公報(特許文献1)に開示されたエンジン始動制御システムによれば、車両の走行中に何らかの要因によりエンジンが停止した場合、プッシュスイッチが押下されたときはブレーキペダルが踏み込まれていなくてもエンジンを再始動させる技術が開示されている。
 また、近年、環境問題対策の1つとして、モータジェネレータとエンジンとを搭載したハイブリッド車が注目されている。このようなハイブリッド車としては、たとえば、駆動輪、エンジンおよびモータジェネレータの各要素が機械的に連結される車両が公知である。
特開2007-23919号公報
 上述したようなハイブリッド車においては、各要素が機械的に連結されていることにより、エンジンが停止していても、モータジェネレータの出力軸が負回転している場合があり得る。このような場合にエンジンをクランキングすべくモータジェネレータを駆動すると、モータジェネレータが発電し得る。このときの発電は意図したものではない。そのため、必要以上に電力が発電され得る。
 本発明の目的は、発電される電力を制限することである。
 ある実施例において、車両は、運転者が操作するスイッチと、スイッチが操作されることによって始動する内燃機関と、内燃機関の出力軸に連結される電動モータとを備える。電動モータは、スイッチが操作されると、電動モータの出力軸回転速度が高いほどより低いトルクで内燃機関の出力軸回転速度を上昇させる。
 別の実施例において、運転者が操作するスイッチと、スイッチが操作されることによって始動する内燃機関と、内燃機関の出力軸に連結される電動モータとが搭載された車両の制御方法は、スイッチが操作されたか否かを判断するステップと、スイッチが操作されると、電動モータにより、電動モータの出力軸回転速度が高いほどより低いトルクで内燃機関の出力軸回転速度を上昇させるステップとを備える。
 さらに別の実施例において、車両は、運転者が操作するスイッチと、スイッチが操作されることによって始動する内燃機関と、内燃機関の出力軸に連結される電動モータとを備える。電動モータは、スイッチが操作されると、電動モータの出力軸回転速度が高いほどより低い速度で内燃機関の出力軸回転速度を上昇させる。
 さらに別の実施例において、運転者が操作するスイッチと、スイッチが操作されることによって始動する内燃機関と、内燃機関の出力軸に連結される電動モータとが搭載された車両の制御方法は、スイッチが操作されたか否かを判断するステップと、スイッチが操作されると、電動モータにより、電動モータの出力軸回転速度が高いほどより低い速度で内燃機関の出力軸回転速度を上昇させるステップとを備える。
 内燃機関を始動すべくスイッチが操作されると、電動モータは、電動モータの出力軸回転速度が高いほどより低いトルクで内燃機関の出力軸回転速度を上昇させる。電動モータの出力軸回転速度が高いほどより低い変化速度(変化率)で内燃機関の出力軸回転速度が上昇される場合、変化速度を低減すべく、電動モータのトルクが低減される。したがって、いずれの場合においても、電動モータの出力軸回転速度が高いほどトルクが低減される。よって、電動モータの出力軸が負回転している場合、電動モータによって発電される電力が制限される。
車両の全体ブロック図である。 動力分割装置の共線図を示す図(その1)である。 ECUの機能ブロック図である。 ECUが実行する処理のフローチャートを示す図である。 その他の実施の形態の車両の全体ブロック図である。 C1クラッチ、C2クラッチおよびC3クラッチの作動表を示す図である。 動力分割装置の共線図を示す図(その2)である。 動力分割装置の共線図を示す図(その3)である。 動力分割装置の共線図を示す図(その4)である。 動力分割装置の共線図を示す図(その5)である。 動力分割装置の共線図を示す図(その6)である。
 以下、図面を参照しつつ、本発明の実施の形態は、説明される。以下の説明では、同一の部品には同一の符号が付されている。それらの名称および機能も同じである。したがってそれらについての詳細な説明は繰返されない。
 図1を参照して、本実施の形態に係る車両1の全体ブロック図が説明される。車両1は、エンジン10と、駆動軸16と、第1モータジェネレータ(以下、第1MGと記載する)20と、第2モータジェネレータ(以下、第2MGと記載する)30と、動力分割装置40と、減速機58と、PCU(Power Control Unit)60と、バッテリ70と、駆動輪80と、スタートスイッチ150と、制動装置151と、ECU(Electronic Control Unit)200とを含む。
 この車両1は、エンジン10および第2MG30の少なくとも一方から出力される駆動力によって走行する。エンジン10が発生する動力は、動力分割装置40によって2経路に分割される。2経路のうちの一方の経路は減速機58を介して駆動輪80へ伝達される経路であり、他方の経路は第1MG20へ伝達される経路である。
 第1MG20および第2MG30は、たとえば、三相交流回転電機である。第1MG20および第2MG30は、PCU60によって駆動される。
 第1MG20は、動力分割装置40によって分割されたエンジン10の動力を用いて発電してPCU60を経由してバッテリ70を充電するジェネレータとしての機能を有する。また、第1MG20は、バッテリ70からの電力を受けてエンジン10の出力軸であるクランク軸を回転させる。これによって、第1MG20は、エンジン10を始動するスタータとしての機能を有する。
 第2MG30は、バッテリ70に蓄えられた電力および第1MG20により発電された電力の少なくともいずれか一方を用いて駆動輪80に駆動力を与える駆動用モータとしての機能を有する。また、第2MG30は、回生制動によって発電された電力を用いてPCU60を経由してバッテリ70を充電するためのジェネレータとしての機能を有する。
 エンジン10は、たとえば、ガソリンエンジンやディーゼルエンジン等の内燃機関である。エンジン10は、複数の気筒102と、複数の気筒102の各々に燃料を供給する燃料噴射装置104とを含む。燃料噴射装置104は、ECU200からの制御信号S1に基づいて、各気筒に対して適切な時期に適切な量の燃料を噴射したり、各気筒に対する燃料の噴射を停止したりする。
 さらに、エンジン10には、エンジン10のクランク軸の回転速度(以下、エンジン回転速度と記載する)Neを検出するためのエンジン回転速度センサ11が設けられる。エンジン回転速度センサ11は、検出されたエンジン回転速度Neを示す信号をECU200に送信する。
 動力分割装置40は、駆動輪80を回転させるための駆動軸16、エンジン10の出力軸および第1MG20の回転軸(出力軸)の三要素の各々を機械的に連結する。動力分割装置40は、上述の三要素のうちのいずれか一つを反力要素とすることによって、他の2つの要素間での動力の伝達を可能とする。第2MG30の回転軸(出力軸)は、駆動軸16に連結される。
 動力分割装置40は、サンギヤ50と、ピニオンギヤ52と、キャリア54と、リングギヤ56とを含む遊星歯車機構である。ピニオンギヤ52は、サンギヤ50およびリングギヤ56の各々と噛み合う。キャリア54は、ピニオンギヤ52を自転可能に支持するとともに、エンジン10のクランク軸に連結される。サンギヤ50は、第1MG20の回転軸に連結される。リングギヤ56は、駆動軸16を介在して第2MG30の回転軸および減速機58に連結される。
 エンジン10、第1MG20および第2MG30が動力分割装置40によって連結されることにより、第1MG20の回転速度Nm1と、エンジン回転速度Neと、第2MG30の回転速度Nm2とは、図2の共線図上で1本の直線で結ばれる関係を維持するように各要素の回転速度Nm1,Ne,Nm2が変化する。
 図2に示す共線図の三本の縦軸のうちの左側の縦軸がサンギヤ50の回転速度、すなわち、第1MG20の回転速度Nm1を示す。また、図2に示す共線図の中央の縦軸がキャリア54の回転速度、すなわち、エンジン回転速度Neを示す。また、図2に示す共線図の右側の縦軸がリングギヤ56の回転速度、すなわち、第2MG30の回転速度Nm2を示す。なお、図2の共線図の各縦軸の矢印の方向が正回転方向を示し、矢印の方向と逆方向が負回転方向を示す。
 一例として、図2の実線に示すように、車両1が、第1MG20の回転速度Nm1がNm1(0)であって、エンジン回転速度NeがNe(0)であって、かつ、第2MG30の回転速度Nm2がNm2(0)であると想定する。
 動力分割装置40は、車両が走行し、かつエンジン10が停止した場合においても、第1MG20の回転軸を回転させる。車両1の高速走行中に車両1のシステムが停止状態にされた場合、エンジン10への燃料噴射を停止すると、エンジン回転速度Neはゼロになるように低下する。このとき、図2の破線に示すように、第1MG20の回転速度Nm1がNm1(0)からNm1(1)へと負回転方向に回転速度が増加する。したがって、車速が高いほど、エンジン回転速度Neがゼロになる場合の(エンジン10の回転が停止した場合の)第1MG20の回転速度Nm1がより高くなり得る。
 車両1が走行中であって、エンジン回転速度Neがゼロである場合に、第1MG20を用いてエンジン10を始動させる場合を想定する。この場合、第1MG20の回転速度Nm1をNm1(1)(図2の破線)からNm1(0)(図2の実線)に引き上げることによって、エンジン回転速度Neを上昇させる必要がある。
 第1MG20の回転速度をNm1(1)からNm1(0)まで上昇させるべく、第1MG20の回転方向(負回転方向)と反対の正回転方向のトルクを生じさせると、第1MG20が負回転方向に回転しているため、第1MG20は発電する。本実施の形態においては、後述するように、エンジン10をクランキングするときに第1MG20が発電する電力が制限される。
 図1に戻って、減速機58は、動力分割装置40や第2MG30からの動力を駆動輪80に伝達する。また、減速機58は、駆動輪80が受けた路面からの反力を動力分割装置40や第2MG30に伝達する。
 PCU60は、バッテリ70に蓄えられた直流電力を第1MG20および第2MG30を駆動するための交流電力に変換する。PCU60は、ECU200からの制御信号S2に基づいて制御されるコンバータおよびインバータ(いずれも図示せず)を含む。コンバータは、バッテリ70から受けた直流電力の電圧を昇圧してインバータに出力する。インバータは、コンバータが出力した直流電力を交流電力に変換して第1MG20および/または第2MG30に出力する。これにより、バッテリ70に蓄えられた電力を用いて第1MG20および/または第2MG30が駆動される。また、インバータは、第1MG20および/または第2MG30によって発電される交流電力を直流電力に変換してコンバータに出力する。コンバータは、インバータが出力した直流電力の電圧を降圧してバッテリ70へ出力する。これにより、第1MG20および/または第2MG30により発電された電力を用いてバッテリ70が充電される。なお、コンバータは、省略してもよい。
 バッテリ70は、蓄電装置であり、再充電可能な直流電源である。バッテリ70としては、たとえば、ニッケル水素やリチウムイオン等の二次電池が用いられる。バッテリ70の電圧は、たとえば200V程度である。バッテリ70は、上述したように第1MG20および/または第2MG30により発電された電力を用いて充電される他、外部電源(図示せず)から供給される電力を用いて充電されてもよい。なお、バッテリ70は、二次電池に限らず、直流電圧を生成できるもの、たとえば、キャパシタ、太陽電池、燃料電池等であってもよい。
 バッテリ70には、バッテリ70の電池温度TBを検出するための電池温度センサ156と、バッテリ70の電流IBを検出するための電流センサ158と、バッテリ70の電圧VBを検出するための電圧センサ160とが設けられる。
 電池温度センサ156は、電池温度TBを示す信号をECU200に送信する。電流センサ158は、電流IBを示す信号をECU200に送信する。電圧センサ160は、電圧VBを示す信号をECU200に送信する。
 スタートスイッチ150は、たとえば、プッシュ式スイッチである。スタートスイッチ150は、キーをキーシリンダに差し込んで所定の位置まで回転させるものであってもよい。スタートスイッチ150は、ECU200に接続される。運転者がスタートスイッチ150を操作することに応じて、スタートスイッチ150は、信号STをECU200に送信する。
 ECU200は、たとえば、車両1のシステムが停止状態である場合に信号STを受信した場合に、起動指示を受けたと判断して、車両1のシステムを停止状態から起動状態に移行させる。また、ECU200は、車両1のシステムが起動状態である場合に信号STを受信した場合に、停止指示を受けた判断して、車両1のシステムを起動状態から停止状態に移行させる。以下の説明において、車両1のシステムが起動状態である場合に運転者がスタートスイッチ150を操作することをIGオフ操作といい、車両1のシステムが停止状態である場合に運転者がスタートスイッチ150を操作することをIGオン操作という。また、車両1のシステムが起動状態に移行した場合には、車両1が走行するために必要な複数の機器に電力が供給されるなどして、作動可能な状態となる。一方、車両1のシステムが停止状態に移行した場合には、車両1が走行するために必要な複数の機器のうちの一部への電力の供給が停止されるなどして、作動停止状態となる。
 第1レゾルバ12は、第1MG20の回転速度Nm1を検出する。第1レゾルバ12は、検出された回転速度Nm1を示す信号をECU200に送信する。第2レゾルバ13は、第2MG30の回転速度Nm2を検出する。第2レゾルバ13は、検出された回転速度Nm2を示す信号をECU200に送信する。
 車輪速センサ14は、駆動輪80の回転速度Nwを検出する。車輪速センサ14は、検出された回転速度Nwを示す信号をECU200に送信する。ECU200は、受信した回転速度Nwに基づいて車速Vを算出する。なお、ECU200は、回転速度Nwに代えて第2MG30の回転速度Nm2に基づいて車速Vを算出するようにしてもよい。
 制動装置151は、ブレーキアクチュエータ152と、ディスクブレーキ154とを含む。ディスクブレーキ154は、車輪と一体的に回転するブレーキディスクと、油圧を用いてブレーキディスクの回転を制限するブレーキキャリパとを含む。ブレーキキャリパは、ブレーキディスクを回転軸と平行な方向で挟み込むように設けられるブレーキパッドと、油圧をブレーキパッドに伝達するためのホイールシリンダとを含む。ブレーキアクチュエータ152は、ECU200から受信する制御信号S3に基づいて、運転者がブレーキペダルを踏み込むことによって発生する油圧と、ポンプおよび電磁弁等を用いて発生する油圧とを調整してホイールシリンダに供給される油圧を調整する。図1において、制動装置151は、後輪の右側にのみ図示されるが、制動装置151は、各車輪毎に設けられるものとする。
 ECU200は、エンジン10を制御するための制御信号S1を生成し、その生成した制御信号S1をエンジン10へ出力する。また、ECU200は、PCU60を制御するための制御信号S2を生成し、その生成した制御信号S2をPCU60へ出力する。さらに、ECU200は、ブレーキアクチュエータ152を制御するための制御信号S3を生成し、その生成した制御信号S3をブレーキアクチュエータ152へ出力する。
 ECU200は、エンジン10およびPCU60等を制御することによって車両1が最も効率よく運行できるようにハイブリッドシステム全体、すなわち、バッテリ70の充放電状態、エンジン10、第1MG20および第2MG30の動作状態を制御する。
 ECU200は、運転席に設けられたアクセルペダル(図示せず)の踏込み量に対応する要求駆動力を算出する、ECU200は、算出された要求駆動力に応じて、第1MG20および第2MG30のトルクと、エンジン10の出力とを制御する。
 上述したような構成を有する車両1においては、発進時や低速走行時等であってエンジン10の効率が悪い場合には、第2MG30のみによる走行が行なわれる。また、通常走行時には、たとえば動力分割装置40によりエンジン10の動力が2経路の動力に分けられる。一方の動力で駆動輪80が直接的に駆動される。他方の動力で第1MG20を駆動して発電が行なわれる。このとき、ECU200は、発電された電力を用いて第2MG30を駆動させる。このように第2MG30を駆動させることにより駆動輪80の駆動補助が行なわれる。
 車両1の減速時には、駆動輪80の回転に従動する第2MG30がジェネレータとして機能して回生制動が行なわれる。回生制動によって回収した電力は、バッテリ70に蓄えられる。なお、ECU200は、蓄電装置の残容量(以下の説明においては、SOC(State of Charge)と記載する)が低下し、充電が特に必要な場合には、エンジン10の出力を増加させて第1MG20による発電量を増加させる。これにより、バッテリ70のSOCが増加させられる。また、ECU200は、低速走行時でも必要に応じてエンジン10からの駆動力を増加させる制御を行なう場合もある。たとえば、上述のようにバッテリ70の充電が必要な場合や、エアコン等の補機が駆動される場合や、エンジン10の冷却水の温度を所定温度まで上げる場合等である。
 ECU200は、バッテリ70の充電量および放電量を制御する際に、電池温度TBおよび現在のSOCに基づいて、バッテリ70の充電時に許容される入力電力(以下の説明においては、「充電電力上限値Win」と記載する)およびバッテリ70の放電時に許容される出力電力(以下の説明においては、「放電電力上限値Wout」と記載する)を設定する。たとえば、現在のSOCが低下すると、放電電力上限値Woutは徐々に低く設定される。一方、現在のSOCが高くなると、充電電力上限値Winは徐々に低下するように設定される。
 また、バッテリ70として用いられる二次電池は、低温時に内部抵抗が上昇する温度依存性を有する。また、高温時には、さらなる発熱によって温度が過上昇することを防止する必要がある。このため、電池温度TBの低温時および高温時には、放電電力上限値Woutおよび充電電力上限値Winの各々を低下させることが好ましい。ECU200は、電池温度TBおよび現在SOCに応じて、たとえば、マップ等を用いることによって、充電電力上限値Winおよび放電電力上限値Woutを設定する。
 本実施の形態においては、車両1の走行中に第1MG20を用いてエンジン10を始動させる場合、第1MG20が発電する電力が充電電力上限値Winよりも小さくなるように、第1MG20のトルクが制限される。
 図3に、本実施の形態に係る車両1に搭載されたECU200の機能ブロック図を示す。ECU200は、判定部202と、第1MG制御部204とを含む。
 判定部202は、IGオン操作がされたか否かを判定する。判定部202は、たとえば車両1のシステムが停止状態である場合にスタートスイッチ150から信号STを受信した場合に、IGオン操作がされたと判定する。なお、判定部202は、たとえば、IGオン操作がされた場合にIGオン判定フラグをオンするようにしてもよい。
 さらに、判定部202は、車両1が走行中であるか否かを判定する。判定部202は、車速Vが所定車速V(0)よりも高い場合に、車両1が走行中であると判定する。なお、判定部202は、車両1が走行中であると判定された場合に走行判定フラグをオンするようにしてもよい。
 第1MG制御部204は、判定部202によってIGオン操作がされたと判定されると、すなわちスタートスイッチ150が運転者により操作されると、第1MG20の回転軸の回転速度Nm1が高いほどより低いトルクでエンジン回転速度Neを上昇させるように第1MG20を制御する。言い換えると、スタートスイッチ150が操作されると、第1MG20は、第1MG20の回転軸の回転速度Nm1が高いほどより低い速度でエンジン回転速度Neを上昇させる。より具体的には、車速が高いほどより低いトルクを正回転方向に発生するように第1MG20が制御される。上述したように、第1MG20のトルクは、第1MG20が発電する電力が充電電力上限値Winよりも小さくなるように制限される。
 例えば、車速がゼロである状態等においてエンジン10をクランキングするときの第1MG20のトルクをTm1(v0)とする。車速がゼロより高い状況下においてTm1(v0)で第1MG20を駆動すると第1MG20が発電する電力が充電電力上限値Win以上となる場合、第1MG20のトルクはTm1(v0)も低くされる。第1MG20が発電する電力が充電電力上限値Winよりも小さくなるまで、第1MG20のトルクが低減される。
 なお、第1MG20が発電する電力は、トルクと回転速度とをパラメータに有するマップから算出する等の周知の技術を利用して算出すればよいため、このではその算出方法の詳細な説明は繰り返さない。第1MG20のトルクを制御する方法も同様に、周知の技術を利用すればよい。
 本実施の形態において、判定部202と、第1MG制御部204とは、いずれもECU200のCPUがメモリに記憶されたプログラムを実行することにより実現される、ソフトウェアとして機能するものとして説明するが、ハードウェアにより実現されるようにしてもよい。なお、このようなプログラムは記憶媒体に記録されて車両に搭載される。
 図4を参照して、本実施の形態に係る車両1に搭載されたECU200で実行される処理について説明する。
 ステップ(以下、ステップをSと記載する)100にて、ECU200は、IGオン操作がされたか否かを判定する。IGオン操作がされた場合(S100にてYES)、S102にて、ECU200は、車両1が走行中であるか否かを判定する。
 車両1が走行中である場合(S102にてYES)、S104にて、ECU200は、第1MG20の回転軸の回転速度Nm1が高いほどより低いトルクでエンジン回転速度Neを上昇させるように第1MG20を制御する。
 これにより、エンジン10を始動させる場合にエンジン回転速度Neを上昇させることに伴って第1MG20により発電される電力が制限される。そのため、第1MG20等の電気機器を発熱から保護したり、バッテリ70を過充電から保護したりし得る。
 その後、エンジン回転速度Neが十分の上昇されると、S106にて、ECU200は、燃料噴射および点火を開始するようにエンジン10を制御する。すなわち、エンジン10が始動される。
 以上のように、本実施の形態において、第1MG20は、第1MG20の回転速度Nm1が高いほどより低いトルクでエンジン回転速度を上昇させる。よって、エンジン10を始動する際に第1MG20が負回転している場合、第1MG20によって発電される電力が制限される。
 その他の実施の形態
 以下、前述した動力分割装置40とは異なる形態の動力分割装置300を用いた実施の形態について説明する。図5に示すように、本実施の形態の車両1には、動力分割装置300として、サンギヤ310と、ピニオンギヤ312と、キャリア314と、リングギヤ316とを含む遊星歯車機構が搭載される。
 サンギヤ310は、第2MG30の回転軸に連結される。ピニオンギヤ312は、サンギヤ310およびリングギヤ316の各々と噛み合う。キャリア314は、ピニオンギヤ312を自転可能に支持するとともに、駆動軸18を介在して減速機58に連結される。
 リングギヤ316の状態は、C1クラッチ321、C2クラッチ322およびC3クラッチ323により制御される。図6に、C1クラッチ321、C2クラッチ322およびC3クラッチ323の作動表を示す。
 図6中の「1モータ」は、1つのモータジェネレータのみを駆動源として走行する制御モードを意味する。「2モータ」は、2つのモータジェネレータを駆動源として走行する制御モードを意味する。「シリーズ」は、車両1にシリーズハイブリッド車としての機能を与える制御モードを意味する。「シリーズ+パラレル」は、車両1にシリーズハイブリッド車としての機能およびパラレルハイブリッド車としての機能を与える制御モードを意味する。「X」は「係合状態」を意味する。
 リングギヤ316は、C1クラッチ321が係合し、C2クラッチ322が解放され、C3クラッチ323が解放された場合、回転不能に固定される。すなわち、図7の共線図に示すように、リングギヤ316の回転速度がゼロである。この状態では、車両1は第2MG30のみを駆動源として用いて走行する。
 C1クラッチ321が係合し、C2クラッチ322が解放され、C3クラッチ323が係合した場合には、図8の共線図に示すように、車両1は第1MG20により発電しながら、第2MG30を駆動源として用いて走行可能である。
 リングギヤ316は、C1クラッチ321が解放され、C2クラッチ322が係合し、C3クラッチ323が解放された場合、第1MG20に連結される。図9の共線図に示すように、この状態では、車両1は第1MG20および第2MG30を駆動源として用いて走行可能である。
 リングギヤ316は、C1クラッチ321が解放され、C2クラッチ322が係合し、C3クラッチ323が係合した場合、第1MG20およびエンジン10に連結される。図10の共線図に示すように、この状態では、車両1は第1MG20により発電しながら、エンジン10および第2MG30を駆動源として用いて走行可能である。
 図7~10に示す共線図の三本の縦軸のうちの左側の縦軸がサンギヤ310の回転速度、すなわち、第2MG20の回転速度Nm2を示す。中央の縦軸がキャリア314の回転速度、すなわち、駆動軸18の回転速度Noutを示す。右側の縦軸がリングギヤ316の回転速度を示す。リングギヤ316の回転速度が、エンジン10の回転速度Neまたは第1MG20の回転速度Nm1と同じ場合もあり得る。
 たとえば下り坂などにおいて、C1クラッチ321が解放され、C2クラッチ322が係合し、C3クラッチ323が係合した場合、第2MG30が負回転方向にトルクを出力することにより、図11に示すように、エンジン回転速度Neをゼロから増大することが可能である。
 すなわち、第2MG30が発電することにより、エンジン10を始動するためにエンジン回転速度Neを増大することが可能である。エンジン10が停止している状態においては、駆動軸18の回転速度、すなわち車速が高いほど第2MG30の回転速度Nm2が高い。
 車速が高いほど第2MG30の回転速度Nm2が高いことを考慮して、第2MG30は、車速が高いほどより低いトルクでエンジン回転速度Neを上昇させるように制御される。すなわち、第2MG30は、第2MG30の回転速度Nm1が高いほどより低いトルクでエンジン回転速度Neを上昇させる。これにより、第2MG30によって発電される電力が制限される。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 車両、10 エンジン、11 エンジン回転速度センサ、12 第1レゾルバ、13 第2レゾルバ、14 車輪速センサ、16 駆動軸、18 駆動軸、20 第1MG、30 第2MG、40 動力分割装置、50 サンギヤ、52 ピニオンギヤ、54 キャリア、56 リングギヤ、58 減速機、70 バッテリ、80 駆動輪、102 気筒、104 燃料噴射装置、150 スタートスイッチ、156 電池温度センサ、158 電流センサ、160 電圧センサ、200 ECU、202 判定部、204 第1MG制御部、300 動力分割装置、310 サンギヤ、312 ピニオンギヤ、314 キャリア、316 リングギヤ、321 C1クラッチ、322 C2クラッチ、323 C3クラッチ。

Claims (8)

  1.  運転者が操作するスイッチ(150)と、
     前記スイッチ(150)が操作されることによって始動する内燃機関(10)と、
     前記内燃機関(10)の出力軸に連結される電動モータ(20,30)とを備え、
     前記電動モータ(20,30)は、前記スイッチ(150)が操作されると、前記電動モータ(20,30)の出力軸回転速度が高いほどより低いトルクで前記内燃機関(10)の出力軸回転速度を上昇させる、車両。
  2.  前記内燃機関(10)の出力軸と前記電動モータ(20,30)の出力軸とを連結する連結装置(40,300)をさらに備え、前記連結装置(40,300)は、前記車両が走行し、かつ前記内燃機関(10)が停止した状態において前記電動モータ(20,30)の出力軸を回転させる、請求項1に記載の車両。
  3.  前記連結装置(40,300)は、車速が高いほど前記電動モータ(20,30)の出力軸回転速度を高くし、
     前記電動モータ(20,30)は、前記スイッチ(150)が操作されると、車速が高いほどより低いトルクで前記内燃機関(10)の出力軸回転速度を上昇させる、請求項2に記載の車両。
  4.  前記連結装置(40)は、サンギヤ(50)、キャリア(54)、およびリングギヤ(56)を含み、
     前記サンギヤ(50)は前記電動モータ(20)の出力軸に連結され、
     前記キャリア(54)は前記内燃機関(10)の出力軸に連結され、
     前記リングギヤ(56)は車輪(80)に連結される、請求項3に記載の車両。
  5.  前記電動モータ(20,30)のトルクは、前記電動モータ(20,30)が発生する電力が予め定められた上限値よりも小さくなるように制限される、請求項1に記載の車両。
  6.  運転者が操作するスイッチ(150)と、前記スイッチ(150)が操作されることによって始動する内燃機関(10)と、前記内燃機関(10)の出力軸に連結される電動モータ(20,30)とが搭載された車両の制御方法であって、
     前記スイッチ(150)が操作されたか否かを判断するステップと、
     前記スイッチ(150)が操作されると、前記電動モータ(20,30)により、前記電動モータ(20,30)の出力軸回転速度が高いほどより低いトルクで前記内燃機関(10)の出力軸回転速度を上昇させるステップとを備える、車両の制御方法。
  7.  運転者が操作するスイッチ(150)と、
     前記スイッチ(150)が操作されることによって始動する内燃機関(10)と、
     前記内燃機関(10)の出力軸に連結される電動モータ(20,30)とを備え、
     前記電動モータ(20,30)は、前記スイッチ(150)が操作されると、前記電動モータ(20,30)の出力軸回転速度が高いほどより低い速度で前記内燃機関(10)の出力軸回転速度を上昇させる、車両。
  8.  運転者が操作するスイッチ(150)と、前記スイッチ(150)が操作されることによって始動する内燃機関(10)と、前記内燃機関(10)の出力軸に連結される電動モータ(20,30)とが搭載された車両の制御方法であって、
     前記スイッチ(150)が操作されたか否かを判断するステップと、
     前記スイッチ(150)が操作されると、前記電動モータ(20,30)により、前記電動モータ(20,30)の出力軸回転速度が高いほどより低い速度で前記内燃機関(10)の出力軸回転速度を上昇させるステップとを備える、車両の制御方法。
PCT/JP2011/052224 2011-02-03 2011-02-03 車両および車両の制御方法 WO2012105019A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011554005A JPWO2012105019A1 (ja) 2011-02-03 2011-02-03 車両および車両の制御方法
US13/518,959 US20130311015A1 (en) 2011-02-03 2011-02-03 Vehicle and control method for vehicle
PCT/JP2011/052224 WO2012105019A1 (ja) 2011-02-03 2011-02-03 車両および車両の制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/052224 WO2012105019A1 (ja) 2011-02-03 2011-02-03 車両および車両の制御方法

Publications (1)

Publication Number Publication Date
WO2012105019A1 true WO2012105019A1 (ja) 2012-08-09

Family

ID=46602260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/052224 WO2012105019A1 (ja) 2011-02-03 2011-02-03 車両および車両の制御方法

Country Status (3)

Country Link
US (1) US20130311015A1 (ja)
JP (1) JPWO2012105019A1 (ja)
WO (1) WO2012105019A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103442926A (zh) * 2011-03-24 2013-12-11 丰田自动车株式会社 车辆及车辆用控制方法
JP7188274B2 (ja) * 2019-05-14 2022-12-13 トヨタ自動車株式会社 ハイブリッド車両

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010188800A (ja) * 2009-02-17 2010-09-02 Nissan Motor Co Ltd ハイブリッド車両の制御装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010188800A (ja) * 2009-02-17 2010-09-02 Nissan Motor Co Ltd ハイブリッド車両の制御装置

Also Published As

Publication number Publication date
US20130311015A1 (en) 2013-11-21
JPWO2012105019A1 (ja) 2014-07-03

Similar Documents

Publication Publication Date Title
US9796375B2 (en) Control system for hybrid vehicle
JP5725037B2 (ja) 車両および車両用制御方法
JP5652479B2 (ja) 車両および車両用制御方法
JP5648984B2 (ja) ハイブリッド車両
JP5949731B2 (ja) ハイブリッド車両
JP2020089180A (ja) 電動車両およびその制御方法
JP5598555B2 (ja) 車両および車両用制御方法
JP5729475B2 (ja) 車両および車両の制御方法
JP2010058579A (ja) ハイブリッド車両
JP5644868B2 (ja) 車両および車両の制御方法
JP2013141858A (ja) ハイブリッド車両の制御装置
JP5780314B2 (ja) 車両の制御装置
JP2011097666A (ja) 自動車およびその制御方法
JP5765419B2 (ja) 車両および車両用制御方法
JP2012224215A (ja) ハイブリッド車
JP5652546B2 (ja) 車両および車両用制御方法
JP2012162097A (ja) 車両
WO2012105019A1 (ja) 車両および車両の制御方法
JP2012224304A (ja) 車両の制振制御装置
JP5810580B2 (ja) 車両および車両用制御方法
JP5981119B2 (ja) 車両
JP2012236470A (ja) 車両の制振制御装置
JP2013032096A (ja) ハイブリッド車両

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011554005

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13518959

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11857795

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11857795

Country of ref document: EP

Kind code of ref document: A1