WO2013076918A1 - 難燃性ポリエステル系樹脂組成物を用いた電気電子用部品 - Google Patents

難燃性ポリエステル系樹脂組成物を用いた電気電子用部品 Download PDF

Info

Publication number
WO2013076918A1
WO2013076918A1 PCT/JP2012/006888 JP2012006888W WO2013076918A1 WO 2013076918 A1 WO2013076918 A1 WO 2013076918A1 JP 2012006888 W JP2012006888 W JP 2012006888W WO 2013076918 A1 WO2013076918 A1 WO 2013076918A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
electrical
weight
polyester resin
resin composition
Prior art date
Application number
PCT/JP2012/006888
Other languages
English (en)
French (fr)
Inventor
哲朗 山本
一範 三枝
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to KR20147007913A priority Critical patent/KR20140103896A/ko
Priority to CN201280042879.5A priority patent/CN103764757A/zh
Priority to US14/360,207 priority patent/US20140336326A1/en
Priority to EP12851611.9A priority patent/EP2784119A4/en
Publication of WO2013076918A1 publication Critical patent/WO2013076918A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/06Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/14Macromolecular materials

Definitions

  • the present invention relates to an electrical / electronic component using a flame-retardant polyester resin composition that does not use a halogen-based flame retardant, has high flame retardancy, and can withstand continuous use at high temperatures for a long period of time.
  • Thermoplastic polyester resins represented by polyalkylene terephthalate and the like are widely used for parts such as electric and electronic devices and automobiles because of their excellent characteristics.
  • fire safety requirements tend to be stricter, and examples of resin materials used for the components constituting them are increasingly required to have high flame resistance.
  • halogen flame retardants have conventionally been used in many cases because they are easy to balance with other physical properties.
  • problems such as cases where toxic gases were generated at the fire site and marine pollution. Therefore, in recent years, the demand for non-halogenation has increased due to the increase in environmental awareness, and it has become necessary to cope with non-halogen flame retardants of resin materials.
  • electrical and electronic devices such as OA fixing devices, transformer devices, power module devices, and inverter devices have high operating temperatures and are exposed to high voltages, so they are used for their components (hereinafter referred to as electrical and electronic components).
  • Resin materials are also required to have both heat resistance and flame retardancy, and further realization with non-halogen flame retardant technology is desired.
  • Patent Document 1 shows an example of a bobbin used for a coil such as a high voltage transformer or an ignition device, in which an example using a glass reinforced polybutylene terephthalate resin (PBT), or other composite polyethylene terephthalate is shown. It describes that a resin (PET) can be used.
  • PBT polybutylene terephthalate resin
  • PET resin
  • the flame retardancy of PBT used in the examples is about HB of UL-94 standard, and selection of a material with better flame retardance is desired from the viewpoint of safety.
  • Patent Document 2 discloses an example of a power module device that contains a semiconductor element sealed with a polyamide resin.
  • the case material includes polyphenylene sulfide resin (PPS), PBT, thermoplastic polyamide, thermoplastic polyethylene, It is stated that it is preferable to apply a plastic polyester.
  • Patent Document 3 discloses an inverter device (a kind of power module device) in which a semiconductor IGBT chip corresponding to a large current is accommodated, and describes that PBT is preferable as the resin case material. However, among these, the flame retardancy of the case material is not described in detail, and a response has been desired.
  • halogen-based flame retardant polyester resins have problems at the time of fire or incineration, and PPS may cause problems such as sulfur-containing acid gas, so technology that does not use these Development was desired.
  • An object of the present invention is to provide an electrical and electronic part comprising a flame retardant polyester resin composition that does not use a halogen flame retardant, has a high level of flame retardancy, and can withstand continuous use for a long time at high temperatures. Is to get.
  • thermoplastic polyester resin As a result of intensive studies, the present inventors have made a thermoplastic polyester resin, a phosphorus-based flame retardant having a specific structure, an amorphous thermoplastic super engineering plastic, a fibrous inorganic compound, and a non-fibrous material. It has been found that an electrical and electronic part comprising a composition blended with an inorganic compound can solve the above problems, and has led to the present invention.
  • the present invention includes 100 parts by weight of a thermoplastic polyester resin (A), 5 to 80 parts by weight of a polymeric organophosphorous flame retardant (B) having a polyester structure in the main chain, an amorphous thermoplastic super Flame retardant polyester resin containing 1 to 20 parts by weight of engineering plastic (C), 5 to 120 parts by weight of fibrous inorganic compound (D), and 5 to 50 parts by weight of non-fibrous inorganic compound (E)
  • the present invention relates to an electrical / electronic component made of a composition.
  • thermoplastic polyester resin (A) is polyalkylene terephthalate.
  • the flame retardant polyester resin composition has a relative temperature index defined by UL746B having 140 ° C. or higher in all three types of strength, impact, and electrical characteristics.
  • the flame-retardant polyester resin composition has a temperature class of B type (130 ° C.) or higher in a heat resistant life evaluation test defined by UL1446.
  • the flame-retardant polyester-based resin composition has a comparative tracking index of 200 V or more in a tracking resistance test specified by UL746A.
  • the electrical / electronic component is for use in applications where a voltage of 100 V or more is applied to the electrical / electronic component as an input voltage.
  • the electrical and electronic part is an OA fixing machine part obtained by injection molding or insert molding the flame retardant polyester resin composition.
  • the electrical / electronic component is a coil component, a transformer component, or a relay component obtained by injection molding or insert molding the flame retardant polyester resin composition.
  • the electrical and electronic component is obtained by injection molding or insert molding the flame retardant polyester resin composition, and has a rated voltage of 400 V or more and two or more metal terminals attached. Power module parts or inverter parts.
  • the electrical and electronic parts of the present invention exhibit excellent flame retardancy without using a halogen-based flame retardant, and can withstand continuous use at high temperatures for a long period of time. Therefore, it can be suitably used as a component in electrical and electronic equipment, OA equipment and the like used in a high temperature environment, and is industrially useful.
  • thermoplastic polyester resin (A) used in the present invention is a divalent acid such as terephthalic acid as an acid component or a derivative thereof having ester forming ability, and has 2 to 10 carbon atoms as a glycol component.
  • a polyalkylene terephthalate resin is preferable in that it has an excellent balance of processability, mechanical properties, electrical properties, heat resistance, and the like.
  • polyalkylene terephthalate resin examples include a polyethylene terephthalate resin, a polytrimethylene terephthalate resin, a polybutylene terephthalate resin, and a polyhexamethylene terephthalate resin.
  • Polyethylene terephthalate resin is preferred.
  • thermoplastic polyester resin (A) used in the present invention can be copolymerized with other components at a rate that does not significantly reduce the physical properties, if necessary.
  • a copolymerization component a known acid component, alcohol component and / or phenol component, or derivatives thereof having ester forming ability can be used.
  • Examples of the copolymerizable acid component include a divalent or higher aromatic carboxylic acid having 8 to 22 carbon atoms, a divalent or higher aliphatic carboxylic acid having 4 to 12 carbon atoms, and a divalent or higher carbon number of 8 to 15 carbon atoms. These alicyclic carboxylic acids, and derivatives thereof having ester forming ability.
  • Specific examples of the copolymerizable acid component include terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, bis (p-carbodiphenyl) methaneanthracene dicarboxylic acid, 4-4′-biphenyldicarboxylic acid, 1,2-bis.
  • Examples of the copolymerizable alcohol and / or phenol component include dihydric or higher aliphatic alcohols having 2 to 15 carbon atoms, dihydric or higher alicyclic alcohols having 6 to 20 carbon atoms, and 6 to 40 carbon atoms. Examples thereof include aromatic alcohols having a valence of 2 or more, phenols having a valence of 2 or more, and derivatives having ester-forming ability.
  • copolymerizable alcohol and / or phenol component examples include ethylene glycol, propanediol, butanediol, hexanediol, decanediol, neopentylglycol, cyclohexanedimethanol, cyclohexanediol, 2,2′-bis (4 -Hydroxyphenyl) propane, 2,2'-bis (4-hydroxycyclohexyl) propane, hydroquinone, glycerin, pentaerythritol, and the like, and derivatives having ester forming ability, and cyclic esters such as ⁇ -caprolactone It is done.
  • ethylene glycol and butanediol are preferable because they are excellent in physical properties, handleability, and reaction ease.
  • polyalkylene glycol unit may be copolymerized.
  • polyoxyalkylene glycol include, for example, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and random or block copolymers thereof, alkylene glycols of bisphenol compounds (polyethylene glycol, polypropylene glycol, polytetramethylene glycol) , And random or block copolymers thereof) modified polyoxyalkylene glycols such as adducts.
  • a polyethylene glycol adduct of bisphenol A having a molecular weight of 500 to 2000 is preferable because the thermal stability during copolymerization is good and the heat resistance of the molded product is hardly lowered.
  • thermoplastic polyester resins may be used alone or in combination of two or more.
  • the method for producing the thermoplastic polyester resin (A) in the present invention can be obtained by a known polymerization method such as melt polycondensation, solid phase polycondensation, solution polymerization and the like.
  • a known polymerization method such as melt polycondensation, solid phase polycondensation, solution polymerization and the like.
  • phosphoric acid, phosphorous acid, hypophosphorous acid monomethyl phosphate, dimethyl phosphate, trimethyl phosphate, methyl diethyl phosphate, triethyl phosphate, triisopropyl phosphate
  • phosphoric acid, phosphorous acid, hypophosphorous acid, monomethyl phosphate, dimethyl phosphate, trimethyl phosphate, methyl diethyl phosphate, triethyl phosphate, triisopropyl phosphate One or more compounds such as tributyl phosphate and triphenyl phosphate may be added.
  • various organic or inorganic crystal nucleating agents generally well known at the time of polymerization may be added alone or in combination of two or more. May be.
  • the intrinsic viscosity of the thermoplastic polyester resin (A) used in the present invention is 0.4 to 1.2 dl / g. Is preferable, and 0.6 to 1.0 dl / g is more preferable.
  • the intrinsic viscosity is less than 0.4 dl / g, mechanical strength and impact resistance tend to be lowered, and when it exceeds 1.2 dl / g, fluidity during molding tends to be lowered.
  • the polymer type organophosphorus flame retardant (B) having a polyester structure in the main chain in the present invention can be represented by the following general formula 1.
  • X, Y and Z in the general formula 1 are each a hydrocarbon group, and at least one of X, Y and Z is a hydrocarbon group containing a phosphorus atom.
  • the polymer type organic phosphorus flame retardant (B) having a polyester structure in the main chain can be preferably represented by the following general formula 2.
  • n is less than 2, there is a tendency that the crystallization of the thermoplastic polyester resin is inhibited or the mechanical strength is lowered.
  • n is an integer of 2 or more and m is an integer of 0 or more
  • the production method of the high molecular weight organic phosphorus flame retardant (B) having a polyester structure in the main chain used in the present invention is not particularly limited, and a general polycondensation reaction can be used.
  • the content of the high molecular weight organic phosphorus flame retardant (B) having a polyester structure in the main chain with respect to 100 parts by weight of the thermoplastic polyester resin (A) is flame retardancy, moldability, and mechanical properties of the molded body. From the viewpoint of strength, it is 5 to 80 parts by weight. From the viewpoint of flame retardancy, 8 parts by weight or more is preferable, and from the viewpoints of moldability and mechanical strength of the molded body, 70 parts by weight or less is preferable, and 30 parts by weight or less is more preferable.
  • the amorphous thermoplastic super engineering plastic (C) in the present invention is at least one selected from the group consisting of a polyetherimide resin, a polysulfone resin such as polysulfone, polyphenylsulfone, and polyethersulfone, and a polyarylate resin. These are resins, and these may be used alone or in combination of two or more. By adding this component, long-term reliability under a high temperature environment can be improved. Also, a mixed product such as a polymer alloy with another polymer or a polymer blend can be used.
  • a polyetherimide resin is particularly preferably used from the viewpoint of electrical characteristics.
  • the polyetherimide resin is a polymer containing an aliphatic, alicyclic or aromatic ether unit and a cyclic imide group as a repeating unit, and is not particularly limited as long as it is a polymer having melt moldability. Further, as long as the effect of the present invention is not impaired, the main chain of the polyetherimide is a cyclic imide, a structural unit other than an ether bond, such as an aromatic, aliphatic, alicyclic ester unit, oxycarbonyl unit, etc. May be contained.
  • 2,2-bis [4- (2,3-dicarboxyphenoxy) phenyl] propane dianhydride and m-phenylenediamine or p-phenylenediamine from the viewpoint of melt moldability and cost.
  • Ultem registered trademark
  • the polysulfone resin is a thermoplastic resin having an aromatic ring group in its main chain and a sulfone group as its linking group, and is generally classified into polysulfone, polyethersulfone, and polyphenylsulfone.
  • the polysulfone resin is typically a polymer having a structure represented by the following general formula 3.
  • “Udel” registered trademark
  • Solvay Advanced Polymers can be used from the viewpoint of melt moldability and cost.
  • the polyethersulfone resin is obtained by a Friedel-Crafts reaction of diphenyl ether chlorosulfone, and is typically a polymer having a structure represented by the following chemical formula 4.
  • “Radel A” registered trademark
  • Solvay Advanced Polymers can be used from the viewpoint of melt moldability and cost.
  • the polyphenylsulfone resin is typically a polymer having a structure represented by the following chemical formula 5.
  • “Radel R” registered trademark
  • Solvay Advanced Polymers can be used from the viewpoint of melt moldability and cost.
  • the polyarylate resin in the present invention is a resin having an aromatic dicarboxylic acid and a bisphenol as repeating units.
  • bisphenols include, for example, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane, 4,4′-dihydroxydiphenylsulfone, 4 4,4′-dihydroxydiphenyl ether, 4,4′-dihydroxydiphenyl sulfide, 4,4′-dihydroxydiphenyl ketone, 4,4′-dihydroxydiphenylmethane, 1,1-bis (4-hydroxyphenyl) cyclohexane and the like. These compounds may be used alone or in combination of two or more. In particular, 2,2-bis (4-hydroxyphenyl) propane is preferable from an economical viewpoint.
  • aromatic dicarboxylic acid examples include terephthalic acid, isophthalic acid, orthophthalic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, diphenic acid, 4,4′-dicarboxydiphenyl ether, bis (p -Carboxyphenyl) alkane, 4,4'-dicarboxydiphenyl sulfone, etc., among which terephthalic acid and isophthalic acid are preferred.
  • the content of the amorphous thermoplastic super engineering plastic (C) with respect to 100 parts by weight of the thermoplastic polyester resin (A) is from 1 to 2 from the viewpoint of improving the strength retention after a long-term heat test at high temperature. 20 parts by weight, preferably 5 parts by weight or more. From the viewpoint of molding processability, that is, from the viewpoint of preventing a decrease in fluidity, and from the viewpoint of preventing a decrease in initial mechanical strength of the molded body and an increase in cost of the product, 15 parts by weight or less is preferable.
  • Fibrous inorganic compound (D) In order to improve mechanical properties, heat resistance, and long-term reliability in a high-temperature environment, the fibrous inorganic compound (D) is added to the flame-retardant polyester resin composition constituting the electric / electronic component of the present invention. Added.
  • fibrous inorganic compound used in the present invention include glass fiber, carbon fiber, metal fiber, asbestos, potassium titanate whisker, wollastonite, and the like. These may be used alone or in combination of two or more.
  • the glass fiber used in the present invention a known glass fiber that is generally used can be used, but from the viewpoint of workability, a chopped strand glass fiber treated with a sizing agent is used. Is preferred.
  • the glass fiber used in the present invention is preferably one in which the surface of the glass fiber is treated with a coupling agent in order to enhance the adhesion between the resin and the glass fiber, and may be one using a binder.
  • a coupling agent for example, alkoxysilane compounds such as ⁇ -aminopropyltriethoxysilane and ⁇ -glycidoxypropyltrimethoxysilane are preferably used, and as the binder, for example, epoxy resin, urethane resin, etc. Is preferably used, but is not limited thereto.
  • the said glass fiber may be used independently and may use 2 or more types together.
  • the fiber diameter is preferably 1 to 20 ⁇ m, and the fiber length is preferably 0.01 to 50 mm.
  • the fiber diameter is less than 1 ⁇ m, the expected reinforcing effect tends to be not obtained, and when the fiber diameter exceeds 20 ⁇ m, the surface property and fluidity of the molded product tend to be lowered. Further, if the fiber length is less than 0.01 mm, the expected resin reinforcing effect tends not to be obtained, and if the fiber length exceeds 50 mm, the surface property and fluidity of the molded product tend to decrease. .
  • the content of the fibrous inorganic compound (D) in the present invention is preferably 5 parts by weight, more preferably 10 parts by weight, with respect to 100 parts by weight of the thermoplastic polyester resin (A), more preferably 15 parts by weight. Part is more preferable. If the content of the fibrous inorganic compound is less than 5 parts by weight, the effect of improving heat resistance and rigidity may not be sufficient. As an upper limit of fibrous inorganic compound content, 120 weight part is preferable, 100 weight part is more preferable, and 80 weight part is still more preferable. When the content of the fibrous inorganic compound exceeds 120 parts by weight, the fluidity may be lowered, the thin moldability may be impaired, and the surface property of the molded body may be deteriorated.
  • Non-fibrous inorganic compound (E) The flame-retardant polyester-based resin composition constituting the electrical and electronic parts of the present invention has a non-fibrous inorganic compound for the purpose of improving mechanical properties, electrical characteristics, heat resistance, and long-term reliability under high-temperature environments. Add (E).
  • non-fibrous inorganic compound used in the present invention include, for example, glass flakes, glass beads, talc, mica, clay, calcium carbonate, barium sulfate, titanium oxide, and aluminum oxide. These may be used alone or in combination of two or more.
  • the content of the non-fibrous inorganic compound in the present invention is preferably 5 parts by weight, more preferably 8 parts by weight, and 10 parts by weight as a lower limit value with respect to 100 parts by weight of the thermoplastic polyester resin (A). Further preferred. If the non-fibrous inorganic compound content is less than 5 parts by weight, the effect of improving heat resistance and rigidity may not be sufficient. As an upper limit of non-fibrous inorganic compound content, 50 weight part is preferable, 40 weight part is more preferable, and 30 weight part is still more preferable. When the content of the non-fibrous inorganic compound exceeds 50 parts by weight, the fluidity may be lowered, the thin-wall formability may be impaired, or the surface property of the molded body may be deteriorated.
  • a nitrogen compound can be added to the flame-retardant polyester resin composition of the present invention. Flame retardance can be further improved by using a nitrogen compound and the organophosphorus flame retardant together.
  • the nitrogen compound in the present invention include triazine compounds such as melamine / cyanuric acid adduct, melamine and cyanuric acid, and tetrazole compounds. Or the melam and / or melem which are the dimer and / or trimer of a melamine are mention
  • the melamine / cyanuric acid adduct includes melamine (2,4,6-triamino-1,3,5-triazine) and cyanuric acid (2,4,6-trihydroxy-1,3,5-triazine). ) And / or its tautomers.
  • the melamine / cyanuric acid adduct can be obtained by a method of mixing a melamine solution and a cyanuric acid solution to form a salt, or a method of forming a salt while adding and dissolving the other to one solution.
  • a method of mixing a melamine solution and a cyanuric acid solution to form a salt
  • a method of forming a salt while adding and dissolving the other to one solution There is no particular limitation on the mixing ratio of melamine and cyanuric acid, but it is better that the adduct obtained is close to equimolar, especially equimolar from the viewpoint that the thermal stability of the thermoplastic polyester resin is less likely to be impaired. preferable.
  • the average particle size of the melamine / cyanuric acid adduct in the present invention is not particularly limited, but is preferably 0.01 to 250 ⁇ m, preferably 0.5 to 200 ⁇ m from the viewpoint of not impairing the strength characteristics and molding processability of the resulting composition. Is particularly preferred.
  • the nitrogen compound content in the flame-retardant polyester resin composition of the present invention is preferably 10 parts by weight, more preferably 20 parts by weight, and 25 parts by weight as a lower limit with respect to 100 parts by weight of the thermoplastic polyester resin. Part is more preferable. If the nitrogen compound content is less than 10 parts by weight, the flame retardancy and tracking resistance tend to decrease. As an upper limit of nitrogen compound content, 100 weight part is preferable and 80 weight part is more preferable. When the content of the nitrogen compound exceeds 100 parts by weight, the extrudability tends to deteriorate, or the strength, mechanical strength and heat-and-moisture resistance of the weld part tend to decrease.
  • a dripping preventive agent such as a fluororesin
  • silicone oil, reactive group-containing silicone oil, silica, particularly preferably a dripping preventive agent such as a fluororesin may be added to the flame retardant polyester resin composition of the present invention.
  • a fluororesin When the fluororesin is used in the resin composition of the present invention, if the amount used is too large, an acidic toxic gas is generated at the time of combustion such as disposal or molding, and if it is too small, the dripping prevention effect is sufficient. Since it is not obtained, it is preferably 2 parts by weight or less, more preferably 1 part by weight or less, further 0.5 part by weight or less, and preferably 0.05 parts by weight, with respect to 100 parts by weight of the thermoplastic polyester resin.
  • the fluorine resin include fluorine resins such as polytetrafluoroethylene, polyvinylidene fluoride, tetrafluoroethylene / vinylidene fluoride copolymer, tetrafluoroethylene / hexafluoropropylene copolymer, or polytetrafluoroethylene.
  • fluorine resins such as polytetrafluoroethylene, polyvinylidene fluoride, tetrafluoroethylene / vinylidene fluoride copolymer, tetrafluoroethylene / hexafluoropropylene copolymer, or polytetrafluoroethylene.
  • powders obtained by complexing with other polymers such as polymers obtained by polymerizing (meth) acrylic acid esters, aromatic alkenyl compounds, vinyl cyanide and the like.
  • the flame retardant polyester-based resin composition constituting the electrical and electronic parts of the present invention includes, as necessary, pigments, dyes, heat stabilizers, light stabilizers, antioxidants, lubricants, plasticizers, antistatic agents, etc. Agents, impact modifiers, mold release agents, nucleating agents, corrosion inhibitors, hydrolysis inhibitors, acid acceptors, antibacterial agents can be added.
  • the relative temperature index is preferably 140 ° C. or higher, and more preferably 150 ° C. or higher, in order to ensure long-term reliability in a high temperature environment. If it is less than 140 ° C., long-term heat resistance is not ensured in actual use, which causes a problem.
  • the relative temperature index is a temperature derived when a heat aging test is performed in accordance with UL746B. Tensile test in accordance with ASTM D-638, D-256, D-149, IZOD impact test, and insulation breakdown strength retention time after 50% heat resistance test at a certain temperature level. The half-life of each temperature is an Arrhenius plot, and the half-life is 100,000 hours. This relative temperature index is an indicator of whether or not it can withstand continuous use for a long time at a high temperature.
  • the system temperature class is preferably B or higher, and F or higher, in order to ensure long-term reliability in high-temperature environments and various environments such as coil bobbins. More preferably.
  • the system temperature class is a temperature derived when an insulation system (candidate material) including a molded body obtained from the flame-retardant polyester resin composition is first assembled and a heat-resistant life evaluation test based on UL1446 is performed. It is a class. Classify 120 to 130 ° C as E type, 130 to 155 ° C as B type, 155 to 180 ° C as F type, and 180 to 200 ° C as H type.
  • the system temperature class is an index of whether or not the insulation system can withstand continuous use under various environments for a long time at high temperatures.
  • the method for producing the flame retardant polyester resin composition is not particularly limited.
  • a thermoplastic polyester resin (A) a polymer type organic phosphorus flame retardant having a polyester structure in the main chain (B ), Amorphous thermoplastic super engineering plastic (C), fibrous inorganic compound (D), non-fibrous inorganic compound (E), and other additives as required
  • various general kneaders A method of using and melt kneading can be mentioned. Examples of the kneader include a single screw extruder and a twin screw extruder, and a twin screw extruder with high kneading efficiency is particularly preferable.
  • the molded product corresponding to the electrical and electronic component of the present invention can be produced by molding the flame retardant polyester resin composition by a generally known method.
  • Specific examples include injection molding, insert molding, injection press molding, in-mold molding, extrusion molding, and compression molding. Of these, injection molding and insert molding are preferred.
  • the electrical and electronic parts of the present invention can withstand long-term continuous use at high temperatures without the use of halogen-based flame retardants, and therefore, particularly where long-term heat resistance and flame resistance are required. Can be suitably used as a component included in an electric and electronic device that encloses.
  • the components included in the electrical and electronic equipment include OA equipment parts, power module parts, inverter parts, coil parts, transformer parts, relay parts, switches, capacitors, starter switches, regulator cases, brushes. Holder, IC carrier, plug, socket, fuse case, sensor, lamp holder, flywheel, generator parts, motor, servo motor, solenoid, reactor, linear motor coil, rectifier, DC / DC converter, microwave oven parts , Parts for IH cooking machines, parts for electric field or magnetic field resonance type non-contact power feeding devices, parts for radio wave type non-contact power feeding devices, and the like.
  • the comparative tracking index of the flame-retardant polyester resin composition is preferably 200 V or more, more preferably 225 V or more, and particularly preferably 250 V or more. .
  • the volume specific resistance value of the flame retardant polyester resin composition is preferably 10 12 ⁇ or more, and more preferably 10 13 ⁇ or more.
  • OA equipment parts examples include housings, paper trays, OA fixing machine parts (frame covers, thermostat cradles, etc.), gears, coil frames, scanner housings, resin shafts, conveyance guides, chassis, projectors. Cases, lamp holders, etc. are included.
  • the distance from the heat roller is preferably 5 mm or less, and more preferably 3 mm or less from the viewpoint of actual use as the OA equipment part.
  • the material used for the OA equipment part from the viewpoint of thermal durability in actual use, in the thermal durability test of the flame-retardant polyester resin composition used in the present invention according to the UL746B standard. It is preferable to have a thermal durability with a relative temperature index of 150 ° C. or higher.
  • the power module component or the inverter component examples include a sealing material, an insulating plate (sheet), and a housing. From the viewpoint of actual use, it is desirable that the power module or the inverter has two or more metal terminals, and particularly preferably three or more. Further, the lower limit value of the rated voltage of the power module or inverter using the electric and electronic parts of the present invention is preferably 200V, more preferably 400V, and particularly preferably 600V. As an upper limit, 6500V is preferable and 1700V is more preferable. The rated current is preferably 10A to 2500A, more preferably 50A to 600A, and still more preferably 75A to 150A. A thing showing such a rated current is suitable as a power module or an inverter.
  • the creeping distance between the metal terminals is preferably 6.4 mm or more and 104 mm or less, and particularly preferably 9.6 mm or more and 52.8 mm or less.
  • the heat of the flame-retardant polyester resin composition used in the present invention according to the UL746B standard is used. In the durability test, it is preferable to have a thermal durability with a relative temperature index of 150 ° C. or higher.
  • Examples of the coil component, transformer component, or relay component include a coil bobbin, bobbin case, terminal block, reactor core insulation, reactor case, transformer core insulation, transformer case, relay case, etc. It is done.
  • a coil having a primary input voltage of 100 V or more is desirable from the viewpoint of actual use, and a coil having an output of 5 W or more and 510 W or less is desirable.
  • a preferred embodiment of the transformer is a transformer having an output of preferably 0.1 W to 2000 W, more preferably 0.5 W to 1500 W from the viewpoint of practical use.
  • a preferred embodiment of the relay is a relay having a rated voltage of 100 V to 700 V, more preferably 125 V to 660 V from the viewpoint of actual use.
  • a relay with a rated current of 0.1 A or more and 100 A or less, more preferably 1 A or more and 50 A or less is desirable.
  • type B 130 ° C.
  • the final application of the electric and electronic parts of the present invention includes (plug-in) electric vehicles, fuel cell vehicles, gasoline / electric hybrid vehicles, railway vehicles, air conditioners, air conditioning systems, robots, solar power generation systems, wind power generation systems. , Cogeneration systems, fuel cell power generation systems, smart grids (such as smart towns and smart houses), uninterruptible power supply systems, superconducting power storage devices (SMES), microwave ovens, IH cooking machines, frequency conversion equipment, lighting equipment, information Examples include, but are not limited to, devices, display devices, signal devices, and medical devices.
  • the electrical and electronic parts of the present invention have a thin flame retardance, and the thickness of the molded body that is the electrical and electronic parts may be 1 mm or less, and further 0.8 mm or less. May be.
  • Thermoplastic polyester resin (A1) Polyethylene terephthalate resin (Product name: EFG-70, manufactured by Bell Polyester Products) [Organic Phosphorus Flame Retardant (B1)] Synthesized in Production Example 1.
  • ⁇ Relative temperature index> The obtained pellets were dried at 120 ° C. for 3 hours, and then an injection molding machine (IE-75E-2A (clamping pressure: 75 tons) manufactured by Toshiba Machine Co., Ltd.) was used. Mold temperature 120 ° C., injection rate 30 cm 3 / sec. Under these conditions, injection molding was performed to prepare a dumbbell test piece, a bar test piece, and a 2 mm-thick test piece according to ASTM D-638, D-256, and D-149, respectively.
  • IE-75E-2A clamp pressure: 75 tons
  • a tensile test, an IZOD impact test, and a dielectric breakdown strength measurement were performed according to UL746B, and a tensile strength at 23 ° C., an IZOD impact value, and a dielectric breakdown strength were measured.
  • a heat aging test was performed according to UL746B, and a relative temperature index was calculated.
  • ⁇ Tracking resistance test> The obtained pellets were dried at 140 ° C. for 3 hours, and using an injection molding machine (manufactured by Nissei Plastic Industrial Co., Ltd., FN1000 clamping pressure: 80 tons), cylinder set temperature 250 ° C. to 280 ° C. and mold temperature 120 ° C. The injection molding was performed under the conditions described above to obtain a 120 mm ⁇ 120 mm ⁇ 3 mm flat plate.
  • a tracking resistance tester manufactured by Mize Tester Co., Ltd.
  • an aqueous solution of about 0.1 wt% ammonium chloride was used as the aqueous electrolyte solution.
  • a value obtained by dividing the value obtained by the measurement in units of 25 V was defined as a comparative tracking index.
  • compositions of Reference Examples 1 to 4 have a high degree of flame retardancy even though they do not contain a halogen-based flame retardant, and can withstand continuous use for a long time at high temperatures. It can be.
  • Example 1 After drying the pellets obtained in Reference Example 1 at 140 ° C. for 3 hours, using an injection molding machine (manufactured by Nippon Steel Works, J150E-P, clamping pressure: 150 tons), the cylinder set temperature is 250 ° C. to 280 ° C. Injection molding was performed under the conditions of °C and mold temperature of 120 °C, and a molded body of 130 mm x 140 mm x height 38 mm having a structure in which the seven metal terminal blocks can be assembled later was produced. The molded body was used as a casing of a power module, and a power module requiring a rated voltage of 1700 V, a rated current of 1200 A, and a relative temperature index of 150 ° C. of UL746B was produced.
  • Example 2 After drying the pellets obtained in Reference Example 1 at 140 ° C. for 3 hours, an injection molding machine (manufactured by Nissei Plastic Industrial Co., Ltd., FN1000, clamping pressure: 80 tons) is used and the cylinder set temperature is 250 ° C. to 280 ° C. Then, injection molding was performed under the conditions of a mold temperature of 120 ° C., and a molded body of 122 mm ⁇ 58 mm ⁇ height 13 mm having a structure in which the 18 metal terminal blocks could be assembled later was produced. The molded body was used as a casing of a power module, and a power module requiring a rated voltage of 600 V, a rated current of 100 A, and a UL740B relative temperature index of 150 ° C. was produced.
  • an injection molding machine manufactured by Nissei Plastic Industrial Co., Ltd., FN1000, clamping pressure: 80 tons
  • Example 3 After the pellets obtained in Reference Example 2 were dried at 140 ° C. for 3 hours, an injection molding machine (manufactured by Nissei Plastic Industrial Co., Ltd., FN1000, clamping pressure: 80 tons) was used and the cylinder set temperature was 250 ° C. to 280 ° C. Then, injection molding was performed under the conditions of a mold temperature of 120 ° C., and a molded body of 122 mm ⁇ 58 mm ⁇ height 13 mm having a structure in which the 18 metal terminal blocks could be assembled later was produced. The molded body was used as a casing of a power module, and a power module requiring a rated voltage of 600 V, a rated current of 100 A, and a UL740B relative temperature index of 150 ° C. was produced.
  • an injection molding machine manufactured by Nissei Plastic Industrial Co., Ltd., FN1000, clamping pressure: 80 tons
  • Example 4 After the pellets obtained in Reference Example 1 were dried at 140 ° C. for 3 hours, using an injection molding machine (manufactured by Nippon Steel Works, JT100RAD, mold clamping pressure: 100 tons), cylinder set temperature 250 ° C. to 280 ° C., mold Insert molding was performed under the condition of a temperature of 120 ° C. to produce a molded body having 136 mm ⁇ 78 mm ⁇ 24 mm height having 19 metal pin-shaped terminals. The molded body was used as a casing of a power module, and a power module requiring a rated voltage of 600 V, a rated current of 100 A, and a UL740B relative temperature index of 150 ° C. was produced.
  • Example 5 After drying the pellets obtained in Reference Example 1 at 140 ° C. for 3 hours, using an injection molding machine (manufactured by Nippon Steel Works, J150E-P, clamping pressure: 150 tons), the cylinder set temperature is 250 ° C. to 280 ° C. Injection molding was performed under the conditions of °C and mold temperature of 120 °C, and a molded product of 10 mm ⁇ 20 mm ⁇ 11 mm and thickness 0.4 mm was obtained. The molded body was used as a relay case to produce a relay that required an AC output 10A, 250V, a DC output 10A, 24V, a control voltage 24V, and a relative temperature index 150 ° C. of UL746B.
  • Example 6 After drying the pellets obtained in Reference Example 1 at 140 ° C. for 3 hours, an injection molding machine (manufactured by Nissei Plastic Industrial Co., Ltd., FN1000, clamping pressure: 80 tons) is used and the cylinder set temperature is 250 ° C. to 280 ° C. A molded body having a diameter of 54 mm and a height of 34 mm was produced under the conditions of a mold temperature of 120 ° C. The molded body was used as a core material of a choke coil, and a donut type choke coil requiring a rated current of 15 A and a temperature class B of UL1446 was produced.
  • an injection molding machine manufactured by Nissei Plastic Industrial Co., Ltd., FN1000, clamping pressure: 80 tons
  • Example 7 After drying the pellets obtained in Reference Example 1 at 140 ° C. for 3 hours, using an injection molding machine (manufactured by Nippon Steel Works, J150E-P, clamping pressure: 150 tons), the cylinder set temperature is 250 ° C. to 280 ° C. A molded body of 140 mm ⁇ 140 mm ⁇ 95 mm was produced under the conditions of °C and mold temperature of 120 °C. The molded body is used as a transformer casing, and primary voltage 0-200 / 220 / 240V, secondary voltage 0-100V, secondary current 5A, and temperature class F of UL1446 in the heat-resistant life evaluation test are required. A transformer was produced.
  • Example 8 After drying the pellets obtained in Reference Example 1 at 140 ° C. for 3 hours, using an injection molding machine (manufactured by Nippon Steel Works, J150E-P, clamping pressure: 150 tons), the cylinder set temperature is 250 ° C. to 280 ° C. A molded body of 60 mm ⁇ 51.2 mm ⁇ 60 mm was produced under the conditions of °C and mold temperature of 120 °C. The molded body was used as a core material of a reactor, and a reactor requiring a rated current of 1 to 35 A and a temperature class F of UL1446 was produced.
  • Example 9 After the pellets obtained in Reference Example 1 were dried at 140 ° C. for 3 hours, an injection molding machine (manufactured by Nissei Plastic Industrial Co., Ltd., FE360S100ASE, mold clamping pressure: 360 tons) was used, and the cylinder set temperature was 250 ° C. to 280 ° C. A molded body of 400 mm ⁇ 100 mm was produced under the condition of a mold temperature of 120 ° C. The molded body is used as a fixing machine frame that requires a relative temperature index of 150 ° C. of UL746B, and the frame is a component suitable for an OA fixing machine.
  • an injection molding machine manufactured by Nissei Plastic Industrial Co., Ltd., FE360S100ASE, mold clamping pressure: 360 tons
  • Example 10 After the pellets obtained in Reference Example 2 were dried at 140 ° C. for 3 hours, an injection molding machine (manufactured by Nissei Plastic Industrial Co., Ltd., FE360S100ASE, mold clamping pressure: 360 tons) was used, and a cylinder set temperature of 250 ° C. to 280 ° C. A molded body of 400 mm ⁇ 100 mm was produced under the condition of a mold temperature of 120 ° C. The molded body is used as a fixing machine frame that requires a relative temperature index of 150 ° C. of UL746B, and the frame is a component suitable for an OA fixing machine.
  • an injection molding machine manufactured by Nissei Plastic Industrial Co., Ltd., FE360S100ASE, mold clamping pressure: 360 tons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

ハロゲン系難燃剤を使用せず、高度の難燃性を有し、高温下長期間の連続使用に耐えうる、難燃性ポリエステル系樹脂組成物からなる電気電子用部品を得ることを目的とする。本発明の電気電子用部品は、熱可塑性ポリエステル系樹脂(A)100重量部と、主鎖がポリエステル構造を持つ高分子型有機リン系難燃剤(B)5~80重量部と、非晶性熱可塑性スーパーエンジニアリングプラスチック(C)1~20重量部と、繊維状無機化合物(D)5~120重量部と、非繊維状無機化合物(E)5~50重量部と、を含有する難燃性ポリエステル系樹脂組成物からなる電気電子用部品である。

Description

難燃性ポリエステル系樹脂組成物を用いた電気電子用部品
 本発明は、ハロゲン系の難燃剤を使用せず、高度の難燃性を有し、高温下長期間の連続使用に耐えうる難燃性ポリエステル系樹脂組成物を用いた電気電子用部品に関する。
 ポリアルキレンテレフタレートなどに代表される熱可塑性ポリエステル系樹脂は、その優れた特性から、電気および電子装置、自動車などの部品に広く使用されている。近年、特に電気電子装置では、火災に対する安全性要求が厳しくなる傾向にあり、それらを構成する部品に用いられる樹脂材料にも高度な難燃性が要求される例が増加している。ここで、樹脂材料に難燃性を付与するに際して、従来はハロゲン系難燃剤が、他の物性とのバランスがとりやすいことから多く使用されてきたが、焼却処理時に酸性ガスが発生するケースや、火災現場で毒性ガスが発生するケース、海洋汚染などの課題が有った。そのため、近年では環境意識の高まりから、非ハロゲン化の要求が強くなっており、樹脂材料の非ハロゲン系難燃化への対応が求められるようになった。
 また、これら部品の最終製品に占める使用個数が増えるに伴い、高集積化されたり、設置場所に制約が出るなど、外部使用環境が厳しくなったり、あるいは取り扱う電力の大規模化に伴う発熱量増大や、該部品自体の小型軽量化などに伴い放熱が難しくなるなどの結果、従来よりも高温で安定的に動作することが要求され、それに伴って樹脂材料への耐熱性の要求も高まってきている。
 特に、OA定着装置、変圧装置、パワーモジュール装置、インバーター装置などに代表される電気電子装置の動作温度は高く、高電圧にも晒されるため、その部品(以下、電気電子用部品という)に用いる樹脂材料においても耐熱性、難燃性の両立が求められ、さらには非ハロゲン系難燃技術での実現が望まれている。
 例えば、特許文献1には高圧変圧装置や点火装置などのコイルに用いるボビンの一例が示されており、そこでガラス強化ポリブチレンテレフタレート樹脂(PBT)を用いた実施例や、その他にも複合ポリエチレンテレフタレート樹脂(PET)が使用できることが記載されている。ここで実施例に用いられているPBTの難燃性はUL-94規格のHB程度であり、安全面から難燃性のより良好な材料の選択が望まれた。
 例えば、特許文献2にはポリアミド樹脂でシールされた半導体素子を収容したパワーモジュール装置の実施例が開示され、そのケース材料にポリフェニレンサルファイド樹脂(PPS)やPBT、熱可塑性ポリアミド、熱可塑性ポリエチレン、熱可塑性ポリエステルを適用することが好ましいことが記述されている。
 特許文献3には大電流に対応した半導体のIGBTチップを収容したインバーター装置(一種のパワーモジュール装置)が開示され、その樹脂ケース材料としてPBTが好ましいことが記述されている。しかしながらこれらの中で、ケース材料の難燃性については詳しく記されておらず、対応が望まれた。
 これらを含む先行技術には、OA定着装置用部品、コイルボビン、あるいはパワーモジュール装置やインバーター装置などのケース材料(ケーシング、エンクロージャーとも言う)、絶縁板、あるいは絶縁シートにおいて、難燃性を要することを述べたものは見られない。しかしながら一方で、法規制・各種規格などよりこれらが高レベルの難燃性を有することが有利であることは容易に想像できる。しかしながら、130℃近い、あるいはそれ以上の高温環境で安定的に使用できる非ハロゲン系難燃ポリエステル系樹脂は知られておらず、実用的にはハロゲン系難燃ポリエステル系樹脂やPPSが知られるのみであった。
 しかし、ハロゲン系難燃ポリエステル系樹脂では前述のように火災時や焼却処分時の課題が有り、PPSでは硫黄含有酸性ガスなどの有害性が問題となる場合があるため、これらを用いない技術の開発が望まれた。
特開平8-124779号公報 特開2003-86722号公報 特開平8-236667号公報
 本発明の目的は、ハロゲン系難燃剤を使用せず、高度の難燃性を有し、高温下長期間の連続使用に耐えうる、難燃性ポリエステル系樹脂組成物からなる電気電子用部品を得ることである。
 本発明者らは、鋭意検討を重ねた結果、熱可塑性ポリエステル系樹脂に、特定の構造を有するリン系難燃剤と、非晶性熱可塑性スーパーエンジニアリングプラスチックと、繊維状無機化合物と、非繊維状無機化合物とを配合した組成物からなる電気電子用部品が、上記課題を解決可能であることを見出し、本発明に至った。
 すなわち、本発明は、熱可塑性ポリエステル系樹脂(A)100重量部と、主鎖がポリエステル構造を持つ高分子型有機リン系難燃剤(B)5~80重量部と、非晶性熱可塑性スーパーエンジニアリングプラスチック(C)1~20重量部と、繊維状無機化合物(D)5~120重量部と、非繊維状無機化合物(E)5~50重量部と、を含有する難燃性ポリエステル系樹脂組成物からなる電気電子用部品に関する。
 好ましい実施態様は、前記熱可塑性ポリエステル系樹脂(A)を、ポリアルキレンテレフタレートとすることである。
 好ましい実施態様によると、前記難燃性ポリエステル系樹脂組成物は、UL746Bで規定される相対温度指数において、強度、衝撃および電気特性の3種類全てで140℃以上を有する。
 好ましい実施態様によると、前記難燃性ポリエステル系樹脂組成物は、UL1446で規定された耐熱寿命評価試験において、B種(130℃)以上の温度クラスを有する。
 好ましい実施態様によると、前記難燃性ポリエステル系樹脂組成物は、UL746Aで規定された耐トラッキング性試験において、200V以上の比較トラッキング指数を有する。
 好ましい実施態様によると、前記電気電子用部品は、入力電圧として100V以上の電圧が前記電気電子用部品に対して印加される用途で用いるためのものである。
 好ましい実施態様によると、前記電気電子用部品は、前記難燃性ポリエステル系樹脂組成物を、射出成形またはインサート成形して得られるOA定着機用部品である。
 好ましい実施態様によると、前記電気電子用部品は、前記難燃性ポリエステル系樹脂組成物を、射出成形またはインサート成形して得られるコイル用部品、トランス用部品、又はリレー用部品である。
 好ましい実施態様によると、前記電気電子用部品は、前記難燃性ポリエステル系樹脂組成物を、射出成形またはインサート成形して得られ、定格電圧400V以上でかつ、金属端子が2つ以上取り付けられたパワーモジュール用部品またはインバーター用部品である。
 本発明の電気電子用部品は、ハロゲン系難燃剤を使用せずに優れた難燃性を発現し、高温下長期間の連続使用に耐えうる。そのため、高温環境下で使用される電気電子機器、OA機器等における部品として好適に使用でき、工業的に有用である。
 (熱可塑性ポリエステル系樹脂(A))
 本発明で使用される熱可塑性ポリエステル系樹脂(A)とは、酸成分としてテレフタル酸等の2価の酸、又はエステル形成能を持つそれらの誘導体を用い、グリコール成分として炭素数2~10のグリコール、その他の2価のアルコール、又はエステル形成能を有するそれらの誘導体を用いて得られる飽和ポリエステル樹脂をいう。これらの中でも、加工性、機械的特性、電気的性質、耐熱性などのバランスに優れるという点で、ポリアルキレンテレフタレート樹脂が好ましい。ポリアルキレンテレフタレート樹脂の具体例としては、ポリエチレンテレフタレート樹脂、ポリトリメチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリヘキサメチレンテレフタレート樹脂が挙げられ、この中でも、耐熱性および耐薬品性が優れるという点で、特に、ポリエチレンテレフタレート樹脂が好ましい。
 本発明で使用する熱可塑性ポリエステル系樹脂(A)は必要に応じ、物性を大きく低下させない程度の割合で、他の成分を共重合することができる。共重合の成分としては、公知の酸成分、アルコール成分および/またはフェノール成分、あるいは、エステル形成能を持つこれらの誘導体が使用できる。
 共重合可能な酸成分としては、例えば、2価以上の炭素数8~22の芳香族カルボン酸、2価以上の炭素数4~12の脂肪族カルボン酸、2価以上の炭素数8~15の脂環式カルボン酸、およびエステル形成能を有するこれらの誘導体が挙げられる。共重合可能な酸成分の具体例としては、例えば、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、ビス(p-カルボジフェニル)メタンアントラセンジカルボン酸、4-4’-ビフェニルジカルボン酸、1,2-ビス(フェノキシ)エタン-4,4’-ジカルボン酸、5-ナトリウムスルホイソフタル酸、アジピン酸、セバシン酸、アゼライン酸、ドデカンジオン酸、マレイン酸、トリメシン酸、トリメリット酸、ピロメリット酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、およびエステル形成能を有するこれらの誘導体が挙げられる。これらは、単独あるいは2種以上を併用して用いられる。これらのなかでも、得られた樹脂の物性、取り扱い性および反応の容易さに優れるという理由から、テレフタル酸、イソフタル酸およびナフタレンジカルボン酸が好ましい。
 共重合可能なアルコールおよび/またはフェノール成分としては、例えば、2価以上の炭素数2~15の脂肪族アルコール、2価以上の炭素数6~20の脂環式アルコール、炭素数6~40の2価以上の芳香族アルコール、2価以上のフェノール、及びエステル形成能を有するこれらの誘導体が挙げられる。
 共重合可能なアルコールおよび/またはフェノール成分の具体例としては、エチレングリコール、プロパンジオール、ブタンジオール、ヘキサンジオール、デカンジオール、ネオペンチルグリコール、シクロヘキサンジメタノール、シクロヘキサンジオール、2,2’-ビス(4-ヒドロキシフェニル)プロパン、2,2’-ビス(4-ヒドロキシシクロヘキシル)プロパン、ハイドロキノン、グリセリン、ペンタエリスリトール、などの化合物、およびエステル形成能を有するこれらの誘導体、ε-カプロラクトン等の環状エステルが挙げられる。これらの中でも、得られた樹脂の物性、取り扱い性、反応の容易さに優れるという理由から、エチレングリコールおよびブタンジオールが好ましい。
 さらに、ポリアルキレングリコール単位を一部共重合させてもよい。ポリオキシアルキレングリコールの具体例としては、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、および、これらのランダムまたはブロック共重合体、ビスフェノール化合物のアルキレングリコール(ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、およびこれらのランダムまたはブロック共重合体等)付加物等の変性ポリオキシアルキレングリコール等が挙げられる。これらの中では、共重合時の熱安定性が良好で、かつ、成形体の耐熱性があまり低下しにくい等の理由から、分子量500~2000のビスフェノールAのポリエチレングリコール付加物が好ましい。
 これら熱可塑性ポリエステル系樹脂は、単独で使用してもよく、または、2種以上併用してもよい。
 本発明における熱可塑性ポリエステル系樹脂(A)の製造方法は、公知の重合方法、例えば、溶融重縮合、固相重縮合、溶液重合等によって得ることができる。また、重合時に樹脂の色調を改良するために、リン酸、亜リン酸、次亜リン酸、リン酸モノメチル、リン酸ジメチル、リン酸トリメチル、リン酸メチルジエチル、リン酸トリエチル、リン酸トリイソプロピル、リン酸トリブチル、リン酸トリフェニル等の化合物を、1種または2種以上添加してもよい。
 さらに、得られた熱可塑性ポリエステル系樹脂の結晶化度を高めるために、重合時に通常よく知られた有機または無機の各種結晶核剤を、単独で添加してもよく、または、2種以上併用してもよい。
 本発明で使用される熱可塑性ポリエステル系樹脂(A)の固有粘度(フェノール/テトラクロロエタンが重量比で1/1の混合溶液中、25℃で測定)は、0.4~1.2dl/gが好ましく、0.6~1.0dl/gがより好ましい。前記固有粘度が0.4dl/g未満では、機械的強度や耐衝撃性が低下する傾向があり、1.2dl/gを超えると成形時の流動性が低下する傾向がある。
 (主鎖がポリエステル構造を持つ高分子型有機リン系難燃剤(B))
 本発明における主鎖がポリエステル構造を持つ高分子型有機リン系難燃剤(B)は、下記一般式1で表すことができる。一般式1中のX、Y、Zはそれぞれ炭化水素基であり、X、Y、Zの少なくとも1つはリン原子を含む炭化水素基である。主鎖がポリエステル構造を持つ高分子型有機リン系難燃剤(B)は、好ましくは、下記一般式2で表すことができる。nの下限値は、好ましくはn=2であり、より好ましくはn=3、特に好ましくはn=5である。n=2未満であると、熱可塑性ポリエステル系樹脂の結晶化を阻害したり、機械的強度が低下したりする傾向がある。nの上限値は特に限定されないが、過度に分子量を高めると分散性等に悪影響を及ぼす傾向にある。そのため、nの上限値は、好ましくはn=40であり、より好ましくはn=35、特に好ましくはn=30である。
Figure JPOXMLDOC01-appb-C000001
(式中、nは2以上、mは0以上の整数である)
Figure JPOXMLDOC01-appb-C000002
(式中、nは2~40の整数である)
 本発明に用いられる主鎖がポリエステル構造を持つ高分子型有機リン系難燃剤(B)の製造方法は、特に限定されず、一般的な重縮合反応を用いることができる。
 前記主鎖がポリエステル構造を持つ高分子型有機リン系難燃剤(B)の、熱可塑性ポリエステル系樹脂(A)100重量部に対する含有量は、難燃性、成形性、及び成形体の機械的強度の観点から、5~80重量部である。難燃性の観点から、8重量部以上が好ましく、成形性、及び成形体の機械的強度の観点から、70重量部以下が好ましく、30重量部以下がより好ましい。
 (非晶性熱可塑性スーパーエンジニアリングプラスチック(C))
 本発明における非晶性熱可塑性スーパーエンジニアリングプラスチック(C)とは、ポリエーテルイミド樹脂、ポリスルホン、ポリフェニルスルホン、ポリエーテルスルホンなどのポリスルホン系樹脂、及びポリアリレート樹脂からなる群から選ばれる少なくとも一種の樹脂であり、これらは単独で用いても、二種類以上を組み合わせて用いても良い。この成分を添加することにより、高温環境下での長期信頼性を向上させることができる。また、他ポリマーとのポリマーアロイやポリマーブレンドのような混合品を用いることもできる。前記非晶性熱可塑性スーパーエンジニアリングプラスチックのうち、特にポリエーテルイミド樹脂が、電気的特性の観点から好ましく用いられる。
 前記ポリエーテルイミド樹脂とは、脂肪族、脂環族または芳香族系のエーテル単位と環状イミド基を繰り返し単位として含有するポリマーであり、溶融成形性を有するポリマーで有れば特に限定されない。また、本発明の効果を阻害しない範囲で有れば、ポリエーテルイミドの主鎖に環状イミド、エーテル結合以外の構造単位、例えば、芳香族、脂肪族、脂環族エステル単位、オキシカルボニル単位等が含有されていても良い。本発明では、溶融成形性やコストの観点から、2,2-ビス[4-(2,3-ジカルボキシフェノキシ)フェニル]プロパン二無水物とm-フェニレンジアミン、またはp-フェニレンジアミンとの縮合物(例えば、SABICイノベーティブプラスチックス社から“ウルテム”(登録商標)として市販されている。)が好ましく使用される。
 前記ポリスルホン系樹脂とは、主鎖に芳香環基とその結合基としてスルホン基を有する熱可塑性樹脂であり、一般にポリスルホンと、ポリエーテルスルホンと、ポリフェニルスルホンとに大別される。
 ポリスルホン樹脂は、代表的には下記の一般式3で表される構造をもつポリマーである。例えば、溶融成形性やコストの観点から、ソルベイアドバンストポリマーズ社から市販されている“ユーデル”(登録商標)を使用することができる。
Figure JPOXMLDOC01-appb-C000003
 ポリエーテルスルホン樹脂は、ジフェニルエーテルクロロスルホンのフリーデルクラフツ反応により得られ、代表的には下記の化学式4で表される構造をもつポリマーである。例えば、溶融成形性やコストの観点から、ソルベイアドバンストポリマーズ社から市販されている“レーデル A”(登録商標)を使用することができる。
Figure JPOXMLDOC01-appb-C000004
 ポリフェニルスルホン樹脂は、代表的には下記の化学式5で表される構造をもつポリマーである。例えば、溶融成形性やコストの観点から、ソルベイアドバンストポリマーズ社から市販されている“レーデル R”(登録商標)を使用することができる。
Figure JPOXMLDOC01-appb-C000005
 本発明におけるポリアリレート樹脂とは、芳香族ジカルボン酸とビスフェノール類を繰り返し単位とする樹脂である。
 ビスフェノール類の具体例として、例えば2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシジフェニルスルフィド、4,4’-ジヒドロキシジフェニルケトン、4,4’-ジヒドロキシジフェニルメタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン等が挙げられる。これらの化合物は単独で使用してもよいし、あるいは、2種類以上を混合して使用してもよい。特に、2,2-ビス(4-ヒドロキシフェニル)プロパンが経済的な観点から好ましい。
 芳香族ジカルボン酸の具体例としては、テレフタル酸、イソフタル酸、オルソフタル酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、ジフェン酸、4,4´-ジカルボキシジフェニルエーテル、ビス(p-カルボキシフェニル)アルカン、4,4´-ジカルボキシジフェニルスルホン等が挙げられ、なかでもテレフタル酸、イソフタル酸が好ましい。
 前記非晶性熱可塑性スーパーエンジニアリングプラスチック(C)の、熱可塑性ポリエステル系樹脂(A)100重量部に対する含有量は、高温下長期間の耐熱試験後の強度保持率を向上させる観点から、1~20重量部であり、5重量部以上が好ましい。成型加工性の観点、即ち流動性の低下を防止する観点、及び成形体の初期の機械強度の低下や製品のコストアップを防止する観点から、15重量部以下が好ましい。
 (繊維状無機化合物(D))
 本発明の電気電子用部品を構成する難燃性ポリエステル系樹脂組成物には、機械的性質や耐熱性、高温環境下での長期信頼性を向上させる目的で、繊維状無機化合物(D)を添加する。
 繊維状無機化合物を添加することにより、強度、剛性、耐熱性などを大幅に向上させることができる。
 本発明で使用される繊維状無機化合物の具体例としては、例えば、ガラス繊維、炭素繊維、金属繊維、アスベスト、チタン酸カリウムウィスカ、ワラストナイト、などが挙げられる。これらを単独で用いてもよく、2種類以上を併用しても良い。
 本発明で使用されるガラス繊維としては、通常一般的に使用されている公知のガラス繊維を用いることができるが、作業性の観点から、集束剤にて処理されたチョップドストランドガラス繊維を用いるのが好ましい。
 本発明で使用されるガラス繊維は、樹脂とガラス繊維との密着性を高めるため、ガラス繊維の表面をカップリング剤で処理したものが好ましく、バインダーを用いたものであってもよい。前記カップリング剤としては、例えば、γ-アミノプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン等のアルコキシシラン化合物が好ましく使用され、また、バインダーとしては、例えば、エポキシ樹脂、ウレタン樹脂等が好ましく使用されるが、これらに限定されるものではない。上記ガラス繊維は、単独で使用してもよく、また、2種以上を併用してよい。
 本発明にガラス繊維を用いる場合には、その繊維径は1~20μmが好ましく、かつ、繊維長は0.01~50mmが好ましい。繊維径が1μm未満であると、期待するような補強効果が得られない傾向があり、繊維経が20μmを超えると、成形体の表面性や流動性が低下する傾向がある。また、繊維長が0.01mm未満であると、期待するような樹脂補強効果が得られない傾向があり、繊維長が50mmを超えると、成形体の表面性、流動性が低下する傾向がある。
 本発明における繊維状無機化合物(D)の含有量は、熱可塑性ポリエステル系樹脂(A)100重量部に対して、下限値としては、5重量部が好ましく、10重量部がより好ましく、15重量部がさらに好ましい。繊維状無機化合物含有量が5重量部未満では、耐熱性や剛性の改善効果が十分でない場合がある。繊維状無機化合物含有量の上限値としては、120重量部が好ましく、100重量部がより好ましく、80重量部が更に好ましい。繊維状無機化合物含有量が120重量部を超えると、流動性が下がり、薄肉成形性が損なわれたり、成形体の表面性が低下したりする場合がある。
 (非繊維状無機化合物(E))
 本発明の電気電子用部品を構成する難燃性ポリエステル系樹脂組成物には、機械的性質や電気特性、耐熱性、高温環境下での長期信頼性を向上させる目的で、非繊維状無機化合物(E)を添加する。
 非繊維状無機化合物を添加することにより、強度、剛性、耐熱性、難燃性、電気特性などを大幅に向上させることができる。
 本発明で使用される非繊維状無機化合物の具体例としては、例えば、ガラスフレーク、ガラスビーズ、タルク、マイカ、クレー、炭酸カルシウム、硫酸バリウム、酸化チタン、酸化アルミニウムなどが挙げられる。これらを単独で用いてもよく、2種類以上を併用しても良い。
 本発明における非繊維状無機化合物の含有量は、熱可塑性ポリエステル系樹脂(A)100重量部に対して、下限値としては、5重量部が好ましく、8重量部がより好ましく、10重量部がさらに好ましい。非繊維状無機化合物含有量が5重量部未満では、耐熱性や剛性の改善効果が十分でない場合がある。非繊維状無機化合物含有量の上限値としては、50重量部が好ましく、40重量部がより好ましく、30重量部が更に好ましい。非繊維状無機化合物含有量が50重量部を超えると、流動性が下がり、薄肉成形性が損なわれたり、成形体の表面性が低下したりする場合がある。
 (窒素化合物)
 本発明の難燃性ポリエステル系樹脂組成物には、窒素化合物を加えることができる。窒素化合物と前記有機リン系難燃剤を併用することで難燃性をさらに向上させることができる。本発明における窒素化合物とは、例えば、メラミン・シアヌル酸付加物、メラミン、シアヌル酸等のトリアジン系化合物やテトラゾール化合物等があげられる。あるいはメラミンの2量体及び/または3量体であるメラム及び/またはメレムがあげられる。これらのうちでは、機械的強度面の点から、メラミン・シアヌル酸付加物が好ましい。
 本発明におけるメラミン・シアヌル酸付加物とは、メラミン(2,4,6-トリアミノ-1,3,5-トリアジン)とシアヌル酸(2,4,6-トリヒドロキシ-1,3,5-トリアジン)および/またはその互変異体が形成する化合物である。
 メラミン・シアヌル酸付加物は、メラミンの溶液とシアヌル酸の溶液を混合して塩を形成させる方法や一方の溶液に他方を加えて溶解させながら塩を形成させる方法等によって得ることができる。メラミンとシアヌル酸の混合比には特に限定はないが、得られる付加物が熱可塑性ポリエステル系樹脂の熱安定性を損ないにくい点から、等モルに近い方がよく、特に等モルであることが好ましい。
 本発明におけるメラミン・シアヌル酸付加物の平均粒子径は、特に限定されないが、得られる組成物の強度特性、成形加工性を損なわない点から、0.01~250μmが好ましく、0.5~200μmが特に好ましい。
 本発明の難燃性ポリエステル系樹脂組成物における窒素化合物含有量は、熱可塑性ポリエステル系樹脂100重量部に対して、下限値としては、10重量部が好ましく、20重量部がより好ましく、25重量部がさらに好ましい。窒素化合物含有量が10重量部未満では、難燃性、耐トラッキング性が低下する傾向がある。窒素化合物含有量の上限値としては、100重量部が好ましく、80重量部がより好ましい。窒素化合物含有量が100重量部を超えると、押出加工性が悪化する、または、ウエルド部の強度、機械的強度および耐湿熱性が低下する傾向がある。
 (滴下防止剤)
 本発明の難燃性ポリエステル系樹脂組成物には、難燃性の向上のために、例えばシリコーンオイル、反応基含有シリコーンオイル、シリカ、特に好ましくはフッ素系樹脂などの滴下防止剤を加えることができる。本発明の樹脂組成物にフッ素系樹脂を用いる場合には、その使用量は、多すぎると廃棄などの燃焼時、あるいは成形時に酸性の毒性ガスが発生し、少なすぎると滴下防止効果が十分に得られないので、熱可塑性ポリエステル系樹脂100重量部に対して、好ましくは2重量部以下、より好ましくは1重量部以下、さらには0.5重量部以下であり、好ましくは0.05重量部以上、より好ましくは0.1重量部以上、さらには0.3重量部以上である。かかる範囲で用いると、滴下が問題となる場合に、その防止効果が得られて好ましい。フッ素系樹脂の具体例としては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、テトラフルオロエチレン/フッ化ビニリデン共重合体、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体などのフッ素系樹脂、またはポリテトラフルオロエチレンなどの存在下、(メタ)アクリル酸エステル、芳香族アルケニル化合物、シアン化ビニルなどを重合して得られる重合体等の他の重合体と複合化させた粉体等が挙げられる。
 (添加剤)
 本発明の電気電子用部品を構成する難燃性ポリエステル系樹脂組成物には、必要に応じて、顔料、染料、熱安定剤、光安定剤、酸化防止剤、滑剤、可塑剤等、帯電防止剤、耐衝撃性改良剤、離型剤、核剤、腐食防止剤、加水分解抑制剤、酸受容剤、抗菌剤を添加することができる。
 (相対温度指数)
 本発明の電気電子用部品においては、高温環境下での長期信頼性を確保するため、相対温度指数が140℃以上であることが好ましく、150℃以上であることが更に好ましい。140℃未満であると、実使用上において長期耐熱性が確保されておらず問題となる。相対温度指数とは、UL746Bに準拠して熱老化試験を行った際に導かれる温度のことである。ある温度水準での耐熱試験後のASTM D-638、D-256、D-149に準拠した引張試験、IZOD衝撃試験、及び絶縁破壊強度の保持率が50%に達した時間をその温度の半減期とし、それぞれの温度の半減期をアレニウスプロットし、半減期が10万時間となる温度である。この相対温度指数は、高温下長時間の連続使用に耐えうるか否かの指標である。
 (耐熱寿命評価)
 本発明の電気電子用部品においては、コイルボビンなどの用途における高温環境や様々な環境下での長期信頼性を確保するため、システム温度クラスがB種以上であることが好ましく、F種以上であることが更に好ましい。システム温度クラスとは、まず前記難燃性ポリエステル系樹脂組成物から得られる成形体を含むインシュレーションシステム(候補材)を組み立て、UL1446に準拠した耐熱寿命評価試験を行った際に導かれる温度でクラス分けしたもののことである。120~130℃をE種、130~155℃をB種、155~180℃をF種、180~200℃をH種とクラス付けする。システム温度クラスは、インシュレーションシステムの高温下長時間、様々な環境下での連続使用に耐えうるか否かの指標である。
 (混練方法)
 前記難燃性ポリエステル系樹脂組成物の製造方法は、特に制限されるものではなく、例えば、熱可塑性ポリエステル系樹脂(A)、主鎖がポリエステル構造を持つ高分子型有機リン系難燃剤(B)、非晶性熱可塑性スーパーエンジニアリングプラスチック(C)、繊維状無機化合物(D)、非繊維状無機化合物(E)、及び必要に応じて他の添加剤を、種々の一般的な混練機を用いて溶融混練する方法をあげることができる。混練機の例としては、一軸押出機、二軸押出機などが挙げられ、特に、混練効率の高い二軸押出機が好ましい。
 (成形方法)
 本発明の電気電子用部品に相当する成形体は、前記難燃性ポリエステル系樹脂組成物を、通常公知の方法で成形することにより製造することができる。具体的には、射出成形、インサート成形、射出プレス成形、インモールド成形、押出成形、圧縮成形などの成形方法が挙げられる。その中でも、射出成形、インサート成形が好適である。
 (電気電子用部品)
 本発明の電気電子用部品は、ハロゲン系の難燃剤を使用しなくても、高温下長期間の連続使用に耐えうるため、特に、長期の耐熱性と難燃性が要求されるような部位を内包する電気電子機器に含まれる部品として好適に使用することができる。
 前記電気電子機器に含まれる部品の態様には、OA機器用部品、パワーモジュール用部品、インバーター用部品、コイル用部品、トランス用部品、リレー用部品、スイッチ、コンデンサー、スタータースイッチ、レギュレーターケース、ブラシホルダー、ICキャリヤー、プラグ、ソケット、ヒューズケース、センサー、ランプホルダー、フライホイール、発電機用部品、モーター、サーボモーター、ソレノイド、リアクトル、リニアモーター用コイル、整流器、DC/DCコンバーター、電子レンジ用部品、IH調理機用部品、電界または磁界共鳴式非接触給電装置用部品、電波式非接触給電装置用部品などが含まれる。
 前記電気電子用部品としての実使用の観点から、難燃性ポリエステル系樹脂組成物の比較トラッキング指数が200V以上であることが望ましく、225V以上であることがさらに望ましく、特に好ましくは250V以上である。
 前記電気電子用部品としての実使用の観点から、難燃性ポリエステル系樹脂組成物の体積固有抵抗値が1012Ω以上であることが望ましく、1013Ω以上であることがさらに望ましい。
 前記OA機器用部品としての態様には、筐体、用紙トレー、OA定着機用部品(フレームカバー、サーモスタット受け台など)、ギア、コイルフレーム、スキャナーハウジング、樹脂シャフト、搬送ガイド、シャーシ、プロジェクターの筐体、ランプホルダーなどが含まれる。前記OA機器用部品として実使用の観点から、ヒートローラーとの距離が5mm以下であることが好ましく、3mm以下であることがさらに好ましい。また、前記OA機器用部品に用いる材料の好ましい態様としては、実使用における熱耐久性の観点から、UL746B規格に準じた、本発明に用いる難燃性ポリエステル系樹脂組成物の熱耐久性試験において、相対温度指数150℃以上の熱耐久性を持つことが好ましい。
前記パワーモジュール用部品またはインバーター用部品としての態様には、封止材や絶縁板(シート)、筐体が挙げられる。前記パワーモジュールまたはインバーターは、実使用の観点から、金属端子が2つ以上取り付けられていることが望ましく、特に好ましくは3つ以上である。また、本発明の電気電子用部品を用いたパワーモジュールまたはインバーターの定格電圧の下限値としては、200Vが好ましく、400Vがさらに好ましく、特に好ましくは600Vである。上限値としては6500Vが好ましく、1700Vがより好ましい。定格電流としては、好ましくは10A~2500Aであり、より好ましくは50A~600A、さらに好ましくは75A~150Aである。このような定格電流を示す物が、パワーモジュールまたはインバーターとして適している。耐トラッキング性の観点から、前記金属端子間の沿面距離は6.4mm以上104mm以下が好ましく、特に好ましくは9.6mm以上52.8mm以下である。また、前記パワーモジュール用部品またはインバーター用部品に用いる材料の好ましい態様としては、実使用における熱耐久性の観点から、UL746B規格に準じた、本発明に用いる難燃性ポリエステル系樹脂組成物の熱耐久性試験において、相対温度指数150℃以上の熱耐久性を持つことが好ましい。
 前記コイル用部品、トランス用部品、またはリレー用部品としては、例えばコイルボビン、ボビンケース、端子台、リアクトル芯材用絶縁材、リアクトルケース、トランス芯材用絶縁材、トランスケース、リレーケースなどがあげられる。好ましいコイルの実施態様は、実使用の観点から1次入力電圧が100V以上のコイルが望ましく、出力としては5W以上510W以下のコイルが望ましい。好ましいトランスの実施態様は実使用の観点から、出力が好ましくは0.1W以上2000W以下、さらに好ましくは0.5W以上1500W以下のトランスが望ましい。好ましいリレーの実施態様は実使用の観点から定格電圧が100V以上700V以下、さらに好ましくは125V以上660V以下のリレーが望ましい。また、定格電流が0.1A以上100A以下、さらに好ましくは1A以上50A以下のリレーが望ましい。前記コイル用部品、トランス用部品、またはリレー用部品に用いる材料の好ましい態様としては、実使用における耐熱性の観点から、UL1446規格に準じた絶縁システムの耐熱信頼性試験において、B種(130℃)以上の温度クラスを持つことが好ましく、特に好ましくはF種以上(155℃)である。
 本発明の電気電子用部品の最終的な用途には、(プラグイン)電気自動車、燃料電池車、ガソリン/電機ハイブリッド自動車、鉄道車両、エアコン、空調システム、ロボット、太陽光発電システム、風力発電システム、コジェネレーションシステム、燃料電池発電システム、スマートグリッド(スマートタウンやスマートハウスなど)、無停電電源システム、超伝導電力貯蔵装置(SMES)、電子レンジ、IH調理機、周波数変換設備、照明機器、情報機器、表示装置、信号装置、医療機器などが挙げられるが、これらには限定されない。
 前記用途においては、軽量化、高集積化が望まれることが多い。本発明の電気電子用部品は、薄肉での難燃性も確保されており、前記電気電子用部品である成形体の厚みは1mm以下であってもよく、さらには、0.8mm以下であってもよい。
 次に、参考例及び実施例をあげて本発明を具体的に説明するが、本発明は、これらに限定されるものではない。
 以下に、参考例、及び比較参考例において使用した樹脂、及び原料類を示す。
[熱可塑性ポリエステル系樹脂(A1)]ポリエチレンテレフタレート樹脂(製品名:EFG-70、ベルポリエステルプロダクツ社製)
[有機リン系難燃剤(B1)]製造例1にて合成したもの。
[有機リン系難燃剤(B2)]1,3-フェニレンビス(ジキシレニル)ホスフェート(製品名:PX-200、大八化学工業株式会社製)
[非晶性熱可塑性スーパーエンジニアリングプラスチック(C1)]ポリエーテルイミド樹脂(製品名:ULTEM1000(登録商標)、SABICイノベーティブプラスチックス社製)
[非晶性熱可塑性スーパーエンジニアリングプラスチック(C2)]ポリスルホン樹脂(製品名:ユーデル(登録商標)P-1700、ソルベイアドバンストポリマーズ株式会社製)
[非晶性熱可塑性スーパーエンジニアリングプラスチック(C3)]]ポリアリレート樹脂(製品名:U-ポリマー(登録商標)U-100、ユニチカ株式会社製)
[繊維状無機化合物(D1)]ガラス繊維(製品名:T-187H、日本電気硝子株式会社製)
[繊維状無機化合物(D2)]ガラス繊維(製品名:FT-592S、オーウェンスコーニング株式会社製)
[非繊維状無機化合物(E1)]タルク(製品名:ローズタルク、日本タルク株式会社製)
[非繊維状無機化合物(E2)]マイカ(製品名:A-41S、株式会社ヤマグチマイカ製)
[窒素化合物(F1)]メラミン・シアヌレート(製品名:MC4000、日産化学株式会社製)
[滴下防止剤(G1)]ポリテトラフルオロエチレン(製品名:フルオンG350、旭硝子株式会社製)
 本明細書における評価方法は以下の通りである。
 <難燃性>
 得られたペレットを120℃で3時間乾燥後、射出成形機(日精樹脂工業械株式会社製、FN1000型締め圧:80トン)を用い、シリンダー設定温度250℃~280℃および金型温度120℃の条件にて射出成形を行い、127mm×12.7mm×厚み0.8mmのバー形状の試験片を得た。得られた試験片を用いて、UL94基準V-0試験に準拠して難燃性を評価した。
 <相対温度指数>
 得られたペレットを120℃にて3時間乾燥後、射出成形機(東芝機械株式会社製、IE-75E-2A(型締め圧:75トン))を用い、シリンダー設定温度250℃~280℃、金型温度120℃、射出率30cm/sec.の条件にて射出成形を行い、それぞれASTM D-638、D-256、及びD-149に準じたダンベル試験片、バー試験片、及び2mm厚の試験片を作製した。得られた各試験片を用いて、UL746Bに準拠して、引張試験、IZOD衝撃試験、及び絶縁破壊強度測定を行い、23℃での引張強度、IZOD衝撃値、及び絶縁破壊強度を測定した。次に、UL746Bに準じて熱老化試験を行い、相対温度指数を計算した。
 <耐熱寿命評価試験>
 得られたペレットを140℃にて3時間乾燥後、押出成形によって10インチ×8インチ×0.028インチのシートをグラウンドインシュレーションとして用い、ANSI規格に基づくMW79及びMW80のエナメル線とNomex410を絶縁紙として用い、UL1446に準拠して耐熱寿命評価試験を行った。
 <耐トラッキング性試験>
 得られたペレットを140℃で3時間乾燥後、射出成形機(日精樹脂工業械株式会社製、FN1000型締め圧:80トン)を用い、シリンダー設定温度250℃~280℃および金型温度120℃の条件にて射出成形を行い、120mm×120mm×3mmの平板を得た。UL746Aに準じて、耐トラッキング性試験機(マイズ試験機株式会社製)を用い、電解質水溶液として約0.1wt%の塩化アンモニウム水溶液を用いた。測定で得られた値を25V単位で区切った値を比較トラッキング指数とした。
 (製造例1)
 蒸留管、精留管、窒素導入管、及び攪拌機を有する縦型重合器に、9,10-ジヒドロ-9-オキサ-10フォスファフェナントレン-10-オキシド(三光株式会社製、HCA)100重量部、HCAに対して等モルのイタコン酸(扶桑化学株式会社製、精製イタコン酸)60重量部、及びイタコン酸に対し2倍モル以上のエチレングリコール160重量部を投入し、窒素ガス雰囲気下、120~200℃まで徐々に昇温加熱し、約10時間攪拌した。次いで、三酸化アンチモンおよび酢酸亜鉛各0.1重量部を加え、1Torr以下の真空減圧にて、温度220℃で維持し、エチレングリコールを留出させながら重縮合反応させた。約5時間後、エチレングリコールの留出量が極端に減少したことで、反応終了とみなした。
 (参考例1~4、参考比較例1、2)
 表1に示した原料と配合組成(単位:重量部)に従い、予めドライブレンドした。ベント式44mmφ同方向2軸押出機(TEX44、日本製鋼所(株)製)を用い、前記ドライブレンド物をホッパー孔から供給し、シリンダー設定温度250~280℃にて溶融混練を行い、ペレット化し、前記記載の評価方法にて評価した。評価結果を表1に示す。なお、参考比較例2は難燃性がV-1であったため相対温度指数評価、熱寿命評価を行っていない。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、参考例1~4の組成物は、ハロゲン系難燃剤を含有していないにも関わらず、高度の難燃性を有し、高温下長期間の連続使用に耐えうるものである。
 (実施例1)
 参考例1で得られたペレットを140℃にて3時間乾燥後、射出成形機(日本製鋼所株式会社製、J150E-P、型締め圧:150トン)を用い、シリンダー設定温度250℃~280℃、金型温度120℃の条件にて射出成形を行い、7箇所金属端子ブロックを後から組み付けることができる構造の130mm×140mm×高さ38mmの成形体を作製した。当該成形体をパワーモジュールの筐体として使用し、定格電圧1700V、定格電流1200A、UL746Bの相対温度指数150℃が必要なパワーモジュールを作製した。
 (実施例2)
 参考例1で得られたペレットを140℃にて3時間乾燥後、射出成形機(日精樹脂工業械株式会社製、FN1000、型締め圧:80トン)を用い、シリンダー設定温度250℃~280℃、金型温度120℃の条件にて射出成形を行い、18箇所金属端子ブロックを後から組み付けることができる構造の122mm×58mm×高さ13mmの成形体を作製した。当該成形体をパワーモジュールの筐体として使用し、定格電圧600V、定格電流100A、UL746Bの相対温度指数150℃が必要なパワーモジュールを作製した。
 (実施例3)
 参考例2で得られたペレットを140℃にて3時間乾燥後、射出成形機(日精樹脂工業械株式会社製、FN1000、型締め圧:80トン)を用い、シリンダー設定温度250℃~280℃、金型温度120℃の条件にて射出成形を行い、18箇所金属端子ブロックを後から組み付けることができる構造の122mm×58mm×高さ13mmの成形体を作製した。当該成形体をパワーモジュールの筐体として使用し、定格電圧600V、定格電流100A、UL746Bの相対温度指数150℃が必要なパワーモジュールを作製した。
 (実施例4) 
 参考例1で得られたペレットを140℃にて3時間乾燥後、射出成形機(日本製鋼所製、JT100RAD、型締め圧:100トン)を用い、シリンダー設定温度250℃~280℃、金型温度120℃の条件にてインサート成形を行い、19本の金属ピン形状端子を持つ136mm×78mm×高さ24mmの成形体を作製した。当該成形体をパワーモジュールの筐体として使用し、定格電圧600V、定格電流100A、UL746Bの相対温度指数150℃が必要なパワーモジュールを作製した。
 (実施例5) 
 参考例1で得られたペレットを140℃にて3時間乾燥後、射出成形機(日本製鋼所株式会社製、J150E-P、型締め圧:150トン)を用い、シリンダー設定温度250℃~280℃、金型温度120℃の条件にて射出成形を行い、8個取りの10mm×20mm×11mm、厚さ0.4mmの成形体を作製した。当該成形体をリレーケースとして使用し、交流出力10A、250V、直流出力10A、24V、制御電圧24V、UL746Bの相対温度指数150℃が必要なリレーを作製した。
 (実施例6)
 参考例1で得られたペレットを140℃にて3時間乾燥後、射出成形機(日精樹脂工業械株式会社製、FN1000、型締め圧:80トン)を用い、シリンダー設定温度250℃~280℃、金型温度120℃の条件にてφ54mm×高さ34mmの成形体を作製した。当該成形体をチョークコイルの芯材として使用し、定格電流15A、UL1446の温度クラスB種が必要なドーナッツ型のチョークコイルを作製した。
 (実施例7)
 参考例1で得られたペレットを140℃にて3時間乾燥後、射出成形機(日本製鋼所株式会社製、J150E-P、型締め圧:150トン)を用い、シリンダー設定温度250℃~280℃、金型温度120℃の条件にて140mm×140mm×95mmの成形体を作製した。当該成形体をトランスの筐体として使用し、1次電圧0-200・220・240V、2次電圧0-100V、2次電流5A、前記耐熱寿命評価試験におけるUL1446の温度クラスF種が必要なトランスを作製した。
 (実施例8)
 参考例1で得られたペレットを140℃にて3時間乾燥後、射出成形機(日本製鋼所株式会社製、J150E-P、型締め圧:150トン)を用い、シリンダー設定温度250℃~280℃、金型温度120℃の条件にて60mm×51.2mm×60mmの成形体を作製した。当該成形体をリアクトルの芯材として使用し、定格電流1~35A、UL1446の温度クラスF種が必要なリアクトルを作製した。
 (実施例9)
 参考例1で得られたペレットを140℃にて3時間乾燥後、射出成形機(日精樹脂工業械株式会社製、FE360S100ASE、型締め圧:360トン)を用い、シリンダー設定温度250℃~280℃、金型温度120℃の条件にて400mm×100mmの成形体を作製した。当該成形体は、UL746Bの相対温度指数150℃が必要な定着機フレームとして使用され、当該フレームはOA定着機に適した部品である。
 (実施例10)
 参考例2で得られたペレットを140℃にて3時間乾燥後、射出成形機(日精樹脂工業械株式会社製、FE360S100ASE、型締め圧:360トン)を用い、シリンダー設定温度250℃~280℃、金型温度120℃の条件にて400mm×100mmの成形体を作製した。当該成形体は、UL746Bの相対温度指数150℃が必要な定着機フレームとして使用され、当該フレームはOA定着機に適した部品である。

Claims (9)

  1.  熱可塑性ポリエステル系樹脂(A)100重量部と、主鎖がポリエステル構造を持つ高分子型有機リン系難燃剤(B)5~80重量部と、非晶性熱可塑性スーパーエンジニアリングプラスチック(C)1~20重量部と、繊維状無機化合物(D)5~120重量部と、非繊維状無機化合物(E)5~50重量部と、を含有する難燃性ポリエステル系樹脂組成物からなる電気電子用部品。
  2.  前記熱可塑性ポリエステル系樹脂(A)が、ポリアルキレンテレフタレートである請求項1に記載の電気電子用部品。
  3.  前記難燃性ポリエステル系樹脂組成物が、UL746Bで規定される相対温度指数において、強度、衝撃および電気特性の3種類全てで140℃以上を有する、請求項1又は2に記載の電気電子用部品。
  4.  前記難燃性ポリエステル系樹脂組成物が、UL1446で規定された耐熱寿命評価試験において、B種(130℃)以上の温度クラスを有する、請求項1~3のいずれかに記載の電気電子用部品。
  5.  前記難燃性ポリエステル系樹脂組成物が、UL746Aで規定された耐トラッキング性試験において、200V以上の比較トラッキング指数を有する、請求項1~4のいずれかに記載の電気電子用部品。
  6.  入力電圧として100V以上の電圧が前記電気電子用部品に対して印加される用途で用いるための、請求項1~5のいずれかに記載の電気電子用部品。
  7.  前記難燃性ポリエステル系樹脂組成物を、射出成形またはインサート成形して得られるOA定着機用部品である、請求項1~6のいずれかに記載の電気電子用部品。
  8.  前記難燃性ポリエステル系樹脂組成物を、射出成形またはインサート成形して得られるコイル用部品、トランス用部品、又はリレー用部品である、請求項1~6のいずれかに記載の電気電子用部品。
  9.  前記難燃性ポリエステル系樹脂組成物を、射出成形またはインサート成形して得られ、定格電圧400V以上でかつ、金属端子が2つ以上取り付けられたパワーモジュール用部品またはインバーター用部品である、請求項1~6のいずれかに記載の電気電子用部品。
PCT/JP2012/006888 2011-11-24 2012-10-26 難燃性ポリエステル系樹脂組成物を用いた電気電子用部品 WO2013076918A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR20147007913A KR20140103896A (ko) 2011-11-24 2012-10-26 난연성 폴리에스테르계 수지 조성물을 사용한 전기 전자용 부품
CN201280042879.5A CN103764757A (zh) 2011-11-24 2012-10-26 使用了阻燃性聚酯系树脂组合物的电气电子用部件
US14/360,207 US20140336326A1 (en) 2011-11-24 2012-10-26 Electric/electronic component using flame-retardant polyester-based resin composition
EP12851611.9A EP2784119A4 (en) 2011-11-24 2012-10-26 ELECTRONIC ELECTRONIC COMPONENT USING POLYESTER RESIN FLAME RETARDANT COMPOSITION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-256753 2011-11-24
JP2011256753 2011-11-24

Publications (1)

Publication Number Publication Date
WO2013076918A1 true WO2013076918A1 (ja) 2013-05-30

Family

ID=48469388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/006888 WO2013076918A1 (ja) 2011-11-24 2012-10-26 難燃性ポリエステル系樹脂組成物を用いた電気電子用部品

Country Status (6)

Country Link
US (1) US20140336326A1 (ja)
EP (1) EP2784119A4 (ja)
JP (1) JPWO2013076918A1 (ja)
KR (1) KR20140103896A (ja)
CN (1) CN103764757A (ja)
WO (1) WO2013076918A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014168169A1 (ja) * 2013-04-09 2014-10-16 株式会社カネカ 難燃性ポリブチレンテレフタレート樹脂組成物
KR20170090366A (ko) * 2016-01-28 2017-08-07 닛폰 도라이 케미카루 가부시키가이샤 광전식 연기 감지기

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018236970A1 (en) * 2017-06-20 2018-12-27 Illinois Tool Works Inc. INSULATING THIN FILM
US11400296B2 (en) 2018-03-23 2022-08-02 Medtronic, Inc. AV synchronous VfA cardiac therapy
EP3768377B1 (en) 2018-03-23 2023-11-22 Medtronic, Inc. Vfa cardiac resynchronization therapy
US11213676B2 (en) 2019-04-01 2022-01-04 Medtronic, Inc. Delivery systems for VfA cardiac therapy
CN116554954B (zh) * 2023-05-11 2024-05-28 铜陵兢强电子科技股份有限公司 一种环保型漆包线表面润滑油及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08124779A (ja) 1994-10-27 1996-05-17 Hitachi Chem Co Ltd 高圧電子部品の製造法
JPH08236667A (ja) 1995-02-28 1996-09-13 Hitachi Ltd 半導体装置
JP2001131876A (ja) * 1999-11-01 2001-05-15 Teijin Ltd 防炎・防水性帆布の製造方法
JP2003086722A (ja) 2001-09-14 2003-03-20 Hitachi Ltd 樹脂封止型パワーモジュール装置
JP2006144160A (ja) * 2004-11-18 2006-06-08 Toyobo Co Ltd 家電製品用難燃性不織布吸音シート材
JP2010111739A (ja) * 2008-11-05 2010-05-20 Teijin Chem Ltd 難燃性ポリ乳酸樹脂組成物
JP2011514925A (ja) * 2008-03-06 2011-05-12 シル・プリュス・ザイラッハー・ゲーエムベーハー ハロゲン非含有難燃剤
JP2011144237A (ja) * 2010-01-13 2011-07-28 Kaneka Corp 非ハロゲン難燃性帯電防止性ポリエステル系樹脂組成物、及びその成形体
JP2011213951A (ja) * 2010-04-01 2011-10-27 Kaneka Corp 難燃性ポリエステル系樹脂組成物

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6780917B2 (en) * 2001-03-02 2004-08-24 Teijin Chemicals, Ltd. Aromatic polycarbonate resin composition
DE10132056A1 (de) * 2001-07-05 2003-01-16 Basf Ag Flammgeschützte thermoplastische Formmassen
US20050038145A1 (en) * 2003-08-11 2005-02-17 General Electric Company Flame retardant fiber reinforced composition with improved flow
US7812077B2 (en) * 2003-12-17 2010-10-12 Sabic Innovative Plastics Ip B.V. Polyester compositions, method of manufacture, and uses thereof
WO2006061360A1 (de) * 2004-12-06 2006-06-15 Siemens Aktiengesellschaft Verfahren zum herstellen eines wickelleiters für elektrische geräte und nach diesem verfahren hergestellter wickelleiter
WO2006106824A1 (ja) * 2005-03-31 2006-10-12 Kaneka Corporation 難燃性ポリエステル樹脂組成物
US8680167B2 (en) * 2006-01-27 2014-03-25 Sabic Innovative Plastics Ip B.V. Molding compositions containing fillers and modified polybutylene terephthalate (PBT) random copolymers derived from polyethylene terephthalate (PET)
US7829614B2 (en) * 2008-12-30 2010-11-09 Sabic Innovative Plastics Ip B.V. Reinforced polyester compositions, methods of manufacture, and articles thereof
US20110124839A1 (en) * 2009-11-25 2011-05-26 Canon Kabushiki Kaisha Flame-retardant polyester copolymer, and production process and molded article thereof
CN102770479B (zh) * 2009-12-31 2014-05-21 沙伯基础创新塑料知识产权有限公司 具有改进的相对热指数的氯取代的聚醚酰亚胺
JP5460560B2 (ja) * 2010-11-11 2014-04-02 三菱電機株式会社 半導体装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08124779A (ja) 1994-10-27 1996-05-17 Hitachi Chem Co Ltd 高圧電子部品の製造法
JPH08236667A (ja) 1995-02-28 1996-09-13 Hitachi Ltd 半導体装置
JP2001131876A (ja) * 1999-11-01 2001-05-15 Teijin Ltd 防炎・防水性帆布の製造方法
JP2003086722A (ja) 2001-09-14 2003-03-20 Hitachi Ltd 樹脂封止型パワーモジュール装置
JP2006144160A (ja) * 2004-11-18 2006-06-08 Toyobo Co Ltd 家電製品用難燃性不織布吸音シート材
JP2011514925A (ja) * 2008-03-06 2011-05-12 シル・プリュス・ザイラッハー・ゲーエムベーハー ハロゲン非含有難燃剤
JP2010111739A (ja) * 2008-11-05 2010-05-20 Teijin Chem Ltd 難燃性ポリ乳酸樹脂組成物
JP2011144237A (ja) * 2010-01-13 2011-07-28 Kaneka Corp 非ハロゲン難燃性帯電防止性ポリエステル系樹脂組成物、及びその成形体
JP2011213951A (ja) * 2010-04-01 2011-10-27 Kaneka Corp 難燃性ポリエステル系樹脂組成物

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014168169A1 (ja) * 2013-04-09 2014-10-16 株式会社カネカ 難燃性ポリブチレンテレフタレート樹脂組成物
US9714340B2 (en) 2013-04-09 2017-07-25 Kaneka Corporation Flame-retardant polybutylene terephthalate resin composition
KR20170090366A (ko) * 2016-01-28 2017-08-07 닛폰 도라이 케미카루 가부시키가이샤 광전식 연기 감지기
JP2017138968A (ja) * 2016-01-28 2017-08-10 日本ドライケミカル株式会社 光電式煙感知器
KR102554162B1 (ko) 2016-01-28 2023-07-12 닛폰 도라이 케미카루 가부시키가이샤 광전식 연기 감지기

Also Published As

Publication number Publication date
KR20140103896A (ko) 2014-08-27
EP2784119A4 (en) 2015-08-19
JPWO2013076918A1 (ja) 2015-04-27
CN103764757A (zh) 2014-04-30
EP2784119A1 (en) 2014-10-01
US20140336326A1 (en) 2014-11-13

Similar Documents

Publication Publication Date Title
JP6269656B2 (ja) 難燃性ポリブチレンテレフタレート樹脂組成物
WO2013076918A1 (ja) 難燃性ポリエステル系樹脂組成物を用いた電気電子用部品
JP5609644B2 (ja) 難燃性熱可塑性樹脂組成物および成形品
EP2578633A1 (en) Polybutylene terephthalate resin composition
WO1998056857A1 (fr) Composition de resine polyester thermoplastique ignifuge
CN110691819B (zh) 热塑性聚酯树脂组合物及其成型品
JP2010006965A (ja) 難燃性熱可塑性ポリエステル樹脂組成物
JP5369766B2 (ja) 難燃性熱可塑性ポリエステル樹脂組成物および成形品
KR20160088292A (ko) 열가소성 폴리에스테르 수지 조성물 및 성형품
WO2006001475A1 (ja) 難燃性ポリブチレンテレフタレート組成物および成形体
JP2013001772A (ja) 難燃性熱可塑性ポリエステル樹脂組成物および成形品
JP2010037375A (ja) 難燃性熱可塑性ポリエステル樹脂組成物および成形品
US20230144143A1 (en) Thermoplastic polyester resin composition and molded article
JPH1160924A (ja) 難燃性熱可塑性ポリエステル樹脂組成物
JP6100596B2 (ja) 延伸用難燃ポリエステル樹脂組成物
JP5569104B2 (ja) 難燃性ポリエステル系樹脂組成物
JP6051775B2 (ja) ポリエステル系樹脂組成物
JP6904173B2 (ja) 熱可塑性ポリエステル樹脂組成物および成形品
US20150218366A1 (en) Flame-retardant polyester resin compositions
JP2021014478A (ja) 熱可塑性ポリエステル樹脂組成物および成形品
JP5300589B2 (ja) ポリエステル樹脂組成物およびそこから得られる成形体
JP2000103946A (ja) テレビトランス部品用難燃性樹脂組成物
JP7327703B1 (ja) 熱可塑性ポリエステル樹脂組成物、熱可塑性ポリエステル樹脂組成物の製造方法および成形品
JPH11209587A (ja) 難燃性ポリエステル樹脂組成物
JP6548249B2 (ja) 難燃性樹脂組成物、難燃性マスターバッチ、成形体およびそれらの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12851611

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013545769

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147007913

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14360207

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012851611

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012851611

Country of ref document: EP