WO2013071484A1 - 薄膜沉积设备及薄膜沉积方法 - Google Patents

薄膜沉积设备及薄膜沉积方法 Download PDF

Info

Publication number
WO2013071484A1
WO2013071484A1 PCT/CN2011/082205 CN2011082205W WO2013071484A1 WO 2013071484 A1 WO2013071484 A1 WO 2013071484A1 CN 2011082205 W CN2011082205 W CN 2011082205W WO 2013071484 A1 WO2013071484 A1 WO 2013071484A1
Authority
WO
WIPO (PCT)
Prior art keywords
film deposition
thin film
beam source
component
substrate
Prior art date
Application number
PCT/CN2011/082205
Other languages
English (en)
French (fr)
Inventor
许波
曹立新
范慧
朱北沂
Original Assignee
中国科学院物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院物理研究所 filed Critical 中国科学院物理研究所
Priority to PCT/CN2011/082205 priority Critical patent/WO2013071484A1/zh
Publication of WO2013071484A1 publication Critical patent/WO2013071484A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation

Definitions

  • the present invention relates to an apparatus and method for depositing a thin film material, and more particularly to a thin film deposition apparatus for molecular beam assisted pulsed laser deposition and a method of using the same. Background technique
  • the preparation methods of thin film materials include chemical vapor deposition (CVD) and physical vapor deposition (PVD). These two methods and their prepared thin film materials have their own characteristics and have been widely used.
  • the invention belongs to the category of physical vapor deposition. Among the existing physical vapor deposition methods, the most closely related to the present invention is Pulsed Laser Deposition (PLD) technology and Molecular Beam Epitaxy (MBE). ) Technology. The two technologies are described separately below.
  • both pulsed laser deposition and molecular beam epitaxy are the unification of specific methods and specific equipment.
  • the equipment used in pulsed laser deposition technology includes an excimer laser and a cavity and its attachments, a substrate stage built in a vacuum chamber, a target holder, etc.; equipment used in molecular beam epitaxy includes a beam source furnace
  • the vacuum chamber and its attachments are a substrate table built into the vacuum chamber, a beam source furnace baffle (also known as a "beam source furnace shutter”) that can be opened and closed, and an in-situ real-time monitoring system.
  • molecular beam epitaxy may also involve the formation of a film of a compound by chemical reaction in the process of preparing a thin film material.
  • molecular beam epitaxy still belongs to the category of physical vapor deposition.
  • the step of preparing a film by a pulsed laser deposition method comprises: preparing a target according to a material composition of a film to be prepared; and mounting the target on a target holder in a vacuum chamber, the target holder being driven by a rotary motor Rotating; placing a substrate for film growth (single crystal substrate) on a substrate table opposite the target holder in the vacuum chamber, using a mechanical pump and a molecular pump to the vacuum chamber Vacuuming to bring the vacuum in the vacuum chamber to a predetermined vacuum condition; heating the substrate to a predetermined temperature; using an excimer laser, after focusing with a pulsed laser of a certain energy density, passing through the laser on the chamber of the vacuum chamber The entrance port is incident on the surface of the target in the vacuum chamber; the material on the surface of the target is instantaneously evaporated and converted into a plasma plume containing the target component under the bombardment of the high-energy pulsed laser; After being brought into contact with the substrate, the sheet is deposited, nucleated,
  • the main advantages of the pulsed laser deposition method are: (1) high deposition rate; (2) low temperature requirements for the substrate; (3) many types of films that can be prepared, and almost no restrictions on the material composition of the target, which can be deposited. a film of a high melting point material; (4) a uniformity with the target component, thereby easily obtaining a multi-component film of a desired stoichiometric ratio; (5) high orientation, high film resolution, and microdomain deposition .
  • pulsed laser deposition methods are also insufficient, mainly: (1) Because the film is island-like growth, it is difficult to obtain ultra-thin films of several cell layers; (2) due to the strong directionality of plasma plume, Therefore, the prepared film is not uniform enough; (3) It is difficult to prepare a large-area film.
  • the method for preparing a thin film by a molecular beam epitaxy method comprises: placing a beam source material for preparing a thin film in each of the beam source furnaces connected to a vacuum chamber; and placing a substrate for a film growth (single crystal substrate) On the substrate table in the vacuum chamber; vacuuming the vacuum chamber with a mechanical pump and a molecular pump to bring the vacuum in the vacuum chamber to a predetermined high vacuum condition; heating the substrate to a predetermined temperature; under ultra-high vacuum conditions, The beam source material in the beam source furnace is heated to be converted into a gaseous substance, which is collimated by a small hole to form a molecular beam, and the molecular beam passes through the beam source furnace baffle and is sprayed onto the surface of the substrate heated to a predetermined temperature; In this process, by controlling the scanning of the molecular beam on the surface of the substrate, molecules or atoms in the molecular beam can be grown on the surface of the substrate to obtain a uniform epitaxial layer; in particular
  • the main advantages of the molecular beam epitaxy method are: (1) It is possible to prepare multilayer structure films with different doping levels or different compositions; (2) It is possible to precisely control the thickness of the epitaxial layer of the film to prepare an ultrathin film; (3) The lower temperature of epitaxial growth is beneficial to improve the purity and integrity of the epitaxial layer; (4) By using the difference in adhesion coefficient of various elements, a compound semiconductor film with better chemical properties can be prepared.
  • the molecular beam epitaxy method also has its shortcomings, mainly: (1) The molecular beam is generated by heating the beam source furnace, so it is difficult to obtain a molecular beam of a high melting point material.
  • the method is not suitable for preparing a film of a high melting point material; (2) the method cannot be used at a higher gas partial pressure, especially It is not suitable for the preparation of superconductors, ferroelectrics, ferromagnets, optical crystals and organic polymer material films containing oxides under high oxygen partial pressure conditions.
  • pulsed laser deposition method and molecular beam epitaxy method have their own advantages and disadvantages, and how to make up for the shortcomings of pulsed laser deposition method and molecular beam epitaxy method, especially to fully absorb the two methods
  • the advantages, in order to produce better quality films, and even the preparation of films which cannot be prepared in the prior art, are problems that have been explored by those skilled in the art since the 1990s.
  • the technical literature published at home and abroad the prior art has not yet made a substantial breakthrough on this issue.
  • the laser molecular beam epitaxy (L-MBE) method claimed by some researchers is still intrinsically a category of pulsed laser deposition methods. This is because the laser molecular beam epitaxy method is based on the traditional PLD method, using the high vacuum conditions and in-situ real-time monitoring methods required by the molecular beam epitaxy method, without actually using the molecular beam current to prepare the film, that is, The microscopic kinetics of thin film preparation is still pulsed laser deposition, which is not substantially related to molecular beam epitaxy.
  • R-MBE Since the fundamental purpose of R-MBE is to combine the advantages of both PLD and MBE methods and overcome the shortcomings of the two methods, the fact is that there is no beam source furnace in the equipment used by L-MBE.
  • the device necessary for the MBE film formation process shows that L-MBE provides a reverse technical inspiration for the combination of PLD and MBE, namely the two methods of beam source furnace and excimer laser.
  • the devices used in the MBE and PLD film formation processes cannot be organically combined to work together on the film.
  • the pulse laser deposition method and the molecular beam epitaxy method have different mechanisms for forming a thin film, thereby causing them to be combined with each other.
  • the two film formation processes interfere with each other, which seriously affects the composition and quality of the film.
  • a pulsed laser bombards a target to form a high-energy plasma plume, and a beam source furnace heats the beam source material to form a lower-energy molecular beam, the former being charged and the latter being uncharged;
  • the pulsed laser deposition method grows the film faster on the substrate, while the molecular beam epitaxy method grows thin on the substrate.
  • the present invention provides a thin film deposition apparatus for molecular beam assisted pulse laser deposition and a method of using the same, which combines the advantages of the pulsed laser deposition method and the molecular beam epitaxy method, and overcomes this problem.
  • the deficiencies of the two methods are the two methods.
  • a thin film deposition chamber comprises: a cavity housing, a cavity enclosing the cavity of the film deposition cavity; a target carrier disposed in the middle of the cavity for placing the target composed of the component A; Disposed in the middle of the cavity, opposite to the target bracket; the laser incident port is disposed on the side of the cavity shell, opposite to the target bracket, for incident laser to bombard the target on the target bracket Plasma plume; the beam source furnace interface is disposed on the side of the cavity shell and obliquely opposite to the substrate stage for incident molecular beam flow composed of component B; the laser entrance port and the beam source furnace interface can simultaneously input laser light And the molecular beam, the component A and the component B respectively reach the surface of the substrate on the substrate table, and cooperate on the surface of the substrate to form a film of the material to be deposited.
  • a thin film deposition apparatus comprises: a thin film deposition chamber as described above; a laser system for generating a pulsed laser, and guiding the pulsed laser to enter the cavity through the laser entrance; the beam source furnace is connected to the beam source furnace interface for generating A molecular beam consisting of component B; a vacuum system connected to the cavity through a connecting line, the vacuum system sequentially comprising a molecular pump and a mechanical pump.
  • a thin film deposition method for depositing a thin film using a thin film deposition apparatus, the thin film deposition apparatus being a thin film deposition apparatus as above; the thin film deposition method comprising: the step I, according to a deposition to be deposited a material component of the material, a target for pulsed laser deposition and a beam source material for molecular beam epitaxy, the component of the target being A, and the component of the beam source material being B; step II, the target Mounted to the target bracket, mounting the beam source material to the bundle In the source furnace; step III, the substrate is sent into the cavity and mounted on the substrate stage; step IV, the focused pulsed laser is passed through the laser entrance to bombard the surface of the target in the cavity to generate plasma The body plume, and the plasma plume is deposited on the substrate, and the component A is deposited on the surface of the substrate; at the same time, the beam source furnace is heated to vaporize the beam source material to form a molecular
  • the invention relates to a molecular beam assisted pulsed laser deposition thin film deposition device and a method for using the same, which overcomes the technical bias that the two film preparation methods of pulse laser deposition and molecular beam epitaxy cannot be combined in the prior art, and absorbs the advantages of both. And can effectively avoid the mutual interference of the pulsed laser deposition film forming process and the molecular beam epitaxy film forming process, and can produce a film of better quality and which cannot be prepared at all in the prior art.
  • FIG. 1 is a schematic view of a thin film deposition chamber according to an embodiment of the present invention.
  • FIG. 2 is a schematic view of a thin film deposition apparatus 2 according to an embodiment of the present invention.
  • FIG. 4 is a flow chart of a thin film deposition method according to an embodiment of the present invention. detailed description
  • a thin film deposition chamber is provided.
  • the thin film deposition chamber includes: a cavity housing, a cavity enclosing the cavity of the thin film deposition chamber; and a target carrier 7 disposed in the middle of the cavity for placing the target composed of the component A
  • the substrate stage 5 is disposed in the middle of the cavity and disposed opposite to the target bracket;
  • the laser incident port 9 is disposed on the side of the cavity housing and is opposite to the target bracket for incident laser light to bombard the target
  • the target on the material carrier generates plasma plume;
  • the beam source furnace interface 10 is disposed on the side of the cavity housing and obliquely opposite to the substrate stage for incident molecular beam flow composed of component B; laser entrance port 9 and the beam source furnace interface 10 can simultaneously inject laser and molecular beam currents, so that component A and component B independently reach the surface of the substrate
  • the target bracket is disposed below the substrate stage, that is, bounded by the horizontal center plane of the cavity housing, and the laser incident port is disposed above the horizontal center plane;
  • the N beam source furnace interfaces are placed below the horizontal center plane.
  • the laser entrance port is disposed below the horizontal center plane;
  • N beam source furnace interfaces are disposed above the horizontal center plane.
  • the target bracket is disposed near the lower side of the substrate stage, and the distance between the two is usually not more than 80 mm. Preferably, the distance between the two is 20-60 mm, and the two may be parallel or opposite. However, based on the reasons of the process, etc., the target bracket can also be used.
  • the target holder is even placed near the left or right side of the substrate stage.
  • the target carrier and the substrate stage cannot be placed on the same plane.
  • the target and the substrate cannot be placed on the same plane. This is because the laser is bombarded when the target and the substrate are in the same plane.
  • the plasma plume generated by the target cannot be deposited on the substrate.
  • the target bracket and the substrate table cannot point in the same direction, because the surface of the target subjected to laser bombardment cannot face the same direction as the surface of the substrate receiving the plasma plume. Otherwise, the plasma plume is difficult. Deposited on the substrate.
  • a feed port 8 is provided on a side surface of the cavity of the thin film deposition chamber 1 , and four beam source interfaces 10 are disposed at a lower portion of the side surface of the outer casing of the thin film deposition chamber 1 (as shown in FIG. 1 , only Two of the beam source furnace ports are illustrated; a beam source furnace baffle 11 is provided between the interior of the beam source furnace port 10 and the cavity of the thin film deposition chamber 1. It will be understood by those skilled in the art that the number of beam source furnace interfaces can be adjusted as needed, and the conditions to be met are that the plurality of beam source furnaces are respectively tilted relative to the substrate stage.
  • the beam source furnace interface is also disposed on the side of the thin film deposition chamber housing, the number of which is 2 to 16, and the opening direction is oblique to the substrate stage.
  • the number of beam source furnace interfaces may be two, three, four, five, six, seven, eight, nine or ten, taking into account the size and symmetrical arrangement of the cavities.
  • the number of beam source furnace interfaces can be appropriately increased.
  • all beam source furnace interfaces can be set to two or three groups, each group can also include 2, 3, 4, 5 or 6 beam source furnace interfaces, each group in the beam source
  • the distance between the furnace interface and the substrate stage is the same, and the distance between the beam source furnace interface and the substrate stage between the groups can be different.
  • the laser incident opening 9 is provided at the upper portion of the side surface of the thin film deposition chamber casing, and the number thereof is 2 to 6.
  • one of the laser entrances can serve as an optical window for the incident laser, and the other can be used as a window for an in-situ real-time monitoring system (described in detail below), collectively referred to as a laser entrance, Because (1) functionally, each entrance can be used as a laser entrance; (2) The size and material of each entrance are the same in size and material; (3) It is commonly known in the industry as Laser entrance.
  • the position of the beam source furnace interface 10 and its opening direction, the position of the laser entrance port 9 and its opening direction, the position and orientation of the substrate stage 5, and the position and orientation of the target bracket 7 are matched with each other.
  • the so-called mutual cooperation means that the laser light incident through the laser entrance port 9 bombards the plasma plume generated on the surface of the target mounted on the target holder 7, and the molecules incident on the thin film deposition chamber through the beam source interface 10.
  • the beam currents can independently reach the surface of the substrate mounted on the substrate stage 5 without interfering with each other, and work together to form a film of the material to be deposited.
  • the opening direction of the beam source furnace interface 10 is perpendicular to the plane of the beam source furnace interface 10, and is directed outwardly and inwardly toward the inner cavity of the thin film deposition chamber 1;
  • the opening direction of the laser entrance port 9 refers to the laser incident port 9
  • the plane is vertical and directed outwardly and inwardly toward the inner cavity of the thin film deposition chamber 1;
  • the direction of the substrate stage 5 is perpendicular to the surface of the substrate placed on the substrate stage 5, and is directed from the substrate stage 5 to the substrate.
  • the direction of the target bracket 7 refers to the direction perpendicular to the surface of the target placed on the surface of the target bracket and directed by the target bracket 7 toward the target.
  • the angle between the opening direction of the laser entrance port and the corresponding point cut surface of the cavity shell is ( ⁇ , the angle between the corresponding point cut surface of the cavity shell of the beam source furnace interface is ⁇ 2 .
  • ⁇ angle between the opening direction of the opening of the cavity of the housing and the angle ⁇ between the direction of the cavity opening of the furnace shell interfaces beam source 2 can be between 10 ° ⁇ 80 ° selected, according to the specific needs of the user In determining the value range of 1 and (3 ⁇ 4), the size of the laboratory or production plant and the spatial layout of the associated equipment need to be considered.
  • the angle when the angle is greater than 80° or less than 10°, the molecular beam or/and The direction of movement of the incident laser and the plasma plume formed by the incident laser bombardment of the target is greatly limited, making it difficult to fabricate the film. Setting the angle to 45° is a preferred technical solution. Sometimes, depending on the space layout of the resettlement site and related equipment, or based on special process considerations, the angle needs to be set to other degrees between 10° and 80°, such as 30°, 50 Or 60 °.
  • the position and orientation of the laser entrance port and the beam source furnace interface for the basic purpose of the present invention. Too strict a limit, that is, generally limited.
  • the position of the beam source furnace interface should be higher than the position of the laser entrance port, which should be higher than the position of the substrate stage, and the beam source furnace should also be made.
  • the direction of the interface is opposite to the tilt of the substrate table.
  • the purpose of aligning the direction of the beam source furnace interface with the substrate stage is to prevent the target and target holder from blocking molecular beam currents.
  • the present invention provides a substrate stage elevating mechanism 12 and a target holder elevating mechanism 13 in the cavity 1.
  • the function of the substrate elevating mechanism 12 and the target carriage elevating mechanism 13 is to adjust the height of the substrate and the target to better achieve deposition of plasma plume and molecular beam on the surface of the substrate.
  • the structure of the substrate stage elevating mechanism 12 and the target rack elevating mechanism 13 will be described below with reference to Fig. 1 .
  • the substrate table elevating mechanism 12 extends from above the top of the cavity of the thin film deposition chamber 1 to the cavity housing of the thin film deposition chamber 1 and is connected to the substrate stage 5; 13 is passed from below the bottom of the outer casing of the thin film deposition chamber 1 to the cavity housing of the thin film deposition chamber and connected to the target holder 7.
  • the substrate stage lifting mechanism has been widely used in existing thin film deposition chambers. Adding a substrate table elevating mechanism to the thin film deposition chamber of the present invention can produce a better technical effect. There are many types of substrate lifting mechanisms.
  • such machines generally include a rotary disk located outside the cavity, a magnetic flange on the cavity of the cavity, a screw mechanism located inside the cavity, and the magnetic flange is used to couple the rotation of the outer disk of the cavity
  • the screw mechanism drives the target bracket or the substrate table lifting mechanism to rise or fall.
  • the above structure is directed to the case where the target bracket is disposed below the substrate stage.
  • the case where the target bracket is disposed above the substrate stage is opposite to the above case, that is, the substrate table lifting mechanism is connected to the substrate stage from below the top of the film deposition chamber and upwardly through the cavity housing;
  • the rack lifting mechanism is connected to the target bracket from above the bottom of the film deposition chamber and below the cavity housing.
  • the outer surface of the thin film deposition chamber 1 has both the beam source furnace interface 10 and the laser incident port 9, and the bundle The position of the source furnace port 10 and its opening direction, the position of the laser entrance port 9 and its opening direction, the position and orientation of the substrate stage 5, and the position and orientation of the target holder 7 are in a cooperative relationship.
  • the laser incident port 9 As for the size, shape, and material of the thin film deposition chamber 1, and the beam source furnace interface 10, the laser incident port 9, the target holder 7, the substrate stage 5, the quartz observation window 24, the substrate stage lifting mechanism 12, and the target holder
  • the size, shape, and the like of the rack lifting mechanism 13, the thin film deposition chamber molecular pump 2, the thin film deposition chamber mechanical pump 3, the valve 4, and the like can be made with reference to the corresponding components in the prior art.
  • the laser generated by the laser entrance port bombards the surface of the target to generate a plasma plume to deposit the component A on the surface of the substrate;
  • the beam deposits component B on the surface of the substrate.
  • Component A and component B work together to form a film of the material to be deposited.
  • the material to be deposited is formed by reacting the component A and the component B without reaction, for example, the material to be deposited is iron, Selenium and potassium composite materials, component A is iron, component B is potassium and selenium; or 2, the material to be deposited is a compound formed by chemical reaction of component A and component B, for example, the material to be deposited is potassium iron selenium.
  • K sFe ⁇ Se ⁇ component A is iron selenium (FeSe)
  • component B is potassium (K).
  • the component ⁇ is a high melting point material suitable for pulsed laser deposition, especially oxidation. Material or high melting point metal such as iron.
  • Component B is a low melting point material suitable for preparation by molecular beam epitaxy, especially an alkali metal material.
  • the question of "do not interfere with each other" is mainly determined by the position of the laser entrance port and the beam source furnace interface, and of course the position of the substrate and the target.
  • the target bracket is disposed below the substrate stage; the laser entrance is disposed above the horizontal center plane with the horizontal center plane of the cavity housing; the N beam source interfaces are disposed at the horizontal center Below the surface, the structure ensures that the two components "do not interfere with each other".
  • the present invention also provides a thin film deposition apparatus which combines the above-mentioned thin film deposition chamber 1 with a laser system, a beam source furnace, a thin film deposition chamber molecular pump 2, and a thin film deposition chamber mechanical pump 3.
  • the thin film deposition apparatus includes: a thin film deposition chamber as described above; a laser system for generating a pulsed laser, and guiding the pulsed laser to enter the cavity through the laser entrance; the beam source furnace, The beam source furnace interface is connected to generate a molecular beam flow composed of component B; a vacuum system is connected to the cavity through a connecting pipe, and the vacuum system includes, in order from the cavity Molecular pumps and mechanical pumps.
  • the thin film deposition chamber is connected to a vacuum system for providing a vacuum environment necessary for film deposition, including a thin film deposition chamber molecular pump 2 and a thin film deposition chamber mechanical pump.
  • a vacuum system for providing a vacuum environment necessary for film deposition, including a thin film deposition chamber molecular pump 2 and a thin film deposition chamber mechanical pump.
  • the thin film deposition chamber molecular pump 2 is fixedly connected to the thin film deposition chamber 1 through a molecular pump interface of the thin film deposition chamber 1
  • the thin film deposition chamber molecular pump 2 is connected to the thin film deposition chamber mechanical pump 3 through a mechanical pump tube
  • 1 is also provided with a valve 4 on the connecting passage of the membrane deposition chamber molecular pump 2, and the valve 4 can adopt a pneumatic ultra-high vacuum flapper valve of the prior art.
  • an inflation port 50 is also provided.
  • the function of the inflation port 50 is that In the process of preparing the film, the film deposition chamber 1 may be filled with an inert gas such as argon gas.
  • a quartz observation window 24 and an illumination electrode 25 are further disposed on the side of the cavity of the thin film deposition chamber 1 for facilitating observation of the film formation process.
  • the quartz observation window 24 and the illumination electrode 25 are also convenient for the operator to The film deposition chamber is fed or sampled from the film deposition chamber.
  • the present invention also provides another thin film deposition apparatus.
  • the film deposition apparatus of the present invention is a vacuum deposition system including the thin film deposition chamber 1, the feed chamber 14, and the transition chamber 15 of the above embodiment.
  • the feed chamber 14 and the transition chamber 15 are also vacuum chambers.
  • the feed chamber 14 and the transition chamber 15 are connected by a feed conduit 16 on which a valve 17 is provided.
  • the transition chamber 15 communicates with the feed port of the thin film deposition chamber 1 through a transition duct 18, and a valve 19 is provided on the transition duct 18. .
  • the feed chamber 14 is also connected to the feed chamber molecular pump 20, the feed chamber molecular pump 20 is connected to the feed chamber mechanical pump 21; the transition chamber 15 is also connected to the transition chamber molecular pump 22, and the transition chamber molecular pump 22 is connected to the transition chamber mechanical pump 23;
  • the feed chamber 14 is also provided with a feed chamber magnetic transfer device 30; the transition chamber 15 is also provided with a transition chamber magnetic transfer device 40.
  • Magnetic transfer devices have been widely used in existing PLD and MBE film forming apparatuses.
  • the addition of the feed chamber magnetic transfer device and the transition chamber magnetic transfer device can produce a better technical effect, that is, better maintaining the vacuum of the feed chamber and the transition chamber.
  • the magnetic force transmission device comprises a cylindrical body fixedly mounted on the outer casing of the transition chamber and passing through the inner cavity of the transition chamber, and a vacuum chamber, a vacuum chamber is arranged inside the cylindrical body
  • the end of the chamber communicating with the transition chamber is provided with a flange with a guide tube, and a transfer rod is arranged in the guide tube, one end of the transfer rod is used for fixing the sample, and the other end of the transfer rod is fixedly connected with the pure iron core, in the tube
  • the outer part of the shape corresponding to the pure iron core is provided with a movable handle, and the handle is provided with a magnet, and when the handle is moved, The pure iron core can be moved, and the pure iron core drives the sample to move through the transfer rod, and the sample is transferred to the main vacuum chamber.
  • a separate feed port is no longer provided.
  • other components or devices in the thin film deposition chamber 1 and the thin film deposition chamber molecular pump 2 and the thin film deposition chamber mechanical pump 3, Both are the same as the components or devices in the first embodiment.
  • the present embodiment adds devices such as a feeding chamber and a transition chamber, and the purpose of adding these devices is to better maintain the high vacuum of the film deposition chamber.
  • the feeding chamber, the transition chamber, the feed chamber molecular pump, the feed chamber mechanical pump, the transition chamber molecular pump, the transition chamber mechanical pump, the feed chamber magnetic transfer device, and the transition chamber magnetic transfer device Other devices can be used in the prior art.
  • the thin film deposition chamber 1, the feed chamber 14 and the transition chamber 15 of the present invention all need to be combined with other systems and devices to constitute the molecular beam assisted pulsed laser deposition apparatus of the present invention, and the method of the present invention can be used in the film. In the preparation process, the combination of pulsed laser deposition and molecular beam epitaxy is truly realized.
  • a molecular beam assisted pulsed laser deposition apparatus includes the following devices and systems:
  • the molecular beam-assisted pulsed laser deposition apparatus of the vacuum deposition system constituted by 15 is indistinguishable from the molecular beam-assisted pulsed laser deposition apparatus using only the thin film deposition chamber 1, except that the thin film deposition chamber 1 is included.
  • the molecular beam-assisted pulsed laser deposition apparatus of the vacuum deposition system constituted by the feeding chamber 14 and the transition chamber 15 can more effectively maintain the high vacuum degree of the thin film deposition chamber 1;
  • a laser system comprising an excimer laser 26, a focusing lens 27 and a mirror 28, wherein the laser system emits a laser repetition frequency of l-50 Hz and a pulse energy between 100 mJ and 500 mJ;
  • the laser system can adopt the excimer laser system existing in the prior art.
  • this embodiment has no special requirements on the pulse width of the laser;
  • the number and specifications of the beam source furnace 29, the beam source furnace 29, and the number of beam source furnace interfaces 10 and The specifications of the beam source furnace 29 in this embodiment can be used in the prior art beam source furnace, preferably using a beam source furnace having a maximum heating temperature of 1000 ° C or higher;
  • In-situ real-time monitoring system including reflective high energy electron diffractometer (RHEED), film thickness gauge, quadrupole mass spectrometer, grating spectrometer, and X-ray photoelectron spectroscopy (XPS)
  • the in-situ real-time monitoring system in this embodiment may adopt a reflective high energy electron diffractometer (RHEED), a film thickness measuring instrument, a quadrupole mass spectrometer, a grating spectrometer, and an X-ray photoelectron spectroscopy (XPS) existing in the prior art.
  • RHEED reflective high energy electron diffractometer
  • XPS X-ray photoelectron spectroscopy
  • the laser entrance port on the side of the outer casing of the thin film deposition chamber 1 can be provided in plurality, and each of the PLD deposition processes usually only needs to use one of the laser entrance ports, other laser incident openings can be used as reflective high-energy electron diffraction.
  • the monitoring optical window of the monitoring device such as the instrument is used, that is, the laser entrance port and the monitoring optical window can be used in the same size and material for flexible deployment; in addition, in order to improve the utilization efficiency of the beam source furnace interface, the present invention can also The beam source furnace interface is matched with the interface of the X-ray photoelectron spectrum device in the in-situ real-time monitoring system;
  • the in-situ real-time monitoring system has been widely used in the MBE film forming process.
  • the in-situ real-time monitoring system is not necessary, but the introduction of an in-situ real-time monitoring system can produce better technical effects.
  • the monitoring method it is essentially the same as MBE.
  • Automatic control system (not shown in Figure 3), automatic control system including terminal control module, information transmission network, laser system control module, thin film deposition chamber or vacuum deposition system control module and in-situ real-time monitoring system control
  • the module, the terminal control module is connected to the laser system control module, the vacuum deposition system control module and the in-situ real-time monitoring system control module through the information transmission network to control the operation of the above devices or systems.
  • the laser system of the present invention adjusts the incident angle of the pulsed laser, the repetition frequency and the pulse energy according to the instruction of the terminal control module; the vacuum deposition system control module of the present invention controls the thin film deposition chamber or the vacuum deposition system according to the instruction of the terminal control module.
  • the monitoring system control module monitors the processes of the PLD and the MBE according to the instructions of the terminal control module, and feeds the monitored data back to the terminal control module; the terminal control module in the present invention works according to a preset program, through the information network An instruction is issued to the above control module to control the operation of each of the above devices or systems.
  • the automatic control system of the present invention can employ a control system existing in the prior art, for example, a programmable logic controller (PLC control system) existing in the prior art.
  • PLC control system programmable logic controller
  • the thin film deposition chamber of the present invention and the molecular beam assisted pulsed laser deposition apparatus including the thin film deposition chamber are described above.
  • a method of preparing a thin film by using the above molecular beam assisted pulse laser deposition apparatus will be described.
  • a thin film deposition method is also provided.
  • 4 is a flow chart of a thin film deposition method according to an embodiment of the present invention. As shown in FIG. 4, the film deposition method of the present invention comprises:
  • Step S402 preparing a target for pulsed laser deposition according to a substance composition of the material to be deposited, and a beam source material for molecular beam epitaxy, wherein the main component of the target is A, the main component of the beam source material The component is B;
  • Step S404 the target is mounted on the target bracket, and the beam source material is installed into the beam source furnace.
  • Step S406 the substrate is sent into the cavity, and is mounted on the substrate stage, and the following Step S408 and step S408';
  • Step S408 the focused pulsed laser is passed through the laser entrance to bombard the surface of the target in the cavity to generate a plasma plume, and the plasma plume is deposited on the substrate, and the component A is deposited on the surface of the substrate.
  • step S410 is performed;
  • step S408' the beam source furnace is heated, the beam source material is vaporized to form a molecular beam, and is sprayed onto the substrate to deposit component B on the surface of the substrate. , adjusting the temperature of the beam source furnace and other parameters, performing step S410;
  • Step S410 component A and component B work together to form a film of the material to be deposited. After the film thickness reaches a desired thickness, the beam source baffle and the plume baffle are closed, the laser and the beam source furnace are turned off, and the deposition process ends.
  • the film deposition method of this embodiment comprises the following main steps:
  • the target composed of the iron element is mounted on the target bracket, and the beam source materials respectively composed of the potassium element and the selenium element are respectively installed in the two beam source furnaces; Step 3, cleaning the substrate;
  • Step 4 feeding the cleaned substrate into the film deposition chamber through the feed port;
  • Step 5 mounting the substrate on the substrate stage
  • Step 6 Grading the vacuum, first start the mechanical pump to reach a certain degree of vacuum, then start the molecular pump, and finally reach the predetermined high vacuum of 2xlO- 6 Pa.
  • the substrate is heated to 600 ° C by a substrate stage heating device.
  • Step 8 passing the focused pulsed laser through the laser entrance port to bombard the surface of the target in the cavity, generating an elemental plasma plume, and adjusting the incident angle of the laser to deposit the plasma plume on the substrate;
  • two beam source furnaces each containing potassium and selenium source materials are heated, and the beam source materials are separately vaporized to form two molecular beams of potassium and selenium, and the two molecular beam streams are separately sprayed to On the substrate, thereby epitaxially growing on the substrate;
  • Step IX after 20-60 minutes, stop the incident of the pulsed laser, close the beam source furnace, stop the substrate heating, and stop vacuuming the film deposition chamber;
  • Step 10 in the process of cooling the film deposition chamber, filling the film deposition chamber with 0.8 atmospheres of argon gas;
  • the inlet of the film deposition chamber is opened, and the substrate and the potassium ferroselenium film sample attached to the substrate are taken out.
  • the ratio of the three elements of potassium ferro-selenium in the potassium ferro-selenium film sample can be adjusted, thereby preparing the percentage by weight.
  • Potassium is 9%-14%
  • selenium is 52%-60%
  • the balance is iron potassium ferric selenium film samples.
  • the film deposition method of the embodiment of the present invention includes the following main steps:
  • the target composed of the iron element is mounted on the target bracket, and the beam source materials respectively composed of the selenium element and the strontium element are respectively installed in the two beam source furnaces;
  • Step 3 cleaning the substrate
  • Step 4 feeding the cleaned substrate into the film deposition chamber through the feed port;
  • Step 5 mounting the substrate on the substrate stage; Ho step six, grade vacuum, mechanical pump before start, after reaching a certain degree of vacuum, then start molecular pump, and finally reaches a predetermined high degree of vacuum 2x 10- 6 Pa.
  • Step 7 Heat the substrate to 550 ° C by the substrate stage heater.
  • Step 8 passing the focused pulsed laser through the laser entrance port to bombard the surface of the target in the cavity, generating an elemental plasma plume, and adjusting the incident angle of the laser to deposit the plasma plume on the substrate;
  • two beam source furnaces respectively containing two kinds of beam source materials, selenium and tellurium, are heated to vaporize the beam source material to form two molecular beams of selenium and tellurium, and the two molecular beam streams are respectively sprayed to the base.
  • Step IX after 20-60 minutes, stop the incident of the pulsed laser, close the beam source furnace, stop the substrate heating, and stop vacuuming the film deposition chamber;
  • the film deposition chamber is filled with 0.9 atmospheres of argon gas
  • the inlet of the film deposition chamber is opened, and the substrate and the iron selenium film sample attached to the substrate are taken out.
  • the ratio of the three elements of iron selenium bismuth in the iron selenium bismuth film sample can be adjusted to prepare a percentage by weight.
  • Selenium is 0%-59%, ⁇ is 0%-70%, and the balance is iron iron selenium bismuth film sample.
  • the content of selenium is zero, the content of cerium is 70% by weight, the content of iron is 30% by weight, and the prepared film is a film of iron enamel; when the content of cerium is zero, the content of selenium is by weight The percentage was 59%, the iron content was 41% by weight, and the prepared film was an iron selenium film.
  • the molecular beam-assisted pulsed laser deposition thin film deposition apparatus and the method of using the same have the advantages of pulse laser deposition and molecular beam epitaxy, and effectively avoid pulsed laser deposition film formation.
  • the mutual interference of the process and the molecular beam epitaxy film formation process enables the preparation of films of better quality and which cannot be prepared by the prior art.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种薄膜沉积设备及薄膜沉积方法。该薄膜沉积设备包括一薄膜沉积腔,该薄膜沉积腔包括:腔体外壳,腔体外壳围成薄膜沉积腔的腔体;靶材托架,设置于腔体的中部,用于放置由组分A构成的靶材;基片台,设置于腔体中部,与靶材托架相对设置;激光入射口,设置于腔体外壳的侧面,与并靶材托架倾斜相对,用于入射激光以轰击靶材托架上的靶材产生等离子体羽辉;束源炉接口,设置于腔体外壳的侧面并与基片台倾斜相对,用于入射由组分B构成的分子束流;激光入射口与束源炉接口同时入射激光和分子束流。本发明能够有效避免脉冲激光沉积成膜过程和分子束外延成膜过程的相互干扰,可以制备质量更好和采用现有技术根本无法制备的薄膜。

Description

薄膜沉积设备及薄膜沉积方法 技术领域
本发明涉及沉积薄膜材料的设备和方法, 特别涉及一种分子束辅助 脉冲激光沉积的薄膜沉积设备及其使用方法。 背景技术
薄膜材料的制备方法包括化学气相沉积 (CVD ) 和物理气相沉积 (PVD) 两大类, 这两类方法及其制备的薄膜材料各具特色, 均已得到 广泛的应用。 本发明属于物理气相沉积的范畴, 在现有的物理气相沉积 方法中,与本发明关系最密切的是脉冲激光沉积(Pulsed Laser Deposition, 简称 PLD) 技术和分子束外延 (Molecular Beam Epitaxy, 简称 MBE) 技 术。 以下对这两种技术进行分别说明。
分子束外延和脉冲激光沉积分别是二十世纪七十年代、 八十年代以 来迅速发展起来的薄膜制备技术。 这两种技术均与特定的设备相关联。 事实上, 无论是脉冲激光沉积技术, 还是分子束外延技术, 都是特定的 方法与特定的设备的统一。 其中, 脉冲激光沉积技术所使用的设备包括 准分子激光器和腔体及其附属装置一内置于真空室中的基片台、 靶材 托架等; 分子束外延技术所使用的设备包括束源炉、 真空室及其附属装 置一内置于真空室中的基片台、 可以开合的束源炉挡板 (亦称为 "束 源炉快门") 等, 以及原位实时监测系统。
脉冲激光沉积和分子束外延这两种技术所使用的设备均涉及真空 室, 所不同的是, 就技术传统而言, 分子束外延对真空室的真空度要求 更高。 另外, 分子束外延在制备薄膜材料的过程中也可能涉及单质元素 通过化学反应生成化合物薄膜的成膜过程。 不过, 从总体上说, 分子束 外延仍属于物理气相沉积的范畴。
脉冲激光沉积方法制备薄膜的歩骤包括: 根据拟制备的薄膜的物质 成分制备靶材; 将靶材安装于真空室内的靶材托架上, 该靶材托架能够 在旋转马达的驱动下进行旋转; 将用于薄膜生长的基片 (单晶衬底) 置 于真空室内的靶材托架对面的基片台上, 利用机械泵和分子泵对真空室 进行抽真空, 使真空室内的真空度达到预定的真空条件; 将基片加热至 预定温度; 利用准分子激光器, 用一定能量密度的脉冲激光经过聚焦后, 穿过真空室腔体外壳上的激光入射口入射到真空室内的靶材表面上; 靶 材表面的物质在高能量脉冲激光的轰击作用下, 瞬间蒸发、 转化为含有 靶材组分的等离子体羽辉; 等离子体羽辉射向基片, 并与基片接触后, 在基片上沉积、 成核、 外延生长从而形成薄膜。
脉冲激光沉积方法的主要优点是: (1 ) 沉积速度快; (2 ) 对衬底的 温度要求低; (3 ) 所能够制备的薄膜种类多, 对靶材的物质成分几乎没 有限制, 可以沉积高熔点材料的薄膜; (4 ) 与靶材成分的一致性好, 因 而容易获得所期望的化学计量比的多组分薄膜; (5 ) 定向性强, 薄膜分 辨率高, 能实现微区沉积。 不过, 脉冲激光沉积方法也有不足, 主要是: ( 1 ) 由于薄膜是岛状生长, 故较难获得几个原胞层的超薄膜; (2 ) 由于 等离子体羽辉具有很强的方向性, 以致所制备的薄膜不够均匀; (3 ) 难 以制备大面积的薄膜。
分子束外延方法制备薄膜的歩骤包括: 将用于制备薄膜的束源材料 分别置于与真空室连通的各个束源炉中; 将用于薄膜生长的基片 (单晶 衬底) 置于真空室内的基片台上; 利用机械泵和分子泵对真空室进行抽 真空, 使真空室内的真空度达到预定的高真空条件; 将基片加热至预定 温度; 在超高真空条件下, 将束源炉中的束源材料加热, 使其转化为气 态物质, 经小孔准直后形成分子束, 分子束穿过束源炉挡板, 喷射到被 加热至预定温度的基片表面上; 在此过程中, 通过控制分子束在基片表 面上的扫描, 便可使分子束中的分子或原子在基片表面上生长, 从而获 得均匀的外延层; 特别是, 在四极质谱仪、 光谱仪等原位实时监控仪器 的监控下, 分子束中的分子或原子按晶体排列, 一层层地在基片上 "外 延生长", 最终形成所需要的薄膜。
分子束外延方法的主要优点是: (1 ) 可以制备不同掺杂程度或者不 同成分的多层结构薄膜; (2 ) 可以精确地控制薄膜的外延层厚度, 制备 超薄层的薄膜; (3 ) 外延生长的温度较低, 有利于提高外延层的纯度和 完整性; (4 ) 利用各种元素的粘附系数的差别, 可制成化学配比较好的 化合物半导体薄膜。 当然, 分子束外延方法也有其不足, 主要是: (1 ) 分子束是靠加热束源炉产生的, 故难以获得高熔点材料的分子束, 因此, 该方法不适合制备高熔点材料的薄膜; (2) 该方法不能在较高气体分压, 尤其是较高氧分压的条件下运用, 故不适合制备含有氧化物的超导体、 铁电体、 铁磁体、 光学晶体以及有机高分子材料薄膜。
可见, 在薄膜材料的制备方面, 脉冲激光沉积方法和分子束外延方 法各有其优点和不足, 而怎样弥补脉冲激光沉积方法和分子束外延方法 各自的不足, 特别是充分吸收这两种方法各自的优点, 以便制备质量更 好的薄膜, 甚至制备现有技术无法制备的薄膜, 则是自二十世纪九十年 代以来, 本领域的技术人员一直在探索的问题。 然而, 从国内外已公开 发表的技术文献看, 迄今为止, 现有技术尚未在这个问题上取得实质性 突破。
需要说明的是, 部分研究人员所声称的激光分子束外延 (L-MBE) 方法, 本质上仍属于脉冲激光沉积方法的范畴。 这是因为激光分子束外 延方法只是在传统的 PLD方法的基础上, 采用了分子束外延方法所要求 的高真空条件和原位实时监控手段, 而没有真正利用分子束流来制备薄 膜, 亦即薄膜制备的微观动力学过程仍然是脉冲激光沉积, 与分子束外 延没有实质上的联系。
由于人们研发 L-MBE的根本目的是为了把 PLD和 MBE两种方法的 优点结合起来并克服这两种方法各自的不足, 而事实是, L-MBE使用的 设备中根本没有束源炉这一实现 MBE成膜过程所必不可少的装置,这说 明在 PLD和 MBE的结合问题上, L-MBE给人们提供了一种相反的技术 启示, 亦即束源炉和准分子激光器这两种分别用于 MBE和 PLD成膜过 程的装置不能有机地结合在一起, 共同作用于薄膜的制作。
现有技术之所以难以充分吸收脉冲激光沉积方法和分子束外延方法 各自的优点, 一个很重要的原因在于, 脉冲激光沉积方法和分子束外延 方法形成薄膜的机理不同, 从而导致其相互结合时, 两个成膜过程相互 干扰, 严重影响到薄膜的成分组成以及质量。 例如, 脉冲激光轰击靶材 所形成的是高能量的等离子体羽辉, 而通过束源炉加热束源材料所形成 的是能量较低的分子束, 前者带电, 后者不带电; 又如, 脉冲激光沉积 方法在基片上生长薄膜的速度较快, 而分子束外延方法在基片上生长薄 膜的速度较慢。 在本领域技术人员看来: 上述成膜机理不同造成的技术 困难是不可克服的。 由上述分析可知, 虽然脉冲激光沉积方法和分子束 外延方法在薄膜沉积领域已经发展很久, 但在本领域的普通技术人员看 来, 将两者结合起来是根本不可能的。 发明内容
(一) 要解决的技术问题
针对现有技术中存在的上述问题, 本发明提供了一种分子束辅助脉 冲激光沉积的薄膜沉积设备及其使用方法, 以把脉冲激光沉积方法和分 子束外延方法的优点结合起来, 并克服这两种方法各自的不足。
(二) 技术方案
根据本发明的一个方面, 提供了一种薄膜沉积腔。 该薄膜沉积腔包 括: 腔体外壳, 腔体外壳围成薄膜沉积腔的腔体; 靶材托架, 设置于腔 体的中部, 用于放置由组分 A构成的靶材; 基片台, 设置于腔体中部, 与靶材托架相对设置; 激光入射口, 设置于腔体外壳的侧面, 与并靶材 托架倾斜相对, 用于入射激光以轰击靶材托架上的靶材产生等离子体羽 辉; 束源炉接口, 设置于腔体外壳的侧面并与基片台倾斜相对, 用于入 射由组分 B构成的分子束流; 激光入射口与束源炉接口能够同时入射激 光和分子束流, 使组分 A与组分 B分别独立到达基片台上的基片表面, 在基片表面共同作用生成待沉积材料的薄膜。
根据本发明的另一个方面, 还提供了一种薄膜沉积设备。 该薄膜沉 积设备包括: 如上文的薄膜沉积腔; 激光系统, 用于产生脉冲激光, 并 引导该脉冲激光通过激光入射口进入腔体; 束源炉, 与束源炉接口相连 接, 用于产生由组分 B构成的分子束流; 真空系统, 与腔体通过连接管 路相连接, 从腔体向外, 该真空系统依次包括分子泵和机械泵。
根据本发明的再一个方面, 还提供了一种薄膜沉积方法, 其利用薄 膜沉积设备沉积薄膜, 该薄膜沉积设备为如上文的薄膜沉积设备; 该薄 膜沉积方法包括: 歩骤 I, 根据待沉积材料的物质组分, 制备用于脉冲激 光沉积的靶材和用于分子束外延的束源材料, 靶材的组分为 A, 束源材 料的组分为 B; 歩骤 II, 将靶材安装到靶材托架上, 将束源材料安装到束 源炉中; 歩骤 III, 将基片送入腔体中, 安装于在基片台上; 歩骤 IV, 将 聚焦后的脉冲激光穿过激光入射口轰击腔体内的靶材表面, 产生等离子 体羽辉, 并使等离子体羽辉在基片上沉积, 将组分 A沉积于基片表面; 与此同时, 加热束源炉, 使束源材料气化形成分子束, 并喷射到基片上, 将组分 B沉积于基片表面, 使组分 A和组分 B共同作用生成待沉积材料 的薄膜。
(三) 有益效果
本发明分子束辅助脉冲激光沉积的薄膜沉积设备及其使用方法克服 了现有技术中脉冲激光沉积和分子束外延这两种薄膜制备方法不能结合 的技术偏见, 最大限度地吸收了两者的优点, 并且能够有效避免脉冲激 光沉积成膜过程和分子束外延成膜过程的相互干扰, 可以制备质量更好 的, 和现有技术中根本无法制备的薄膜。 附图说明
图 1为本发明实施例薄膜沉积腔的示意图;
图 2为本发明实施例薄膜沉积设备二的示意图;
图 3为本发明实施例薄膜沉积设备三的示意图;
图 4为本发明实施例薄膜沉积方法的流程图。 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚明白, 以下结合具体 实施例, 并参照附图, 对本发明进一歩详细说明。 需要说明的是, 虽然 本文可提供包含特定值的参数的示范, 但应了解, 参数无需确切等于相 应的值, 而是可在可接受的误差容限或设计约束内近似于所述值。 为方 便理解, 首先将本申请文件中所涉及主要元件进行编号说明, 如下所示:
1-薄膜沉积腔; 2-薄膜沉积腔分子泵;
3-薄膜沉积腔机械泵; 4-阀门;
5-基片台; 6-基片台加热装置;
7-靶材托架; 8-进料口;
9-激光入射口; 10-束源炉接口; 11-束源炉挡板; 12-基片台升降机构;
13-靶材托架升降机构; 14-送料室;
15-过渡室; 16-送料管道;
17-阀门; 18-过渡管道;
19-阀门; 20-送料室分子泵;
21-送料室机械泵; 22-过渡室分子泵;
23-过渡室机械泵; 24-石英观察窗;
25-照明电极; 26-准分子激光器;
27-聚焦透镜; 28-反射镜;
29-束源炉; 30-送料室磁力传递装置;
40-过渡室磁力传递装置; 50-充气口。
根据本发明的一个方面, 提供了一种薄膜沉积腔。 图 1 为本发明实 施例薄膜沉积腔的示意图。 如图 1 所示, 薄膜沉积腔包括: 腔体外壳, 腔体外壳围成薄膜沉积腔的腔体; 靶材托架 7, 设置于腔体的中部, 用于 放置由组分 A构成的靶材; 基片台 5, 设置于腔体中部, 与靶材托架相 对设置;激光入射口 9,设置于腔体外壳的侧面,与并靶材托架倾斜相对, 用于入射激光以轰击靶材托架上的靶材产生等离子体羽辉; 束源炉接口 10, 设置于腔体外壳的侧面并与基片台倾斜相对, 用于入射由组分 B构 成的分子束流; 激光入射口 9与束源炉接口 10能够同时入射激光和分子 束流, 使组分 A与组分 B分别独立到达基片台 5上的基片表面, 在基片 表面共同作用生成待沉积材料的薄膜。
需要说明的是, 图 1 所示的薄膜沉积腔中, 靶材托架设置在基片台 的下方, 即以腔体外壳的水平中心面为界, 激光入射口设置在水平中心 面的上方; N个束源炉接口设置在水平中心面的下方。 对于靶材托架设 置在基片台上方的情况, 即以腔体外壳的水平中心面为界, 激光入射口 设置在水平中心面的下方; N个束源炉接口设置在水平中心面的上方, 其具体结构与图 1所示的结构正好相反, 此处不再赘述。
本实施例中, 靶材托架设置在基片台的下方附近, 两者之间的距离 通常不超过 80mm, 优选地, 两者相距 20-60mm, 两者可以平行相对, 也 可以倾斜相对。 不过, 基于工艺等方面的原因考虑, 也可以将靶材托架 设置在基片台的上方, 甚至将靶材托架设置在基片台的左侧或者右侧附 近。 靶材托架和基片台不能设置在同一平面上, 确切地说, 是靶材与基 片不能设置在同一平面上, 这是因为, 当靶材与基片位于同一平面时, 脉冲激光轰击靶材所产生的等离子体羽辉不可能在基片上沉积。 另外, 靶材托架和基片台也不能指向同一个方向, 这是因为接受激光轰击的靶 材表面与接受等离子体羽辉的基片表面不能朝向同一个方向, 否则, 等 离子体羽辉难以在基片上沉积。
本实施例中, 在薄膜沉积腔 1腔体外壳的侧面设有进料口 8, 在薄膜 沉积腔 1外壳的侧面下部设有四个束源炉接口 10 (由于图 1是剖面图, 故仅图示了其中的两个束源炉接口); 在束源炉接口 10 的内部与薄膜沉 积腔 1的腔体之间设有可以开合的束源炉挡板 11。 本领域的技术人员应 当了解, 束源炉接口的数目可以根据需要进行调整, 其需要满足的条件 为多个束源炉分别于基片台倾斜相对。 一般情况下, 束源炉接口也设置 在薄膜沉积腔外壳的侧面, 其数目为 2至 16个, 其开口方向与基片台倾 斜相对。 优选的, 考虑到腔体的尺寸及对称设置, 束源炉接口的数目可 以为 2个、 3个、 4个、 5个、 6个、 7个、 8个、 9个或 10个。 当然, 为 了增加整套设备的灵活性, 使更多的材料可以通过分子束外延至基片上, 可以适当增加束源炉接口的数目。 这种情况下, 全部束源炉接口可以设 置为两组或三组, 每一组又可以包括 2个、 3个、 4个、 5个或 6个束源 炉接口, 每一组中束源炉接口与基片台的距离相同, 而各组之间束源炉 接口与基片台的距离可以不同。
本实施例中, 激光入射口 9 设置在薄膜沉积腔外壳的侧面的上部, 其数目为 2至 6个。 此处, 在沉积过程中, 激光入射口中的一个可以作 为入射激光的光学窗口, 其他的可以作为原位实时监测系统 (将在下文 中详细说明) 的窗口使用, 将其统称为激光入射口, 是因为 (1 ) 从功能 上将, 各个入射口的确可以作为激光入射口使用; (2 ) 从尺寸和材质上 将, 各个入射口的尺寸和材质相同; (3 ) 行业内约定俗称的称其为激光 入射口。
束源炉接口 10的位置及其开口方向, 激光入射口 9的位置及其开口 方向, 基片台 5的位置和方向, 以及靶材托架 7的位置和方向呈相互配 合的关系。 所谓相互配合是指, 通过激光入射口 9 入射的激光轰击安装 在靶材托架 7 上的靶材表面所产生的等离子体羽辉, 以及通过束源炉接 口 10入射到薄膜沉积腔内的分子束流能够在互不干扰的情况下, 分别独 立到达安装在基片台 5 上的基片表面上, 共同作用生成待沉积材料的薄 膜。
束源炉接口 10的开口方向, 是指与束源炉接口 10的平面垂直, 且 由外向内指向薄膜沉积腔 1 内腔的方向; 激光入射口 9的开口方向是指 与激光入射口 9的平面垂直, 且由外向内指向薄膜沉积腔 1内腔的方向; 基片台 5的方向, 是指与安放在基片台 5上的基片表面垂直, 且由基片 台 5指向基片的方向; 靶材托架 7的方向, 是指与安放在靶材托架表面 上的靶材表面垂直, 且由靶材托架 7指向靶材的方向。
根据上述定义, 激光入射口的开口方向与腔体外壳对应点切面之间 的夹角为 (^, 束源炉接口的开口方向腔体外壳对应点切面之间的夹角为 α2。 激光入射口的开口方向与腔体外壳之间的夹角 αι以及束源炉接口的 开口方向腔体外壳之间的夹角 α2均可以根据用户的具体需求在 10°~80° 之间选择, 用户在确定 1和(¾的数值范围时, 需要考虑实验室或生产车 间的大小以及相关配套设备的空间布局。 一般说来, 当夹角大于 80°或小 于 10°时,分子束流或 /和入射激光以及由入射激光轰击靶材所形成的等离 子体羽辉的运动方向会受到极大的限制, 以致难以实现薄膜的制作。 将 夹角设置为 45°是一种优选的技术方案。 不过, 有时候, 受安置场所和相 关配套设备的空间布局的限制, 或者基于特殊的工艺考虑, 需要将夹角 设置为 10°~80°之间的其他度数, 如 30°、 50°或 60°。
由于脉冲激光的入射方向和分子束流前进的方向, 均有可调节的余 地, 因此, 就实现本发明的基本目的而言, 并不一定要对激光入射口和 束源炉接口的位置和方向作过于严格的限定, 亦即大体上限定即可。 例 如, 当基片台位于靶材托架的下方时, 应使束源炉接口的位置高于激光 入射口的位置, 该位置还应高于基片台的位置, 同时还应使束源炉接口 的方向与基片台倾斜相对。 使束源炉接口的方向与基片台倾斜相对的意 义在于, 避免靶材和靶材托架阻挡分子束流。
为了便于调整靶材和基片的位置, 从而更好地实现脉冲激光沉积和 分子束外延的结合, 本发明在腔体 1中设置了基片台升降机构 12和靶材 托架升降机构 13。 基片台升降机构 12和靶材托架升降机构 13的作用是 调节基片和靶材的高度, 以便更好地实现等离子体羽辉和分子束流在基 片表面上沉积。 以下结合图 1对基片台升降机构 12和靶材托架升降机构 13的结构进行说明。
如图 1所示, 基片台升降机构 12从薄膜沉积腔 1腔体顶部的上方, 向下贯穿至薄膜沉积腔 1 的腔体外壳, 并与基片台 5连接; 靶材托架升 降机构 13从薄膜沉积腔 1外壳底部的下方, 向上贯穿至薄膜沉积腔的腔 体外壳, 并与靶材托架 7 连接。 基片台升降机构在现有的薄膜沉积腔中 已得到广泛应用。 在本发明的薄膜沉积腔中增加基片台升降机构, 能产 生更好的技术效果。 基片台升降机构有多种类型。 最简单的, 此类机械 一般包括位于腔体外部的旋盘, 在腔体外壳上的磁力法兰, 位于腔体内 部的螺旋机构, 该磁力法兰用于将腔体外部旋盘的转动耦合至腔体内部 的螺旋机构, 螺旋机构带动靶材托架或基片台升降机构上升或下降。 需 要说明的是, 上述的结构针对的是靶材托架设置于基片台下方的情况。 对于靶材托架设置于基片台上方的情况, 与上述情况正好相反, 即基片 台升降机构从薄膜沉积腔顶部的下方, 向上贯穿腔体外壳之后, 与基片 台连接; 靶材托架升降机构从薄膜沉积腔底部的上方, 向下贯穿腔体外 壳之后, 与靶材托架连接。
需要强调的是, 本发明中的薄膜沉积腔 1 与现有技术中的真空室的 主要区别在于, 薄膜沉积腔 1的外壳上既有束源炉接口 10, 又有激光入 射口 9, 并且束源炉接口 10的位置及其开口方向, 激光入射口 9的位置 及其开口方向, 基片台 5的位置和方向, 以及靶材托架 7的位置和方向 呈相互配合的关系。 至于薄膜沉积腔 1 的大小、 形状、 材料, 以及束源 炉接口 10、 激光入射口 9、 靶材托架 7、 基片台 5、 石英观察窗 24、 基片 台升降机构 12、 靶材托架升降机构 13、 薄膜沉积腔分子泵 2、 薄膜沉积 腔机械泵 3、 阀门 4等其他部件的大小、形状等均可参照现有技术中的相 应部件制作。
在本实施例薄膜沉积腔中, 由激光入射口射进的激光轰击靶材表面 产生的等离子体羽辉将组分 A沉积于基片表面; 由束源炉接口进入分子 束流将组分 B沉积于基片表面。 组分 A和组分 B共同作用, 生成待沉积 材料的薄膜。 关于组分 A和组分 B与待沉积材料的关系, 可以有以下两 种情况: 1、 待沉积材料由组分 A和组分 B未经过反应复合而成, 例如, 待沉积材料为铁、 硒、 钾复合材料, 组分 A为铁, 组分 B为钾和硒; 或 2、待沉积材料为组分 A和组分 B经过化学反应后生成的化合物,例如待 沉积材料为钾铁硒 (K sFe^Se^ , 组分 A为铁硒 (FeSe) , 组分 B为钾 (K)。 一般情况下, 组分 Α为适合于采用脉冲激光沉积方法制备的高熔 点材料, 尤其是氧化物材料或高熔点金属, 如铁。 组分 B为适合于采用 分子束外延方法制备的低熔点材料, 尤其是碱金属材料。
关于 "相互不干扰" 的问题, 主要由激光入射口和束源炉接口的方 位决定, 当然也与基片和靶材的位置有关。 例如, 但不限于, 靶材托架 设置在基片台的下方; 以腔体外壳的水平中心面为界, 激光入射口设置 在水平中心面的上方; N个束源炉接口设置在水平中心面的下方, 从而 从结构上保证了两种组分的 "相互不干扰"。
在上述薄膜沉积腔的基础上, 本发明还提供了一种薄膜沉积设备, 即将上述薄膜沉积腔 1与激光系统、 束源炉、 薄膜沉积腔分子泵 2和薄 膜沉积腔机械泵 3 等装置结合起来所组成的设备。 具体来讲, 该薄膜沉 积设备包括: 如上文所述的薄膜沉积腔; 激光系统, 用于产生脉冲激光, 并引导该脉冲激光通过所述激光入射口进入所述腔体; 束源炉, 与所述 束源炉接口相连接, 用于产生由组分 B构成的分子束流; 真空系统, 与 所述腔体通过连接管路相连接, 从所述腔体向外, 该真空系统依次包括 分子泵和机械泵。
同其他薄膜沉积设备类似, 如图 1 所示, 该薄膜沉积腔与其真空系 统相连接, 该真空系统用于提供薄膜沉积必备的真空环境, 包括薄膜沉 积腔分子泵 2和薄膜沉积腔机械泵 3, 其中, 薄膜沉积腔分子泵 2通过薄 膜沉积腔 1的分子泵接口与薄膜沉积腔 1固定连接,薄膜沉积腔分子泵 2 与薄膜沉积腔机械泵 3通过机械泵管连接; 在薄膜沉积腔 1与薄膜沉积 腔分子泵 2的连接通道上还设有阀门 4,阀门 4可采用现有技术中的气动 超高真空插板阀。
在薄膜沉积腔 1外壳的顶部,还设有充气口 50。充气口 50的作用是, 在制备薄膜的过程中, 可以向薄膜沉积腔 1 充入惰性气体, 例如氩气。 在薄膜沉积腔 1腔体的侧面上还设有石英观察窗 24和照明电极 25,其作 用是便于观察成膜的过程, 另外, 有了石英观察窗 24和照明电极 25, 也 便于操作人员向薄膜沉积腔送料或者从薄膜沉积腔取样。
需要说明的是, 为了突出显示本发明与现有技术的区别, 图 1 中还 省略了部分现有技术中已知的部件, 例如, 与基片台加热装置连接的导 线就没有出现在图 1中。
然而, 由于每次送样或者取样都需要开启薄膜沉积腔的进料口 8, 因 此, 在只有一个真空室, 亦即薄膜沉积腔 1 的情况下, 需要花费大量时 间给薄膜沉积腔 1抽真空, 这不仅会降低薄膜沉积腔 1 的工作效率, 而 且也会增加能耗, 为此, 本发明还给出了另一种薄膜沉积设备。
图 2为本发明实施例薄膜沉积设备二的示意图。 如图 2所示, 本发 明薄膜沉积设备为包括上述实施例的薄膜沉积腔 1、 送料室 14和过渡室 15的真空沉积系统。 送料室 14和过渡室 15也是真空室。
送料室 14和过渡室 15通过送料管道 16连通, 在送料管道 16上设 有阀门 17, 过渡室 15通过过渡管道 18与薄膜沉积腔 1的进料口连通, 在过渡管道 18上设有阀门 19。
送料室 14还与送料室分子泵 20连接, 送料室分子泵 20与送料室机 械泵 21连接; 过渡室 15还与过渡室分子泵 22连接, 过渡室分子泵 22 与过渡室机械泵 23连接; 送料室 14还设置有送料室磁力传递装置 30; 过渡室 15还设置有过渡室磁力传递装置 40。
磁力传递装置在现有的 PLD和 MBE成膜设备中已得到广泛应用。 在本发明中, 增设送料室磁力传递装置和过渡室磁力传递装置能产生更 好的技术效果, 亦即更好地维持送料室和过渡室的真空度。 本发明可使 用的磁力传递装置有多种。 以一种最简单的磁力传递装置为例, 磁力传 递装置包括固定安装在过渡室的外壳上且与过渡室的内腔贯通的筒状 体, 筒状体的内部设有一真空腔室, 真空腔室与过渡室连通的一端设有 一个带有导向管的法兰, 在导向管内设有传递杆, 传递杆的一端用于固 定样品, 传递杆的另一端与纯铁芯子固定连接, 在筒状体的外部与纯铁 芯子相对应的部位装有可移动的手柄, 手柄上装有磁铁, 手柄移动时, 可带动纯铁芯子移动, 纯铁芯子通过传递杆带动样品移动, 将样品传递 到主真空室。
除了因与过渡管道 18连通, 而不再设置独立的进料口外, 在实施例 二中, 薄膜沉积腔 1 中的其他部件或装置, 以及薄膜沉积腔分子泵 2和 薄膜沉积腔机械泵 3, 均与实施例一中的部件或装置相同。
本实施例与实施例一的主要区别在于, 本实施例增加了送料室、 过 渡室等装置, 而增加这些装置的目的在于, 更好地维持薄膜沉积腔的高 真空度。 需要说明的是, 在实施本发明的过程中, 送料室、 过渡室、 送 料室分子泵、 送料室机械泵、 过渡室分子泵、 过渡室机械泵、 送料室磁 力传递装置以及过渡室磁力传递装置等装置均可采用现有技术中已有的 装置。 本发明中的薄膜沉积腔 1、 送料室 14和过渡室 15, 均需要与其他 系统和装置结合起来组成本发明的分子束辅助的脉冲激光沉积设备, 并 采用本发明的方法, 才能在薄膜的制备过程中, 真正实现脉冲激光沉积 和分子束外延的结合。
为了制备高质量的薄膜, 就需要对薄膜制备进行监控。 仿照现有技 术中的分子束外延设备, 本发明还提供了一种带有原位实时监测系统的 薄膜沉积设备。 图 3 为本发明实施例薄膜沉积设备三的示意图。 如图 3 所示, 一种分子束辅助的脉冲激光沉积设备, 其包括下列装置和系统:
( 1 )薄膜沉积腔 1 ; 需要说明的是, 虽然图 3未标示出送料室 14和 过渡室 15, 但是, 在实施本发明的过程中, 包括由薄膜沉积腔 1、 送料 室 14和过渡室 15构成的真空沉积系统的分子束辅助的脉冲激光沉积设 备与仅采用薄膜沉积腔 1 的分子束辅助的脉冲激光沉积设备在工作原理 上并无区别, 所不同的是, 包括由薄膜沉积腔 1、 送料室 14和过渡室 15 构成的真空沉积系统的分子束辅助的脉冲激光沉积设备能更有效率地保 持薄膜沉积腔 1的高真空度;
(2)激光系统, 其包括准分子激光器 26、聚焦透镜 27和反射镜 28, 激光系统发射的激光重复频率为 l-50Hz, 脉冲能量介于 100 mJ-500 mJ 之间; 本实施例中的激光系统可采用现有技术中已有的准分子激光系统, 另外, 本实施例对激光的脉冲宽度没有特殊要求;
(3 )束源炉 29, 束源炉 29的数目和规格与束源炉接口 10的数目和 规格相匹配; 本实施例中的束源炉 29可采用现有技术中已有的束源炉, 最好采用最高加热温度在摄氏 1000°C以上的束源炉;
(3 ) 原位实时监测系统 (未在图 3 中示出), 其包括反射式高能电 子衍射仪(RHEED)、 薄膜厚度测量仪, 四极质谱仪、 光栅光谱仪以及 X 射线光电子谱 (XPS); 本实施例中的原位实时监测系统可采用现有技术 中已有的反射式高能电子衍射仪(RHEED)、 薄膜厚度测量仪, 四极质谱 仪、 光栅光谱仪以及 X射线光电子谱 (XPS); 另外, 由于薄膜沉积腔 1 外壳侧面上的激光入射口可以设置多个, 并且每次 PLD沉积过程通常只 需利用其中的一个激光入射口, 因此, 其他激光入射口可作为反射式高 能电子衍射仪等监测装置的监测光学窗口使用, 也就是说, 激光入射口 和监测光学窗口可以采用相同的尺寸和材质, 灵活调配使用; 另外, 为 了提高束源炉接口的利用效率, 本发明亦可使束源炉接口与原位实时监 测系统中 X 射线光电子谱等装置的接口相匹配; 原位实时监测系统在 MBE成膜过程中早已得到广泛应用, 对于本发明来说, 原位实时监测系 统不是必需的, 但引入原位实时监测系统, 能产生更好的技术效果。 至 于监测方式, 与 MBE实质上相同。
(4) 自动控制系统 (未在图 3 中示出), 自动控制系统包括终端控 制模块、 信息传输网路、 激光系统控制模块、 薄膜沉积腔或者真空沉积 系统控制模块和原位实时监测系统控制模块, 终端控制模块通过信息传 输网路与激光系统控制模块、 真空沉积系统控制模块和原位实时监测系 统控制模块连接, 控制上述各装置或系统的工作。
本发明中的激光系统根据终端控制模块的指令, 调节脉冲激光的入 射角, 重复频率和脉冲能量; 本发明中的真空沉积系统控制模块根据终 端控制模块的指令, 控制薄膜沉积腔或者真空沉积系统中的各分子泵、 机械泵的工作状态和各种阀门的开启和关闭, 从而自动调节薄膜沉积腔 或者包括薄膜沉积腔、 过渡室和进料室在内真空沉积系统的真空度; 本 发明中的监测系统控制模块根据终端控制模块的指令, 对 PLD和 MBE 的过程进行监测, 并把监测的数据反馈到终端控制模块; 本发明中的终 端控制模块根据事先设定的程序工作, 通过信息网络向上述控制模块发 出指令, 控制上述各装置或系统的工作。 本发明中的自动控制系统可采用现有技术中已有的控制系统, 例如, 采用现有技术中已有的可编程逻辑控制器 (PLC控制系统)。
上文介绍了本发明中的薄膜沉积腔, 以及包括薄膜沉积腔的分子束 辅助的脉冲激光沉积设备, 以下, 进一歩介绍运用上述分子束辅助的脉 冲激光沉积设备来制备薄膜的方法。
根据本发明的再一个方面, 还提供了一种薄膜沉积方法。 图 4 为本 发明实施例薄膜沉积方法的流程图。 如图 4所示, 本发明薄膜沉积方法 包括:
歩骤 S402 , 根据待沉积材料的物质组分, 制备用于脉冲激光沉积的 靶材, 以及用于分子束外延的束源材料, 其中, 靶材的主要组分为 A, 束源材料的主要组分为 B;
歩骤 S404, 将靶材安装到靶材托架上, 将束源材料安装到束源炉中; 歩骤 S406 , 将基片送入腔体中, 安装于在基片台, 同时执行以下歩 骤 S408和歩骤 S408' ;
歩骤 S408 , 将聚焦后的脉冲激光穿过激光入射口轰击腔体内的靶材 表面, 产生等离子体羽辉, 并使等离子体羽辉在基片上沉积, 将组分 A 沉积于基片表面, 期间调整激光的能量和频率等参数, 执行歩骤 S410; 歩骤 S408', 加热束源炉, 使束源材料气化形成分子束, 并喷射到基 片上, 将组分 B沉积于基片表面, 期间调整束源炉的温度等参数, 执行 歩骤 S410;
歩骤 S410, 组分 A和组分 B共同作用生成待沉积材料的薄膜, 待薄 膜厚度达到理想厚度后, 关闭束源炉挡板和羽辉挡板, 关闭激光和束源 炉, 沉积过程结束。
至此, 本实施例薄膜沉积方法完成, 制备出符合要求的理想薄膜。 以下结合所制备的具体薄膜, 来描述本发明。 以钾铁硒薄膜的制备为例, 本发明薄膜沉积方法包括以下主要歩骤:
歩骤一, 制备由铁元素组成的靶材, 以及分别由钾元素和硒元素组 成的束源材料;
歩骤二, 将铁元素组成的靶材安装到靶材托架上, 将分别由钾元素 和硒元素组成的束源材料分别装在两个束源炉中; 歩骤三, 清洗基片;
歩骤四, 将清洗后的基片通过进料口送入薄膜沉积腔中;
歩骤五, 将基片安装在基片台上;
歩骤六, 分级抽真空, 先启动机械泵达到一定真空度后, 再启动分 子泵, 最后达到预定的高真空度 2xlO—6Pa。
歩骤七, 通过基片台加热装置将基片加热到摄氏 600°C。
歩骤八, 将聚焦后的脉冲激光穿过激光入射口轰击腔体内的靶材表 面, 产生含有元素等离子体羽辉, 同时通过调整激光的入射角, 使等离 子体羽辉在基片上沉积; 与此同时, 加热分别装有钾和硒两种束源材料 的两个束源炉, 使束源材料分别气化形成钾和硒两种分子束流, 并使这 两种分子束流分别喷射到基片上, 从而在基片上外延生长;
歩骤九, 经过 20-60分钟后, 停止脉冲激光的入射, 关闭束源炉, 停 止基片加热, 且停止对薄膜沉积腔抽真空;
歩骤十, 在薄膜沉积腔降温的过程中, 向薄膜沉积腔内充入 0.8个大 气压的氩气;
歩骤十一, 待薄膜沉积腔的温度降至常温后, 开启薄膜沉积腔的进 料口, 取出基片和附着在基片上的钾铁硒薄膜样品。
在执行歩骤八的过程中, 通过控制等离子体羽辉和分子束流在基片 上的沉积过程, 可以调节钾铁硒三种元素在钾铁硒薄膜样品中的比例, 从而制备出按重量百分比钾为 9%-14%的, 硒为 52%-60%的, 余量为铁 的钾铁硒薄膜样品。
以铁硒碲薄膜的制备为例, 本发明实施例薄膜沉积方法包括以下主 要歩骤:
歩骤一, 制备由铁元素组成的靶材, 以及分别由硒元素和碲元素组 成的束源材料;
歩骤二, 将铁元素组成的靶材安装到靶材托架上, 将分别由硒元素 和碲元素组成的束源材料分别安装在两个束源炉中;
歩骤三, 清洗基片;
歩骤四, 将清洗后的基片通过进料口送入薄膜沉积腔中;
歩骤五, 将基片安装在基片台上; 歩骤六, 分级抽真空, 先启动机械泵, 达到一定真空度后, 再启动 分子泵, 最后达到预定的高真空度 2x 10— 6Pa。
歩骤七, 通过基片台加热装置将基片加热到摄氏 550 °C。
歩骤八, 将聚焦后的脉冲激光穿过激光入射口轰击腔体内的靶材表 面, 产生含有元素等离子体羽辉, 同时通过调整激光的入射角, 使等离 子体羽辉在基片上沉积; 与此同时, 加热分别装有硒和碲两种束源材料 的两个束源炉, 使束源材料气化形成硒和碲两种分子束流, 并使这两种 分子束流分别喷射到基片上, 从而在基片上外延生长;
歩骤九, 经过 20-60分钟后, 停止脉冲激光的入射, 关闭束源炉, 停 止基片加热, 且停止对薄膜沉积腔抽真空;
歩骤十, 在薄膜沉积腔降温的过程中, 向薄膜沉积腔内充入 0.9个大 气压的氩气;
歩骤十一, 待薄膜沉积腔的温度降至常温后, 开启薄膜沉积腔的进 料口, 取出基片和附着在基片上的铁硒碲薄膜样品。
在执行歩骤八的过程中, 通过控制等离子体羽辉和分子束流在基片 上的沉积过程, 可以调节铁硒碲三种元素在铁硒碲薄膜样品中的比例, 从而制备出按重量百分比硒为 0%-59%, 碲为 0%-70%的, 余量为铁的铁 硒碲薄膜样品。 当硒的含量为零时, 碲的含量按重量百分比为 70%, 铁 的含量按重量百分比为 30%, 所制备的薄膜为铁碲薄膜; 当碲的含量为 零时, 硒的含量按重量百分比为 59%, 铁的含量按重量百分比为 41%, 所制备的薄膜为铁硒薄膜。
上述各实施例从不同方面对本发明进行了详细说明。 综上所述, 本 发明分子束辅助脉冲激光沉积的薄膜沉积设备及其使用方法最大限度地 吸收了脉冲激光沉积和分子束外延这两种薄膜制备方法的优点, 有效避 免了脉冲激光沉积成膜过程和分子束外延成膜过程的相互干扰, 能够制 备质量更好和采用现有技术根本无法制备的薄膜。
以上所述的具体实施例, 对本发明的目的、 技术方案和有益效果进 行了进一歩详细说明, 所应理解的是, 以上所述仅为本发明的具体实施 例而已, 并不用于限制本发明, 凡在本发明的精神和原则之内, 所做的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求
1、 一种薄膜沉积腔, 其特征在于, 包括:
腔体外壳, 所述腔体外壳围成所述薄膜沉积腔的腔体;
靶材托架, 设置于所述腔体的中部, 用于放置由组分 A构成的 靶材;
基片台, 设置于所述腔体中部, 与所述靶材托架相对设置; 激光入射口, 设置于所述腔体外壳的侧面, 与并所述靶材托架倾 斜相对,用于入射激光以轰击所述靶材托架上的靶材产生等离子体羽 辉;
束源炉接口,设置于所述腔体外壳的侧面并与所述基片台倾斜相 对, 用于入射由组分 B构成的分子束流;
所述激光入射口与所述束源炉接口能够同时入射激光和分子束 流, 使组分 A与所述组分 B分别独立到达所述基片台上的基片表面, 在基片表面共同作用生成待沉积材料的薄膜。
2、 根据权利要求 1所述的薄膜沉积腔, 其特征在于,
所述待沉积材料为所述组分 A和所述组分 B未经过化学反应复 合而成的材料; 或
所述待沉积材料为所述组分 A和所述组分 B经过化学反应后生 成的化合物。
3、 根据权利要求 2所述的薄膜沉积腔, 其特征在于, 所述组分 A为高熔点材料, 所述组分 B为低熔点材料。
4、 根据权利要求 1所述的薄膜沉积腔, 其特征在于, 所述基片 台与所述靶材料托架平行相对设置或倾斜相对设置。
5、 根据权利要求 1所述的薄膜沉积腔, 其特征在于,
所述靶材托架设置在所述基片台的下方; 以所述腔体外壳的水平 中心面为界, 所述激光入射口设置在所述水平中心面的上方; 所述束 源炉接口设置在所述水平中心面的下方; 或
所述靶材托架设置在所述基片台的上方; 以所述腔体外壳的水平 中心面为界, 所述激光入射口设置在所述水平中心面的下方; 所述束 源炉接口设置在所述水平中心面的上方。
6、 根据权利要求 1所述的薄膜沉积腔, 其特征在于, 所述激光 入射口的开口方向与所述腔体外壳对应点切面之间的夹角 介于 10° 到 80°之间, 所述束源炉接口的开口方向与所述腔体外壳对应点切面 之间的夹角 α2介于 10°到 80°之间。
7、 根据权利要求 6所述的薄膜沉积腔, 其特征在于, 所述 (^为 45°; 所述 α2为 45°。
8、 根据权利要求 1所述的薄膜沉积腔, 其特征在于, 所述束源 炉接口与所述腔体之间设有可开合的束源炉挡板,所述靶材托架与所 述基片台之间设有可开合的羽辉挡板。
9、 根据权利要求 1所述的薄膜沉积腔, 其特征在于, 还包括基 片台升降机构和靶材托架升降机构, 分别用于升降基片台与靶材托 架。
10、 根据权利要求 1所述的薄膜沉积腔, 其特征在于, 所述束源 炉接口的数目为 Ν个, 所述 Ν 1, 所述 Ν个束源炉接口分别与所述 基片台倾斜相对。
11、 根据权利要求 10所述的薄膜沉积腔, 其特征在于, 所述 Ν 个束源炉接口分为 Μ组, 所述 Μ<Ν;
所述 Μ组中的其中一组中的束源炉接口为多个, 该组中多个束 源炉接口处于同一平面, 且与所述基片台的距离相同。
12、 一种薄膜沉积设备, 其特征在于, 包括:
如权利要求 1-11中任一项所述的薄膜沉积腔;
激光系统, 用于产生脉冲激光, 并引导该脉冲激光通过所述激光 入射口进入所述腔体;
束源炉,与所述束源炉接口相连接,用于产生由组分 Β构成的分 子束流;
真空系统, 与所述腔体通过连接管路相连接, 从所述腔体向外, 该真空系统依次包括分子泵和机械泵。
13、 根据权利要求 12所述的薄膜沉积设备, 其特征在于, 还包 括送料室和过渡室, 其中:
所述送料室通过送料管道与所述过渡室相连通,所述送料管道中 设有第一真空阀门; 所述过渡室通过传输管道与所述腔体相连通, 所 述传输管道中设有第二真空阀门;
所述送料室和过渡室分别通过管道与各自的真空系统相连接; 所述送料室和所述过渡室之间设置第一磁力传递装置;所述过渡 室和所述腔体之间设置第二磁力传递装置。
14、 根据权利要求 12所述的薄膜沉积设备, 其特征在于, 还包 括: 原位实时监测系统,
所述腔体外壳侧面设置监测光学窗口;该监测光学窗口与所述基 片台倾斜相对;所述原位实时监测系统通过所述监测光学窗口朝向所 述基片台。
15、 根据权利要求 14所述的薄膜沉积设备, 其特征在于, 所述 原位实时监测系统包括: 反射式高能电子衍射仪、 薄膜厚度测量仪, 四极质谱仪、 光栅光谱仪和 /或 X射线光电子谱仪。
16、 一种薄膜沉积方法, 其利用薄膜沉积设备沉积薄膜, 其特征 在于, 该薄膜沉积设备为如权利要求 12所述的薄膜沉积设备; 该薄 膜沉积方法包括:
歩骤 I, 根据待沉积材料的物质组分, 制备用于脉冲激光沉积的 靶材和用于分子束外延的束源材料, 所述靶材的组分为 A, 所述束源 材料的组分为 B;
歩骤 II, 将所述靶材安装到所述靶材托架上, 将所述束源材料安 装到所述束源炉中;
歩骤 III, 将基片送入腔体中, 安装于在所述基片台上; 歩骤 IV, 将聚焦后的脉冲激光穿过激光入射口轰击腔体内的所 述靶材表面, 产生等离子体羽辉, 并使等离子体羽辉在所述基片上沉 积, 将所述组分 A沉积于所述基片表面; 与此同时, 加热所述束源 炉, 使所述束源材料气化形成分子束, 并喷射到所述基片上, 将所述 组分 B沉积于所述基片表面, 使组分 A和组分 B共同作用生成待沉 积材料的薄膜。
17、 根据权利要求 16所述的薄膜沉积方法, 其特征在于, 所述 待沉积材料为所述组分 A和所述组分 B未经过化学反应复合而成的 材料。
18、 根据权利要求 17所述的薄膜沉积方法, 其特征在于, 所述 待沉积材料为铁、 硒、 钾复合材料, 所述组分 A为铁, 所述组分 B 为钾和硒。
19、 根据权利要求 17所述的薄膜沉积方法, 其特征在于, 所述 待沉积材料为铁、 硒、 碲复合材料, 所述组分 A为铁, 所述组分 B 为硒和碲。
PCT/CN2011/082205 2011-11-15 2011-11-15 薄膜沉积设备及薄膜沉积方法 WO2013071484A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/082205 WO2013071484A1 (zh) 2011-11-15 2011-11-15 薄膜沉积设备及薄膜沉积方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/082205 WO2013071484A1 (zh) 2011-11-15 2011-11-15 薄膜沉积设备及薄膜沉积方法

Publications (1)

Publication Number Publication Date
WO2013071484A1 true WO2013071484A1 (zh) 2013-05-23

Family

ID=48428926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/082205 WO2013071484A1 (zh) 2011-11-15 2011-11-15 薄膜沉积设备及薄膜沉积方法

Country Status (1)

Country Link
WO (1) WO2013071484A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105112994A (zh) * 2015-08-20 2015-12-02 重庆大学 一种原位表征系统分子束外延生长源的延伸装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03142921A (ja) * 1989-10-30 1991-06-18 Shimadzu Corp 3―5族化合物半導体薄膜製造装置
JPH09227296A (ja) * 1996-02-23 1997-09-02 Sumitomo Electric Ind Ltd 窒化硅素単結晶膜および製造法
JP2006218411A (ja) * 2005-02-10 2006-08-24 Sumitomo Seika Chem Co Ltd 光触媒作用を有する窒素ドープ酸化チタンとその製造方法
US20060233969A1 (en) * 2002-08-28 2006-10-19 White Henry W Hybrid beam deposition system and methods for fabricating metal oxide-zno films, p-type zno films, and zno-based II-VI compound semiconductor devices
JP2009016524A (ja) * 2007-07-04 2009-01-22 Rohm Co Ltd 薄膜形成装置及びZnO系薄膜
CN101691670A (zh) * 2009-10-10 2010-04-07 西安交通大学 一种采用掺磷酸锌的靶材生长p型氧化锌薄膜的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03142921A (ja) * 1989-10-30 1991-06-18 Shimadzu Corp 3―5族化合物半導体薄膜製造装置
JPH09227296A (ja) * 1996-02-23 1997-09-02 Sumitomo Electric Ind Ltd 窒化硅素単結晶膜および製造法
US20060233969A1 (en) * 2002-08-28 2006-10-19 White Henry W Hybrid beam deposition system and methods for fabricating metal oxide-zno films, p-type zno films, and zno-based II-VI compound semiconductor devices
JP2006218411A (ja) * 2005-02-10 2006-08-24 Sumitomo Seika Chem Co Ltd 光触媒作用を有する窒素ドープ酸化チタンとその製造方法
JP2009016524A (ja) * 2007-07-04 2009-01-22 Rohm Co Ltd 薄膜形成装置及びZnO系薄膜
CN101691670A (zh) * 2009-10-10 2010-04-07 西安交通大学 一种采用掺磷酸锌的靶材生长p型氧化锌薄膜的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105112994A (zh) * 2015-08-20 2015-12-02 重庆大学 一种原位表征系统分子束外延生长源的延伸装置
CN105112994B (zh) * 2015-08-20 2017-10-13 重庆大学 一种原位表征系统分子束外延生长源的延伸装置

Similar Documents

Publication Publication Date Title
CN103103480A (zh) 薄膜沉积设备及薄膜沉积方法
US5356672A (en) Method for microwave plasma assisted supersonic gas jet deposition of thin films
TWI438300B (zh) 原子層沈積系統及方法
JP3078620U (ja) 薄膜を成長させるための装置
WO2000063956A1 (fr) Procede et dispositif pour realiser un depot de couches minces, et procede pour la production d&#39;un dispositif a semiconducteur a couches minces
JP2022530592A (ja) インジウム・リン混合物を用いてリン化インジウム結晶を製造するシステム
TWI831790B (zh) 用於形成半導體層之方法及材料沈積系統
JP2004204339A (ja) 処理装置及び処理方法
WO2024032160A1 (zh) 一种管状材料内表面进行mpcvd的方法及装置
CN114959888A (zh) 一种SiC外延薄膜的生产工艺
JP2006299378A (ja) 熱処理装置と蒸着処理装置の複合装置
WO2013071484A1 (zh) 薄膜沉积设备及薄膜沉积方法
CN219653123U (zh) 石英反应腔内壁镀膜装置
CN117187960A (zh) 提高大尺寸晶体掺杂效率的坩埚及碳化硅晶体掺杂方法
CN110373715A (zh) 制备二维晶体材料的化学气相沉积设备和方法
WO2020143101A1 (zh) 梯度自掺杂纯相多元金属氧化物薄膜的磁控溅射制备方法
CN110512194A (zh) 星型微波等离子体化学气相沉积装置及制备大面积二维材料的方法
JP4878830B2 (ja) 基板処理装置
CN110318021B (zh) 一种晶圆级二氧化钒薄膜的制备方法
CN202576547U (zh) 薄膜沉积腔及应用该薄膜沉积腔的薄膜沉积设备
CN1124371C (zh) 一种高温碳化硅半导体材料制造装置
CN110268506A (zh) 半导体装置的制造方法、基板处理装置及程序
CN113279063A (zh) 一种ⅳ-ⅵ族红外半导体薄膜及其制备方法
CN102899638B (zh) 用于光辅助金属有机物化学气相沉积的气体喷淋头装置
CN212640661U (zh) SiC气相外延装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11875658

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11875658

Country of ref document: EP

Kind code of ref document: A1