WO2013069400A1 - 有機elデバイス、および、有機elデバイスの製造方法 - Google Patents
有機elデバイス、および、有機elデバイスの製造方法 Download PDFInfo
- Publication number
- WO2013069400A1 WO2013069400A1 PCT/JP2012/076143 JP2012076143W WO2013069400A1 WO 2013069400 A1 WO2013069400 A1 WO 2013069400A1 JP 2012076143 W JP2012076143 W JP 2012076143W WO 2013069400 A1 WO2013069400 A1 WO 2013069400A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- organic
- insulating layer
- organic insulating
- layer
- resin
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 15
- 238000000034 method Methods 0.000 title abstract description 22
- 238000005401 electroluminescence Methods 0.000 title description 5
- 239000000758 substrate Substances 0.000 claims abstract description 42
- 238000007789 sealing Methods 0.000 claims abstract description 24
- 229920005989 resin Polymers 0.000 claims description 34
- 239000011347 resin Substances 0.000 claims description 34
- 239000003566 sealing material Substances 0.000 claims description 22
- 229910052751 metal Inorganic materials 0.000 claims description 18
- 239000002184 metal Substances 0.000 claims description 18
- 239000004925 Acrylic resin Substances 0.000 claims description 16
- 229920000178 Acrylic resin Polymers 0.000 claims description 16
- 239000003822 epoxy resin Substances 0.000 claims description 15
- 229920000647 polyepoxide Polymers 0.000 claims description 15
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 claims description 14
- 238000000206 photolithography Methods 0.000 claims description 11
- 229910052752 metalloid Inorganic materials 0.000 claims description 9
- 150000002738 metalloids Chemical class 0.000 claims description 8
- 238000000059 patterning Methods 0.000 claims description 8
- 150000004767 nitrides Chemical class 0.000 claims description 5
- 238000010030 laminating Methods 0.000 claims description 4
- 150000001247 metal acetylides Chemical class 0.000 claims description 4
- 229920001721 polyimide Polymers 0.000 claims description 4
- 239000009719 polyimide resin Substances 0.000 claims description 4
- 239000000463 material Substances 0.000 abstract description 11
- 230000007774 longterm Effects 0.000 abstract description 5
- 230000000052 comparative effect Effects 0.000 description 57
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 9
- 239000007789 gas Substances 0.000 description 9
- 229910052760 oxygen Inorganic materials 0.000 description 9
- 239000001301 oxygen Substances 0.000 description 9
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 8
- 239000011521 glass Substances 0.000 description 8
- 239000000853 adhesive Substances 0.000 description 7
- 230000001070 adhesive effect Effects 0.000 description 7
- 238000004544 sputter deposition Methods 0.000 description 6
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 6
- 229910004298 SiO 2 Inorganic materials 0.000 description 5
- 230000004888 barrier function Effects 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 5
- -1 nitride carbides Chemical class 0.000 description 5
- 238000007740 vapor deposition Methods 0.000 description 5
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 125000003983 fluorenyl group Chemical class C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 238000009413 insulation Methods 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- 238000010891 electric arc Methods 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 239000012466 permeate Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000002542 deteriorative effect Effects 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 230000005525 hole transport Effects 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 150000004706 metal oxides Chemical group 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 229920001230 polyarylate Polymers 0.000 description 2
- 229920001225 polyester resin Polymers 0.000 description 2
- 239000004645 polyester resin Substances 0.000 description 2
- 229920005749 polyurethane resin Polymers 0.000 description 2
- 230000003405 preventing effect Effects 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229930185605 Bisphenol Natural products 0.000 description 1
- 241001391944 Commicarpus scandens Species 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 229920000491 Polyphenylsulfone Polymers 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000010549 co-Evaporation Methods 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- DKHNGUNXLDCATP-UHFFFAOYSA-N dipyrazino[2,3-f:2',3'-h]quinoxaline-2,3,6,7,10,11-hexacarbonitrile Chemical compound C12=NC(C#N)=C(C#N)N=C2C2=NC(C#N)=C(C#N)N=C2C2=C1N=C(C#N)C(C#N)=N2 DKHNGUNXLDCATP-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 229920006015 heat resistant resin Polymers 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- IBHBKWKFFTZAHE-UHFFFAOYSA-N n-[4-[4-(n-naphthalen-1-ylanilino)phenyl]phenyl]-n-phenylnaphthalen-1-amine Chemical compound C1=CC=CC=C1N(C=1C2=CC=CC=C2C=CC=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C3=CC=CC=C3C=CC=2)C=C1 IBHBKWKFFTZAHE-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229960001730 nitrous oxide Drugs 0.000 description 1
- 235000013842 nitrous oxide Nutrition 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 238000001259 photo etching Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920001643 poly(ether ketone) Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/84—Passivation; Containers; Encapsulations
- H10K50/841—Self-supporting sealing arrangements
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/02—Details
- H05B33/04—Sealing arrangements, e.g. against humidity
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/10—Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
- H05B33/22—Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/84—Passivation; Containers; Encapsulations
- H10K50/844—Encapsulations
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K77/00—Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
- H10K77/10—Substrates, e.g. flexible substrates
- H10K77/111—Flexible substrates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to an organic EL device and a method for manufacturing the organic EL device.
- Organic EL (electroluminescence) devices are known to be degraded by moisture and oxygen in the atmosphere. Therefore, a low moisture-permeable material such as glass or metal is used as a substrate on which the organic EL element is formed and a sealing plate for the formed organic EL element.
- a low moisture-permeable material such as glass or metal
- a substrate made of an organic resin has been studied for making organic EL devices flexible.
- studies using a metal plate as a substrate have been made. In this case, in order to produce the organic EL element, it is necessary to provide an insulating layer on the metal plate. An attempt has been made to form an organic resin layer or an inorganic layer as the insulating layer (see, for example, Patent Documents 1 to 3).
- the organic resin layer is excellent in smoothness but poor in moisture barrier property.
- the inorganic layer has better moisture barrier properties than the organic resin layer, but if the thickness is small, it is difficult to obtain insulation (generation of pinholes) and it is difficult to ensure smoothness.
- smoothness will improve when it is thick, there exists a problem that it is easy to break.
- oxygen or moisture permeates the resin from the exposed portion due to the exposure of the organic resin at the end face portion or the extraction electrode portion of the device, thereby deteriorating the organic EL device. It was.
- an object of the present invention is to provide an organic EL device capable of obtaining a high light emission yield and improving long-term stability, and a method for manufacturing the same.
- the organic EL device of the present invention is an organic EL device having a conductive substrate, An inorganic insulating layer is laminated on the conductive substrate surface, an organic insulating layer is laminated on the inorganic insulating layer, An organic EL element on the organic insulating layer; A sealing material for sealing the organic insulating layer and the organic EL element; The organic insulating layer is disposed inside the sealing material.
- the manufacturing method of the organic EL device of the present invention includes an inorganic insulating layer forming step of laminating an inorganic insulating layer on a conductive substrate surface, An organic insulating layer forming step of laminating an organic insulating layer on the laminated inorganic insulating layer; Forming an organic EL element on the organic insulating layer; A sealing step of forming a sealing material so as to surround the organic insulating layer and the organic EL element,
- the organic insulating layer forming step includes a patterning step of selectively forming the organic insulating layer.
- an organic EL device capable of obtaining a high light emission yield and improving long-term stability, and a manufacturing method thereof.
- FIG. 1 is a schematic cross-sectional view illustrating an example of the configuration of the organic EL device according to the first embodiment.
- FIG. 2 is a schematic cross-sectional view showing a modified example of the configuration of the organic EL device of the first embodiment.
- FIG. 3 is a schematic cross-sectional view illustrating an example of the configuration of the organic EL device of the second embodiment.
- FIG. 4 is an enlarged explanatory view of the vicinity of the side surface portion of the organic insulating layer in FIG.
- FIG. 5 is a schematic cross-sectional view showing a modified example of the configuration of the organic EL device of the second embodiment.
- FIG. 6 is a schematic cross-sectional view showing the configuration of the organic EL devices of Comparative Examples 1 to 4.
- FIG. 1 is a schematic cross-sectional view illustrating an example of the configuration of the organic EL device according to the first embodiment.
- FIG. 2 is a schematic cross-sectional view showing a modified example of the configuration of the organic EL device of the first
- FIG. 7 is a schematic cross-sectional view showing the configuration of the organic EL devices of Comparative Examples 5 to 7.
- FIG. 8 is a schematic cross-sectional view showing the configuration of the organic EL devices of Comparative Examples 8 to 10.
- FIG. 9 is a schematic cross-sectional view showing the configuration of the organic EL devices of Comparative Examples 11-13.
- the side surface of the organic insulating layer is a tapered surface inclined inward from the lower side to the upper side, and the tapered surface of the organic insulating layer and the conductive substrate surface Is preferably in the range of 1 to 50 degrees (hereinafter also referred to as “taper angle”).
- the inorganic insulating layer includes at least one of a metal and a metalloid, and at least one of the metal and the metalloid is an oxide, a nitride, a carbide, or an oxynitride. It is preferably at least one selected from the group consisting of oxycarbides, nitride carbides, and oxynitride carbides.
- the organic insulating layer is preferably at least one selected from the group consisting of acrylic resin, norbornene resin, epoxy resin and polyimide resin.
- the organic EL device manufacturing method of the present invention is an organic insulating layer in which, in the organic insulating layer forming step, at least a part of the side surface is a tapered surface inclined inward from the lower side toward the upper side, It is preferable to form an organic insulating layer in which the angle formed between the tapered surface of the insulating layer and the surface of the conductive substrate is in the range of 1 to 50 degrees.
- the patterning step is performed by photolithography.
- the organic EL device according to another aspect of the present invention is preferably manufactured by the method for manufacturing an organic EL device of the present invention.
- FIG. 1 is a schematic cross-sectional view of an example of the configuration of the organic EL device of the present embodiment.
- this organic EL device 100 has an inorganic insulating layer 102 and an organic insulating layer 103 laminated in this order on the surface of a conductive substrate 101, and has an organic EL element 110 on the organic insulating layer 103. Yes.
- the organic insulating layer 103 and the organic EL element 110 are surface-sealed using a sealing layer 151 and a sealing plate 152 as the sealing material 150.
- the organic insulating layer 103 on which the organic EL element 110 is formed is disposed inside the sealing layer 151 so as not to be exposed from the sealing layer 151.
- the organic EL element 110 emits light using the excitation energy generated by the combination of electrons and holes in the organic EL layer 112 by an externally supplied current through the anode 111 and the cathode 113.
- light from the organic EL layer 112 is emitted from the cathode 113 side of the organic EL element 110 (top emission method).
- the organic EL element has a laminate in which an anode, an organic EL layer, and a cathode are provided in this order on a substrate.
- anode for example, an ITO (Indium Tin Oxide) or IZO (registered trademark, Indium Zinc Oxide) layer that can be used as a transparent electrode layer is formed.
- the organic EL layer includes, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer.
- an aluminum layer, a magnesium / aluminum layer, a magnesium / silver layer, or the like is also formed as a reflective layer. Sealing is performed from above so that the laminated body is not exposed to the atmosphere.
- the organic EL device in the present invention uses a conductive substrate as the substrate.
- the formation surface of the organic EL element needs to ensure insulation. Therefore, when using a conductive substrate, it is necessary to provide an insulating layer over the conductive substrate.
- an insulating layer an organic EL element is provided on a conductive substrate surface in which an inorganic insulating layer and an organic insulating layer are laminated in this order.
- the organic EL element is formed on the organic insulating layer. And it has the sealing material which seals the said organic insulating layer and the said organic EL element, and the said organic insulating layer is arrange
- the conductive substrate for example, stainless steel, iron, aluminum, nickel, cobalt, copper, and alloys thereof can be used.
- a metal that can be in a film state such as a metal foil at normal temperature and normal pressure is preferable, and any metal can be used as long as it is such a metal. If a metal foil is used as the substrate, the organic EL element can be reduced in weight, thickness, and flexibility. In this case, the organic EL device as a display becomes flexible and can be used like electronic paper by rolling it.
- the inorganic insulating layer in the present invention may be formed of an insulating material having a gas barrier property.
- the inorganic insulating layer preferably contains at least one of a metal and a metalloid. It is preferable that at least one of the metal and the metalloid is at least one selected from the group consisting of oxides, nitrides, carbides, oxynitrides, oxycarbides, nitride carbides, and oxynitride carbides.
- the metal include zinc, aluminum, titanium, copper, and magnesium.
- Examples of the semimetal include silicon, bismuth, and germanium.
- the thickness of the inorganic insulating layer is preferably in the range of 10 nm to 5 ⁇ m, more preferably in the range of 50 nm to 2 ⁇ m, and still more preferably in the range of 0.1 to 1 ⁇ m.
- a method for forming the inorganic insulating layer is not limited, and a dry method such as an evaporation method, a sputtering method, and a CVD method, and a wet method such as a sol-gel method can be used.
- oxygen or nitrogen contained in the oxide or nitride is, for example, It can be introduced by generating an arc discharge plasma in the presence of a reactive gas and depositing at least one of the metal and the metalloid.
- a metal oxide or a semi-metal oxide can also be used as a vapor deposition material in the vapor deposition.
- the reaction gas an oxygen-containing gas, a nitrogen-containing gas, or a mixed gas thereof can be used.
- the oxygen-containing gas is oxygen (O 2 ), dinitrogen monoxide (N 2 O), nitric oxide (NO), and the nitrogen-containing gas is nitrogen (N 2 ), ammonia (NH 3 ), nitrogen monoxide (NO ) Etc.
- a method of introducing any one of resistance heating, electron beam, and arc discharge plasma into the vapor deposition material can be used.
- a method using an electron beam or arc discharge plasma capable of high-speed vapor deposition is preferable. These methods may be used in combination.
- an insulating resin layer can be used as the organic insulating layer. Since the conductive substrate may be heated to 150 to 300 ° C. in the manufacturing process, it is preferable to select a heat resistant resin having a glass transition temperature of 150 ° C. or higher.
- a heat resistant resin having a glass transition temperature of 150 ° C. or higher.
- the resin is preferably at least one selected from the group consisting of acrylic resins, norbornene resins, epoxy resins, and polyimide resins.
- the thickness of the organic insulating layer is preferably in the range of 1 to 40 ⁇ m. Alternatively, it is preferably in the range of 0.5 to 40 ⁇ m. When the thickness is within the above range, sufficient electrical insulation can be secured, and adhesion to the substrate can be secured.
- the thickness of the organic insulating layer is more preferably in the range of 1 to 10 ⁇ m, alternatively in the range of 0.5 to 10 ⁇ m, and still more preferably in the range of 1 to 5 ⁇ m.
- the thickness of the said organic insulating layer has the range of the more preferable thickness according to the magnitude
- the method for forming the organic insulating layer is not limited, and the organic insulating layer can be formed by coating by roll coating, spray coating, spin coating, dipping, or the like, or transferring a resin formed in a film shape.
- the organic insulating layer can be selectively formed in a region where the organic EL element is formed by a patterning process.
- a patterning method methods such as photolithography, photoetching, screen printing, and ink jet printing can be used.
- the patterning is preferably performed by photolithography. Photolithography has high pattern accuracy and is easy to finely process. Further, as will be described later, when the side surface of the organic insulating layer is formed into a tapered surface inclined inward from the lower side to the upper side, the exposure amount of photolithography, the post-bake conditions, and the like are adjusted. Thus, the taper angle can be easily adjusted.
- the sealing layer a material having excellent water resistance and heat resistance and low moisture permeability can be used.
- a material having excellent water resistance and heat resistance and low moisture permeability examples include an epoxy resin, an acrylic resin, a polyester resin, a polyarylate resin, and a polyurethane resin.
- the use of a two-component curable epoxy resin is preferable because it can be cured at room temperature and does not require heating of the organic EL element, thereby preventing deterioration.
- As the sealing plate it is preferable to use a material having a low moisture permeability such as a glass plate and a resin film on which a gas barrier layer is formed.
- the organic insulating layer is disposed inside the sealing material so as not to be exposed from the sealing material, it is possible to obtain a high light emission yield and improve long-term stability. Can do.
- FIG. 2 is a schematic cross-sectional view of a modified example of the configuration of the organic EL device of the present embodiment.
- a glass cap is used as the sealing material 250, and the periphery thereof is hollow-sealed with an adhesive 251.
- the organic insulating layer 103 on which the organic EL element 110 is formed is disposed inside the sealing material 250 so as not to be exposed from the sealing material (glass cap) 250.
- the adhesive 251 used for the sealing the same material as that of the sealing layer 151 can be used.
- FIG. 3 is a schematic cross-sectional view of an example of the configuration of the organic EL device of the present embodiment. 3, the same parts as those in FIG. 1 are denoted by the same reference numerals.
- the organic insulating layer 103 of the organic EL device 100A has a tapered surface 103T whose side surface is inclined inward from the lower side to the upper side.
- the tapered surface 103T preferably forms an angle with the surface of the conductive substrate 101 within a range of 1 to 50 degrees.
- FIG. 4 is an explanatory diagram in which the vicinity of the side surface portion of the organic insulating layer 103 (region T in FIG. 3) is enlarged.
- the angle refers to an angle (angle A in the drawing) of a portion where an extension of the cross-sectional line on the side surface of the organic insulating layer 103 intersects the surface of the conductive substrate 101.
- angle A angle
- disconnection of the electrode (anode 111 or cathode 113) of the organic EL element is likely to occur due to a step due to the organic insulating layer.
- the angle is less than 1 degree, the width occupied by the taper surface is increased, so that the length of the extraction electrode is increased and the range of the light emitting portion is decreased.
- the angle is preferably in the range of 10 degrees to 40 degrees, and more preferably in the range of 10 degrees to 20 degrees.
- the tapered surface is not necessarily provided in a portion where the anode or the cathode is not formed at the end portion of the organic insulating layer.
- the side surface of the organic insulating layer 103 is the tapered surface 103T having a taper angle in the range of 1 to 50 degrees, the disconnection of the anode 111 and the cathode 113 of the organic EL element 110 can be prevented. it can.
- the side surface of the organic insulating layer into a tapered surface that inclines inward from the lower side to the upper side for example, use photolithography to form the organic insulating layer, and adjust the exposure amount and post-bake conditions, etc. Is possible.
- FIG. 5 is a schematic cross-sectional view of a modified example of the configuration of the organic EL device of the present embodiment.
- the same parts as those in FIGS. 1 to 3 are denoted by the same reference numerals.
- the organic EL device 200A at least a part of the side surface of the organic insulating layer 103 is a tapered surface 103T inclined inward from the lower side to the upper side, like the organic EL device 100A.
- Other configurations are the same as those of the organic EL device 200 shown in FIG. 2, and a glass cap is used as the sealing material 250, and the periphery thereof is hollow-sealed with an adhesive 251.
- the same effect as that in Embodiment 1 can be obtained. Furthermore, since the side surface of the organic insulating layer has the above-described taper angle, disconnection of the electrode of the organic EL element due to a step due to the organic insulating layer hardly occurs, and the range of the light emitting portion can be widened. it can.
- the thickness of the inorganic insulating layer and the organic insulating layer is calculated by observing a cross section of the organic EL device with a scanning electron microscope (trade name: JSM-6610) manufactured by JEOL Ltd., measuring the thickness of each layer, and calculating the thickness. did.
- Luminescent yield Twenty organic EL devices each having a 2 mm square light-emitting portion were produced, and the initial light emission state was observed with an optical microscope (Keyence Corporation digital microscope (trade name: VHX-1000)). The number of elements having good light emission state was counted, and the light emission yield was calculated.
- the organic EL device was stored in a non-lighted state under a constant temperature and humidity condition of a temperature of 60 ° C. and a humidity of 90% RH. After 200 hours, the organic EL device was caused to emit light, and the light emission area was measured by microscopic observation. Observation and emission area measurement were performed using a digital microscope (trade name: VHX-1000) manufactured by Keyence Corporation.
- the taper angle on the side surface of the organic insulating layer was measured by observing a cross section of the organic EL device with a scanning electron microscope (trade name: JSM-6610) manufactured by JEOL Ltd.
- Example 1 [Preparation of insulating layer] A stainless steel (SUS) substrate was prepared as a conductive substrate for producing an organic EL element (SUS304, thickness 50 ⁇ m). A SiO 2 layer was formed on the SUS substrate by sputtering (inorganic insulating layer, thickness 0.3 ⁇ m). Furthermore, norbornene resin (trade name “Zeocoat” manufactured by Nippon Zeon Co., Ltd.) was applied thereon with a wire bar, and prebaked at 100 ° C. for 5 minutes. Thereafter, patterning by photolithography was performed so that the norbornene resin layer was not exposed to the outside after sealing with a sealing material.
- SUS stainless steel
- Photolithography was performed by exposing a predetermined pattern and using a TMAH (tetramethylammonium hydroxide) aqueous solution as a developer.
- the patterned norbornene resin layer was post-baked at 220 ° C. for 1 hour to obtain an organic insulating layer having a patterned thickness of 3 ⁇ m. Thereafter, a cleaning process was performed with pure water, and a heating process at 200 ° C. for 1 hour was performed.
- the organic insulating layer was a tapered surface whose side surface was inclined inward from the lower side to the upper side, and the taper angle was about 20 degrees.
- NPB N, N′-bis (naphthalen-1-yl) -N, N′-bis (phenyl) -benzidine
- Alq tris (8-quinolinolato) aluminum
- LiF of 0.5 nm as the electron injection layer, 5/15 nm of Mg / Ag as the cathode (co-evaporation), and 60 nm of MoO 3 as the refractive index adjustment layer were vapor-deposited in this order to produce an organic EL device. .
- sealing is performed by providing a glass cap so that the terminal can be connected from the anode and the cathode while covering the light emitting layer (see FIG. 2).
- An example organic EL device was obtained.
- the adhesive around the glass cap was coated with an adhesive containing a two-component curable epoxy resin (trade name “Bond Quick 5” manufactured by Konishi Co., Ltd.), and the adhesive was naturally cured and sealed.
- Example 2 An organic EL device of this example was obtained in the same manner as in Example 1 except that an epoxy resin having the following composition was used instead of the norbornene resin.
- the epoxy resin was applied with a wire bar and prebaked at 90 ° C. for 15 minutes.
- Photolithography was performed by exposing a predetermined pattern and using acetonitrile as a developer.
- the patterned epoxy resin layer was post-baked at 170 ° C. for 30 minutes to obtain an organic insulating layer having a patterned thickness of 3 ⁇ m.
- the organic insulating layer was a tapered surface whose side surface was inclined in the inner direction from the lower side to the upper side, and the taper angle was about 50 degrees.
- Example 3 An organic EL device of this example was obtained in the same manner as in Example 1 except that an acrylic resin (trade name “JEM-477” manufactured by JSR Corporation) was used instead of the norbornene resin.
- the acrylic resin was applied with a wire bar and prebaked at 100 ° C. for 5 minutes.
- Photolithography was performed by exposing a predetermined pattern and using a TMAH aqueous solution as a developer.
- the patterned acrylic resin layer was post-baked at 220 ° C. for 1 hour to obtain an organic insulating layer having a patterned thickness of 3 ⁇ m.
- the organic insulating layer was a tapered surface whose side surface was inclined inward from the lower side to the upper side, and the taper angle was about 10 degrees.
- Example 4 An organic EL device of this example was obtained in the same manner as in Example 3 except that the patterned acrylic resin layer was post-baked at 200 ° C. for 1 hour.
- the organic insulating layer was a tapered surface whose side surface was inclined inward from the lower side to the upper side, and the taper angle was about 20 degrees.
- Example 5 An organic EL device of this example was obtained in the same manner as in Example 3 except that the patterned acrylic resin layer was post-baked at 180 ° C. for 1 hour.
- the organic insulating layer was a tapered surface with side surfaces inclined inward from the lower side to the upper side, and the taper angle was about 40 degrees.
- Example 6 An organic EL device of this example was obtained in the same manner as in Example 3 except that the patterned acrylic resin layer was post-baked at 160 ° C. for 1 hour.
- the organic insulating layer was a tapered surface whose side surface was inclined in the inner direction from the lower side to the upper side, and the taper angle was about 50 degrees.
- Example 7 An organic EL device of this example was obtained in the same manner as in Example 3 except that the patterned acrylic resin layer was post-baked at 150 ° C. for 1 hour.
- the organic insulating layer was a tapered surface having a side surface inclined inward from the lower side to the upper side, and the taper angle was about 60 degrees.
- FIG. 6 shows a schematic cross-sectional view of the configuration of the organic EL device 300 of Comparative Examples 1 to 4.
- Comparative Examples 1 to 4 are examples in which the organic insulating layer is not formed and only the inorganic insulating layer 102 is provided as the insulating layer.
- Comparative Example 1 An organic EL device of this comparative example was obtained in the same manner as in Example 1 except that the organic insulating layer was not formed.
- Comparative Example 2 An organic EL device of this comparative example was obtained in the same manner as in Comparative Example 1 except that the thickness of the SiO 2 layer (inorganic insulating layer) formed by sputtering was 0.1 ⁇ m.
- Comparative Example 3 An organic EL device of this comparative example was obtained in the same manner as in Comparative Example 1 except that the thickness of the SiO 2 layer (inorganic insulating layer) formed by sputtering was 0.5 ⁇ m.
- Comparative Example 4 An organic EL device of this comparative example was obtained in the same manner as in Comparative Example 1 except that the thickness of the SiO 2 layer (inorganic insulating layer) formed by sputtering was 1 ⁇ m.
- FIG. 7 shows a schematic cross-sectional view of the configuration of the organic EL device 400 of Comparative Examples 5 to 7.
- Comparative Examples 5 to 7 are examples in which the inorganic insulating layer is not formed, the organic insulating layer 403 is not patterned, and the organic insulating layer 403 is exposed to the outside of the sealing material 250.
- Example 5 an organic EL device of this comparative example was obtained in the same manner as in Example 1 except that the inorganic insulating layer was not formed and the norbornene resin layer was not patterned.
- Example 6 the organic EL device of this comparative example was obtained in the same manner as in Example 2 except that the inorganic insulating layer was not formed and the epoxy resin layer was not patterned.
- Example 7 an organic EL device of this comparative example was obtained in the same manner as in Example 3 except that the inorganic insulating layer was not formed and the acrylic resin layer was not patterned.
- FIG. 8 shows a schematic cross-sectional view of the configuration of the organic EL device 500 of Comparative Examples 8 to 10.
- Comparative Examples 8 to 10 are examples in which the organic insulating layer 403 is not patterned and the organic insulating layer 403 is exposed to the outside of the sealing material 250.
- Example 8 In Example 1, the organic EL device of this comparative example was obtained in the same manner as in Example 1 except that the norbornene resin layer was not patterned.
- Example 9 an organic EL device of this comparative example was obtained in the same manner as in Example 2 except that the epoxy resin layer was not patterned.
- Example 10 an organic EL device of this comparative example was obtained in the same manner as in Example 3 except that the acrylic resin layer was not patterned.
- FIG. 9 shows a schematic cross-sectional view of the configuration of the organic EL device 600 of Comparative Examples 11 to 13.
- Comparative Examples 11 to 13 are examples in which the organic insulating layer 403 and the inorganic insulating layer 102 that are not patterned are stacked in this order on the conductive substrate 101.
- Comparative Example 12 In place of the norbornene resin, the same epoxy resin as used in Example 2 was used. The epoxy resin was applied with a wire bar, dried at 90 ° C. for 15 minutes, irradiated with ultraviolet light, and then 170. An organic EL device of this comparative example was obtained in the same manner as in Comparative Example 11 except that curing was performed at 30 ° C. for 30 minutes to obtain an organic insulating layer having a thickness of 3 ⁇ m.
- Comparative Example 13 instead of the norbornene resin, an acrylic resin (trade name “JEM-477” manufactured by JSR Corporation) was used. The acrylic resin was applied with a wire bar, dried at 100 ° C. for 5 minutes, and then cured at 220 ° C. for 1 hour. Then, an organic EL device of this comparative example was obtained in the same manner as in Comparative Example 11 except that an organic insulating layer having a thickness of 3 ⁇ m was obtained.
- an acrylic resin trade name “JEM-477” manufactured by JSR Corporation
- the organic EL devices obtained in Examples 1 to 6 all have a light emission yield of 100%, a light emission area after 200 hours of 90% or more, and high initial reliability. It can also be seen that an organic EL device having suitable deterioration prevention characteristics is obtained.
- Comparative Examples 1 to 4 that do not have an organic insulating layer a short circuit of the organic EL element that seems to be caused by the unevenness of the SUS substrate, an insulation failure between the SUS substrate and the organic EL element, and a crack in the inorganic insulating layer Therefore, the light emission yield was 50% or less.
- Comparative Example 1 a short circuit of the organic EL element, which seems to be caused by the unevenness of the SUS substrate, occurred in about 1/4 of the organic EL device, and a crack in the inorganic insulating layer occurred in about 1/4 of the organic EL device.
- the inorganic insulating layer is not formed, the organic insulating layer is not patterned, and the organic insulating layer is exposed to the outside of the sealing material (sealing layer).
- Comparative Examples 8 to 10 in which the organic insulating layer formed in the above was not patterned and the organic insulating layer was exposed to the outside of the sealing material (sealing layer), a light emission yield of 100% was obtained.
- the light emitting area after time is 25% to 30%, and it can be seen that the organic EL element has deteriorated over time. This is presumably because oxygen and moisture permeate the resin forming the organic insulating layer from the portion of the organic insulating layer exposed to the outside of the sealing layer, thereby deteriorating the organic EL element.
- Comparative Examples 11 to 13 in which the organic insulating layer and the inorganic insulating layer are laminated in this order on the conductive substrate, cracks of the inorganic insulating layer are generated in about 1/4 of the organic EL device, and the light emission yield is 70 to 75%. And declined.
- the light emitting area after 200 hours is 65% to 70%, and it can be seen that the deterioration of the organic EL element over time has occurred. This is because oxygen and moisture from the portion of the organic insulating layer exposed to the outside of the sealing layer pass through the resin forming the organic insulating layer, and further through the cracks in the inorganic insulating layer, thereby degrading the organic EL element. This is thought to be caused by Comparing the examples and the comparative examples, it can be seen that the configuration of the present invention can obtain a high light emission yield in the initial stage and can prevent deterioration of the organic EL element over time.
- the organic EL devices obtained in Examples 1 to 7 have different taper angles. However, the organic EL devices obtained in Examples 1 to 6 all have a high light emission yield and are organic. It can be seen that disconnection of the anode and cathode of the EL element does not occur. On the other hand, in Example 7 with a taper angle of 60 degrees, the emission area after 200 hours was 90%, which was a preferable deterioration preventing property. Disconnected and 2 out of 20 devices were non-emissive from the beginning. Also in Example 7, the light emission yield in the initial stage is a good value of 90%, but the angle formed by the tapered surface of the organic insulating layer and the conductive substrate surface is in the range of 1 to 50 degrees. Thus, it can be seen that a higher yield of light emission can be obtained.
- the organic EL device of the present invention can obtain a high light emission yield and improve long-term stability. Since the organic EL device of the present invention can use a conductive base material such as a metal foil for flexible devices as a substrate, it can be used in various fields such as lighting devices and display devices. It is not limited.
- Organic EL (electroluminescence) device 101 Conductive substrate 102 Inorganic insulating layer 103, 403 Organic insulating layer 103T Tapered surface 110 Organic EL (electroluminescence) element 111 Anode 112 Organic EL (electroluminescence) layer 113 Cathode 150 Sealing material 151 Sealing layer 152 Sealing plate 250 Sealing material (glass cap) 251 Adhesive
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Description
前記導電性基板面上に、無機絶縁層が積層され、前記無機絶縁層の上に有機絶縁層が積層され、
前記有機絶縁層上に有機EL素子を有し、
前記有機絶縁層および前記有機EL素子を封止する封止材を有し、
前記有機絶縁層が、前記封止材の内側に配置されていることを特徴とする。
積層された無機絶縁層上に有機絶縁層を積層する有機絶縁層形成工程と、
前記有機絶縁層上に有機EL素子を形成する工程と、
前記有機絶縁層および前記有機EL素子を囲むように封止材を形成する封止工程とを含み、
前記有機絶縁層形成工程が、前記有機絶縁層を選択的に形成するパターニング工程を含むことを特徴とする。
図1は、本実施形態の有機ELデバイスの構成の一例の概略断面図である。図示のとおり、この有機ELデバイス100は、導電性基板101面上に無機絶縁層102および有機絶縁層103がこの順序に積層されており、有機絶縁層103上に有機EL素子110を有している。有機絶縁層103および有機EL素子110は、封止材150として、封止層151および封止板152を用い、面封止されている。有機EL素子110がその上に形成されている有機絶縁層103は、封止層151から露出しないように、封止層151の内側に配置されている。有機EL素子110は、陽極111および陰極113を介して、外部から供給された電流により、有機EL層112において電子および正孔が結合し、結合により生じた励起エネルギーを利用して発光する。本発明において、有機EL層112からの光は、有機EL素子110の陰極113側から射出される(トップエミッション方式)。
図3は、本実施形態の有機ELデバイスの構成の一例の概略断面図である。図3において、図1と同一部分には、同一符号を付している。この有機ELデバイス100Aの有機絶縁層103は、その側面が下側から上側に向かって内部方向に傾斜するテーパー面103Tを形成している。テーパー面103Tは、導電性基板101面と1度~50度の範囲内の角度を形成していることが好ましい。図4は、有機絶縁層103の側面部付近(図3の領域T)を拡大した説明図である。前記角度は、有機絶縁層103の側面の断面線の延長線が、導電性基板101面と交わった部分の角度(図中の角Aの角度)を指す。前記角度が、50度を超えると、有機絶縁層による段差に起因して、有機EL素子の電極(陽極111または陰極113)の断線が起こりやすくなる。また、前記角度が1度未満であると、テーパー面の占める幅が広くなることで、引き出し電極の長さが長くなり、発光部の範囲を狭めることになるため、好ましくない。前記角度は、好ましくは、10度~40度の範囲内であり、より好ましくは、10度~20度の範囲内である。前記テーパー面は、陽極または陰極が有機絶縁層の端部に形成されていない部分では、必ずしも設ける必要はない。このように、有機絶縁層103の側面が、1度~50度の範囲内のテーパー角を有するテーパー面103Tである構成とすると、有機EL素子110の陽極111および陰極113の断線を防ぐことができる。有機絶縁層の側面を下側から上側に向かって内部方向に傾斜するテーパー面とするには、例えば、有機絶縁層の形成にフォトリソグラフィーを用い、露光量およびポストベークの条件等を調整することで可能である。
無機絶縁層および有機絶縁層の厚みは、有機ELデバイスの断面を、株式会社日本電子製の走査型電子顕微鏡(商品名:JSM-6610)にて観察し、各層の厚みを測長し、算出した。
2mm角の発光部を有する有機ELデバイスを20個作製し、初期の発光状態を、光学顕微鏡(株式会社キーエンス製のデジタルマイクロスコープ(商品名:VHX-1000))で観察した。発光状態が良好な素子の数をカウントし、発光歩留りを算出した。
前記有機ELデバイスを、温度60℃、湿度90%RHの恒温恒湿条件下で非点灯の状態で保存した。200時間後に、有機ELデバイスを発光させ、顕微鏡観察によって発光面積を測定した。観察および発光面積測定は、株式会社キーエンス製のデジタルマイクロスコープ(商品名:VHX-1000)を用いて行った。
有機絶縁層側面のテーパー角は、有機ELデバイスの断面を、株式会社日本電子製の走査型電子顕微鏡(商品名:JSM-6610)にて観察し、計測した。
〔絶縁層の作製〕
有機EL素子を作製する導電性基板としてステンレス(SUS)基板を準備した(SUS304、厚み50μm)。前記SUS基板上に、スパッタリングによりSiO2層を形成した(無機絶縁層、厚み0.3μm)。さらに、その上に、ノルボルネン樹脂(日本ゼオン株式会社製 商品名「ゼオコート」)をワイヤーバーで塗布し、100℃で5分間プリベークを行った。その後、前記ノルボルネン樹脂層が、封止材での封止後に外部に露出しないように、フォトリソグラフィーによるパターニングを行った。フォトリソグラフィーは、所定パターンに露光を行い、現像液として、TMAH(水酸化テトラメチルアンモニウム)水溶液を用いて行った。パターニングされた前記ノルボルネン樹脂層を、220℃で1時間ポストベークし、パターニングされた厚みが3μmの有機絶縁層を得た。その後、純水で洗浄工程を行い、200℃で1時間の加熱工程を行った。前記有機絶縁層は、側面が下側から上側に向かって内部方向に傾斜するテーパー面であり、テーパー角は、約20度であった。
得られた絶縁層の上に真空蒸着法により陽極としてAlを100nm、ホール注入層としてHAT-CN(1,4,5,8,9,12-ヘキサアザトリフェニレンヘキサカルボニトリル)を10nm、ホール輸送層としてNPB(N,N’-ビス(ナフタレン-1-イル)-N,N’-ビス(フェニル)-ベンジジン)を50nm、発光層および電子輸送層としてAlq(トリス(8-キノリノラト)アルミニウム)を45nm、電子注入層としてLiFを0.5nm、陰極としてMg/Agを5/15nm(共蒸着)、屈折率調整層としてMoO3を60nm、をこの順番に蒸着し、有機EL素子を作製した。
有機EL素子を形成した後に、発光層を覆う状態で、前記陽極および前記陰極からの端子接続が可能な状態となるように、ガラスキャップを設けて封止を行い(図2参照)、本実施例の有機ELデバイスを得た。ガラスキャップの周囲は、二液硬化型エポキシ樹脂を含有する接着剤(コニシ株式会社製 商品名「ボンドクイック5」)を塗布し、前記接着剤を自然硬化させて封止した。
前記ノルボルネン樹脂に代えて、下記組成のエポキシ樹脂を用いた以外は、実施例1と同様にして、本実施例の有機ELデバイスを得た。前記エポキシ樹脂は、ワイヤーバーで塗布し、90℃で15分間プリベークを行った。フォトリソグラフィーは、所定パターンに露光を行い、現像液として、アセトニトリルを用いて行った。パターニングされた前記エポキシ樹脂層を、170℃で30分間ポストベークし、パターニングされた厚みが3μmの有機絶縁層を得た。前記有機絶縁層は、側面が下側から上側に向かって内部方向に傾斜するテーパー面であり、テーパー角は、約50度であった。
フルオレン誘導体1 50重量部
フルオレン誘導体2 50重量部
光酸発生剤 1重量部
フルオレン誘導体1: ビスフェノキシエタノールフルオレンジグリシジルエーテル
(下記一般式(1)において、R1~R6がすべて水素原子で、n=1のもの)
フルオレン誘導体2: ビスフェノールフルオレンジグリシジルエーテル
(下記一般式(1)において、R1~R6がすべて水素原子で、n=0のもの)
光酸発生剤: 4,4-ビス[ジ(βヒドロキシエトキシ)フェニルスルフィニオ]フェニルスルフィド-ビス-ヘキサフルオロアンチモネートの50%プロピオンカーバイド溶液
前記ノルボルネン樹脂に代えて、アクリル樹脂(JSR株式会社製 商品名「JEM-477」)を用いた以外は、実施例1と同様にして、本実施例の有機ELデバイスを得た。前記アクリル樹脂は、ワイヤーバーで塗布し、100℃で5分間プリベークを行った。フォトリソグラフィーは、所定パターンに露光を行い、現像液として、TMAH水溶液を用いて行った。パターニングされた前記アクリル樹脂層を、220℃で1時間ポストベークし、パターニングされた厚みが3μmの有機絶縁層を得た。前記有機絶縁層は、側面が下側から上側に向かって内部方向に傾斜するテーパー面であり、テーパー角は、約10度であった。
パターニングされた前記アクリル樹脂層を、200℃で1時間ポストベークした以外は、実施例3と同様にして、本実施例の有機ELデバイスを得た。前記有機絶縁層は、側面が下側から上側に向かって内部方向に傾斜するテーパー面であり、テーパー角は、約20度であった。
パターニングされた前記アクリル樹脂層を、180℃で1時間ポストベークした以外は、実施例3と同様にして、本実施例の有機ELデバイスを得た。前記有機絶縁層は、側面が下側から上側に向かって内部方向に傾斜するテーパー面であり、テーパー角は、約40度であった。
パターニングされた前記アクリル樹脂層を、160℃で1時間ポストベークした以外は、実施例3と同様にして、本実施例の有機ELデバイスを得た。前記有機絶縁層は、側面が下側から上側に向かって内部方向に傾斜するテーパー面であり、テーパー角は、約50度であった。
パターニングされた前記アクリル樹脂層を、150℃で1時間ポストベークした以外は、実施例3と同様にして、本実施例の有機ELデバイスを得た。前記有機絶縁層は、側面が下側から上側に向かって内部方向に傾斜するテーパー面であり、テーパー角は、約60度であった。
図6に、比較例1~4の有機ELデバイス300の構成の概略断面図を示す。比較例1~4は、有機絶縁層を形成せず、絶縁層として無機絶縁層102のみを有する例である。
有機絶縁層を形成しなかった以外は、実施例1と同様にして、本比較例の有機ELデバイスを得た。
スパッタリングにより形成したSiO2層(無機絶縁層)の厚みを0.1μmとした以外は、比較例1と同様にして、本比較例の有機ELデバイスを得た。
スパッタリングにより形成したSiO2層(無機絶縁層)の厚みを0.5μmとした以外は、比較例1と同様にして、本比較例の有機ELデバイスを得た。
スパッタリングにより形成したSiO2層(無機絶縁層)の厚みを1μmとした以外は、比較例1と同様にして、本比較例の有機ELデバイスを得た。
図7に、比較例5~7の有機ELデバイス400の構成の概略断面図を示す。比較例5~7は、無機絶縁層を形成せず、さらに、有機絶縁層403をパターニングしておらず、有機絶縁層403の封止材250外部への露出がある例である。
実施例1において、無機絶縁層を形成せず、ノルボルネン樹脂層のパターニングを行わなかった以外は、実施例1と同様にして、本比較例の有機ELデバイスを得た。
実施例2において、無機絶縁層を形成せず、エポキシ樹脂層のパターニングを行わなかった以外は、実施例2と同様にして、本比較例の有機ELデバイスを得た。
実施例3において、無機絶縁層を形成せず、アクリル樹脂層のパターニングを行わなかった以外は、実施例3と同様にして、本比較例の有機ELデバイスを得た。
図8に、比較例8~10の有機ELデバイス500の構成の概略断面図を示す。比較例8~10は、有機絶縁層403をパターニングしておらず、有機絶縁層403の封止材250外部への露出がある例である。
実施例1において、ノルボルネン樹脂層のパターニングを行わなかった以外は、実施例1と同様にして、本比較例の有機ELデバイスを得た。
実施例2において、エポキシ樹脂層のパターニングを行わなかった以外は、実施例2と同様にして、本比較例の有機ELデバイスを得た。
実施例3において、アクリル樹脂層のパターニングを行わなかった以外は、実施例3と同様にして、本比較例の有機ELデバイスを得た。
図9に、比較例11~13の有機ELデバイス600の構成の概略断面図を示す。比較例11~13は、導電性基板101上に、パターニングしていない有機絶縁層403および無機絶縁層102が、この順序に積層された例である。
前記SUS基板上に、ノルボルネン樹脂(日本ゼオン株式会社製 商品名「ゼオコート」)をワイヤーバーで塗布し、100℃で5分間乾燥後、220℃で1時間キュアし、厚みが3μmの有機絶縁層を得た。その上に、スパッタリングによりSiO2層を形成した(無機絶縁層、厚み2μm)。その後、純水で洗浄工程を行い、200℃で1時間の加熱工程を行った。それ以外は、実施例1と同様にして、本比較例の有機ELデバイスを得た。
前記ノルボルネン樹脂に代えて、実施例2で用いたのと同じエポキシ樹脂を用い、前記エポキシ樹脂を、ワイヤーバーで塗布し、90℃で15分間乾燥させた後、紫外光を照射し、ついで170℃30分間キュアを行い、厚みが3μmの有機絶縁層を得た以外は、比較例11と同様にして、本比較例の有機ELデバイスを得た。
前記ノルボルネン樹脂に代えて、アクリル樹脂(JSR株式会社製 商品名「JEM-477」)を用い、前記アクリル樹脂を、ワイヤーバーで塗布し、100℃で5分間乾燥後、220℃で1時間キュアし、厚みが3μmの有機絶縁層を得た以外は、比較例11と同様にして、本比較例の有機ELデバイスを得た。
101 導電性基板
102 無機絶縁層
103、403 有機絶縁層
103T テーパー面
110 有機EL(エレクトロルミネッセンス)素子
111 陽極
112 有機EL(エレクトロルミネッセンス)層
113 陰極
150 封止材
151 封止層
152 封止板
250 封止材(ガラスキャップ)
251 接着剤
Claims (7)
- 導電性基板を有する有機ELデバイスであって、
前記導電性基板面上に、無機絶縁層が積層され、前記無機絶縁層の上に有機絶縁層が積層され、
前記有機絶縁層上に有機EL素子を有し、
前記有機絶縁層および前記有機EL素子を封止する封止材を有し、
前記有機絶縁層が、前記封止材の内側に配置されていることを特徴とする、有機ELデバイス。 - 前記有機絶縁層の側面の少なくとも一部が、下側から上側に向かって内部方向に傾斜するテーパー面であり、前記有機絶縁層のテーパー面と前記導電性基板面とが形成する角度が、1度~50度の範囲内であることを特徴とする、請求項1記載の有機ELデバイス。
- 前記無機絶縁層が、金属および半金属の少なくとも1種を含み、かつ、前記金属および前記半金属の少なくとも1種が、酸化物、窒化物、炭化物、酸化窒化物、酸化炭化物、窒化炭化物および酸化窒化炭化物からなる群から選ばれる少なくとも1種であることを特徴とする、請求項1または2記載の有機ELデバイス。
- 前記有機絶縁層が、アクリル樹脂、ノルボルネン樹脂、エポキシ樹脂およびポリイミド樹脂からなる群から選ばれる少なくとも1種であることを特徴とする、請求項1から3のいずれか一項に記載の有機ELデバイス。
- 有機ELデバイスの製造方法であって、
導電性基板面上に無機絶縁層を積層する無機絶縁層形成工程と、
積層された無機絶縁層上に有機絶縁層を積層する有機絶縁層形成工程と、
前記有機絶縁層上に有機EL素子を形成する工程と、
前記有機絶縁層および前記有機EL素子を囲むように封止材を形成する封止工程とを含み、
前記有機絶縁層形成工程が、前記有機絶縁層を選択的に形成するパターニング工程を含むことを特徴とする、有機ELデバイスの製造方法。 - 前記有機絶縁層形成工程において、
側面の少なくとも一部が、下側から上側に向かって内部方向に傾斜するテーパー面である有機絶縁層であり、前記有機絶縁層のテーパー面と前記導電性基板面とが形成する角度が、1度~50度の範囲内である有機絶縁層を形成することを特徴とする、請求項5記載の有機ELデバイスの製造方法。 - 前記パターニング工程が、フォトリソグラフィーによって行われることを特徴とする、請求項5または6記載の有機ELデバイスの製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/355,056 US20140306209A1 (en) | 2011-11-10 | 2012-10-09 | Organic el device and method for producing the same |
CN201280051886.1A CN103891403A (zh) | 2011-11-10 | 2012-10-09 | 有机el装置以及有机el装置的制造方法 |
KR1020157030125A KR20150122272A (ko) | 2011-11-10 | 2012-10-09 | 유기 el 디바이스 및 유기 el 디바이스의 제조 방법 |
KR1020147003518A KR20140048254A (ko) | 2011-11-10 | 2012-10-09 | 유기 el 디바이스 및 유기 el 디바이스의 제조 방법 |
EP12847850.0A EP2770802A4 (en) | 2011-11-10 | 2012-10-09 | ORGANIC ELECTROLUMINESCENCE DEVICE AND METHOD FOR MANUFACTURING ORGANIC ELECTROLUMINESCENCE DEVICE |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-246827 | 2011-11-10 | ||
JP2011246827 | 2011-11-10 | ||
JP2012135224A JP2013122903A (ja) | 2011-11-10 | 2012-06-14 | 有機elデバイス、および、有機elデバイスの製造方法 |
JP2012-135224 | 2012-06-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013069400A1 true WO2013069400A1 (ja) | 2013-05-16 |
Family
ID=48289784
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/076143 WO2013069400A1 (ja) | 2011-11-10 | 2012-10-09 | 有機elデバイス、および、有機elデバイスの製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20140306209A1 (ja) |
EP (1) | EP2770802A4 (ja) |
JP (1) | JP2013122903A (ja) |
KR (2) | KR20150122272A (ja) |
CN (1) | CN103891403A (ja) |
TW (1) | TWI512966B (ja) |
WO (1) | WO2013069400A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020149384A1 (ja) * | 2019-01-17 | 2020-07-23 | デンカ株式会社 | 封止剤、硬化体、有機エレクトロルミネッセンス表示装置、及び装置の製造方法 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6221418B2 (ja) * | 2013-07-01 | 2017-11-01 | セイコーエプソン株式会社 | 発光装置および電子機器 |
CN104538557A (zh) * | 2014-12-23 | 2015-04-22 | 深圳市华星光电技术有限公司 | 柔性oled显示器件及其制造方法 |
DE102015106631A1 (de) | 2015-04-29 | 2016-11-03 | Osram Oled Gmbh | Optoelektronisches Halbleiterbauteil |
US20180061775A1 (en) * | 2016-08-31 | 2018-03-01 | Qualcomm Incorporated | LOW PROFILE PASSIVE ON GLASS (PoG) DEVICE COMPRISING A DIE |
DE102016121008A1 (de) * | 2016-11-03 | 2018-05-03 | Osram Oled Gmbh | Verfahren zur Herstellung einer organischen Leuchtdiode und organische Leuchtdiode |
JP7066578B2 (ja) * | 2018-09-04 | 2022-05-13 | 株式会社神戸製鋼所 | 有機電子デバイス及び有機電子デバイス用基板 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000277252A (ja) * | 1999-03-29 | 2000-10-06 | Matsushita Electric Ind Co Ltd | 有機電場発光パネルとその製造方法 |
JP2002025763A (ja) | 2000-07-11 | 2002-01-25 | Nisshin Steel Co Ltd | 有機el素子用絶縁基板 |
JP3942017B2 (ja) | 2002-03-25 | 2007-07-11 | 富士フイルム株式会社 | 発光素子 |
JP2007536697A (ja) * | 2003-12-30 | 2007-12-13 | エージェンシー フォー サイエンス,テクノロジー アンド リサーチ | フレキシブルエレクトロルミネッセンスデバイス |
JP2009301965A (ja) * | 2008-06-17 | 2009-12-24 | Hitachi Ltd | 有機発光装置 |
JP2010082899A (ja) | 2008-09-30 | 2010-04-15 | Dainippon Printing Co Ltd | 可撓性基板、可撓性基板の製造方法、及び製品 |
JP2011138683A (ja) * | 2009-12-28 | 2011-07-14 | Dainippon Printing Co Ltd | 電子素子 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7198832B2 (en) * | 1999-10-25 | 2007-04-03 | Vitex Systems, Inc. | Method for edge sealing barrier films |
JP4608170B2 (ja) * | 2000-03-07 | 2011-01-05 | 出光興産株式会社 | アクティブ駆動型有機el表示装置およびその製造方法 |
JP4180831B2 (ja) * | 2002-03-25 | 2008-11-12 | パイオニア株式会社 | 有機エレクトロルミネッセンス表示パネル及び製造方法 |
KR20040102054A (ko) * | 2002-03-29 | 2004-12-03 | 파이오니아 가부시키가이샤 | 유기 일렉트로루미네선스 표시패널 |
US7535017B2 (en) * | 2003-05-30 | 2009-05-19 | Osram Opto Semiconductors Gmbh | Flexible multilayer packaging material and electronic devices with the packaging material |
CN101218691A (zh) * | 2003-05-30 | 2008-07-09 | 奥斯兰姆奥普托半导体有限责任公司 | 柔性多层封装材料和具有该封装材料的电子器件 |
US7531957B2 (en) * | 2003-09-10 | 2009-05-12 | Fujifilm Corporation | Display apparatus and manufacturing method therefor |
US7378157B2 (en) * | 2004-06-28 | 2008-05-27 | Dai Nippon Printing Co., Ltd. | Gas barrier film, and display substrate and display using the same |
JP2006344423A (ja) * | 2005-06-07 | 2006-12-21 | Showa Denko Kk | 有機el発光装置とその製造方法 |
JP4600254B2 (ja) * | 2005-11-22 | 2010-12-15 | セイコーエプソン株式会社 | 発光装置および電子機器 |
WO2007086280A1 (ja) * | 2006-01-25 | 2007-08-02 | Idemitsu Kosan Co., Ltd. | 積層構造及びそれを用いた電気回路用電極 |
US7931516B2 (en) * | 2007-07-20 | 2011-04-26 | Canon Kabushiki Kaisha | Organic light-emitting apparatus and method of producing the same |
JP4506810B2 (ja) * | 2007-10-19 | 2010-07-21 | ソニー株式会社 | 表示装置 |
JP5119865B2 (ja) * | 2007-11-02 | 2013-01-16 | セイコーエプソン株式会社 | 有機エレクトロルミネッセンス装置、電子機器 |
US8362698B2 (en) * | 2008-02-26 | 2013-01-29 | Tohoku Pioneer Corporation | Organic EL panel and its manufacturing method |
JP5167932B2 (ja) * | 2008-05-01 | 2013-03-21 | セイコーエプソン株式会社 | 有機エレクトロルミネッセンス装置 |
US8723415B2 (en) * | 2009-12-14 | 2014-05-13 | Sharp Kabushiki Kaisha | Moisture-proof film, method for manufacturing the same, and organic electronic device including the same |
-
2012
- 2012-06-14 JP JP2012135224A patent/JP2013122903A/ja active Pending
- 2012-10-09 KR KR1020157030125A patent/KR20150122272A/ko not_active Application Discontinuation
- 2012-10-09 EP EP12847850.0A patent/EP2770802A4/en not_active Withdrawn
- 2012-10-09 CN CN201280051886.1A patent/CN103891403A/zh active Pending
- 2012-10-09 WO PCT/JP2012/076143 patent/WO2013069400A1/ja active Application Filing
- 2012-10-09 US US14/355,056 patent/US20140306209A1/en not_active Abandoned
- 2012-10-09 KR KR1020147003518A patent/KR20140048254A/ko active Application Filing
- 2012-11-01 TW TW101140507A patent/TWI512966B/zh not_active IP Right Cessation
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000277252A (ja) * | 1999-03-29 | 2000-10-06 | Matsushita Electric Ind Co Ltd | 有機電場発光パネルとその製造方法 |
JP2002025763A (ja) | 2000-07-11 | 2002-01-25 | Nisshin Steel Co Ltd | 有機el素子用絶縁基板 |
JP3942017B2 (ja) | 2002-03-25 | 2007-07-11 | 富士フイルム株式会社 | 発光素子 |
JP2007536697A (ja) * | 2003-12-30 | 2007-12-13 | エージェンシー フォー サイエンス,テクノロジー アンド リサーチ | フレキシブルエレクトロルミネッセンスデバイス |
JP2009301965A (ja) * | 2008-06-17 | 2009-12-24 | Hitachi Ltd | 有機発光装置 |
JP2010082899A (ja) | 2008-09-30 | 2010-04-15 | Dainippon Printing Co Ltd | 可撓性基板、可撓性基板の製造方法、及び製品 |
JP2011138683A (ja) * | 2009-12-28 | 2011-07-14 | Dainippon Printing Co Ltd | 電子素子 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2770802A4 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020149384A1 (ja) * | 2019-01-17 | 2020-07-23 | デンカ株式会社 | 封止剤、硬化体、有機エレクトロルミネッセンス表示装置、及び装置の製造方法 |
JPWO2020149384A1 (ja) * | 2019-01-17 | 2021-11-25 | デンカ株式会社 | 封止剤、硬化体、有機エレクトロルミネッセンス表示装置、及び装置の製造方法 |
JP2023022039A (ja) * | 2019-01-17 | 2023-02-14 | デンカ株式会社 | 封止剤、硬化体、有機エレクトロルミネッセンス表示装置、及び装置の製造方法 |
JP7385722B2 (ja) | 2019-01-17 | 2023-11-22 | デンカ株式会社 | 封止剤、硬化体、有機エレクトロルミネッセンス表示装置、及び装置の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2013122903A (ja) | 2013-06-20 |
EP2770802A1 (en) | 2014-08-27 |
KR20150122272A (ko) | 2015-10-30 |
US20140306209A1 (en) | 2014-10-16 |
TWI512966B (zh) | 2015-12-11 |
KR20140048254A (ko) | 2014-04-23 |
CN103891403A (zh) | 2014-06-25 |
EP2770802A4 (en) | 2015-10-07 |
TW201327806A (zh) | 2013-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013069400A1 (ja) | 有機elデバイス、および、有機elデバイスの製造方法 | |
US6872473B2 (en) | Panel display device and method for forming protective layer within the same | |
US9508959B2 (en) | Organic EL device and method for manufacturing same | |
WO2014119385A1 (ja) | 有機エレクトロルミネッセンスデバイス | |
JP2015111505A (ja) | 有機エレクトロルミネッセンスデバイス | |
JP5660128B2 (ja) | 発光装置 | |
JP2010231977A (ja) | 薄型封止有機el素子 | |
KR20170046732A (ko) | 유기 일렉트로루미네센스 소자 | |
JP2013251191A (ja) | 有機エレクトロルミネッセンス素子 | |
KR100844803B1 (ko) | 유기전계발광소자 | |
CN104106310A (zh) | 有机电致发光元件 | |
TW200526071A (en) | Light-emitting device comprising an etch-protective layer | |
TW201345016A (zh) | 有機el元件之製造方法及有機el元件 | |
US8823256B2 (en) | Organic electroluminescent element and illumination device | |
US20210408464A1 (en) | Display panel, display device, and method for manufacturing display panel | |
JP5303199B2 (ja) | 有機el素子及び有機el素子の製造方法 | |
JP2014103015A (ja) | 有機エレクトロルミネッセンス装置 | |
JP2005310469A (ja) | 有機発光素子 | |
JP5610511B2 (ja) | 有機エレクトロルミネッセンス素子及びこれを用いた照明器具 | |
JP2006310180A (ja) | エレクトロルミネッセンス素子およびその製造方法 | |
JP2018156722A (ja) | 有機elパネル | |
JP2008186778A (ja) | 照明装置 | |
JP2011113847A (ja) | 有機電界発光素子の製造方法 | |
JP2013089561A (ja) | 有機elデバイス、および、有機elデバイスの製造方法 | |
JP2012238540A (ja) | 有機発光素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12847850 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20147003518 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14355056 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2012847850 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012847850 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |