WO2013065763A1 - 幹細胞の培養方法 - Google Patents
幹細胞の培養方法 Download PDFInfo
- Publication number
- WO2013065763A1 WO2013065763A1 PCT/JP2012/078250 JP2012078250W WO2013065763A1 WO 2013065763 A1 WO2013065763 A1 WO 2013065763A1 JP 2012078250 W JP2012078250 W JP 2012078250W WO 2013065763 A1 WO2013065763 A1 WO 2013065763A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cells
- tissue
- aggregate
- serum
- pituitary
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0613—Cells from endocrine organs
- C12N5/0616—Pituitary gland
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0618—Cells of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/30—Nerves; Brain; Eyes; Corneal cells; Cerebrospinal fluid; Neuronal stem cells; Neuronal precursor cells; Glial cells; Oligodendrocytes; Schwann cells; Astroglia; Astrocytes; Choroid plexus; Spinal cord tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/55—Glands not provided for in groups A61K35/22 - A61K35/545, e.g. thyroids, parathyroids or pineal glands
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
- A61P5/06—Drugs for disorders of the endocrine system of the anterior pituitary hormones, e.g. TSH, ACTH, FSH, LH, PRL, GH
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
- A61P5/14—Drugs for disorders of the endocrine system of the thyroid hormones, e.g. T3, T4
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
- A61P5/24—Drugs for disorders of the endocrine system of the sex hormones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
- A61P5/38—Drugs for disorders of the endocrine system of the suprarenal hormones
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0613—Cells from endocrine organs
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/30—Hormones
- C12N2501/33—Insulin
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/30—Hormones
- C12N2501/38—Hormones with nuclear receptors
- C12N2501/39—Steroid hormones
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/30—Hormones
- C12N2501/38—Hormones with nuclear receptors
- C12N2501/39—Steroid hormones
- C12N2501/392—Sexual steroids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/40—Regulators of development
- C12N2501/41—Hedgehog proteins; Cyclopamine (inhibitor)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/40—Regulators of development
- C12N2501/42—Notch; Delta; Jagged; Serrate
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2506/00—Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
- C12N2506/02—Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from embryonic cells
Definitions
- the present invention relates to a method for inducing differentiation in vitro from an embryoid body comprising a central nervous tissue and a non-neural ectoderm tissue from a stem cell.
- the present invention relates to a method of inducing differentiation of a pituitary progenitor tissue and various pituitary hormone-producing cells in vitro as a central nervous tissue.
- Non-patent Documents 1-4 and 1-3 several culture methods for inducing neural differentiation from pluripotent stem cells such as ES cells have been known (Non-patent Documents 1-4 and 1-3).
- the present inventors have previously shown that dispersion suspension culture (SFEB method) in a serum-free medium is effective as a method for inducing neural differentiation from pluripotent stem cells such as animal and human ES cells. (See Non-Patent Documents 3 and 4 and Patent Document 1).
- the present inventors formed uniform stem cell aggregates in a serum-free medium, and suspended the aggregates from pluripotent stem cells such as ES cells from cerebral cortical tissues and hypothalamus.
- a method (SFEBq method) has been found that can efficiently induce differentiation of neurons and their progenitor cells (Non-patent Document 5 and Patent Document 3).
- the pituitary gland and sensory organs are derived from placodes formed in the non-neural ectoderm tissue of the head facing the neural plate. It is known to occur through cell differentiation and morphogenesis.
- the pituitary gland is an endocrine organ that produces and secretes many hormones.
- the pituitary gland is largely divided into an adenohypophysis and a neurohypophysis (also referred to as the posterior pituitary gland).
- the glandular pituitary gland is further divided into an anterior pituitary gland and an intermediate pituitary gland (intermediate part). Divided into two.
- the glandular pituitary gland contains multiple types of cells that produce and secrete pituitary hormones.
- This glandular pituitary gland is derived from a Ratoke pouch that is caused by invagination of the primitive oral cavity.
- the anterior pituitary primordia are formed as placodes in the head non-neural ectoderm (rostral non-neural ectoderm) adjacent to the rostral side of the anterior neural plate boundary.
- the cord invades to form a ratchet sac.
- Ratoke sac is then separated from the ectoderm and becomes an epithelial microcyst.
- the anterior wall of this small cyst becomes the anterior pituitary and the posterior wall becomes the pituitary midlobe.
- the neural pituitary gland (posterior pituitary gland) is formed by a process at the bottom of the third ventricle.
- axons from neurosecretory neuron cell bodies in the hypothalamus and paraventricular nucleus of the hypothalamus extend, and hormones (oxytocin and vasopressin) are axonal transported.
- Non-Patent Document 6 Previous studies have shown that the interaction between the rostral hypothalamus and the rostral non-neural ectoderm is required for the induction of Ratoke sac at the developmental stage (Non-Patent Document 6).
- the present invention provides a method for inducing differentiation in vitro of an embryonic body (hereinafter also referred to as an “aggregate”) comprising a central nervous tissue and a non-neural ectoderm tissue from a stem cell. For the purpose. It is another object of the present invention to provide a method for efficiently inducing differentiation in vitro into pituitary progenitor tissue and pituitary hormone-producing cells, particularly as a central nervous tissue.
- the manufacturing method of the aggregate which becomes.
- the hypothalamic tissue and head non-neural ectoderm are rostral hypothalamic tissue and rostral non-neural ectoderm tissue which is a sheet-like continuous epithelium.
- the manufacturing method of crab [7] The production method according to [6], wherein the rostral hypothalamic tissue is Rx positive.
- the serum-free medium is a serum-free medium substantially free of a Nodal signal promoter, a Wnt signal promoter, an FGF signal promoter, a BMP signal promoter, retinoic acid and insulins.
- the manufacturing method as described.
- the production method according to any one of [1] to [10], wherein the aggregate comprising both the hypothalamic tissue and the head non-neural ectoderm further comprises Lim3 positive cells.
- the production method according to [11] wherein the Lim3-positive cells form epithelial microcysts in the aggregate.
- a method for producing adrenocorticotropic hormone-producing cells which further comprises a step of suspension culture in 1.
- a method for improving deficiency of adrenocorticotropic hormone secretion in a subject comprising transplanting the adrenocorticotropic hormone-producing cell produced by the method according to [16] or [17] to the subject.
- An aggregate comprising both the hypothalamic tissue and the head non-neural ectoderm produced by the method according to any one of [1] to [15] is further added in a serum-free medium containing glucocorticoid.
- a method for producing growth hormone-producing cells comprising a step of suspension culture.
- a serum-free medium containing a GSK3 ⁇ inhibitor before or simultaneously with the suspension culture of the aggregate comprising both the hypothalamic tissue and the non-neural ectoderm of the head in a serum-free medium containing glucocorticoid The method for producing a growth hormone-producing cell according to [19] or [20], comprising a step of suspension culture in the method.
- a method for improving growth hormone secretion failure in a subject comprising transplanting the growth hormone-producing cells produced by the method according to any one of [19] to [22] into the subject.
- the aggregate comprising both the hypothalamic tissue and non-neural ectoderm produced by the method according to any one of [1] to [15] is further suspended in a serum-free medium containing estrogen.
- a method for producing prolactin-producing cells comprising a step of culturing.
- the production method according to [24] wherein the serum-free medium further contains insulin.
- [29] culturing stromal cells in a serum-free medium with an aggregate comprising both the hypothalamic tissue and non-neural ectoderm produced by the production method of any one of [1] to [15]
- a method for producing follicle-stimulating hormone, luteinizing hormone and / or thyroid-stimulating hormone-producing cells which further comprises a step of suspension culture in a conditioned medium of stromal cells obtained by the above.
- the production method of [29], wherein the stromal cell is a PA6 cell.
- a method for improving the secretion of hormone or thyroid stimulating hormone including both a central nervous tissue and a head non-neuronal ectoderm tissue, comprising a step of forming an aggregate of stem cells in a serum-free medium, and a step of subjecting the formed aggregate to suspension culture in a serum-free medium The manufacturing method of the aggregate which consists of these.
- pluripotent stem cells such as ES cells, central nervous tissue and non-neuronal ectoderm tissue, specifically rostral hypothalamus tissue and rostral temporal head that is a sheet-like continuous epithelium.
- pluripotent stem cells such as ES cells, central nervous tissue and non-neuronal ectoderm tissue, specifically rostral hypothalamus tissue and rostral temporal head that is a sheet-like continuous epithelium.
- Aggregates and pituitary progenitor tissues containing ectodermal tissues can be induced to differentiate in vitro, and various pituitary hormone-producing cells can be induced to differentiate.
- the pituitary gland is a central endocrine organ that produces and secretes many hormones, and abnormal hormone secretion has a significant effect on the body.
- the aggregate, pituitary progenitor tissue and pituitary hormone-producing cells obtained by the method of the present invention are used for the treatment of diseases caused by pituitary hormone secretion failure or diseases causing pituitary hormone secretion failure. can do.
- FIG. 1 a is a schematic diagram (sagittal section) showing the occurrence of pituitary gland in a living body.
- FIG. 1b is a diagram showing gene expression in rat sac and adjacent ventral hypothalamic tissues in vivo (E13) (hypothalamic marker Rx: green; head non-neural ectoderm marker Pitx1: red).
- FIG. 1c shows the expression level of Pitx2 in ESCs cultured in SFEBq / gfCDM (3000 cells / aggregate). Pitx2 expression was hardly observed.
- FIG. 1 a is a schematic diagram (sagittal section) showing the occurrence of pituitary gland in a living body.
- FIG. 1b is a diagram showing gene expression in rat sac and adjacent ventral hypothalamic tissues in vivo (E13) (hypothalamic marker Rx: green; head non-neural ectoderm marker Pitx1: red).
- FIG. 1c shows the expression level
- FIG. 1d shows that Pitx2 expression of ESCs cultured in SFEBq / CDM was increased under large cell-aggregation (LCA; starting with 10000 cells / aggregate) conditions (red) or with BMP4 treatment (blue).
- FIGS. 1e and f are diagrams showing expression of Pitx1 (red) and Rx (green) in aggregates obtained by seeding mouse ES cells at a high concentration (LCA condition) and culturing by SFEBq / gfCDM method. It is.
- FIG. 1g is a schematic diagram of FIG. 1f.
- FIG. 1h shows that the Rx + tissue is Chx10 ⁇ / Nestin + .
- FIG. 1i is a graph showing the influence of the addition timing of the Shh signal promoter SAG on the expression level of Lim3 mRNA.
- FIG. 1 j is the result of FACS analysis showing lim3 :: venus + population (green) in SAG-treated LCA aggregates.
- FIG. 1k shows a comparison of lim3 expression in aggregates without SAG treatment (left) and with SAG treatment (right). Scale bar: 100 ⁇ m (b, e, f); 50 ⁇ m (h); 500 ⁇ m (k).
- FIG. 2a is a diagram showing clusters of lim3 positive cells in aggregates on the 13th day of culture with SAG treatment.
- FIG. 1i is a graph showing the influence of the addition timing of the Shh signal promoter SAG on the expression level of Lim3 mRNA.
- FIG. 1 j is the result of FACS analysis showing lim3 :: venus + population (green) in SAG-treated LCA aggregates.
- FIG. 1k shows
- FIG. 2b shows that Lim3 positive cells in the aggregate do not express Tuj1 which is a neuronal marker (Lim3 (green), Tuj1 (red), Pitx1 (white)).
- FIG. 2c shows that Brachyury, a mesoderm marker, is hardly expressed in aggregates.
- FIGS. 2d-f show how the lim3 positive cells in the aggregates form a ratchetocyst-like microcyst (days 8-12).
- FIG. 2g-j shows the expression of SAG-treated microcysts and the surrounding marker genes (Pitx1 (red), lim3 (green, g; white, h; red, j)), pancytokeratin (green) H), Rx (green, i, j)).
- FIG. 21 is a schematic diagram showing expression of marker genes in the small cysts and their surroundings.
- FIG. 21 is a diagram showing the expression of Ratoke sacs and surrounding Pitx1 (red) and aPKC (green) (apical markers) in vivo.
- 2m and n are electron micrographs of microcysts. Tall epithelial cells (m, apex, upper), basal exfoliated cells (m, square brackets), apicia (n, arrowhead), apical junction (n, arrow).
- FIG. 2o is a diagram showing Islet1-positive cells on the basal side of microcysts (Lim3 (green), Isl1 (red)).
- FIG. 3a shows the differentiation of each pituitary hormone-producing cell.
- FIG. 3b shows that Tbx19 expression is enhanced by DAPT treatment of pituitary progenitor tissue obtained by SAG treatment (day 20) (DAPT treatment (day 18-19) / BIO treatment (day 16-18). Eye)).
- FIG. 3c shows the percentage of ACTH + cells in non-neural (N-cad ⁇ ) cells on day 22 (DAPT treatment (18-19 days) / BIO treatment (16-18 days)).
- Figures 3d-g show gene marker expression in SAG + DAPT treated aggregates. Red: ACTH, Green: E-cadherin (e) / neurofilament (f) / PC2 (g).
- FIG. 3h shows that shRNA-mediated knockdown of lim3 by doxycycline (Dox) treatment reduces Tbx19 and ACTH expression.
- FIG. 3i shows the expression of Rx, lim3 and ACTH of DAPT treated LCA + SAG SFEBq aggregates.
- FIG. 3 j schematically shows the generation of corticotropin producing cells from ESC-derived sac.
- FIG. 3k is a graph showing the effect of DAPT, BIO and IWP2 on Pitx1 expression (day 26).
- FIGS. 3l and m show the generation of GH + cells in LCA + SAG aggregates (day 33) (hydrocortisone and insulin added on days 20-30).
- Figures 3n and o show the production of Prolactin + cells in LCA + SAG aggregates (day 33) (estradiol and insulin added on days 20-30).
- FIG. 3p-s shows the generation of LH + cells, FSH + cells, and TSH + cells (PA6 conditioned medium (conditioned medium) added from day 10) in LCA + SAG aggregates (day 33).
- FIG. 4a is a schematic diagram of an ACTH secretion test with a CRH load.
- FIG. 4b shows the promotion of ACTH secretion by CRH loading.
- FIG. 4c shows the enhancement of ACTH secretion by various doses of CRH loading.
- FIG. 4d shows the effect of SAG, DAPT and CRH treatment on ACTH secretion from aggregates.
- FIG. 4e shows that the promotion of ACTH secretion by CRH is suppressed by pretreatment with ACTH secretion negative feedback factor hydrocortisone (F).
- FIG. 5a is a diagram showing the design of an experiment for transplantation of aggregates to pituitary-removed mice and the engraftment of aggregates (GFP-labeled) transplanted under the kidney capsule of pituitary-removed mice on the seventh day after surgery.
- Red ACTH + cells
- blue DAPI
- scale bar 100 ⁇ m
- Figures 5b and c show that ACTH is no longer produced by removal of the pituitary gland (no CRH loading (b), yes (c)).
- FIG. 5d shows ACTH levels in transplanted mice with (right) or without (left) CRH loading.
- FIG. 5e and f show the increase in ACTH and corticosterone production with CRH loading, respectively, and Figures 5g and h show basal levels of ACTH and corticosterone production without CRH loading.
- Figures 5i and j show the improvement in locomotor activity of pituitary-depleted mice by transplantation of ACTH producing cells.
- FIG. 5k shows the survival of pituitary-depleted mice after aggregate transplantation surgery analyzed by Kaplan-Meyer method.
- FIG. 6 shows the expression of BMP2 and BMP4 in gfCDM / SFEBq cultures starting with 3000 cells / aggregate (LCA ⁇ ) or 10000 cells / aggregate (LCA +).
- FIG. 7 shows the results of suspension aggregate culture using human ES cells 12000 cells / aggregates.
- Rx + rostral hypothalamic tissue cells consisted of a single-layer sheet composed of E-cadherin + rostral non-neural ectoderm tissue cells. Aggregates encapsulated in the continuous epithelium were formed on the 17th day of culture. Furthermore, the formation of E-cadherin + thickened non-neuronal ectoderm was observed on the 25th day of culture.
- Tissue and cells obtained by the production method of the present invention (A) Aggregate containing central nervous tissue and non-neural ectoderm tissue of the head
- the central nervous tissue and non-neural ectoderm tissue particularly rostral Aggregates comprising both lateral hypothalamic tissue (also referred to simply as hypothalamic tissue) and rostral head non-neural ectoderm tissue (also referred to simply as head non-neural ectoderm tissue), which are sheet-like continuous epithelia, differentiated Be guided.
- An aggregate including a rostral hypothalamus tissue and a rostral non-neural ectoderm tissue that is a sheet-like continuous epithelium is, for example, a rostral head composed of a sheet-like continuous epithelium-like layer of Pitx1-positive cells
- a non-neural ectoderm tissue is present on the contact surface with the culture medium, and is a cell mass including a rostral hypothalamic tissue composed of a group of Rx-positive cells therein.
- both a central nervous tissue and a head non-neural ectoderm tissue are simultaneously formed in one aggregate (specifically, in one aggregate, the central nervous tissue On the outside, sheet-like head non-neural ectoderm tissue is formed) so that these tissues can interact locally.
- ectoderm head placodes that form sensory organs requires interaction between central nervous tissue and non-neural head ectoderm tissue.
- the olfactory epithelium develops through a placode formed by the interaction between cerebral tissue and rostral head non-neural ectoderm tissue; the lens is retinal tissue and head non-neural. Occurs through a placode formed by interaction with ectoderm tissue; the inner ear is a placode formed by interaction between hindbrain tissue and head non-neural ectoderm tissue It occurs through.
- these tissues can interact locally, and the formation of each placode and thus each sensory organ.
- the rostral hypothalamic tissue is Rx + , N-cadherin + , Sox1 + neural tissue. In one embodiment, the rostral hypothalamic tissue is Rx + , Chx10 ⁇ , Nkx2.1 + , Nestin + neural tissue.
- the rostral head ectoderm tissue (rostral non-neural ectoderm) is a sheet-like continuous epithelium composed of Pitx1-positive, N-cadherin + monolayer cells formed on the surface of the aggregate. It is an organization.
- the glandular pituitary gland (anterior pituitary and middle pituitary) is derived from a tissue called the rat-like sac.
- the Ratoke sac is formed by invading a placode formed in the rostral non-neural ectoderm at the very beginning of ontogeny, and later separated from the ectoderm into an epithelial microcyst.
- a small cyst having an epithelial structure and polarity similar to that of the Ratoke sac is formed in the aggregate including the rostral hypothalamus tissue and the rostral non-neural ectoderm tissue.
- This small cyst is present in the vicinity of the hypothalamic tissue, and is also adjacent to the rostral non-neural ectoderm tissue, as in the rat sac in vivo. That is, the method of the present invention can reproduce the microenvironment when a pituitary gland occurs in a living body (see FIG. 2p).
- the “Ratke's sac-like tissue” or “pituitary precursor tissue” as used in the present invention has the same morphological characteristics (concave or small cystic shape) as that observed in the living body that is normally generated. It has the same gene expression profile as the rat sac in vivo, which is present in the vicinity of the hypothalamic tissue and the rostral non-neural ectoderm tissue. Specific gene expression profiles are described in (D) below.
- the Ratoke sac-like tissue is a Lim3 positive epithelial microcyst.
- C Pituitary hormone-producing cells From the anterior pituitary gland, adrenocorticotropic hormone (ACTH), growth hormone (GHhor), thyroid stimulating hormone (TSH), Prolactin (prolactin (PRL)), follicle-stimulating hormone (FSH), luteinizing hormone (LH) (anterior pituitary hormone) is secreted, and from the pituitary midlobe, melanocyte stimulation The hormone (mesanocyte-stimulating homone (MSH)) (pituitary mesenchymal hormone) is secreted.
- MSH is one of the ACTH-related peptides and is formed by enzymatic degradation of propiomelanocortin, a common precursor with ACTH.
- the hormones oxytocin (OX) and vasopressin (VP) secreted by the posterior pituitary gland are hormones produced in the hypothalamus and are not included in the pituitary hormones in this specification.
- the term “pituitary hormone” refers to anterior pituitary hormone.
- Adrenocorticotropic hormone also called corticotropin. It is a 39-amino acid peptide hormone secreted from the corticotroph producing and secreting cells (corticotroph) of the anterior pituitary gland. ACTH exhibits a glucocorticoid secretion promoting action. ACTH secretion is facilitated by corticotropin-releasing hormone (CRH) secreted from the hypothalamus and negatively fed back by glucocorticoids.
- CSH corticotropin-releasing hormone
- GH Growth hormone
- GHRH growth hormone-releasing hormone
- Prolactin (Iii) It is a 199 amino acid peptide hormone secreted mainly from prolactin producing and secreting cells (lactotrophs) in the anterior pituitary gland. In humans, PRL promotes lactation and mammary gland differentiation / development in the presence of female hormones, and has effects such as pregnancy maintenance.
- PRF prolactin-releasing factor
- TRH thyroid-stimulating hormone-releasing hormone
- VIP vasopressin
- VIP vasoactive intestinal peptide
- PHI peptide histidine isoleucine
- PAF prolactin-releasing factor
- GABA GABA
- LH luteinizing hormone
- gonadotropin gonadotropin
- FSH gonadotropin-releasing hormone
- FSH Follicle stimulating hormone
- gonadotropin gonadotropin
- GnRH gonadotropin-releasing hormone
- FSH acts on the ovaries to make primordial follicles develop into follicles, and in cooperation with LH, develops into mature follicles to promote estrogen secretion from the follicles.
- Thyroid-stimulating hormone It is a glycoprotein composed of ⁇ subunit and ⁇ subunit secreted from thyroid-stimulating hormone producing and secreting cells (thyrotroph) in the anterior pituitary gland ( ⁇ subunit is common to LH and FSH). TSH acts on the thyroid to promote the production and secretion of thyroid hormone. The secretion of TSH is stimulated by thyrotropin-releasing hormone (TRH) secreted from the hypothalamus and negatively fed back by thyroid hormone.
- TRH thyrotropin-releasing hormone
- pituitary hormone producing cells The cells obtained by the differentiation induction method of the present invention and capable of producing and secreting any of these pituitary hormones are collectively referred to as “pituitary hormone producing cells” in the present specification.
- the diseases caused by the production or secretion failure of any of the above pituitary hormones include hypoadrenocorticism, growth hormone deficiency short stature, adult-onset GH deficiency, pituitary dwarfism, cretinism, Examples include infertility.
- panhypopituitarism including empty sella syndrome, pituitary apoplexy, postoperative pituitary damage), partial hypopituitarism, anterior pituitary hormone deficiency (specifically, ACTH alone)
- deficiency growth hormone single deficiency, TSH single deficiency, prolactin single deficiency, gonadotropin single deficiency
- production or secretion of one or all of the above pituitary hormones is impaired.
- tissue or cells obtained by the method of the present invention may be prepared by the presence or absence of marker gene expression or, in the case of pituitary hormone-producing cells, release of pituitary hormones into the medium or in the cells. By accumulating the precursor protein as an index and combining them as necessary, it is possible to confirm which tissue or cell has differentiated. Moreover, the obtained tissue or cell can also be specified by observing the form of the tissue or cell. Furthermore, a desired specific tissue or cell can also be isolated based on such marker expression pattern or tissue or cell morphology.
- Markers used in the present invention include pituitary hormones such as ACTH, GH, PRL, LH, FSH, TSH, N-cadherin, Nkx2.1 (neural marker), Sox1 (neural ectoderm marker), nestin (neural Ectoderm marker), neurofilament and NSE (neuron-specific enolase) (neuron marker), Rx (hypothalamic marker), Pitx1 and Pitx2 (head non-neural ectoderm marker), Chx10 (retinal marker), Lim3 (early lower) Pituitary / pituitary progenitor tissue marker), Islet 1 and 2 (late ratchet sac marker), E-cadherin (epithelial cell marker), Prop1 and Pit1 (gonadotroph, somatotroph, lactotroph or caudodomedia) Specific markers thyrotroph precursor), Tbx19 (markers specific for corticotroph), PC2 (although Melanotropic
- the tissue or cell obtained by the differentiation induction method of the present invention can be characterized according to the gene expression profile of the actual tissue or cell in vivo.
- rostral hypothalamic tissue cells are Rx + , preferably Rx + , N-cadherin + , nestin + , Nkx2.1 + , Chx10 ⁇ .
- the cells of the rostral head ectoderm tissue are Pitx1 + , preferably Pitx1 + , Pitx2 + , E-cadherin + .
- Cells of the pituitary progenitor tissue are Lim3 + , Pitx1 + , Pitx2 + , Isl1 + , E-cadherin + (this is consistent with the expression profile of the pituitary primordia).
- Hormone-producing cells of the pituitary is neurofilament -, NSE - a.
- Pituitary ACTH producing cells are ACTH + , Tbx19 + , PC2 ⁇
- the other pituitary hormone producing cells are Tbx19 ⁇ .
- MSH producing cells in the pituitary midlobe are ACTH ⁇ , Tbx19 + , and PC2 + .
- Pituitary GH-producing cells, PRL-producing cells, and TSH-producing cells differentiate into pituitary hormone-producing cells via Pitx1 + intermediate precursors.
- the central nervous tissue and the non-neural head ectoderm tissue such as the rostral hypothalamus tissue and the rostral head ectoderm tissue (rostral non-neural ectoderm) are one. Differentiation is induced simultaneously in the aggregate. At this time, an aggregate is obtained in which the rostral head ectoderm tissue (head non-neural ectoderm) is on the surface and the central nervous tissue (rostral hypothalamic tissue) is present on the inside. According to a further method of the invention, Ratoke sac-like tissue is formed in the aggregate.
- This small cyst shows the same marker expression as the pituitary progenitor tissue, and has a morphologically similar epithelial structure and polarity. Furthermore, like the pituitary progenitor tissue (Latke's sac) in vivo, it exists in the vicinity of the Rx-positive hypothalamic tissue and is formed adjacent to the rostral non-neural ectoderm tissue. This indicates that in the differentiation induction method of the present invention, the microenvironment of pituitary progenitor tissue development during the embryogenesis process was imitated. Therefore, in the present invention, this ratchet sac-like tissue is also called a pituitary progenitor tissue.
- each of the pituitary hormone-producing cells is indicated by the release of ACTH, GH, PRL, LH, FSH, TSH into the medium or accumulation of the precursor protein in the cell as an index. Differentiation can be confirmed.
- TSH-producing cells can be characterized with TSH expression as an index, FSH-producing cells with FSH expression as an index, and LH-producing cells with LH expression as an index.
- Pituitary hormones can also be secreted from neurons, but each pituitary hormone-producing cell obtained by the production method of the present invention should be distinguished from such neurons in that the neuronal markers NSE and neurofilament are negative. Can do.
- the expression of the marker gene is analyzed by performing quantitative PCR with, for example, 7500 Fast Real-Time PCR System (Applied Biosystems) according to the manufacturer's instructions, and normalizing the data by GAPDH expression. Methods of quantitative PCR are known to those skilled in the art.
- the cells may be manipulated so that the target marker gene is expressed as a fusion protein of the marker gene product and GFP or venus (knock-in). Protein expression can also be detected using antibodies specific for the marker gene product.
- proteins can be detected by immunostaining or radioimmunoassay.
- other pituitary hormones can be produced using the same assay using antibodies specific for the hormones produced. Such methods are known to those skilled in the art.
- Stem cell refers to a cell that can maintain the same differentiation potential even after cell division.
- stem cells include embryonic stem cells (ES cells) derived from fertilized eggs or cloned embryos, pluripotent embryonic stem cells, somatic stem cells and pluripotent stem cells present in tissues in the living body, liver that is the basis of each tissue Examples include stem cells, skin stem cells, germ stem cells, pluripotent stem cells derived from germ stem cells, and pluripotent stem cells derived from somatic cells and obtained by nuclear reprogramming.
- pluripotent stem cells can be cultured in vitro and all cells constituting the living body excluding the placenta (tissues derived from the three germ layers (ectoderm, mesoderm, endoderm)) Stem cells having the ability to differentiate (pluripotency) are included, and embryonic stem cells are also included in this.
- a “pluripotent stem cell” is obtained from a fertilized egg, a cloned embryo, a germ stem cell, or a stem cell in tissue. It also includes cells (also referred to as induced pluripotent stem cells) that have been artificially provided with pluripotency similar to embryonic stem cells by introducing several types of genes into somatic cells.
- Pluripotent stem cells can be prepared by a method known per se. For example, Cell 131 (5) pp. 861-872, Cell 126 (4) pp. And the method described in 663-676.
- stem cells for example, cells derived from warm-blooded animals, preferably mammals, can be used.
- mammals include, for example, laboratory animals such as rodents and rabbits such as mice, rats, hamsters, and guinea pigs, domestic animals such as pigs, cows, goats, horses, and sheep, pets such as dogs and cats, humans, monkeys, Primates such as orangutans and chimpanzees.
- the stem cells used in the method of the present invention include, for example, embryonic stem cells (hereinafter abbreviated as “embryonic stem cell I”), body, etc. established by culturing an early embryo before implantation.
- embryonic stem cell I embryonic stem cell I
- embryonic stem cells II Embryonic stem cells established by culturing early embryos produced by nuclear transfer of cell nuclei (hereinafter abbreviated as “embryonic stem cells II”), introducing several types of genes into somatic cells, and Inducible pluripotent stem cells (iPS cells) established by the action of a compound, and genes on the chromosomes of embryonic stem cells I, embryonic stem cells II or iPS cells modified using genetic engineering techniques Capable stem cells (hereinafter abbreviated as “modified pluripotent stem cells”).
- embryonic stem cells II Embryonic stem cells established by culturing early embryos produced by nuclear transfer of cell nuclei
- iPS cells Inducible pluripotent stem cells
- the embryonic stem cell I includes the embryonic stem cells established from the inner cell mass constituting the early embryo, the EG cells established from the primordial germ cells, and the multipotency of the early embryo before implantation. Examples include cells isolated from a cell population (for example, primitive ectoderm) or cells obtained by culturing the cells. Embryonic stem cells I can be prepared by culturing early embryos prior to implantation according to a method described in the literature (Manipulating the Mouse Embryo A Laboratory Manual, Second Edition, Cold Spring Harbor Press (1994)). it can.
- Embryonic stem cells II are described in, for example, Wilmut et al. (Nature 385, 810 (1997)), Ciberli et al. (Science, 280, 1256 (1998)), Akira Iriya et al. (Protein Nucleic Acid Enzyme, 44, 892 (1999)), Baguisi. (Nature Biotechnology, 17, 456 (1999)), Wakayama et al. (Nature, 394, 369 (1998); Nature Genetics, 22, 127 (1999); Proc. Natl. Acad. Sci. USA, 96, 14984 (1999).
- Rideout III et al. Nature Genetics, 24, 109 (2000)
- it can be produced as follows.
- Initialization after removing the nucleus of the mammalian cell operation to return the nucleus to a state where it can be repeated again
- initiating development using a method of injecting the enucleated mammal into an unfertilized egg By culturing an egg that has started development, an egg that has a nucleus of another somatic cell and has started normal development is obtained.
- a plurality of methods are known as methods for initializing somatic cell nuclei.
- the medium in which the cells providing the nucleus are cultured is changed from a medium containing 5-30%, preferably 10% fetal calf serum (eg, M2 medium) for 3-10 days, preferably 5 days.
- Initialize by inducing cell cycle to resting state (G0 phase or G1 phase) by culturing in an oligotrophic medium containing 0-1%, more preferably 0.5% calf fetal serum can do.
- the cell can be initialized by injecting the nucleus of the cell providing the nucleus into an enucleated unfertilized egg of a mammal of the same species and culturing for several hours, preferably about 1 to 6 hours.
- Initialized nuclei can begin to develop in enucleated unfertilized eggs.
- a plurality of methods are known as methods for initiating development in an unfertilized egg that has been enucleated from an initialized nucleus.
- the nucleus is induced by inducing the cell cycle to the resting state (G0 phase or G1 phase) and transplanted into an enucleated unfertilized egg of the same species of mammal by electrofusion or the like to activate the egg and start development. Can be made.
- the nucleus initialized by injecting the nucleus into an enucleated unfertilized egg of the same mammal is transplanted into the enucleated unfertilized egg of the same mammal by a method using a micromanipulator again, and the egg activity Generation
- production can be started by treating with a chemical substance (for example, strontium etc.), and then treating with a cell division inhibitor (for example, cytochalasin B etc.) to suppress the release of the second polar body.
- a chemical substance for example, strontium etc.
- a cell division inhibitor for example, cytochalasin B etc.
- Embryonic stem cells can be obtained using known methods described in Series 8 gene targeting, production of mutant mice using ES cells, Yodosha (1995) and the like.
- iPS cells can be produced by introducing, for example, Oct3 / 4, Sox2 and Klf4 (c-Myc or n-Myc as required) into somatic cells (eg, fibroblasts, skin cells, etc.) ( Cell, 126: pp. 663-676, 2006; Nature, 448: pp. 313-317, 2007; Nat Biotechnol, 26: pp. 101-106, 2008; Cell 131: 861-872, 2007), and Oct3 / 4 and Sox2, (if necessary, further Klf4) can also be produced by allowing valproic acid, a histone deacetylase inhibitor, to act (Nature Biotechnology, 26: p. 1269-1275). 2008) is not limited to these.
- Modified pluripotent stem cells can be produced by using, for example, homologous recombination technology.
- the chromosomal gene that is modified when the modified pluripotent stem cell is prepared include a histocompatibility antigen gene, a disease-related gene based on a neuronal cell disorder, and the like. Modification of the target gene on the chromosome is the following: Manipulating the Mouse Embryo A Laboratory Manual, Second Edition, Cold Spring Harboratory Press (1994); Gene Targeting AP. Gene targeting, production of mutant mice using ES cells, methods described in Yodosha (1995) and the like can be used.
- a target gene to be modified for example, a histocompatibility antigen gene or a disease-related gene
- homologous recombination of the target gene using the isolated genomic gene Create a targeting vector.
- genomic gene of the target gene can be isolated by using a genomic DNA library screening system (manufactured by Genome Systems) or Universal GenomeWalker TM Kits (manufactured by CLONTECH).
- targeting vectors for homologous recombination of target genes and efficient selection of homologous recombinants are performed in Gene Targeting, A Practical Approach, IRL Press at Oxford University Press (1993); BioManual Series 8 Gene Targeting, A mutant mouse using ES cells can be prepared according to the method described in Yodosha (1995).
- the targeting vector can be used in either a replacement type or an insertion type, and as a selection method, methods such as positive selection, promoter selection, negative selection, poly A selection, and the like can be used.
- Examples of a method for selecting a target homologous recombinant from the selected cell lines include Southern hybridization method and PCR method for genomic DNA.
- stem cells can be obtained from a predetermined institution, and commercially available products can also be purchased.
- human embryonic stem cells KhES-1, KhES-2, and KhES-3 are available from the Institute of Regenerative Medicine, Kyoto University.
- mouse embryonic stem cells include EB5 cells.
- Stem cells can be maintained and cultured by a method known per se.
- stem cells can be maintained by culture with feeder-free cells supplemented with fetal calf serum (FCS), Knockout TM Serum Replacement (KSR), LIF.
- FCS fetal calf serum
- KSR Knockout TM Serum Replacement
- Forming uniform stem cell aggregates means “aggregating a certain number of dispersed stem cells rapidly” when stem cells are aggregated to form aggregates of stem cells and cultured (aggregate culture). To form a qualitatively uniform aggregate of stem cells. Furthermore, it refers to promoting the epithelialization of cells derived from stem cells, particularly by “aggregating cells rapidly”. That is, in the present specification, “aggregating cells rapidly” means that the epithelial structure of cells produced by uniformly aggregating stem cells is formed with good reproducibility.
- “Suspension culture” or “cultivation as suspension aggregates (also referred to as aggregates)” refers to culturing a group of stem cells obtained in the above process and forming uniform aggregates. It means culturing in a medium under non-adhesive conditions with respect to a cell culture vessel (in the present specification, these steps are collectively referred to as “SFEBq method”).
- SFEBq method When stem cells are cultured in suspension, a feeder is used to facilitate the formation of suspended aggregates and / or to induce efficient differentiation (for example, induction of differentiation into ectoderm cells such as neural cells). Culturing is preferably performed in the absence of cells.
- Uniform stem cell aggregates can be formed as long as the cells can be rapidly aggregated to form uniform stem cell aggregates and reproducibly form epithelial structures of cells produced from stem cells. Any method may be adopted. Examples of such a method include a method of confining cells in a small space using a small well plate (96-well plate) or a micropore, or a small centrifuge tube. Examples include a method of aggregating cells by centrifuging for a short time.
- the incubator used for the formation of the aggregate is not particularly limited as long as it can form uniform stem cell aggregates by “aggregating cells rapidly”, and can be appropriately determined by those skilled in the art. Is possible. Examples of such incubators include flasks, tissue culture flasks, dishes, petri dishes, tissue culture dishes, multi dishes, micro plates, micro well plates, micro pores, multi plates, multi well plates, chamber slides, Examples include petri dishes, tubes, trays, culture bags, and roller bottles. In order to rapidly aggregate cells, it is preferable to use an incubator with a relatively small culture space as described above. These incubators are preferably non-cell-adhesive from the viewpoint of forming uniform aggregates. As the non-cell-adhesive incubator, those in which the surface of the incubator has not been artificially treated (for example, coating treatment with an extracellular matrix or the like) for the purpose of improving adhesion with cells can be used.
- the incubator used in the suspension culture is not particularly limited as long as the suspension culture of cells is possible, and the same ones as described above can be used.
- the incubator is preferably non-cell-adherent as described above.
- the incubator used for aggregate formation may be used as it is.
- the concentration of stem cells at the time of aggregate formation can be appropriately set by those skilled in the art so as to form aggregates of stem cells more uniformly and efficiently, but the expression of endogenous growth factors in the aggregates High cell concentration (HCD) so that both central nervous tissue and non-neural neuroectodermal tissue (especially rostral hypothalamic tissue and rostral head ectoderm tissue) are induced to differentiate simultaneously. ) (Also referred to as a large cell-aggregation (LCA) condition).
- HCD High cell concentration
- non-neural neuroectodermal tissue especially rostral hypothalamic tissue and rostral head ectoderm tissue
- LCA large cell-aggregation
- BMP4 BMP4
- central nervous tissue and non-neural ectoderm tissue especially rostral thalamus in one aggregate
- Both the lower tissue and rostral ectodermal tissue are difficult to induce differentiation at the same time.
- endogenous growth factor refers to BMP (Bone Morphogenetic protein), in particular, BMP2, BMP4, or both BMP2 and BMP4.
- the expression of the endogenous growth factor in the aggregate is “increased” means that at a time after 7 days from the start of the culture at a high cell concentration, the cell growth rate is low (for example, 3000 cells / aggregate). It means that it is increased compared to the expression of endogenous growth factor when aggregate formation is performed, at least 1.8 times or more, preferably 1.9 times or more, more preferably 2.0 times or more To do.
- the increase in the expression of the endogenous growth factor is usually 5.0 times or less, preferably 4.0 times or less, more preferably Is 3.5 times or less.
- Endogenous growth factor expression may be measured at either the mRNA level or the protein level, but is preferably measured at the mRNA level.
- the quantification of mRNA or protein may be performed using a method known in the art. Quantification of mRNA is preferably performed by quantitative PCR (eg, real-time PCR).
- the expression level of endogenous growth factor refers to the expression level of either BMP2 or BMP4.
- the expression of either BMP2 or BMP4 in the aggregate is low when aggregate formation is performed at a high cell concentration at a time point on and after the seventh day after culturing at a high cell concentration is started. It is at least 1.8 times or more, preferably 1.9 times or more, more preferably 2.0 times or more, compared to the case where aggregate formation is performed at a cell concentration (eg, 3000 cells / aggregate). Further, at the same time, the expression of either BMP2 or BMP4 in the aggregate is usually 5.0 times or less, preferably 4.0 times or less, more preferably 3.5 times compared to the low cell concentration. It is as follows.
- the expression of each of BMP2 and BMP4 in the aggregate when aggregate formation is performed at a high cell concentration at the time after the seventh day after culturing at a high cell concentration is started It is at least 1.8 times or more, preferably 1.9 times or more, more preferably 2.0 times or more, compared to the case where aggregate formation is performed (for example, 3000 cells / aggregate).
- the expression of BMP2 and BMP4 in the aggregate is usually 5.0 times or less, preferably 4.0 times or less, more preferably 3.5 times or less, compared to the low cell concentration. is there.
- both central nerve tissue and non-neural head ectoderm tissue are induced to differentiate simultaneously in the aggregate. Is a cell concentration (high cell concentration (HCD) or large cell-aggregation () that results in “increase” expression of endogenous growth factors (ie, BMP2 and / or BMP4) in the aggregate as described above. It is important to form aggregates under LCA) conditions).
- the cell concentration increases the expression of endogenous growth factor (ie, BMP2 and / or BMP4) in the aggregate. It is preferable to form aggregates at a concentration (HCD) or large cell-aggregation (LCA) condition).
- HCD concentration
- LCA large cell-aggregation
- a signal promoter for a protein belonging to the BMP subfamily is added at a concentration that does not cause neuronal differentiation inhibition or for a period that does not cause neuronal differentiation inhibition. You may add in a culture medium.
- proteins belonging to the BMP subfamily include BMP (BMP2 / 4 group (BMP2, BMP4), OP-1 group (BMP5, BMP6, BMP7, BMP8a, BMP8b), BMP9 group (BMP9, BMP10), GDF5 group ( GDF5, GDF6, GDF7)) or GDF (Growth and Differentiation Factor).
- BMP2 and / or BMP4 are particularly preferable, and BMP4 is most preferable.
- a signal promoter (eg, BMP4) of a protein belonging to the exogenous BMP subfamily (eg, BMP) may be included in the serum-free medium from the time of formation of the aggregate, or constant from the start of suspension culture of the aggregate. You may add to a serum-free culture medium after progress.
- the period from the start of suspension culture to the addition of the signal promoter after the start of suspension culture of the aggregate is usually within 240 hours, preferably within 96 hours, and more preferably within 72 hours.
- a signal promoter eg, BMP2 and / or BMP4 of a protein (eg, BMP) belonging to the BMP subfamily in a serum-free medium after a lapse of a certain period from the start of suspension culture.
- the signal promoter is added to the serum-free medium at the latest 48 hours after the start of suspension culture.
- concentration of a signal promoter of a protein (eg, BMP) belonging to an exogenous BMP subfamily is exemplified by a range of 0.01 to 10 nM when using BMP2 or BMP4, for example.
- the medium may contain a Shh signal promoter.
- the Shh signal promoter is not particularly limited as long as it can enhance signal transduction mediated by Shh.
- Examples of the Shh signal promoter include proteins belonging to the Hedgehog family (for example, Shh, Shh-N), Shh receptors, Shh receptor agonists (eg, Purmorphamine, SAG), and SAG is most preferable.
- SAG has several times stronger activity than Shh, and is relatively inexpensive and can be used up to a high concentration, so it can cause strong hedgehog signal activity (Danjo et al, JNS, 2010).
- the Shh signal promoter may be included in the serum-free medium from the time of formation of the aggregate, or may be added to the serum-free medium after a lapse of a certain period from the start of suspension culture of the aggregate.
- the period from the start of suspension culture to the start of suspension culture of aggregates until addition of the Shh signal promoter is usually within 192 hours, preferably within 168 hours, and more preferably within 144 hours.
- the concentration of the Shh signal promoter used is both central nervous tissue and non-neuronal ectoderm tissue (especially rostral hypothalamic tissue and rostral temporal ectoderm tissue which is a sheet-like continuous epithelium) in aggregates. It is sufficient that the concentration is such that differentiation can be promoted.
- the concentration is usually about 10 to 2000 nM, preferably about 50 to 1000 nM, and most preferably about 100 to 400 nM in the following serum-free medium.
- aggregate formation and / or floatation in order to induce differentiation of both central nervous tissue and non-neural head ectoderm tissue (especially rostral hypothalamic tissue and rostral head ectoderm tissue) in the aggregate.
- a serum-free medium used for culture is supplemented with a signal promoter (preferably BMP2 and / or BMP4) of a protein belonging to an exogenous BMP subfamily (eg, BMP2) and a Shh signal promoter (preferably SAG). Is done.
- a signal promoter for a protein belonging to the BMP subfamily may be included in the serum-free medium from the time of formation of the aggregate, or after a certain period from the start of suspension culture of the aggregate. It may be added to the serum medium.
- the period from the start of suspension culture to the addition of the signal promoter is within 240 hours, preferably within 96 hours, and more preferably within 72 hours.
- the signal promoter is preferably added to the serum-free medium at least 48 hours after the start of suspension culture so as not to suppress neural differentiation.
- the Shh signal promoter may be included in the serum-free medium from the time of formation of the aggregate, or may be added to the serum-free medium after a lapse of a certain period from the start of suspension culture of the aggregate.
- the period from the start of suspension culture to the addition of the Shh signal promoter is usually within 192 hours, preferably within 168 hours.
- the concentration range of each factor is as described above.
- the concentration of the stem cells at the time of aggregate formation can be appropriately set by those skilled in the art so as to form stem cell aggregates more uniformly and efficiently.
- both central nervous tissue and non-neural head ectoderm tissue eg, both rostral hypothalamic tissue and rostral head ectoderm tissue 1
- Aggregate formation so that aggregates of stem cells containing 5 ⁇ 10 3 to 1.5 ⁇ 10 4 (preferably 8 ⁇ 10 3 to 1.5 ⁇ 10 4 ) stem cells per aggregate are formed
- the concentration of stem cells at time is preferably started at a high cell concentration.
- a 96-well microwell plate when using a 96-well microwell plate, about 4.5 ⁇ 10 3 to 5 ⁇ 10 4 cells per well (150 ⁇ l), preferably about 5 ⁇ 10 3 to 1.5 ⁇ 10 4 cells, most preferably about A solution prepared so as to be 8 ⁇ 10 3 to 1.5 ⁇ 10 4 cells is added, and the plate is allowed to stand to form aggregates.
- a culture container having a sufficiently small culture space one aggregate can be formed per well.
- the number of stem cells included in the formed aggregate (5 ⁇ 10 3 to 1.5 ⁇ 10 4 , preferably 8 ⁇ 10 3 to 1.5 ⁇ 10 4 ), or a little
- 5 ⁇ 10 3 to 1.5 ⁇ 10 4 cells (preferably 8 ⁇ 10 3 to 1.5 ⁇ 10 4 cells) per target aggregate
- An aggregate of stem cells containing the stem cells An aggregate of stem cells containing the stem cells).
- a person skilled in the art takes into account conditions such as well size, shape, medium volume, and the like, and 5 ⁇ 10 3 to 1.5 ⁇ 10 4 (preferably 8 ⁇ 10 3 to 1.
- the number of cells added per well that can form an aggregate of stem cells containing 5 ⁇ 10 4 stem cells can be easily adjusted as appropriate.
- the concentration of stem cells at the time of aggregate formation can be appropriately set by those skilled in the art so as to form aggregates of stem cells more uniformly and efficiently.
- Endogenous growth factor expression increases in both CNS and non-neural ectoderm tissues (especially both rostral hypothalamic and rostral head ectoderm tissues).
- both central nerve tissue and non-neural head ectoderm tissue are simultaneously contained in one aggregate.
- the high cell concentration in the case of a human is preferably a concentration at which an aggregate of stem cells containing about 0.9 ⁇ 10 4 to 3 ⁇ 10 4 stem cells per aggregate is formed.
- the high cell concentration in the case of a human is preferably a concentration at which an aggregate of stem cells containing about 0.9 ⁇ 10 4 to 3 ⁇ 10 4 stem cells per aggregate is formed.
- a 96-well microwell plate it is prepared so that about 0.9 ⁇ 10 4 to 3 ⁇ 10 4 cells per well (150 ⁇ l) or a little more than that is obtained. Aggregates of stem cells containing 0.9 ⁇ 10 4 to 3 ⁇ 10 4 stem cells can be formed.
- a signal promoter eg, BMP2 and / or BMP4
- a protein eg, BMP
- the concentration is preferably such that an aggregate of stem cells containing 0.3 ⁇ 10 4 to 3 ⁇ 10 4 stem cells per aggregate is formed.
- a person skilled in the art can appropriately adjust the number of cells in consideration of conditions such as the size and shape of the well and the volume of the medium.
- the expression of endogenous growth factors in the aggregate is increased, and both central and head non-neural ectoderm tissues, particularly rostral hypothalamic tissues
- the number of stem cells per aggregate can be appropriately adjusted so that both the rostral head ectoderm tissue, which is a sheet-like continuous epithelium, is induced to differentiate simultaneously. it can.
- culture temperature is not particularly limited, but is, for example, about 30 to 40 ° C., preferably about 37 ° C.
- the CO 2 concentration is, for example, about 1 to 10%, preferably about 5%.
- the time until the formation of aggregates can be appropriately determined depending on the stem cells used as long as the cells can be rapidly aggregated, but it is desirable that the time is as early as possible in order to form uniform aggregates.
- Such aggregate formation was carried out over a period of about 2 days (for example, Watanabe, K. et al., Nature Neurosci. 8, 288-296, Schuldiner M, Benvenity N. Factors controlling human embronic cell). difference. Methods Enzymol. 2003; 365: 446-461), shortening this time makes it possible to induce efficient differentiation of the target tissue or cells.
- it is desirable to form aggregates preferably within 12 hours, more preferably within 6 hours.
- “uniform” stem cell aggregates and the formation of an epithelial-like structure in each cell that forms the aggregates are attributed to the size and number of aggregates, macroscopic morphology, and tissue staining analysis. Those skilled in the art will judge based on visual morphology and uniformity thereof, expression and uniformity of differentiation and undifferentiation markers, expression control and differentiation of differentiation markers, reproducibility between aggregates of differentiation efficiency, etc. It is possible.
- the formation of uniform stem cell aggregates includes, for example, maintenance culture of embryonic stem cells, followed by dispersion treatment (eg, trypsin / EDTA treatment) of embryonic stem cells in an appropriate medium (depending on the target tissue or cells)
- dispersion treatment eg, trypsin / EDTA treatment
- embryonic stem cells in an appropriate medium (depending on the target tissue or cells)
- an appropriate medium depending on the target tissue or cells
- a non-cell-adhesive U-bottom 96-well culture plate preferably 1 ⁇ 10 3 to 5 ⁇ 10 4 cells, more preferably 3 ⁇ 10 3 to 3 ⁇ .
- the cells are suspended in 150 ⁇ L of the medium so as to form 10 4 cells, and aggregates are rapidly formed.
- culture conditions such as the culture temperature and CO 2 concentration in suspension culture of aggregates can also be set as appropriate, and examples include the same conditions as described above as the culture conditions during aggregate formation.
- time of this process is not specifically limited, Usually, it is 48 hours or more.
- the medium used for the formation of the aggregate and the medium used for the suspension culture may be the same or different, but the medium used for the formation of the aggregate may be used for the suspension culture as it is.
- the medium used for aggregate formation / floating culture can be prepared using a medium used for animal cell culture as a basal medium.
- a basal medium for example, BME medium, BGJb medium, CMRL 1066 medium, Glasgow MEM medium, Improved MEM Zinc Option medium, IMDM medium, Medium 199 medium, Eagle MEM medium, ⁇ MEM medium, DMEM medium, Ham medium, RPMI 1640 medium , Fischer's medium, and mixed media thereof are not particularly limited as long as they can be used for animal cell culture.
- the serum-free medium used during aggregate formation / floating culture means a medium that does not contain unconditioned or unpurified serum.
- those described above are exemplified.
- the above serum-free medium particularly a medium used for suspension culture (also referred to herein as “differentiation medium”) is a growth factor (Nodal signal promoter, Wnt signal promoter, FGF signal promoter, BMP signal promoter). , Retinoic acid and the like, but preferably any growth factor not limited thereto) and a serum-free medium substantially free of insulin.
- the serum-free medium can contain, for example, a serum substitute.
- the serum substitute may appropriately contain, for example, albumin, transferrin, fatty acid, insulin, collagen precursor, trace element, 2-mercaptoethanol or 3'thiolglycerol, or an equivalent thereof.
- Such serum replacement can be prepared, for example, by the method described in WO98 / 30679.
- a serum substitute can utilize. Examples of such commercially available serum substitutes include knockout Serum Replacement (KSR), Chemically-defined Lipid concentrated (Gibco), and Glutamax (Gibco).
- serum substitutes contain growth factors and insulins
- inhibitors to the growth factors and insulins as described below, but the growth factors and insulins are included.
- no serum replacement is used.
- the serum replacement is preferably chemically-defined which is apparently free of growth factors and insulins.
- the serum-free medium used in the method of the present invention may contain fatty acids or lipids, amino acids (for example, non-essential amino acids), vitamins, growth factors, antioxidants, 2-mercaptoethanol, pyruvic acid, buffers as necessary. However, it is most preferable not to contain a growth factor as described above.
- “Serum-free medium substantially free of growth factors and insulins” is disadvantageous for selective differentiation into serum-free medium containing no growth factors and insulin, or pituitary progenitor tissues and pituitary hormone-producing cells.
- Such a serum-free medium can be prepared, for example, by adding no growth factors and insulins as medium components or removing these factors from a medium containing growth factors and insulins.
- the serum-free medium substantially free of growth factors and insulins can be a serum-free medium in which growth factors and insulins are substantially inactivated, and the medium is free of serum containing growth factors and insulins. Addition of growth factor signal inhibitor and / or insulin signal inhibitor to the medium increases the activity of growth factors and insulins to such an extent that they do not adversely affect the selective differentiation of pituitary progenitor tissues and pituitary hormone-producing cells. Refers to lost serum-free medium.
- growth factor in the case of “medium substantially free of growth factor” is a factor generally added as a serum substitute in cell culture in a serum-free medium, and is an ES cell. Means any factor having an action of inhibiting / suppressing the selective differentiation of pituitary progenitor tissue and pituitary hormone-producing cells.
- examples of the “growth factor” include, but are not limited to, Nodal signal promoter, Wnt signal promoter, FGF signal promoter, BMP signal promoter, retinoic acid and the like.
- the “medium substantially free of growth factor” is a medium substantially free of all of Nodal signal promoter, Wnt signal promoter, FGF signal promoter, BMP signal promoter and retinoic acid.
- Lipid-rich albumin is also included in the “growth factor”, and the medium used in the present invention is preferably a medium that does not contain lipid-rich albumin.
- insulins means compounds that promote insulin signaling.
- the insulin signal promoter is not particularly limited as long as it acts to promote signal transmission by insulins, and may act at any stage of the insulin signaling pathway (upstream of insulin). Or factors acting downstream, insulin agonists, analogs, etc.).
- Insulin includes insulin and similar substances (analogues) of insulin.
- An insulin analogue is an insulin-like action (in this specification, an action that inhibits / suppresses selective differentiation of pluripotent stem cells into pituitary progenitor tissues or pituitary hormone-producing cells). It includes any substance having, for example, IGF-I.
- Examples of the growth factor for the removal of growth factor and insulin from the growth factor and insulin-containing medium to obtain the above serum-free medium , BMP signal promoter, retinoic acid, lipid-rich albumin, etc.
- inactivation of a growth factor and insulins can be implemented by addition of a growth factor signal inhibitor and an insulin signal inhibitor.
- an inhibitor can be any substance that inhibits the upstream or downstream of the signal transduction pathway by growth factors or insulin, such as antibodies to growth factors / insulin, soluble receptors for growth factors / insulin, growth Examples include antibodies to factor / insulin receptors, growth factor / insulin antagonists, and the like. These substances are added to the medium in an amount suitable for obtaining the desired effect (selective differentiation into pituitary progenitor tissue or pituitary hormone-producing cells).
- the serum-free medium contains both central nervous tissue and non-nerve ectoderm tissue, particularly rostral hypothalamic tissue and rostral temporal ectoderm, which is a sheet-like continuous epithelium, in the aggregate.
- An exogenous BMP2 and / or BMP4 signal promoter (for example, BMP2 and / or BMP4) may be included at a concentration that does not inhibit neuronal differentiation so that both tissues are induced to differentiate simultaneously. .
- BMP2 and / or BMP4 it is preferable to add so that it may become a density
- the Nodal signal inhibitor is not particularly limited as long as it can suppress signal transduction mediated by Nodal.
- Examples of the Nodal signal inhibitor include SB431542 (Sigma), Lefty-A, Lefty-B, Lefty-1, Lefty-2, soluble Nodal receptor, Nodal antibody, and Nodal receptor inhibitor.
- SB431542 (4- (5-benzo [1,3] dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl) -benzamide) is preferable.
- the Wnt signal inhibitor is not particularly limited as long as it can suppress signal transduction mediated by Wnt.
- Examples of the Wnt signal inhibitor include Dkk1, Cerberus protein, Wnt receptor inhibitor, soluble Wnt receptor, Wnt antibody, casein kinase inhibitor, and dominant negative Wnt protein, among which Dkk1 is preferable. .
- the FGF signal inhibitor is not particularly limited as long as it can suppress signal transduction mediated by FGF.
- the FGF signal inhibitor include an anti-FGF antibody, a soluble FGF receptor, and an FGF receptor inhibitor (for example, Su5402).
- the BMP signal inhibitor is not particularly limited as long as it can suppress signal transduction mediated by BMP.
- Examples of the BMP signal inhibitor include BMPRFc (R & D), anti-BMP antibody, soluble BMP receptor, and BMP receptor inhibitor, among which BMPRFc is preferable.
- the retinoic acid (RA) inhibitor is not particularly limited as long as it can suppress signal transduction mediated by RA.
- RA inhibitors include anti-RA antibodies, soluble RA receptors, and RA receptor inhibitors.
- the concentration of each signal inhibitor used in suspension culture can be a concentration that allows selective differentiation of hypothalamic neurons into progenitor cells.
- concentration is about 0.1-100 nM, preferably about 5-30 nM.
- Dkk1 is about 10 to 1000 ng / ml, preferably about 100 to 1000 ng / ml.
- BMPRFc is about 0.1 to 10 ⁇ g / ml, preferably about 0.5 to 3 ⁇ g / ml.
- the above signal inhibitors are most preferably added to the medium at the start of pluripotent stem cell culture.
- Insulin intracellular signal transduction involves two main pathways (MAPK pathway and PI3K-Akt pathway).
- insulin signal inhibitor used in the suspension culture of the present invention, insulin signal transduction is possible.
- Examples of PI3K inhibitors that can be used in the present invention include LY294002 (2- (4-morpholinyl) -8-phenyl-1 (4H) -benzopyran-4-one hydrochloride) (Cayman Chemical), Wortmannin (FERMENTEK) and the like.
- LY294002 is preferred.
- Akt inhibitor examples include Akt inhibitor I to X (Calbiochem), and preferably Akt inhibitor VIII (1,3-Dihydro-1- (1-((4- (6- phenyl-1H-imidazo [4,5-g] quinoxalin-7-yl) phenyl) methyl) -4-piperidinyl) -2H-benzimidazol-2-one).
- one of the inhibitors selected from the above PI3K inhibitor and Akt inhibitor is added. It may be used alone, or a PI3K inhibitor and an Akt inhibitor may be used in combination. Two or more of these inhibitors can be selected and used in combination.
- the concentration of the PI3K inhibitor / Akt inhibitor used for suspension culture can be a concentration that allows selective differentiation into pituitary progenitor tissue or pituitary hormone-producing cells.
- concentration for example, for LY294002, such a concentration is about 0.5-30 ⁇ M, preferably about 2-10 ⁇ M.
- the Akt inhibitor VIII is about 0.1 to 10 ⁇ M, preferably about 0.5 to 5 ⁇ M.
- the differentiation medium used in the present invention is a chemically defined medium (called growth factor-free CDM; referred to as gfCDM) that does not contain the above-mentioned growth factors or insulins.
- gfCDM growth factor-free CDM
- Iscove's Modified Dulbecco's Medium (IMDM) / Hams F12 1: 1 (Invitrogen), 1 ⁇ Chemically-defined lipid concentrate (Invitrogen), M ) And bovine serum albumin (> 99% pure recrystallized product; Sigma) are used (Wataya et al., PNAS. 105 (33), 11796-11801).
- This gfCDM medium is a modified version of the previously reported CDM medium (Mol. Cell. Biol. 15: 141-151 (1995)).
- a growth factor inhibitor / insulin inhibitor may be further added to such a gfCDM medium or other medium.
- the differentiation medium used in the present invention contains at least one inhibitor selected from the group consisting of a PI3K inhibitor and an Akt inhibitor, and insulins, and the above-mentioned growth factors other than insulin.
- a serum-free medium substantially free of substantially free of
- an insulin signal inhibitor for example, PI3K inhibitor / Akt inhibitor
- an insulin signal inhibitor that antagonizes the insulin differentiation-inducing inhibitory effect at the same time that insulin is added to enhance cell proliferation is used. It is preferable to add.
- the concentration of insulins contained in the differentiation medium is a concentration that can promote proliferation of pluripotent stem cells.
- concentrations for insulin are usually about 0.02-40 ⁇ g / ml, preferably about 0.1-10 ⁇ g / ml.
- concentration range of the PI3K inhibitor and the Akt inhibitor is as described above.
- the PI3K inhibitor / Akt inhibitor is most preferably added to the medium at the start of the culture of pluripotent stem cells, but in the case of differentiation of rodent (eg, mouse) pluripotent cells, at least the sixth day of culture.
- rodent eg, mouse
- primate eg, human
- a ROCK inhibitor (Y-27632 ((+)-(R) -trans-4- (1-aminoethyl) -N- (4- pyrylyl) cyclohexanecarbamide (dihydrochloride); Watanabe et al., Nature Biotechnology, 25, 681-686, 2007) is preferably added from the beginning of the culture.
- the concentration of the ROCK inhibitor used for suspension culture is a concentration that can suppress cell death during dispersion suspension culture. For example, for Y-27632, such concentrations are usually about 0.1-200 ⁇ M, preferably about 2-50 ⁇ M.
- expression of endogenous growth factors in the aggregates of stem cells by forming aggregates under conditions of pluripotent stem cells at a high cell concentration. Increases in both the rostral hypothalamic tissue and the rostral head ectoderm tissue, which is a sheet-like continuous epithelium, in one aggregate, but the Lim3 positive cells of the cells contained in the aggregate
- the serum-free medium used for suspension culture may contain a Shh signal promoter.
- the concentration of the Shh signal promoter used may be a concentration that can promote differentiation into Lim3-positive cells.
- the concentration is usually about 10 to 2000 nM, preferably about 50 to 1000 nM, and most preferably about 100 to 400 nM in a serum-free medium (preferably gfCDM).
- the timing of adding the Shh signal promoter to the serum-free medium is not particularly limited as long as the induction of Lim3-positive cells in the aggregate is promoted, and it may not be added to the medium at the start of suspension culture. However, as the time from the start of suspension culture to the addition of the Shh signal promoter increases, the expression level of Lim3 mRNA induced in the aggregate decreases (see FIG. 1i). It is preferably added from the beginning (also referred to as culture).
- the Shh signal promoter is preferably from the beginning of suspension culture to 3 days after suspension culture, more preferably from the beginning of suspension culture to 2 days after suspension culture, more preferably from the beginning of suspension culture to 1 day after suspension culture, most preferably suspension. It is added to the medium at the start of culture.
- the period of suspension culture in a serum-free medium containing a Shh signal promoter is not particularly limited as long as it is sufficient to induce Lim3-positive cells.
- a serum-free medium containing a Shh signal promoter is usually 7 to 14 days.
- it is usually about 10 to 30 days.
- the concentration of the Shh signal promoter in the medium may be switched during the cultivation as necessary. For example, until the Lim3-positive cells are induced in the aggregate, the aggregate is suspended in a serum-free medium containing a Shh signal promoter, and once the Lim3-positive cells are induced, the Shh signal promoter is contained. Suspension culture can be continued in a serum-free medium that does not. In one embodiment, when using SAG, the promotion of differentiation induction of pituitary progenitor tissue is performed at a concentration of 100 nM to 400 nM from the start of suspension culture until the induction of Lim3 positive cells (eg, until day 10 of culture). Medium containing SAG and then medium without SAG can be used.
- 400 nM SAG-containing medium when various pituitary hormone-producing cells are induced to differentiate from pituitary progenitor tissue, 400 nM SAG-containing medium from the start of suspension culture to 7 days of culture, and then 100 nM of SAG-containing medium until 10 days of culture. Then, a medium without SAG can be used. In another embodiment, 400 nM SAG-containing medium is used from the start of suspension culture to the 10th day of culture, and then the medium is exchanged by half and cultured for up to 8 days. However, as long as the induction of differentiation of the pituitary progenitor tissue is promoted, it is not limited to these conditions.
- suspension culture can be continued in a serum-free medium containing a Shh signal promoter, and the differentiation of pituitary hormone-producing cells can be induced.
- Aggregates were suspended in serum-free medium containing a Shh signal promoter until Lim3-positive cells were induced, and once the Lim3-positive cells were induced, they were cultured in serum-free medium containing no Shh signal promoter.
- Lim3 positive cells in the aggregate form Lim3 positive epithelial microcysts (ie, pituitary progenitor tissue).
- an aggregate of stem cells (in the case of mouse stem cells) comprising 8 ⁇ 10 3 to 1.5 ⁇ 10 4 stem cells per aggregate in serum-free medium or 9 ⁇ 10 per aggregate.
- An aggregate of stem cells containing 3 to 3 ⁇ 10 4 stem cells (in the case of human stem cells) is formed, and the formed aggregates are suspended in a serum-free medium containing a Shh signal promoter, thereby producing a thalamus
- an aggregate preferably further comprising Lim3 positive cells containing both hypothalamic tissue and head non-neural ectoderm is further suspended in a serum-free medium substantially free of a Shh signal promoter.
- a serum-free medium substantially free of a Shh signal promoter.
- the FGF signal promoter is not particularly limited as long as it can enhance signal transduction mediated by FGF.
- Preferred examples of the FGF signal promoter include FGF (eg, FGF1-23), FGF agonist, and FGF receptor agonist peptide.
- Preferred FGF signal promoters are FGF8 and / or FGF10.
- the concentration of the FGF signal promoter used may be any concentration that can achieve an increase in the number of lim3-expressing cells formed or an increase in the expression level of Lim3 mRNA.
- concentration is, for example, in the case of FGF8 or FGF10, about 2 to 1000 ng / ml, preferably about 20 to 400 ng / ml, most preferably about 200 ng / ml in a serum-free medium, preferably gfCDM.
- the FGF signal promoter may be added to the medium at any point in the suspension culture of the aggregate, but preferably, an Shh signal promoter used after culturing in the serum-free medium containing the Shh signal promoter. Add to medium without. For example, until the Lim3-positive cells are induced in the aggregate, the aggregate is suspended in a serum-free medium containing a Shh signal promoter, and once the Lim3-positive cells are induced, the Shh signal promoter is contained. And suspension culture can be continued in a serum-free medium containing an FGF signal promoter (preferably FGF8 or FGF10).
- an FGF signal promoter preferably FGF8 or FGF10
- a SAG-containing medium for example, a medium containing 100 nM to 400 nM SAG is used until Lim3 positive cells are induced from the start of suspension culture (eg, until the 10th day of culture), and then SAG is added.
- a medium containing an FGF signal promoter preferably FGF8 or FGF10.
- the FGF signal promoter preferably FGF8 or FGF10
- the FGF signal promoter is maintained within the above-mentioned concentration range for 18 days of culture, more preferably for 10 days to 13 days of culture, and preferably for 3 days.
- (C) Induction of differentiation of ACTH-producing cells In order to induce differentiation of ACTH-producing cells from the formed pituitary progenitor tissue, after formation of pituitary progenitor tissue is achieved, in a serum-free medium containing a Notch signal inhibitor Thus, the pituitary progenitor tissue can be further cultured in suspension.
- ACTH producing cells refers to pituitary ACTH producing cells and does not include ACTH + neurons.
- the Notch signal inhibitor is not particularly limited as long as it can suppress signal transduction mediated by Notch.
- Examples of the Notch signal inhibitor include DAPT, DBZ, MDL28170, etc. Among them, DAPT is preferable.
- the concentration of the Notch signal inhibitor used can be a concentration that can achieve differentiation induction of ACTH-producing cells.
- the concentration is about 0.1 to 1000 ⁇ M, preferably about 0.5 to 500 ⁇ M, more preferably about 1 to 100 ⁇ M, most preferably about 10 ⁇ M in a serum-free medium, preferably in gfCDM medium. It can be.
- a serum-free medium containing a Notch signal inhibitor is used after the pituitary progenitor tissue is formed by the suspension culture. Such a medium may be used at any time after the pituitary precursor tissue is formed. It is preferable that the serum-free medium containing the Notch signal promoter does not contain a Shh signal promoter.
- a SAG-containing medium for example, 400 nM SAG from the start of culture to the 7th day
- the formation of Lim3-positive epithelial microcysts from the start of culture eg, until the 10th day of culture).
- Notch signal inhibitors eg, DAPT
- DAPT Notch signal inhibitors
- a serum-free medium preferably gfCDM medium
- a Notch signal inhibitor eg, DAPT
- the pituitary progenitor tissue is cultured in suspension.
- 10 ⁇ M DAPT is contained in the medium on the 18th day of culture, and the medium is changed half on the 19th day and cultured for 1 day.
- a serum-free medium containing glucocorticoid For induction of differentiation of GH-producing cells, a serum-free medium containing glucocorticoid can be used.
- the glucocorticoid include hydrocortisone (also referred to as cortisol), corticosterone, or a synthetic compound (such as dexamethasone) having the same biological activity.
- this serum-free medium further contains insulins. Examples of insulins include those already listed in the present specification.
- the medium that can be used to induce differentiation of GH producing cells in the present invention is about 2 to about 2000 ng / ml of hydrocortisone, preferably about 20 to 1000 ng / ml, most preferably about 200 ng / ml, or dexamethasone. From about 0.1 to about 100 ng / ml, preferably from about 1 to 50 ng / ml, most preferably 10 ng / ml, and insulins from about 0.2 to 30 nM, preferably from about 0.5 to 10 nM, most preferably A serum-free medium containing about 1 nM, preferably a gfCDM medium.
- the medium is preferably used after treatment with a Shh signal inhibitor.
- a SAG-containing medium for example, a medium containing 400 nM SAG from the start of culture to the 7th day, from the start of culture until Lim3-positive epithelial microcysts are formed (eg, until the 10th day of culture)
- glucocorticoids and insulins form Lim3-positive epithelial microcysts in the aggregates. It may be added at any time after (ie, after the formation of the pituitary precursor tissue).
- the pituitary progenitor tissue is cultured in suspension in a serum-free medium containing glucocorticoids and insulins.
- a serum-free medium containing estrogen for induction of differentiation of PRL-producing cells, a serum-free medium containing estrogen can be used.
- estrogens include estradiol, estrone, estriol, estetrol, or synthetic compounds having the same biological activity.
- this serum-free medium further contains insulins.
- insulins include those already listed in the present specification.
- the medium that can be used for inducing differentiation of PRL-producing cells in the present invention contains estradiol in an amount of about 5 to about 500 ng / ml, preferably about 10 to 200 ng / ml, most preferably about 50 ng / ml, and insulins.
- the medium is preferably used after treatment with a Shh signal inhibitor.
- a medium containing SAG for example, a medium containing 400 nM SAG from the start of culture to the 7th day, 7 From day 10 to day 10
- estradiol and insulin were formed after the formation of Lim3-positive epithelial microcysts in the aggregates It may be added at any time (ie, after the pituitary precursor tissue is formed).
- 10 to 40 days from the start of suspension culture preferably 14 to 34 days from start of culture, preferably 20 to 33 days from start of suspension culture, most preferably 20 to 30 days from start of suspension culture.
- pituitary progenitor tissues are cultured in suspension in a serum-free medium containing estradiol and insulins.
- a culture supernatant (stroma) obtained by culturing stromal cells in a serum-free medium (preferably gfCDM) (4 to 10 days) LH-producing cells, FSH-producing cells, and TSH-producing cells can be induced to differentiate by suspension culture of the pituitary progenitor tissue in a serum-free medium containing a conditioned medium of cells).
- a serum-free medium preferably gfCDM
- the “conditioned medium for stromal cells” refers to a medium containing soluble factors derived from stromal cells, and can be prepared by collecting the supernatant of the medium after culturing stromal cells.
- stromal cells examples include PA6 cells, MEF cells, and OP9 cells, and PA6 cells are particularly preferable.
- the serum-free medium is preferably used after treatment with a Shh signal inhibitor.
- a SAG-containing medium for example, a medium containing 400 nM SAG from the start of culture to the 7th day, from the start of culture until Lim3-positive epithelial microcysts are formed (eg, until the 10th day of culture)
- Medium containing 100 nM SAG from day 7 to day 10, and then using medium without SAG, the conditioned medium of stromal cells forms Lim3-positive epithelial microcysts in the aggregates It may be added at any time after (ie, after the formation of the pituitary precursor tissue).
- serum-free containing conditioned medium of stromal cells during the first 10 to 30 days of culture, preferably 10th to 20th day of culture, and most preferably 10th to 15th day of culture.
- Pituitary precursor tissue is cultured in suspension in the medium.
- each hormone-producing cell can be further increased by using a medium further supplemented with a Wnt signal promoter in a serum-free medium containing each component added for induction (see FIG. 3a).
- a medium further supplemented with a Wnt signal promoter in a serum-free medium containing each component added for induction see FIG. 3a.
- the above culture conditions preferably between the 10th and 30th days of the culture start, preferably between the 12th and 24th days of the culture start, and most preferably between the 16th and 18th days of the culture start.
- the Wnt signal promoter may be added to the serum-free medium or simultaneously before the addition of glucocorticoid or estrogen (and insulin if necessary). Is preferably added to the serum-free medium prior to the addition of glucocorticoid or estrogen (and insulin if necessary).
- the Wnt signal promoter is not particularly limited as long as it can enhance signal transduction mediated by Wnt.
- the Wnt signal promoter include proteins belonging to the Wnt family (for example, Wnt 1 to 16), GSK3 ⁇ inhibitors, Wnt receptors, Li + ions, etc. Among them, GSK3 ⁇ inhibitors are preferable.
- GSK3 ⁇ inhibitors include GSK-3 ⁇ Inhibitors I, VI, VII, VIII, XI, XII, CHIR 99021, Valproic Acid, TDZD-8, SB-216763, BIO (6-bromodirubin-3′-oxime) and the like. However, it is not limited to these.
- the concentration of the Wnt signal promoter is not limited as long as it is a concentration that can increase the proportion of pituitary hormone-producing cells as compared to the case without the Wnt signal promoter.
- the concentration thereof Is usually about 20-2000 nM, preferably about 50-500 nM, most preferably about 250 nM.
- a serum-free medium containing 250 nM of BIO is used from the 16th day after the start of the culture, and the medium is exchanged by half on the 18th day and cultured for 2 days.
- Promotion of pituitary hormone secretion Production of pituitary hormones is caused by causing each pituitary hormone-producing cell obtained by the above-described method to act on a substance that promotes production or secretion of pituitary hormones. Can stimulate secretion.
- the substance that stimulates / promotes the production / secretion of pituitary hormones (also called hormone secretion-promoting substance) may be a substance that directly acts on each pituitary hormone-producing cell, for example, after transplantation, etc. In the case of acting in vivo, a substance that acts indirectly may be used.
- ACTH production / secretion is promoted by CRH, etc.
- GH production / secretion is promoted by GHRH, etc.
- TSH production / secretion is promoted by TRH, etc.
- PRL production / secretion is PRF (specifically Examples are as described above) and TRH and the like
- production and secretion of FSH and LH are promoted by GnRH and the like.
- These promoters may be those isolated from natural sources or synthesized by recombination or the like.
- the culture conditions for secreting pituitary hormone from pituitary hormone-producing cells can be appropriately set as long as production and secretion of pituitary hormone are promoted without adversely affecting the survival and proliferation of pituitary hormone-producing cells.
- HBSS solution 8 aggregates containing pituitary hormone-producing cells are added, and after 10 minutes of preincubation at 37 ° C., the appropriate final concentration of each stimulant is added, followed by an additional 10 minutes at 37 ° C. Incubate.
- CRH When stimulating differentiated ACTH-producing cells with CRH, production and secretion of ACTH is significantly induced when CRH of about 10 ng / ml or more is used.
- CRH is preferably used at a concentration of about 10-10000 ng / ml, more preferably about 100-10000 ng / ml, more preferably about 1000-10000 ng / ml.
- the preferred concentration range is 100 nM to 500 nM, and when stimulating TSH production / secretion with TRH, the preferred concentration range is 1 nM to 5 nM, and PRL production / secretion.
- PRF eg, prolactin-releasing peptide as described above
- the preferred concentration range is 2 nM to 10 nM
- FSH production / secretion is stimulated by GnRH
- the preferred concentration range is 1 nM to 20 nM
- LH production / secretion is stimulated by GnRH
- the preferred concentration range is 1 nM to 20 nM.
- Pituitary hormones produced from pituitary hormone-producing cells can be isolated and purified from the culture.
- Pituitary hormone is isolated and purified from the culture supernatant by using a method known per se for peptide and protein isolation and purification (known methods such as gel filtration and ion exchange chromatography). can do.
- the present invention also provides a cell culture obtained by the method of the present invention.
- the cell culture of the present invention includes, for example, floating aggregates containing stem cells or cells differentiated from stem cells, cells obtained by dispersing suspended aggregates (for example, trypsin / EDTA treatment), cells obtained by culturing dispersed cells, etc. It can be.
- the present invention also provides pituitary progenitor tissue or pituitary hormone-producing cells isolated and purified to such an extent that they can be administered to a subject from such cell culture.
- “Culture” refers to a result obtained by culturing cells, and includes cells, medium, and in some cases, cell-secreting components. “Isolation” means removal of components (cells, proteins, media, etc.) other than the target tissue or cells.
- the pituitary progenitor tissue or pituitary hormone-producing cell obtained by the method of the present invention is used as a therapeutic agent for the following diseases in the pituitary tissue or pituitary hormone-producing cell in a damaged state due to other causes. It can be used to replenish cells.
- a pituitary hormone produced by a pituitary hormone-producing cell obtained by the method of the present invention is a therapeutic agent for the following diseases caused by any pituitary tissue or a damaged state of each pituitary hormone-producing cell. In pituitary hormone secretion insufficiency, it can be used to supplement an appropriate pituitary hormone (hormone replacement therapy).
- Diseases that can be treated with pituitary progenitor tissue or pituitary hormone-producing cells or pituitary hormones obtained by the method of the present invention include hypoadrenocorticism, growth hormone deficiency short stature, adult-onset GH deficiency, Pituitary dwarfism, cretinism, infertility, panhypopituitarism (including empty sella syndrome, pituitary apoplexy, postoperative pituitary injury), partial hypopituitarism, anterior pituitary hormone alone Defects (specifically, ACTH single deficiency, growth hormone single deficiency, TSH single deficiency, prolactin single deficiency, gonadotropin single deficiency) and the like.
- the pituitary progenitor tissue or pituitary hormone-producing cell obtained by the method of the present invention is used as a therapeutic agent for a disease based on a disorder of the pituitary tissue or pituitary hormone-producing cell
- the pituitary progenitor tissue or cell It is preferable to transplant to a subject after increasing the purity of.
- Any known cell separation and purification method can be used as a method for increasing cell purity.
- a method using a flow cytometer for example, Antibodies-A Laboratory Manual, Cold Spring Harbor Laboratory
- Monoclonal Antibodies principals and practices, Third Edition, Acad. Press (1993), Int. Immunol., 10, 275 (1998)
- panning methods for example, MonoclonalTepside: Acad.Press (1993 , See Cellular fractionation method using density difference of sucrose concentration (see, Antibody Engineering, A Practical Approach, IRL Pressat Oxford Press (1996), J. Immunol., 141, 2797 (1988)). Technology (3rd edition), Asakura Shoten (1996)).
- the method for increasing the purity of cells of the present invention includes a step of culturing pituitary progenitor tissue or pituitary hormone-producing cells obtained by inducing differentiation of the stem cells as described above in a medium containing an anticancer agent.
- a medium containing an anticancer agent obtained by inducing differentiation of the stem cells as described above in a medium containing an anticancer agent.
- examples of the anticancer agent include mitomycin C, 5-fluorouracil, adriamycin, ara C or methotrexate. These anticancer agents are preferably used at concentrations that are more cytotoxic to cells in an undifferentiated state than cells that have been induced to differentiate. Specifically, in accordance with the culture method described above, culture using these anticancer agents can be carried out to determine the optimum concentration. For example, these anticancer agents can be used in living organisms for 100 minutes of the concentration described in the Japanese Pharmacopoeia. A method of culturing at 37 ° C. for several hours, preferably 2 hours in a CO 2 incubator in which 5% carbon dioxide is aerated is used.
- any medium can be used as long as it can culture the differentiation-induced pituitary progenitor tissue or pituitary hormone-producing cells.
- the above-mentioned culture medium etc. can be mentioned.
- stem cells obtained by nuclear transfer of somatic cell nuclei or stem cells obtained by modifying genes on chromosomes.
- pituitary progenitor tissue or pituitary hormone-producing cells can be obtained by inducing differentiation using stem cells obtained by nuclear transplantation of somatic cell nuclei.
- Such an individual tissue or cell is useful not only as a transplantation medicine for the tissue or cell itself, but also as a diagnostic material for determining whether an existing drug is effective for the individual.
- the evaluation data is useful for providing an effective prevention method for diseases diagnosed as having a high future incidence rate.
- the subject transplanted with pituitary progenitor tissue or pituitary hormone-producing cells is a warm-blooded animal, preferably a mammal, more preferably an animal of the same species as the animal from which the original stem cells are derived.
- mammals include, for example, laboratory animals such as rodents and rabbits such as mice, rats, hamsters, and guinea pigs, domestic animals such as pigs, cows, goats, horses, and sheep, pets such as dogs and cats, humans, monkeys, Primates such as orangutans and chimpanzees.
- the subject is preferably a human patient.
- the pituitary progenitor tissue or pituitary hormone-producing cells induced to differentiate from stem cells by the method of the present invention can be transplanted to the anterior pituitary gland or a corresponding site by a method known per se.
- the pituitary progenitor tissue or pituitary hormone-producing cells can be transplanted to any part of the subject as long as the production / secretion of the hormone is induced.
- the pituitary progenitor tissue or pituitary hormone-producing cells may be in or near the pituitary gland of the subject, or at the site where the pituitary gland should be present (ie, the Vietnamese anther), or It can be transplanted in the vicinity of the target organ on which the secreted pituitary hormone acts (for example, in the case of ACTH-producing cells, under the kidney capsule).
- ACTH-producing cells can perform ACTH-producing functions even when transplanted ectopically.
- Production and secretion of each pituitary hormone in a subject after transplantation may be stimulated by administering a hormone secretagogue as described above to the subject, or naturally stimulated by such endogenous substance. May be. It can be appropriately selected depending on the purpose of transplantation and the condition of the subject.
- a method of transplanting pituitary hormone-producing cells to a test mouse about 1 to 1000 cell aggregates containing the cells obtained by the differentiation induction method of the present invention, preferably 5 to 500 are used.
- a method of injecting about 1 piece, more preferably about 10 to 50 pieces under the kidney capsule using a Hamilton syringe or the like can be mentioned.
- the method is not limited to this method.
- a method of transplanting a cell aggregate in the vicinity of the subcutaneous tissue or the pituitary gland is exemplified, but the method is not limited thereto.
- the engraftment of the transplanted tissue or cell is the fluorescence of the pituitary hormone or other suitable marker gene product produced and secreted by the cell after a sufficient time has elapsed (eg, 7 days after transplantation). This can be confirmed by histochemical staining using an antibody. Alternatively, by measuring the production of other hormones whose production and secretion are promoted by the pituitary hormone (for example, glucocorticoid (eg, costicosterone) in the case of ACTH), for example, by measuring the blood concentration Can be confirmed.
- the other hormones that pituitary hormones promote production and secretion are as described above.
- the effect of transplantation of ACTH-producing cells can also be evaluated by improving the recipient's spontaneous movement (Spontaneous locomotor activity).
- the spontaneous movement of the mouse is evaluated by the spontaneous movement distance in the cage per day and the spontaneous rotation speed of the running wheel per day.
- the movement distance of the mouse in the cage can be measured using an analysis system using an IR sensor such as MDC-W02 (Brain ScienceIdea, Osaka). ) Or the like. These measurements are carried out as separate experiments, and each device is installed in a cage (home cage) in which the mouse to be measured is kept flat. Thereby, the spontaneous exercise amount under low stress can be measured.
- the effect of transplantation of ACTH-producing cells can also be evaluated by the survival rate of the recipient.
- the survival rate after transplantation of ACTH-producing cells can be analyzed by the Kaplan- Mayer method.
- the aggregate and pituitary progenitor tissue obtained by the method of the present invention closely reproduce the microenvironment at the time of pituitary generation in a living body, and therefore, pituitary generation, induction of pituitary hormone-producing cells, etc. It is also useful as a research material.
- the method of the present invention is extremely useful in that it can provide a “tissue material” useful in the field of regenerative medicine, drug discovery such as the above-mentioned medicines, toxicity tests and the like.
- the present invention provides a screening method for a test substance, which comprises using the cell culture of the present invention or the culture product of the present invention.
- the culture product of the present invention constructs a pituitary progenitor tissue very similar to the initial process of pituitary progenitor tissue formation in a living body, and includes cells very similar to pituitary hormone-producing cells in the living body. Therefore, screening for therapeutic agents for diseases based on disorders of pituitary tissue or various pituitary hormone-producing cells, screening for therapeutic agents in cell damage due to other causes, or toxicity tests thereof, and further new neurological diseases It can be applied to the development of therapeutic methods.
- test substance for example, a substance whose efficacy is to be confirmed as a therapeutic agent for the above-mentioned diseases, or a therapeutic agent for other diseases, which has an effect on pituitary tissues or various pituitary hormone-producing cells (for example, Substances that need to be confirmed (toxic).
- the substance may be any substance such as a low molecular compound, a high molecular compound, a protein, a gene (DNA, RNA, etc.), and a virus. Such a substance can be appropriately selected by those skilled in the art.
- Example 1 In vitro differentiation induction of forebrain tissue and non-neural ectoderm (method) by serum-free floating aggregate culture of ES cells 7 Aggregate culture using the SFEBq / gfCDM method (Wataya et al, 2008, PNAS vol.105, pp.11796-11801), which is a method for selectively differentiating mouse ES cells into the forebrain, particularly hypothalamic tissue. Performed for days. Specifically, mouse ES cells monodispersed by trypsin treatment were seeded with 3000, 8000, 10000 or 15000 cells per 96-well U-shaped well coated with low cell adsorption to form aggregates.
- a chemically synthesized medium gfCDM (Wataya et al, 2008, PNAS vol.105, pp.11796-11801) was used. Detection was performed using Rx :: GFP (GFP knocked in to the Rx locus) as a marker of hypothalamic tissue and Pitx1 antibody as a head non-neural ectoderm marker. (result) ES cell floating aggregates cultured by the SFEBq / gfCDM method for 7 days contained hypothalamic tissue with hypothalamic marker Rx :: GFP positive, neuronal markers N-cadherin and Sox1 positive under all culture conditions.
- the aggregate of the floating aggregate after 5 days of culture is 90% or more of Pitx1-positive sheet-like continuous epithelial tissue (FIG. 1f).
- the Rx the Rx :: GFP positive further layer
- Pitx1-positive sheet-like continuous epithelial tissue FIG. 1f.
- aggregation from 3000 cells only a small number of Pitxl cells were scattered, and no continuous large epithelium was formed.
- qPCR using another head non-neural ectoderm marker Pitx2 compared to aggregates from 3000 cells, aggregates from 10,000 cells induced four times the expression of Pitx2 RNA, and BMP2 and BMP4 The expression level of mRNA was increased about 2-3 times (FIG. 6). It was found that expression of Pitx2 was increased not only by increasing the number of cells at the time of aggregate formation but also by adding BMP4 to the medium at a concentration of 0.5 nM (FIG. 1d).
- Example 2 In vitro differentiation induction of pituitary progenitor tissue by serum-free floating aggregate culture of ES cells and hedgehog signal treatment (method) Mouse ES cells were formed at 10,000 cells per aggregate using the SFEBq / gfCDM method (Wataya et al, 2008, PNAS vol.105, pp.11796-11801) and cultured in suspension as in Example 1. Immediately after the start of differentiation culture, SAG (Danjo et al, JNS, 2011, vol.31, pp.1919-1933), an agonist of hedgehog, was added at 100 or 400 nM and cultured for a total of 10-13 days.
- SAG Sanjo et al, JNS, 2011, vol.31, pp.1919-1933
- SAG has several times stronger activity than Shh, and is relatively inexpensive and can be used up to a high concentration, so that it can cause strong hedgehog signal activity (Danjo et al, JNS, 2011, vol. .31, pp.1919-1933).
- Example 3 Production of ACTH-producing cells from pituitary progenitor tissue derived from ES cells and DAPT treatment (method)
- Mouse ES cells were differentiated into pituitary progenitor tissues by SAG treatment (400 nM for 7 days, 100 nM for 3 days for a total of 10 days) using the method of Example 2.
- SAG treatment 400 nM for 7 days, 100 nM for 3 days for a total of 10 days
- the cells were cultured under 40% O 2 and 5% CO 2 for a total of 12 days (total of 22 days).
- the cells were treated with DAPT 10 ⁇ M inhibitor of Notch signal for one day between 18-19 days or 20-21 days in culture.
- Expression of Tbx19 and ACTH expressed in ACTH-producing cells was confirmed by cytochemical staining of frozen sections by the fluorescent antibody method.
- Example 4 Production of pituitary hormone-producing cells other than ACTH from ES cell-derived pituitary progenitor tissue (method)
- Mouse ES cells were differentiated into pituitary progenitor tissues by SAG treatment (400 nM for 7 days, 100 nM for 3 days for a total of 10 days) using the method of Example 2. Furthermore, suspension culture was continuously performed under 40% O 2 and 5% CO 2 .
- the culture medium is a culture supernatant (conditioned medium) of gfCDM containing adrenocortical hormone (200 ng / ml hydrocortisone) and 1 nM insulin, gfCDM containing estrogen (50 ng / ml estradiol) and 1 nM insulin, or gfCDM of mouse feeder cells PA6 cells. ) was used.
- the expression of growth hormone (GH), prolactin (PRL), luteinizing hormone (LH), follicle stimulating hormone (FSH), and thyroid stimulating hormone (TSH) was confirmed by cytochemical staining of frozen sections by the fluorescent antibody method.
- Example 5 In vitro ACTH secretion by CRH from ACTH-producing cells derived from ES cells (method) Mouse ES cells were differentiated into ACTH-producing cells by the SAG treatment and DAPT treatment using the method of Example 3 (22 days in total). ACTH secretion was quantified by allowing CRH (adrenocorticotropic hormone releasing factor) to act on the aggregate. Specifically, 8 aggregates per 500 ⁇ l of HBSS solution were added, and after 10 minutes pre-incubation at 37 ° C., CRH having a final concentration of 10-10000 ng / ml was added, and the culture supernatant after further incubation for 10 minutes Were collected and measured by ELISA (FIG. 4a).
- CRH asdrenocorticotropic hormone releasing factor
- Example 6 Secretion of ACTH and adrenocortical hormone in vivo by CRH from ACTH-producing cells derived from ES cells (method) Using the method of Example 3, mouse ES cells were transplanted under the kidney capsule of mice subjected to pituitary gland removal surgery, with the cell mass differentiated into ACTH-producing cells by SAG treatment and DAPT treatment (FIG. 5a right). . For these mice, it was confirmed before transplantation that ACTH secretion ability (reactivity to CRH) was lost (FIGS. 5b and 5c). Specifically, after a total of 22 days of culture, the cell aggregates were injected under the kidney capsule of pituitary-removed mice using a Hamilton syringe.
- ACTH positive cell transplantation group derived from ES cells
- ACTH reached a concentration of 25-30 pg / ml and Corticosterone reached 300 pg / ml after CRH loading (Fig. 5e, f: with CRH loading; Fig. 5g, h: CRH) No load).
- Example 7 Improving survival and activity of pituitary-depleted mice by ectopic transplantation of ES cell-derived ACTH-producing cells (method)
- mouse ES cell-derived ACTH-producing cells were transplanted under the kidney capsule of mice subjected to pituitary gland removal surgery (9 weeks old). The survival and weight gain of the transplanted mice were followed and compared with the sham operation. Spontaneous movement of mice was also examined. Spontaneous movement of the mice was measured using an IR sensor (MDC-W02 (BrainScienceIdea, Osaka)) to determine how much the mouse spontaneously moves in a cage in a day.
- Example 8 Differentiation induction of pituitary progenitor cells from human ES cells (method) 12,000 human ES cells monodispersed with trypsin were cultured in the presence of 10 ⁇ M ROCK inhibitor Y-27632 (Watanabe et al, Nature Neuroscience, 2007) as in Example 1 in suspension aggregate culture. As the culture solution, gfCDM added with 5% KSR was used. From the third day of culture, 0.5 nM, 1.5 nM, or 5.0 nM BMP4 was added to the culture solution, and from the sixth day of culture, 1000 nM SAG was added to continue the suspension culture.
- each aggregate contains a large number of Rx-positive neural progenitor cells inside the aggregate, and E-cad and cytokeratin-positive non-neuronal ectoderm cells on the surface thereof are cultured with mouse ES cells. Similarly, a sheet-like epithelial structure composed of monolayer cells was formed (FIG. 7). According to qPCR analysis, the induction of Pitx1 expression was about 10 times that of the group not treated with 5 nM BMP (FIG. 8).
- E-cad-positive non-neuronal ectoderm is present on the surface of the Rx-positive neuroepithelial structure after 25 days of culture, and a part of it, similar to pituitary placode formation in mouse culture. Thickened and exhibited a placode-like structure (FIG. 7).
- ES cells from pluripotent stem cells such as ES cells, aggregates containing central nervous tissue and non-neural head ectoderm tissue, particularly rostral hypothalamic tissue and rostral head ectoderm tissue are included. Aggregates and pituitary progenitor tissues can be induced to differentiate in vitro, and various pituitary hormone-producing cells can be induced to differentiate.
- the pituitary gland is a central endocrine organ that produces and secretes many hormones, and abnormal hormone secretion has a significant effect on the body.
- the aggregates, pituitary progenitor tissues and pituitary hormone-producing cells obtained by the method of the present invention are particularly useful for treating diseases caused by pituitary hormone secretion failure and diseases causing pituitary hormone secretion failure, etc.
- From aggregates including central nervous tissue and non-neural ectoderm tissue of the head not only the pituitary gland, but also placodes of sensory organs such as olfactory epithelium, lens, and inner ear can be formed.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Endocrinology (AREA)
- Cell Biology (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Developmental Biology & Embryology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Diabetes (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- Neurosurgery (AREA)
- Neurology (AREA)
- Immunology (AREA)
- Virology (AREA)
- Epidemiology (AREA)
- Gastroenterology & Hepatology (AREA)
- Ophthalmology & Optometry (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Materials For Medical Uses (AREA)
Abstract
Description
本発明者らは、以前に、動物及びヒトのES細胞等の多能性幹細胞から神経分化誘導を行う方法として、無血清培地での分散浮遊培養(SFEB法)が有効であることを示した(非特許文献3、4及び特許文献1を参照)。その後、本発明者らは、無血清培地中で均一な幹細胞の凝集体を形成し、その凝集体を浮遊培養することにより、ES細胞等の多能性幹細胞から、大脳皮質組織、視床下部のニューロンやその前駆細胞等を効率的に分化誘導できる方法(SFEBq法)を見出した(非特許文献5及び特許文献3)。
また、幹細胞を用いて糖尿病を治療することはこれまでにも検討されてきたが、視床下部-下垂体の機能不全に着目した再生医療の可能性に対しては、これまでほとんど注意が払われてこなかった。
形成された凝集体を無血清培地中で浮遊培養する工程
を含む、視床下部組織及び頭部非神経外胚葉を共に含んでなる凝集体の製造方法。
[2]浮遊培養で用いる無血清培地がShhシグナル促進剤を含む、[1]に記載の製造方法。
[3]前記Shhシグナル促進剤がSAGである、[2]に記載の製造方法。
[4]浮遊培養で用いる無血清培地がBMPシグナル促進剤を含む、[1]~[3]のいずれかに記載の製造方法。
[5]BMPシグナル促進剤がBMP2及び/又はBMP4である、[4]に記載の製造方法。
[6]前記視床下部組織及び頭部非神経外胚葉が、吻側視床下部組織及びシート状の連続上皮である吻側頭部非神経外胚葉組織である、[1]~[5]のいずれかに記載の製造方法。
[7]前記吻側視床下部組織がRx陽性である、[6]に記載の製造方法。
[8]シート状の連続上皮である吻側頭部非神経外胚葉組織がPitx1陽性である、[6]記載の方法。
[9]前記無血清培地が、Nodalシグナル促進剤、Wntシグナル促進剤、FGFシグナル促進剤、BMPシグナル促進剤、レチノイン酸及びインシュリン類を実質的に含有しない無血清培地である、[1]に記載の製造方法。
[10]前記幹細胞がヒト由来である、[1]~[9]のいずれかに記載の製造方法。
[11]前記視床下部組織及び頭部非神経外胚葉を共に含んでなる凝集体が、Lim3陽性細胞を更に含む、[1]~[10]のいずれかに記載の製造方法。
[12]前記Lim3陽性細胞が、凝集体中に上皮性の小嚢胞を形成することを特徴とする、[11]に記載の製造方法。
[13]浮遊培養により、幹細胞の凝集体における内因性の増殖因子の発現を増加させる、[1]に記載の製造方法。
[14]前記内因性の増殖因子がBMP2及び/又はBMP4である、[13]に記載の製造方法。
[15]前記BMP2及び/又はBMP4の発現が、低細胞濃度で幹細胞の凝集体を形成させた場合と比較して、mRNAレベルで2倍以上増加することを特徴とする、[14]に記載の製造方法。
[16][1]~[15]のいずれかに記載の方法によって製造された視床下部組織及び頭部非神経外胚葉を共に含んでなる凝集体を、Notchシグナル阻害剤を含む無血清培地中でさらに浮遊培養する工程を含む、副腎皮質刺激ホルモン産生細胞の製造方法。
[17]前記Notchシグナル阻害剤がDAPTである、[16]に記載の製造方法。
[18][16]又は[17]に記載の方法で製造された副腎皮質刺激ホルモン産生細胞を被験体に移植することを含む、被験体において副腎皮質刺激ホルモンの分泌不全を改善する方法。
[19][1]~[15]のいずれかに記載の方法によって製造された視床下部組織及び頭部非神経外胚葉を共に含んでなる凝集体を、グルココルチコイドを含む無血清培地中でさらに浮遊培養する工程を含む、成長ホルモン産生細胞の製造方法。
[20]前記無血清培地がインシュリンをさらに含む、[19]に記載の製造方法。
[21]前記視床下部組織及び頭部非神経外胚葉を共に含んでなる凝集体を、グルココルチコイドを含む無血清培地中で浮遊培養する工程の前又は同時に、GSK3β阻害剤を含む無血清培地中で浮遊培養する工程を含む、[19]又は[20]に記載の成長ホルモン産生細胞の製造方法。
[22]前記GSK3β阻害剤がBIOである、[21]に記載の製造方法。
[23][19]~[22]のいずれかに記載の方法で製造された成長ホルモン産生細胞を被験体に移植することを含む、被験体において成長ホルモンの分泌不全を改善する方法。
[24][1]~[15]のいずれかに記載の方法によって製造された視床下部組織及び頭部非神経外胚葉を共に含んでなる凝集体を、エストロゲンを含む無血清培地中でさらに浮遊培養する工程を含む、プロラクチン産生細胞の製造方法。
[25]前記無血清培地がインシュリンをさらに含む、[24]に記載の製造方法。
[26]前記視床下部組織及び頭部非神経外胚葉を共に含んでなる凝集体を、エストロゲンを含む無血清培地中で浮遊培養する工程の前又は同時に、GSK3β阻害剤を含む無血清培地中で浮遊培養する工程を含む、[24]又は[25]に記載のプロラクチン産生細胞の製造方法。
[27]前記GSK3β阻害剤がBIOである、[26]に記載の製造方法。
[28][24]~[27]のいずれかに記載の方法で製造されたプロラクチン産生細胞を被験体に移植することを含む、被験体においてプロラクチンの分泌不全を改善する方法。
[29][1]~[15]のいずれかの製造方法で製造された視床下部組織及び頭部非神経外胚葉を共に含んでなる凝集体を、無血清培地中でストローマ細胞を培養することによって得られたストローマ細胞の馴化培地中でさらに浮遊培養する工程を含む、卵胞刺激ホルモン、黄体形成ホルモン及び/又は甲状腺刺激ホルモン産生細胞の製造方法。
[30]前記ストローマ細胞がPA6細胞である、[29]に記載の製造方法。
[31][29]又は[30]に記載の方法で製造された卵胞刺激ホルモン、黄体形成ホルモン又は甲状腺刺激ホルモン産生細胞を被験体に移植することを含む、被験体において卵胞刺激ホルモン、黄体形成ホルモン又は甲状腺刺激ホルモンの分泌不全を改善する方法。
[32]無血清培地中で幹細胞の凝集体を形成させる工程、及び
形成された凝集体を無血清培地中で浮遊培養する工程
を含む、中枢神経組織及び頭部非神経外胚葉組織を共に含んでなる凝集体の製造方法。
[33][32]に記載の凝集体においてプラコードが自己形成される、嗅上皮、水晶体又は内耳を形成するプラコードの製造方法。
(1)本発明の製造方法によって得られる組織及び細胞
(A)中枢神経組織及び頭部非神経外胚葉組織を含む凝集体
本発明の製造方法(分化誘導方法という場合がある)によれば、中枢神経組織及び頭部非神経外胚葉組織、特に吻側視床下部組織(単に視床下部組織ともいう)及びシート状の連続上皮である吻側頭部非神経外胚葉組織(単に頭部非神経外胚葉組織ともいう)を共に含んでなる凝集体が分化誘導される。吻側視床下部組織及びシート状の連続上皮である吻側頭部非神経外胚葉組織を含む凝集体は、例えば、シート状の連続上皮様の一層のPitx1陽性の細胞群からなる吻側頭部非神経外胚葉組織が培養液との接触面に存在し、その内部にRx陽性の細胞群からなる吻側視床下部組織を含む細胞塊である。本発明の分化誘導方法では、1つの凝集体中に中枢神経組織及び頭部非神経外胚葉組織の両方の組織が同時に形成される(具体的には、1つの凝集体中、中枢神経組織の外側に、シート状の頭部非神経外胚葉組織が形成される)ため、これらの組織は局所的に相互作用することができるようになる。
例えば、1つの凝集体中、吻側視床下部組織の外側に、シート状の連続上皮である吻側頭部非神経外胚葉組織が形成されると、これらの組織は局所的に相互作用することができるようになり、下垂体前駆組織、ひいては下垂体ホルモン産生細胞を誘導する。
つまり、上述の組織の組み合わせが1つの凝集体中に上述の構成で形成されると、これらの組織は局所的に相互作用することができるようになり、各プラコードの形成、ひいては各感覚器の発生が導かれる。
生体の発生では、腺性下垂体(下垂体前葉及び下垂体中葉)は、ラトケ嚢と呼ばれる組織から誘導される。ラトケ嚢は、個体発生のごく初期に吻側頭部非神経外胚葉に形成されたプラコードが陥入して形成され、後に外胚葉から分離して上皮性の小嚢胞となる。
本発明の方法によれば、吻側視床下部組織及び吻側頭部非神経外胚葉組織を含む上記凝集体において、ラトケ嚢と同様の上皮構造や極性を持つ小嚢胞が形成される。この小嚢胞は、生体内のラトケ嚢と同様、視床下部組織の近傍に存在し、且つ吻側頭部非神経外胚葉組織とも隣接する。つまり、本発明の方法により、生体の下垂体発生時の微小環境を再現することができる(図2pを参照のこと)。
下垂体前葉からは、副腎皮質刺激ホルモン(adrenocorticotropic hormone(ACTH))及び、成長ホルモン(growth hormone(GH))、甲状腺刺激ホルモン(thyroid-stimulating hormone(TSH))、プロラクチン(prolactin(PRL))、卵胞刺激ホルモン(follicle-stimulating hormone(FSH))、黄体形成ホルモン(luteinizing hormone(LH))(下垂体前葉ホルモン)が分泌され、下垂体中葉からは、メラニン細胞刺激ホルモン(melanocyte-stimulating hormone(MSH))(下垂体中葉ホルモン)が分泌される。MSHは、ACTH関連ペプチドの1つであり、ACTHと共通の前駆体であるプロピオメラノコルチンの酵素分解によって形成される。一方、下垂体後葉が分泌するホルモンのオキシトシン(oxytocin(OX))及びバソプレシン(vasopressin(VP))は、視床下部で産生されるホルモンであるので、本明細書中では下垂体ホルモンに含めないものとする。本明細書で下垂体ホルモンという場合、下垂体前葉ホルモンを指すものとする。
コルチコトロピンともいう。下垂体前葉の副腎皮質刺激ホルモン産生・分泌細胞(corticotroph)から分泌される、39アミノ酸のペプチドホルモンである。ACTHは、グルココルチコイド分泌促進作用を示す。ACTHの分泌は、視床下部から分泌される副腎皮質刺激ホルモン放出ホルモン(corticotropin-releasing hormone(CRH))によって促進され、グルココルチコイドによってネガティブフィードバックされる。
ソマトトロピンともいう。下垂体前葉の成長ホルモン産生・分泌細胞(somatotroph)から分泌される、ヒトの場合191アミノ酸のペプチドホルモンである。GHは、タンパク質合成や軟骨発育の促進作用、脂肪分解作用などの、種々の生物活性を示す。GHの分泌は、視床下部から分泌される成長ホルモン放出ホルモン(growth hormone-releasing hormone(GHRH))によって刺激され、ソマトスタチンによって抑制される。GHの分泌は、GH自体及びIGF-1によってもネガティブフィードバックされる。
下垂体前葉のプロラクチン産生・分泌細胞(lactotroph)から主に分泌される、199アミノ酸のペプチドホルモンである。PRLは、ヒトでは女性ホルモンの存在下で乳汁分泌や乳腺の分化・発達を促進し、妊娠維持等の作用を持つ。PRLの分泌は、プロラクチン放出因子(PRF)(例、甲状腺刺激ホルモン放出ホルモン(TRH)、バソプレシン、血管作用性小腸ペプチド(VIP)、ペプチドヒスチジンイソロイシン(PHI))及びTRHによって促進され、プロラクチン放出抑制因子(PIF)(例、ドパミン、γ-アミノ酪酸(GABA))によって抑制される。
性腺刺激ホルモン(ゴナドトロピン)の一種であり、下垂体前葉の性腺刺激ホルモン産生・分泌細胞(gonadotroph)から分泌される、αサブユニットとβサブユニットからなる糖タンパク質である。LHは、女性では、FSHと共に発育卵胞に作用して卵胞を発育させ、排卵及び黄体の形成を促し、エストロゲン及びプロゲステロンの産生を促進し、月経周期の形成に重要な役割を果たす。男性では、精巣のライディッヒ細胞に作用してテストステロンの分泌を促す。LHの分泌も、視床下部から分泌される性腺刺激ホルモン放出ホルモン(gonadotropin-releasing hormone(GnRH))によって促進される。
性腺刺激ホルモン(ゴナドトロピン)の一種であり、下垂体前葉の性腺刺激ホルモン産生・分泌細胞(gonadotroph)から分泌される、αサブユニットとβサブユニットからなる糖タンパク質である。FSHの分泌は、視床下部から分泌される性腺刺激ホルモン放出ホルモン(gonadotropin-releasing hormone(GnRH))によって促進される。FSHは、女性においては卵巣に作用して原始卵胞を発育卵胞にし、LHと協働して成熟卵胞へと発育させて、卵胞からのエストロゲン分泌を促進させる。エストロゲンが増加すると、視床下部へのフィードバックによってGnRHの分泌が抑制されてFSHの分泌も抑制されるが、エストロゲンがさらに増加すると視床下部・下垂体へのポジティブフィードバックが働き、GnRHが増加する。男性では、精巣のセルトリ細胞に作用して、テストステロンの分泌を促進し、精子形成を促進する。
下垂体前葉の甲状腺刺激ホルモン産生・分泌細胞(thyrotroph)から分泌される、αサブユニットとβサブユニットからなる糖タンパク質である(αサブユニットはLH、FSHと共通である)。TSHは、甲状腺に作用して、甲状腺ホルモンの産生・分泌を促進する。TSHの分泌は、視床下部から分泌される甲状腺刺激ホルモン放出ホルモン(thyrotropin-releasing hormone(TRH))によって刺激され、甲状腺ホルモンによってネガティブフィードバックされる。
本発明の方法により得られた組織又は細胞は、マーカー遺伝子の発現の有無、又は下垂体ホルモン産生細胞の場合には下垂体ホルモンの培地への放出若しくは細胞内におけるその前駆タンパク質の蓄積等を指標とし、必要に応じてそれらを組み合わせることにより、いずれの組織又は細胞に分化したかを確認することができる。また、組織や細胞の形態を観察することによって、得られた組織又は細胞を特定することもできる。更に、このようなマーカー発現パターンや組織又は細胞の形態に基づき、所望の特定の組織又は細胞を単離することもできる。
例えば、上記マーカーを用いて規定すると、吻側視床下部組織の細胞は、Rx+、好ましくはRx+、N-カドヘリン+、ネスチン+、Nkx2.1+、Chx10-である。吻側頭部外胚葉組織(吻側頭部非神経外胚葉)の細胞は、Pitx1+、好ましくはPitx1+、Pitx2+、E-カドヘリン+である。下垂体前駆組織(ラトケ嚢様組織)の細胞は、Lim3+、Pitx1+、Pitx2+、Isl1+、E-カドヘリン+である(これは、下垂体原基の発現プロフィールと一致する)。下垂体性(非ニューロン)のホルモン産生細胞は、ニューロフィラメント-、NSE-である。下垂体性ACTH産生細胞は、ACTH+、Tbx19+、PC2-であり、その他の下垂体ホルモン産生細胞はTbx19-である。また、下垂体中葉のMSH産生細胞はACTH-、Tbx19+、PC2+である。下垂体性のGH産生細胞、PRL産生細胞及びTSH産生細胞は、Pitx1+の中間前駆体を経て、各下垂体ホルモン産生細胞へと分化する。
本発明のさらなる方法によれば、凝集体中にラトケ嚢様組織が形成される。この小嚢胞は、下垂体前駆組織と同一のマーカー発現を示し、形態学的にも類似した上皮構造や極性を有している。さらに、生体内の下垂体前駆組織(ラトケ嚢)と同じく、Rx陽性の視床下部組織の近傍に存在し、吻側頭部非神経外胚葉組織とも隣接して形成される。このことは、本発明の分化誘導法において、胚発生過程における下垂体前駆組織の発生の微小環境が模倣されたことを示す。従って、本発明においては、このラトケ嚢様組織を下垂体前駆組織とも呼ぶ。
「幹細胞」とは、細胞分裂を経ても同じ分化能を維持することができる細胞のことをいう。幹細胞の例としては、受精卵あるいはクローン胚由来で多能性を有する胚性幹細胞(ES細胞)、生体内の組織中に存在する体性幹細胞や多能性幹細胞、各組織の基になる肝幹細胞、皮膚幹細胞、生殖幹細胞、生殖幹細胞由来の多能性幹細胞、体細胞由来で核初期化によって得られる多能性幹細胞などが挙げられる。
具体的に本発明の方法で用いられる幹細胞としては、例えば、着床以前の初期胚を培養することによって樹立した哺乳動物等の胚性幹細胞(以下、「胚性幹細胞I」と省略)、体細胞の核を核移植することによって作製された初期胚を培養することによって樹立した胚性幹細胞(以下、「胚性幹細胞II」と省略)、体細胞へ数種類の遺伝子を導入することにより、および/または化合物を作用させることにより樹立した誘導性多能性幹細胞(iPS細胞)、および胚性幹細胞I、胚性幹細胞II又はiPS細胞の染色体上の遺伝子を遺伝子工学の手法を用いて改変した多能性幹細胞(以下、「改変多能性幹細胞」と省略)が挙げられる。
胚性幹細胞Iは、着床以前の初期胚を、文献(Manipulating the Mouse Embryo A Laboratory Manual,Second Edition,Cold Spring Harbor Laboratory Press(1994))に記載された方法に従って培養することにより調製することができる。
本発明の分化誘導方法で用いる、均一な幹細胞の凝集体を形成させる工程及び凝集体を浮遊培養する工程は、特許文献3及び非特許文献5に開示された「SFEBq法」とほぼ同様のものである。
内因性の増殖因子/インシュリンの作用を抑制するため、このようなgfCDM培地あるいは他の培地に増殖因子阻害剤/インシュリン阻害剤をさらに添加してもよい。
本発明では、上述のように、高細胞濃度の多能性幹細胞の条件で凝集体を形成させることにより、幹細胞の凝集体における内因性の増殖因子の発現が増加して、吻側視床下部組織とシート状の連続上皮である吻側頭部外胚葉組織の両方が同時に分化誘導される。このような凝集体において、Lim3陽性細胞の分化誘導を促進するため、ラトケ嚢様組織(下垂体前駆組織)の分化誘導を促進するため、或いは得られた下垂体前駆組織から下垂体ホルモン産生細胞をさらに分化させるために、以下に記載する培地を用いて浮遊培養を行なうことができる。
生体内での下垂体発生の模式図は図1aに、各種下垂体ホルモン産生細胞の発生の模式図は図3aに示す。
本発明においては、高細胞濃度の多能性幹細胞の条件で凝集体を形成させることにより、幹細胞の凝集体における内因性の増殖因子の発現が増加して、1つの凝集体に吻側視床下部組織とシート状の連続上皮である吻側頭部外胚葉組織の両方が分化誘導されるが、該凝集体内に含まれる細胞のLim3陽性細胞への分化を促進し、下垂体前駆組織(ラトケ嚢)への分化を促進するために、浮遊培養に用いる無血清培地中はShhシグナル促進剤を含んでいてもよい。
下垂体前駆組織の分化誘導において、下垂体前駆組織の分化誘導を促進するため、即ち、凝集体におけるLim3陽性の上皮性の小嚢胞の形成数を増加させるため又はLim3 mRNAの発現量を増加させるために、上記Shhシグナル促進剤を含む無血清培地での浮遊培養後、FGFシグナル促進剤を含む培地を用いることもできる。
形成された下垂体前駆組織からACTH産生細胞を分化誘導するために、下垂体前駆組織の形成が達成された後、Notchシグナル阻害剤を含有する無血清培地中で、下垂体前駆組織をさらに浮遊培養することができる。本明細書中で使用する「ACTH産生細胞」は、下垂体性ACTH産生細胞を指し、ACTH+ニューロンは含まれない。
形成された下垂体前駆組織から、ACTH産生細胞以外の下垂体ホルモン産生細胞(GH産生細胞、PRL産生細胞、LH産生細胞、FSH産生細胞及びTSH産生細胞)を分化誘導するために、下垂体前駆組織の形成が達成された後、それぞれ以下の培地を用いて、下垂体前駆組織をさらに浮遊培養することができる。
GH産生細胞の分化誘導には、グルココルチコイドを含む無血清培地が使用され得る。グルココルチコイドの例としては、ハイドロコーチゾン(コルチゾールともいう)、コルチコステロン、或いはそれらと同様の生物活性を有する合成化合物(デキサメタゾンなど)などが挙げられる。GH産生細胞の分化誘導の効率を上昇させるためには、この無血清培地がインシュリン類をさらに含むことが好ましい。インシュリン類の例としては、既に本明細書中で列挙したものなどが挙げられる。
例えば、本発明においてGH産生細胞を分化誘導するために使用され得る培地は、ハイドロコーチゾンを約2~約2000ng/ml、好ましくは約20~1000ng/ml、最も好ましくは約200ng/ml、あるいはデキサメタゾンを約0.1~約100ng/ml、好ましくは約1~50ng/ml、最も好ましくは10ng/ml含み、インシュリン類を約0.2~30nM、好ましくは約0.5~10nM、最も好ましくは約1nM含む、無血清培地、好ましくはgfCDM培地である。
PRL産生細胞の分化誘導には、エストロゲンを含む無血清培地が使用され得る。エストロゲンの例としては、エストラジオール、エストロン、エストリオール、エステトロール、或いはそれらと同様の生物活性を有する合成化合物などが挙げられる。PRL産生細胞の分化誘導の効率を上昇させるためには、この無血清培地がインシュリン類をさらに含むことが好ましい。インシュリン類の例としては、既に本明細書中で列挙したものなどが挙げられる。
例えば、本発明においてPRL産生細胞を分化誘導するために使用され得る培地は、エストラジオールを約5~約500ng/ml、好ましくは約10~200ng/ml、最も好ましくは約50ng/ml含み、インシュリン類を約0.2~30nM、好ましくは約0.5~10nM、最も好ましくは約1nM含む、無血清培地、好ましくはgfCDM培地である。
例えば、ストローマ細胞を無血清培地(好ましくはgfCDM)中で(4~10日間)培養することによって得られた培養上清(ストローマ細胞の馴化培地)を含有する無血清培地中で下垂体前駆組織を浮遊培養することにより、LH産生細胞、FSH産生細胞及びTSH産生細胞を分化誘導することができる。
ここで「ストローマ細胞の馴化培地」とは、ストローマ細胞由来の可溶性因子を含む培地をいい、ストローマ細胞の培養後培地の上清を回収することにより調製することができる。
GSK3β阻害剤としては、GSK-3β Inhibitor I,VI,VII,VIII,XI,XII、CHIR 99021、Valproic Acid、TDZD-8、SB-216763、BIO(6-bromoindirubin-3’-oxime)などが挙げられるが、これらに限定されない。
Wntシグナル促進剤の濃度は、Wntシグナル促進剤なしの場合と比較して下垂体ホルモン産生細胞の割合を増加させることができる濃度である限り限定されないが、例えば、BIOを使用する場合、その濃度は、通常約20~2000nM、好ましくは約50~500nM、最も好ましくは約250nMである。
一実施形態において、培養開始16日目からBIOを250nM含む無血清培地を用い、18日目に培地を半分交換して2日間培養を行う。
上述の方法により得られた各下垂体ホルモン産生細胞に対し、それぞれの下垂体ホルモンの産生・分泌を促進する物質を作用させることにより、下垂体ホルモンの産生・分泌を刺激することができる。下垂体ホルモンの産生・分泌を刺激・促進する物質(ホルモン分泌促進物質ともいう)としては、各下垂体ホルモン産生細胞を直接的に作用する物質であってもよいし、例えば、移植等の後でin vivoで作用する場合などには、間接的に作用する物質であってもよい。
具体的には、ACTHの産生・分泌はCRH等によって促進され、GHの産生・分泌はGHRH等によって促進され、TSHの産生・分泌はTRH等によって促進され、PRLの産生・分泌はPRF(具体例は上述のとおり)及びTRH等によって促進され、FSH及びLHの産生・分泌はGnRH等によって促進される。これらの促進物質は、天然の供給源から単離したものを用いてもよいし、組換えなどによって合成してもよい。
本発明はまた、本発明の方法により得られる細胞培養物を提供する。本発明の細胞培養物は、例えば、幹細胞又は幹細胞から分化した細胞を含む浮遊凝集体、浮遊凝集体を分散処理(例えば、トリプシン/EDTA処理)した細胞、分散処理細胞の培養により得られる細胞などであり得る。また、本発明は、かかる細胞培養物より被験体に投与し得る程度に単離・精製された下垂体前駆組織又は下垂体ホルモン産生細胞を提供する。
或いは、本発明の方法により得られた下垂体ホルモン産生細胞によって産生される下垂体ホルモンは、下記疾患の治療薬として、任意の下垂体組織又は各下垂体ホルモン産生細胞の損傷状態によって引き起こされる下垂体ホルモン分泌不全において、適切な下垂体ホルモンを補充するため(ホルモン補充療法)などに用いることができる。
被験体がヒトである場合、皮下組織あるいは下垂体近傍に細胞凝集体を移植する方法が挙げられるが、この方法に限定されない。
或いは、当該下垂体ホルモンによってその産生・分泌が促進される他のホルモン等(例えば、ACTHの場合にはグルココルチコイド(例、コスチコステロン))の産生、例えば血中濃度を測定することによっても、確認することができる。その他の下垂体ホルモンが産生・分泌を促進する他のホルモン等は、上述のとおりである。
本発明は、本発明の細胞培養物または本発明の培養産物を用いることを特徴とする、被検物質のスクリーニング方法を提供する。特に本発明の培養産物は、生体における下垂体前駆組織の組織形成の初期過程と極めて類似した下垂体前駆組織を構築し、また、生体における下垂体ホルモン産生細胞ときわめて類似した細胞を含んでいるので、下垂体組織又は各種下垂体ホルモン産生細胞の障害に基づく疾患の治療薬のスクリーニング、その他の原因による細胞損傷状態における治療薬のスクリーニング、またはそれらの毒性試験、さらには神経系疾患の新たな治療方法の開発などに適用することができる。
(方法)
マウスES細胞を前脳、特に視床下部組織への選択分化させる方法であるSFEBq/gfCDM法(Wataya et al, 2008, PNAS vol.105, pp.11796-11801)を用いて、凝集体培養を7日間行なった。具体的には、トリプシン処理で単一分散させたマウスES細胞を、細胞低吸着コーティングした96穴U字型ウェルあたり3000、8000、10000あるいは15000細胞を播種して、凝集塊を形成させた。培地には、化学合成培地gfCDM(Wataya et al, 2008, PNAS vol.105, pp.11796-11801)を用いた。視床下部組織のマーカーとしてRx::GFP(GFPをRx遺伝子座にノックイン)、頭部非神経外胚葉マーカーとしてPitx1抗体を用いて検出した。
(結果)
7日間SFEBq/gfCDM法で培養したES細胞浮遊凝集塊は、すべての培養条件で、視床下部マーカーRx::GFP陽性、神経マーカーN-cadherinおよびSox1陽性の視床下部組織を含んでいた。ウェルあたり8000~15000細胞を凝集させた培養では、5日間培養以降の浮遊凝集塊の表層(Rx::GFP陽性のさらに表層)にPitx1陽性のシート状の連続上皮組織が9割以上の凝集塊で形成された(図1f)。3000細胞からの凝集では、Pitx1の細胞は少数散在するのみで、連続的な大きな上皮を形成しなかった。また別の頭部非神経外胚葉マーカーPitx2を用いたqPCRでは、3000細胞からの凝集塊に比して、10000細胞からの凝集塊は4倍のPitx2 RNAの発現が誘導され、BMP2及びBMP4のmRNAの発現量が約2~3倍に増大していた(図6)。凝集塊形成時の細胞数を増加させることだけでなく、BMP4を0.5nMの濃度で培地中に添加することによっても、Pitx2の発現が上昇することが見出された(図1d)。
(方法)
マウスES細胞をSFEBq/gfCDM法(Wataya et al, 2008, PNAS vol.105, pp.11796-11801)を用いて、1凝集体あたり10000細胞で形成させ、実施例1のように浮遊培養した。分化培養開始直後より、ヘッジホッグのアゴニストであるSAG(Danjo et al, JNS, 2011, vol.31, pp.1919-1933)を100あるいは400nM添加し、合計10-13日間培養した。SAGはShhより数倍以上強い活性を有し、また比較的安価で高濃度まで用いることができるため、強いヘッジホッグシグナルの活性を引き起こすことが可能である(Danjo et al, JNS, 2011, vol.31, pp.1919-1933)。下垂体前駆組織(ラトケ嚢)のマーカーであるLim3などの発現をPCRあるいは蛍光抗体法による凍結切片の細胞化学染色で確認した。Lim3の発現は、Lim3::GFPのノックインES細胞を用いても確認した。
(結果)
SAGを100あるいは400nM添加した群では、10日以降にLim3の著明な遺伝子発現(未分化ES細胞の15倍、SAG非添加群の7倍)がPCRで確認された(図1j,kも参照)。このLim3の誘導は、ヘッジホッグ受容体のアンタゴニストであるSANT-1で阻害されたため、SAGの作用はヘッジホッグシグナルを介した効果であることが判った。
さらに3日間gfCDMで培養すると(合計13日間)、SAG添加群では、凝集塊の中に数個(1-7個)のLim3陽性の上皮性の小嚢胞が形成された(図2a)。小嚢胞が形成されていく様子は図2d-fに示されている(d8~d10)。lim3陽性組織は、肥厚したプラコード上皮としてまず出現し、次いで陥入し、最後に中空の上皮小胞を形成した。これらの小嚢胞は、RxやSox1やNestin陰性で、Pitx1やPitx2陽性であり(図2g-j)、下垂体前駆組織と同一のマーカー発現を示し、また13日目までには、Lim3に加えて、後期ラトケ嚢マーカーIslet1/2を発現し始めた(図2o)。形態学的にも下垂体前駆組織と類似した上皮構造や極性を有していた(図2m、n)。しかも、生体内の下垂体前駆組織(ラトケ嚢)と同じく、Rx陽性の視床下部組織の近傍に存在し、またPitx1陽性でLim3陰性の頭部非神経外胚葉組織とも隣接して形成されていた(図2h、k)。このことは、このES細胞の浮遊凝集塊培養系において、胚発生過程の下垂体前駆組織の発生の微小環境が模倣されたことを示唆した。このようなラトケ嚢様の組織の形成は、3000細胞の凝集塊から開始した培養では、ほとんど形成されなかった。
なお、培養10-13日の間はSAGを含まないgfCDMで培養した。この間にFGF8を200ng/ml添加したところ、Lim3の発現組織が3-5割増加した。
(方法)
マウスES細胞を実施例2の方法を用いて、SAG処理(400nM 7日間、100nM 3日間の計10日間)により下垂体前駆組織に分化させた。さらにgfCDM培地を用いて、40%O2、5%CO2下で合計12日間培養した(合計22日間)。さらに培養18-19日の間又は20-21日の間の1日間、Notchシグナルの阻害剤DAPT 10μMで処理した。ACTH産生細胞に発現するTbx19やACTHの発現を蛍光抗体法による凍結切片の細胞化学染色で確認した。
(結果)
蛍光抗体法での解析の結果、DAPT処理をした上記の凝集塊では、DAPT処理なしの場合と比較してTbx19発現が増強され(図3b)、ACTH陽性細胞の割合が増加し(図3c)、Tbx19やACTH強陽性の多数細胞(>30細胞以上)の集合が複数箇所に含まれていた。DAPT処理をしていないものでは、Tbx19やACTH陽性の少数細胞が散在しているだけであった。このACTH陽性細胞は、NSE及びニューロフィラメントなどの神経マーカーが陰性であったことから、脳のACTH+ニューロンではないと考えられ(図3f)、またメラニン産生細胞系統のマーカーPC2も発現していなかった(図3g)。さらに、このACTH+細胞は、in vivoの場合と同様、E-カドヘリン陰性であった(図3e)。
in vivoでは、下垂体の発生時、Tbx19陰性の前駆体はPitx1陽性の中間前駆体を生じ、この前駆体がその後GH産生細胞、PRL産生細胞、TSH産生細胞へと分化する。Pitx1の発現を確認したところ、DAPT処理では発現は増加せずにむしろ減少し、BIO処理では大きく増加した。WntインヒビターIWP2処理では、Pitx1の発現は低下傾向であった(図3k)。
(方法)
マウスES細胞を実施例2の方法を用いて、SAG処理(400nM 7日間、100nM 3日間の計10日間)により下垂体前駆組織に分化させた。さらに40%O2、5%CO2下で継続的に浮遊培養した。培地は、副腎皮質ホルモン(200ng/ml ハイドロコーチゾン)と1nMインスリンを含むgfCDM、エストロゲン(50ng/mlエストラジオール)と1nMインスリンを含むgfCDM、あるいはマウスのフィーダー細胞PA6細胞のgfCDMによる培養上清(馴化培地)のいずれかを用いた。
成長ホルモン(GH)、プロラクチン(PRL)、黄体形成ホルモン(LH)、卵胞刺激ホルモン(FSH)、甲状腺刺激ホルモン(TSH)の発現を蛍光抗体法による凍結切片の細胞化学染色で確認した。
(結果)
副腎皮質ホルモン(200ng/ml ハイドロコーチゾン)と1nM インスリンを含むgfCDMで培養20日より10日間培養したものでは、多数のGH陽性細胞が凝集塊の中に確認された(図3l、m)。さらに、GSK3βの阻害剤で、Wnt経路を刺激するBIO(250nM)を培養16-18日の間に処理すると、GH陽性細胞が3-5割さらに増加した。エストロゲン(50ng/ml エストラジオール)と1nM インスリンを含むgfCDMで培養20日より10日間培養したものでは、多数のProlactin陽性細胞が凝集塊の中に確認された(図3n、o)。PA6細胞のgfCDMによる培養上清で培養10日より15日間培養したものでは、多数のLH陽性細胞及びFSH陽性細胞が確認されるとともに、少数のTSH陽性細胞が認められた(LH陽性細胞>FSH陽性細胞>TSH陽性細胞)(図3p-s)。
(方法)
マウスES細胞を実施例3の方法を用いて、SAG処理とDAPT処理によりACTH産生細胞に分化させた(合計22日間)。この凝集塊に対して、CRH(副腎皮質刺激ホルモン放出因子)を作用させて、ACTHの分泌を定量した。具体的には、500μlのHBSS液あたり、8個の凝集体を入れ、37度で10分間プレインキュベーション後、最終濃度10-10000ng/mlのCRHを添加し、さらに10分間インキュベーション後の培養上清を回収し、ELISA法で計測した(図4a)。
(結果)
CRHを加えない群では、培養上清のACTHの濃度は0.2pg/ml以下であったが、10ng/ml CRH群では1.4pg/ml、100ng/ml CRH群では4pg/ml、1000および10000ng/ml CRH群では8.5-9.5pg/mlのACTHが検出された(図4c)。一方、SAG処理をしなかった凝集塊では、1000ng/ml CRHの添加によっても、ACTHの分泌の有意な上昇は認められず、SAG処理したがDAPT処理をしなかった凝集塊では、CRHを加えてもACTHの分泌はあまり高くならなかった(図4d)。なお、このACTHの分泌の誘導はCRH特異的であり、他の放出ホルモンを加えても観察されなかった(図4b)。
さらに、下垂体からのACTH分泌を抑制することが知られているハイドロコーチゾン(100ng/ml)で60分間前処理を行なった場合、CRHによるACTHの分泌促進効果をほぼ完全に抑制した(図4e)が、エストラジオールによる前処理はACTH分泌に影響しなかった(図4f)。
(方法)
マウスES細胞を実施例3の方法を用いて、SAG処理とDAPT処理によりACTH産生細胞に分化させた細胞塊を、下垂体除去手術を施したマウスの腎臓被膜下に移植した(図5a右)。これらのマウスについては、ACTHの分泌能(CRHへの反応性)が失われたことを移植前に確認した(図5b、c)。
具体的には、合計22日間の培養後に、細胞凝集塊をハミルトンシリンジにより、下垂体除去マウスの腎臓被膜下に注入した。移植7日後に、CRH腹腔内投与による負荷のもと、血漿を回収し、ACTHおよび副腎皮質ホルモン(Corticosteron)濃度をELISA法で計測した。
(結果)
腎臓皮下移植したES細胞由来のACTH陽性細胞は、移植後7日後も局所に生着していることが、蛍光抗体法による組織化学染色で確認された(図5a左)。対照群(sham operation)では、CRH負荷後も血中ACTHは1pg/ml未満、Corticosteronも3pg/ml未満であった。一方、ES細胞由来のACTH陽性細胞移植群では、ACTHは25-30pg/ml、Corticosteronは300pg/mlの濃度にCRH負荷後に達した(図5e、f:CRH負荷あり;図5g、h:CRH負荷なし)。
(方法)
マウスES細胞由来のACTH産生細胞を実施例6と同様に、下垂体除去手術を施したマウス(9週齢)の腎臓被膜下に移植した。移植マウスの生存および体重の増加を経過観察し、対照群(sham operation)と比較した。マウスの自発的運動についても検討した。マウスの自発的運動は、IRセンサー(MDC-W02(BrainScienceIdea,Osaka))を用いて、ケージの中でマウスが1日にどのくらい自発的に移動するかを計測した。また、ENV-044(MedAssociates,Georgia)を用いて、マウスが自発的にrunning wheelを1日に何回転させたかも別途計測した。
(結果)
対照群の下垂体除去マウスでは、sham operation後8週までに全個体が死亡したが、ES細胞由来のACTH産生細胞の移植群では、その時点で約85%の個体が生存していた(図5k)。また、対照群がすべて死亡した8週の段階で、移植群では6割のマウスが、移植時より体重が増加していた。
また、移植群のマウスは、コントロールよりも高いレベルの自発的運動を示した(図5i、j)。
(方法)
トリプシンにて単一分散したヒトES細胞12000細胞をROCK阻害剤Y-27632 10μM存在下に(Watanabe et al, Nature Neuroscience, 2007)実施例1のように浮遊凝集塊培養を行なった。培養液には、gfCDMに5%KSRを加えたものを用いた。培養3日目より0.5 nM、1.5 nMまたは5.0 nMのBMP4を培養液に添加し、培養6日目より1000 nMのSAGを添加し浮遊培養を継続した。
(結果)
培養17日後には、いずれの凝集塊も多数のRx陽性の神経前駆細胞を凝集塊内部に含み、またその表面にE-cadおよびサイトケラチン陽性の非神経外胚葉細胞がマウスES細胞の培養と同様に、単層の細胞からなるシート状の上皮構造を形成していた(図7)。qPCR解析により、Pitx1の発現誘導も5 nM BMP処理をした群でしていない群に比して、約10倍の誘導を認めた(図8)。BMP処理した群では、培養25日後には、Rx陽性の神経上皮構造の表面にE-cad陽性の非神経外胚葉が存在し、マウス培養での下垂体プラコード形成と同様に、その一部が肥厚してプラコード様の構造を呈していた(図7)。
ここで述べられた特許および特許出願明細書を含む全ての刊行物に記載された内容は、ここに引用されたことによって、その全てが明示されたと同程度に本明細書に組み込まれるものである。
中枢神経組織及び頭部非神経外胚葉組織を含む凝集体からは、下垂体だけでなく、嗅上皮、水晶体、内耳等の感覚器のプラコードも形成され得る。
Claims (33)
- 無血清培地中で幹細胞の凝集体を形成させる工程、及び
形成された凝集体を無血清培地中で浮遊培養する工程
を含む、視床下部組織及び頭部非神経外胚葉を共に含んでなる凝集体の製造方法。 - 浮遊培養で用いる無血清培地がShhシグナル促進剤を含む、請求項1に記載の製造方法。
- 前記Shhシグナル促進剤がSAGである、請求項2に記載の製造方法。
- 浮遊培養で用いる無血清培地がBMPシグナル促進剤を含む、請求項1~3のいずれか1項に記載の製造方法。
- BMPシグナル促進剤がBMP2及び/又はBMP4である、請求項4に記載の製造方法。
- 前記視床下部組織及び頭部非神経外胚葉が、吻側視床下部組織及びシート状の連続上皮である吻側頭部非神経外胚葉組織である、請求項1~5のいずれか1項に記載の製造方法。
- 前記吻側視床下部組織がRx陽性である、請求項6に記載の製造方法。
- シート状の連続上皮である吻側頭部非神経外胚葉組織がPitx1陽性である、請求項6記載の方法。
- 前記無血清培地が、Nodalシグナル促進剤、Wntシグナル促進剤、FGFシグナル促進剤、BMPシグナル促進剤、レチノイン酸及びインシュリン類を実質的に含有しない無血清培地である、請求項1に記載の製造方法。
- 前記幹細胞がヒト由来である、請求項1~9のいずれか1項に記載の製造方法。
- 前記視床下部組織及び頭部非神経外胚葉を共に含んでなる凝集体が、Lim3陽性細胞を更に含む、請求項1~10のいずれか1項に記載の製造方法。
- 前記Lim3陽性細胞が、凝集体中に上皮性の小嚢胞を形成することを特徴とする、請求項11に記載の製造方法。
- 浮遊培養により、幹細胞の凝集体における内因性の増殖因子の発現を増加させる、請求項1に記載の製造方法。
- 前記内因性の増殖因子がBMP2及び/又はBMP4である、請求項13に記載の製造方法。
- 前記BMP2及び/又はBMP4の発現が、低細胞濃度で幹細胞の凝集体を形成させた場合と比較して、mRNAレベルで2倍以上増加することを特徴とする、請求項14に記載の製造方法。
- 請求項1~15のいずれか1項に記載の方法によって製造された視床下部組織及び頭部非神経外胚葉を共に含んでなる凝集体を、Notchシグナル阻害剤を含む無血清培地中でさらに浮遊培養する工程を含む、副腎皮質刺激ホルモン産生細胞の製造方法。
- 前記Notchシグナル阻害剤がDAPTである、請求項16に記載の製造方法。
- 請求項16又は17に記載の方法で製造された副腎皮質刺激ホルモン産生細胞を被験体に移植することを含む、被験体において副腎皮質刺激ホルモンの分泌不全を改善する方法。
- 請求項1~15のいずれか1項に記載の方法によって製造された視床下部組織及び頭部非神経外胚葉を共に含んでなる凝集体を、グルココルチコイドを含む無血清培地中でさらに浮遊培養する工程を含む、成長ホルモン産生細胞の製造方法。
- 前記無血清培地がインシュリンをさらに含む、請求項19に記載の製造方法。
- 前記視床下部組織及び頭部非神経外胚葉を共に含んでなる凝集体を、グルココルチコイドを含む無血清培地中で浮遊培養する工程の前又は同時に、GSK3β阻害剤を含む無血清培地中で浮遊培養する工程を含む、請求項19又は20に記載の成長ホルモン産生細胞の製造方法。
- 前記GSK3β阻害剤がBIOである、請求項21に記載の製造方法。
- 請求項19~22のいずれか1項に記載の方法で製造された成長ホルモン産生細胞を被験体に移植することを含む、被験体において成長ホルモンの分泌不全を改善する方法。
- 請求項1~15のいずれか1項に記載の方法によって製造された視床下部組織及び頭部非神経外胚葉を共に含んでなる凝集体を、エストロゲンを含む無血清培地中でさらに浮遊培養する工程を含む、プロラクチン産生細胞の製造方法。
- 前記無血清培地がインシュリンをさらに含む、請求項24に記載の製造方法。
- 前記視床下部組織及び頭部非神経外胚葉を共に含んでなる凝集体を、エストロゲンを含む無血清培地中で浮遊培養する工程の前又は同時に、GSK3β阻害剤を含む無血清培地中で浮遊培養する工程を含む、請求項24又は25に記載のプロラクチン産生細胞の製造方法。
- 前記GSK3β阻害剤がBIOである、請求項26に記載の製造方法。
- 請求項24~27のいずれか1項に記載の方法で製造されたプロラクチン産生細胞を被験体に移植することを含む、被験体においてプロラクチンの分泌不全を改善する方法。
- 請求項1~15のいずれか1項に記載の製造方法で製造された視床下部組織及び頭部非神経外胚葉を共に含んでなる凝集体を、無血清培地中でストローマ細胞を培養することによって得られたストローマ細胞の馴化培地中でさらに浮遊培養する工程を含む、卵胞刺激ホルモン、黄体形成ホルモン及び/又は甲状腺刺激ホルモン産生細胞の製造方法。
- 前記ストローマ細胞がPA6細胞である、請求項29に記載の製造方法。
- 請求項29又は30に記載の方法で製造された卵胞刺激ホルモン、黄体形成ホルモン又は甲状腺刺激ホルモン産生細胞を被験体に移植することを含む、被験体において卵胞刺激ホルモン、黄体形成ホルモン又は甲状腺刺激ホルモンの分泌不全を改善する方法。
- 無血清培地中で幹細胞の凝集体を形成させる工程、及び
形成された凝集体を無血清培地中で浮遊培養する工程
を含む、中枢神経組織及び頭部非神経外胚葉組織を共に含んでなる凝集体の製造方法。 - 請求項32に記載の凝集体においてプラコードが自己形成される、嗅上皮、水晶体又は内耳を形成するプラコードの製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19168764.9A EP3530730B1 (en) | 2011-10-31 | 2012-10-31 | Method for culturing stem cell |
JP2013541830A JP6210881B2 (ja) | 2011-10-31 | 2012-10-31 | 幹細胞の培養方法 |
US14/354,864 US10808224B2 (en) | 2011-10-31 | 2012-10-31 | Method for culturing stem cell |
ES12845639T ES2741969T3 (es) | 2011-10-31 | 2012-10-31 | Método para el cultivo de células madre |
EP12845639.9A EP2774983B1 (en) | 2011-10-31 | 2012-10-31 | Method for culturing stem cell |
US17/073,169 US11834672B2 (en) | 2011-10-31 | 2020-10-16 | Method for producing hypophysis precursor tissue |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-239803 | 2011-10-31 | ||
JP2011239803 | 2011-10-31 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/354,864 A-371-Of-International US10808224B2 (en) | 2011-10-31 | 2012-10-31 | Method for culturing stem cell |
US17/073,169 Continuation US11834672B2 (en) | 2011-10-31 | 2020-10-16 | Method for producing hypophysis precursor tissue |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013065763A1 true WO2013065763A1 (ja) | 2013-05-10 |
Family
ID=48192103
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/078250 WO2013065763A1 (ja) | 2011-10-31 | 2012-10-31 | 幹細胞の培養方法 |
Country Status (5)
Country | Link |
---|---|
US (2) | US10808224B2 (ja) |
EP (2) | EP2774983B1 (ja) |
JP (2) | JP6210881B2 (ja) |
ES (2) | ES2741969T3 (ja) |
WO (1) | WO2013065763A1 (ja) |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015020091A1 (ja) * | 2013-08-06 | 2015-02-12 | 独立行政法人理化学研究所 | 前眼部組織の製造方法 |
WO2015068505A1 (ja) * | 2013-11-11 | 2015-05-14 | 住友化学株式会社 | 網膜色素上皮細胞の製造方法 |
WO2016013669A1 (ja) * | 2014-07-25 | 2016-01-28 | 国立研究開発法人理化学研究所 | 腺性下垂体又はその前駆組織の製造方法 |
KR20160045145A (ko) * | 2013-08-23 | 2016-04-26 | 스미또모 가가꾸 가부시끼가이샤 | 망막 조직 및 망막 관련 세포의 제조 방법 |
KR20170072941A (ko) | 2014-10-24 | 2017-06-27 | 다이닛본 스미토모 세이야꾸 가부시끼가이샤 | 망막 조직의 제조 방법 |
WO2017126551A1 (ja) * | 2016-01-22 | 2017-07-27 | 国立大学法人名古屋大学 | ヒト多能性幹細胞から視床下部ニューロンへの分化誘導 |
WO2019054515A1 (ja) | 2017-09-14 | 2019-03-21 | 国立研究開発法人理化学研究所 | 背側化シグナル伝達物質又は腹側化シグナル伝達物質による錐体視細胞又は桿体視細胞の増加方法 |
WO2019103129A1 (ja) * | 2017-11-24 | 2019-05-31 | 住友化学株式会社 | 下垂体組織を含む細胞塊の製造方法及びその細胞塊 |
JP2019150057A (ja) * | 2014-11-14 | 2019-09-12 | 株式会社リジェネシスサイエンス | 軟骨細胞の無血清培養方法,及び無血清培地 |
JP2020141698A (ja) * | 2014-10-24 | 2020-09-10 | 大日本住友製薬株式会社 | 神経組織の製造方法 |
AU2017214468B2 (en) * | 2016-02-01 | 2020-09-17 | Cedars-Sinai Medical Center | Systems and methods for growth of intestinal cells in microfluidic devices |
JP2021502091A (ja) * | 2017-11-10 | 2021-01-28 | メモリアル スローン ケタリング キャンサー センター | 幹細胞からの成長ホルモン産生細胞の誘導およびその使用 |
WO2021100829A1 (ja) | 2019-11-20 | 2021-05-27 | 大日本住友製薬株式会社 | 神経系細胞の凍結方法 |
WO2021100830A1 (ja) | 2019-11-20 | 2021-05-27 | 大日本住友製薬株式会社 | 細胞凝集体の凍結方法 |
US11253549B2 (en) | 2014-05-23 | 2022-02-22 | JangoBio, LLC | Methods to rebalance the hypothalamic-pituitary-gonadal axis |
US11371016B2 (en) | 2016-04-22 | 2022-06-28 | Sumitomo Pharma Co., Ltd. | Method for producing retinal tissue |
US11414648B2 (en) | 2017-03-24 | 2022-08-16 | Cedars-Sinai Medical Center | Methods and compositions for production of fallopian tube epithelium |
US11439668B2 (en) | 2014-05-23 | 2022-09-13 | JangoBio, LLC | Methods to differentiate stem cells into hormone-producing cells |
WO2023054395A1 (ja) * | 2021-09-30 | 2023-04-06 | 住友ファーマ株式会社 | 下垂体ホルモン産生細胞を含む細胞凝集体及びその製造方法 |
WO2023054396A1 (ja) * | 2021-09-30 | 2023-04-06 | 住友化学株式会社 | 下垂体組織を含む細胞集団の製造方法及びその細胞集団 |
US11767513B2 (en) | 2017-03-14 | 2023-09-26 | Cedars-Sinai Medical Center | Neuromuscular junction |
US11913022B2 (en) | 2017-01-25 | 2024-02-27 | Cedars-Sinai Medical Center | In vitro induction of mammary-like differentiation from human pluripotent stem cells |
US11981918B2 (en) | 2018-04-06 | 2024-05-14 | Cedars-Sinai Medical Center | Differentiation technique to generate dopaminergic neurons from induced pluripotent stem cells |
US12042791B2 (en) | 2016-01-12 | 2024-07-23 | Cedars-Sinai Medical Center | Method of osteogenic differentiation in microfluidic tissue culture systems |
US12090252B2 (en) | 2017-09-14 | 2024-09-17 | Riken | Method for producing retinal tissues |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10808224B2 (en) | 2011-10-31 | 2020-10-20 | Riken | Method for culturing stem cell |
US20170067014A1 (en) * | 2014-02-27 | 2017-03-09 | Public University Corporation Yokohama City Univer sity | Method for generating cell condensate for self-organization |
CN108064283B (zh) | 2015-02-24 | 2024-01-09 | 加利福尼亚大学董事会 | 结合触发的转录开关及其使用方法 |
SG11202004831QA (en) * | 2017-11-24 | 2020-06-29 | Sumitomo Chemical Co | Production method for cell mass including neural cells/tissue and non-neural epithelial tissue, and cell mass from same |
TWI675678B (zh) * | 2018-08-23 | 2019-11-01 | 國為生醫科技股份有限公司 | 亞丁基苯酞於多巴胺神經前驅細胞移植治療的應用 |
WO2020039732A1 (ja) * | 2018-08-24 | 2020-02-27 | 住友化学株式会社 | 嗅神経細胞又はその前駆細胞を含む細胞塊、及びその製造方法 |
CN111607556B (zh) * | 2019-01-25 | 2022-06-07 | 中国科学院广州生物医药与健康研究院 | 一种培养扩增人肝祖细胞的培养基及其应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998030679A1 (en) | 1997-01-10 | 1998-07-16 | Life Technologies, Inc. | Embryonic stem cell serum replacement |
WO2005123902A1 (ja) | 2004-06-18 | 2005-12-29 | Riken | 無血清浮遊培養による胚性幹細胞の神経分化誘導法 |
JP2008099662A (ja) | 2006-09-22 | 2008-05-01 | Institute Of Physical & Chemical Research | 幹細胞の培養方法 |
WO2009148170A1 (ja) | 2008-06-06 | 2009-12-10 | 独立行政法人理化学研究所 | 幹細胞の培養方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS585671B2 (ja) | 1980-08-27 | 1983-02-01 | 株式会社 林原生物化学研究所 | ヒト卵胞刺激ホルモンの製造方法 |
JPS5743696A (en) | 1980-08-27 | 1982-03-11 | Hayashibara Biochem Lab Inc | Preparation of human luteinizing hormone |
JPS5869818A (ja) | 1981-10-23 | 1983-04-26 | Terumo Corp | ヒト下垂体ホルモン産生細胞株の樹立方法 |
JPS5871885A (ja) | 1982-08-11 | 1983-04-28 | Terumo Corp | 樹立されたヒト成長ホルモン産生細胞株 |
US6110680A (en) | 1993-11-12 | 2000-08-29 | The Scripps Research Institute | Method for simultaneous identification of differentially expressed mRNAs and measurement of relative concentrations |
US5459037A (en) * | 1993-11-12 | 1995-10-17 | The Scripps Research Institute | Method for simultaneous identification of differentially expressed mRNAs and measurement of relative concentrations |
US20100173344A1 (en) | 2006-08-24 | 2010-07-08 | Cedars-Sinai Medical Center | Methods for isolating and using pituitary adenoma stem cells and pituitary adenoma cells |
US8008075B2 (en) * | 2008-11-04 | 2011-08-30 | Viacyte, Inc. | Stem cell aggregate suspension compositions and methods of differentiation thereof |
JP5749898B2 (ja) | 2010-05-14 | 2015-07-15 | 株式会社島津製作所 | X線透視撮影装置 |
US10808224B2 (en) | 2011-10-31 | 2020-10-20 | Riken | Method for culturing stem cell |
EP3071685A4 (en) * | 2013-11-21 | 2017-07-05 | Memorial Sloan Kettering Cancer Center | Specification of functional cranial placode derivatives from human pluripotent stem cells |
EP3954763A1 (en) | 2014-07-25 | 2022-02-16 | Riken | Method for producing adenohypophysis or precursor tissue thereof |
-
2012
- 2012-10-31 US US14/354,864 patent/US10808224B2/en active Active
- 2012-10-31 JP JP2013541830A patent/JP6210881B2/ja active Active
- 2012-10-31 ES ES12845639T patent/ES2741969T3/es active Active
- 2012-10-31 ES ES19168764T patent/ES2928319T3/es active Active
- 2012-10-31 EP EP12845639.9A patent/EP2774983B1/en active Active
- 2012-10-31 EP EP19168764.9A patent/EP3530730B1/en active Active
- 2012-10-31 WO PCT/JP2012/078250 patent/WO2013065763A1/ja active Application Filing
-
2017
- 2017-09-12 JP JP2017175104A patent/JP6516810B2/ja active Active
-
2020
- 2020-10-16 US US17/073,169 patent/US11834672B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998030679A1 (en) | 1997-01-10 | 1998-07-16 | Life Technologies, Inc. | Embryonic stem cell serum replacement |
WO2005123902A1 (ja) | 2004-06-18 | 2005-12-29 | Riken | 無血清浮遊培養による胚性幹細胞の神経分化誘導法 |
JP2008099662A (ja) | 2006-09-22 | 2008-05-01 | Institute Of Physical & Chemical Research | 幹細胞の培養方法 |
WO2009148170A1 (ja) | 2008-06-06 | 2009-12-10 | 独立行政法人理化学研究所 | 幹細胞の培養方法 |
Non-Patent Citations (45)
Title |
---|
"Antibodies - A Laboratory Manual", 1988, COLD SPRING HARBOR LABORATORY |
"Antibody Engineering, A Practical Approach", 1996, IRL PRESS AT OXFORD UNIVERSITY PRESS |
"Biomanual Series 8 Gene Targeting, Preparation of Mutant Mice Using ES Cells", 1995, YODOSHA |
"Biomanual Series 8'Gene Targeting, Preparation of Mutant Mice Using ES Cells", 1995, YODOSHA |
"Current Protocols in Molecular Biology", 1987, JOHN WILEY & SONS |
"Gene Targeting, A Practical Approach", 1993, IRL PRESS AT OXFORD UNIVERSITY PRESS |
"Manipulating the Mouse Embryo A Laboratory Manual, Second Edition", 1994, COLD SPRING HARBOR LABORATORY PRESS |
"Molecular Cloning, A Laboratory Manual, Second Edition", 1989, COLD SPRING HARBOR LABORATORY PRESS |
"Monoclonal Antibodies: principles and practice, Third Edition", 1993, ACAD. PRESS |
AKIRA IRITANI ET AL., PROTEIN, NUCLEIC ACID AND ENZYME, vol. 44, 1999, pages 892 |
BAGUISI ET AL., NATURE BIOTECHNOLOGY, vol. 17, 1999, pages 456 |
BHARTI ET AL., DEVELOPMENT, vol. 138, 2011, pages 873 - 878 |
BHARTI, K. ET AL., DEVELOPMENT, vol. 138, 2011, pages 873 - 878 |
CELL, vol. 126, 2006, pages 663 - 676 |
CELL, vol. 126, no. 4, pages 663 - 676 |
CELL, vol. 131, 2007, pages 861 - 872 |
CELL, vol. 131, no. 5, pages 861 - 872 |
CIBELLI ET AL., SCIENCE, vol. 280, 1998, pages 1256 |
DANJO ET AL., JNS, 2010 |
DANJO ET AL., JNS, vol. 31, 2011, pages 1919 - 1933 |
IKEDA, H. ET AL., PROC. NATL. ACAD. SCI. USA, vol. 102, 2005, pages 11331 - 11336 |
INT. IMMUNOL., vol. 10, 1998, pages 275 |
J. IMMUNOL., vol. 141, 1988, pages 2797 |
MOL. CELL. BIOL., vol. 15, 1995, pages 141 - 151 |
NAT BIOTECHNOL, vol. 26, 2008, pages 101 - 106 |
NATURE BIOTECHNOLOGY, vol. 26, 2008, pages 1269 - 1275 |
NATURE GENETICS, vol. 22, 1999, pages 127 |
NATURE, vol. 448, 2007, pages 313 - 317 |
PROC. NATL. ACAD. SCI. USA, vol. 96, 1999, pages 14984 |
RIDEOUT III ET AL., NATURE GENETICS, vol. 24, 2000, pages 109 |
SCHULDINER M; BENVENISTY N: "Factors controlling human embryonic stem cell differentiation", METHODS ENZYMOL., vol. 365, 2003, pages 446 - 461, XP009064653, DOI: doi:10.1016/S0076-6879(03)65031-7 |
See also references of EP2774983A4 |
SU, H.-L. ET AL., DEVELOPMENTAL BIOLOGY, vol. 290, 2006, pages 287 - 296 |
SUGA, H. ET AL.: "Self-formation of functional adenohypophysis in three-dimensional culture", NATURE, vol. 480, no. 7375, 9 November 2011 (2011-11-09), pages 57 - 62, XP055067739 * |
WAKAYAMA ET AL., NATURE, vol. 394, 1998, pages 369 |
WATANABE ET AL., NATURE BIOTECHNOLOGY, vol. 25, 2007, pages 681 - 686 |
WATANABE ET AL., NATURE NEUROSCIENCE, 2007 |
WATANABE, K. ET AL., NATURE BIOTECHNOLOGY, vol. 25, 2007, pages 681 - 686 |
WATANABE, K. ET AL., NATURE NEUROSCI, vol. 8, 2005, pages 288 - 296 |
WATANABE, K. ET AL., NATURE NEUROSCI., vol. 8, pages 288 - 296 |
WATAYA ET AL., PNAS, vol. 105, 2008, pages 11796 - 11801 |
WATAYA ET AL., PNAS, vol. 105, no. 33, pages 11796 - 11801 |
WATAYA, T ET AL., PROC. NATL. ACAD. SCI. USA, vol. 105, 2008, pages 11796 - 11801 |
WATAYA, T. ET AL.: "Minimization of exogenous signals in ES cell culture induces rostral hypothalamic differentiation", PROC. NATL. ACAD. SCI. USA., vol. 105, no. 33, 19 August 2008 (2008-08-19), pages 11796 - 11801, XP008141896 * |
WILMUT ET AL., NATURE, vol. 385, 1997, pages 810 |
Cited By (79)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102297580B1 (ko) * | 2013-08-06 | 2021-09-03 | 고쿠리쓰 겐큐 가이하쓰 호징 리가가쿠 겐큐소 | 전안부 조직의 제조 방법 |
JP2019193647A (ja) * | 2013-08-06 | 2019-11-07 | 国立研究開発法人理化学研究所 | 前眼部組織の製造方法 |
AU2014303443B2 (en) * | 2013-08-06 | 2020-11-12 | Riken | Method for producing anterior eye segment tissue |
KR20160040288A (ko) * | 2013-08-06 | 2016-04-12 | 고쿠리쓰 겐큐 가이하쓰 호징 리가가쿠 겐큐소 | 전안부 조직의 제조 방법 |
CN105518123A (zh) * | 2013-08-06 | 2016-04-20 | 国立研究开发法人理化学研究所 | 制备眼前段组织的方法 |
US11274277B2 (en) * | 2013-08-06 | 2022-03-15 | Riken | Method for producing anterior eye segment tissue |
US20160186136A1 (en) * | 2013-08-06 | 2016-06-30 | Riken | Method for producing anterior eye segment tissue |
WO2015020091A1 (ja) * | 2013-08-06 | 2015-02-12 | 独立行政法人理化学研究所 | 前眼部組織の製造方法 |
JPWO2015020091A1 (ja) * | 2013-08-06 | 2017-03-02 | 国立研究開発法人理化学研究所 | 前眼部組織の製造方法 |
JPWO2015025967A1 (ja) * | 2013-08-23 | 2017-03-02 | 住友化学株式会社 | 網膜組織及び網膜関連細胞の製造方法 |
JP2020000248A (ja) * | 2013-08-23 | 2020-01-09 | 住友化学株式会社 | 網膜組織及び網膜関連細胞の製造方法 |
US11473056B2 (en) | 2013-08-23 | 2022-10-18 | Sumitomo Chemical Company, Limited | Method for producing retinal tissue and retina-related cells |
JP7435984B2 (ja) | 2013-08-23 | 2024-02-21 | 住友化学株式会社 | 網膜組織及び網膜関連細胞の製造方法 |
US10501724B2 (en) | 2013-08-23 | 2019-12-10 | Sumitomo Chemical Company, Limited | Method for producing retinal tissue and retina-related cells |
JP2021118729A (ja) * | 2013-08-23 | 2021-08-12 | 住友化学株式会社 | 網膜組織及び網膜関連細胞の製造方法 |
KR102278978B1 (ko) * | 2013-08-23 | 2021-07-19 | 스미또모 가가꾸 가부시끼가이샤 | 망막 조직 및 망막 관련 세포의 제조 방법 |
KR20160045145A (ko) * | 2013-08-23 | 2016-04-26 | 스미또모 가가꾸 가부시끼가이샤 | 망막 조직 및 망막 관련 세포의 제조 방법 |
JP7120585B2 (ja) | 2013-08-23 | 2022-08-17 | 住友化学株式会社 | 網膜組織及び網膜関連細胞の製造方法 |
JP2022141924A (ja) * | 2013-08-23 | 2022-09-29 | 住友化学株式会社 | 網膜組織及び網膜関連細胞の製造方法 |
AU2014345110B2 (en) * | 2013-11-11 | 2021-01-14 | Riken | Method for producing retinal pigment epithelial cells |
KR102297584B1 (ko) | 2013-11-11 | 2021-09-03 | 스미또모 가가꾸 가부시끼가이샤 | 망막 색소 표피 세포의 제조 방법 |
WO2015068505A1 (ja) * | 2013-11-11 | 2015-05-14 | 住友化学株式会社 | 網膜色素上皮細胞の製造方法 |
JPWO2015068505A1 (ja) * | 2013-11-11 | 2017-03-09 | 住友化学株式会社 | 網膜色素上皮細胞の製造方法 |
KR20160082248A (ko) * | 2013-11-11 | 2016-07-08 | 스미또모 가가꾸 가부시끼가이샤 | 망막 색소 표피 세포의 제조 방법 |
US10760050B2 (en) | 2013-11-11 | 2020-09-01 | Sumitomo Chemical Company, Limited | Method for producing retinal pigment epithelial cells |
US11253549B2 (en) | 2014-05-23 | 2022-02-22 | JangoBio, LLC | Methods to rebalance the hypothalamic-pituitary-gonadal axis |
US11439668B2 (en) | 2014-05-23 | 2022-09-13 | JangoBio, LLC | Methods to differentiate stem cells into hormone-producing cells |
CN114774350A (zh) * | 2014-07-25 | 2022-07-22 | 国立研究开发法人理化学研究所 | 制备腺垂体或其前体组织的方法 |
AU2015293077B2 (en) * | 2014-07-25 | 2021-10-28 | Riken | Method for producing adenohypophysis or precursor tissue thereof |
JP2020146055A (ja) * | 2014-07-25 | 2020-09-17 | 国立研究開発法人理化学研究所 | 腺性下垂体又はその前駆組織の製造方法 |
US12116593B2 (en) | 2014-07-25 | 2024-10-15 | Riken | Method for producing adenohypophysis or precursor tissue thereof |
WO2016013669A1 (ja) * | 2014-07-25 | 2016-01-28 | 国立研究開発法人理化学研究所 | 腺性下垂体又はその前駆組織の製造方法 |
KR102481035B1 (ko) * | 2014-07-25 | 2022-12-26 | 고쿠리쓰 겐큐 가이하쓰 호징 리가가쿠 겐큐소 | 선하수체 또는 이의 전구 조직의 제조 방법 |
US10760047B2 (en) | 2014-07-25 | 2020-09-01 | Riken | Method for producing adenohypophysis or precursor tissue thereof |
KR20170042612A (ko) * | 2014-07-25 | 2017-04-19 | 고쿠리쓰 겐큐 가이하쓰 호징 리가가쿠 겐큐소 | 선하수체 또는 이의 전구 조직의 제조 방법 |
JPWO2016013669A1 (ja) * | 2014-07-25 | 2017-04-27 | 国立研究開発法人理化学研究所 | 腺性下垂体又はその前駆組織の製造方法 |
CN107075481A (zh) * | 2014-07-25 | 2017-08-18 | 国立研究开发法人理化学研究所 | 制备腺垂体或其前体组织的方法 |
IL250258B (en) * | 2014-07-25 | 2022-07-01 | Riken | A method for preparing adenohypophysis or its precursor tissue |
CN107075481B (zh) * | 2014-07-25 | 2022-05-17 | 国立研究开发法人理化学研究所 | 制备腺垂体或其前体组织的方法 |
EP3173475A4 (en) * | 2014-07-25 | 2018-01-17 | Riken | Method for producing adenohypophysis or precursor tissue thereof |
JP7029144B2 (ja) | 2014-07-25 | 2022-03-03 | 国立研究開発法人理化学研究所 | 腺性下垂体又はその前駆組織の製造方法 |
EP3954763A1 (en) * | 2014-07-25 | 2022-02-16 | Riken | Method for producing adenohypophysis or precursor tissue thereof |
JP7075556B2 (ja) | 2014-10-24 | 2022-05-26 | 住友ファーマ株式会社 | 神経組織の製造方法 |
EP3868873A1 (en) | 2014-10-24 | 2021-08-25 | Sumitomo Dainippon Pharma Co., Ltd. | Production method for retinal tissue |
US11214772B2 (en) | 2014-10-24 | 2022-01-04 | Sumitomo Dainippon Pharma Co., Ltd. | Production method for retinal tissue |
US11214771B2 (en) | 2014-10-24 | 2022-01-04 | Sumitomo Dainippon Pharma Co., Ltd. | Production method for nerve tissue |
JP2020141698A (ja) * | 2014-10-24 | 2020-09-10 | 大日本住友製薬株式会社 | 神経組織の製造方法 |
JP7397448B2 (ja) | 2014-10-24 | 2023-12-13 | 住友ファーマ株式会社 | 神経組織の製造方法 |
KR20170072941A (ko) | 2014-10-24 | 2017-06-27 | 다이닛본 스미토모 세이야꾸 가부시끼가이샤 | 망막 조직의 제조 방법 |
JP2022088579A (ja) * | 2014-10-24 | 2022-06-14 | 住友ファーマ株式会社 | 神経組織の製造方法 |
JP2019150057A (ja) * | 2014-11-14 | 2019-09-12 | 株式会社リジェネシスサイエンス | 軟骨細胞の無血清培養方法,及び無血清培地 |
US12042791B2 (en) | 2016-01-12 | 2024-07-23 | Cedars-Sinai Medical Center | Method of osteogenic differentiation in microfluidic tissue culture systems |
JPWO2017126551A1 (ja) * | 2016-01-22 | 2018-11-22 | 国立大学法人名古屋大学 | ヒト多能性幹細胞から視床下部ニューロンへの分化誘導 |
JP7465569B2 (ja) | 2016-01-22 | 2024-04-11 | 国立大学法人東海国立大学機構 | ヒト多能性幹細胞から視床下部ニューロンへの分化誘導 |
JP2022062165A (ja) * | 2016-01-22 | 2022-04-19 | 国立大学法人東海国立大学機構 | ヒト多能性幹細胞から視床下部ニューロンへの分化誘導 |
WO2017126551A1 (ja) * | 2016-01-22 | 2017-07-27 | 国立大学法人名古屋大学 | ヒト多能性幹細胞から視床下部ニューロンへの分化誘導 |
JP7023496B2 (ja) | 2016-01-22 | 2022-02-22 | 国立大学法人東海国立大学機構 | ヒト多能性幹細胞から視床下部ニューロンへの分化誘導 |
AU2017209742B2 (en) * | 2016-01-22 | 2022-12-01 | National University Corporation Tokai National Higher Education And Research System | Differentiation induction from human pluripotent stem cells into hypothalamic neurons |
AU2017214468B2 (en) * | 2016-02-01 | 2020-09-17 | Cedars-Sinai Medical Center | Systems and methods for growth of intestinal cells in microfluidic devices |
GB2564582B (en) * | 2016-02-01 | 2021-09-22 | Emulate Inc | Systems and methods for growth of intestinal cells in microfluidic devices |
US11952592B2 (en) | 2016-02-01 | 2024-04-09 | EMULATE, Inc. | Systems and methods for growth of intestinal cells in microfluidic devices |
US11473061B2 (en) | 2016-02-01 | 2022-10-18 | Cedars-Sinai Medical Center | Systems and methods for growth of intestinal cells in microfluidic devices |
US11371016B2 (en) | 2016-04-22 | 2022-06-28 | Sumitomo Pharma Co., Ltd. | Method for producing retinal tissue |
US11913022B2 (en) | 2017-01-25 | 2024-02-27 | Cedars-Sinai Medical Center | In vitro induction of mammary-like differentiation from human pluripotent stem cells |
US11767513B2 (en) | 2017-03-14 | 2023-09-26 | Cedars-Sinai Medical Center | Neuromuscular junction |
US11414648B2 (en) | 2017-03-24 | 2022-08-16 | Cedars-Sinai Medical Center | Methods and compositions for production of fallopian tube epithelium |
JPWO2019054515A1 (ja) * | 2017-09-14 | 2020-10-15 | 国立研究開発法人理化学研究所 | 背側化シグナル伝達物質又は腹側化シグナル伝達物質による錐体視細胞又は桿体視細胞の増加方法 |
WO2019054515A1 (ja) | 2017-09-14 | 2019-03-21 | 国立研究開発法人理化学研究所 | 背側化シグナル伝達物質又は腹側化シグナル伝達物質による錐体視細胞又は桿体視細胞の増加方法 |
US12090252B2 (en) | 2017-09-14 | 2024-09-17 | Riken | Method for producing retinal tissues |
JP2021502091A (ja) * | 2017-11-10 | 2021-01-28 | メモリアル スローン ケタリング キャンサー センター | 幹細胞からの成長ホルモン産生細胞の誘導およびその使用 |
CN111386336A (zh) * | 2017-11-24 | 2020-07-07 | 住友化学株式会社 | 包含垂体组织的细胞团块的制备方法及该细胞团块 |
JP7297674B2 (ja) | 2017-11-24 | 2023-06-26 | 住友化学株式会社 | 下垂体組織を含む細胞塊の製造方法及びその細胞塊 |
JPWO2019103129A1 (ja) * | 2017-11-24 | 2020-11-19 | 住友化学株式会社 | 下垂体組織を含む細胞塊の製造方法及びその細胞塊 |
WO2019103129A1 (ja) * | 2017-11-24 | 2019-05-31 | 住友化学株式会社 | 下垂体組織を含む細胞塊の製造方法及びその細胞塊 |
US11981918B2 (en) | 2018-04-06 | 2024-05-14 | Cedars-Sinai Medical Center | Differentiation technique to generate dopaminergic neurons from induced pluripotent stem cells |
WO2021100830A1 (ja) | 2019-11-20 | 2021-05-27 | 大日本住友製薬株式会社 | 細胞凝集体の凍結方法 |
WO2021100829A1 (ja) | 2019-11-20 | 2021-05-27 | 大日本住友製薬株式会社 | 神経系細胞の凍結方法 |
WO2023054395A1 (ja) * | 2021-09-30 | 2023-04-06 | 住友ファーマ株式会社 | 下垂体ホルモン産生細胞を含む細胞凝集体及びその製造方法 |
WO2023054396A1 (ja) * | 2021-09-30 | 2023-04-06 | 住友化学株式会社 | 下垂体組織を含む細胞集団の製造方法及びその細胞集団 |
Also Published As
Publication number | Publication date |
---|---|
ES2741969T3 (es) | 2020-02-12 |
JP6516810B2 (ja) | 2019-05-22 |
EP2774983A1 (en) | 2014-09-10 |
US20210040444A1 (en) | 2021-02-11 |
EP2774983B1 (en) | 2019-05-15 |
US20140308743A1 (en) | 2014-10-16 |
EP2774983A4 (en) | 2015-07-29 |
US11834672B2 (en) | 2023-12-05 |
EP3530730A1 (en) | 2019-08-28 |
JP6210881B2 (ja) | 2017-10-11 |
EP3530730B1 (en) | 2022-07-20 |
JP2018038401A (ja) | 2018-03-15 |
ES2928319T3 (es) | 2022-11-17 |
JPWO2013065763A1 (ja) | 2015-04-02 |
US10808224B2 (en) | 2020-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6516810B2 (ja) | 幹細胞の培養方法 | |
US10934523B2 (en) | Method for culture of stem cell | |
JP5672563B2 (ja) | 無血清浮遊培養による胚性幹細胞の神経分化誘導法 | |
JP7029144B2 (ja) | 腺性下垂体又はその前駆組織の製造方法 | |
JP5787370B2 (ja) | 幹細胞の分化誘導方法 | |
JP2023054306A (ja) | 無担体3d球体浮遊培養における網膜ニューロン生成のための方法および組成物 | |
WO2021201175A1 (ja) | 下垂体ホルモン産生細胞及びその前駆細胞の分離法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12845639 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013541830 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14354864 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012845639 Country of ref document: EP |