WO2023054396A1 - 下垂体組織を含む細胞集団の製造方法及びその細胞集団 - Google Patents

下垂体組織を含む細胞集団の製造方法及びその細胞集団 Download PDF

Info

Publication number
WO2023054396A1
WO2023054396A1 PCT/JP2022/036019 JP2022036019W WO2023054396A1 WO 2023054396 A1 WO2023054396 A1 WO 2023054396A1 JP 2022036019 W JP2022036019 W JP 2022036019W WO 2023054396 A1 WO2023054396 A1 WO 2023054396A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
cell
signaling pathway
pituitary
culture
Prior art date
Application number
PCT/JP2022/036019
Other languages
English (en)
French (fr)
Inventor
徳重 中野
詩織 多賀
篤 桑原
英隆 須賀
Original Assignee
住友化学株式会社
住友ファーマ株式会社
国立大学法人東海国立大学機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社, 住友ファーマ株式会社, 国立大学法人東海国立大学機構 filed Critical 住友化学株式会社
Priority to CN202280066380.1A priority Critical patent/CN118043447A/zh
Priority to CA3234671A priority patent/CA3234671A1/en
Publication of WO2023054396A1 publication Critical patent/WO2023054396A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material

Definitions

  • the present invention relates to a method for producing a cell population containing pituitary tissue and the cell population. Furthermore, the present invention relates to a cell population containing nervous system cells or neural tissue, pituitary tissue, and mesenchymal cells in the cell population.
  • the pituitary gland is an endocrine organ located in the head, and produces various pituitary hormones such as adrenocorticotropic hormone (ACTH) and growth hormone, which are important for the maintenance and growth of the body.
  • ACTH adrenocorticotropic hormone
  • Hypopituitarism, pituitary hypoplasia, pituitary adenoma, and other diseases that cause pituitary dysfunction can cause serious symptoms similar to failure to thrive, genital-related abnormalities, and adrenal and thyroid abnormalities. . In general, it is rare for damaged pituitary tissue to spontaneously regenerate and restore function.
  • Patent Document 1 and Non-Patent Documents 1 and 2 describe human pluripotent stem cells as inhibitors or agents of BMP signaling pathway, Sonic Hedgehog (herein, sometimes referred to as Shh) signaling pathway. It has been reported that head placode-derived cells containing pituitary cells were produced by inducing differentiation in the presence of an action factor and a TGF- ⁇ signaling pathway inhibitor. However, the produced cells are two-dimensionally cultured, and have not yet reproduced the complex pituitary tissue structure of the living body, which is important for its function. The present inventors produced three-dimensional pituitary tissue from pluripotent stem cells in Patent Documents 2 to 4 and Non-Patent Documents 3 and 4, and reported that the tissue has the ability to produce pituitary hormones. .
  • the object of the present invention is to provide a method for more efficiently producing a cell population containing pituitary tissue from pluripotent stem cells.
  • the object is to provide a method for efficiently producing a cell population containing high-quality pituitary tissue suitable for human transplantation and regenerative medicine.
  • it is to identify and produce a cell population corresponding to an intermediate product suitable for the production and purification of the final product.
  • feeder-free cultured pluripotent stem cells can be used as a starting material, and by reducing the amount of expensive recombinant proteins used and producing them at a lower cost, we provide a method for efficiently producing them. That is.
  • the present inventors conducted repeated studies to solve the above problems, and found that pluripotent stem cells were cultured in the presence of a c-jun N-terminal kinase (JNK) signaling pathway inhibitor, and a BMP signaling pathway agonist and Sonic-Hedgehog signal transduction pathway active substance, it was found that a cell population containing pituitary tissue can be efficiently produced. Furthermore, the present inventors have found that a cell population containing pituitary tissue can be more efficiently produced by simultaneously adding the JNK signaling pathway inhibitor and the Wnt signaling pathway inhibitor. That is, the present invention relates to the following.
  • JNK c-jun N-terminal kinase
  • a method for producing a cell population containing pituitary tissue comprising the following steps (1) and (2); (1) a first step of culturing pluripotent stem cells in the presence of a c-jun N-terminal kinase (JNK) signaling pathway inhibitor and a Wnt signaling pathway inhibitor to obtain a cell population; (2) A second step of culturing the cell population obtained in the first step in the presence of a BMP signaling pathway agonist and a Sonic hedgehog signaling pathway agonist to obtain a cell population containing pituitary tissue.
  • JNK c-jun N-terminal kinase
  • pluripotent stem cells are subjected to the following step (a) before the first step; (a) Pluripotent stem cells are cultured in a medium containing 1) a TGF ⁇ family signaling pathway inhibitor and/or Sonic hedgehog signaling pathway agonist, and 2) an undifferentiated maintenance factor in the absence of feeder cells Step a.
  • the TGF ⁇ family signaling pathway inhibitor added in the step (a) is an Alk5/TGF ⁇ R1 inhibitor, and the Alk5/TGF ⁇ R1 inhibitor is SB431542, SB505124, SB525334, LY2157299, GW788388, LY364947, SD -208, EW-7197, A83-01, A77-01, RepSox, BIBF-0775, TP0427736, TGFBR1-IN-1, SM-16, TEW-7197, LY3200882, LY2109761, KRCA 0008, GSK 1838705, Crizoertinib, Coritinib , ASP 3026, TAE684, AZD3463 and derivatives thereof.
  • the culturing in the first step is further in the presence of a Sonic hedgehog signaling pathway agonist, and the culturing period in the presence of the Sonic hedgehog signaling pathway agonist in the first step and the second step is , 30 days.
  • step (b) The production method according to [4], characterized in that the cell population obtained in the second step is subjected to the following step (b) before the third step; (b) step b of culturing the cell population obtained in the second step in the presence of a BMP signaling pathway inhibitor; [5-1] The production method according to [5], wherein the BMP signaling pathway inhibitor added in step (b) comprises a type I BMP receptor inhibitor.
  • the type I BMP receptor inhibitor includes K02288, Dorsomorphin, LDN-193189, LDN-212854, LDN-214117, ML347, DMH1, DMH2, Compound 1, VU5350, OD52, E6201, Saracatinib, BYL719 and The production method according to [5-1], which contains at least one selected from the group consisting of these derivatives. [6] The production according to any one of [1] to [5], [2-1], [5-1] and [5-2], wherein the JNK signaling pathway inhibitor comprises a JNK inhibitor Method.
  • the JNK inhibitor is SP600125, JNK-IN-8, DB07268, IQ-1S, Tanzisertib, Bentamapimod, BI-78D3, BI-87G3, CC-401, TCS JNK 5a, AS601245, CV-65 , D-JNK1, ER-358063, ER-409903, ER-417258, CC-359, CC-930, SB203580 and at least one selected from the group consisting of derivatives thereof, the production method according to [6]. .
  • the JNK inhibitor contains JNK-IN-8 or SP600125, and the step (1) is initiated in a medium containing 1 nM to 50 ⁇ M JNK-IN-8 or 1 nM to 25 ⁇ M SP600125. , [6] or [6-1].
  • the Rac inhibitor is at least one selected from the group consisting of NSC23766, EHop-016, ZCL278, MBQ-167, KRpep-2d, ARS-853, Salirasib, ML141, EHT1864 and derivatives thereof
  • the manufacturing method according to [7] comprising: [8] [1] to [7], [2-1], [5-1], [5-2], wherein the Wnt signaling pathway inhibitor includes a substance having inhibitory activity against the non-canonical Wnt pathway ], [6-1], [6-2], and [7-1].
  • the substance having inhibitory activity against the non-classical Wnt pathway is a PORCN inhibitor
  • the PORCN inhibitor is IWP-2, IWP-3, IWP-4, IWP-L6, IWP-12, IWP- O1, LGK-974, Wnt-C59, ETC-131, ETC-159, GNF-1331, GNF-6231, Porcn-IN-1, RXC004, CGX1321 and at least one selected from the group consisting of derivatives thereof , the manufacturing method according to [8].
  • a TGF signaling pathway inhibitor is further present, [1] to [8], [2 -1], [5-1], [5-2], [6-1], [6-2], [7-1] and [8-1].
  • the Sonic hedgehog signaling pathway active substance added in any one or more of the above step a, first step, second step and b step consists of SAG, Purmorphamine and GSA-10 including at least one selected from the group [1] to [9], [2-1], [5-1], [5-2], [6-1], [6-2], [7- 1] and [8-1].
  • a TAK1 inhibitor is further present, [1] to [9], [2-1] , [5-1], [5-2], [6-1], [6-2], [7-1], [8-1], and [9-1].
  • the TAK1 inhibitor comprises at least one selected from the group consisting of (5Z)-7-Oxozeaenol, N-Des(aminocarbonyl)AZ-TAK1 inhibitor, Takinib, NG25, Sarsasapogenin and derivatives thereof , the manufacturing method according to [10].
  • An FGF signaling pathway agonist is further present in any one or more of the second step, b step, and third step, [1] to [10], [2-1], [ 5-1], [5-2], [6-1], [6-2], [7-1], [8-1], [9-1], or [10-1] Method of manufacture as described. [11-1] The production method according to [11], wherein the FGF signaling pathway agent contains at least one selected from the group consisting of FGF2, FGF3, FGF8, FGF10 and variants thereof.
  • any one or more of the second step, b step, and third step there is further a substance that has an action to reduce oxidative stress, [1] to [11], [2-1] ], [5-1], [5-2], [6-1], [6-2], [7-1], [8-1], [9-1], [10-1], The production method according to any one of [11-1].
  • [12-1] to [12] wherein the substance having an effect of reducing oxidative stress includes at least one selected from the group consisting of ascorbic acid, N-acetyl-L-cysteine, nicotinamide, and derivatives thereof; Method of manufacture as described.
  • an inhibitor against the stress response signaling pathway is further present, [1] to [12], [2-1] ], [5-1], [5-2], [6-1], [6-2], [7-1], [8-1], [9-1], [10-1], [11-1], and the production method according to any one of [12-1].
  • [14] In any one or more of the second step, b step, and third step, culturing the cells while shaking, [1] to [13], [2-1], [5] -1], [5-2], [6-1], [6-2], [7-1], [8-1], [9-1], [10-1], [11-1 ], and the production method according to any one of [12-1].
  • any one or more of the first step, second step, b step, and third step is carried out in a cultureware in which at least one well is formed, and the well is a plurality of are divided into microwells, and suspension culture is performed so that one cell cluster is formed for each of the microwells, [1] to [15], [2-1], [5- 1], [5-2], [6-1], [6-2], [7-1], [8-1], [9-1], [10-1], [11-1] , and the production method according to any one of [12-1].
  • the effect of a JNK signaling pathway inhibitor increases the efficiency of induction of differentiation into ectoderm, and efficient production of a cell population containing pituitary tissue with higher hormone-producing ability from pluripotent stem cells. becomes possible.
  • FIG. 1 is a diagram schematically showing the method for producing a cell population containing pituitary tissue of the present invention (embodiment performed in steps (a), (1) and (2): Example 1) ( Upper diagram) and a diagram (lower diagram) showing the morphology of the resulting cell population (cell mass).
  • FIG. 2A is a diagram schematically showing the method for producing a cell population containing pituitary tissue of the present invention (embodiment performed in steps (a), (1) and (2): Example 2). be.
  • FIG. 2B is a diagram showing the morphology of the cell population (cell mass) produced by the process shown in FIG. 2A.
  • FIG. 1 is a diagram schematically showing the method for producing a cell population containing pituitary tissue of the present invention (embodiment performed in steps (a), (1) and (2): Example 1) ( Upper diagram) and a diagram (lower diagram) showing the morphology of the resulting cell population (cell mass).
  • FIG. 2A is a diagram schematically showing the method
  • FIG. 3A is a diagram schematically showing the method for producing a cell population containing pituitary tissue of the present invention (embodiment performed in steps (a), (1) and (2): Example 3).
  • FIG. 3B is a diagram showing the expression of Lhx3, Pitx1 and E-cadherin in the cell population (cell mass) produced by the process shown in FIG. 3A.
  • FIG. 4A schematically shows the method for producing a cell population containing pituitary tissue of the present invention (embodiment performed in steps (a), (1), (2) and (3): Example 4). is a diagram shown in FIG.
  • FIG. 4B shows differentiation induction of pituitary tissue from the cell population (cell mass) produced by the process shown in FIG.
  • FIG. 4A is a graph showing the results of examination of ACTH) secretion ability.
  • FIG. 5 schematically shows the method for producing a cell population containing pituitary tissue of the present invention (embodiment performed in steps (a), (1), (2) and (3): Example 5). 2 (upper diagram) and a diagram (lower diagram) showing the morphology of the resulting cell population (cell mass). Step (3) was performed with shaking culture.
  • FIG. 6 schematically shows the method for producing a cell population containing pituitary tissue of the present invention (embodiment performed in steps (a), (1), (2) and (3): Example 6).
  • FIG. 7A is a diagram schematically showing the steps of Reference Example 1 of the method for producing a cell population containing pituitary tissue from human ES cells (conditions in which no JNK inhibitor is added in step (1)).
  • FIG. 7B is a diagram showing the expression status of RAX, PITX1 and E-cadherin on day 32 of cell aggregates produced by the process shown in FIG. 7A.
  • FIG. 8A schematically shows the steps of Reference Example 2 of the method for producing a cell population containing pituitary tissue from human iPS cells (examination of the addition period of IWP2, SB431542 and BMP4 in steps (1) and (2)).
  • FIG. 8B-1 shows the expression status of RAX, PITX1, LHX3 and E-cadherin on day 29 of cell aggregates produced by the steps shown in FIG. 8A (IWP2, SB431542 addition period: d0-6). It is a diagram.
  • the upper stage shows the case where the BMP4 addition period is d2-6, and the lower stage shows the case where the BMP4 addition period is d2-18.
  • FIG. 8B-2 shows the expression status of RAX, PITX1, LHX3 and E-cadherin on day 29 of cell aggregates produced by the process shown in FIG. 8A (IWP2, SB431542 addition period: d0-12). It is a diagram. The upper stage shows the case where the BMP4 addition period is d2-6, and the lower stage shows the case where the BMP4 addition period is d2-18.
  • FIG. 8B-3 shows the expression status of RAX, PITX1, LHX3 and E-cadherin on day 29 of cell aggregates produced by the process shown in FIG. 8A (IWP2, SB431542 addition period: d0-29). It is a diagram.
  • the upper stage shows the case where the BMP4 addition period is d2-6, and the lower stage shows the case where the BMP4 addition period is d2-18.
  • the upper figure (A) shows the steps of Reference Example 3 of the method for producing a cell population containing pituitary tissue from human ES cells (addition of IWP2, BMP4 and SAG in steps (1), (2) and (3)).
  • FIG. 10 is a diagram schematically showing a study of concentration).
  • the figure below (B) shows the results of examining the ability of the cell aggregates produced by the process shown in A to secrete ACTH 61 days, 103 days, 152 days, 201 days, and 250 days after the initiation of differentiation induction.
  • the upper diagram (A) shows the method for producing a cell population containing pituitary tissue of the present invention (embodiment performed in step (a), step (1), step (2) and step (3): Example 7). It is a diagram schematically showing the. (B) below shows the expression of ACTH and E-cadherin 103 days after initiation of induction of differentiation of cell aggregates produced by the process shown in A.
  • FIG. The upper row shows the results when the JNK inhibitor was not added, and the lower row shows the results when the JNK inhibitor was added.
  • FIG. 11 shows the method for producing a cell population containing pituitary tissue of the present invention (embodiment performed in steps (a), (1), (2) and (3): Example 8).
  • FIG. 2 shows the expression of ACTH and SOX2 on day 59 after initiation of induction of differentiation of cell aggregates.
  • the upper diagram (A) shows the method for producing a cell population containing pituitary tissue of the present invention (embodiment performed in step (a), step (1), step (2) and step (3): Example 9). It is a diagram schematically showing the.
  • B as shown in A, cell aggregates were produced separately in the case of SAG treatment up to 30 days after the start of differentiation induction and in the case of continuous SAG treatment thereafter, and each ACTH secretion FIG.
  • FIG. 13A schematically shows the method for producing a cell population containing pituitary tissue of the present invention (embodiment performed in steps (a), (1), (2) and (3): Example 10). is a diagram shown in FIG.
  • FIG. 13B shows the results of quantifying the expression levels of various cell markers on days 3, 6, 19, 30, 60, 100, and 201 after initiation of differentiation induction of cell aggregates produced by the process shown in FIG. 13A. It is a diagram. Results for PITX1, LHX3, and POMC are shown in the upper row.
  • Figure 14 shows PRL and POU1F1 in cell aggregates produced by the steps (step (a), step (1), step (2) and step (3); Example 11) shown in Figure 13A. , TSH, LH, FSH and GH.
  • A Triple staining of PRL, POU1F1 and DAPI 103 days after the start of suspension culture (left figure) and double staining of PRL and DAPI 103 days after the start of suspension culture (right figure)
  • B TSH and DAPI 103 days after the start of suspension culture
  • C double staining of LH and DAPI 103 days after the start of suspension culture
  • D double staining of FSH and DAPI 103 days after the start of suspension culture
  • E GH, POU1F1 and DAPI 152 days after the start of suspension culture (left) and double staining of GH and DAPI (right) 152 days after the start of suspension culture.
  • FIG. 15 shows the steps shown in FIG.
  • FIG. 13A (embodiments performed in steps (a), (1), (2) and (3); Example 12) 201 days after initiation of differentiation induction is a view of the cell aggregates observed with an electron microscope.
  • FIG. 16 shows the steps shown in FIG. 13A (embodiments performed in step (a), step (1), step (2) and step (3); Example 13). It is a figure confirming the expression of ACTH and CXADR on post-103 days.
  • A is the embodiment performed in the steps (step (a), step (1), step (2) and step (3) shown in FIG. 13A; Example 14) after initiation of differentiation induction
  • FIG. 3 shows the ACTH secretion ability on the 29th, 61st, 103rd, 152nd, 201st and 250th days.
  • FIG. 13A shows the results of an ACTH stimulation test with CRH (B) or dexamethasone (C) on day 103 of initiation. **: p ⁇ 0.01, paired t-test.
  • Figure 18A shows the steps shown in Figure 13A (embodiments carried out in steps (a), (1), (2) and (3); Example 15). , 100-day cell aggregates, and undifferentiated cells confirming the expression of each cell marker.
  • FIG. 18B shows differentiation induction of cell aggregates produced by the steps (step (a), step (1), step (2) and step (3); Example 15) shown in Figure 13A.
  • FIG. 2 shows the expression of NESTIN and SOX11 in eyes. a: NESTIN, SOX11 and DAPI triple staining, b: NESTIN and DAPI double staining, c: SOX11 and DAPI double staining, d: NESTIN, SOX11 and DAPI triple staining.
  • FIG. 19A shows a method for producing pituitary organoids from human iPS cells using cultureware having divided microwells (step (a), step (1) and step (2) embodiment: Example 16) is a schematic diagram.
  • FIG. 19B is a diagram showing the results of oblique illumination observation of the shape of the cell aggregates produced by the process shown in FIG. 19A 29 days after initiation of induction of differentiation.
  • Pituitary organoids with placode-like pituitary tissue were formed.
  • FIG. 20A schematically shows the method for producing a cell population containing pituitary tissue from human iPS cells of the present invention (embodiment performed in steps (a), (1) and (2): Example 17).
  • FIG. 20B is a diagram showing the results of oblique illumination observation of the shape of the cell aggregate produced by the process shown in FIG. 20A 28 days after initiation of induction of differentiation.
  • Pituitary organoids having a placode-like pituitary tissue were formed under both BMP4 addition conditions 1 day and 2 days after initiation of differentiation induction.
  • a “stem cell” means an undifferentiated cell having differentiation potential and proliferation potential (especially self-renewal potential).
  • Stem cells include pluripotent stem cells, multipotent stem cells, unipotent stem cells, etc., depending on their ability to differentiate.
  • a “pluripotent stem cell” refers to a stem cell that can be cultured in vitro and has the ability (pluripotency) to differentiate into all the cells that make up the living body. All cells are derived from three germ layers: ectoderm, mesoderm and endoderm.
  • multipotent stem cell is meant a stem cell that has the ability to differentiate into multiple, but not all, types of tissues and cells.
  • a “unipotent stem cell” means a stem cell that has the ability to differentiate into a specific tissue or cell.
  • Pluripotent stem cells can be derived from fertilized eggs, cloned embryos, germ stem cells, tissue stem cells, somatic cells, etc.
  • pluripotent stem cells include embryonic stem cells (ES cells: Embryonic stem cells), EG cells (Embryonic germ cells), induced pluripotent stem cells (iPS cells: induced pluripotent stem cells), and the like.
  • Pluripotent stem cells also include Muse cells (Multi-lineage differentiating Stress Enduring cells) obtained from mesenchymal stem cells (MSCs) and GS cells produced from germ cells (eg, testis). Human embryonic stem cells are those established from human embryos within 14 days of fertilization.
  • Embryonic stem cells were first established in 1981 and have been applied to the production of knockout mice since 1989. Human embryonic stem cells were established in 1998 and are being used in regenerative medicine. ES cells can be produced by culturing the inner cell population on feeder cells or in a medium containing a leukemia inhibitory factor (LIF). Methods for producing ES cells are described in, for example, WO96/22362, WO02/101057, US Pat. No. 5,843,780, US Pat. No. 6,200,806, US Pat. It is Embryonic stem cells can be obtained from designated institutions and can also be purchased commercially. For example, human embryonic stem cells KhES-1, KhES-2 and KhES-3 are available from the Institute for Frontier Medical Sciences, Kyoto University.
  • LIF leukemia inhibitory factor
  • ntES cell nuclear-transplanted ES cell
  • EG cells can be produced by culturing primordial germ cells in a medium containing mouse stem cell factor (mSCF), LIF and basic fibroblast growth factor (bFGF) (Cell, 70:841-847, 1992).
  • mSCF mouse stem cell factor
  • bFGF basic fibroblast growth factor
  • “Induced pluripotent stem cells” are cells in which pluripotency is induced by reprogramming somatic cells by known methods.
  • induced pluripotent stem cells specifically, somatic cells differentiated into fibroblasts, peripheral blood mononuclear cells, etc. are Oct3/4, Sox2, Klf4, Myc (c-Myc, N-Myc, L-Myc). , Glis1, Nanog, Sall4, lin28, Esrrb, etc., and reprogrammed by the expression of multiple genes to induce pluripotency.
  • Yamanaka et al. established mouse induced pluripotent stem cells (Cell, 2006, 126(4) pp.663-676).
  • Induced pluripotent stem cells were also established in human fibroblasts in 2007, and have pluripotency and self-renewal ability like embryonic stem cells (Cell, 2007, 131(5) pp.861-872; Science, 2007, 318(5858) pp. 1917-1920; Nat. Biotechnol., 2008, 26(1) pp. 101-106).
  • induced pluripotent stem cells can be induced from somatic cells by addition of compounds, etc., in addition to the method of producing induced pluripotent stem cells by direct reprogramming by gene expression (Science, 2013, 341, pp. 651- 654).
  • Somatic cells used for producing induced pluripotent stem cells are not particularly limited, but tissue-derived fibroblasts, blood cells (e.g., peripheral blood mononuclear cells, T cells, etc.), hepatocytes, pancreas cells, intestinal epithelial cells, smooth muscle cells, and the like.
  • Means for expressing genes include, for example, infection methods using viral vectors (e.g., retroviral vectors, lentiviral vectors, Sendai viral vectors, adenoviral vectors, adeno-associated viral vectors), plasmid vectors (e.g., plasmid vectors, episomal vectors). vector) using gene transfer method (e.g. calcium phosphate method, lipofection method, retronectin method, electroporation method), gene transfer method using RNA vector (e.g. calcium phosphate method, lipofection method, electroporation method), protein A direct injection method and the like can be mentioned.
  • viral vectors e.g., retroviral vectors, lentiviral vectors, Sendai viral vectors, adenoviral vectors, adeno-associated viral vectors
  • plasmid vectors e.g., plasmid vectors, episomal vectors.
  • gene transfer method e.g. calcium phosphate method, lipofection
  • induced pluripotent stem cell lines for example, 201B7 cells, 201B7-Ff cells, 253G1 cells, 253G4 cells, 1201C1 cells, 1205D1 cells, and 1210B2 cells established at Kyoto University.
  • 1231A3 cells are available from Kyoto University and iPS Academia Japan.
  • established induced pluripotent stem cell lines for example, Ff-I01 cells, Ff-I14 cells and QHJI01s04 cells established at Kyoto University are available from Kyoto University.
  • Pluripotent stem cells may be genetically modified.
  • Genetically modified pluripotent stem cells can be produced, for example, by using homologous recombination techniques.
  • Genes on the chromosome to be modified include, for example, cell marker genes, histocompatibility antigen genes, and disease-associated genes based on nervous system cell disorders. ⁇ Manipulating the Mouse Embryo,A Laboratory Manual,Second Edition,Cold Spring Harbor Laboratory Press(1994) ⁇ Gene Targeting,A Practical Approach,IRL Press at Oxford University Press(1993) ⁇ 8. Gene targeting, generation of mutant mice using ES cells, methods described in Yodosha (1995), etc. can be used.
  • the genomic gene of the target gene to be modified (e.g., cell marker gene, histocompatibility antigen gene, disease-related gene, etc.) is isolated, and the target gene is homologously recombined using the isolated genomic gene.
  • Create a target vector for By introducing the produced target vector into stem cells and selecting cells in which homologous recombination has occurred between the target gene and the target vector, stem cells in which genes on chromosomes have been modified can be produced.
  • Methods for isolating the genomic gene of the target gene include those described in Molecular Cloning, A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press (1989) and Current Protocols in Molecular Biology, Johns Wiley 7-19 (19), etc. A well-known method is mentioned.
  • a genomic DNA library screening system manufactured by Genome Systems
  • Universal GenomeWalker Kits manufactured by Clontech
  • Target vectors for homologous recombination of target genes Preparation of target vectors for homologous recombination of target genes and efficient selection of homologous recombinants are described in Gene Targeting, A Practical Approach, IRL Press at Oxford University Press (1993), Biomanual Series 8, Gene Targeting , Production of Mutant Mouse Using ES Cells, Yodosha (1995), and the like. Either a replacement type or an insertion type target vector can be used.
  • methods such as positive selection, promoter selection, negative selection, poly A selection, and the like can be used.
  • Methods for selecting the desired homologous recombinant from the screened cell lines include Southern hybridization method and PCR method for genomic DNA.
  • Genome-edited pluripotent stem cells can also be used as pluripotent stem cells.
  • Gene editing is a technique for intentionally modifying a target gene or genomic region by the principle of site-specific cleavage of genomic DNA strands using a nuclease, chemical conversion of bases, or the like.
  • Site-specific nucleases include zinc finger nucleases (ZFNs), TALENs, CRISPR/Cas9, and the like.
  • Disease-specific pluripotent stem cells may be used as pluripotent stem cells.
  • a “disease-specific pluripotent stem cell” refers to a pluripotent stem cell with a genetic background or mutation of a gene involved in disease development.
  • Disease-specific pluripotent stem cells are obtained by establishing induced pluripotent stem cells from patients with the target disease or their relatives by the method described above, or by obtaining the genome of already established pluripotent stem cells. It can be produced by a modification method using genome editing techniques such as zinc finger nuclease (ZFN), TALEN, and CRISPR.
  • ZFN zinc finger nuclease
  • TALEN TALEN
  • “Mammals” include rodents, ungulates, cats, lagomorphs, primates, and the like. Rodents include mice, rats, hamsters, guinea pigs, and the like. Hoofed animals include pigs, cows, goats, horses, sheep, and the like. The Felida includes dogs, cats, and the like. Lagomorpha includes rabbits and the like.
  • the term “primate” refers to mammals belonging to the order Primates, and includes lemurs, lorises, and primates of the order Prosapiforma, such as lemurs, lorises, and tsubai, and primates, such as monkeys, anthropoids, and humans.
  • the pluripotent stem cells used in the present invention are mammalian pluripotent stem cells, preferably rodent (e.g., mouse, rat) or primate (e.g., human, monkey) pluripotent stem cells, most preferably. are human pluripotent stem cells.
  • Cell adhesion includes cell-to-cell adhesion (cell-cell adhesion) and cell-to-extracellular matrix (substrate) adhesion (cell-substrate adhesion). Adhesion of cells to culture equipment and the like that occurs in an in vitro artificial culture environment is also included in cell adhesion.
  • the junctions formed in cell-cell adhesion are cell-cell junctions, and the junctions formed in cell-substrate adhesion are cell-substrate junctions.
  • Types of cell adhesion include, for example, anchoring junctions, communicating junctions, and occluding junctions.
  • Tight junctions are relatively strong cell-cell junctions and can occur in epithelial cells. The presence or absence of tight junctions between cells can be detected, for example, by techniques such as immunohistochemistry using antibodies against tight junction constituents (anti-claudin antibody, anti-ZO-1 antibody, etc.).
  • suspension culture refers to culturing cells while maintaining the state in which they are floating in the culture solution.
  • suspension culture is carried out under conditions that do not allow cells to adhere to the cultureware and feeder cells on the cultureware (hereinafter referred to as “cultureware, etc.”). culture). More specifically, suspension culture refers to culture under conditions that do not form strong cell-substrate bonds between cells and cultureware. A person skilled in the art can easily determine whether the cultured cells are in a state of suspension culture or adherence culture, for example, by swinging culture equipment during microscopic observation.
  • Adhesive culture refers to culturing while maintaining the state in which cells adhere to cultureware and the like.
  • the adherence of cells to a cultureware or the like means that a strong cell-substrate bond, which is a type of cell adhesion, can be formed between the cells and the cultureware or the like.
  • cell aggregates in suspension culture cells adhere to each other.
  • strong cell-substrate bonds are not formed between cells and cultureware, and cell-substrate bonds are hardly formed, or even if they are formed, they do not contribute. small.
  • Plant attachment between cells means that the cells adhere to each other on the plane. More specifically, "cells are surface-to-cell adhered” means that the ratio of the surface area of a certain cell that is adhered to the surface of another cell is, for example, 1% or more, preferably 3% or more, more preferably means 5% or more.
  • the cell surface can be observed by staining with a membrane-staining reagent (eg, DiI), immunostaining with cell adhesion factors (eg, E-cadherin, N-cadherin, etc.), and the like.
  • a membrane-staining reagent eg, DiI
  • cell adhesion factors eg
  • the cultureware used for adherent culture is not particularly limited as long as it allows adherent culture, and can be appropriately determined by those skilled in the art.
  • Examples of such culture equipment include flasks, tissue culture flasks, dishes, tissue culture dishes, multidishes, microplates, microwell plates, micropores, multiplates, multiwell plates, chamber slides, Petri dishes, tubes, Biofunctional chips such as trays, culture bags, and organ-on-chips are included.
  • the cell-adhesive cultureware those whose surfaces are artificially treated for the purpose of improving adhesion to cells can be used.
  • the artificial treatment includes, for example, coating treatment with extracellular matrix, polymer, etc., and surface treatment such as gas plasma treatment and positive charge treatment.
  • extracellular matrices to which cells adhere include basement membrane samples, laminin, entactin, collagen, gelatin and the like.
  • Polymers include polylysine, polyornithine, and the like.
  • the culture surface of the cultureware may be flat or uneven.
  • laminin is a heterotrimeric molecule consisting of ⁇ , ⁇ , and ⁇ chains, and is an extracellular matrix protein that has isoforms with different subunit chain compositions. Specifically, laminin has about 15 isoforms, which are heterotrimeric combinations of 5 ⁇ -chains, 4 ⁇ -chains and 3 ⁇ -chains.
  • the name of laminin is determined by combining the respective numbers of the ⁇ chain ( ⁇ 1 to ⁇ 5), ⁇ chain ( ⁇ 1 to ⁇ 4) and ⁇ chain ( ⁇ 1 to ⁇ 3). For example, laminin composed of a combination of ⁇ 5 chain, ⁇ 1 chain and ⁇ 1 chain is called laminin-511.
  • the cultureware used for suspension culture is not particularly limited as long as it is capable of suspension culture, and can be appropriately determined by those skilled in the art.
  • Examples of such culture equipment include flasks, tissue culture flasks, dishes, petri dishes, tissue culture dishes, multidishes, microplates, microwell plates, micropores, multiplates, multiwell plates, chamber slides, petri dishes. , tubes, trays, culture bags, spinner flasks and roller bottles.
  • These cultureware are preferably cell non-adhesive in order to enable suspension culture.
  • the non-cell-adherent cultureware the surface of the cultureware is not subjected to the artificial treatment described above for the purpose of improving the adhesion to cells.
  • non-cell-adhesive cultureware cultureware whose surface has been artificially treated for the purpose of reducing adhesion to cells can also be used.
  • the culture surface of the cultureware may be flat, U-bottomed or V-bottomed, and may be uneven.
  • treatments that reduce adhesion to cells include 2-methyloxyethyl phosphorylcholine (MPC) polymer, Poly (2-hydroxyethyl methacrylate) (Poly-HEMA), and superhydrophilic treatment by coating with polyethylene glycol (PEG). Low adsorption treatment and the like can be mentioned.
  • “Shake culture” is a culture method that agitates the culture medium by shaking the cultureware to promote the supply of oxygen to the culture medium and the exchange of substances with the surroundings of the cells. Stirring culture, channel culture, and the like can also be performed.
  • cell aggregates For the purpose of protecting cell aggregates from physical stress such as shear force generated during suspension culture, increasing the local concentration of growth factors and cytokines secreted by cells, and promoting tissue development, cell aggregates can be embedded in a gel or encapsulated in a substance-permeable capsule and then subjected to suspension culture (Nature, 2013, 501.7467:373).
  • the encapsulated cell aggregates may be cultured with shaking.
  • Gels or capsules used for embedding may be made of either biological or synthetic polymers.
  • gels or capsules used for such purposes examples include Matrigel (manufactured by Corning), PuraMatrix (manufactured by 3D Matrix), VitroGel 3D (manufactured by The Well Bioscience), collagen gel (manufactured by Nitta Gelatin), alginate gel ( PG Research), Cell-in-a-Box (manufactured by Austrianova), and the like.
  • the medium used for culturing cells can be prepared using the medium normally used for culturing animal cells as a basal medium.
  • a medium for culturing pluripotent stem cells based on the above basal medium, preferably a known medium for embryonic stem cells or induced pluripotent stem cells, pluripotent stem cells under feeder-free conditions.
  • a medium for culturing (feeder-free medium) or the like can be used.
  • Many synthetic media have been developed and are commercially available as feeder-free media, such as Essential 8 medium.
  • Essential 8 medium is DMEM / F12 medium, as additives, L-ascorbic acid-2-phosphate magnesium (64 mg / l), sodium selenium (14 ⁇ g / 1), insulin (19.4 mg / l), NaHCO 3 ( 543 mg/l), transferrin (10.7 mg/l), bFGF (100 ng/ml), and TGF ⁇ family signaling pathway agonists (TGF ⁇ 1 (2 ng/ml) or Nodal (100 ng/ml)) (Nature Methods, 8, 424-429 (2011)).
  • feeder-free media examples include Essential 8 (manufactured by Thermo Fisher Scientific), S-medium (manufactured by DS Pharma Biomedical), StemPro (manufactured by Thermo Fisher Scientific), hESF9, mTeSR1 (manufactured by STEMCELL Technologies), mTeSR2 (manufactured by STEMCELL Technologies), TeSR-E8 (manufactured by STEMCELL Technologies), mTeSR Plus (manufactured by STEMCELL Technologies), StemFit (manufactured by Ajinomoto Co.), ReproMed iPSC Medium (manufactured by Reprocell), NutriBustrialStem ), NutriStem V9 (manufactured by Biological Industries), Cellartis DEF-CS Xeno-Free Culture Medium (manufactured by Takara Bio), Stem-Partner SF (manufactured by Kyokuto Pharmaceutical), PluriSTEM Human ES/
  • the serum-free medium may contain serum replacement.
  • serum substitutes include those appropriately containing albumin, transferrin, fatty acids, collagen precursors, trace elements, 2-mercaptoethanol, 3'-thiolglycerol, or equivalents thereof.
  • serum substitutes can be prepared, for example, by the method described in WO98/30679. A commercially available product may be used as a serum substitute.
  • serum substitutes include, for example, Knockout Serum Replacement (manufactured by Thermo Fisher Scientific) (hereinafter sometimes referred to as "KSR"), Chemically-defined Lipid concentrated (manufactured by Thermo Fisher Scientific), Glutath Scientific), B27 Supplement (Thermo Fisher Scientific), N2 Supplement (Thermo Fisher Scientific), and the like.
  • KSR Knockout Serum Replacement
  • Chemically-defined Lipid concentrated manufactured by Thermo Fisher Scientific
  • Glutath Scientific Glutath Scientific
  • B27 Supplement Thermo Fisher Scientific
  • N2 Supplement Thermo Fisher Scientific
  • Serum-free media used in suspension culture and adhesion culture suitably contain fatty acids or lipids, amino acids (e.g., non-essential amino acids), vitamins, growth factors, cytokines, antioxidants, 2-mercaptoethanol, pyruvic acid, buffers, and inorganic salts. etc. may be included.
  • an appropriate amount for example, about 0.5% to about 30%, preferably about 1% to about 20%
  • a serum-free medium for example, a 1:1 mixture of F-12 medium and IMDM medium supplemented with 1 ⁇ chemically-defined Lipid concentrated, 5% KSR and 450 ⁇ M 1-monothioglycerol
  • the medium disclosed in Japanese Patent Publication No. 2001-508302 can be mentioned as a KSR equivalent.
  • “Serum medium” means a medium containing unadjusted or unpurified serum.
  • the medium contains fatty acids or lipids, amino acids (eg, non-essential amino acids), vitamins, growth factors, cytokines, antioxidants, 2-mercaptoethanol, 1-monothioglycerol, pyruvic acid, buffers, inorganic salts, and the like.
  • Cultivation in the present invention is preferably performed under xeno-free conditions.
  • Xeno-free means conditions under which components derived from a biological species different from the biological species of cells to be cultured are eliminated.
  • the medium used in the present invention is preferably a chemically defined medium (CDM) containing components.
  • Basis membrane structure means a thin membranous structure composed of an extracellular matrix.
  • basement membranes are formed on the basal side of epithelial cells.
  • Basement membrane components include type IV collagen, laminin, heparan sulfate proteoglycan (perlecan), entactin/nidogen, cytokines, growth factors, and the like. Whether the basement membrane is present in the tissue derived from the living body and in the cell population prepared by the production method of the present invention can be determined by tissue staining such as PAM staining, and an antibody against a component of the basement membrane (anti-laminin antibody , anti-type IV collagen antibody, etc.).
  • Base membrane preparation refers to the ability to control epithelial cell-like cell morphology, differentiation, proliferation, motility, functional expression, etc., when desired cells with basement membrane-forming ability are seeded on it and cultured. It refers to those containing basement membrane constituents having In the present invention, when cells are adherently cultured, they can be cultured in the presence of a basement membrane sample.
  • basement membrane component refers to a thin membrane-like extracellular matrix molecule present between the epithelial cell layer and the stromal cell layer in animal tissues.
  • a basement membrane preparation is obtained by removing, for example, cells having the ability to form a basement membrane adhered to a support via the basement membrane from the support using a solution having lipid-dissolving ability of the cells, an alkaline solution, or the like. It can be made by Basement membrane preparations include commercially available basement membrane preparations such as Matrigel (manufactured by Corning), Geltrex (manufactured by Thermo Fisher Scientific), extracellular matrix molecules known as basement membrane components (e.g., laminin, IV type collagen, heparan sulfate proteoglycan, entactin, etc.).
  • basement membrane preparations include commercially available basement membrane preparations such as Matrigel (manufactured by Corning), Geltrex (manufactured by Thermo Fisher Scientific), extracellular matrix molecules known as basement membrane components (e.g., laminin, IV type collagen, heparan sulfate proteoglycan, entactin, etc.).
  • a basement membrane preparation such as Matrigel (manufactured by Corning) extracted and solubilized from tissues or cells such as Engelbreth-Holm-Swarm (EHS) mouse sarcoma can be used.
  • EHS Engelbreth-Holm-Swarm
  • basement membrane components used in cell culture human solubilized amniotic membrane (manufactured by Bioresources Applied Research Laboratories), human recombinant laminin produced in HEK293 cells (manufactured by BioLamina), human recombinant laminin fragment (manufactured by Nippi), Human recombinant vitronectin (manufactured by Thermo Fisher Scientific) and the like can also be used.
  • the basement membrane preparation preferably uses a recombinant protein whose components are clear.
  • the terms "medium containing substance X" and “in the presence of substance X” refer to a medium supplemented with exogenous substance X, a medium containing exogenous substance X, and a medium containing exogenous substance X, respectively. means the presence of the substance X of An exogenous substance X is distinguished from an endogenous substance X, for example, which is endogenously expressed, secreted or produced by cells or tissues present in the culture medium. Substance X in the medium may undergo a slight change in concentration due to decomposition of substance X or evaporation of the medium.
  • the term “at the start of culture in a medium having a concentration of substance X of Y” preferably refers to the time at which the concentration of substance X in the medium becomes uniform at Y, but the culture vessel is sufficiently small. (For example, a 96-well plate or culture with a culture solution of 200 ⁇ L or less), culture at a concentration Y at the time when the medium addition operation, half medium exchange operation, or whole medium exchange operation described later is performed so that the concentration becomes Y. Interpret as the start time.
  • the concentration of substance X in the medium is Y
  • the period containing substance X at the concentration of Y is 50% or more of the culture period.
  • the period during which the substance X is contained at the concentration Y is equal to or longer than the shortest culture period assumed in each step.
  • exogenous substance X in the absence of substance X means a medium to which exogenous substance X is not added, a medium free of exogenous substance X, or a medium in which exogenous substance X is not present. means state.
  • human protein X means that protein X has the amino acid sequence of protein X that is naturally expressed in the human body.
  • isolated protein X does not include endogenous protein X produced from the cells or tissues to be cultured and contained in the cells, tissues, or medium.
  • the purity of "isolated protein X" is usually 70% or higher, preferably 80% or higher, more preferably 90% or higher, further preferably 99% or higher, Most preferably 100%.
  • a “derivative” refers to a group of compounds produced by substituting a part of the molecule of a specific compound with another functional group or another atom.
  • a “variant” of a protein refers to a protein in which amino acid residues have been mutated, such as deletion, addition, or substitution, to the extent that the properties of the original protein can be maintained.
  • the number of amino acids to be mutated is not particularly limited, but may be 1-4, 1-3, 1-2, or 1.
  • a “variant" of a protein is at least 90% or more, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, It may be a protein having an amino acid sequence showing 99% or more, or 99.5% or more identity. Amino acids mutated in variants may be non-natural.
  • after A time (A day) includes A time (A day) and refers to after A time (A day).
  • Within B hours (B days) includes B hours (B days) and refers to before B hours (B days).
  • feeder cells refer to cells other than the stem cells that coexist when the stem cells are cultured.
  • Examples of feeder cells used for undifferentiated maintenance culture of pluripotent stem cells include mouse fibroblasts (MEF), human fibroblasts, SNL cells and the like.
  • the feeder cells are preferably growth-inhibitory treated.
  • the growth inhibitory treatment includes growth inhibitor (eg, mitomycin C) treatment, UV irradiation, and the like.
  • Feeder cells used for undifferentiated maintenance culture of pluripotent stem cells secrete humoral factors (preferably undifferentiated maintenance factors) and prepare scaffolds (extracellular matrix) for cell adhesion, thereby preserving pluripotent stem cells. Contributes to maintenance of differentiation.
  • feeder-free means culturing in the absence of feeder cells.
  • the absence of feeder cells includes, for example, conditions in which feeder cells are not added or conditions in which feeder cells are not substantially contained (for example, the ratio of feeder cells to the total number of cells is 3% or less).
  • a "cell aggregate” is a clump formed by aggregation of cells, and refers to a clump in which the cells are adhered to each other.
  • Cell aggregates, embryoid bodies, spheres, spheroids and organoids are also included in cell aggregates.
  • the cells are preferably surface-adhered to each other.
  • some or all of the cell aggregates have cell-to-cell adhesion, eg, formation of adherence junctions.
  • two or more cell aggregates can also be artificially adhered or aggregated together.
  • Cell aggregates also include clumps and assemblebloids in which cell populations are further adhered or aggregated.
  • the morphology of cell aggregates is not limited to a spherical shape, and may be, for example, a bispherical shape, a beaded shape, an aggregate shape of spheres, a cord-like/branched shape (Scientific reports, 11: 21421 (2021), the shape described in Japanese Patent Application No. 2021-078154). ) or the like.
  • Uniform cell aggregate means that the size of each cell aggregate is constant when culturing multiple cell aggregates, and the size of the cell aggregate is evaluated by the length of the maximum diameter.
  • uniform cell aggregates means that the lengths of the largest diameters have a small variance. More specifically, in cell aggregates of 75% or more of the plurality of cell aggregates, the maximum diameter is within ⁇ 100% of the average maximum diameter of the plurality of cell aggregates, preferably ⁇ of the average maximum diameter It means within 50%, more preferably within ⁇ 20% of the average maximum diameter.
  • Cell population refers to a cell group composed of two or more cells.
  • a cell population may be composed of one type of cells, or may be composed of multiple types of cells.
  • the cells that make up the cell population may be floating in the medium, or may be adhered to cultureware or the like.
  • the cells constituting the cell population may be single cells, or at least a part of the cell population may be cell-adhered to each other to form a cell population.
  • the term “single cell” refers to, for example, cells in which cell-to-cell adhesion (eg surface adhesion) is almost lost.
  • dispersed in single cells includes a state in which cell-to-cell junctions (eg, adherens junctions) are almost absent.
  • a cell population may comprise cell aggregates.
  • tissue refers to the structure of a cell population that has a structure in which multiple types of cells with different morphologies and properties are three-dimensionally arranged in a certain pattern.
  • Ectoderm refers to the outermost germ layer of the three germ layers formed after egg fertilization in the process of early development of an organism.
  • the ectoderm is divided into neuroectoderm and superficial ectoderm according to the progress of development, and the neuroectoderm is further divided into neural tube and neural crest.
  • Various organs of the body are formed from these ectoderm, and organs formed from ectoderm are said to be derived from ectoderm.
  • central nervous system organs or tissues such as the brain and spinal cord are formed from the neural tube.
  • central nervous system cells for example, some central nervous system cells, facial bones and cartilage, sensory nerve cells, autonomic nerve cells, pigment cells, mesenchymal cells, and the like are formed from the neural crest.
  • the superficial ectoderm forms the epidermis, inner ear, anterior pituitary gland, upper respiratory tract tissues including the olfactory epithelium, and the like. Placode and placode-derived tissues are derived from the superficial ectoderm.
  • Pluripotent stem cells express genes known as ectoderm markers, such as Pax3, Otx2, and Sox1, in the process of differentiation into ectoderm.
  • Endoderm represents the innermost germ layer among the three germ layers formed after egg fertilization in the process of early development of an organism.
  • the endoderm forms, for example, the digestive tract, urinary tract, pharynx, trachea, bronchi, and lungs.
  • Pluripotent stem cells express genes known as endoderm markers, such as SOX17, HNF-3 ⁇ /FoxA2, Klf5, GATA4, GATA6, PDX-1, during differentiation into endoderm.
  • Mesoderm represents the germ layer formed between the ectoderm and the endoderm. Organs or tissues such as circulatory organs, skeletons, and muscles are formed from the mesoderm. Pluripotent stem cells express genes known as mesoderm markers, such as T/Brachury, SMA, ABCA4, Nkx2.5, PDGFR ⁇ , during differentiation into mesoderm.
  • Neuro tissue means a tissue composed of nervous system cells such as the developing or adult cerebrum, midbrain, cerebellum, spinal cord, retina, sensory nerves, and peripheral nerves.
  • nerve tissue refers to an epithelial structure in which nerve tissue has a layered structure, and neuroepithelial tissue in nerve tissue is determined by bright field observation using an optical microscope. can be evaluated.
  • Central nervous system refers to the area where nerve tissue is concentrated and forms the center of information processing. In vertebrates, the brain and spinal cord are included in the central nervous system. The central nervous system derives from the ectoderm.
  • Neuron progenitor cells refers to cells other than epidermal cells among ectodermal-derived tissues.
  • nervous system cells include cells such as nervous system progenitor cells, neurons (nerve cells), glial cells, neural stem cells, neuron progenitor cells, and glial progenitor cells.
  • the nervous system cells also include cells (retinal cells) that constitute the retinal tissue described below, retinal progenitor cells, retinal layer-specific nerve cells, neural retinal cells, and retinal pigment epithelial cells.
  • Neural cells can be identified using markers such as Nestin, ⁇ III tubulin (Tuj1), PSA-NCAM, and N-cadherin.
  • Neurons are functional cells that form neural circuits and contribute to information transmission. can be identified by indicators.
  • Glial cells include astrocytes, oligodendrocytes, Müller glia, and the like.
  • astrocyte markers include GFAP, oligodendrocyte markers such as O4, and Müller glia markers such as CRALBP.
  • Neural stem cells are cells that have the ability to differentiate into neurons and glial cells (pluripotency) and the ability to proliferate while maintaining pluripotency (sometimes referred to as self-renewal ability).
  • Neural stem cell markers include Nestin, Sox2, Musashi, Hes family, CD133, etc., but these markers are general progenitor cell markers and are not considered neural stem cell-specific markers. The number of neural stem cells can be evaluated by neurosphere assay, clonal assay and the like.
  • Neuronal progenitor cells are cells that have the ability to proliferate, produce nerve cells, and do not produce glial cells. Markers of neuronal progenitor cells include Tbr2, T ⁇ 1 and the like. Cells positive for immature neuronal markers (TuJ1, Dcx, HuC/D) and proliferation markers (Ki67, pH3, MCM) can also be identified as neuronal progenitor cells. Glial progenitor cells are proliferative cells that produce glial cells but do not produce nerve cells.
  • Neural precursor cells are aggregates of progenitor cells including neural stem cells, neuronal progenitor cells and glial progenitor cells, and have the ability to proliferate and produce neurons and glia.
  • Neural progenitor cells can be identified using markers such as Nestin, GLAST, Sox2, Sox1, Musashi, and Pax6.
  • Neural cell marker-positive and proliferation marker (Ki67, pH3, MCM)-positive cells can also be identified as neural progenitor cells.
  • Cerebral tissue refers to cells that constitute the fetal or adult cerebrum (e.g., cortical neural precursor cells, dorsal cerebral nervous system precursor cells, ventral cerebral nervous system precursor cells, cerebral layer structure Specific nerve cells (neurons), layer 1 neurons, layer 2 neurons, layer 3 neurons, layer 4 neurons, layer 5 neurons, layer 6 neurons, glial cells (astrocytes and oligodendrocytes), these progenitor cells, etc.), means a tissue in which one or more types are layered and three-dimensionally arranged.
  • the fetal cerebrum is also called the forebrain or telencephalon.
  • the presence of each cell can be confirmed by a known method, for example, the presence or absence of cell marker expression, the degree of expression, and the like.
  • Cerebral cell markers include FoxG1 (also known as Bf1) expressed in cerebral cells, Sox2 and Nestin expressed in cerebral nervous system progenitor cells, Pax6 and Emx2 expressed in dorsal cerebral nervous system progenitor cells, and ventral cerebral nervous system progenitor cells.
  • ventricle refers to a cavity formed by central nervous tissue. In living organisms, it is usually an acellular structure filled with interstitial fluid such as cerebrospinal fluid, and the apical side of nerve tissue faces the ventricle.
  • the periventricular layer surrounding the brain ventricle is the area where neural stem cells exist and where cell proliferation and neurogenesis occur during development.
  • Whether cell populations and tissues produced by the production method of the present invention contain ventricles can be determined, for example, by using central nervous tissue markers (Bf1, Pax6, etc.) and apical surface markers (PKC-zeta, etc.). It can be detected by methods such as chemistry.
  • the "diencephalon” refers to the nerve tissue of the central nervous system in contact with the third ventricle.
  • the diencephalon includes tissues such as the epithalamus, thalamus, hypothalamus, and pituitary gland.
  • the "hypothalamus” refers to a region of the diencephalon in contact with the pituitary gland.
  • the hypothalamus is further subdivided into dorsal and ventral hypothalamus.
  • the hypothalamus can be identified using markers such as Rx, Vax1 and Six3.
  • the dorsal hypothalamus can be identified using markers such as Otp, Brn2, and vasopressin.
  • the ventral hypothalamus can be identified using markers such as Nkx2.1 and SF1.
  • non-neuroepithelial tissue refers to any tissue having an epithelial structure other than neuroepithelial tissue.
  • Epithelial tissue is formed from any of the germ layers of ectoderm, mesoderm, endoderm and trophectoderm.
  • Epithelial tissue includes epithelium, mesothelium, and endothelium.
  • tissues included in non-neural epithelial tissues include epidermis, corneal epithelium, nasal epithelium, oral epithelium, tracheal epithelium, bronchial epithelium, airway epithelium, renal epithelium, renal cortical epithelium, placental epithelium, and the like.
  • Epithelial tissue is usually connected by various intercellular junctions and forms a tissue having a single-layered or multi-layered structure.
  • epithelial polarity refers to the biased distribution of components and cell functions spatially formed in epithelial cells.
  • corneal epithelial cells are localized in the outermost layer of the eyeball, and on the apical side, apical side-specific proteins such as membrane-bound mucin (MUC-1, 4, 16) for retaining tear fluid are produced.
  • the basal side expresses proteins specific to the basal side, such as ⁇ 6 integrin and ⁇ 1 integrin, for adhesion to the basement membrane.
  • Phalloidin, apical markers anti-MUC-1 antibody, anti- PKC-zeta antibody, etc.
  • immunohistochemistry using basolateral markers anti- ⁇ 6 integrin antibody, anti- ⁇ 1 integrin antibody, etc.
  • the term "placode” mainly refers to the primordium of an organ formed by thickening a part of the epidermal ectoderm during the development process of vertebrates.
  • Tissues derived from placode include the lens, nose, inner ear, trigeminal nerve, glandular pituitary gland, and the like.
  • Six1, Six4, Dlx5, Eya2, Emx2, Bf1 and the like are examples of markers for the placode or its precursor tissue, the preplacode region.
  • pituitary placode refers to a thickened structure formed in the epidermal ectoderm region during embryogenesis, which expresses pituitary progenitor cell markers.
  • Pituitary progenitor cell markers include Lim3 (Lhx3), Pitx1/2, Islet1/2 and the like.
  • the pituitary placode expresses at least one, preferably all pituitary progenitor cell markers selected from the group consisting of Lim3, Pitx1/2 and Islet1/2.
  • the pituitary placode invaginates to form Rathke's pouch, which is a developing pouch-like structure, and further develops to form the glandular pituitary gland.
  • the term "adenohypophysis” refers to a tissue containing at least one type of anterior or middle lobe pituitary cells.
  • Pituitary cells include pituitary hormone-producing cells, which produce hormones that regulate physiological function, and non-hormone-producing cells.
  • Pituitary hormone-producing cells include growth hormone (GH)-producing cells, prolactin (PRL)-producing cells, adrenocorticotropic hormone (ACTH)-producing cells, thyroid-stimulating hormone (TSH)-producing cells, and follicle-stimulating hormone (FSH)-producing cells.
  • GH growth hormone
  • PRL prolactin
  • ACTH adrenocorticotropic hormone
  • TSH thyroid-stimulating hormone
  • Non-hormone producing cells include vascular endothelial cells, pericytes, follicular astrocytes, pituitary stem cells, pituitary progenitor cells.
  • the glandular pituitary contains at least one, preferably two, selected from the group consisting of growth hormone (GH)-producing cells, prolactin (PRL)-producing cells, and adrenocorticotropic hormone (ACTH)-producing cells. , more preferably three pituitary hormone-producing cells.
  • the glandular pituitary contains growth hormone (GH)-producing cells, prolactin (PRL)-producing cells, adrenocorticotropic hormone (ACTH)-producing cells, thyroid-stimulating hormone (TSH)-producing cells, follicle-stimulating hormone (FSH)-producing cells.
  • pituitary hormone-producing cells and at least one, preferably two or more (2, 3, 4, 5 or 6) pituitary hormone-producing cells selected from the group consisting of luteinizing hormone (LH)-producing cells.
  • Growth hormone (GH)-producing cell markers anti-Pit1 antibody , anti-GH antibody, etc.
  • prolactin (PRL)-producing cell marker anti-Pit1 antibody, anti-PRL antibody, etc.
  • ACTH adrenocorticotropic hormone
  • thyroid-stimulating hormone (TSH)-producing cell markers anti-GATA2 antibody, anti-ACTH antibody, etc.
  • FSH follicle-stimulating hormone
  • LH luteinizing hormone
  • pituitary stem cells refer to undifferentiated multipotent stem cells and progenitor cells that exist in the pituitary gland and contribute to the regeneration of pituitary tissue and the supply of pituitary hormone-producing cells. Whether the cell population and tissue produced by the production method of the present invention contain pituitary stem cells can be determined, for example, by Sox2, Sox9, E-Cadherin, Nestin, S100 ⁇ , GFR ⁇ 2, Prop1, CD133, ⁇ -Catenin, Klf4.
  • CXADR Coxsackievirus-Adenovirus Common Receptor
  • PRRX1/2 Coxsackievirus-Adenovirus Common Receptor
  • Ephrin-B2 ACE and other pituitary stem cell markers and Ki67
  • phosphorylated histone H3 immune system using antibodies against cell proliferation markers such as MCM Chemistry
  • proliferating cell labeling assay using nucleic acid analogues such as BrdU, EdU, IdU
  • fluorescence-labeled dipeptide ⁇ -alanyl-lysyl-N-7-amino-4-methylcoumarin-3-acetic acid uptake assay
  • pituitary gland It can be detected by a technique such as a pitusphere formation assay.
  • oral epithelium refers to the epithelial tissue and its cells that form the oral cavity.
  • Oral epithelium includes, for example, oral mucosal epithelium, salivary gland epithelium, and odontogenic epithelium.
  • Oral mucosal epithelium is usually a mucosal tissue consisting of stratified squamous epithelium, and contains basal cells, Merkel cells, melanin-producing cells, etc. on the basement membrane in contact with connective tissue. is formed.
  • Oral mucosal epithelium can be detected, for example, as cytokeratin 7, 8, 13, 14, 19 positive tissue.
  • “niche” or “stem cell niche” refers to the microenvironment involved in the proliferation, differentiation, maintenance of properties, etc. of stem cells.
  • biological niches include hematopoietic stem cell niche, hair follicle stem cell niche, intestinal epithelial stem cell niche, muscle stem cell niche, and pituitary niche. In these niches, there are stem cells specific to each tissue and supporting cells that provide the niche. maintained.
  • the "pituitary niche” refers to the microenvironment involved in the proliferation, differentiation, maintenance of properties, etc. of pituitary stem cells.
  • the pituitary niche includes the marginal cell layer (MCL) niche that exists around the residual cavity (Rathke fissure) that remains between the anterior and middle pituitary lobes as a trace of the hollow part of the sac-like Rathke's pouch during development, and Parenchymal niches interspersed in the anterior pituitary gland.
  • MCL marginal cell layer
  • mesenchymal cells are non-epithelial cells that are mainly derived from mesoderm and neural crest and form connective tissue. Some of these cells are multipotent somatic stem cells called mesenchymal stem cells. Whether or not the cell populations and tissues produced by the production method of the present invention contain mesenchymal cells can be determined using antibodies against mesenchymal cell markers such as Nestin, Vimentin, Cadherin-11, Laminin, and CD44. It can be detected by methods such as chemistry.
  • mesenchymal stem cells are included CD9, CD13, CD29, CD44, CD55, CD59, CD73, CD105, CD140b, CD166, VCAM-1, STRO-1, c-Kit, Sca-1, Nucleostemin, CDCP1 , BMPR2, BMPR1A and BPMR1B.
  • the present invention provides a cell population containing pituitary tissue and a method for producing the same. Hereinafter, it is also called the manufacturing method of the present invention.
  • One aspect of the production method of the present invention is a method for producing a cell population containing pituitary tissue, including the following steps (1') to (2).
  • (1′) a first step of culturing pluripotent stem cells in the presence of a JNK signaling pathway inhibitor to form a cell population;
  • the Wnt signaling pathway inhibitor is used in combination with the JNK signaling pathway inhibitor.
  • a more preferred embodiment of the production method of the present invention is a method for producing a cell population containing pituitary tissue, including the following steps (a) and steps (1') to (2).
  • Pluripotent stem cells are cultured in a medium containing 1) a TGF ⁇ family signaling pathway inhibitor and/or Sonic hedgehog signaling pathway agonist, and 2) an undifferentiated maintenance factor in the absence of feeder cells a step to do, (1′) a first step of culturing (preferably suspension culture) the cells obtained in step a in the presence of a JNK signaling pathway inhibitor; (2) cells containing pituitary tissue obtained by culturing (preferably suspension culture) the cell population obtained in the first step in the presence of a BMP signaling pathway agent and a Sonic hedgehog signaling pathway agent; Second step to obtain the population.
  • the first step is a step of forming cell aggregates
  • the cell population obtained in the first step subjected to the second step may be a cell aggregate.
  • the Wnt signaling pathway inhibitor is used in combination with the JNK signaling pathway inhibitor.
  • a more preferred embodiment of the production method of the present invention is a method for producing a cell population containing pituitary tissue, including the following steps (a) and steps (1) to (3).
  • Pluripotent stem cells are cultured in a medium containing 1) a TGF ⁇ family signaling pathway inhibitor and/or Sonic hedgehog signaling pathway agonist, and 2) an undifferentiated maintenance factor in the absence of feeder cells a step to do, (1) a first step of culturing (preferably suspension culture) the cells obtained in step a in the presence of a JNK signaling pathway inhibitor and a Wnt signaling pathway inhibitor; (2) a second step of culturing (preferably suspension culture) the cell population obtained in the first step in the presence of a BMP signaling pathway agent and a Sonic hedgehog signaling pathway agent; (3) The third step of culturing (preferably suspension culture) the cell population obtained in the second step in the absence of the Sonic hedgehog signaling pathway agent to obtain a cell population containing pituitary tissue.
  • the first step is a step
  • Step a Pluripotent stem cells are treated with 1) a TGF ⁇ family signaling pathway inhibitor and/or Sonic hedgehog signaling pathway agonist, and 2) undifferentiated maintenance in the absence of feeder cells.
  • a step of culturing in a medium containing factors will be described.
  • step (a) treating the pluripotent stem cells with a TGF ⁇ family signaling pathway inhibitor and/or Sonic hedgehog signaling pathway agonist, and then culturing (preferably suspension culture) in the first step.
  • This changes the state of pluripotent stem cells improves the efficiency of formation of non-neural epithelial tissues, improves the quality of the obtained cell population (aggregate), facilitates differentiation, prevents cell death, and increases pituitary cell growth. Improves manufacturing efficiency.
  • Step (a) is performed in the absence of feeder cells.
  • the absence of feeder cells (feeder-free) in the present invention means a condition in which substantially no feeder cells are contained (for example, the ratio of feeder cells to the total number of cells is 3% or less).
  • the pluripotent stem cells are preferably embryonic stem cells or induced pluripotent stem cells.
  • Induced pluripotent stem cells can be obtained from predetermined institutions, and can also be purchased as commercial products.
  • human induced pluripotent stem cell lines 201B7, 201B7-Ff cells, 253G1 cells, 253G4 cells, 1201C1 cells, 1205D1 cells, 1210B2 cells, and 1231A3 cells are available from Kyoto University and iPS Academia Japan.
  • induced pluripotent stem cell lines for example, Ff-I01 cells, Ff-I14 cells and QHJI01s04 cells established at Kyoto University are available from Kyoto University.
  • HC-6 #10 strain, 1231A3 strain and 1383D2 strain are available from RIKEN, a national research and development agency.
  • the TGF ⁇ family signaling pathway (that is, the TGF ⁇ superfamily signaling pathway) is a signaling pathway transduced by the Smad family in cells with transforming growth factor ⁇ (TGF ⁇ ), Nodal/Activin, or BMP as a ligand. .
  • the TGF ⁇ family signaling pathway inhibitor refers to a substance that inhibits the TGF ⁇ family signaling pathway, that is, the signaling pathway transmitted by the Smad family, specifically TGF ⁇ signaling pathway inhibitor, Nodal/Activin signaling pathway Inhibitors and BMP signaling pathway inhibitors may be mentioned.
  • TGF ⁇ family signaling pathway inhibitor a TGF ⁇ signaling pathway inhibitor is preferred.
  • the TGF ⁇ signal transduction pathway inhibitor is not particularly limited as long as it inhibits the signal transduction pathway caused by TGF ⁇ , and may be any of nucleic acids, proteins, and low-molecular-weight organic compounds. Examples of such substances include substances that directly act on TGF ⁇ (e.g., proteins, antibodies, aptamers, etc.), substances that suppress the expression of genes encoding TGF ⁇ (e.g., antisense oligonucleotides, siRNA, etc.), and substances that inhibit the binding of TGF ⁇ receptors to TGF ⁇ . Inhibitory substances and substances that inhibit physiological activities caused by signal transduction by TGF ⁇ receptors (eg, TGF ⁇ receptor inhibitors, Smad inhibitors, etc.) can be mentioned. Proteins known as TGF ⁇ signaling pathway inhibitors include Lefty.
  • SB431542 (sometimes abbreviated as "SB431") (4-[4-(3,4-methylenedioxyphenyl)-5-(2-pyridyl)-1H-imidazol-2-yl]benzamide)
  • SB505124 (2-[4-(1,3-Benzodioxol-5-yl)-2-(1,1-dimethylethyl)-1H-imidazol-5-yl]-6-methylpyridine
  • SB525334 (6-[2 -(1,1-Dimethylethyl)-5-(6-methyl-2-pyridinyl)-1H-imidazol-4-yl]quinoxaline)
  • LY2157299 (4-[5,6-Dihydro-2-(6-methyl- 2-pyridinyl)-4H-pyrrolo[1,2-b]pyrazol-3-yl]-6-quinolinecarboxamide
  • SB431542 is a compound known as an inhibitor of TGF ⁇ receptor (ALK5) and Activin receptor (ALK4/7) (ie TGF ⁇ R inhibitor).
  • SIS3 is a TGF ⁇ signaling pathway inhibitor that inhibits phosphorylation of SMAD3, an intracellular signaling factor under the control of TGF ⁇ receptors.
  • ITD-1 is a TGF- ⁇ type II receptor proteasomal degradation promoter. It is known to those skilled in the art that the above compounds and the like have activity as TGF ⁇ signaling pathway inhibitors (for example, described in Expert Opinion on Investigational Drugs, 2010, 19.1: 77-91.).
  • the TGF ⁇ signaling pathway inhibitor preferably includes an Alk5/TGF ⁇ R1 inhibitor.
  • the concentration of the TGF ⁇ signaling pathway inhibitor in the medium can be appropriately set according to the substance used within a range that can achieve the above effects.
  • the concentration of the TGF ⁇ signaling pathway inhibitor in step (a) can be appropriately set according to the substance used within a range that can achieve the above effects.
  • SB431542 as the TGF ⁇ signaling pathway inhibitor in step (a)
  • a TGF ⁇ signaling pathway inhibitor other than SB431542 it is preferably used at a concentration that exhibits the same TGF ⁇ signaling pathway inhibitory activity as SB431542 at the above concentrations.
  • the TGF ⁇ signaling pathway inhibitory activity of SB431542 and the like can be determined by a method well known to those skilled in the art, for example, by detecting Smad phosphorylation by Western blotting (Mol Cancer Ther. (2004) 3, 737-45. ).
  • a Shh signaling pathway agonist is a substance that can enhance signal transduction mediated by Shh.
  • Shh signaling pathway agonists include proteins belonging to the Hedgehog family (eg, Shh, Ihh), Shh receptors, Shh receptor agonists, Smo agonists, Purmorphamine (9-cyclohexyl-N-[4-(morpholinyl)phenyl] -2-(1-naphthalenyloxy)-9H-purin-6-amine), GSA-10 (Propyl 4-(1-hexyl-4-hydroxy-2-oxo-1,2-dihydroquinoline-3-carboxymido) benzoate) , Hh-Ag1.5, 20(S)-Hydroxycholesterol, SAG (Smoothened Agonist: N-Methyl-N'-(3-pyridinylbenzol)-N'-(3-chlorobenzo[b]thiophene-2-carbonyl)-1 , 4-d
  • the Shh signaling pathway agent preferably contains at least one selected from the group consisting of SAG, Purmorphamine and GSA-10, more preferably SAG.
  • the concentration of the substance acting on the Shh signaling pathway in the medium can be appropriately set according to the substance to be used within a range in which the above effects can be achieved.
  • SAG is generally about 1 nM to about 2000 nM, preferably about 10 nM to about 1000 nM, more preferably about 10 nM to about 700 nM, even more preferably about 50 nM to about 700 nM, particularly preferably about 100 nM to about 600 nM in step (a). , most preferably at a concentration of about 100 nM to about 500 nM.
  • Shh signaling promoting activity can be determined by a method well known to those skilled in the art, for example, a reporter gene assay focusing on Gli1 gene expression (Oncogene (2007) 26, 5163-5168).
  • the medium used in step (a) contains an undifferentiated maintenance factor to enable undifferentiated maintenance culture.
  • the undifferentiation maintenance factor is not particularly limited as long as it is a substance that has an effect of suppressing differentiation of pluripotent stem cells.
  • Undifferentiated maintenance factors widely used by those skilled in the art include, in the case of primed pluripotent stem cells (e.g., human ES cells, human iPS cells), FGF signaling pathway agonists, TGF ⁇ family signaling pathways An active substance, insulin, etc., can be mentioned.
  • FGF signaling pathway agonists include fibroblast growth factors (eg, bFGF, FGF4 and FGF8).
  • TGF ⁇ family signaling pathway agonists include TGF ⁇ signaling pathway agonists and Nodal/Activin signaling pathway agonists.
  • TGF ⁇ signaling pathway agonists include, for example, TGF ⁇ 1 and TGF ⁇ 2.
  • Nodal/Activin signaling pathway agonists include, for example, Nodal, ActivinA, and ActivinB. These substances may be used alone or in combination.
  • the medium in step (a) preferably contains bFGF as an undifferentiated maintenance factor.
  • Undifferentiated maintenance factors are usually mammalian undifferentiated maintenance factors. Examples of mammals include those described above. Since the undifferentiation maintenance factor may have cross-reactivity between species of mammals, any mammalian undifferentiation maintenance factor can be used as long as the undifferentiated state of the pluripotent stem cells to be cultured can be maintained. good too.
  • the undifferentiation maintenance factor is preferably a mammalian undifferentiation maintenance factor of the same species as the cells to be cultured.
  • human undifferentiated maintenance factors eg, bFGF, FGF4, FGF8, EGF, Nodal, ActivinA, ActivinB, TGF ⁇ 1, TGF ⁇ 2, etc.
  • the undifferentiated maintenance factor is preferably isolated.
  • the undifferentiation maintenance factor can be produced by any host or artificially synthesized as long as it has the ability to maintain undifferentiation of the pluripotent stem cells to be cultured.
  • the factor for maintaining undifferentiation used in the present invention is preferably modified in the same manner as that produced in vivo, and is produced in cells of the same type as the pluripotent stem cells to be cultured under conditions that do not contain xenogeneic components. is more preferred.
  • One aspect of the production method according to the present invention includes a step of providing an isolated undifferentiated maintenance factor.
  • One aspect of the production method according to the present invention includes the step of exogenously (or exogenously) adding an isolated factor for maintaining undifferentiation to the medium used in step (a).
  • An undifferentiation maintenance factor may be added in advance to the medium used in step (a).
  • the concentration of the undifferentiated maintenance factor in the medium used in step (a) is a concentration that can maintain the undifferentiated state of the cultured pluripotent stem cells, and can be appropriately set by those skilled in the art.
  • concentration is usually about 4 ng/mL to about 500 ng/mL, preferably about 10 ng/mL to about 200 ng/mL, more preferably about 30 ng/mL. mL to about 150 ng/mL.
  • Step (a) is performed in the absence of feeder cells.
  • Cultivation of pluripotent stem cells in step (a) may be carried out under either suspension culture or adherent culture, preferably adherent culture.
  • an appropriate matrix may be used as a scaffold to provide the pluripotent stem cells with a scaffold that replaces feeder cells.
  • Pluripotent stem cells are adherently cultured in a cultureware whose surface is coated with a scaffold matrix.
  • Matrices that can be used as scaffolds include laminin (Nat Biotechnol. 28, 611-615 (2010)), laminin fragments (Nat Commun 3, 1236 (2012)), basement membrane preparations (Nat Biotechnol 19, 971-974 (2001)), gelatin, collagen, heparan sulfate proteoglycan, entactin, vitronectin, and the like.
  • Laminin 511 is preferably used for the matrix (Nat Biotechnol 28, 611-615 (2010)).
  • the laminin fragment is not particularly limited as long as it has adhesiveness to pluripotent stem cells and enables maintenance and culture of pluripotent stem cells under feeder-free conditions, but is preferably an E8 fragment.
  • Laminin E8 fragment was identified as a fragment having strong cell adhesive activity among fragments obtained by digesting laminin 511 with elastase (EMBO J., 3: 1463-1468, 1984, J. Am. Cell Biol., 105:589-598, 1987).
  • the E8 fragment of laminin 511 is preferably used (Nat Commun 3, 1236 (2012), Scientific Reports 4, 3549 (2014)).
  • the laminin E8 fragment need not be an elastase digestion product of laminin and may be recombinant. It may be one produced by a genetically modified animal (such as a silkworm). From the viewpoint of avoiding contamination with unidentified components, a recombinant laminin fragment is preferably used.
  • the E8 fragment of laminin 511 is commercially available and can be purchased from Nippi Co., Ltd., for example.
  • the laminin or laminin fragment used in the present invention is preferably isolated.
  • the surface is preferably coated with isolated laminin 511 or E8 fragment of laminin 511, more preferably with E8 fragment of laminin 511.
  • Pluripotent stem cells are adherently cultured in cultureware.
  • the medium used in step (a) is not particularly limited as long as it allows undifferentiated maintenance culture of pluripotent stem cells under feeder-free conditions (feeder-free medium).
  • the medium used in step (a) may be serum medium or serum-free medium. From the viewpoint of avoiding contamination with chemically undetermined components, the medium used in step (a) is preferably a serum-free medium.
  • the medium may contain serum replacement.
  • the culture time of the pluripotent stem cells in step (a) is not particularly limited as long as the effect of improving the quality of the cell population (aggregate) that can be formed in the subsequent first step can be achieved, but usually 0.5 to 144 hours, preferably 2 to 96 hours, more preferably 6 to 48 hours, even more preferably 12 to 48 hours, particularly preferably 18 to 28 hours, for example 24 hours. That is, the step (a) is started 0.5 to 144 hours, preferably 18 to 28 hours before the start of the first step, and the first step is continued after the step (a) is completed.
  • human pluripotent stem cells are adherently cultured in a serum-free medium containing bFGF in the absence of feeder cells.
  • the adherent culture is preferably carried out in a cultureware surface-coated with laminin-511, E8 fragment of laminin-511 or vitronectin.
  • the adherent culture is preferably performed using StemFit as a feeder-free medium.
  • StemFit medium contains bFGF as an undifferentiated maintenance component (Scientific Reports (2014) 4, 3594).
  • human pluripotent stem cells are suspended in a bFGF-containing serum-free medium in the absence of feeder cells.
  • human pluripotent stem cells may form aggregates of human pluripotent stem cells.
  • culture conditions such as culture temperature and CO 2 concentration can be appropriately set.
  • the culture temperature is, for example, about 30°C to about 40°C, preferably about 37°C.
  • the CO 2 concentration is, for example, about 1% to about 10%, preferably about 5%, when using a bicarbonate-buffered medium.
  • JNK c-Jun N-terminal kinase
  • JNK is a kinase belonging to the MAPK family and is involved in intracellular signal transduction stimulated by various environmental stresses, inflammatory cytokines, growth factors, and GPCR agonists.
  • the JNK signaling pathway inhibitor is not limited as long as it can suppress signal transduction transmitted by JNK.
  • a JNK signaling pathway inhibitor for example, a mechanism of inhibiting the upstream or downstream factors of the JNK signaling mechanism, or the enzymatic activity, multimerization, binding to other factors or nucleic acids of JNK itself, promoting degradation, etc.
  • JNK signaling pathway inhibitors include JNK inhibitors, Rac inhibitors, MKK inhibitors, MEK inhibitors, Src inhibitors, receptor tyrosine kinase (RTK) inhibitors, ASK inhibitors, and the like. Not limited.
  • JNK inhibitors include, for example, JNK-IN-8 ((E)-3-(4-(dimethylamino)but-2-enamide)-N-(3-methyl-4-( (4-(pyridin-3-yl)pyrimidin-2-yl)amino)phenyl)benzamide), SP600125 (Anthra[1-9-cd]pyrazol-6(2H)-one), DB07268 (2-[[2 -[(3-Hydroxyphenyl)amino]-4-pyrimidinyl]amino]benzamide), Tanzisertib (trans-4-[[9-[(3S)-Tetrahydro-3-furanyl]-8-[(2,4,6 -trifluorophenyl)amino]-9H-purin-2-yl]amino]cyclohexaneol), Bentmapimod (1,3-Benzothiazol-2-y
  • JNK inhibitors for example, described in J Enzyme Inhib Med Chem. 2020; 35(1): 574-583.
  • Rac inhibitors include EHT1864 (5-(5-(7-(Trifluoromethyl)quinolin-4-ylthio)pentyloxy)-2-(morpholinomethyl)-4H-pyran-4-one dihydrochloride), NSC23766 (N6-[ 2-[[4-(Diethylamino)-1-methylbutyl]amino]-6-methyl-4-pyrimidinyl]-2-methyl-4,6-quinolinediamine trihydrochloride), EHop-016 (N4-(9-Ethyl-9H -carbazol-3-yl)-N2-[3-(4-morpholinyl)propyl]-2,4-pyrimidinediamine), 1A-116(N-(3,5-Dimethylphenyl)-N′-[2-(trifluoromethyl )phenyl]guanidine), ZCL278 (2-(4-bromo-2-chlorophenoxy)-N-(4-(N-(4,6
  • ARS-853 (1-[3-[4-[2-[[4-Chloro-2-hydroxy- 5-(1-methylcyclopropyl)phenyl]amino]acetyl]-1-piperazinyl]-1-azetidinyl]-2-propen-1-one), Salirasib (2-(((2E,6E)-3,7,11 -Trimethyldodeca-2,6,10-trien-1-yl)thio)benzoic acid), ML141 (4-(5-(4-methoxyphenyl
  • the timing of addition of the JNK signaling pathway inhibitor in the present invention is not limited as long as the effect of improving the efficiency of production of pituitary tissue from human pluripotent stem cells is exhibited. It is preferably already added at the time of adding the agent, and within 72 hours from the start of differentiation induction. A more preferable time to add the JNK inhibitor is at the same time as the initiation of differentiation induction.
  • step (1) is the first step of culturing pluripotent stem cells in the presence of a JNK signaling pathway inhibitor and a Wnt signaling pathway inhibitor.
  • the Wnt signaling pathway is a signaling pathway that uses Wnt family proteins as ligands and mainly Frizzled as receptors. Examples of the signaling pathway include the canonical Wnt pathway (Canonical Wnt pathway), non-canonical Wnt pathway (Non-Canonical Wnt pathway), and the like.
  • the canonical Wnt pathway is mediated by ⁇ -catenin.
  • Non-classical Wnt pathways include Planar Cell Polarity (PCP) pathway, Wnt/JNK pathway, Wnt/Calcium pathway, Wnt-RAP1 pathway, Wnt-Ror2 pathway, Wnt-PKA pathway, Wnt-GSK3MT pathway, Wnt-aPKC pathway , Wnt-RYK pathway, Wnt-mTOR pathway, and the like.
  • PCP Planar Cell Polarity
  • Wnt/JNK pathway Wnt/Calcium pathway
  • Wnt-RAP1 pathway Wnt-Ror2 pathway
  • Wnt-PKA pathway Wnt-GSK3MT pathway
  • Wnt-aPKC pathway Wnt-RYK pathway
  • Wnt-mTOR pathway and the like.
  • the Wnt signaling pathway inhibitor is not limited as long as it can suppress signal transduction triggered by Wnt family proteins.
  • Inhibitors may be nucleic acids, proteins, or small organic compounds. Examples of such substances include substances that inhibit Wnt processing and extracellular secretion, substances that act directly on Wnt (e.g., proteins, antibodies, aptamers, etc.), and substances that suppress the expression of genes encoding Wnt (e.g., antisense oligos). nucleotides, siRNA, CRISPRi, etc.), substances that inhibit binding between Wnt receptors and Wnts, and substances that inhibit physiological activities caused by signal transduction by Wnt receptors.
  • proteins belonging to the secret Frizzled Related Protein (sFRP) class proteins belonging to the secret Frizzled Related Protein (sFRP1) class (sFRP1-5, Wnt Inhibitory Factor-1 (WIF-1), Cerberus), Dickkopf (Dkk) class proteins (Dkk1-4, Kremen), APCDD1, APCDD1L, proteins belonging to the Draxin family, IGFBP-4, Notum, proteins belonging to the SOST/Sclerostin family, and the like.
  • Wnt signaling pathway inhibitors Compounds well known to those skilled in the art can be used as Wnt signaling pathway inhibitors.
  • inhibitors of the classical Wnt signaling pathway include Frizzled inhibitors, Disheveled (Dvl) inhibitors, Tankyrase (TANK) inhibitors, casein kinase 1 inhibitors, catenin-responsive transcription inhibitors, p300 inhibitors, CREB-binding protein (CBP) inhibitors, BCL-9 inhibitors, TCF degradation inducers (Am J Cancer Res. 2015; 5(8): 2344-2360) and the like.
  • Non-classical Wnt pathway inhibitors include, for example, porcupine (PORCN) inhibitors, calcium/calmodulin-dependent protein kinase II (CaMKII) inhibitors, TGF- ⁇ -activated kinase 1 (TAK1) inhibitors, Nemo-Like Kinase ( NLK) inhibitor, LIM Kinase inhibitor, mammalian target of rapamycin (mTOR) inhibitor, Rac inhibitor, c-Jun NH 2-terminal kinase (JNK) inhibitor, protein kinase C (PKC) inhibitor, methionine aminopeptidase 2 (MetAP2) inhibitors, calcineurin inhibitors, nuclear factor of activated T cells (NFAT) inhibitors, ROCK inhibitors and the like.
  • PORCN porcupine
  • CaMKII calcium/calmodulin-dependent protein kinase II
  • NLK Nemo-Like Kinase
  • KY02111 N-(6-Chloro-2-benzothiazolyl)-3,4-dimethoxybenzenepropanamide
  • KY03-I (2-(4-( 3,4-dimethoxyphenyl)butanamide)-6-Iodobenzothiazole).
  • PORCN inhibitors such as IWP-2 (N-(6-Methyl-2-benzothiazolyl)-2-[(3,4,6,7-tetrahydro-4-oxo-3-phenylthieno[3,2-d]pyrimidin -2-yl)thio]acetamide), IWP-3 (2-[[3-(4-fluorophenyl)-3,4,6,7-tetrahydro-4-oxothieno[3,2-d]pyrimidin-2- yl]thio]-N-(6-methyl-2-benzothiazolyl)acetamide), IWP-4 (N-(6-methyl-2-benzothiazolyl)-2-[[3,4,6,7-tetrahydro-3 -(2-methylphenyl)-4-oxothieno[3,2-d]pyrimidin-2-yl]thio]acetamide), IWP-L6 (N-(5-phenyl-2-pyridinyl)-2-[(3,
  • the Wnt signaling pathway inhibitor preferably contains at least one selected from the group consisting of a PORCN inhibitor, KY02111 and KY03-I, more preferably a PORCN inhibitor.
  • Wnt signaling pathway inhibitors also preferably include substances having inhibitory activity on the non-canonical Wnt pathway of Wnt.
  • Wnt signaling pathway inhibitors more preferably include substances having inhibitory activity on the Wnt/Planar Cell Polarity (PCP) pathway.
  • PORCN inhibitors used in the present invention are preferably the group consisting of IWP-2, IWP-3, IWP-4, IWP-L6, IWP-12, LGK-974, Wnt-C59, ETC-159 and GNF-6231 It contains at least one selected from the above, more preferably contains IWP-2 or Wnt-C59, and still more preferably contains IWP-2.
  • the concentration of the Wnt signaling pathway inhibitor in the medium can be appropriately set according to the substance used within a range that can achieve the above effects. From the viewpoint of improving the production efficiency of cells that constitute the pituitary gland, for example, when IWP-2, which is a PORCN inhibitor, is used as the Wnt signaling pathway inhibitor, the concentration is usually about 10 nM to about 50 ⁇ M. , preferably about 10 nM to about 30 ⁇ M, more preferably about 100 nM to about 10 ⁇ M, most preferably about 0.5 ⁇ M.
  • Wnt-C59 one of the PORCN inhibitors
  • its concentration is usually about 10 pM to about 1 ⁇ M, preferably about 100 pM to about 500 nM, more preferably about 50 nM.
  • KY02111 its concentration is generally about 10 nM to about 50 ⁇ M, preferably about 10 nM to about 30 ⁇ M, more preferably about 100 nM to about 10 ⁇ M, and even more preferably about 5 ⁇ M.
  • Wnt signaling pathway inhibitors other than those mentioned above it is desirable to use them at concentrations exhibiting Wnt signaling pathway inhibitory activity equivalent to the above concentrations.
  • a TGF ⁇ signaling pathway inhibitor is preferably further present in the medium of the first step (step (1) or step (1')).
  • the TGF ⁇ signaling pathway inhibitor used in the first step the same substances as exemplified in step (a) can be used.
  • the TGF ⁇ signaling pathway inhibitors in step (a) and the first step may be the same or different, but are preferably the same.
  • the concentration of the TGF ⁇ signaling pathway inhibitor in the medium can be appropriately set according to the substance used within the range where the above effects can be achieved.
  • SB431542 is used as a TGF ⁇ signaling pathway inhibitor, it is usually used at a concentration of about 1 nM to about 100 ⁇ M, preferably about 10 nM to about 100 ⁇ M, more preferably about 100 nM to about 50 ⁇ M, still more preferably about 500 nM to about 10 ⁇ M. be.
  • a TGF ⁇ signaling pathway inhibitor other than SB431542 it is preferably used at a concentration that exhibits the same TGF ⁇ signaling pathway inhibitory activity as SB431542 at the above concentrations.
  • TAK1 transforming growth factor- ⁇ -activated kinase 1
  • MAKKK MAP kinase kinase kinase family that mediates signaling activated by TGF ⁇ , bone morphogenetic proteins (BMPs), interleukin-1 (IL-1), TNF- ⁇ , etc. .
  • a TAK1 inhibitor is not limited as long as it can suppress signal transduction mediated by TAK1. Any of nucleic acids, proteins, and low-molecular-weight organic compounds may be used. Examples of the substance include a substance that inhibits binding of TAK1 to a substrate, a substance that inhibits phosphorylation of TAK1, a substance that promotes dephosphorylation of TAK1, a substance that inhibits transcription and translation of TAK1, and a substance that promotes degradation of TAK1. etc.
  • TAK1 inhibitor for example, (5Z)-7-Oxozeaenol ((3S,5Z,8S,9S,11E)-3,4,9,10-tetrahydro-8,9,16-trihydroxy-14-methoxy-3- methyl-1H-2-benzoxacyclotetradecine-1,7(8H)-dione), N-Des(aminocarbonyl)AZ-TAK1 inhibitor (3-Amino-5-[4-(4-morpholinylmethyl)phenyl]-2-thiophenecarboxy) , Takinib (N1-(1-Propyl-1H-benzomidazol-2-yl)-1,3-benzenedicarboxamide), NG25 (N-[4-[(4-Ethyl-1-piperazinyl)methyl]-3-(trifluoromethyl ) phenyl]-4-methyl-3-(1H-pyrrolo[2,3-b]pyridin-4-yl
  • the TAK1 inhibitor is preferably (5Z)-7-Oxozeaenol.
  • (5Z)-7-Oxozeaenol is used as the TAK1 inhibitor in the first step, it is usually about 1 nM to about 100 ⁇ M, preferably about 10 nM to about 50 ⁇ M, more preferably about 100 nM to about 25 ⁇ M, still more preferably about 500 nM to A concentration of about 10 ⁇ M is used.
  • a TAK1 inhibitor other than (5Z)-7-Oxozeaenol it is preferably used at a concentration that exhibits TAK1 inhibitory activity equivalent to that of (5Z)-7-Oxozeaenol at the above concentrations.
  • TAK1 inhibitory activity is described, for example, in Cell chemical biology 24.8 (2017): 1029-1039. can be determined by a method such as the kinase assay described in . From the viewpoint of controlling the proportion of cells contained in the pituitary tissue, the TAK1 inhibitor can be added at any stage of the first step and subsequent steps and then removed. In a preferred embodiment, the TAK1 inhibitor is added at the start of step (b) described below.
  • the medium used in the first step is not particularly limited as long as it is as described in the definition section above.
  • the medium used in the first step can be serum medium or serum-free medium. From the viewpoint of avoiding contamination with chemically undetermined components, a serum-free medium is preferably used in the present invention. In order to avoid complicated preparation, it is preferable to use a serum-free medium supplemented with an appropriate amount of a serum substitute such as commercially available KSR.
  • the amount of KSR added to the serum-free medium for example, in the case of human ES cells, is generally about 1% to about 30%, preferably about 2% to about 20%.
  • the serum-free medium includes, for example, a 1:1 mixture of IMDM and F-12 supplemented with 5% KSR, 450 ⁇ M 1-monothioglycerol and 1x Chemically Defined Lipid Concentrate, or 5% to 20% KSR in GMEM. , NEAA, pyruvate and 2-mercaptoethanol.
  • the cells may be in either an adherent state or a floating state.
  • pluripotent stem cells are dispersed into single cells and then reaggregated to form cell aggregates in a floating state. For this reason, it is preferable to disperse the pluripotent stem cells, for example the pluripotent stem cells obtained in step (a), into single cells before starting the first step.
  • the "dispersed cells” obtained by the dispersing operation are preferably single cells, but may include, for example, cell clusters consisting of a small number of cells, from 2 to 100, and from 2 to 50 cells. It may contain clumps of different cells. "Dispersed cells” may contain, for example, 70% or more single cells and 30% or less cell clusters, preferably 80% or more single cells and 20% or less cell clusters.
  • Methods for dispersing pluripotent stem cells include mechanical dispersion treatment, cell dispersion treatment, and cell protective agent addition treatment, and these treatments may be combined.
  • a method for dispersing the cells it is preferable to carry out the cell-dispersing solution treatment at the same time as the cell protective agent addition treatment, followed by mechanical dispersion treatment.
  • Cell protective agents used in cell protective agent addition treatment include FGF signaling pathway agents, heparin, Rho-associated protein kinase (ROCK) inhibitors, myosin inhibitors, polyamines, integrated stress response: ISR) inhibitors, caspase inhibitors, cell adhesion promoters, serum, or serum substitutes.
  • Preferred cytoprotective agents include ROCK inhibitors.
  • a ROCK inhibitor from the start of culture in the first step.
  • ROCK inhibitors examples include Y-27632 ((R)-(+)-trans-4-(1-Aminoethyl)-N-(4-pyridyl)cyclohexanecarboxamide, dihydrochloride), Fasudil (HA1077) (1-(5- isoquinolinylsulfonyl) homopiperazine, hydrochloride), H-1152 (5-[[(2S)-hexahydro-2-methyl-1H-1,4-diazepin-1-yl]sulfonyl]-4-methyl-isoquinoline, dihydrochloride) -1100 (Hydroxyfasudil) (1-(1-Hydroxy-5-isoquinolinesulfonyl) homopiperazine, hydrochloride), Chroman 1 ((3S)-N-[2-[2-(dimethylamino)ethoxy]-4-(1H-pyrazol- 4-yl)phenyl]-6-meth
  • cell adhesion promoters include adhesamine and adhesamine-RGDS derivatives (manufactured by Nagase & Co., Ltd.).
  • a prepared cell protective agent can also be used as the cell protective agent.
  • the prepared cytoprotective agent include RevitaCell Supplement (manufactured by Thermo Fisher Scientific), CloneR, CloneR2 (manufactured by Stemcell Technologies) and the like. These substances may be used alone or in combination.
  • the concentration is usually about 10 nM to about 10 mM, preferably about 100 nM to about 1 mM, more preferably about 1 ⁇ M to about 100 ⁇ M.
  • the concentration is usually about 10 pM to about 1 mM, preferably about 100 pM to about 100 ⁇ M, more preferably about 1 nM to about 10 ⁇ M. to the culture environment.
  • the cell dispersion used for the cell dispersion treatment can include a solution containing at least one enzyme such as trypsin, collagenase, hyaluronidase, elastase, pronase, DNase, papain, or a chelating agent such as ethylenediaminetetraacetic acid.
  • a chelating agent such as ethylenediaminetetraacetic acid.
  • Commercially available cell dispersions such as TripLE Select (manufactured by Thermo Fisher Scientific), TripLE Express (manufactured by Thermo Fisher Scientific), and Accumax (manufactured by Innovative Cell Technologies) can also be used.
  • a preferred cell dispersion for treatment of pluripotent stem cells obtained after step (a) is phosphate buffered saline (PBS) supplemented with 5 mM EDTA, but is not limited thereto.
  • PBS phosphate buffered saline
  • Mechanical dispersion methods include pipetting or scraping with a scraper.
  • the dispersed cells are suspended in the medium.
  • a method for dispersing pluripotent stem cells includes, for example, a method in which colonies of pluripotent stem cells are treated with ethylenediaminetetraacetic acid or Accumax in the presence of a ROCK inhibitor, and further dispersed by pipetting.
  • a suspension of dispersed pluripotent stem cells is seeded in non-cell-adhesive cultureware.
  • the cultureware is non-adhesive, cells are cultured in suspension, and multiple pluripotent stem cells aggregate to form cell aggregates.
  • a plurality of cell aggregates may be simultaneously formed in one culture vessel.
  • a certain number of cells dispersed in each well of a multiwell plate U bottom, V bottom
  • Pluripotent stem cells are preferably seeded.
  • the cells rapidly aggregate to form one cell aggregate in each well.
  • the cultureware can be made non-cell-adhesive by processing such as coating the surface of the cultureware with a superhydrophilic polymer.
  • Non-cell-adhesive multiwell plates include, for example, PrimeSurface 96V bottom plate (MS-9096V, manufactured by Sumitomo Bakelite). Centrifugation may be performed to form cell aggregates more quickly. A uniform population of cell aggregates can be obtained by collecting the cell aggregates formed in each well from a plurality of wells. If the cell aggregates are uniform, the production efficiency for each well and for each repeated experiment can be more stabilized in subsequent steps, and cells that constitute the pituitary gland can be produced with higher reproducibility.
  • Another embodiment for forming cell aggregates from dispersed pluripotent stem cells is to use a cultureware in which one well is divided into a plurality of microwells and two or more cell aggregates are formed.
  • the suspension culture in any one or more of the first step, second step, b step, and third step is performed in such a manner that at least one well is formed.
  • the well is divided into a plurality of microwells, suspension culture is performed so that one cell cluster is formed in each microwell, and each well is A number of cell clusters corresponding to divided microwells may be prepared.
  • a mortar in which cells settle in one place on the bottom surface to promote the formation of aggregates a downward square pyramid, a recessed shape, etc., a grid, a cultureware in which a plurality of protrusions, etc. are formed, or an aggregate. It is also possible to use a culture device or the like whose bottom surface is partially processed so that cells can adhere to it so as to facilitate the formation of aggregates.
  • the culture area per well of the cultureware having microwells is not particularly limited, but from the viewpoint of efficiently producing cell aggregates, the bottom area is preferably larger than 1 cm 2 (equivalent to a 48-well plate), more preferably 2 cm.
  • Examples of such cultureware include AggreWell (manufactured by StemCell Technologies), PAMCELL (manufactured by ANK), spheroid microplate (manufactured by Corning), NanoCulture Plate/Dish (manufactured by Organogenix) Cell- Able (manufactured by Toyo Gosei Co., Ltd.), EZSPHERE (manufactured by AGC Techno Glass), SPHERICALPLATE 5D (manufactured by Mito Kogyo Co., Ltd.), TASCL (manufactured by Sims Bio), microwell bag (eg, Scientific reports, 2022, 12.1: 1 -11.), but not limited to these.
  • a three-dimensional cell culture vessel that can replace the medium of the entire plate at once while cell aggregates remain in each well.
  • examples of such a three-dimensional cell culture vessel include PrimeSurface 96 slit well plate (manufactured by Sumitomo Bakelite Co., Ltd.). This plate has narrow openings (slits) through which the medium can enter and exit at the top of each of the 96 wells. Since the slit is set to a width that makes it difficult for cell aggregates to pass through, it is possible to exchange the medium for the entire plate at once while preventing cell aggregates from adhering to each other. quality can be improved.
  • the concentration of pluripotent stem cells in the first step can be appropriately set so as to form cell aggregates more uniformly and efficiently.
  • human pluripotent stem cells for example, human iPS cells obtained from step (a)
  • a solution prepared to obtain about 8 ⁇ 10 3 to about 1.2 ⁇ 10 4 cells is added to each well, and the plate is allowed to stand to form cell aggregates.
  • EZSPHERE SP dish 35 mm Type 905 which is a culture device having about 260 microwells per dish
  • a solution prepared to give about 4 ⁇ 10 4 to about 1.6 ⁇ 10 7 cells, particularly preferably about 8 ⁇ 10 4 to about 1.2 ⁇ 10 7 cells is added to the dish, and the dish is allowed to stand. to form cell aggregates.
  • human pluripotent stem cells for example, human iPS cells obtained from step (a)
  • AggreWell 800, 6-well plate which is a culture device having about 1800 microwells per well.
  • a solution prepared so as to obtain preferably about 4 ⁇ 10 4 to about 1.6 ⁇ 10 7 cells, particularly preferably about 8 ⁇ 10 4 to about 1.2 ⁇ 10 7 cells is added to each well, and the plate is plated. Centrifuge to form cell aggregates. Cell numbers can be determined by counting with a hemocytometer.
  • the suspension culture time required to form cell aggregates can be appropriately determined depending on the pluripotent stem cells used, but it is desirable to be as short as possible in order to form uniform cell aggregates.
  • the process by which dispersed cells form cell aggregates is divided into a process of cell aggregation and a process of aggregated cells forming aggregates. From the time the dispersed cells are seeded (i.e., at the start of suspension culture) until the cells aggregate, for example, in the case of human pluripotent stem cells (human iPS cells, etc.), preferably within about 24 hours, more preferably Within about 12 hours.
  • the time of seeding the dispersed cells i.e., the start of suspension culture
  • the formation of cell aggregates for example, in the case of human pluripotent stem cells (human iPS cells, etc.), preferably within about 72 hours, More preferably within about 48 hours.
  • the time required to form cell aggregates can be appropriately adjusted by adjusting the tool for aggregating cells, centrifugation conditions, and the like.
  • epithelial-like structures can be reproducibly formed in cells differentiated from the formed aggregates.
  • Experimental manipulations for forming cell aggregates include, for example, plates with small wells (for example, plates with a well bottom area of about 0.1 to 2.0 cm 2 in terms of a flat bottom) and small spaces using micropores.
  • Plates with small wells include, for example, a 24-well plate (an area of about 1.88 cm 2 in terms of flat bottom), a 48-well plate (an area of about 1.0 cm 2 in terms of flat bottom), and a 96-well plate (an area of about 0.0 cm 2 in terms of flat bottom). 35 cm 2 , inner diameter of about 6 to 8 mm), 384-well plate. A 96-well plate is preferred.
  • the shape of the plate with small wells the shape of the bottom when the wells are viewed from above includes polygonal, rectangular, elliptical, and perfect circle, preferably perfect circle.
  • the shape of the bottom surface when the wells are viewed from the side is preferably a structure in which the outer periphery is high and the interior is low, and examples thereof include a U bottom, a V bottom, and an M bottom.
  • U-bottoms or V-bottoms, most preferably V-bottoms are mentioned.
  • a cell culture dish eg, 60 mm to 150 mm dish, culture flask
  • the bottom of the small plate of wells preferably uses a cell non-adhesive bottom, preferably a cell non-adhesive coated bottom.
  • a three-dimensional printer or a 3D printer Dispersed single cells or spheroids composed of multiple cells are suspended in biocompatible ink (bioink) and output by a bio 3D printer (eg BIO X manufactured by Celllink, etc.), or A cell population with a desired form can be prepared by a method of pricking a cell population with a needle and accumulating it (Syfuse Spike, etc.).
  • cell aggregates are determined by the size and number of cells of cell aggregates, macroscopic morphology, microscopic morphology by tissue staining analysis and its uniformity, expression of differentiation and undifferentiated markers and their uniformity, differentiation markers can be determined based on the expression control and its synchrony, reproducibility of differentiation efficiency between aggregates, and the like.
  • adherent culture is performed.
  • the pluripotent stem cells on the cultureware after step (a) may be used as they are in the first step, or the pluripotent stem cells may be dispersed into single cells and then seeded again on the adhesive cultureware. good.
  • Appropriate extracellular matrices or synthetic cell adhesion molecules may be used as scaffolds in performing reseeding after dispersal of pluripotent stem cells into single cells.
  • the scaffold allows adherent culture of pluripotent stem cells in a surface-coated cultureware.
  • the extracellular matrix is preferably matrigel or laminin.
  • Synthetic cell adhesion molecules include poly-D-lysine, synthetic peptides containing a cell adhesion domain such as the RGD sequence, and the like.
  • the number of seeded cells is not particularly limited as long as differentiation to the pituitary gland occurs, but from the viewpoint of reproducing adhesion and interaction between cells, the cell density is within 72 hours after seeding on the cultureware. It is also preferable that the density is such that it reaches semi-confluence corresponding to 60% or more.
  • micropatterned cultureware as the adhesive cultureware.
  • the micropattern on the cultureware can be composed of a cell-adhesive region and a cell-non-adhesive region, and cells are preferably adherently cultured in the cell-adhesive region.
  • the shapes of the cell adhesive region and the cell non-adhesive region are not limited as long as they can be developed on the cultureware.
  • a single cell-adhesive region and a cell-non-adhesive region may be formed on one culture device, or a plurality of regions may be formed.
  • the cell adhesive region is preferably artificially treated for the purpose of improving adhesiveness.
  • micropatterned cultureware examples include CYTOOchip (manufactured by CYTOO) and ibidi Micropatterning (manufactured by ibidi).
  • a culture device can also be prepared using a PDMS mold and matrix.
  • a cultureware coated with an extracellular matrix, a substrate that promotes cell adhesion, or the like is processed with a laser or the like using, for example, a cell processing device (Model: CPD-017, manufactured by Kataoka Seisakusho) to obtain a cell adhesive region. and the cell non-adhesive region may be formed in any shape.
  • a cell processing device Model: CPD-017, manufactured by Kataoka Seisakusho
  • the cell non-adhesive region may be formed in any shape.
  • the cultureware preferably has a channel (microchannel) for perfusion of the medium, and cells may be cultured under a perfusion environment in the first step and subsequent steps.
  • a culture device is also called a microfluidic chip.
  • the culture device e.g., microfluidic chip
  • may be connected to another culture device e.g., microfluidic chip for culturing cells or tissues other than the cells cultured in the production method of the present invention via channels. This makes it possible to reproduce the interaction of the pituitary gland with other cells or tissues.
  • Other cells or tissues to be co-cultured with the pituitary gland include tissues regulated by hormones secreted from the pituitary gland, tissues promoting the growth, differentiation, maturation, and survival of the pituitary gland, such as brain, blood vessels, bones, and muscles. , fat, thyroid, liver, adrenal gland, testis, ovary, breast cells or tissue, and the like.
  • Methods for medium perfusion include, but are not limited to, the use of magnetic stirrers, peristaltic pumps, and the like.
  • the cultureware may have a membrane permeable to oxygen or medium.
  • the cultureware may be capable of forming concentration gradients of compounds, growth factors, and the like.
  • the membrane is for example a porous membrane.
  • cells can be cultured by the production method of the present invention on one side separated by the membrane, and other cells or tissues, feeder cells, etc. can be cultured on the other side.
  • the cells constituting the pituitary gland, their progenitor cells, and the cell population containing these cells can be cultured without contamination with other cells or tissues.
  • a medium replacement operation for example, an operation to add a new medium without discarding the original medium (medium addition operation)
  • about half the original medium (30% of the volume of the original medium
  • about 90%, for example, about 40-60%) is discarded and about half of the new medium is added (30-90% of the volume of the original medium, for example, about 40-60%) (half medium replacement operation).
  • An operation of discarding about the entire amount (90% or more of the volume of the original medium) and adding about the entire amount (90% or more of the volume of the original medium) of new medium can be mentioned.
  • Half volume medium exchange operation When adding a specific component at a certain point, for example, after calculating the final concentration, about half of the original medium is discarded, and about half of the new medium containing the specific component at a higher concentration than the final concentration is added ( Half volume medium exchange operation) may be performed.
  • the concentration of the components contained in the original medium is diluted at a certain point to lower the concentration, for example, the medium exchange operation is performed multiple times a day, preferably multiple times (for example, 2 to 3 times) within an hour. good.
  • the cells or cell aggregates may be transferred to another culture vessel if the components contained in the original medium are diluted to a lower concentration.
  • Tools used for the medium exchange operation are not particularly limited, and examples thereof include pipettors, Pipetman (registered trademark), multichannel pipettes, continuous pipettors, and the like.
  • pipettors When using a 96-well plate as culture equipment, a multichannel pipette may be used.
  • the culture time in the first step is usually about 8 hours to 6 days, preferably about 12 hours to 60 hours.
  • a compound that promotes differentiation into placode regions in the first step and subsequent steps.
  • examples of compounds having the above effects include BRL-54443, phenanthroline, and parthenolide described in US Pat. No. 20160326491A1.
  • BRL-54443 as a compound that promotes differentiation into placode regions, the concentration is usually about 10 nM to about 100 ⁇ M, when using phenanthroline, usually about 10 nM to about 100 ⁇ M, and when using Parthenolide, the concentration is usually about 10 nM to about 100 ⁇ M. used in
  • culturing may be performed in the presence of an agent acting on the Sonic hedgehog signaling pathway.
  • an agent acting on the Sonic hedgehog signaling pathway As the Shh signal transduction pathway active substance used in the first step, those exemplified in step (a) can be used.
  • the Shh signaling pathway agonists in step (a) and the first step may be the same or different, but are preferably the same and are preferably SAG.
  • the concentration of the substance acting on the Shh signaling pathway in the medium can be appropriately set according to the substance to be used within a range in which the above effects can be achieved.
  • SAG When SAG is used as the Shh signaling pathway agonist in the first step, it is generally about 1 nM to about 3 ⁇ M, preferably about 10 nM to about 2 ⁇ M, more preferably about 30 nM to about 1 ⁇ M, still more preferably about 50 nM to about 500 nM. used at a concentration of
  • Step (2) the cell population obtained in the first step is cultured in the presence of the BMP signaling pathway agonist and the Sonic hedgehog signaling pathway agonist.
  • the formed cell aggregates may be continuously cultured in suspension in step (2).
  • the cells may be adherently cultured in the step (2).
  • adhesion culture may be performed in step (2).
  • a BMP signaling pathway agonist is a substance that can enhance the signaling pathway mediated by BMP.
  • Substances that can enhance signaling pathways mediated by BMPs include, for example, substances that stabilize and enhance the potency of BMP ligands in the culture environment, the type I BMP receptors ALK-1, ALK-2, ALK- 3, a substance that binds to ALK-6 and activates and triggers intracellular signal transduction downstream of the receptor, Smad-1, Smad-5, Smad-8, Smad-9 involved in intracellular BMP signal transduction substances that induce phosphorylation of Smad-1/5/8/9, and substances that induce/enhance functions such as activation and suppression of gene transcription by Smad-1/5/8/9.
  • BMP signaling pathway agents examples include BMP proteins such as BMP2, BMP4 or BMP7, GDF proteins such as GDF5, 6 and 7, anti-BMP receptor antibodies and BMP partial peptides. These substances may be used alone or in combination.
  • BMP signaling pathway agonist from the viewpoint of biological activity, osteoblasts against cells such as mouse progenitor chondrocyte cell line ATDC5, mouse calvaria-derived cell line MC3T3-E1, mouse striated muscle-derived cell line C2C12, etc.
  • examples thereof include substances capable of inducing differentiation into cell-like cells and alkaline phosphatase production.
  • substances having the above activity include BMP2, BMP4, BMP5, BMP6, BMP7, BMP9, BMP10, BMP13/GDF6, BMP14/GDF5, GDF7 and the like.
  • BMP2 protein and BMP4 protein are available, for example, from R&D Systems, BMP7 protein, for example, from Biolegend, GDF5 protein, for example, from Peprotech, GDF6 protein, for example, from Prime Gene, and GDF7 protein, for example, from FUJIFILM Wako Pure Chemical Industries, Ltd. is.
  • the BMP signaling pathway agonist preferably comprises at least one protein selected from the group consisting of BMP2, BMP4, BMP7, BMP13 and GDF7, more preferably BMP4.
  • the concentration of the BMP signaling pathway active substance in the medium can be appropriately set according to the substance used within the range where the above effects can be achieved. From the viewpoint of improving the production efficiency of cells that constitute the pituitary gland, when BMP4 is used as a BMP signaling pathway agonist, it is usually about 1 pM to about 100 nM, preferably about 10 pM to about 50 nM, more preferably about 25 pM to about 25 nM. , more preferably from about 25 pM to about 5 nM, particularly preferably from about 100 pM to about 5 nM, most preferably from about 500 pM to about 2 nM.
  • BMP signaling pathway active substance other than BMP4 when using a BMP signaling pathway active substance other than BMP4, it is preferably used at a concentration that exhibits the same BMP signaling pathway promoting activity as BMP4 at the concentration described above.
  • a person skilled in the art uses, for example, a commercially available recombinant BMP protein as an active substance of the BMP signaling pathway, the activity described in the product package insert, for example, the ED50 value of the ability to induce alkaline phosphatase production in mouse progenitor chondrocyte cell line ATDC5
  • the concentration of the BMP signaling pathway agonist to be added can be easily determined.
  • BMP signaling pathway agonists include, for example, Smurf1 inhibitors, Chk1 inhibitors, phosphorylated Smad stabilizers, and the like.
  • Examples of compounds having the above activity include A-01 ([4-[[4-Chloro-3-(trifluoromethyl)phenyl]sulfonyl]-1-piperazinyl][4-(5-methyl-1H-pyrazol -1-yl)phenyl]methanone), PD 407824 (9-Hydroxy-4-phenyl-pyrrolo[3,4-c]carbazole-1,3(2H,6H)-dione), SB4 (2-[[( 4-bromophenyl)methyl]thio]benzoxazole), SJ000291942 (2-(4-Ethylphenoxy)-N-(4-fluoro-3-nitrophenyl)-acetamide) and derivatives thereof.
  • the Shh signaling pathway agent used in step (2) the same substances as exemplified in step (a) can be used.
  • the Shh signaling pathway agents in steps (a) and (2), optionally the Shh signaling pathway agents in step (1), may be the same or different, but are preferably the same; SAG is also preferred.
  • the concentration of the substance acting on the Shh signaling pathway in the medium can be appropriately set according to the substance to be used within a range in which the above effects can be achieved.
  • SAG is used as the Shh signaling pathway agonist in step (2), it is generally about 1 nM to about 5 ⁇ M, preferably about 10 nM to about 4.5 ⁇ M, more preferably about 50 nM to about 4 ⁇ M, still more preferably about 100 nM. Concentrations of ⁇ 3 ⁇ M are used.
  • the medium used in step (2) is not particularly limited as long as it contains the Shh signaling pathway active substance and the BMP signaling pathway active substance.
  • Examples of the medium used in step (2) include the medium mentioned in the first step.
  • the start time of step (2) is preferably 0.5 hours to 6 days from the start of culture in the first step, more preferably 0.5 hours to 72 hours. and more preferably within 24 hours to 60 hours.
  • step (2) is started during the above period in the presence of a Wnt signaling pathway inhibitor, a non-neuroepithelium-like tissue is formed on the surface of the cell aggregates, and the pituitary gland is formed very efficiently. be.
  • the start time of step (2) is preferably the surface layer of the cell aggregates formed in the first step. It is the stage when 10% or more, more preferably 30% or more, and still more preferably 50% or more of the cells form tight junctions with each other.
  • a person skilled in the art can easily determine whether or not tight junctions are formed in cell aggregates by techniques such as microscopic observation and immunostaining using an anti-ZO-1 antibody.
  • Initiation of culture in the presence of the BMP signaling pathway agent in step (2) is carried out by performing the above-described medium replacement operation (e.g., medium addition operation, half volume medium replacement operation, full volume medium replacement operation, etc.) may be performed, or the cells may be transferred to another culture vessel.
  • medium replacement operation e.g., medium addition operation, half volume medium replacement operation, full volume medium replacement operation, etc.
  • the period of culture in the medium containing the BMP signaling pathway active substance in step (2) can be set as appropriate.
  • the culture time in step (2) is usually 8 hours or longer, preferably 10 hours or longer, more preferably 12 hours or longer, still more preferably 14 hours or longer, and most preferably 16 hours or longer.
  • the period of culture in the medium containing the Shh signaling pathway active substance in step (2) can be set as appropriate.
  • the suspension culture in step (1) is further performed in the presence of an active substance of Shh signaling pathway, from the viewpoint of improving pituitary hormone (especially ACTH) secretion ability, in step (1) and step (2)
  • the culture period in the presence of the Shh signaling pathway agonist is preferably 30 days.
  • an FGF signaling pathway agent to the culture environment from the viewpoint of promoting differentiation into pituitary placodes.
  • the FGF signal transduction pathway agent is not particularly limited as long as it is a substance capable of enhancing the signal transduction pathway mediated by FGF (fibroblast growth factor).
  • FGF signaling pathway agents include FGF proteins such as FGF1, FGF2 (sometimes referred to as bFGF), FGF3, FGF8 and FGF10, anti-FGF receptor antibodies, FGF partial peptides and the like. These substances may be used alone or in combination.
  • FGF2 protein and FGF8 protein are available, for example, from FUJIFILM Wako Pure Chemical Industries, Ltd.
  • FGF signaling pathway agent preferably contains at least one selected from the group consisting of FGF2, FGF3, FGF8 and FGF10, and variants thereof, more preferably FGF2, more preferably recombinant human FGF2 include.
  • the concentration of the FGF signaling pathway active substance in the medium can be appropriately set according to the substance used within the range where the above-mentioned effects can be achieved. From the viewpoint of differentiation into cells constituting the pituitary gland and promotion of cell survival and proliferation, when FGF2 is used as the FGF signaling pathway agonist, it is usually about 1 pg/ml to about 100 ⁇ g/ml, preferably about 10 pg/ml. /ml to about 50 ⁇ g/ml, more preferably about 100 pg/ml to about 10 ⁇ g/ml, more preferably about 500 pg/ml to about 1 ⁇ g/ml, most preferably about 1 ng/ml to about 200 ng/ml. be done.
  • an FGF signaling pathway active substance other than FGF2 when using an FGF signaling pathway active substance other than FGF2, it is preferably used at a concentration that exhibits the same FGF signaling pathway promoting activity as FGF2 at the above concentration.
  • the FGF signaling pathway promoting activity of the substance to be added can be measured, for example, by a method such as a cell proliferation test using 3T3 cells.
  • Heparin is available as the sodium salt from, for example, Fujifilm Wako Pure Chemical Industries.
  • the concentration of heparin or heparan sulfate in the medium can be appropriately set within a range in which the above effects can be achieved.
  • the concentration of sodium heparin in the medium is usually about 1 ng/ml to about 100 mg/ml, preferably about 10 ng/ml to about 50 mg/ml, more preferably about 100 ng/ml to about 10 mg/ml, still more preferably about 500 ng.
  • heparan sulfate When heparan sulfate is used, it is preferably at a concentration that has the same FGF protein-protecting activity as heparin at the concentration described above.
  • modified FGF such as Thermostable FGF2 described in US Pat.
  • FGF2 sustained-release beads of Thermostable FGF2 is available, for example, from HumanZyme.
  • StemBeads FGF2 are available, for example, from StemCulture.
  • the timing of addition of the FGF signaling pathway active substance in step (2) and subsequent steps can be set as appropriate.
  • the FGF signaling pathway agonist is added 6 hours later, more preferably 12 hours later, more preferably 18 hours later than the addition of the BMP signaling pathway agonist in step (2).
  • step (2) additives used in step (a) or the first step, such as JNK signaling pathway inhibitors, Wnt signaling pathway inhibitors, TGF ⁇ signaling pathway inhibitors, TAK1 inhibitors, etc., are continuously added. is also preferred.
  • the JNK signaling pathway inhibitor, Wnt signaling pathway inhibitor, or TGF ⁇ signaling pathway inhibitor added in step (2) may be different from the substance used in the previous steps, but is preferably the same. be.
  • the concentration and type of additive can be adjusted as appropriate.
  • the timing of addition of these substances may be simultaneous with the start of step (2), or may be different.
  • Step (b) the cell population obtained in step (2) is cultured under conditions in which a BMP signaling pathway inhibitor is added.
  • the formed cell aggregates may be continuously cultured in suspension in step (b).
  • the cells may be adherently cultured in step (b).
  • BMP signaling pathway inhibitors are not limited as long as they can suppress signal transduction triggered by BMP family proteins. Any of nucleic acids, proteins, and low-molecular-weight organic compounds may be used. Such substances include, for example, substances that inhibit BMP processing and extracellular secretion, substances that directly act on BMPs (e.g., proteins, antibodies, aptamers, etc.), and substances that suppress the expression of genes encoding BMPs (e.g., antisense oligos). nucleotides, siRNA, etc.), substances that inhibit binding between BMP receptors and BMPs, and substances that inhibit physiological activities caused by signal transduction by BMP receptors.
  • BMP receptors include type I BMP receptors and type II BMP receptors.
  • Type I BMP receptors are BMPR1A, BMPR1B, and ACVR
  • type II BMP receptors are TGF-betaR-II and ActR-II. , ActR-IIB, BMPR2, MISR-II.
  • BMP signaling pathway inhibitors include, for example, Noggin, Chordin, Follistatin, Gremlin, Inhibin, Twisted Gastrulation, Coco, and secretory proteins belonging to the DAN family. Since the BMP signaling pathway agent is added to the culture medium in the step (2), the BMP signaling pathway in the step (b) from the viewpoint of more effectively inhibiting the subsequent BMP signaling pathway.
  • the inhibitory substance is a substance that inhibits the signal transduction pathway after BMP secretion to the outside of the cell, such as a substance that inhibits the binding of BMP receptor and BMP, and inhibits physiological activity caused by signal transduction by BMP receptor. It preferably contains a substance or the like, more preferably an inhibitor of the type I BMP receptor.
  • BMP signaling pathway inhibitors include, for example, inhibitors of type I BMP receptors.
  • Examples of compounds having the above activity include K02288 (3-[(6-Amino-5-(3,4,5-trimethoxyphenyl)-3-pyridinyl]phenol), Dorsomorphin (6-[4-[2 -(1-Piperidinyl)ethoxy]phenyl]-3-(4-pyridinyl)pyrazolo[1,5-a]pyrimidine), LDN-193189 (4-[6-[4-(1-Piperazinyl)phenyl]pyrazolo[ 1,5-a]pyrimidin-3-yl]quinoline dihydrochloride), LDN-212854 (5-[6-[4-(1-Piperazinyl)phenyl]pyrazolo[1,5-a]pyrimidin-3-yl]quinoline ), LDN-214
  • the BMP signaling pathway inhibitor is preferably a type I BMP receptor inhibitor, more preferably selected from the group consisting of K02288, Dorsomorphin, LDN-193189, LDN-212854, LDN-214117, ML347, DMH1 and DMH2. At least one, more preferably K02288 to LDN-193189.
  • the concentration of the BMP signaling pathway inhibitor in the medium can be appropriately set according to the substance used within the range where the above effects can be achieved. From the viewpoint of pituitary tissue formation efficiency, when K02288 is used as the BMP signaling pathway inhibitor in step (b), the It is used at a concentration of 50 ⁇ M, more preferably from about 500 nM to about 25 ⁇ M. When LDN-193189 is used as a BMP signaling pathway inhibitor, it is usually used at a concentration of about 1 nM to about 100 ⁇ M, preferably about 10 nM to about 10 ⁇ M, more preferably about 25 nM to about 1 ⁇ M, still more preferably about 100 nM to about 500 nM. used.
  • LDN-212854 When LDN-212854 is used as a BMP signaling pathway inhibitor, it is usually used at a concentration of about 1 nM to about 100 ⁇ M, preferably about 10 nM to about 10 ⁇ M, more preferably about 25 nM to about 5 ⁇ M, still more preferably about 250 nM to about 3 ⁇ M. used.
  • ML347 When ML347 is used as a BMP signaling pathway inhibitor, it is usually used at a concentration of about 1 nM to about 100 ⁇ M, preferably about 10 nM to about 50 ⁇ M, more preferably about 100 nM to about 50 ⁇ M, still more preferably about 1 ⁇ M to about 25 ⁇ M. be.
  • DMH2 When used as a BMP signaling pathway inhibitor, it is usually used at a concentration of about 1 nM to about 100 ⁇ M, preferably about 10 nM to about 10 ⁇ M, more preferably about 25 nM to about 5 ⁇ M, still more preferably about 250 nM to about 3 ⁇ M. be.
  • a BMP signaling pathway inhibitor other than K02288 it is desirable to use it at a concentration that exhibits the same BMP signaling pathway inhibitory activity as K02288 at the above concentrations.
  • the timing of starting step (b) after step (2) is implemented can be set as appropriate.
  • the timing of starting step (b) is usually 8 hours or more and 15 days or less, preferably 10 hours or more and 12 days or less, more preferably 12 hours or more and 9 days or less, and furthermore It is preferably 14 hours or more and 8 days or less, most preferably 16 hours or more and 7 days or less.
  • the cell population may be treated with adrenocortical hormones by adding the adrenocortical hormones to the medium.
  • adrenocortical hormone treatment pituitary hormone-producing cells other than ACTH-producing cells (i.e., GH-producing cells, PRL-producing cells, TSH-producing cells, LH-producing cells, FSH-producing cells, etc.) from the pituitary placode and/or Rathke's pouch ) differentiation is promoted.
  • adrenocortical hormones include natural glucocorticoids such as hydrocortisone, cortisone acetate and fludrocortisone acetate; artificially synthesized glucocorticoids such as dexamethasone, betamethasone, prednisolone, methylprednisolone and triamcinolone. It can be, but is not limited to.
  • the concentration of adrenocortical hormones in the medium is not particularly limited as long as it can promote differentiation from the pituitary placode and/or Rathke's pouch into pituitary hormone-producing cells (excluding ACTH-producing cells).
  • hydrocortisone for example, it is usually 100 ng/ml or more, preferably 1 ⁇ g/ml or more, which can be appropriately set depending on the type of adrenocortical hormones.
  • concentration of hydrocortisone is usually 1000 ⁇ g/ml or less, preferably 100 ⁇ g/ml.
  • the concentration of hydrocortisone in the medium is usually about 100 ng/ml to about 1000 ⁇ g/ml, preferably about 1 to about 100 ⁇ g/ml.
  • concentration in the medium can be about 1/25 that of hydrocortisone.
  • the pituitary placode and/or Rathke's pouch differentiate into pituitary hormone-producing cells (excluding ACTH-producing cells).
  • ACTH-producing cells excluding ACTH-producing cells.
  • adrenocortical hormones are added to the medium. That is, until the appearance of ACTH-producing cells is confirmed in the cell aggregates, the cell aggregates are cultured in a medium to which no adrenocortical hormones are added, and after the appearance of ACTH-producing cells is confirmed, the adrenal cortex is The second step and subsequent steps are continued in a medium containing hormones.
  • the appearance of ACTH-producing cells can be confirmed by immunohistological staining using an antibody against ACTH. When human pluripotent stem cells are used, the appearance of ACTH-producing cells can generally be expected after 30 days from the start of the first step. add adrenocortical hormones to
  • the period of treatment of cell aggregates with adrenocortical hormones is not particularly limited as long as differentiation from the pituitary placode and/or Rathke's pouch into pituitary hormone-producing cells (excluding ACTH-producing cells) can be promoted.
  • the cells are treated until promotion of differentiation into pituitary hormone-producing cells (excluding ACTH-producing cells) is confirmed in the adrenocortical hormone-treated group.
  • the clumps are treated with corticosteroids.
  • the treatment period is usually 7 days or more, preferably 12 days or more.
  • the upper limit of the treatment period is not particularly limited. Once the promotion is confirmed, corticosteroids may be removed from the culture medium.
  • Retinoic acid transduction pathway agents include, for example, substances that bind to retinoic acid receptor (RAR) or retinoid X receptor (RXR) and activate downstream transcription.
  • Examples of compounds having the above effects include all-trans retinoic acid, isotretinoin, 9-cis retinoic acid, TTNPB (4-[(E)-2-[(5,5,8,8-Tetramethyl-5 ,6,7,8-tetrahydronaphthalene)-2-yl]-1-propenyl]benzoic acid), Ch55 (4-[(E)-3-(3,5-di-tert-butylphenyl)-3-oxo- 1-propenyl]benzoic acid), EC19 (3-[2-(5,6,7,8-Tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)ethyl]benzoic acid), EC23 (4- [2-(5,6,7,8-Tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)ethyl]-benzoicacid), Fenretinide (4-hydroxyphenylretinamide), Acitretin ((all
  • the retinoic acid transduction pathway active substance in step (2) and subsequent steps preferably includes all-trans retinoic acid to EC23.
  • the concentration of the retinoic acid transduction pathway active substance in the medium is not particularly limited as long as it is within a range capable of achieving the above effects. It is about 30 ⁇ M, preferably about 100 pM to about 20 ⁇ M, more preferably about 10 nM to about 10 ⁇ M, even more preferably about 100 nM to about 5 ⁇ M.
  • a retinoic acid transduction pathway active substance other than EC23 it is preferably used at a concentration that exhibits retinoic acid transduction pathway activity equivalent to that of EC23 at the concentration described above.
  • the Notch signaling pathway is a signal activated by direct interaction between Notch proteins, which are receptors expressed on the cell membrane, and Notch ligands (Delta, Jagged, etc.) expressed on the membranes of adjacent cells. Represents the transfer pathway.
  • Notch proteins In cells to which Notch signals have been transduced, Notch proteins undergo stepwise processing, and intracellular domains excised on the membrane are transported into the nucleus to control the expression of downstream genes.
  • the Notch signaling pathway inhibitor is not particularly limited as long as it can suppress signal transduction mediated by Notch. Any of nucleic acids, proteins, and low-molecular-weight organic compounds may be used. Such substances include, for example, functionally deficient Notch receptors and ligands, substances that inhibit Notch processing (S1 cleavage), substances that inhibit glycosylation of Notch and Notch ligands, substances that inhibit cell membrane translocation, Notch Substances that inhibit intracellular domain (NICD) processing (S2 cleavage, S3 cleavage) ( ⁇ -secretase inhibitors), substances that degrade NICD, substances that inhibit NICD-dependent transcription, and the like can be mentioned.
  • Notch processing S1 cleavage
  • substances that inhibit glycosylation of Notch and Notch ligands substances that inhibit cell membrane translocation
  • Notch Substances that inhibit intracellular domain (NICD) processing S2 cleavage, S3 cleavage) ( ⁇ -secretase inhibitors)
  • Notch signaling pathway inhibitors Compounds well known to those skilled in the art can also be used as Notch signaling pathway inhibitors.
  • Examples of compounds having activity as Notch signaling pathway inhibitors include DAPT (N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester), DBZ ((2S)- 2-[[2-(3,5-difluorophenyl)acetyl]amino]-N-[(7S)-5-methyl-6-oxo-7H-benzo[d][1]benzazepin-7-yl]propanamide) , MDL28170 (benzyl N-[(2S)-3-methyl-1-oxo-1-[[(2S)-1-oxo-3-phenylpropan-2-yl]amino]butan-2-yl]carbamate), FLI-06 (cyclohexyl 2,7,7-tri
  • the concentration of the Notch signaling pathway inhibitor in the medium is not particularly limited as long as the above effects can be achieved. to about 50 ⁇ M, preferably about 1 nM to about 30 ⁇ M, more preferably about 100 nM to about 20 ⁇ M, even more preferably about 1 ⁇ M to about 10 ⁇ M.
  • a Notch signaling pathway inhibitor other than DAPT it is preferably used at a concentration that exhibits Notch signaling pathway inhibitory activity equivalent to that of DAPT at the above concentration.
  • the cell population obtained in step b is cultured in the absence of the Shh signaling pathway agonist to obtain a cell population containing pituitary tissue, which is referred to as step (3′).
  • the formed cell aggregates may be cultured in suspension in the third step.
  • the cells may be adherently cultured in the third step. After suspension culture of the cells in step (2) or step (b), adhesion culture may be performed in the third step.
  • the medium used in the third step is not particularly limited as long as it does not contain Shh signaling pathway agents.
  • the conditions under which the Shh signaling pathway active substance is not added in this step refer to conditions under which the Shh signaling pathway active substance is not intentionally added to the culture environment of the cell population, and the Shh signal is unintentionally caused by autocrine or the like by the cell population.
  • the case where the signaling pathway active substance is contained in the culture environment is also included in the non-addition condition of the Shh signaling pathway active substance.
  • Examples of the medium used in the third step include the medium mentioned in the first step, gfCDM medium containing 10% to 20% KSR, and the like.
  • the third step and subsequent steps may include a step of embedding the cell aggregates in a gel and culturing them.
  • gels include gels using agarose, methylcellulose, collagen, Matrigel, etc. Matrigel is preferably used.
  • the cell aggregates may be embedded as they are, or the cells after dispersion and isolation may be seeded in the gel. good too.
  • a specific cell type such as basal cells may be sorted using a cell sorter or the like and then seeded.
  • co-culturing with cells other than the pituitary gland such as fibroblasts, mesenchymal cells, and vascular cells, can also be performed.
  • Gel-embedded culture as described above is, for example, Nature 501, 373-379 (2013), Nature, 499, 481-484 (2013), Nat Protoc 14, 518-540 (2019), Genes 2020, 11, 603, etc. can be implemented by referring to
  • a culture method in which cells are physically shaken for the purpose of improving nutrition and oxygen supply to cells and improving substance exchange.
  • Examples of such culture methods include methods other than stationary culture such as shaking culture, rotary culture, and agitation culture.
  • the means for performing shaking culture, rotary culture, stirring culture, etc. is not particularly limited. This can be done by putting down A person skilled in the art can appropriately set parameters such as the speed of shaking culture, rotation culture, and agitation culture within a range that does not cause damage to cells.
  • the speed is, for example, 5 to 60 rpm, preferably 5 to 40 rpm, more preferably 5 to 20 rpm.
  • Shaking speed range can be set.
  • the shaking speed range is set in the range of, for example, 15 to 60 rpm, preferably 15 to 50 rpm, more preferably 15 to 45 rpm. It is possible.
  • the shaking speed range is set in the range of, for example, 5 to 50 rpm, preferably 5 to 40 rpm, more preferably 5 to 30 rpm. It is possible.
  • a spinner flask e.g., 3152, manufactured by Corning
  • the culture is carried out at a rotational speed that does not allow the cell aggregates to visually settle.
  • Cultivation can also be carried out using a three-dimensional rotary floating culture apparatus (for example, CellPet CUBE, manufactured by J-Tech; Clinostar, manufactured by Celvivo). From the viewpoint of suppressing physical injury to cells such as friction, it is also preferable to culture the cell aggregates embedded in the gel with shaking, rotation, or agitation.
  • a three-dimensional rotary floating culture apparatus for example, CellPet CUBE, manufactured by J-Tech; Clinostar, manufactured by Celvivo.
  • the third step and subsequent steps it is also preferable to culture in a high-oxygen atmosphere from the viewpoint of suppressing cell death and promoting cell growth.
  • High-oxygen conditions in the culture process can be realized, for example, by connecting an oxygen bomb to an incubator for culturing cells and artificially supplying oxygen.
  • the oxygen concentration for such purposes is usually 25% to 80%, more preferably 30% to 60%.
  • culture equipment with high gas exchange efficiency can be used from the viewpoint of increasing the amount of oxygen supplied to the medium in which the cell aggregates are cultured.
  • examples of such cultureware include a cell culture dish, a Lumox dish with a gas-permeable film on the bottom of the plate (manufactured by Sarstedt Co., Ltd.), and a VECELL 96-well plate (manufactured by Bethel Co., Ltd.). It is also preferable to use in combination with the above-described culture under high oxygen concentration conditions.
  • a cell protective agent can be added to the medium from the viewpoint of maintaining the structure of the non-neural epithelial tissue in the cell aggregate.
  • Cell protective agents used in the third step and subsequent steps include the FGF signaling pathway agonists, heparin, ROCK inhibitors, basement membrane preparations, myosin inhibitors, polyamines, ISR inhibitors, and caspase inhibitors. , serum, or serum substitutes.
  • myosin inhibitors include blebbistatin, which is an inhibitor of non-muscle myosin II ATPase, ML-7, ML-9, W-7, which are inhibitors of myosin light chain kinase (MLCK), MLCK inhibitor peptide 18, and these and derivatives thereof.
  • the added cytoprotective agent may be different from that added in the first step, but is preferably the same.
  • Preferred cytoprotective agents include ROCK inhibitors.
  • a ROCK inhibitor When Y-27632, a ROCK inhibitor, is added as a cytoprotective agent in the third step and subsequent steps, it is usually about 10 nM to about 10 mM, preferably about 100 nM to about 1 mM, more preferably about 1 ⁇ M to about 100 ⁇ M. Add to the culture environment so that the concentration is When the ROCK inhibitor Chroman 1 is added, it is usually added to the culture environment at a concentration of about 10 pM to about 1 mM, preferably about 100 pM to about 100 ⁇ M, more preferably about 1 nM to about 10 ⁇ M.
  • the concentration is usually about 10 nM to about 10 mM, preferably about 100 nM to about 1 mM, more preferably about 1 ⁇ M to about 100 ⁇ M. Add to the culture environment as follows.
  • substances other than cell protective agents that have the effect of maintaining the structure of non-neural epithelial tissues.
  • substances that promote cell adhesion include substances that promote cell adhesion, substances that promote synthesis of basement membrane components, substances that inhibit decomposition of basement membrane components, and the like.
  • Substances that promote cell adhesion may be those that promote cell-to-cell adhesion, cell-to-basement membrane adhesion, cell-to-cultureware adhesion, or the like, and production of factors involved in cell adhesion.
  • Substances that promote cell adhesion include, for example, adhesamine, adhesamine-RGDS derivatives, pyrintegrin, biotin tripeptide-1, acetyltetrapeptide-3, RGDS peptide and derivatives thereof.
  • Substances that promote the synthesis of basement membrane components include, for example, ascorbic acid derivatives. Examples of ascorbic acid derivatives include sodium ascorbyl phosphate, magnesium ascorbyl phosphate, ascorbyl 2-glucoside, 3-O-ethylascorbic acid, ascorbyl tetrahexyldecanoate, ascorbyl palmitate, ascorbyl stearate, and ascorbyl-2.
  • ascorbic acid 2-phosphate which is a type of ascorbic acid derivative that promotes the synthesis of basement membrane components
  • it is usually 10 ⁇ g/ml or more and 1000 ⁇ g/ml or less, preferably 30 ⁇ g/ml or more and 500 ⁇ g/ml.
  • ascorbic acid 2-phosphate which is a type of ascorbic acid derivative that promotes the synthesis of basement membrane components
  • it is added to the culture environment at a concentration of 50 ⁇ g/ml or more and 300 ⁇ g/ml or less, more preferably.
  • other ascorbic acid, ascorbic acid derivatives, etc. are added, they may be added so that the above concentration and molar equivalent are approximately the same.
  • substances having the above activity include antioxidant substances, substances having free radical scavenger action, NADPH oxidase inhibitors, cyclooxygenase inhibitors, lipoxygenase (LOX) inhibitors, superoxide dismutase (SOD)-like substances, and Nrf2 activators. agents and the like.
  • substances having the above activity include ascorbic acid, N-acetyl-L-cysteine, ( ⁇ )- ⁇ -tocopherol acetate, apocynin (4′-Hydroxy-3′-methoxyacetophenone), nicotinamide, taurine (2- aminoethanesulfonic acid), IM-93 (1-Isopropyl-3-(1-methyl-1H-Indole-3-yl)-4-(N,N-dimethyl-1,3-propanediamine)-1H-Pyrrole- 2,5H-dione), Caffeic Acid (3,4-Dihydroxycinnamic Acid), Celastrol (3-Hydroxy-24-nor-2-oxo-1(10), 3,5,7-friedelatetraen-29-oic Acid; Tripterin), Ebselen (2-Phenyl-1,2-benzoisoselenazol-3(2H)-one), (-)-Epigallocatechin
  • the substance having the action of reducing oxidative stress used in the present invention preferably contains at least one selected from the group consisting of ascorbic acid, N-acetyl-L-cysteine and derivatives thereof.
  • Ascorbic acid for example as its derivative, ascorbic acid diphosphate, at a concentration of about 1 nM to about 1 M, preferably about 10 nM to about 100 mM, more preferably about 100 nM to about 10 mM, even more preferably about 1 ⁇ M to about 3 mM.
  • N-acetyl-L-cysteine is added to the medium at a concentration of, for example, about 1 nM to about 1 M, preferably about 10 nM to about 100 mM, more preferably about 100 nM to about 10 mM, even more preferably about 1 ⁇ M to about 5 mM. be able to.
  • a substance that inhibits the stress response signaling pathway (a substance that inhibits the intracellular signaling mechanism against stress).
  • the stress-activated protein kinase pathway (SAPK) is one of the major intracellular signaling mechanisms for stress.
  • Inhibitors of the stress responsive MAP kinase pathway include e.g. MAP3K inhibitors, MAP2K inhibitors, ASK inhibitors, MEK inhibitors, Akt inhibitors, Rho family kinase inhibitors, JNK inhibitors, p38 inhibitors, MSK inhibitors, STAT inhibitors, NF- ⁇ B inhibitors, CAMK inhibitors and the like.
  • MEK inhibitors include selumetinib (AZD6244, 6-(4-bromo-2-chloroanilino)-7-fluoro-N-(2-hydroxyethoxy)-3-methylbenzimidazole-5-carboxamide), mirdametinib (PD0325901, N-[ (2R)-2,3-dihydroxypropoxy]-3,4-difluoro-2-(2-fluoro-4-iodoanilino) benzamide), Trametinib (GSK1120212, N-[3-[3-cyclopropyl-5-(2- fluoro-4-iodoanilino)-6,8-dimethyl-2,4,7-trioxopyrido[4,3-d]pyrimidin-1-yl]phenyl]acetamide), U0126 (1,4-diamino-2,3- dicyano-1,4-bis(2-aminophenylthio)butadiene), PD18435
  • Examples of p38 inhibitors include SB203580 (4-[4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-1H-imidazol-5-yl]pyridine), Doramapimod (BIRB 796, 1-[5-tert -butyl-2-(4-methylphenyl)pyrazol-3-yl]-3-[4-(2-morpholin-4-ylethoxy)naphthalen-1-yl]urea), SB202190 (FHPI, 4-[4-( 4-fluorophenyl)-5-pyridin-4-yl-1H-imidazol-2-yl]phenol), ralimetinib dimesylate (5-[2-tert-butyl-4-(4-fluorophenyl)-1H-imidazol-5- yl]-3-(2,2-dimethylpropyl)imidazo[4,5-b]pyridin-2-amine; methanesulfonic acid), VX-7
  • JNK inhibitors include those mentioned in the first step.
  • the substance that inhibits the intracellular signal transduction mechanism against stress used in the present invention is preferably one or more selected from the group consisting of MEK inhibitors, p38 inhibitors and JNK inhibitors.
  • SB203580 When SB203580 is used as a p38 inhibitor, it is usually added to the medium at a concentration of about 1 nM to about 1 mM, preferably about 10 nM to about 100 ⁇ M, more preferably about 100 nM to about 10 ⁇ M, still more preferably about 500 nM to about 5 ⁇ M. can do.
  • PD0325901 When PD0325901 is used as a MEK inhibitor, it is usually added to the medium at a concentration of about 1 nM to about 1 mM, preferably about 10 nM to about 100 ⁇ M, more preferably about 100 nM to about 10 ⁇ M, still more preferably about 500 nM to about 5 ⁇ M. can do.
  • JNK-IN-8 When JNK-IN-8 is used as the JNK inhibitor, it can be added to the medium at the same concentration as described in the first step.
  • other MEK inhibitors, p38 inhibitors, and JNK inhibitors When other MEK inhibitors, p38 inhibitors, and JNK inhibitors are used, it is preferable to add them at a concentration having an inhibitory activity equivalent to that of the above inhibitors.
  • the present invention provides cell populations comprising pituitary tissue, particularly cell populations comprising 1) nervous system cells or neural tissue, 2) pituitary tissue, and 3) mesenchymal cells. Hereinafter, it is also referred to as the cell population of the present invention.
  • the cell population of the present invention can be preferably produced by the production method of the present invention described above.
  • Nervous system cells or nervous tissues in the cell population of the present invention are preferably central nervous system cells or tissues, or their progenitor tissues. (e.g., hypothalamus) and cells derived from these tissues, more preferably diencephalon (hypothalamus) or precursor tissues thereof, and still more preferably having a ventricle-like structure in the tissue It is the diencephalon or its precursor tissue.
  • Nervous system cells or nerve tissues are, for example, N-Cadherin-positive neuroepithelial tissues.
  • pituitary tissue in the cell population of the present invention is preferably formed continuously with non-neural epithelial tissue, and the non-neural epithelial tissue and pituitary tissue are 1) nervous system cells or neural tissue and 3) mesenchyme More preferably, at least one of the lineage cells is coated. It is also preferred that the non-neural epithelial tissue is oral epithelium or its progenitor tissue.
  • the pituitary tissue preferably contains pituitary hormone-producing cells and pituitary progenitor cells that are precursor cells thereof, preferably contains pituitary stem cells, preferably contains follicular astrocytes, pituitary hormone-producing cells, More preferably, it includes all pituitary progenitor cells, pituitary stem cells, and follicular astrocytes.
  • Pituitary hormone-producing cells include, for example, at least one selected from the group consisting of growth hormone (GH)-producing cells, prolactin (PRL)-producing cells, and adrenocorticotropic hormone (ACTH)-producing cells.
  • a pituitary niche is formed in the pituitary tissue, and it is also preferred that the pituitary niche is an MCL niche-like structure around the residual space remaining between the anterior and middle pituitary lobes. It is also preferred that the niche is a stromal niche-like structure, more preferably comprising both a MCL niche-like structure and a stromal niche-like structure.
  • the mesenchymal cells in the cell population of the present invention are preferably head mesenchymal cells.
  • Mesenchymal cells are preferably present between non-neural epithelial tissue covering the surface of the cell population and 1) nervous system cells or neural tissue present inside the cell population.
  • ventricle-like vacuoles are formed inside the neuroepithelial tissue, and 1) the surface of the neuroepithelial tissue is in contact with the vacuole, and the surface of the neuroepithelial tissue is Ezrin, PKC-zeta-positive apical surface is.
  • the mesenchymal cells contained in the cell population of the present invention express at least one mesenchymal cell marker selected from the group consisting of, for example, Nestin, Vimentin, Cadherin-11, Laminin, CD44, CD90 and CD105. do.
  • Non-neuroepithelial tissue that can be included in the present invention expresses at least one non-neuroepithelial tissue marker selected from the group consisting of, for example, cytokeratin, E-Cadherin and EpCAM.
  • Pituitary stem cells that can be included in the cell population of the present invention include, for example, Sox2, Sox9, E-Cadherin, Nestin, S100 ⁇ , GFR ⁇ 2, Prop1, CD133, ⁇ -Catenin, Klf4, Oct4, Pax6, Coxsackievirus-Adenovirus Common Receptor (CXADR), PRRX1/2, Ephrin-B2 and at least one pituitary stem cell marker selected from the group consisting of ACE.
  • a preferred embodiment of the cell population of the present invention contains pituitary stem cell markers (eg, CXADR)-positive pituitary stem cells.
  • the ratio of the number of pituitary stem cells in the cell population may be 1% or more, preferably 3% or more, or 5% or more.
  • the present invention provides a method for producing pituitary tissue, wherein the method comprises cells containing pituitary tissue obtained by the above "2.
  • Method for producing cell population containing pituitary tissue It is characterized by collecting pituitary tissue from a population.
  • One embodiment includes steps (1), (2) and (4) below. (1) a first step of culturing pluripotent stem cells in the presence of a JNK signaling pathway inhibitor and a Wnt signaling pathway inhibitor to obtain a cell population; (2) The cell population obtained in the first step is cultured (preferably suspension culture) in the presence of a BMP signaling pathway agonist and a Sonic hedgehog signaling pathway agonist, resulting in a cell population containing pituitary tissue.
  • a second step of obtaining (4) A fourth step of recovering pituitary tissue from the cell population obtained in the second step.
  • the first step and the second step can be performed in the same manner as the first step and the second step of "2.
  • Method for producing a cell population containing pituitary tissue Moreover, you may implement a process before a 1st process if desired. Moreover, you may implement a 3rd process between a 2nd process and a 4th process if desired.
  • the fourth step of recovering the pituitary tissue from the cell population containing the pituitary tissue is, if the formed cell population is a planar tissue obtained by adhesion culture or the like, for example, using a needle or the like under microscopic observation.
  • the pituitary tissue can be recovered by a technique such as physical exfoliation. If the formed cell cluster is a three-dimensional tissue such as a cell cluster, use tweezers or the like under microscope observation to peel and collect the pituitary tissue formed outside the cell cluster (Rathke's pouch). performed by Pituitary tissue is described, for example, in Nature communications, 2016, 7. It can be identified as a translucent thin epithelium on the surface of the obtained cell mass, as described in .
  • freezing and thawing preferably slow freezing, can also be used as a method for collecting pituitary tissue from the cell population (cell mass) in the fourth step. In this method, the outer pituitary tissue is detached from the cell mass without physical treatment by freezing and thawing a cell mass having pituitary tissue on the outside and mesenchymal nerve or neuroepithelial tissue on the inside. It is.
  • the cell population of the present invention, the cell population produced by the production method of the present invention, or the tissue recovered from the cell population may be pituitary tissue. Therefore, it is possible to provide a reagent for evaluating the toxicity and efficacy of a test substance, which comprises the cell population of the present invention, the cell population produced by the production method of the present invention, or the pituitary tissue collected from the cell population. .
  • the present invention can provide a toxicity/drug efficacy evaluation method using the above-described cell population or pituitary tissue collected from the cell population.
  • a test substance comprising a step of contacting a cell population or pituitary tissue collected from the cell population with a test substance, and assaying the effect of the test substance on the cell population or pituitary tissue toxicity and efficacy evaluation methods.
  • a step of contacting a cell population or a pituitary tissue collected from the cell population with a vector used for transducing a nucleic acid or gene of a specific sequence into a cell Toxicity and efficacy evaluation when the vector is used for gene therapy and other uses, including the step of assaying the effect on the pituitary tissue, such as the effect of the transgene, the delivery of the transgene, the degree of cytotoxicity, etc. method.
  • the cell population of the present invention, the cell population produced by the production method of the present invention, or the pituitary tissue recovered from the cell population and used as a reagent for evaluating the toxicity and efficacy of a test substance is genetically engineered by genome editing. It is also preferable that the cells are produced using the pluripotent stem cells as raw materials.
  • the gene edited in the source pluripotent stem cell is preferably a disease-associated gene, more preferably a disease-associated gene for pituitary disease.
  • pituitary disease examples include acromegaly, Cushing's disease, prolactin-producing pituitary adenoma, TSH (thyroid stimulating hormone)-producing pituitary adenoma, craniopharyngioma, Rathke's cyst, hypophysitis, hypopituitarism, pediatric Growth hormone deficiency, male low gonadotropin (LH, FSH) hypogonadism, hypothalamic/pituitary amenorrhea, multiple endocrine neoplasia, etc., and their causative genes and disease-related genes are multipotent. Although it is preferable as a target for genome editing in sex stem cells, it is not limited to this.
  • Another aspect of the disease-associated gene is a gene involved in pituitary to hypothalamic cancer and tumorigenesis.
  • diseases-related genes include AIP, GPR101, MEN1, MEN4, CDKN1B, PRKAR1A, PRKACB 2q16, SDHA/B/C/D, SDHAF2, NF1, DICER1, GNAS, USP8, PIK3CA, MTND1, 2, 4 , 5, MTTL2, MTTM, MTCYB, MTRNR2, and the like.
  • the pituitary tissue described in the present application can also be prepared by collecting cells from normal and diseased areas of the pituitary gland and other tissues of healthy subjects or patients to establish iPS cells.
  • compositions comprising the cell population of the present invention, the cell population produced by the production method of the present invention, or the pituitary tissue recovered from the cell population. and a pharmaceutical composition (composition for transplantation, tissue for transplantation or Transplant).
  • the pharmaceutical composition preferably contains a pharmaceutically acceptable carrier in addition to the cell population of the present invention, the cell population produced by the production method of the present invention, or the pituitary tissue collected from the cell population.
  • a physiological aqueous solvent can be used as a pharmaceutically acceptable carrier.
  • the pharmaceutical composition may contain preservatives, stabilizers, reducing agents, tonicity agents, etc., which are commonly used in medicines containing tissues or cells to be transplanted in transplantation medicine.
  • treatment of diseases caused by disorders of the pituitary gland comprising the cell population of the present invention, the cell population produced by the production method of the present invention, or the pituitary tissue recovered from the cell population.
  • Medication can be provided.
  • therapeutic agents for diseases based on pituitary disorders include implants containing a suspension containing the cell population of the present invention or a cell population produced by the production method of the present invention.
  • Suspensions include, for example, cell populations suspended in media, artificial tears, or saline.
  • the suspension may contain non-neural epithelial cells isolated from the cell population, and may contain factors that promote cell adhesion, such as extracellular matrix and hyaluronic acid.
  • Pituitary tissue collected from a cell population may be used instead of the cell mass.
  • a disease based on pituitary disorders which comprises the step of transplanting an effective amount of pituitary tissue from the cell population of the present invention or the cell population produced by the production method of the present invention to a subject in need of transplantation.
  • a therapeutic method can be provided.
  • the pituitary disorder-based disease may be a pituitary disorder-based animal disease or a pituitary disorder-based non-human animal disease.
  • diseases based on pituitary disorders include panhypopituitarism, pituitary dwarfism, hypoadrenocorticism, partial hypopituitarism, and isolated anterior pituitary hormone deficiency.
  • pituitary function/hormone secretion deficiency after surgery such as pituitary adenoma, craniopharyngioma, etc.
  • the cell population of the present invention, the cell population produced by the production method of the present invention, or the pituitary tissue recovered from the cell population and used as a therapeutic agent for diseases based on pituitary disorders is genetically engineered by genome editing. It is also preferred that the cells are produced using the pluripotent stem cells as raw materials.
  • Genes targeted for genome editing include genes involved in differentiation of pituitary tissue by the production method of the present invention, genes involved in differentiation into unintended cells other than the pituitary gland produced by the production method of the present invention, and pituitary gland These include, but are not limited to, hormone-associated genes secreted from cells, genes involved in disease infection, and the like.
  • Example 1 Examination of the effect of a JNK inhibitor on cell differentiation in the production of a cell population containing pituitary tissues (pituitary organoids) from human iPS cells]
  • Human iPS cells (HC-6#10 strain, obtained from RIKEN) were cultured under feeder-free conditions according to the method described in Scientific Reports, 4, 3594 (2014).
  • StemFit medium manufactured by Ajinomoto Co.
  • Laminin 511-E8 manufactured by Nippi
  • subconfluent human iPS cells (HC-6 #10 strain) were washed twice with 0.5 mM EDTA/PBS, and then further incubated with 5 mM EDTA/PBS at 37°C. Treated for 10 minutes. Cells were detached from the culture dish surface by pipetting and dispersed into single cells. Thereafter, the human iPS cells dispersed into single cells were seeded on a plastic culture dish coated with Laminin511-E8, and Y-27632 (ROCK inhibitor, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., 10 ⁇ M) in the presence of StemFit. Feeder-free culture was performed in the medium.
  • Laminin511-E8 Laminin511-E8
  • Y-27632 Y-27632
  • the number of seeded human iPS cells dispersed into single cells was 7 ⁇ 10 3 . .
  • the medium was entirely replaced with StemFit medium without Y-27632. Thereafter, once every 1 to 2 days, the entire medium was replaced with StemFit medium containing no Y-27632. Seven days after seeding, the cells were cultured until subconfluent (60% of the culture area was covered with cells).
  • SB431542 TGF- ⁇ signaling pathway inhibitor, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., final concentration 5 ⁇ M
  • SAG Shh signaling pathway active substance, manufactured by Enzo Life Sciences, final concentration 300 nM
  • the prepared subconfluent human iPS cells were treated with 0.5 mM EDTA/PBS in the same manner as in the above subculture.
  • a serum-free medium for differentiation induction was added, and the cells were peeled from the culture dish surface by pipetting and dispersed into single cells.
  • the human ES cells dispersed into single cells were transferred to a non-cell-adhesive 96-well culture plate (PrimeSurface 96V bottom plate, MS-9096V, manufactured by Sumitomo Bakelite Co., Ltd.) at 9 ⁇ 10 3 cells per well.
  • the cells were suspended in 100 ⁇ l of serum-free medium at 37° C. and 5% CO 2 for suspension culture.
  • the serum-free medium at that time was a mixture of F-12 + Glutamax medium (manufactured by Thermo Fisher Scientific) and IMDM + Glutamax medium (manufactured by Thermo Fisher Scientific) at a volume ratio of 1: 1, and 5% Knockout Serum Replacement (manufactured by Thermo Fisheric Scientific). ), 450 ⁇ M 1-monothioglycerol (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), 1 ⁇ Chemically defined lipid concentrate (manufactured by Thermo Fisher Scientific), 50 units / ml penicillin-50 ⁇ g / ml streptomycin (manufactured by Nacalai Tesque) Serum medium was used.
  • this serum-free medium is also referred to as 5% KSR gfCDM.
  • Y-27632 final concentration 10 ⁇ M
  • IWP-2 Wnt signaling pathway inhibitor, manufactured by Tocris Bioscience
  • 0.5 ⁇ M and SB431542 TGF signaling pathway inhibitor, manufactured by Wako Pure Chemical Industries, Ltd., 1 ⁇ M
  • JNK c-Jun N-terminal kinase inhibitor JNK-IN-8 (Merck, 1 ⁇ M ) were compared with those without addition.
  • JNK c-Jun N-terminal kinase
  • BMP4 was added to the medium to be added at 1 nM to a final concentration in the well of 0.5 nM, and SAG was added to the medium to be added at 1.4 ⁇ M to a final concentration in the well of 700 nM. After that, on days 6, 10, 13, 17, 21 and 24 after the start of suspension culture, half the medium was replaced with a serum-free medium containing IWP-2, SB431542 and SAG but not Y-27632 and BMP4. .
  • phase-contrast observation was performed using an inverted microscope (manufactured by Keyence Corporation, BIOREVO BZ-9000) (lower diagram in Fig. 1). Spherical cell aggregates with a diameter of about 1000 ⁇ m were formed by the differentiation induction method. A comparison of the conditions with and without the addition of the JNK inhibitor revealed that the size of the cell clusters was about 100 ⁇ m smaller in diameter under the conditions with the addition of the JNK inhibitor than under the conditions without the addition of the JNK inhibitor, and the surface of the cell clusters was similar to that of the pituitary tissue.
  • Example 2 Examination of timing of addition of JNK inhibitor in production of cell population containing pituitary tissue (pituitary organoid) from human iPS cells]
  • a cell population containing cells constituting pituitary tissue was produced according to the steps shown in FIG. 2A.
  • human iPS cells strain 1231A3, obtained from RIKEN
  • StemFit medium was used as a feeder-free medium
  • Lamin511-E8 was used as a feeder-free scaffold. Differentiation was induced under the same conditions as in Example 1, except for the addition of the JNK inhibitor.
  • JNK-IN-8 manufactured by Merck, 1 ⁇ M
  • JNK c-Jun N-terminal kinase
  • Example 3 Examination of the effect of a JNK inhibitor on pituitary hormone secretion ability in the production of a cell population containing pituitary tissue (pituitary organoid) from human iPS cells]
  • a cell population containing cells constituting pituitary tissue was produced according to the steps shown in FIG. 3A.
  • human iPS cells 201B7 strain, obtained from Kyoto University
  • StemFit medium was used as a feeder-free medium
  • Lamin511-E8 was used as a feeder-free scaffold.
  • the subconfluent human iPS cells were treated with a cell dispersion using TrypLE Select, and dispersed into single cells by pipetting. Then, the human ES cells dispersed into single cells were suspended in 100 ⁇ L of serum-free medium at 9000 cells per well of a non-cell-adhesive 96-well culture plate, and placed at 37° C., 5% CO 2 . Suspension culture was carried out under these conditions.
  • the serum-free medium (gfCDM+KSR) at that time was a serum-free medium obtained by adding 5% KSR, 450 ⁇ M 1-monothioglycerol, and 1x Chemically defined lipid concentrate to a 1:1 mixture of F-12 medium and IMDM medium. .
  • Y-27632 (final concentration 10 ⁇ M), IWP-2 (0.5 ⁇ M), SB431542 (1 ⁇ M), and SAG (100 nM) were added to the serum-free medium at the start of suspension culture (day 0 after initiation of differentiation induction).
  • 100 ⁇ L of a serum-free medium containing IWP-2, SB431542, BMP4 (0.5 nM) and SAG (700 nM) without Y-27632 was added per well. After that, on days 6, 9, 12, 15, 19, 22, and 26 after the initiation of differentiation induction, half the medium was replaced with a serum-free medium containing IWP-2, SB431542, and SAG but without Y-27632 and BMP4. gone. After the 19th day, the oxygen partial pressure during culture was set to 40%.
  • the cell aggregates on the 29th day after the initiation of differentiation induction were each fixed with 4% paraformaldehyde, and frozen sections were prepared.
  • the pituitary progenitor markers Pitx1 anti-Pitx1 antibody, homemade (Nature Communications, 7: 10351, 2016, Cell Reports, 30, 18-24, January 7, 2020)
  • Lhx3 anti-Lhx3 Antibodies, homemade (Nature Communications, 7: 10351, 2016, Cell Reports, 30, 18-24, January 7, 2020)
  • immunostaining using antibodies against epithelial cell marker E-cadherin did After primary antibody reaction, detection was performed using a secondary antibody (manufactured by Life Technologies) fluorescently labeled with Alexa488, 555, and 647.
  • Example 4 Examination of the effect of a JNK inhibitor on pituitary hormone secretion ability in the production of a cell population containing pituitary tissue (pituitary organoid) from human iPS cells]
  • a cell population containing cells constituting pituitary tissue was produced according to the steps shown in FIG. 4A. Specifically, the culture supernatant of the human iPS cell line 201B7-derived cell mass prepared by the method described in Example 3 was collected over time, and the secretion amount of ACTH per cell mass was measured.
  • the culture supernatant was collected before half the medium was replaced, frozen at -150°C, and used in clinical tests after all specimens were collected.
  • the ACTH concentration in the recovered medium was measured by the ELISA method (inspection entrusted to SRL Co., Ltd.). Based on the ACTH concentration (pg/mL) data obtained, the total number of cell clusters and the total amount of culture medium at the time of sampling were corrected to the ACTH concentration under conditions in which 20 cell clusters were cultured in 20 ml of medium. made it A similar experiment was performed twice.
  • the ACTH concentration in the medium was about 5 times higher at day 61 of differentiation induction. , 103 days and 152 days after differentiation induction, and about 1.3 times higher at 201 days after differentiation induction.
  • the concentration of ACTH in the medium was higher on the 61st and 103rd days of differentiation induction than under the non-addition condition, but on the 152nd and 201st days of differentiation induction, It was lower than the additive-free condition.
  • the addition of a JNK inhibitor improves the ACTH secretion ability per cell mass in the induction of pituitary tissue differentiation from pluripotent stem cells, and the concentration of the added JNK inhibitor is preferably 3 ⁇ M or less. (Fig. 4B).
  • Example 5 Examination of effect of shaking culture in production of cell population containing pituitary tissue (pituitary organoid) from human iPS cells]
  • a cell population containing cells constituting pituitary tissue was produced according to the steps shown in the upper diagram of FIG. Specifically, cell clusters on day 30 of differentiation induction produced from human iPS cell line 1231A3 by the method described in Example 2 were transferred to a cell non-adhesive T75 tissue culture flask (manufactured by Corning), and then was carried out.
  • Example 6 Examination of the effect of a substance having an action to reduce oxidative stress in the production of a cell population containing pituitary tissue (pituitary organoid) from human iPS cells]
  • a cell population containing cells constituting pituitary tissue was produced according to the steps shown in the upper diagram of FIG. Specifically, a cell mass containing pituitary tissue was prepared from the human iPS cell line 1231A3 by the method described in Example 5. On day 30 of induction of differentiation, the cell mass was transferred to a T75 flask, and the culture conditions were changed.
  • N-acetylcysteine was added to the medium at a concentration of 1 mM from day 10 of induction of differentiation, and compared with non-addition conditions.
  • NAC N-acetylcysteine
  • the cell clusters were about 50 ⁇ m smaller in diameter under the conditions where NAC was added than under the non-addition conditions, and the proliferation of non-target cells was suppressed. Furthermore, by carrying out suspension culture, cell clusters with a high proportion covered with epithelial tissue containing pituitary gland were formed on day 51 of induction of differentiation. The above results indicated that the addition of a substance that reduces oxidative stress is useful for the production of pituitary tissue from pluripotent stem cells.
  • the human ES cells were treated with a cell dispersion using TrypLE Select and further dispersed into single cells by pipetting. Thereafter, the human ES cells dispersed into single cells were suspended in 100 ⁇ L of serum-free medium at 1.0 ⁇ 10 4 cells per well of a non-cell-adhesive 96-well culture plate, Suspension culture was carried out under the condition of 5% CO2 .
  • the serum-free medium (gfCDM+KSR) at that time was a serum-free medium obtained by adding 5% KSR, 450 ⁇ M 1-monothioglycerol, and 1x Chemically defined lipid concentrate to a 1:1 mixture of F-12 medium and IMDM medium. .
  • Y-27632 (final concentration: 20 ⁇ M) and SAG (100 nM) were added to the serum-free medium at the start of suspension culture (0 days after initiation of differentiation induction) (step (1)). Two days after initiation of differentiation induction, 100 ⁇ L of serum-free medium containing BMP4 (5 nM) and SAG (2 ⁇ M) without Y-27632 was added per well. On the 6th, 9th, 12th and 15th days after initiation of differentiation induction, half the medium was replaced with a serum-free medium containing BMP4 and SAG without Y-27632 (start of step (2)).
  • the frozen sections were immunostained using antibodies against PITX1 (anti-Pitx1 antibody, homemade) and an epithelial cell marker E-cadherin (manufactured by Takara Bio Inc.).
  • PITX1 anti-Pitx1 antibody, homemade
  • E-cadherin epithelial cell marker
  • RAX::Venus-positive neuroepithelial tissue was present on the inside (Fig. 8B-1 to 3).
  • LHX3-positive cells were present in the outer cell layer containing non-neural epithelial tissues positive for PITX1 and E-cadherin (FIGS. 8B-1 to 8B-3).
  • the conditions under which PITX1-positive and E-cadherin-positive non-neural epithelial tissues are formed with the highest probability are the addition of IWP2 and SB431542 from day 0 to day 29 of the start of suspension culture, and the addition of BMP4. was carried out from day 2 to day 6 after the start of suspension culture (Fig. 8B-3). From this result, the outer non-neural epithelial tissue is formed with high efficiency under the differentiation induction conditions in which the Wnt signal inhibitor and the TGF ⁇ signal inhibitor are added from human iPS cells, and part of the outer non-neural epithelium is LHX3-positive. It has been shown that cell clumps that are pituitary placodes can be produced.
  • the lower right scale bar in FIGS. 8B-1-3 indicates 200 ⁇ m.
  • Example 7 Examination of the effect of a JNK inhibitor on the induction of pituitary epithelial tissue and pituitary hormone-secreting cells in the production of a cell population containing pituitary tissue (pituitary organoid) from human iPS cells]
  • human iPS cells 201B7 strain
  • suspension culture was performed in the same manner as in Example 4, continued until day 103, and the obtained cell aggregates were used.
  • Cryosections were prepared in the same manner as in Example 3.
  • Example 8 Confirmation of presence of pituitary hormone-secreting cells in production of cell population containing pituitary tissue (pituitary organoid) from human iPS cells.
  • human iPS cells strain 1231A3
  • suspension culture was performed in the same manner as in Example 6, and frozen sections were prepared in the same manner as in Example 3 using cell aggregates on day 59 of culture.
  • the obtained sections were immunostained using anti-ACTH antibody (Lab Vision) and anti-SOX2 antibody (Santa Cruz), and cell nuclei were stained with DAPI.
  • a pituitary epithelial tissue was formed on the surface layer of the cell aggregate, and ACTH-positive cells were present throughout the cell aggregate (Fig. 11).
  • the lower right scale bar in FIG. 11 indicates 200 ⁇ m.
  • Example 9 Examination of SAG addition period in production of cell population containing pituitary tissue (pituitary organoid) from human iPS cells] Using human iPS cells (201B7 strain), cell aggregates were produced according to the steps shown in FIG. 12A. However, regarding the SAG treatment period, SAG was added to the group from immediately after the start of differentiation induction to 30 days after the start of differentiation induction, and after 30 days from immediately after the start of differentiation induction (up to 61st, 103rd and 131st days). Two groups were set to be added, and the ACTH secretion ability was compared. ACTH was measured in the same manner as in Example 4. As a result, it was found that the ACTH secretion ability was improved by stopping the SAG treatment 30 days after the initiation of differentiation induction (Fig. 12B).
  • Example 10 Examination of gene expression changes in production of cell population containing pituitary tissue (pituitary organoid) from human ES cells] Using human ES cells (KhES-1 strain), cell aggregates were produced according to the steps shown in FIG. 13A. Expression changes of pituitary markers (PITX1, LHX3, POMC (ACTH progenitor cells)) and hypothalamic markers (RAX, NKX2.1 (TTF1)) in order to confirm the degree of differentiation at each culture day after initiation of differentiation induction was examined by quantitative PCR. Specifically, it was carried out as follows. RNA was extracted from 6 cell aggregates per sample using the RNeasy Micro Kit (Qiagen).
  • Quantitative PCR was performed using a Biomark HD (Fluidigm). ⁇ GAPDH(Hs02758991_g1) ⁇ PITX1(Hs00267528-m1) ⁇ LHX3(Hs01033412_m1) ⁇ POMC(Hs01596743_m1) ⁇ RAX(Hs00429459-m1) ⁇ TTF1(Hs00968940-m1)(TaqMan Probes;Thermo Fisher Scientific ) was used. The obtained data were normalized using GAPDH as an endogenous control, and quantitative results were obtained using the comparative Ct method ( ⁇ Ct method).
  • Example 11 Confirmation of expression of various hormone-secreting cells in production of cell population containing pituitary tissue (pituitary organoid) from human ES cells.
  • Cell aggregates were produced using the same differentiation induction method as in Example 10 using human ES cells (KhES-1 strain). Frozen sections were prepared in the same manner as in Example 3 using cell aggregates 103 days after the start of suspension culture.
  • Anti-prolactin (PRL) antibody (manufactured by Dako), anti-POU1F1 antibody (homemade), anti-thyroid stimulating hormone (TSH) antibody (manufactured by Dako), anti-luteinizing hormone (LH) antibody (manufactured by Dako) and anti-follicular stimulation
  • TSH thyroid stimulating hormone
  • LH leukinizing hormone
  • Immunostaining was performed using a hormone (FSH) antibody (manufactured by Dako), and cell nuclei were stained with DAPI.
  • FSH hormone
  • the cell aggregates 152 days after the start of the suspension culture were immunostained using an anti-growth hormone (GH) antibody (manufactured by Santa Cruz), and the cell nuclei were stained with DAPI.
  • GH anti-growth hormone
  • Example 12 Examination of the structure of cell aggregates containing pituitary tissue (pituitary organoids) using an electron microscope]
  • a cell aggregate containing pituitary tissue was produced using the same differentiation induction method as in Example 10, and the culture was continued from day 51 onwards to day 201 after the start of suspension culture in FIG. 13A.
  • Cell aggregates were fixed with 4% paraformaldehyde, 1% glutaraldehyde and 2% sucrose at 4°C for 3 days. After dehydration with an alcohol solution and polymerization and embedding with LR-WHlTE resin (Nissin EM) according to a conventional method, ultra-thin sections were prepared and observed with an electron microscope (Hitachi H-7500).
  • FIG. 15A arrow head
  • Fig. 15A, B, C “ ⁇ ”
  • Endocrine cells containing many secretory granules were scattered, but these cells maintained a certain immature state, and the type of endocrine cells was unclear.
  • Endocrine cells appeared to be strongly polarized towards the basement membrane and the outer border, eg desmosomes were localized in the outer layer (Fig. 15C: arrow head).
  • the presence of folliculo-stellate cells (FSCs) was also observed within the organoid wall (FIG. 15D: dashed line).
  • the lower right scale bar in FIG. 15A indicates 8 ⁇ m
  • the lower right scale bar in FIGS. 15B and 15C indicates 2 ⁇ m
  • the lower right scale bar in FIG. 15D indicates 500 nm.
  • Example 13 Examination of the presence of pituitary stem cells in cell aggregates containing pituitary tissue (pituitary organoids) by immunostaining
  • the follicular astrocytes in the pituitary confirmed in Example 12 are reported to be a type of adult pituitary stem cells, and the pituitary-hypothalamic organoids produced by this production method contain not only hormone-producing cells It was suggested to contain pituitary stem cells. Therefore, cell aggregates containing pituitary tissue were produced in the same manner as in Example 10, and CXADR, a pituitary stem cell marker, was applied to the cell aggregates on day 103 after the start of suspension culture (differentiation induction). Immunostaining was performed.
  • Example 3 frozen sections were prepared for each. Immunostaining was performed on these frozen sections using an anti-ACTH antibody (mouse, 1:200; Fitzgerald) and an anti-CXADR antibody (rabbit; 1:100; Atlas antibodies), and cell nuclei were stained with DAPI. These stained sections were observed using a confocal laser scanning microscope (manufactured by Olympus) to obtain immunostained images. As a result, in the region where pituitary tissue exists, ACTH-positive cells were present inside the cell aggregates, and CXADR-positive and ACTH-negative cells were present on the opposite side (outside the cell aggregates) (Fig. 16).
  • hormone-producing cells and pituitary stem cells exhibit polarity.
  • the presence of pituitary stem cells in pituitary-hypothalamic organoids derived from pluripotent stem cells has not been reported so far, and was confirmed for the first time in this example.
  • the lower right scale bar in FIG. 16 indicates 50 ⁇ m.
  • Example 14 Examination of ACTH secretion ability of cell aggregates containing pituitary tissue (pituitary organoids)]
  • a cell aggregate containing pituitary tissue was produced in the same manner as in Example 10, and the ability to secrete ACTH was examined. Twenty cell aggregates with different culture days after the start of suspension culture are transferred to a 10 cm suspension culture dish containing serum-free medium (20 mL) supplemented with 20% KSR, cultured at 37 ° C. for 3 to 4 days, and then cultured. Clear was collected. The ACTH concentration in the recovered culture supernatant was measured by the ELISA method used in clinical testing (contracted to SRL Co., Ltd.).
  • Example 15 Identification of unintended cells expressed in pituitary organoids prepared from human ES cells (genetic analysis/immunostaining)]
  • human ES cells KhES-1 strain
  • RNeasy Micro Kit both manufactured by Qiagen
  • the probes include Thermo Fisher Scientific TaqMan probes (GAPDH (Hs02758991_g1), ACTB (Hs01060665-g1), PITX1 (Hs00267528-m1), PITX2 (Hs04234069-mH), LHX3 (Hs01033412_m1), PO5MC (Hs01033412_m1), PO5MC (Hs049) ⁇ E-cadherin(Hs01023895_m1) ⁇ EpCAM(Hs00901885_m1) ⁇ RAX(Hs00429459-m1) ⁇ TTF1(Hs00968940-m1) ⁇ NESTIN(Hs04187831-g1) ⁇ SOX11(Hs00846583_s1) ⁇ LIN28A(Hs00702808-s1) ⁇ NANOG(Hs04260366- g1), POU5F1 (Hs04260367-gH) was used.As a result, as shown
  • cryosections were prepared from tissues on day 103 after the start of suspension culture using the same method as in Example 3, and NESTIN (mouse; 1:500; manufactured by R&D Systems) and SOX11 (sheep; 1:1: 100; manufactured by R&D Systems), immunostaining was performed, and cell nuclei were stained with DAPI.
  • NESTIN mouse; 1:500; manufactured by R&D Systems
  • SOX11 seep; 1:1: 100; manufactured by R&D Systems
  • Example 16 Production and induction of differentiation of pituitary organoids from human iPS cells using cultureware with divided microwells
  • Pituitary organoids were produced from human pluripotent stem cells using cultureware with divided microwells according to the steps shown in FIG. 19A.
  • Human iPS cell 1231A3 strain was used as pluripotent stem cells.
  • Cells used for differentiation induction were prepared in the same manner as in Example 1.
  • a serum-free medium for differentiation induction was added, and the cells were peeled off the surface of the culture dish by pipetting, dispersed into single cells, and transferred to a pre-prepared 35 mm EZSPHERE Dish at 1.8 ⁇ per dish. 10 6 cells were suspended in 3 ml of serum-free medium and cultured in suspension at 37° C. and 5% CO 2 . 5% KSR gfCDM was used as the serum-free medium at that time (start of step (1)).
  • step (1) At the start of the suspension culture (0 days after the start of the suspension culture, step (1) is started), Y-27632 (final concentration 10 ⁇ M), IWP-2 (final concentration 1 ⁇ M), SB431542 (final concentration 1 ⁇ M) were added to the serum-free medium. , JNK-IN-8 (final concentration 1 ⁇ M), SAG (final concentration 100 nM) were added.
  • cell aggregates were collected using a wide-bore 1000 ⁇ l pipette tip and transferred to a 10 cm suspension culture dish.
  • 12 ml of 5% KSR gfCDM containing IWP-2, SB431542, JNK-IN-8 and SAG (final concentration 700 nM) without Y-27632 and BMP4 was used.
  • 6 ml of medium was collected from the dish without sucking cell aggregates, and 6 ml of new medium was added to replace half of the medium.
  • Example 17 Examination of BMP addition timing under JNK inhibitor addition conditions in production of cell population containing pituitary tissue (pituitary organoid) from human iPS cells]
  • a cell population containing cells constituting pituitary tissue was produced according to the steps shown in FIG. 20A.
  • human iPS cells strain 1231A3, obtained from RIKEN
  • StemFit medium was used as a feeder-free medium
  • Lamin511-E8 was used as a feeder-free scaffold.
  • step (2) was performed about 24 hours (day 1) and about 48 hours (day 2) after initiation of differentiation induction.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本発明は、多能性幹細胞から下垂体組織を含む細胞集団を効率よく製造する手法を提供することを課題とする。本発明の下垂体組織を含む細胞集団の製造方法は、下記工程(1)及び(2)を含む; (1)多能性幹細胞をc-jun N末キナーゼ(JNK)シグナル伝達経路阻害物質およびWntシグナル伝達経路阻害物質の存在下で培養する第一工程、 (2)第一工程で得られた細胞集団を、BMPシグナル伝達経路作用物質及びソニック・ヘッジホッグシグナル伝達経路作用物質の存在下で培養し、下垂体組織を含む細胞集団を得る第二工程。

Description

下垂体組織を含む細胞集団の製造方法及びその細胞集団
 本発明は、下垂体組織を含む細胞集団の製造方法及びその細胞集団に関するものである。さらに、細胞集団中に神経系細胞又は神経組織と、下垂体組織と、間葉系細胞とを含む細胞集団に関するものである。
 下垂体は頭部に存在する内分泌器官であり、副腎皮質刺激ホルモン(ACTH)、成長ホルモンといった生体の維持、成長に重要な各種の下垂体ホルモンを産生する。下垂体の形成不全や下垂体機能低下症、下垂体腺腫等の疾患により下垂体の機能不全が生じた場合、成長障害、生殖器関連の異常、副腎や甲状腺の異常に類する重篤な症状が生じる。一般に、障害を受けた下垂体組織が自然に再生し機能を回復することは稀である。
 特許文献1及び非特許文献1、2には、ヒト多能性幹細胞をBMPシグナル伝達経路阻害因子乃至作用因子、ソニック・ヘッジホッグ(本明細書において、Shhと記載することがある)シグナル伝達経路作用因子、及びTGF-βシグナル伝達経路阻害剤存在下で分化誘導することにより、下垂体細胞を含む頭部プラコード由来細胞を製造したことが報告されている。しかしながら、製造された細胞は二次元的に培養されたものであり、機能の発揮に重要な生体の複雑な下垂体組織の構造を再現するには至っていない。
 本発明者らは、特許文献2から4及び非特許文献3、4において多能性幹細胞から立体的な下垂体組織を製造し、その組織が下垂体ホルモン産生能を有することを報告している。
特開2016-538856号公報 WO2013/065763 WO2016/013669 WO2019/103129
Dincer et al. Cell Reports 5, 1387-1402, 2013. Zimmer et al. Stem Cell Reports 6, 858-872, 2016. Suga et al. Nature. 2011 Nov 9; 480(7375): 57-62. Ozone et al. Nature communications 7.10351 (2016): 1-10.
 本発明の目的は、多能性幹細胞から下垂体組織を含む細胞集団をさらに効率よく製造する手法を提供することである。特に、ヒトへの移植、再生医療に適した高品質な下垂体組織を含む細胞集団を効率よく製造する手法を提供することである。さらには最終製品の製造、精製に適した中間製造体に相当する細胞集団を同定し、製造することである。具体的には、フィーダーフリー培養された多能性幹細胞を出発材料とすることができ、高価な組み換えタンパク質の使用量を低減してより安価に製造することで、効率よく製造する手法を提供することである。
 本発明者らは、上記課題を解決すべく検討を重ねたところ、多能性幹細胞をc-jun N末キナーゼ(JNK)シグナル伝達経路阻害物質の存在下で培養し、BMPシグナル伝達経路作用物質とソニック・ヘッジホッグシグナル伝達経路作用物質を添加することにより下垂体組織を含む細胞集団を効率よく製造できることを見出した。さらに、前記JNKシグナル伝達経路阻害物質とWntシグナル伝達経路阻害物質を同時に添加することで、より効率よく下垂体組織を含む細胞集団を製造できることを見出した。
 すなわち、本発明は以下に関する。
[1]下記工程(1)及び(2)を含む、下垂体組織を含む細胞集団の製造方法;
(1)多能性幹細胞をc-jun N末キナーゼ(JNK)シグナル伝達経路阻害物質およびWntシグナル伝達経路阻害物質の存在下で培養し、細胞集団を得る第一工程、
(2)第一工程で得られた細胞集団を、BMPシグナル伝達経路作用物質及びソニック・ヘッジホッグシグナル伝達経路作用物質の存在下で培養し、下垂体組織を含む細胞集団を得る第二工程。
[2]第一工程の前に、多能性幹細胞を下記工程(a)に付すことを特徴とする、[1]記載の製造方法;
(a)多能性幹細胞を、フィーダー細胞非存在下で、1)TGFβファミリーシグナル伝達経路阻害物質及び/又はソニック・ヘッジホッグシグナル伝達経路作用物質、並びに2)未分化維持因子を含む培地で培養するa工程。
[2-1]前記工程(a)にて添加されるTGFβファミリーシグナル伝達経路阻害物質がAlk5/TGFβR1阻害剤であり、Alk5/TGFβR1阻害剤がSB431542、SB505124、SB525334、LY2157299、GW788388、LY364947、SD-208、EW-7197、A83-01、A77-01、RepSox、BIBF-0775、TP0427736、TGFBR1-IN-1、SM-16、TEW-7197、LY3200882、LY2109761、KRCA 0008、GSK 1838705、Crizotinib、Ceritinib、ASP 3026、TAE684、AZD3463及びこれらの誘導体からなる群から選ばれる少なくとも1つを含む、[2]に記載の製造方法。
[3]第一工程における培養がさらにソニック・ヘッジホッグシグナル伝達経路作用物質の存在下であって、第一工程および第二工程におけるソニック・ヘッジホッグシグナル伝達経路作用物質の存在下における培養期間が、30日である、[1]に記載の製造方法。
[4]第二工程で得られた細胞集団を下記工程(3)に付すことを特徴とする、[1]、[2]、[2-1]及び[3]のいずれかに記載の製造方法;
(3)第二工程で得られた細胞集団を、ソニック・ヘッジホッグシグナル伝達経路作用物質の非存在下で培養し、下垂体組織を含む細胞集団を得る第三工程。
[5]第三工程の前に、第二工程で得られた細胞集団を下記工程(b)に付すことを特徴とする、[4]に記載の製造方法;
(b)第二工程で得られた細胞集団を、BMPシグナル伝達経路阻害物質の存在下で培養するb工程。
[5-1]前記工程(b)で添加されるBMPシグナル伝達経路阻害物質が、I型BMP受容体阻害剤を含む、[5]に記載の製造方法。
[5-2]前記I型BMP受容体阻害剤は、K02288、Dorsomorphin、LDN-193189、LDN-212854、LDN-214117、ML347、DMH1、DMH2、Compound 1、VU5350、OD52、E6201、Saracatinib、BYL719及びこれらの誘導体からなる群より選ばれる少なくとも1つを含む、[5-1]に記載の製造方法。
[6]前記JNKシグナル伝達経路阻害物質は、JNK阻害剤を含む、[1]~[5]、[2-1]、[5-1]及び[5-2]のいずれかに記載の製造方法。
[6-1]前記JNK阻害剤は、SP600125、JNK-IN-8、DB07268、IQ-1S、Tanzisertib、Bentamapimod、BI-78D3、BI-87G3、CC-401、TCS JNK 5a、AS601245、CV-65、D-JNK1、ER-358063、ER-409903、ER-417258、CC-359、CC-930、SB203580及びこれらの誘導体からなる群より選ばれる少なくとも1つを含む、[6]に記載の製造方法。
[6-2]前記JNK阻害剤はJNK-IN-8又はSP600125を含み、1nM~50μMのJNK-IN-8、又は1nM~25μMのSP600125を含有する培地中で前記工程(1)を開始する、[6]又は[6-1]に記載の製造方法。
[7]前記JNKシグナル伝達経路阻害物質は、Rac阻害剤を含む、[1]~[5]、[2-1]、[5-1]及び[5-2]のいずれかに記載の製造方法。
[7-1]前記Rac阻害剤は、NSC23766、EHop-016、ZCL278、MBQ-167、KRpep-2d、ARS-853、Salirasib、ML141、EHT1864及びこれらの誘導体からなる群より選ばれる少なくとも1つを含む、[7]に記載の製造方法。
[8]前記Wntシグナル伝達経路阻害物質が、非古典的Wnt経路に対する阻害活性を有する物質を含む、[1]~[7]、[2-1]、[5-1]、[5-2]、[6-1]、[6-2]、及び[7-1]のいずれかに記載の製造方法。
[8-1]前記非古典的Wnt経路に対する阻害活性を有する物質がPORCN阻害剤であり、PORCN阻害剤がIWP-2、IWP-3、IWP-4、IWP-L6、IWP-12、IWP-O1、LGK-974、Wnt-C59、ETC-131、ETC-159、GNF-1331、GNF-6231、Porcn-IN-1、RXC004、CGX1321およびこれらの誘導体からなる群から選ばれる少なくとも1つを含む、[8]に記載の製造方法。
[9]前記第一工程、第二工程、b工程、及び第三工程のいずれか一つ以上の工程で、TGFシグナル伝達経路阻害物質がさらに存在する、[1]~[8]、[2-1]、[5-1]、[5-2]、[6-1]、[6-2]、[7-1]及び[8-1]のいずれかに記載の製造方法。
[9-1]前記a工程、第一工程、第二工程及びb工程のいずれか一つ以上の工程で添加されるソニック・ヘッジホッグシグナル伝達経路作用物質がSAG、Purmorphamine及びGSA-10からなる群から選ばれる少なくとも1つを含む[1]~[9]、[2-1]、[5-1]、[5-2]、[6-1]、[6-2]、[7-1]、及び[8-1]のいずれかに記載の製造方法。
[10]前記第一工程、第二工程、b工程、及び第三工程のいずれか一つ以上の工程で、TAK1阻害物質がさらに存在する、[1]~[9]、[2-1]、[5-1]、[5-2]、[6-1]、[6-2]、[7-1]、[8-1]、及び[9-1]のいずれかに記載の製造方法。
[10-1]前記TAK1阻害物質が、(5Z)-7-Oxozeaenol、N-Des(aminocarbonyl)AZ-TAK1 inhibitor、Takinib、NG25、Sarsasapogenin及びこれらの誘導体からなる群より選ばれる少なくとも1つを含む、[10]に記載の製造方法。
[11]前記第二工程、b工程、及び第三工程のいずれか一つ以上の工程でFGFシグナル伝達経路作用物質がさらに存在する、[1]~[10]、[2-1]、[5-1]、[5-2]、[6-1]、[6-2]、[7-1]、[8-1]、[9-1]、[10-1]のいずれかに記載の製造方法。
[11-1]前記FGFシグナル伝達経路作用物質はFGF2、FGF3、FGF8、FGF10及びこれらの改変体からなる群より選ばれる少なくとも1つを含む、[11]に記載の製造方法。
[12]前記第二工程、b工程、及び第三工程のいずれか一つ以上の工程で酸化ストレスを軽減する作用を有する物質がさらに存在する、[1]~[11]、[2-1]、[5-1]、[5-2]、[6-1]、[6-2]、[7-1]、[8-1]、[9-1]、[10-1]、[11-1]のいずれかに記載の製造方法。
[12-1]前記酸化ストレスを軽減する作用を有する物質が、アスコルビン酸、N-アセチル-L-システイン、ニコチンアミド及びこれらの誘導体からなる群より選ばれる少なくとも1つを含む、[12]に記載の製造方法。
[13]前記第二工程、b工程、及び第三工程のいずれか一つ以上の工程で、ストレス応答シグナル伝達経路に対する阻害物質がさらに存在する、[1]~[12]、[2-1]、[5-1]、[5-2]、[6-1]、[6-2]、[7-1]、[8-1]、[9-1]、[10-1]、[11-1]、及び[12-1]のいずれかに記載の製造方法。
[14]前記第二工程、b工程、及び第三工程のいずれか一つ以上の工程で、揺動しながら細胞を培養する、[1]~[13]、[2-1]、[5-1]、[5-2]、[6-1]、[6-2]、[7-1]、[8-1]、[9-1]、[10-1]、[11-1]、及び[12-1]のいずれかに記載の製造方法。
[15]前記第一工程で得られる細胞集団が細胞凝集体である、[1]~[14]、[2-1]、[5-1]、[5-2]、[6-1]、[6-2]、[7-1]、[8-1]、[9-1]、[10-1]、[11-1]、及び[12-1]のいずれかに記載の製造方法。
[16]前記第一工程、第二工程、b工程、及び第三工程のいずれか一つ以上の工程を、少なくとも1つのウェルが形成されている培養器材中で実施し、前記ウェルは、複数のマイクロウェルに分割されていて、前記マイクロウェルの1つにつき、1つの細胞塊が形成されるように浮遊培養を実施する、[1]~[15]、[2-1]、[5-1]、[5-2]、[6-1]、[6-2]、[7-1]、[8-1]、[9-1]、[10-1]、[11-1]、及び[12-1]のいずれかに記載の製造方法。
[17][1]~[16]、[2-1]、[5-1]、[5-2]、[6-1]、[6-2]、[7-1]、[8-1]、[9-1]、[10-1]、[11-1]、及び[12-1]のいずれかに記載の製造方法により得られた下垂体組織を含む細胞集団から下垂体組織を回収することを特徴とする、下垂体組織の製造方法。
 本発明によれば、JNKシグナル伝達経路阻害物質の効果により外胚葉への分化誘導効率が高くなり、多能性幹細胞からよりホルモン産生能の高い下垂体組織を含む細胞集団を効率よく製造することが可能になる。
図1は、本発明の下垂体組織を含む細胞集団の製造方法(工程(a)、工程(1)及び工程(2)で実施される態様:実施例1)を模式的に示した図(上図)及び得られた細胞集団(細胞塊)の形態を示した図(下図)である。 図2Aは、本発明の下垂体組織を含む細胞集団の製造方法(工程(a)、工程(1)及び工程(2)で実施される態様:実施例2)を模式的に示した図である。 図2Bは、図2Aに示す工程によって製造された細胞集団(細胞塊)の形態を示した図である。 図3Aは、本発明の下垂体組織を含む細胞集団の製造方法(工程(a)、工程(1)及び工程(2)で実施される態様:実施例3)を模式的に示した図である。 図3Bは、図3Aに示す工程によって製造された細胞集団(細胞塊)におけるLhx3、Pitx1及びE-cadherinの発現状況を示した図である。 図4Aは、本発明の下垂体組織を含む細胞集団の製造方法(工程(a)、工程(1)、工程(2)及び工程(3)で実施される態様:実施例4)を模式的に示した図である。 図4Bは、図4Aに示す工程によって製造された細胞集団(細胞塊)から分化誘導した下垂体組織の分化誘導61日目、103日目、152日目、201日目における副腎皮質刺激ホルモン(ACTH)分泌能を調べた結果を示すグラフである。 図5は、本発明の下垂体組織を含む細胞集団の製造方法(工程(a)、工程(1)、工程(2)及び工程(3)で実施される態様:実施例5)を模式的に示した図(上図)及び得られた細胞集団(細胞塊)の形態を示した図(下図)である。工程(3)を振盪培養で行った。 図6は、本発明の下垂体組織を含む細胞集団の製造方法(工程(a)、工程(1)、工程(2)及び工程(3)で実施される態様:実施例6)を模式的に示した図(上図)及び得られた細胞集団(細胞塊)の形態を示した図(下図)である。工程(3)を振盪培養で行った。工程(3)においてNアセチルシステインを添加するか、又は添加しなかった。 図7Aは、ヒトES細胞から下垂体組織を含む細胞集団の製造方法の参考例1の工程(工程(1)において、JNK阻害剤を添加しない条件)を模式的に示した図である。 図7Bは、図7Aに示す工程によって製造された細胞凝集体の32日目におけるRAX、PITX1およびE-cadherinの発現状況を示した図である。 図8Aは、ヒトiPS細胞から下垂体組織を含む細胞集団の製造方法の参考例2の工程(工程(1)および工程(2)における、IWP2、SB431542およびBMP4の添加期間の検討)を模式的に示した図である。 図8B-1は、図8Aに示す工程(IWP2、SB431542の添加期間:d0-6)によって製造された細胞凝集体の29日目におけるRAX、PITX1、LHX3およびE-cadherinの発現状況を示した図である。上段はBMP4の添加期間がd2-6の場合を、下段はBMP4の添加期間がd2-18の場合をそれぞれ示す。 図8B-2は、図8Aに示す工程(IWP2、SB431542の添加期間:d0-12)によって製造された細胞凝集体の29日目におけるRAX、PITX1、LHX3およびE-cadherinの発現状況を示した図である。上段はBMP4の添加期間がd2-6の場合を、下段はBMP4の添加期間がd2-18の場合をそれぞれ示す。 図8B-3は、図8Aに示す工程(IWP2、SB431542の添加期間:d0-29)によって製造された細胞凝集体の29日目におけるRAX、PITX1、LHX3およびE-cadherinの発現状況を示した図である。上段はBMP4の添加期間がd2-6の場合を、下段はBMP4の添加期間がd2-18の場合をそれぞれ示す。 上図(A)は、ヒトES細胞から下垂体組織を含む細胞集団の製造方法の参考例3の工程(工程(1)、工程(2)及び工程(3)のIWP2、BMP4及びSAGの添加濃度の検討)を模式的に示した図である。下図(B)は、Aに示す工程によって製造された細胞凝集体の、分化誘導開始後61日目、103日目、152日目、201日目、250日目におけるACTH分泌能を調べた結果を示すグラフである。□が低濃度群の、■が高濃度群の結果をそれぞれ示す。 上図(A)は、本発明の下垂体組織を含む細胞集団の製造方法(工程(a)、工程(1)、工程(2)及び工程(3)で実施される態様:実施例7)を模式的に示した図である。下図(B)は、Aに示す工程によって製造された細胞凝集体の分化誘導開始後103日目におけるACTHおよびE-cadherinの発現状況を示した図である。上段はJNK阻害剤を添加しなかった場合、下段はJNK阻害剤を添加した場合の結果をそれぞれ示す。 図11は、本発明の下垂体組織を含む細胞集団の製造方法(工程(a)、工程(1)、工程(2)及び工程(3)で実施される態様:実施例8)により得られた細胞凝集体の分化誘導開始後59日目におけるACTHおよびSOX2の発現状況を示した図である。 上図(A)は、本発明の下垂体組織を含む細胞集団の製造方法(工程(a)、工程(1)、工程(2)及び工程(3)で実施される態様:実施例9)を模式的に示した図である。下図(B)は、Aに示す通り、分化誘導開始後30日目までSAGを処理した場合と、その後も継続的にSAGを処理した場合に分けて細胞凝集体を製造し、それぞれのACTH分泌能を比較した図である。□は30日目までSAGで処理した場合、■は30日以降も継続してSAGで処理した場合の結果を示す。*:p<0.05、Student’s t-test。 図13Aは、本発明の下垂体組織を含む細胞集団の製造方法(工程(a)、工程(1)、工程(2)及び工程(3)で実施される態様:実施例10)を模式的に示した図である。 図13Bは、図13Aに示す工程によって製造された細胞凝集体の分化誘導開始後3、6、19、30、60、100、201日目における各種細胞マーカーの発現量を定量した結果を示した図である。上段にPITX1、LHX3、及びPOMCの結果を示す。下段にRAX及びTTF1の結果を示す。 図14は、図13Aに示す工程(工程(a)、工程(1)、工程(2)及び工程(3)で実施される態様;実施例11)によって製造された細胞凝集体におけるPRL、POU1F1、TSH、LH、FSH及びGHの発現状況を示した図である。A:浮遊培養開始103日後のPRL、POU1F1及びDAPIの三重染色(左図)及び浮遊培養開始103日後のPRL及びDAPIの二重染色(右図)、B:浮遊培養開始103日後のTSH及びDAPIの二重染色、C:浮遊培養開始103日後のLH及びDAPIの二重染色、D:浮遊培養開始103日後のFSH及びDAPIの二重染色、E:浮遊培養開始152日後のGH、POU1F1及びDAPIの三重染色(左図)及び浮遊培養開始152日後のGH及びDAPIの二重染色(右図)を示す。 図15は、図13Aに示す工程(工程(a)、工程(1)、工程(2)及び工程(3)で実施される態様;実施例12)によって製造された分化誘導開始後201日目の細胞凝集体を、電子顕微鏡にて観察した図である。 図16は、図13Aに示す工程(工程(a)、工程(1)、工程(2)及び工程(3)で実施される態様;実施例13)によって製造された細胞凝集体の分化誘導開始後103日目におけるACTH及びCXADRの発現を確認した図である。 Aは、図13Aに示す工程(工程(a)、工程(1)、工程(2)及び工程(3)で実施される態様;実施例14)によって製造された細胞凝集体の分化誘導開始後29日目、61日目、103日目、152日目、201日目、250日目におけるACTH分泌能を示す図である。**:p<0.01、***:p<0.001、one-way ANOVA with post hoc Tukey。B及びCは、図13Aに示す工程(工程(a)、工程(1)、工程(2)及び工程(3)で実施される態様;実施例14)によって製造された細胞凝集体の分化誘導開始103日目における、CRH(B)又はデキサメサゾン(C)によるACTH刺激試験の結果を示す図である。**:p<0.01、paired t-test。 図18Aは、図13Aに示す工程(工程(a)、工程(1)、工程(2)及び工程(3)で実施される態様;実施例15)によって製造された分化誘導開始後30、60、100日目の細胞凝集体、及び未分化細胞における各細胞マーカーの発現を確認した図である。 図18Bは図13Aに示す工程(工程(a)、工程(1)、工程(2)及び工程(3)で実施される態様;実施例15)によって製造された細胞凝集体の分化誘導103日目におけるNESTIN及びSOX11の発現状況を示した図である。a:NESTIN、SOX11及びDAPIの三重染色、b:NESTIN及びDAPIの二重染色、c:SOX11及びDAPIの二重染色、d:NESTIN、SOX11及びDAPIの三重染色。 図19Aは、分割されたマイクロウェルを有する培養器材を用いたヒトiPS細胞からの下垂体オルガノイドの製造方法(工程(a)、工程(1)及び工程(2)で実施される態様:実施例16)を模式的に示した図である。 図19Bは、図19Aに示す工程によって製造された細胞凝集体の分化誘導開始後29日目における形状を偏斜照明観察した結果を示す図である。プラコード様の下垂体組織を有する下垂体オルガノイドが形成された。 図20Aは、本発明のヒトiPS細胞からの下垂体組織を含む細胞集団の製造方法(工程(a)、工程(1)及び工程(2)で実施される態様:実施例17)を模式的に示した図である。 図20Bは、図20Aに示す工程によって製造された細胞凝集体の分化誘導開始後28日目における形状を偏斜照明観察した結果を示す図である。分化誘導の開始後1日目および2日目のいずれのBMP4添加条件においても、プラコード様の下垂体組織を有する下垂体オルガノイドが形成された。
1.定義
 本明細書において、用語の定義は下記のとおりである。「幹細胞」とは、分化能及び増殖能(特に自己複製能)を有する未分化な細胞を意味する。幹細胞には、分化能力に応じて、多能性幹細胞(pluripotent stem cell)、複能性幹細胞(multipotent stem cell)、単能性幹細胞(unipotent stem cell)等が含まれる。「多能性幹細胞」とは、インビトロにおいて培養することが可能で、かつ、生体を構成する全ての細胞に分化し得る能力(分化多能性:pluripotency)を有する幹細胞をいう。全ての細胞とは、外胚葉、中胚葉及び内胚葉の三胚葉由来の細胞である。「複能性幹細胞」とは、全ての種類ではないが、複数種の組織や細胞へ分化し得る能力を有する幹細胞を意味する。「単能性幹細胞」とは、特定の組織や細胞へ分化し得る能力を有する幹細胞を意味する。
 多能性幹細胞は、受精卵、クローン胚、生殖幹細胞、組織内幹細胞、体細胞等から誘導することができる。多能性幹細胞としては、胚性幹細胞(ES細胞:Embryonic stem cell)、EG細胞(Embryonic germ cell)、人工多能性幹細胞(iPS細胞:induced pluripotent stem cell)等を挙げることができる。間葉系幹細胞(mesenchymal stem cell:MSC)から得られるMuse細胞(Multi-lineage differentiating Stress Enduring cell)、及び生殖細胞(例えば精巣)から作製されるGS細胞も多能性幹細胞に包含される。なお、ヒト胚性幹細胞は、受精14日以内のヒト胚から樹立されたものである。
 胚性幹細胞は、1981年に初めて樹立され、1989年以降ノックアウトマウス作製にも応用されている。1998年にはヒト胚性幹細胞が樹立されており、再生医学にも利用されつつある。ES細胞は、内部細胞集団をフィーダー細胞上又はleukemia inhibitory factor(LIF)を含む培地中で培養することにより製造することができる。ES細胞の製造方法は、例えば国際公開第96/22362号、国際公開第02/101057号、米国特許第5843780号明細書、米国特許第6200806号明細書、米国特許第6280718号明細書等に記載されている。胚性幹細胞は、所定の機関より入手でき、市販品を購入することもできる。例えばヒト胚性幹細胞であるKhES-1、KhES-2及びKhES-3は、京都大学再生医科学研究所より入手可能である。いずれもマウス胚性幹細胞である、EB5細胞は国立研究開発法人理化学研究所より、D3株はAmerican Type Culture Collection(ATCC)より、入手可能である。ES細胞の1つである核移植ES細胞(ntES細胞)は、細胞核を取り除いた卵子に体細胞の細胞核を移植して作ったクローン胚から樹立することができる。
 EG細胞は、始原生殖細胞をマウス幹細胞因子(mSCF)、LIF及び塩基性線維芽細胞増殖因子(bFGF)を含む培地中で培養することにより製造することができる(Cell,70:841-847,1992)。
 「人工多能性幹細胞」とは、体細胞を公知の方法等により初期化(reprogramming)することにより、多能性を誘導した細胞である。人工多能性幹細胞としては、具体的には線維芽細胞、末梢血単核球等に分化した体細胞をOct3/4、Sox2、Klf4、Myc(c-Myc、N-Myc、L-Myc)、Glis1、Nanog、Sall4、lin28、Esrrb等を含む初期化遺伝子群から選ばれる複数の遺伝子の発現により初期化して多分化能を誘導した細胞が挙げられる。2006年、山中らによりマウス細胞で人工多能性幹細胞が樹立された(Cell,2006,126(4)pp.663-676)。人工多能性幹細胞は、2007年にヒト線維芽細胞でも樹立され、胚性幹細胞と同様に多能性と自己複製能を有する(Cell,2007,131(5)pp.861-872;Science,2007,318(5858)pp.1917-1920;Nat.Biotechnol.,2008,26(1)pp.101-106)。人工多能性幹細胞として、遺伝子発現による直接初期化で製造する方法以外に、化合物の添加などにより体細胞より人工多能性幹細胞を誘導することもできる(Science,2013,341,pp.651-654)。
 人工多能性幹細胞を製造する際に用いられる体細胞としては、特に限定は無いが、組織由来の線維芽細胞、血球系細胞(例えば末梢血単核球、T細胞等)、肝細胞、膵臓細胞、腸上皮細胞、平滑筋細胞等が挙げられる。
 人工多能性幹細胞を製造する際に、数種類の遺伝子(例えばOct3/4、Sox2、Klf4及びMycの4因子)の発現により初期化する場合、遺伝子を発現させるための手段は特に限定されない。遺伝子を発現させるための手段としては、例えばウイルスベクター(例えばレトロウイルスベクター、レンチウイルスベクター、センダイウイルスベクター、アデノウイルスベクター、アデノ随伴ウイルスベクター)を用いた感染法、プラスミドベクター(例えばプラスミドベクター、エピソーマルベクター)を用いた遺伝子導入法(例えばリン酸カルシウム法、リポフェクション法、レトロネクチン法、エレクトロポレーション法)、RNAベクターを用いた遺伝子導入法(例えばリン酸カルシウム法、リポフェクション法、エレクトロポレーション法)、タンパク質の直接注入法等が挙げられる。
 また、株化された人工多能性幹細胞を入手する事も可能であり、例えば、京都大学で樹立された201B7細胞、201B7-Ff細胞、253G1細胞、253G4細胞、1201C1細胞、1205D1細胞、1210B2細胞、1231A3細胞等のヒト人工多能性細胞株が、京都大学及びiPSアカデミアジャパン株式会社より入手可能である。株化された人工多能性幹細胞として、例えば、京都大学で樹立されたFf-I01細胞、Ff-I14細胞及びQHJI01s04細胞が、京都大学より入手可能である。
 多能性幹細胞は、遺伝子改変されていてもよい。遺伝子改変された多能性幹細胞は、例えば相同組換え技術を用いることにより作製できる。改変される染色体上の遺伝子としては、例えば細胞マーカー遺伝子、組織適合性抗原の遺伝子、神経系細胞の障害に基づく疾患関連遺伝子などが挙げられる。染色体上の標的遺伝子の改変は、Manipulating the Mouse Embryo,A Laboratory Manual,Second Edition,Cold Spring Harbor Laboratory Press(1994)、Gene Targeting,A Practical Approach,IRL Press at Oxford University Press(1993)、バイオマニュアルシリーズ8、ジーンターゲッティング、ES細胞を用いた変異マウスの作製、羊土社(1995)等に記載の方法を用いて行うことができる。
 具体的には、例えば改変する標的遺伝子(例えば細胞マーカー遺伝子、組織適合性抗原の遺伝子や疾患関連遺伝子等)のゲノム遺伝子を単離し、単離されたゲノム遺伝子を用いて標的遺伝子を相同組換えするためのターゲットベクターを作製する。作製されたターゲットベクターを幹細胞に導入し、標的遺伝子とターゲットベクターの間で相同組換えを起こした細胞を選択することにより、染色体上の遺伝子が改変された幹細胞を作製することができる。
 標的遺伝子のゲノム遺伝子を単離する方法としては、Molecular Cloning,A Laboratory Manual,Second Edition,Cold Spring Harbor Laboratory Press(1989)やCurrent Protocols in Molecular Biology,John Wiley&Sons(1987-1997)等に記載された公知の方法が挙げられる。ゲノムDNAライブラリースクリーニングシステム(Genome Systems製)やUniversal GenomeWalker Kits(Clontech製)などを用いることができる。
 標的遺伝子を相同組換えするためのターゲットベクターの作製、及び相同組換え体の効率的な選別は、Gene Targeting,A Practical Approach,IRL Press at Oxford University Press(1993)、バイオマニュアルシリーズ8、ジーンターゲッティング、ES細胞を用いた変異マウスの作製、羊土社(1995)等に記載の方法に従って行うことができる。ターゲットベクターは、リプレースメント型又はインサーション型のいずれでも用いることができる。選別方法としては、ポジティブ選択、プロモーター選択、ネガティブ選択又はポリA選択などの方法を用いることができる。選別した細胞株の中から目的とする相同組換え体を選択する方法としては、ゲノムDNAに対するサザンハイブリダイゼーション法やPCR法等が挙げられる。
 多能性幹細胞として、ゲノム編集を行った多能性幹細胞を用いることもできる。「ゲノム編集」とは、ヌクレアーゼを用いた部位特異的なゲノムDNA鎖の切断、又は塩基の化学的変換等の原理により標的遺伝子もしくはゲノム領域を意図的に改変する技術である。部位特異的ヌクレアーゼとしては、ジンクフィンガーヌクレアーゼ(ZFN)、TALEN、CRISPR/Cas9等が挙げられる。ゲノム編集技術を用いることにより、特定の遺伝子を欠失したノックアウト細胞株、特定の遺伝子座に人工的に別の配列を挿入したノックイン細胞株等を作製することができる。
 多能性幹細胞として、疾患特異的多能性幹細胞を用いてもよい。「疾患特異的多能性幹細胞」とは、疾患の発症に関与する遺伝子の変異又は遺伝的背景を有する多能性幹細胞を表す。疾患特異的多能性幹細胞は、対象となる疾患を発症している患者や近親者から前述の方法等により人工多能性幹細胞を樹立する方法、又は既に樹立済の多能性幹細胞のゲノムをジンクフィンガーヌクレアーゼ(ZFN)、TALEN、CRISPRといったゲノム編集技術等により改変する方法により作製することができる。
 「哺乳動物」には、げっ歯類、有蹄類、ネコ目、ウサギ目、霊長類等が包含される。げっ歯類には、マウス、ラット、ハムスター、モルモット等が包含される。有蹄類には、ブタ、ウシ、ヤギ、ウマ、ヒツジ等が包含される。ネコ目には、イヌ、ネコ等が包含される。ウサギ目には、ウサギ等が含包される。「霊長類」とは、霊長目に属する哺乳動物をいい、霊長類としては、キツネザル、ロリス、ツバイ等の原猿亜目、及びサル、類人猿、ヒト等の真猿亜目が含まれる。
 本発明に用いる多能性幹細胞は、哺乳動物の多能性幹細胞であり、好ましくはげっ歯類(例えばマウス、ラット)又は霊長類(例えばヒト、サル)の多能性幹細胞であり、最も好ましくはヒトの多能性幹細胞である。
 「細胞接着(Cell adhesion)」には、細胞と細胞との接着(細胞-細胞接着)及び細胞と細胞外マトリクス(基質)との接着(細胞-基質接着)が含まれる。インビトロの人工培養環境下で生じる、細胞の培養器材等への接着も細胞接着に含有される。細胞-細胞接着において形成される結合は細胞-細胞結合(cell-cell junction)であり、細胞-基質接着において形成される結合は細胞-基質結合(cell-substratum junction)である。細胞接着の種類として、例えば固定結合(anchoring junction)、連絡結合(communicating junction)、閉鎖結合(occluding junction)が挙げられる。
 細胞-細胞結合として、「密着結合(tight junction)」、「接着結合(adherence junction)」が挙げられる。密着結合は比較的強い細胞-細胞結合であり、上皮細胞で生じ得る。細胞間に密着結合が存在しているかどうかは、例えば密着接合の構成成分に対する抗体(抗クローディン抗体、抗ZO-1抗体等)を用いた免疫組織化学等の手法により検出することができる。
 「浮遊培養」とは、細胞が培養液に浮遊して存在する状態を維持しつつ培養することをいう。すなわち浮遊培養は、細胞を培養器材及び培養器材上のフィーダー細胞等(以下、「培養器材等」と記す。)に接着させない条件で行われ、培養器材等に接着させる条件で行われる培養(接着培養)とは区別される。より詳細には、浮遊培養とは、細胞と培養器材等との間に、強固な細胞-基質結合を作らせない条件での培養をいう。培養している細胞が浮遊培養状態であるか接着培養であるかの判別は、例えば顕微鏡観察時の培養器材の揺動等によって当業者であれば容易に可能である。
 「接着培養」とは、細胞が培養器材等に接着して存在する状態を維持しつつ培養することをいう。ここで、細胞が培養器材等に接着するとは、例えば細胞と培養器材等との間に細胞接着の一種である強固な細胞-基質結合ができることをいう。
 浮遊培養中の細胞凝集体においては、細胞と細胞とが面接着する。浮遊培養中の細胞凝集体では、細胞と培養器材等との間に、強固な細胞-基質結合は形成されておらず、細胞-基質結合はほとんど形成されないか、形成されていてもその寄与が小さい。浮遊培養中の細胞凝集体の内部には、内在の細胞-基質結合が存在してもよい。「細胞と細胞とが面接着(plane attachment)する」とは、細胞と細胞とが面で接着することをいう。より詳細には、「細胞と細胞とが面接着する」とは、ある細胞の表面積のうち別の細胞の表面と接着している割合が、例えば1%以上、好ましくは3%以上、より好ましくは5%以上であることをいう。細胞の表面は、膜を染色する試薬(例えばDiI)による染色、細胞接着因子(例えばE-cadherin、N-cadherin等)の免疫染色等により観察できる。
 接着培養を行う際に用いられる培養器材は、接着培養することが可能なものであれば特に限定されず、当業者であれば適宜決定することが可能である。このような培養器材としては、例えばフラスコ、組織培養用フラスコ、ディッシュ、組織培養用ディッシュ、マルチディッシュ、マイクロプレート、マイクロウェルプレート、マイクロポア、マルチプレート、マルチウェルプレート、チャンバースライド、シャーレ、チューブ、トレイ、培養バック及びオーガンオンチップ等の生体機能チップが挙げられる。細胞接着性の培養器材としては、細胞との接着性を向上させる目的で培養器材の表面が人工的に処理されているもの等を使用できる。人工的な処理とは、例えば細胞外マトリクス、高分子等によるコーティング処理、及びガスプラズマ処理、正電荷処理等の表面加工が挙げられる。細胞が接着される細胞外マトリクスとしては、例えば基底膜標品、ラミニン、エンタクチン、コラーゲン、ゼラチン等が挙げられる。高分子としては、ポリリジン、ポリオルニチン等が挙げられる。培養器材の培養面は、平底でもよいし、凹凸があってもよい。
 「ラミニン」とは、α、β、γ鎖からなるヘテロ三量体分子であり、サブユニット鎖の組成が異なるアイソフォームが存在する細胞外マトリクスタンパク質である。具体的には、ラミニンは、5種のα鎖、4種のβ鎖及び3種のγ鎖のヘテロ三量体の組合せで約15種類のアイソフォームを有する。α鎖(α1~α5)、β鎖(β1~β4)及びγ鎖(γ1~γ3)のそれぞれの数字を組み合わせて、ラミニンの名称が定められている。例えばα5鎖、β1鎖、γ1鎖の組合せによるラミニンをラミニン511という。
 浮遊培養を行う際に用いられる培養器材は、浮遊培養することが可能なものであれば特に限定されず、当業者であれば適宜決定することが可能である。このような培養器材としては、例えばフラスコ、組織培養用フラスコ、ディッシュ、ペトリデッシュ、組織培養用ディッシュ、マルチディッシュ、マイクロプレート、マイクロウェルプレート、マイクロポア、マルチプレート、マルチウェルプレート、チャンバースライド、シャーレ、チューブ、トレイ、培養バック、スピナーフラスコ及びローラーボトルが挙げられる。これらの培養器材は、浮遊培養を可能とするために、細胞非接着性であることが好ましい。細胞非接着性の培養器材としては、培養器材の表面に、細胞との接着性を向上させる目的で行われる上述の人工的な処理がされていないもの等を使用できる。細胞非接着性の培養器材として、細胞との接着性を低下させる目的で培養器材の表面が人工的に処理されたものを使用することもできる。培養器材の培養面は、平底、U底又はV底でもよいし、凹凸があってもよい。細胞との接着性を低下させる処理としては、例えば2-methacryloyloxyethyl phosphorylcholine(MPC)ポリマー、Poly(2-hydroxyethyl methacrylate)(Poly-HEMA)、polyethylene glycol(PEG)等のコーティングによる超親水性処理、タンパク低吸着処理等が挙げられる。
 「振盪培養」とは、培養器材を揺動させることにより培養液を攪拌し、培養液中への酸素供給、細胞の周囲との物質交換等を促進する培養法である。攪拌培養、流路培養等を行うこともできる。
 浮遊培養を行う際に生じる剪断力等の物理的ストレスから細胞凝集体を保護し、また細胞が分泌する増殖因子及びサイトカイン類の局所濃度を高め、組織の発達を促進する目的から、細胞凝集体をゲルに包埋、又は物質透過性のあるカプセルに封入したのちに浮遊培養を実施することもできる(Nature,2013,501.7467:373)。上記封入した細胞凝集体を振盪培養しても良い。包埋に用いるゲル又はカプセルは、生体由来又は合成高分子製のいずれであってもよい。このような目的に用いるゲル又はカプセルとしては、例えばマトリゲル(Corning社製)、PuraMatrix(3D Matrix社製)、VitroGel 3D(TheWell Bioscience社製)、コラーゲンゲル(新田ゼラチン社製)、アルギン酸ゲル(PGリサーチ社製)、Cell-in-a-Box(Austrianova社製)等が挙げられる。
 細胞の培養に用いられる培地は、動物細胞の培養に通常用いられる培地を基礎培地として調製することができる。基礎培地としては、例えばBasal Medium Eagle(BME)、BGJb培地、CMRL 1066培地、Glasgow Minimum Essential Medium(Glasgow MEM)、Improved MEM Zinc Option、Iscove’s Modified Dulbecco’s Medium(IMDM)、Medium 199、Eagle Minimum Essential Medium(Eagle MEM)、Alpha Modified Eagle Minimum Essential Medium(αMEM)、Dulbecco’s Modified Eagle Medium(DMEM)、F-12培地、DMEM/F12、IMDM/F12、ハム培地、RPMI 1640、Fischer’s培地、又はこれらの混合培地等が挙げられる。
 多能性幹細胞の培養には、上記基礎培地をベースとした多能性幹細胞培養用の培地、好ましく公知の胚性幹細胞又は人工多能性幹細胞用の培地、フィーダーフリー下で多能性幹細胞を培養するための培地(フィーダーフリー培地)等を用いることができる。フィーダーフリー培地として、多くの合成培地が開発・市販されており、例えばEssential 8培地が挙げられる。Essential 8培地は、DMEM/F12培地に、添加剤として、L-ascorbic acid-2-phosphate magnesium(64mg/l)、sodium selenium(14μg/1)、insulin(19.4mg/l)、NaHCO(543mg/l)、transferrin(10.7mg/l)、bFGF(100ng/mL)、及びTGFβファミリーシグナル伝達経路作用物質(TGFβ1(2ng/mL)又はNodal(100ng/mL))を含む(Nature Methods,8,424-429(2011))。市販のフィーダーフリー培地としては、例えばEssential 8(Thermo Fisher Scientific社製)、S-medium(DSファーマバイオメディカル社製)、StemPro(Thermo Fisher Scientific社製)、hESF9、mTeSR1(STEMCELL Technologies社製)、mTeSR2(STEMCELL Technologies社製)、TeSR-E8(STEMCELL Technologies社製)、mTeSR Plus(STEMCELL Technologies社製)、StemFit(味の素社製)、ReproMed iPSC Medium(リプロセル社製)、NutriStem XF(Biological Industries社製)、NutriStem V9(Biological Industries社製)、Cellartis DEF-CS Xeno-Free Culture Medium(タカラバイオ社製)、Stem-Partner SF(極東製薬社製)、PluriSTEM Human ES/iPS Cell Medium(メルク社製)、StemSure hPSC MediumΔ(富士フイルム和光純薬社製)等が挙げられる。
 無血清培地は、血清代替物を含有していてもよい。血清代替物としては、例えばアルブミン、トランスフェリン、脂肪酸、コラーゲン前駆体、微量元素、2-メルカプトエタノール又は3’-チオールグリセロール又はこれらの均等物等を適宜含有するものを挙げることができる。かかる血清代替物は、例えば、国際公開第98/30679号に記載の方法により調製することができる。血清代替物としては市販品を利用してもよい。市販の血清代替物としては、例えばKnockout Serum Replacement(Thermo Fisher Scientific社製)(以下、「KSR」と記すこともある。)、Chemically-defined Lipid concentrated(Thermo Fisher Scientific社製)、Glutamax(Thermo Fisher Scientific社製)、B27 Supplement(Thermo Fisher Scientific社製)、N2 Supplement(Thermo Fisher Scientific社製)等が挙げられる。
 浮遊培養及び接着培養で用いる無血清培地は、適宜、脂肪酸又は脂質、アミノ酸(例えば非必須アミノ酸)、ビタミン、増殖因子、サイトカイン、抗酸化剤、2-メルカプトエタノール、ピルビン酸、緩衝剤、無機塩類等を含有してもよい。
 調製の煩雑さを回避するために、無血清培地として、市販のKSR(Thermo Fisher Scientific社製)を適量(例えば約0.5%から約30%、好ましくは約1%から約20%)添加した無血清培地(例えばF-12培地とIMDM培地の1:1混合液に1×chemically-defined Lipid concentrated、5%KSR及び450μM 1-モノチオグリセロールを添加した培地)を使用してもよい。また、KSR同等品として特表2001-508302号公報に開示された培地が挙げられる。
 「血清培地」とは、無調整又は未精製の血清を含む培地を意味する。当該培地は、脂肪酸又は脂質、アミノ酸(例えば非必須アミノ酸)、ビタミン、増殖因子、サイトカイン、抗酸化剤、2-メルカプトエタノール、1-モノチオグリセロール、ピルビン酸、緩衝剤、無機塩類等を含有してもよい。
 本発明における培養は、好ましくはゼノフリー条件で行われる。「ゼノフリー」とは、培養対象の細胞の生物種とは異なる生物種由来の成分が排除された条件を意味する。
 本発明に用いる培地は、化学的に未決定な成分の混入を回避する観点から、好ましくは、含有成分が化学的に決定された培地(Chemically defined medium;CDM)である。
 「基底膜(Basement membrane)構造」とは、細胞外マトリクスより構成される薄い膜状の構造を意味する。生体においては、基底膜は上皮細胞の基底側(basal)に形成される。基底膜の成分としては、IV型コラーゲン、ラミニン、ヘパラン硫酸プロテオグリカン(パールカン)、エンタクチン/ニドゲン、サイトカイン、成長因子等が挙げられる。生体由来の組織中並びに本発明の製造方法等で作製された細胞集団中に基底膜が存在しているかどうかは、例えばPAM染色等の組織染色、並びに基底膜の構成成分に対する抗体(抗ラミニン抗体、抗IV型コラーゲン抗体等)を用いた免疫組織化学等の手法により検出することができる。
 「基底膜標品」とは、その上に基底膜形成能を有する所望の細胞を播種して培養した場合に、上皮細胞様の細胞形態、分化、増殖、運動、機能発現等を制御する機能を有する基底膜構成成分を含むものをいう。本発明において、細胞の接着培養を行う際には、基底膜標品存在下で培養することができる。ここで、「基底膜構成成分」とは、動物の組織において、上皮細胞層と間質細胞層等との間に存在する薄い膜状をした細胞外マトリクス分子をいう。基底膜標品は、例えば基底膜を介して支持体上に接着している基底膜形成能を有する細胞を、該細胞の脂質溶解能を有する溶液やアルカリ溶液などを用いて支持体から除去することで作製することができる。基底膜標品としては、基底膜調製物として市販されている商品、例えばマトリゲル(Corning社製)、Geltrex(Thermo Fisher Scientific社製)、基底膜成分として公知の細胞外マトリクス分子(例えばラミニン、IV型コラーゲン、ヘパラン硫酸プロテオグリカン、エンタクチン等)を含むものが挙げられる。
 細胞又は組織の培養には、Engelbreth-Holm-Swarm(EHS)マウス肉腫等の組織又は細胞から抽出、可溶化されたマトリゲル(Corning社製)等の基底膜標品を用いることができる。同様に細胞培養に用いる基底膜成分として、ヒト可溶化羊膜(生物資源応用研究所社製)、HEK293細胞に産生させたヒト組み換えラミニン(BioLamina社製)、ヒト組み換えラミニン断片(ニッピ社製)、ヒト組み換えビトロネクチン(Thermo Fisher Scientific社製)等も用いることができる。異なる生物種由来の成分混入を回避する観点、及び感染症のリスクを回避する観点から、基底膜標品は、好ましくは成分の明らかな組み換えタンパク質を用いる。
 本明細書において、「物質Xを含む培地」及び「物質Xの存在下」とは、それぞれ外来性(exogenous)の物質Xが添加された培地もしくは外来性の物質Xを含む培地、及び外来性の物質Xの存在下を意味する。外来性の物質Xは、例えば培地中に存在する細胞又は組織が当該物質Xを内在的(endogenous)に発現、分泌又は産生する内在的な物質Xと区別される。培地中の物質Xは、物質Xの分解又は培地の蒸発による微量な濃度の変化が起こっていてもよい。
 本明細書において、物質Xの濃度がYである培地中での培養開始時とは、好ましくは培地中の物質Xの濃度がYで均一となった時点を指すが、培養容器が十分に小さい(例えば96ウェルプレートや、培養液が200μL以下での培養)場合、濃度がYとなるように後述する培地添加操作、半量培地交換操作又は全量培地交換操作を行った時点を濃度Yでの培養開始時と解釈する。また、培地中の物質Xの濃度がYであるとは、一定の培養期間を通じた物質Xの平均の濃度がYである場合、物質XをYの濃度で含む期間が培養期間の50%以上である場合、物質XをYの濃度で含む期間が各工程において想定される培養期間のうち最も短い期間以上である場合等を含む。
 本明細書において、「物質Xの非存在下」とは、外来性(exogenous)の物質Xが添加されていない培地もしくは外来性の物質Xを含まない培地、又は外来性の物質Xの存在しない状態を意味する。
 本明細書において、「ヒトタンパク質X」とは、タンパク質Xが、ヒト生体内で天然に発現するタンパク質Xのアミノ酸配列を有することを意味する。
 「単離」とは、目的とする成分や細胞以外の因子を除去する操作がなされ、天然に存在する状態を脱していることを意味する。従って、「単離されたタンパク質X」には、培養対象の細胞や組織から産生され細胞や組織及び培地中に含まれている内在性のタンパク質Xは包含されない。「単離されたタンパク質X」の純度(総タンパク質重量に占めるタンパク質Xの重量の百分率)は、通常70%以上、好ましくは80%以上、より好ましくは90%以上、さらに好ましくは99%以上、最も好ましくは100%である。
 本明細書において、「誘導体」とは、特定の化合物に対して、当該化合物の分子内の一部が、他の官能基または他の原子と置換されることにより生じる化合物群を意図する。本明細書において、タンパク質の「改変体」とは、もとのタンパク質の特性を維持できる範囲でアミノ酸残基の欠失、付加、置換等の変異がされているタンパク質をいう。変異のアミノ酸の数としては、特に制限されないが、1~4、1~3、1~2、又は1個が挙げられる。タンパク質の「改変体」は、もとのタンパク質と少なくとも90%以上、91%以上、92%以上、93%以上、94%以上、95%以上、96%以上、97%以上、98%以上、99%以上、又は99.5%以上の同一性を示すアミノ酸配列を有するタンパク質であってもよい。改変体において変異したアミノ酸は、非天然型であっても良い。
 本明細書において、「A時間(A日)以降」とはA時間(A日)を含み、A時間(A日)から後のことをいう。「B時間(B日)以内」とは、B時間(B日)を含み、B時間(B日)から前のことをいう。
 「フィーダー細胞」とは、幹細胞を培養するときに共存させる当該幹細胞以外の細胞を指す。多能性幹細胞の未分化維持培養に用いられるフィーダー細胞としては、例えばマウス線維芽細胞(MEF)、ヒト線維芽細胞、SNL細胞等が挙げられる。フィーダー細胞は、増殖抑制処理されていることが好ましい。増殖抑制処理としては、増殖抑制剤(例えばマイトマイシンC)処理、UV照射等が挙げられる。多能性幹細胞の未分化維持培養に用いられるフィーダー細胞は、液性因子(好ましくは未分化維持因子)の分泌、細胞接着用の足場(細胞外基質)の作製により、多能性幹細胞の未分化維持に貢献する。
 本明細書において、フィーダー細胞非存在下(フィーダーフリー)とは、フィーダー細胞非存在下にて培養することである。フィーダー細胞非存在下とは、例えばフィーダー細胞を添加していない条件、又はフィーダー細胞を実質的に含まない(例えば全細胞数に対するフィーダー細胞数の割合が3%以下)の条件が挙げられる。
 「細胞凝集体」(cell aggregate)とは、細胞が集合して形成された塊であって、細胞同士が接着している塊をいう。細胞集団、胚様体(Embryoid body)、スフェア(Sphere)、スフェロイド(Spheroid)、オルガノイド(Organoid)も細胞凝集体に包含される。細胞凝集体は、好ましくは細胞同士が面接着している。一部の態様において、細胞凝集体の一部分あるいは全部において、細胞同士が細胞接着し、例えば接着結合(adherence junction)を形成している。一部の態様において、二つ以上の細胞凝集体同士をさらに人工的に接着又は凝集させることもできる。細胞集団同士をさらに接着又は凝集させた塊、及びアセンブロイド(assembloid)も細胞凝集体に含まれる。細胞凝集体の形態は球状に限らず、例えば双球状、数珠状、球の集合体状、紐状・分枝状(Scientific reports, 11:21421(2021)、特願2021-078154に記載の形状)等の形態であってもよい。
 「均一な細胞凝集体」とは、複数の細胞凝集体を培養する際に各細胞凝集体の大きさが一定であることを意味し、細胞凝集体の大きさを最大径の長さで評価する場合、均一な細胞凝集体とは、最大径の長さの分散が小さいことを意味する。より具体的には、複数の細胞凝集体のうち75%以上の細胞凝集体において、その最大径が複数の細胞凝集体の最大径平均値の±100%以内、好ましくは最大径平均値の±50%以内、より好ましくは最大径平均値の±20%以内であることを意味する。
 「細胞集団」とは、2以上の細胞から構成される細胞群をいう。細胞集団は、一種の細胞から構成されていてもよいし、複数種の細胞から構成されていてもよい。細胞集団を構成する細胞は、培地中に浮遊していてもよいし、培養器材等に接着していてもよい。また、細胞集団を構成する細胞は、単一細胞であってもよいし、細胞集団の少なくとも一部において、細胞同士が細胞接着し、細胞集団を形成していてもよい。ここで「単一細胞」とは、例えば細胞同士の接着(例えば面接着)がほとんどなくなった細胞をいう。一部の態様において、単一細胞に分散されるとは、細胞―細胞間結合(例えば接着結合)がほとんどなくなった状態が挙げられる。細胞集団は、細胞凝集体を含んでよい。
 「組織」とは、形態や性質が異なる複数種類の細胞が一定のパターンで立体的に配置した構造を有する細胞集団の構造体をさす。
 「外胚葉」とは生物の初期発生の過程において卵の受精後に形成される3つの胚葉のうち、最も外側に存在する胚葉を表す。外胚葉は発生の進行に従い神経外胚葉と表層外胚葉に分かれ、さらに神経外胚葉は神経管と神経堤に分かれる。これら外胚葉から身体の各種器官が形成され、外胚葉から形成された器官は外胚葉に由来すると称される。例えば神経管からは脳及び脊髄等の中枢神経系の器官又は組織が形成される。例えば神経堤からは一部の中枢神経系細胞、顔面の骨及び軟骨、感覚神経細胞、自律神経細胞、色素細胞、間葉系細胞等が形成される。表層外胚葉からは表皮、内耳、下垂体前葉、嗅上皮を含む上気道組織等が形成される。プラコード及びプラコード由来組織は表層外胚葉に由来する。多能性幹細胞は、外胚葉に分化する過程で、例えばPax3、Otx2、Sox1といった外胚葉マーカーとして知られている遺伝子を発現する。
 「内胚葉」とは生物の初期発生の過程において卵の受精後に形成される3つの胚葉のうち、最も内側に存在する胚葉を表す。内胚葉からは例えば消化器、尿路、咽頭、気管、気管支、肺が形成される。多能性幹細胞は、内胚葉に分化する過程で、例えばSOX17、HNF-3β/FoxA2、Klf5、GATA4、GATA6、PDX-1といった内胚葉マーカーとして知られている遺伝子を発現する。
 「中胚葉」とは外胚葉と内胚葉の間に形成される胚葉を表す。中胚葉からは例えば循環器、骨格、筋肉といった器官又は組織が形成される。多能性幹細胞は、中胚葉に分化する過程で、例えばT/Brachury、SMA、ABCA4、Nkx2.5、PDGFRαといった中胚葉マーカーとして知られている遺伝子を発現する。
 「神経組織」とは、発生期又は成体期の大脳、中脳、小脳、脊髄、網膜、感覚神経、末梢神経等の神経系細胞によって構成される組織を意味する。本明細書において、「神経上皮組織」とは、神経組織が層構造をもつ上皮構造を形成したものをいい、神経組織中の神経上皮組織は光学顕微鏡を用いた明視野観察等により存在量を評価することができる。
 「中枢神経系」とは、神経組織が集積し、情報処理の中心をなす領域を表す。脊椎動物では、脳と脊髄が中枢神経系に含まれる。中枢神経系は外胚葉に由来する。
 「神経系細胞(Neural cell)」とは、外胚葉由来組織のうち表皮系細胞以外の細胞を表す。すなわち、神経系細胞には、神経系前駆細胞、ニューロン(神経細胞)、グリア細胞、神経幹細胞、ニューロン前駆細胞、グリア前駆細胞等の細胞を含む。神経系細胞には、後述する網膜組織を構成する細胞(網膜細胞)、網膜前駆細胞、網膜層特異的神経細胞、神経網膜細胞、網膜色素上皮細胞も包含される。神経系細胞は、Nestin、βIIIチューブリン(Tuj1)、PSA-NCAM、N-cadherin等をマーカーとして同定することができる。
 ニューロンは、神経回路を形成し情報伝達に貢献する機能的な細胞であり、TuJ1、Dcx、HuC/D等の幼若神経細胞マーカー、及び/又はMap2、NeuN等の成熟神経細胞マーカーの発現を指標に同定することができる。
 グリア細胞としては、アストロサイト、オリゴデンドロサイト、ミュラーグリア等が挙げられる。アストロサイトのマーカーとしてはGFAP、オリゴデンドロサイトのマーカーとしてはO4、ミュラーグリアのマーカーとしてはCRALBP等が挙げられる。
 神経幹細胞とは、神経細胞及びグリア細胞への分化能(多分化能)と、多分化能を維持した増殖能(自己複製能ということもある)を有する細胞である。神経幹細胞のマーカーとしてはNestin、Sox2、Musashi、Hesファミリー、CD133等が挙げられるが、これらのマーカーは前駆細胞全般のマーカーであり神経幹細胞特異的なマーカーとは考えられていない。神経幹細胞の数は、ニューロスフェアアッセイ、クローナルアッセイ等により評価することができる。
 ニューロン前駆細胞とは、増殖能をもち、神経細胞を産生し、グリア細胞を産生しない細胞である。ニューロン前駆細胞のマーカーとしては、Tbr2、Tα1等が挙げられる。幼若神経細胞マーカー(TuJ1、Dcx、HuC/D)陽性かつ増殖マーカー(Ki67、pH3、MCM)陽性の細胞を、ニューロン前駆細胞として同定することもできる。グリア前駆細胞とは、増殖能をもち、グリア細胞を産生し、神経細胞を産生しない細胞である。
 神経系前駆細胞(Neural Precursor cell)は、神経幹細胞、ニューロン前駆細胞及びグリア前駆細胞を含む前駆細胞の集合体であり、増殖能とニューロン及びグリア産生能をもつ。神経系前駆細胞はNestin、GLAST、Sox2、Sox1、Musashi、Pax6等をマーカーとして同定することができる。神経系細胞のマーカー陽性かつ増殖マーカー(Ki67、pH3、MCM)陽性の細胞を、神経系前駆細胞として同定することもできる。
 「大脳組織」とは、胎児期又は成体の大脳を構成する細胞(例えば大脳神経系前駆細胞(cortical neural precursor cell)、背側大脳神経系前駆細胞、腹側大脳神経系前駆細胞、大脳層構造特異的神経細胞(ニューロン)、第一層ニューロン、第二層ニューロン、第三層ニューロン、第四層ニューロン、第五層ニューロン、第六層ニューロン、グリア細胞(アストロサイト及びオリゴデンドロサイト)、これらの前駆細胞等)のうち一種類又は複数種類が、層状で立体的に配列した組織を意味する。胎児期の大脳は、前脳又は終脳とも呼ばれる。それぞれの細胞の存在は、公知の方法、例えば細胞マーカーの発現有無、その程度等により確認できる。
 大脳細胞マーカーとしては、大脳細胞で発現するFoxG1(別名Bf1)、大脳神経系前駆細胞で発現するSox2及びNestin、背側大脳神経系前駆細胞で発現するPax6及びEmx2、腹側大脳神経系前駆細胞で発現するDlx1、Dlx2及びNkx2.1、ニューロン前駆細胞で発現するTbr2、Nex、Svet1、第六層ニューロンで発現するTbr1、第五層ニューロンで発現するCtip2、第四層ニューロンで発現するRORβ、第三層ニューロン又は第二層ニューロンで発現するCux1又はBrn2、第一層ニューロンで発現するReelin等が挙げられる。
 本発明において、「脳室」とは、中枢神経組織によって形成された腔所をさす。生体においては通常脳脊髄液等の組織液で満たされている無細胞性の構造であり、神経組織の頂端面側が脳室に面している。脳室を取り巻く脳室周囲層は神経幹細胞が存在し、発生期に細胞の増殖とニューロン産生が生じる領域である。本発明の製造方法で製造される細胞集団並びに組織中に脳室が含まれるかどうかは、例えば中枢神経組織マーカー(Bf1、Pax6等)及び頂端面マーカー(PKC-zeta等)を用いた免疫組織化学等の手法により検出することが出来る。
 本発明において、「間脳」とは、第三脳室に接した中枢神経系の神経組織をさす。間脳には、視床上部、視床、視床下部、下垂体といった組織が含まれる。
 本発明において、「視床下部」とは、下垂体に接した間脳の一領域を指す。視床下部はさらに背側視床下部及び腹側視床下部に領域化される。視床下部はRx、Vax1、Six3といったマーカーを用いて同定することが出来る。背側視床下部はOtp、Brn2、バゾプレシンといったマーカーを用いて同定することが出来る。腹側視床下部はNkx2.1、SF1といったマーカーを用いて同定することが出来る。
 本発明において、「非神経上皮組織」とは、上皮構造を有する組織のうち神経上皮組織以外の組織を表す。上皮組織は外胚葉、中胚葉、内胚葉、栄養外胚葉のいずれの胚葉からも形成される。上皮組織には上皮、中皮、内皮が含まれる。非神経上皮組織に含まれる組織の例としては、表皮、角膜上皮、鼻腔上皮、口腔上皮、気管上皮、気管支上皮、気道上皮、腎上皮、腎皮質上皮、胎盤上皮等が挙げられる。
 上皮組織は通常種々の細胞間結合によりつながれており、単層または重層化した層構造を有する組織を形成する。これら上皮組織の有無の確認、存在量の定量は光学顕微鏡による観察か、上皮細胞マーカーに対する抗体(抗E-Cadherin抗体、抗N-Cadherin抗体、抗EpCAM抗体等)を用いた免疫組織化学等の手法により可能である。
 本発明において、「上皮細胞極性(Epithelial polarity)」とは上皮細胞内に空間的に形成されている構成成分および細胞機能の分布の偏りを表す。例えば、角膜上皮細胞は眼球の最も外層に局在し、頂端側(apical)では涙液を保持するための膜結合型ムチン(MUC-1、4、16)等の頂端側特異的なタンパク質を発現し、基底側(basal)では基底膜に接着するためのα6インテグリン、β1インテグリン等の基底側特異的なタンパク質を発現している。
 生体由来の組織中並びに本発明の製造方法等で作製された細胞集団中の上皮細胞並びに上皮組織に上皮細胞極性が存在しているかどうかは、Phalloidin、頂端側マーカー(抗MUC-1抗体、抗PKC-zeta抗体等)並びに基底側マーカー(抗α6インテグリン抗体、抗β1インテグリン抗体等)を用いた免疫組織化学等の手法により検出することができる。
 本発明において、「プラコード(placode)」とは、主に脊椎動物の発生過程において表皮外胚葉の一部が肥厚して形成される器官の原基のことを表す。プラコードに由来する組織としては、水晶体、鼻、内耳、三叉神経、腺性下垂体等が挙げられる。プラコード、またはその前駆組織である前プラコード領域(preplacode region)のマーカーとしては、Six1、Six4、Dlx5、Eya2、Emx2、Bf1等が挙げられる。
 本発明において、「下垂体プラコード」とは、胚発生の過程で表皮外胚葉の領域に形成される肥厚した構造であって、下垂体前駆細胞マーカーを発現するものをいう。下垂体前駆細胞マーカーとしては、Lim3(Lhx3)、Pitx1/2、Islet1/2等を挙げることができる。下垂体プラコードは、Lim3、Pitx1/2及びIslet1/2からなる群から選択される少なくとも1つ、好ましくは全ての下垂体前駆細胞マーカーを発現する。下垂体プラコードが陥入し、発生途中の袋状の構造であるラトケ嚢(Rathke’s pouch)を形成し、さらに発生が進むと腺性下垂体を形成する。
 本発明において、「腺性下垂体」とは、少なくとも1種の前葉又は中葉の下垂体細胞を含む組織をいう。下垂体細胞には、生理機能を調節するホルモンを産生する下垂体ホルモン産生細胞と、非ホルモン産生細胞が含まれる。下垂体ホルモン産生細胞としては、成長ホルモン(GH)産生細胞、プロラクチン(PRL)産生細胞、副腎皮質刺激ホルモン(ACTH)産生細胞、甲状腺刺激ホルモン(TSH)産生細胞、卵胞刺激ホルモン(FSH)産生細胞、黄体化ホルモン(LH)産生細胞等の前葉を構成する細胞;メラニン細胞刺激ホルモン(MSH)産生細胞等の中葉を構成する細胞が挙げられる。非ホルモン産生細胞としては、血管内皮細胞、周皮細胞、濾胞星状細胞、下垂体幹細胞、下垂体前駆細胞が含まれる。
 一態様において、腺性下垂体は、成長ホルモン(GH)産生細胞、プロラクチン(PRL)産生細胞、及び副腎皮質刺激ホルモン(ACTH)産生細胞からなる群から選択される少なくとも1種、好ましくは2種、より好ましくは3種の下垂体ホルモン産生細胞を含む。更なる態様において、腺性下垂体は、成長ホルモン(GH)産生細胞、プロラクチン(PRL)産生細胞、副腎皮質刺激ホルモン(ACTH)産生細胞、甲状腺刺激ホルモン(TSH)産生細胞、卵胞刺激ホルモン(FSH)産生細胞、及び黄体化ホルモン(LH)産生細胞からなる群から選択される少なくとも1種、好ましくは2種以上(2、3、4、5又は6種)の下垂体ホルモン産生細胞を含む。生体由来の組織中並びに本発明の製造方法等で作製された細胞集団中に腺性下垂体および下垂体ホルモン産生細胞が含まれているかどうかは、成長ホルモン(GH)産生細胞マーカー(抗Pit1抗体、抗GH抗体等)、プロラクチン(PRL)産生細胞マーカー(抗Pit1抗体、抗PRL抗体等)、副腎皮質刺激ホルモン(ACTH)産生細胞マーカー(抗T-Pit抗体、抗NeuroD1抗体、抗ACTH抗体等)、甲状腺刺激ホルモン(TSH)産生細胞マーカー(抗GATA2抗体、抗ACTH抗体等)、卵胞刺激ホルモン(FSH)産生細胞、及び黄体化ホルモン(LH)産生細胞マーカー(抗GATA2抗体、抗SF1抗体、抗FSH抗体、抗LH抗体等)を用いた免疫組織化学および分泌されたホルモンに対するELISA等の手法により検出することが出来る。
 本発明において「下垂体幹細胞」とは、下垂体に存在し、下垂体組織の再生や下垂体ホルモン産生細胞の供給に寄与する未分化な複能性幹細胞、前駆細胞のことをいう。本発明の製造方法で製造される細胞集団並びに組織中に下垂体幹細胞が含まれているかどうかは、例えばSox2、Sox9、E-Cadherin、Nestin、S100β、GFRα2、Prop1、CD133、β-Catenin、Klf4、Oct4、Pax6、コクサッキーウイルス・アデノウイルス共通受容体(CXADR)、PRRX1/2、Ephrin-B2、ACEといった下垂体幹細胞マーカー及びKi67、リン酸化ヒストンH3、MCMといった細胞増殖マーカーに対する抗体を用いた免疫組織化学、BrdU、EdU、IdU等の核酸アナログを用いた増殖細胞標識アッセイ、蛍光標識ジペプチド(β-alanyl-lysyl-N-7-amino-4-methylcoumarin-3-acetic acid)の取り込みアッセイ、下垂体スフェア(pitusphere)形成アッセイ等の手法により、検出することができる。
 本発明において「口腔上皮」とは、口腔を形成する上皮組織及びその細胞を表す。口腔上皮としては、例えば口腔粘膜上皮、唾液腺上皮、歯原性上皮が挙げられる。口腔粘膜上皮は通常、重層扁平上皮からなる粘膜組織であり、結合組織と接した基底膜上に基底細胞、メルケル細胞、メラニン産生細胞等を含み、その上層に有刺細胞、顆粒細胞、角質層が形成される。口腔粘膜上皮は、例えばサイトケラチン7、8、13、14、19陽性の組織として検出され得る。
 本発明において、「ニッチ」、もしくは「幹細胞ニッチ」とは幹細胞の増殖、分化、性質の維持等に関わる微小環境をいう。生体におけるニッチの例としては、造血幹細胞ニッチ、毛包幹細胞ニッチ、腸管上皮幹細胞ニッチ、筋幹細胞ニッチ、下垂体ニッチなどが挙げられる。これらのニッチにおいては、それぞれの組織特有の幹細胞とニッチを提供する支持細胞とが存在し、支持細胞が提供するサイトカイン、ケモカイン、細胞外マトリクス、細胞接着因子、細胞間シグナル伝達因子等により幹細胞が維持されている。
 本発明において、「下垂体ニッチ」とは、下垂体幹細胞の増殖、分化、性質の維持等に関わる微小環境をいう。下垂体ニッチとしては、発生期の袋状のラトケ嚢の中空部の痕跡として下垂体前葉と中葉の間に残る遺残腔(ラトケ裂溝)周辺に存在するMarginal Cell Layer(MCL)ニッチ、および下垂体前葉に散在する実質層(Parenchymal)ニッチが挙げられる。
 本発明において「間葉系細胞」とは、主に中胚葉並びに神経堤に由来し、結合組織を形成する非上皮性の細胞である。これらの細胞のうちの一部は、間葉系幹細胞と呼ばれる複能性を有した体性幹細胞である。本発明の製造方法で製造される細胞集団並びに組織中に間葉系細胞が含まれるかどうかは、Nestin、Vimentin、Cadherin-11、Laminin、CD44といった間葉系細胞マーカーに対する抗体を用いた免疫組織化学等の手法により検出することができる。間葉系幹細胞が含まれるかどうかは、CD9、CD13、CD29、CD44、CD55、CD59、CD73、CD105、CD140b、CD166、VCAM-1、STRO-1、c-Kit、Sca-1、Nucleostemin、CDCP1、BMPR2、BMPR1A及びBPMR1Bといった間葉系幹細胞マーカーに対する抗体を用いた免疫組織化学等の手法により検出することができる。
2.下垂体組織を含む細胞集団の製造方法
 本発明は、下垂体組織を含む細胞集団及びその製造方法を提供する。以下、本発明の製造方法とも称する。
 本発明の製造方法の一態様は、下記工程(1’)~(2)を含む、下垂体組織を含む細胞集団の製造方法である。
(1’)多能性幹細胞をJNKシグナル伝達経路阻害物質の存在下で培養し、細胞集団を形成させる第一工程、
(2)第一工程で得られた細胞集団を、BMPシグナル伝達経路作用物質及びソニック・ヘッジホッグシグナル伝達経路作用物質の存在下に培養し、下垂体組織を含む細胞集団を得る第二工程。
 工程(1’)において、好ましくは、JNKシグナル伝達経路阻害物質にWntシグナル伝達経路阻害物質を併用する。
 本発明の製造方法のより好ましい一態様は、下記工程(a)及び下記工程(1’)~(2)を含む下垂体組織を含む細胞集団の製造方法である。
(a)多能性幹細胞を、フィーダー細胞非存在下で、1)TGFβファミリーシグナル伝達経路阻害物質及び/又はソニック・ヘッジホッグシグナル伝達経路作用物質、並びに2)未分化維持因子を含む培地で培養するa工程、
(1’)a工程で得られた細胞をJNKシグナル伝達経路阻害物質の存在下で培養(好ましくは浮遊培養)する第一工程、
(2)第一工程で得られた細胞集団を、BMPシグナル伝達経路作用物質とソニック・ヘッジホッグシグナル伝達経路作用物質の存在下で培養(好ましくは浮遊培養)し、下垂体組織を含有する細胞集団を得る第二工程。
 好ましくは、第一工程は細胞の凝集体を形成させる工程であり、第二工程に付す第一工程で得られた細胞集団は細胞の凝集体であり得る。
 工程(1’)において、好ましくは、JNKシグナル伝達経路阻害物質にWntシグナル伝達経路阻害物質を併用する。
 本発明の製造方法の一層好ましい一態様は、下記工程(a)及び下記工程(1)~(3)を含む下垂体組織を含む細胞集団の製造方法である。
(a)多能性幹細胞を、フィーダー細胞非存在下で、1)TGFβファミリーシグナル伝達経路阻害物質及び/又はソニック・ヘッジホッグシグナル伝達経路作用物質、並びに2)未分化維持因子を含む培地で培養するa工程、
(1)a工程で得られた細胞をJNKシグナル伝達経路阻害物質およびWntシグナル伝達経路阻害物質の存在下で培養(好ましくは浮遊培養)する第一工程、
(2)第一工程で得られた細胞集団を、BMPシグナル伝達経路作用物質とソニック・ヘッジホッグシグナル伝達経路作用物質の存在下で培養(好ましくは浮遊培養)する第二工程、
(3)第二工程で得られた細胞集団を、ソニック・ヘッジホッグシグナル伝達経路作用物質の非存在下で培養(好ましくは浮遊培養)し、下垂体組織を含む細胞集団を得る第三工程。
 好ましくは、第一工程は細胞の凝集体を形成させる工程であり、第二工程に付す第一工程で得られた細胞集団、及び第三工程に付す第二工程で得られた細胞集団は、それぞれ細胞の凝集体であり得る。
<工程(a)>:a工程
 多能性幹細胞を、フィーダー細胞非存在下で、1)TGFβファミリーシグナル伝達経路阻害物質及び/又はソニック・ヘッジホッグシグナル伝達経路作用物質、並びに2)未分化維持因子を含む培地で培養するa工程について説明する。
 工程(a)において、多能性幹細胞をTGFβファミリーシグナル伝達経路阻害物質及び/又はソニック・ヘッジホッグシグナル伝達経路作用物質で処理してから、第一工程において培養(好ましくは浮遊培養)に付すことにより、多能性幹細胞の状態が変わり、非神経上皮組織の形成効率が改善し、得られる細胞集団(凝集体)の質が向上し、分化しやすく、細胞死が生じにくく、下垂体細胞の製造効率が向上する。
 工程(a)は、フィーダー細胞非存在下で実施する。
 本発明におけるフィーダー細胞非存在下(フィーダーフリー)とは、フィーダー細胞を実質的に含まない(例えば、全細胞数に対するフィーダー細胞数の割合が3%以下)条件を意味する。
 本発明に係る下垂体の製造方法において、多能性幹細胞は、好ましくは胚性幹細胞又は人工多能性幹細胞である。人工多能性幹細胞は、所定の機関より入手でき、市販品を購入することもできる。例えばヒト人工多能性幹細胞株201B7株、201B7-Ff細胞、253G1細胞、253G4細胞、1201C1細胞、1205D1細胞、1210B2細胞、1231A3細胞は京都大学及びiPSアカデミアジャパン株式会社より入手できる。株化された人工多能性幹細胞として、例えば、京都大学で樹立されたFf-I01細胞、Ff-I14細胞及びQHJI01s04細胞が、京都大学より入手可能である。また、HC-6 #10株、1231A3株及び1383D2株は国立研究開発法人理化学研究所より入手できる。
 TGFβファミリーシグナル伝達経路(すなわちTGFβスーパーファミリーシグナル伝達経路)とは、形質転換増殖因子β(TGFβ)、Nodal/Activin、又はBMPをリガンドとし、細胞内でSmadファミリーにより伝達されるシグナル伝達経路である。
 TGFβファミリーシグナル伝達経路阻害物質とは、TGFβファミリーシグナル伝達経路、すなわちSmadファミリーにより伝達されるシグナル伝達経路を阻害する物質を表し、具体的にはTGFβシグナル伝達経路阻害物質、Nodal/Activinシグナル伝達経路阻害物質及びBMPシグナル伝達経路阻害物質を挙げることができる。TGFβファミリーシグナル伝達経路阻害物質としては、TGFβシグナル伝達経路阻害物質が好ましい。
 TGFβシグナル伝達経路阻害物質としては、TGFβに起因するシグナル伝達経路を阻害する物質であれば特に限定は無く、核酸、タンパク質、低分子有機化合物のいずれであってもよい。当該物質として例えばTGFβに直接作用する物質(例えばタンパク質、抗体、アプタマー等)、TGFβをコードする遺伝子の発現を抑制する物質(例えばアンチセンスオリゴヌクレオチド、siRNA等)、TGFβ受容体とTGFβの結合を阻害する物質、TGFβ受容体によるシグナル伝達に起因する生理活性を阻害する物質(例えばTGFβ受容体の阻害剤、Smadの阻害剤等)を挙げることができる。TGFβシグナル伝達経路阻害物質として知られているタンパク質として、Leftyが挙げられる。
 TGFβシグナル伝達経路阻害物質として、当業者に周知の化合物を使用することができる。具体的には、SB431542(「SB431」と略記する場合がある。)(4-[4-(3,4-Methylenedioxyphenyl)-5-(2-pyridyl)-1H-imidazol-2-yl]benzamide)、SB505124(2-[4-(1,3-Benzodioxol-5-yl)-2-(1,1-dimethylethyl)-1H-imidazol-5-yl]-6-methylpyridine)、SB525334(6-[2-(1,1-Dimethylethyl)-5-(6-methyl-2-pyridinyl)-1H-imidazol-4-yl]quinoxaline)、LY2157299(4-[5,6-Dihydro-2-(6-methyl-2-pyridinyl)-4H-pyrrolo[1,2-b]pyrazol-3-yl]-6-quinolinecarboxamide)、LY2109761(4-[5,6-dihydro-2-(2-pyridinyl)-4H-pyrrolo[1,2-b]pyrazol-3-yl]-7-[2-(4-morpholinyl)ethoxy]-quinoline)、GW788388(4-{4-[3-(Pyridin-2-yl)-1H-pyrazol-4-yl]-pyridin-2-yl}-N-(tetrahydro-2H-pyran-4-yl)benzamide)、LY364947(4-[3-(2-Pyridinyl)-1H-pyrazol-4-yl]quinoline)、SD-208(2-[(5-Chloro-2-fluorophenyl)pteridin-4-yl]pyridin-4-yl-amine)、EW-7197(N-(2-fluorophenyl)-5-(6-methyl-2-pyridinyl)-4-[1,2,4]triazolo[1,5-a]pyridin-6-yl-1H-Imidazole-2-methanamine)、A83-01(3-(6-Methylpyridin-2-yl)-4-(4-quinolyl)-1-phenylthiocarbamoyl-1H-pyrazole)、RepSox(2-[5-(6-Methylpyridin-2-yl)-1H-pyrazol-4-yl]-1,5-naphthyridine)、SM16(4-[4-(1,3-Benzodioxol-5-yl)-5-(6-methyl-2-pyridinyl)-1H-imidazol-2-yl]bicyclo[2.2.2]octane-1-carboxamide)、R268712(4-[2-Fluoro-5-[3-(6-methyl-2-pyridinyl)-1H-pyrazol-4-yl]phenyl]-1H-pyrazole-1-ethanol)、IN1130(3-[[5-(6-Methyl-2-pyridinyl)-4-(6-quinoxalinyl)-1H-imidazol-2-yl]methyl]benzamide)、Galunisertib(4-[5,6-Dihydro-2-(6-methyl-2-pyridinyl)-4H-pyrrolo[1,2-b]pyrazol-3-yl]-6-quinolinecarboxamide)、AZ12799734(4-({4-[(2,6-dimethylpyridin-3-yl)oxy]pyridin-2-yl}amino)benzenesulfonamide)、A77-01(4-[3-(6-Methylpyridin-2-yl)-1H-pyrazol-4-yl]quinoline)、KRCA 0008(1,1-[(5-Chloro-2,4-pyrimidinediyl)bis[imino(3-methoxy-4,1-phenylene)-4,1-piperazinediyl]]bisethanone)、GSK 1838705(2-[[2-[[1-[(Dimethylamino)ethanoyl]-5-(methyloxy)-2,3-dihydro-1H-indol-6-yl]amino]-7H-pyrrolo[2,3-d]pyrimidin-4-yl]amino]-6-fluoro-N-methylbenzamide)、Crizotinib(3-[(1R)-1-(2,6-Dichloro-3-fluorophenyl)ethoxy]-5-[1-(piperidin-4-yl)-1H-pyrazol-4-yl]-2-aminopyridine)、Ceritinib(5-Chloro-N2-[2-isopropoxy-5-methyl-4-(4-piperidyl)phenyl]-N4-(2-isopropylsulfonylphenyl)pyrimidine-2,4-diamine)、ASP 3026(N2-[2-Methoxy-4-[4-(4-methyl-1-piperazinyl)-1-piperidinyl]phenyl]-N4-[2-[(1-methylethyl)sulfonyl]phenyl]-1,3,5-triazine-2,4-diamine)、TAE684(5-Chloro-N2-[2-methoxy-4-[4-(4-methyl-1-piperazinyl)-1-piperidinyl]phenyl]-N4-[2-[(1-methylethyl)sulfonyl]phenyl]-2,4-pyrimidinediamine)、AZD3463(N-[4-(4-Amino-1-piperidinyl)-2-methoxyphenyl]-5-chloro-4-(1H-indol-3-yl)-2-pyrimidinamine)、TP0427736(6-[4-(4-methyl-1,3-thiazol-2-yl)-1H-imidazol-5-yl]-1,3-benzothiazole)、TGFBR1-IN-1(5-(1,3-benzothiazol-6-yl)-N-(4-hydroxyphenyl)-1-(6-methylpyridin-2-yl)pyrazole-3-carboxamide)、TEW-7197(2-fluoro-N-[[5-(6-methylpyridin-2-yl)-4-([1,2,4]triazolo[1,5-a]pyridin-6-yl)-1H-imidazol-2-yl]methyl]aniline)、LY3200882(2-[4-[[4-[1-cyclopropyl-3-(oxan-4-yl)pyrazol-4-yl]oxypyridin-2-yl]amino]pyridin-2-yl]propan-2-ol)、BIBF-0775((3Z)-N-Ethyl-2,3-dihydro-N-methyl-2-oxo-3-[phenyl[[4-(1-piperidinylmethyl)phenyl]amino]methylene]-1H-indole-6-carboxamide)等のAlk5/TGFβR1阻害剤、SIS3(1-(3,4-dihydro-6,7-dimethoxy-2(1H)-isoquinolinyl)-3-(1-methyl-2-phenyl-1H-pyrrolo[2,3-b]pyridin-3-yl)-2-propen-1-one)等のSMAD3阻害剤、ITD-1(4-[1,1’-Biphenyl]-4-yl-1,4,5,6,7,8-hexahydro-2,7,7-trimethyl-5-oxo-3-quinolinecarboxylic acid ethyl ester)等の受容体分解促進剤及びこれら化合物の誘導体等が挙げられる。これらの物質は単独又は組み合わせて用いてもよい。SB431542は、TGFβ受容体(ALK5)及びActivin受容体(ALK4/7)の阻害剤(すなわちTGFβR阻害剤)として公知の化合物である。SIS3は、TGFβ受容体の制御下にある細胞内シグナル伝達因子であるSMAD3のリン酸化を阻害するTGFβシグナル伝達経路阻害物質である。ITD-1は、TGF-β type II receptorのプロテアソーム分解促進剤である。上記の化合物等がTGFβシグナル伝達経路阻害物質としての活性を有することは当業者にとって公知である(例えばExpert opinion on investigational drugs, 2010, 19.1: 77-91.等に記載されている)。
 TGFβシグナル伝達経路阻害物質は、好ましくはAlk5/TGFβR1阻害剤を含む。Alk5/TGFβR1阻害剤は、好ましくはSB431542、SB505124、SB525334、LY2157299、GW788388、LY364947、SD-208、EW-7197、A83-01、RepSox、SM16、R268712、IN1130、Galunisertib、AZ12799734、A77-01、KRCA 0008、GSK 1838705、Crizotinib、Ceritinib、ASP 3026、TAE684、AZD3463、TP0427736からなる群より選ばれる少なくとも1つを含み、さらに好ましくはSB431542又はA83-01を含む。
 培地中のTGFβシグナル伝達経路阻害物質の濃度は、上述の効果を達成可能な範囲で用いる物質に応じて適宜設定することが可能である。工程(a)におけるTGFβシグナル伝達経路阻害物質としてSB431542を用いる場合は、通常約1nM~約100μM、好ましくは約10nM~約100μM、より好ましくは約10nM~約50μM、さらに好ましくは約100nM~約50μM、特に好ましくは約1μM~約10μMの濃度で使用される。また、SB431542以外のTGFβシグナル伝達経路阻害物質を使用する場合、上記濃度のSB431542と同等のTGFβシグナル伝達経路阻害活性を示す濃度で用いられることが望ましい。なお、SB431542等のTGFβシグナル伝達経路阻害活性は、当業者に周知の方法、例えばSmadのリン酸化をウエスタンブロッティング法で検出することで決定できる(Mol Cancer Ther.(2004) 3,737-45.)。
 Shhシグナル伝達経路作用物質とは、Shhにより媒介されるシグナル伝達を増強し得る物質である。Shhシグナル伝達経路作用物質としては、例えばHedgehogファミリーに属するタンパク質(例えばShh、Ihh)、Shh受容体、Shh受容体アゴニスト、Smoアゴニスト、Purmorphamine(9-cyclohexyl-N-[4-(morpholinyl)phenyl]-2-(1-naphthalenyloxy)-9H-purin-6-amine)、GSA-10(Propyl 4-(1-hexyl-4-hydroxy-2-oxo-1,2-dihydroquinoline-3-carboxamido)benzoate)、Hh-Ag1.5、20(S)-Hydroxycholesterol、SAG(Smoothened Agonist:N-Methyl-N’-(3-pyridinylbenzyl)-N’-(3-chlorobenzo[b]thiophene-2-carbonyl)-1,4-diaminocyclohexane)、20(S)-hydroxy Cholesterol((3S,8S,9S,10R,13S,14S,17S)-17-[(2R)-2-hydroxy-6-methylheptan-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol)等が挙げられる。これらの物質は単独又は組み合わせて用いてもよい。上記の化合物等がShhシグナル伝達経路作用物質としての活性を有することは当業者にとって公知である(例えばMolecular BioSystems, 2010, 6.1: 44-54.に記載されている)。
 Shhシグナル伝達経路作用物質は、好ましくはSAG、Purmorphamine、GSA-10からなる群より選ばれる少なくとも1つを含み、より好ましくはSAGを含む。培地中のShhシグナル伝達経路作用物質の濃度は、上述の効果を達成可能な範囲で用いる物質に応じて適宜設定することが可能である。SAGは、工程(a)においては通常約1nM~約2000nM、好ましくは約10nM~約1000nM、より好ましくは約10nM~約700nM、さらに好ましくは約50nM~約700nM、特に好ましくは約100nM~約600nM、最も好ましくは約100nM~約500nMの濃度で使用される。また、SAG以外のShhシグナル伝達経路作用物質を使用する場合、上記濃度のSAGと同等のShhシグナル伝達促進活性を示す濃度で用いられることが望ましい。Shhシグナル伝達促進活性は、当業者に周知の方法、例えばGli1遺伝子の発現に着目したレポータージーンアッセイにて決定することができる(Oncogene(2007)26,5163-5168)。
 工程(a)において用いられる培地は、未分化維持培養を可能にするため、未分化維持因子を含む。未分化維持因子は、多能性幹細胞の分化を抑制する作用を有する物質であれば特に限定されない。当業者に汎用されている未分化維持因子としては、プライムド多能性幹細胞(Primed pluripotent stem cells)(例えばヒトES細胞、ヒトiPS細胞)の場合、FGFシグナル伝達経路作用物質、TGFβファミリーシグナル伝達経路作用物質、insulin等を挙げることができる。FGFシグナル伝達経路作用物質として具体的には、線維芽細胞増殖因子(例えばbFGF、FGF4やFGF8)が挙げられる。また、TGFβファミリーシグナル伝達経路作用物質としては、TGFβシグナル伝達経路作用物質、Nodal/Activinシグナル伝達経路作用物質が挙げられる。TGFβシグナル伝達経路作用物質としては、例えばTGFβ1、TGFβ2が挙げられる。Nodal/Activinシグナル伝達経路作用物質としては、例えばNodal、ActivinA、ActivinBが挙げられる。これらの物質は単独又は組み合わせて用いてもよい。ヒト多能性幹細胞(例えばヒトES細胞、ヒトiPS細胞)を培養する場合、工程(a)における培地は、好ましくは未分化維持因子として、bFGFを含む。
 未分化維持因子は、通常哺乳動物の未分化維持因子である。哺乳動物としては、上記のものを挙げることができる。未分化維持因子は、哺乳動物の種間で交差反応性を有し得るので、培養対象の多能性幹細胞の未分化状態を維持可能な限り、いずれの哺乳動物の未分化維持因子を用いてもよい。未分化維持因子は、好ましくは培養する細胞と同一種の哺乳動物の未分化維持因子である。例えばヒト多能性幹細胞の培養には、ヒト未分化維持因子(例えばbFGF、FGF4、FGF8、EGF、Nodal、ActivinA、ActivinB、TGFβ1、TGFβ2等)が用いられる。未分化維持因子は、好ましくは単離されている。
 未分化維持因子は、培養対象である多能性幹細胞の未分化維持能を有する限り、いずれの宿主によって生産されたもの又は人工合成されたものを用いることができる。本発明に用いる未分化維持因子は、生体内で生じるものと同様の修飾を受けたものが好ましく、培養対象である多能性幹細胞と同種の細胞において異種成分を含まない条件下で産生されたものがさらに好ましい。
 本発明に係る製造方法の一態様は、単離された未分化維持因子を提供する工程を含む。本発明に係る製造方法の一態様は、工程(a)に用いる培地中へ、単離された未分化維持因子を外来的(又は外因的)に添加する工程を含む。工程(a)に用いる培地に予め未分化維持因子が添加されていてもよい。
 工程(a)において用いられる培地中の未分化維持因子濃度は、培養する多能性幹細胞の未分化状態を維持可能な濃度であり、当業者であれば適宜設定することができる。例えばフィーダー細胞非存在下で未分化維持因子としてbFGFを用いる場合、その濃度は、通常約4ng/mL~約500ng/mL、好ましくは約10ng/mL~約200ng/mL、より好ましくは約30ng/mL~約150ng/mLである。
 工程(a)は、フィーダー細胞非存在下で実施する。工程(a)における多能性幹細胞の培養は、浮遊培養及び接着培養のいずれの条件で行われてもよいが、好ましくは接着培養により行われる。フィーダー細胞非存在下での多能性幹細胞の培養においては、フィーダー細胞に代わる足場を多能性幹細胞に提供するため、適切なマトリクスを足場として用いてもよい。足場であるマトリクスにより、表面をコーティングした培養器材中で、多能性幹細胞を接着培養する。
 足場として用いることのできるマトリクスとしては、ラミニン(Nat Biotechnol.28,611-615(2010))、ラミニン断片(Nat Commun 3,1236(2012))、基底膜標品(Nat Biotechnol 19,971-974(2001))、ゼラチン、コラーゲン、ヘパラン硫酸プロテオグリカン、エンタクチン、ビトロネクチン(Vitronectin)等が挙げられる。マトリクスは、好ましくはラミニン511が用いられる(Nat Biotechnol 28,611-615(2010))。
 ラミニン断片は、多能性幹細胞への接着性を有しており、フィーダーフリー条件での多能性幹細胞の維持培養を可能とするものであれば特に限定されないが、好ましくはE8フラグメントである。ラミニンE8フラグメントは、ラミニン511をエラスターゼで消化して得られたフラグメントの中で、強い細胞接着活性をもつフラグメントとして同定されたものである(EMBO J.,3:1463-1468,1984、J. Cell Biol.,105:589-598,1987)。ラミニン断片としては、好ましくはラミニン511のE8フラグメントが用いられる(Nat Commun 3,1236(2012)、Scientific Reports 4,3549(2014))。ラミニンE8フラグメントは、ラミニンのエラスターゼ消化産物であることを要するものではなく、組換え体であってもよい。遺伝子組み換え動物(カイコ等)に産生させたものであってもよい。未同定成分の混入を回避する観点から、好ましくは組換え体のラミニン断片が用いられる。ラミニン511のE8フラグメントは市販されており、例えばニッピ株式会社等から購入可能である。
 未同定成分の混入を回避する観点から、本発明において用いられるラミニン又はラミニン断片は、単離されていることが好ましい。工程(a)におけるフィーダー細胞非存在下での多能性幹細胞の培養においては、好ましくは単離されたラミニン511又はラミニン511のE8フラグメントによって、より好ましくはラミニン511のE8フラグメントによって表面をコーティングした培養器材中で、多能性幹細胞を接着培養する。
 工程(a)において用いられる培地は、フィーダーフリー条件下で、多能性幹細胞の未分化維持培養を可能にする培地(フィーダーフリー培地)であれば、特に限定されない。
 工程(a)において用いられる培地は、血清培地であっても無血清培地であってもよい。化学的に未決定な成分の混入を回避する観点から、工程(a)において用いられる培地は、好ましくは無血清培地である。培地は、血清代替物を含んでいてもよい。
 工程(a)における多能性幹細胞の培養時間は、続く第一工程において形成され得る細胞集団(凝集体)の質を向上させる効果が達成可能な範囲で特に限定されないが、通常0.5~144時間、好ましくは2~96時間、より好ましくは6~48時間、さらに好ましくは12~48時間、特に好ましくは18~28時間であり、例えば24時間である。すなわち、第一工程開始の0.5~144時間前、好ましくは18~28時間前に工程(a)を開始し、工程(a)を完了した後引き続き第一工程が行われる。
 工程(a)の好ましい一態様において、ヒト多能性幹細胞を、フィーダー細胞非存在下で、bFGFを含有する無血清培地中で、接着培養する。当該接着培養は、好ましくはラミニン511、ラミニン511のE8フラグメント又はビトロネクチンで表面をコーティングした培養器材中で実施される。当該接着培養は、好ましくはフィーダーフリー培地としてStemFitを用いて実施される。StemFit培地は未分化維持成分としてbFGFを含有する(Scientific Reports(2014)4,3594)。
 工程(a)の好ましい一態様において、ヒト多能性幹細胞を、フィーダー細胞非存在下で、bFGFを含有する無血清培地中で、浮遊培養する。当該浮遊培養では、ヒト多能性幹細胞は、ヒト多能性幹細胞の凝集体を形成してもよい。
 工程(a)及び後述する工程において、培養温度、CO濃度等の培養条件は適宜設定できる。培養温度は、例えば約30℃から約40℃、好ましくは約37℃である。CO濃度は、重炭酸緩衝系の培地を用いる場合、例えば約1%から約10%、好ましくは約5%である。
 <工程(1)>、<工程(1’)>:第一工程
 工程(1’)では、c-Jun N末キナーゼ(JNK)シグナル伝達経路阻害物質の存在下で多能性幹細胞を培養し、細胞集団を得る。
 JNKはMAPKファミリーに属するキナーゼであり、各種の環境ストレス、炎症性サイトカイン、成長因子、GPCRアゴニストによる刺激の細胞内シグナル伝達に関与する。
 本発明においてJNKシグナル伝達経路阻害物質とは、JNKによって伝達されるシグナル伝達を抑制し得るものである限り限定されない。JNKシグナル伝達経路阻害物質として例えば、JNKシグナル伝達機構の上流ないし下流の因子、もしくはJNKそのものの酵素活性、多量体化、他の因子や核酸との結合を阻害する、分解を促進する等のメカニズムによりシグナル伝達を阻害する活性を有する物質がある。JNKシグナル伝達経路阻害物質としては、例えばJNK阻害剤、Rac阻害剤、MKK阻害剤、MEK阻害剤、Src阻害剤、受容体チロシンキナーゼ(RTK)阻害剤、ASK阻害剤等が挙げられるがこれに限定されない。
 c-Jun N末キナーゼ(JNK)阻害剤としては、例えばJNK-IN-8((E)-3-(4-(dimethylamino)but-2-enamido)-N-(3-methyl-4-((4-(pyridin-3-yl)pyrimidin-2-yl)amino)phenyl)benzamide)、SP600125(Anthra[1-9-cd]pyrazol-6(2H)-one)、DB07268(2-[[2-[(3-Hydroxyphenyl)amino]-4-pyrimidinyl]amino]benzamide)、Tanzisertib(trans-4-[[9-[(3S)-Tetrahydro-3-furanyl]-8-[(2,4,6-trifluorophenyl)amino]-9H-purin-2-yl]amino]cyclohexanol)、Bentamapimod(1,3-Benzothiazol-2-yl)[2-[[4-[(morpholin-4-yl)methyl]benzyl]oxy]pyrimidin-4-yl]acetonitrile、TCS JNK 6o(N-(4-Amino-5-cyano-6-ethoxy-2-pyridinyl)-2,5-dimethoxybenzeneacetamide)、SU3327(5-[(5-Nitro-2-thiazolyl)thio]-1,3,4-thiadiazol-2-amine)、CEP1347((9S,10R,12R)-5-16-Bis[(ethylthio)methyl]-2,3,9,10,11,12-hexahydro-10-hydroxy-9-methyl-1-oxo-9,12-epoxy-1H-diindolo[1,2,3-fg:3’,2’,1’-kl]pyrrolo[3,4-i][1,6]benzodiazocine-10-carboxylic acid methyl ester)、c-JUN peptide、AEG3482(6-Phenylimidazo[2,1-b]-1,3,4-thiadiazole-2-sulfonamide)、TCS JNK 5a(N-(3-Cyano-4,5,6,7-tetrahydrobenzo[b]thienyl-2-yl)-1-naphthalenecarboxamide)、BI-78D3(4-(2,3-Dihydro-1,4-benzodioxin-6-yl)-2,4-dihydro-5-[(5-nitro-2-thiazolyl)thio]-3H-1,2,4-triazol-3-one)、IQ-3(11H-Indeno[1,2-b]quinoxalin-11-one O-(2-furanylcarbonyl)oxime)、SR 3576(3-[4-[[[(3-Methylphenyl)amino]carbonyl]amino]-1H-pyrazol-1-yl]-N-(3,4,5-trimethoxyphenyl)benzamide)、IQ-1S(11H-Indeno[1,2-b]quinoxalin-11-one oxime sodium salt)、JIP-1(153-163)、CC-401(3-[3-[2-(1-Piperidinyl)ethoxy]phenyl]-5-(1H-1,2,4-triazol-5-yl)-1H-indazole dihydrochloride)、BI-87G3(2-(5-Nitrothiazol-2-ylthio)benzo[d]thiazole)、AS601245(2-(1,3-benzothiazol-2-yl)-2-[2-(2-pyridin-3-ylethylamino)pyrimidin-4-yl]acetonitrile)、CV-65(3,7-Dimethyl-1,9-dihydropyrido[3,2-g]quinoline-2,5,8,10-tetrone)、D-JNK1(CAS番号 1445179-97-4)、ER-358063、ER-409903、ER-417258、CC-359((4S)-4-(2,4-difluoro-5-pyrimidin-5-ylphenyl)-4-methyl-5,6-dihydro-1,3-thiazin-2-amine)、CC-401(3-[3-(2-piperidin-1-ylethoxy)phenyl]-5-(1H-1,2,4-triazol-5-yl)-1H-indazole)、CC-930(4-[[9-[(3S)-oxolan-3-yl]-8-(2,4,6-trifluoroanilino)purin-2-yl]amino]cyclohexan-1-ol)、SB203580(4-[4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-1H-imidazol-5-yl]pyridine)及びこれらの誘導体等が挙げられる。これらの物質は単独又は組み合わせて用いてもよい。上記の化合物等がJNK阻害剤としての活性を有することは当業者にとって公知である(例えばJ Enzyme Inhib Med Chem. 2020; 35(1): 574-583.に記載されている)。
 Rac阻害剤としては、例えばEHT1864(5-(5-(7-(Trifluoromethyl)quinolin-4-ylthio)pentyloxy)-2-(morpholinomethyl)-4H-pyran-4-one dihydrochloride)、NSC23766(N6-[2-[[4-(Diethylamino)-1-methylbutyl]amino]-6-methyl-4-pyrimidinyl]-2-methyl-4,6-quinolinediamine trihydrochloride)、EHop-016(N4-(9-Ethyl-9H-carbazol-3-yl)-N2-[3-(4-morpholinyl)propyl]-2,4-pyrimidinediamine)、1A-116(N-(3,5-Dimethylphenyl)-N’-[2-(trifluoromethyl)phenyl]guanidine)、ZCL278(2-(4-bromo-2-chlorophenoxy)-N-(4-(N-(4,6-dimethylpyrimidin-2-yl)sulfamoyl)phenylcarbamothioyl)acetamide)、MBQ-167(9-ethyl-3-(5-phenyl-1H-1,2,3-triazol-1-yl)-9H-carbazole)、KRpep-2d(actinium;[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(3R,8R,11S,14S,20S,23S,26S,29S,32S,35S,38S)-8-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-amino-5-carbamimidamido-1-oxopentan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]carbamoyl]-29-[(2R)-butan-2-yl]-20-(carboxymethyl)-26-(hydroxymethyl)-23,32-bis[(4-hydroxyphenyl)methyl]-35-(2-methylpropyl)-2,10,13,19,22,25,28,31,34,37-decaoxo-11-propan-2-yl-5,6-dithia-1,9,12,18,21,24,27,30,33,36-decazatricyclo[36.3.0.014,18]hentetracontan-3-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]azanide)、ARS-853(1-[3-[4-[2-[[4-Chloro-2-hydroxy-5-(1-methylcyclopropyl)phenyl]amino]acetyl]-1-piperazinyl]-1-azetidinyl]-2-propen-1-one)、Salirasib(2-(((2E,6E)-3,7,11-Trimethyldodeca-2,6,10-trien-1-yl)thio)benzoic acid)、ML141(4-(5-(4-methoxyphenyl)-3-phenyl-4,5-dihydropyrazol-1-yl)benzenesulfonamide)及びこれらの誘導体等が挙げられる。これらの物質は単独又は組み合わせて用いてもよい。上記の化合物等がRac阻害剤としての活性を有することは当業者にとって公知である(例えばCancer research, 2018, 78.12: 3101-3111.に記載されている)。
 本発明におけるJNKシグナル伝達経路阻害物質の添加時期は、ヒト多能性幹細胞からの下垂体組織の製造の効率改善効果が発揮される限り限定されないが、後述する工程(2)でBMPシグナル伝達経路作用物質を添加する時点ですでに添加されていることが好ましく、分化誘導の開始から72時間以内である。より好ましいJNK阻害剤の添加時期は、分化誘導の開始と同時である。
 工程(1’)の培地中には、Wntシグナル伝達経路阻害物質がさらに存在することが好ましい。このような第一工程を工程(1)とする。即ち、工程(1)は、多能性幹細胞をJNKシグナル伝達経路阻害物質およびWntシグナル伝達経路阻害物質の存在下で培養する第一工程である。
 Wntシグナル伝達経路とは、Wntファミリー・タンパク質をリガンドとし、主としてFrizzledを受容体とするシグナル伝達経路である。当該シグナル伝達経路としては、古典的Wnt経路(Canonical Wnt pathway)、非古典的Wnt経路(Non-Canonical Wnt pathway)等が挙げられる。古典的Wnt経路は、β-Cateninによって伝達される。非古典的Wnt経路としては、Planar Cell Polarity(PCP)経路、Wnt/JNK経路、Wnt/Calcium経路、Wnt-RAP1経路、Wnt-Ror2経路、Wnt-PKA経路、Wnt-GSK3MT経路、Wnt-aPKC経路、Wnt-RYK経路、Wnt-mTOR経路等が挙げられる。非古典的Wnt経路では、Wnt以外の他のシグナル伝達経路でも活性化される共通のシグナル伝達因子が存在するが、本発明では前記したJNK経路以外のそれらの因子もWntシグナル伝達経路の構成因子とし、それらの因子に対する阻害物質もWntシグナル伝達経路阻害物質に含まれる。
 Wntシグナル伝達経路阻害物質は、Wntファミリー・タンパク質により惹起されるシグナル伝達を抑制し得るものである限り限定されない。阻害物質は、核酸、タンパク質、低分子有機化合物のいずれであってもよい。当該物質として例えばWntのプロセシングと細胞外への分泌を阻害する物質、Wntに直接作用する物質(例えばタンパク質、抗体、アプタマー等)、Wntをコードする遺伝子の発現を抑制する物質(例えばアンチセンスオリゴヌクレオチド、siRNA、CRISPRi等)、Wnt受容体とWntの結合を阻害する物質、Wnt受容体によるシグナル伝達に起因する生理活性を阻害する物質を挙げることができる。
 Wntシグナル伝達経路阻害物質として知られているタンパク質として、secreted Frizzled Related Protein(sFRP)クラスに属するタンパク質(sFRP1~5、Wnt Inhibitory Factor-1(WIF-1)、Cerberus)、Dickkopf(Dkk)クラスに属するタンパク質(Dkk1~4、Kremen)、APCDD1、APCDD1L、Draxinファミリーに属するタンパク質、IGFBP-4、Notum、SOST/Sclerostinファミリーに属するタンパク質等が挙げられる。
 Wntシグナル伝達経路阻害物質としては、当業者に周知の化合物を使用することができる。古典的Wntシグナル伝達経路の阻害物質として例えばFrizzled阻害剤、Dishevelled(Dvl)阻害剤、Tankyrase(TANK)阻害剤、カゼインキナーゼ1阻害剤、カテニン応答性転写阻害剤、p300阻害剤、CREB-binding protein(CBP)阻害剤、BCL-9阻害剤、TCF分解誘導薬(Am J Cancer Res.2015;5(8):2344-2360)等が挙げられる。非古典的Wnt経路の阻害物質として、例えばPorcupine(PORCN)阻害剤、Calcium/calmodulin-dependent protein kinase II(CaMKII)阻害剤、TGF-β-activated kinase 1(TAK1)阻害剤、Nemo-Like Kinase(NLK)阻害剤、LIM Kinase阻害剤、mammalian target of rapamycin(mTOR)阻害剤、Rac阻害剤、c-Jun NH 2-terminal kinase(JNK)阻害剤、protein kinase C(PKC)阻害剤、Methionine Aminopeptidase 2(MetAP2)阻害剤、Calcineurin阻害剤、nuclear factor of activated T cells(NFAT)阻害剤、ROCK阻害剤等が挙げられる。また、作用機序は報告されていないが、Wntシグナル伝達経路阻害物質としてKY02111(N-(6-Chloro-2-benzothiazolyl)-3,4-dimethoxybenzenepropanamide)、KY03-I(2-(4-(3,4-dimethoxyphenyl)butanamide)-6-Iodobenzothiazole)が挙げられる。これらの物質は単独又は組み合わせて用いてもよい。
 PORCN阻害剤として例えばIWP-2(N-(6-Methyl-2-benzothiazolyl)-2-[(3,4,6,7-tetrahydro-4-oxo-3-phenylthieno[3,2-d]pyrimidin-2-yl)thio]acetamide)、IWP-3(2-[[3-(4-fluorophenyl)-3,4,6,7-tetrahydro-4-oxothieno[3,2-d]pyrimidin-2-yl]thio]-N-(6-methyl-2-benzothiazolyl)acetamide)、IWP-4(N-(6-methyl-2-benzothiazolyl)-2-[[3,4,6,7-tetrahydro-3-(2-methoxyphenyl)-4-oxothieno[3,2-d]pyrimidin-2-yl]thio]acetamide)、IWP-L6(N-(5-phenyl-2-pyridinyl)-2-[(3,4,6,7-tetrahydro-4-oxo-3-phenylthieno[3,2-d]pyrimidin-2-yl)thio]acetamide)、IWP-12(N-(6-Methyl-2-benzothiazolyl)-2-[(3,4,6,7-tetrahydro-3,6-dimethyl-4-oxothieno[3,2-d]pyrimidin-2-yl)thio]acetamide)、IWP-O1(1H-1,2,3-Triazole-1-acetamide,5-phenyl-N-(5-phenyl-2-pyridinyl)-4-(4-pyridinyl)-)、LGK-974(2-(2’,3-Dimethyl-2,4’-bipyridin-5-yl)-N-(5-(pyrazin-2-yl)pyridin-2-yl)acetamide)、Wnt-C59(2-[4-(2-Methylpyridin-4-yl)phenyl]-N-[4-(pyridin-3-yl)phenyl]acetamide)、ETC-131、ETC-159(1,2,3,6-Tetrahydro-1,3-dimethyl-2,6-dioxo-N-(6-phenyl-3-pyridazinyl)-7H-purine-7-acetamide)、GNF-1331(N-(6-methoxy-1,3-benzothiazol-2-yl)-2-[(4-propyl-5-pyridin-4-yl-1,2,4-triazol-3-yl)sulfanyl]acetamide)、GNF-6231(N-[5-(4-Acetyl-1-piperazinyl)-2-pyridinyl]-2’-fluoro-3-methyl[2,4’-bipyridine]-5-acetamide)、Porcn-IN-1(N-[[5-fluoro-6-(2-methylpyridin-4-yl)pyridin-3-yl]methyl]-9H-carbazole-2-carboxamide)、RXC004、CGX1321及びこれらの誘導体等が挙げられる。これらの物質は単独又は組み合わせて用いてもよい。
 Wntシグナル伝達経路阻害物質は、好ましくはPORCN阻害剤、KY02111及びKY03-Iからなる群より選ばれる少なくとも1つを含み、より好ましくはPORCN阻害剤を含む。Wntシグナル伝達経路阻害物質は、Wntの非古典的Wnt経路への阻害活性を有する物質を含むこともまた好ましい。Wntシグナル伝達経路阻害物質は、より好ましくはWnt/Planar Cell Polarity(PCP)経路への阻害活性を有する物質を含む。本発明で用いられるPORCN阻害剤は、好ましくはIWP-2、IWP-3、IWP-4、IWP-L6、IWP-12、LGK-974、Wnt-C59、ETC-159及びGNF-6231からなる群より選ばれる少なくとも1つを含み、より好ましくはIWP-2又はWnt-C59を含み、さらに好ましくはIWP-2を含む。
 培地中のWntシグナル伝達経路阻害物質の濃度は、上述の効果を達成可能な範囲で用いる物質に応じて適宜設定することが可能である。下垂体を構成する細胞の製造効率向上の観点からは、例えばWntシグナル伝達経路阻害物質としてPORCN阻害剤の1種であるIWP-2を用いる場合は、その濃度は通常約10nM~約50μMであり、好ましくは約10nM~約30μMであり、さらに好ましくは約100nM~約10μMであり、最も好ましくは約0.5μMである。PORCN阻害剤の1種であるWnt-C59を用いる場合は、その濃度は通常約10pM~約1μMであり、好ましくは約100pM~約500nMであり、より好ましくは約50nMである。KY02111を用いる場合は、その濃度は通常約10nM~約50μMであり、好ましくは約10nM~約30μMであり、より好ましくは約100nM~約10μMであり、さらに好ましくは約5μMである。上記以外のWntシグナル伝達経路阻害物質を用いる場合には、上記の濃度と同等のWntシグナル伝達経路阻害活性を示す濃度で用いられることが望ましい。
 第一工程(工程(1)又は工程(1’))の培地中には、TGFβシグナル伝達経路阻害物質がさらに存在することが好ましい。第一工程において用いられるTGFβシグナル伝達経路阻害物質としては工程(a)で例示したものと同じものが用いられ得る。工程(a)及び第一工程のTGFβシグナル伝達経路阻害物質は同一であっても異なっていてもよいが、好ましくは同一である。
 培地中のTGFβシグナル伝達経路阻害物質の濃度は、上述の効果を達成可能な範囲で用いる物質に応じて適宜設定することが可能である。TGFβシグナル伝達経路阻害物質としてSB431542を用いる場合は、通常約1nM~約100μM、好ましくは約10nM~約100μM、より好ましくは約100nM~約50μM、さらに好ましくは約500nM~約10μMの濃度で使用される。また、SB431542以外のTGFβシグナル伝達経路阻害物質を使用する場合、上記濃度のSB431542と同等のTGFβシグナル伝達経路阻害活性を示す濃度で用いられることが望ましい。
 第一工程及び以降の工程において、中内胚葉への分化を抑制し、外胚葉・プラコード様組織の製造効率を向上させる観点から、Transforming growth factor-β-activated kinase 1(TAK1)に対する阻害物質を添加することもまた好ましい。TAK1はTGFβ、骨形成タンパク質(BMP)、インターロイキン1(IL-1)、TNF-α等により活性化されるシグナル伝達を媒介する、MAPキナーゼキナーゼキナーゼ(MAPKKK)ファミリーのセリンスレオニンタンパク質キナーゼである。
 TAK1阻害物質とはTAK1が媒介するシグナル伝達を抑制し得るものである限り限定されない。核酸、タンパク質、低分子有機化合物のいずれであってもよい。当該物質として例えばTAK1と基質の結合を阻害する物質、TAK1のリン酸化を阻害する物質、TAK1の脱リン酸化を促進する物質、TAK1の転写や翻訳を阻害する物質、TAK1の分解を促進する物質等が挙げられる。
 TAK1阻害物質として、例えば(5Z)-7-Oxozeaenol((3S,5Z,8S,9S,11E)-3,4,9,10-tetrahydro-8,9,16-trihydroxy-14-methoxy-3-methyl-1H-2-benzoxacyclotetradecine-1,7(8H)-dione)、N-Des(aminocarbonyl)AZ-TAK1 inhibitor(3-Amino-5-[4-(4-morpholinylmethyl)phenyl]-2-thiophenecarboxamide)、Takinib(N1-(1-Propyl-1H-benzimidazol-2-yl)-1,3-benzenedicarboxamide)、NG25(N-[4-[(4-Ethyl-1-piperazinyl)methyl]-3-(trifluoromethyl)phenyl]-4-methyl-3-(1H-pyrrolo[2,3-b]pyridin-4-yloxy)-benzamide trihydrochloride)、Sarsasapogenin及びこれらの誘導体、類縁体が挙げられる。これらの物質は単独又は組み合わせて用いてもよい。
 TAK1阻害物質は、好ましくは(5Z)-7-Oxozeaenolである。第一工程におけるTAK1阻害物質として(5Z)-7-Oxozeaenolを用いる場合は、通常約1nM~約100μM、好ましくは約10nM~約50μM、より好ましくは約100nM~約25μM、さらに好ましくは約500nM~約10μMの濃度で使用される。また、(5Z)-7-Oxozeaenol以外のTAK1阻害物質を使用する場合、上記濃度の(5Z)-7-Oxozeaenolと同等のTAK1阻害活性を示す濃度で用いられることが好ましい。TAK1阻害活性は、例えばCell chemical biology 24.8(2017):1029-1039.に記載のキナーゼアッセイ等の手法により決定することができる。下垂体組織に含有される細胞の割合の制御の観点から、上記TAK1阻害物質は第一工程及び以降の工程の任意の段階で添加しその後に除去することができる。好ましい一態様としては、上記TAK1阻害物質は後述する工程(b)開始時に添加する。
 第一工程において用いられる培地は、上記定義の項で記載したようなものである限り特に限定されない。第一工程において用いられる培地は血清培地又は無血清培地であり得る。化学的に未決定な成分の混入を回避する観点から、本発明においては、無血清培地が好適に用いられる。調製の煩雑さを回避するには、例えば市販のKSR等の血清代替物を適量添加した無血清培地を使用することが好ましい。無血清培地へのKSRの添加量としては、例えばヒトES細胞の場合は、通常約1%から約30%であり、好ましくは約2%から約20%である。無血清培地としては、例えばIMDMとF-12の1:1の混合液に5%KSR、450μM 1-モノチオグリセロール及び1xChemically Defined Lipid Concentrateが添加された培地、又はGMEMに5%~20%KSR、NEAA、ピルビン酸及び2-メルカプトエタノールが添加された培地が挙げられる。
 第一工程の開始時において、細胞は接着状態又は浮遊状態のいずれでもよい。好ましい一態様として、多能性幹細胞を単一細胞に分散させた後に再凝集させ、浮遊状態の細胞凝集体を形成させる。このために、第一工程の開始前に、多能性幹細胞、一例として工程(a)で得られた多能性幹細胞を単一細胞に分散する操作を行うことが好ましい。分散させる操作により得られた「分散された細胞」は、好ましくは単一細胞であるが、例えば2以上100以下の少数の細胞からなる細胞の塊を含んでもよく、2以上50以下の細胞からなる細胞の塊を含んでもよい。「分散された細胞」は、例えば単一細胞を7割以上及び細胞の塊を3割以下含んでいてもよく、好ましくは単一細胞を8割以上及び細胞の塊を2割以下含む。
 多能性幹細胞を分散させる方法としては、機械的分散処理、細胞分散液処理、細胞保護剤添加処理が挙げられ、これらの処理を組み合わせて行ってもよい。細胞を分散させる方法としては、好ましくは細胞保護剤添加処理と同時に細胞分散液処理を行い、次いで機械的分散処理をするとよい。
 細胞保護剤添加処理に用いられる細胞保護剤としては、FGFシグナル伝達経路作用物質、ヘパリン、Rho-associated protein kinase(ROCK)阻害物質、ミオシン阻害物質、ポリアミン類、統合的ストレス応答(Integrated stress response:ISR)阻害剤、カスパーゼ阻害剤、細胞接着促進物質、血清、又は血清代替物等を挙げることができる。好ましい細胞保護剤としては、ROCK阻害物質が挙げられる。分散により誘導される多能性幹細胞(特に、ヒトの多能性幹細胞)の細胞死を抑制するために、ROCK阻害物質を第一工程の培養開始時から添加することは好ましい。ROCK阻害物質としては、Y-27632((R)-(+)-trans-4-(1-Aminoethyl)-N-(4-pyridyl)cyclohexanecarboxamide,dihydrochloride)、Fasudil(HA1077)(1-(5-Isoquinolinylsulfonyl)homopiperazine,hydrochloride)、H-1152(5-[[(2S)-hexahydro-2-methyl-1H-1,4-diazepin-1-yl]sulfonyl]-4-methyl-isoquinoline,dihydrochloride)、HA-1100(Hydroxyfasudil)(1-(1-Hydroxy-5-isoquinolinesulfonyl)homopiperazine,hydrochloride)、Chroman 1((3S)-N-[2-[2-(dimethylamino)ethoxy]-4-(1H-pyrazol-4-yl)phenyl]-6-methoxy-3,4-dihydro-2H-chromene-3-carboxamide)、Belumosudil(KD025、2-[3-[4-[(1H-Indazol-5-yl)amino]quinazolin-2-yl]phenoxy]-N-isopropylacetamide)、HSD1590([2-Methoxy-3-(4,5,10-triazatetracyclo[7.7.0.02,6.012,16]hexadeca-1(9),2(6),3,7,10,12(16)-hexaen-11-yl)phenyl]boronic acid)、CRT0066854((S)-3-phenyl-N1-(2-pyridin-4-yl-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4-yl)propane-1,2-diamine)、RKI1447(1-(3-hydroxybenzyl)-3-(4-(pyridin-4-yl)thiazol-2-yl)urea)、Ripasudil(4-Fluoro-5-[[(2S)-hexahydro-2-methyl-1H-1,4-diazepin-1-yl]sulfonyl]isoquinoline)、GSK269962A(N-[3-[2-(4-amino-1,2,5-oxadiazol-3-yl)-1-ethylimidazo[4,5-c]pyridin-6-yl]oxyphenyl]-4-(2-morpholin-4-ylethoxy)benzamide)、GSK429286A(N-(6-fluoro-1H-indazol-5-yl)-2-methyl-6-oxo-4-(4-(trifluoromethyl)phenyl)-1,4,5,6-tetrahydropyridine-3-carboxamide)、Y-33075((R)-4-(1-Aminoethyl)-N-1H-pyrrolo[2,3-b]pyridin-4-ylbenzamide)、LX7101(N,N-Dimethylcarbamic acid 3-[[[4-(aminomethyl)-1-(5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-4-piperidinyl]carbonyl]amino]phenyl ester)、AT13148((alphaS)-alpha-(Aminomethyl)-alpha-(4-chlorophenyl)-4-(1H-pyrazol-4-yl)benzenemethanol)、SAR407899(6-(piperidin-4-yloxy)isoquinolin-1(2H)-one hydrochloride)、GSK180736A(4-(4-fluorophenyl)-N-(1H-indazol-5-yl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxamide)、Hydroxyfasudil(1-(1-hydroxy-5-isoquinolinesulfonyl)homopiperazine,HCl)、bdp5290(4-Chloro-1-(4-piperidinyl)-N-[3-(2-pyridinyl)-1H-pyrazol-4-yl]-1H-pyrazole-3-carboxamide)、sr-3677(N-[2-[2-(Dimethylamino)ethoxy]-4-(1H-pyrazol-4-yl)phenyl]-2,3-dihydro-1,4-benzodioxin-2-carboxamidehydrochloride)、CCG-222740(N-(4-Chlorophenyl)-5,5-difluoro-1-(3-(furan-2-yl)benzoyl)piperidine-3-carboxamide)、ROCK inhibitor-2(N-[(1R)-1-(3-methoxyphenyl)ethyl]-4-pyridin-4-ylbenzamide)、Rho-Kinase-IN-1(N-[1-[(4-methylsulfanylphenyl)methyl]piperidin-3-yl]-1H-indazol-5-amine)、ZINC00881524(N-(4,5-dihydronaphtho[1,2-d]thiazol-2-yl)-2-(3,4-dimethoxyphenyl)acetamide)、SB772077B((3S)-1-[[2-(4-Amino-1,2,5-oxadiazol-3-yl)-1-ethyl-1H-imidazo[4,5-c]pyridin-7-yl]carbonyl]-3-pyrrolidinamine dihydrochloride)、Verosudil(N-(1,2-Dihydro-1-oxo-6-isoquinolinyl)-alpha-(dimethylamino)-3-thiopheneacetamide)、GSK-25(4-(4-chloro-2-fluorophenyl)-2-(2-chloropyridin-4-yl)-1-(6-fluoro-1H-indazol-5-yl)-6-methyl-4H-pyrimidine-5-carboxamide)及びこれらの誘導体等を挙げることができる。細胞接着促進物質としては例えばアドへサミン及びアドヘサミン-RGDS誘導体(長瀬産業社製)等が挙げられる。細胞保護剤としては、調製済みの細胞保護剤を用いることもできる。調製済みの細胞保護剤としては、例えばRevitaCell Supplement(Thermo Fisher Scientific社製)、CloneR、CloneR2(Stemcell Technologies社製)等が挙げられる。これらの物質は単独又は組み合わせて用いてもよい。第一工程において、細胞保護剤としてROCK阻害物質であるY-27632を添加する場合は、通常約10nM~約10mM、好ましくは約100nM~約1mM、より好ましくは約1μM~約100μMの濃度となるように培養環境中に添加する。第一工程において、細胞保護剤としてROCK阻害物質であるChroman 1を添加する場合は、通常約10pM~約1mM、好ましくは約100pM~約100μM、より好ましくは約1nM~約10μMの濃度となるように培養環境中に添加する。
 細胞分散液処理に用いられる細胞分散液としては、トリプシン、コラゲナーゼ、ヒアルロニダーゼ、エラスターゼ、プロナーゼ、DNase、パパイン等の酵素及びエチレンジアミン四酢酸等のキレート剤の少なくとも1つを含む溶液を挙げることができる。市販の細胞分散液、例えばTripLE Select(Thermo Fisher Scientific社製)やTripLE Express(Thermo Fisher Scientific社製)、Accumax(Innovative Cell Technologies社製)を用いることもできる。工程(a)の後に得られた多能性幹細胞の処理における好ましい細胞分散液は、5mMのEDTAを添加したリン酸緩衝液(PBS)であるが、これに限定されない。
 機械的分散処理の方法としては、ピペッティング処理又はスクレーパーでの掻き取り操作が挙げられる。分散された細胞は上記培地中に懸濁される。
 多能性幹細胞を分散させる方法としては、例えば多能性幹細胞のコロニーをROCK阻害物質の存在下で、エチレンジアミン四酢酸又はAccumaxで処理し、さらにピペッティングにより分散させる方法が挙げられる。
 第一工程において浮遊培養を実施する場合は、分散された多能性幹細胞の懸濁液を非細胞接着性の培養器材中に播種する。培養器材が非接着性である場合、細胞は浮遊培養され、複数の多能性幹細胞が集合して細胞凝集体を形成する。
 浮遊培養する際、分散された多能性幹細胞を、10cmディッシュのような比較的大きな培養器材に播種することにより、1つの培養器材中に複数の細胞凝集体を同時に形成させてもよいが、細胞凝集体ごとの大きさのばらつきを生じにくくする観点からは、例えば非細胞接着性の96ウェルマイクロプレートのようなマルチウェルプレート(U底、V底)の各ウェルに一定数の分散された多能性幹細胞を播種することが好ましい。これを静置培養すると、細胞が迅速に凝集することにより、各ウェルに1個の細胞凝集体を形成させることができる。例えば培養器材の表面に超親水性のポリマーをコートする等の加工により培養器材を非細胞接着性とすることができる。非細胞接着性のマルチウェルプレートとしては、例えばPrimeSurface 96V底プレート(MS-9096V、住友ベークライト社製)等が挙げられる。より迅速に細胞凝集体を形成させるために遠心操作を行ってもよい。各ウェルで形成された細胞凝集体を複数のウェルから回収することにより、均一な細胞凝集体の集団を得ることができる。細胞凝集体が均一であれば、その後の工程において、ウェルごと及び反復実験ごとの製造効率をより安定させることができ、より再現性よく下垂体を構成する細胞を製造することができる。
 分散された多能性幹細胞から細胞凝集体を形成させるための別の態様としては、一つのウェルが複数のマイクロウェルに分割され、2つ以上の細胞塊が形成される培養器材を用いることができる。言い換えると、本実施形態の一側面において、前記第一工程、第二工程、b工程、及び第三工程のいずれか一つ以上の任意の工程の浮遊培養を、少なくとも1つのウェルが形成されている培養器材中で実施し、前記ウェルは、複数のマイクロウェルに分割されていて、前記マイクロウェルの1つにつき、1つの細胞塊が形成されるように浮遊培養を実施し、1つのウェルにつき分割されたマイクロウェルに相当する数の細胞塊を調製してもよい。上記マイクロウェルとして、底面に細胞が一ヶ所に沈降して凝集体の形成が促進されるすり鉢、下向きの四角錐、凹状等の加工、グリッド、隆起等が複数形成されている培養器材、ないし凝集体を形成しやすいように底面の一部のみに細胞が接着可能な加工を施されている培養器材等を用いることもできる。マイクロウェルを有する培養器材のウェル一つ当たりの培養面積は特に限定されないが、細胞塊を効率よく生産する観点から、好ましくは底面積が1cm(48ウェルプレート相当)より大きく、より好ましくは2cm(24ウェルプレート相当)より大きく、さらに好ましくは4cm(12ウェルプレート相当)より大きい。上記のような培養器材としては、例えば胚様体形成プレートAggreWell(StemCell Technologies社製)、PAMCELL(ANK社製)、スフェロイドマイクロプレート(Corning社製)、NanoCulture Plate/Dish (Organogenix社製) Cell-able(東洋合成社製)、EZSPHERE(AGCテクノグラス社製)、SPHERICALPLATE 5D(水戸工業社製)、TASCL(シムスバイオ社製)、マイクロウェルバッグ(例、Scientific reports, 2022, 12.1: 1-11.に記載のもの)等が挙げられるが、これに限定されない。
 培養器材としては、各ウェル内に細胞凝集体が入ったままの状態でプレート全体の培地を一度に交換することが可能な三次元細胞培養容器を用いることもまた好ましい。このような三次元細胞培養容器としては、例えばPrimeSurface 96スリットウェルプレート(住友ベークライト社製)等が挙げられる。このプレートには96ウェルのそれぞれの上部に培地が出入りできる細い開口部(スリット)が設けられている。スリットは細胞凝集体が通過しにくい幅に設定されているため、細胞凝集体同士の癒着を防止しながら、プレート全体の培地を一度に交換することができ、操作の効率性及び細胞凝集体の質を向上させることができる。
 第一工程における多能性幹細胞の濃度は、細胞凝集体をより均一に、効率的に形成させるように適宜設定することができる。例えば96ウェルマイクロウェルプレートを用いてヒト多能性幹細胞(例えば工程(a)から得られたヒトiPS細胞)を浮遊培養する場合、1ウェルあたり通常約1×10から約1×10細胞、好ましくは約3×10から約5×10細胞、より好ましくは約4×10から約2×10細胞、さらに好ましくは約4×10から約1.6×10細胞、特に好ましくは約8×10から約1.2×10細胞となるように調製した液を各ウェルに添加し、プレートを静置して細胞凝集体を形成させる。例えば1ディッシュあたり約260個のマイクロウェルを有する培養器材であるEZSPHERE SP ディッシュ35mm Type905を用いてヒト多能性幹細胞(例えば工程(a)から得られたヒトiPS細胞)を浮遊培養する場合、1ディッシュあたり通常約1×10から約1×10細胞、好ましくは約3×10から約5×10細胞、より好ましくは約4×10から約2×10細胞、さらに好ましくは約4×10から約1.6×10細胞、特に好ましくは約8×10から約1.2×10細胞となるように調製した液をディッシュに添加し、ディッシュを静置して細胞凝集体を形成させる。例えば1ウェルあたり約1800個のマイクロウェルを有する培養器材であるAggreWell 800, 6-well plateを用いてヒト多能性幹細胞(例えば工程(a)から得られたヒトiPS細胞)を浮遊培養する場合、1ウェルあたり通常約1×10から約1×10細胞、好ましくは約3×10から約5×10細胞、より好ましくは約4×10から約2×10細胞、さらに好ましくは約4×10から約1.6×10細胞、特に好ましくは約8×10から約1.2×10細胞となるように調製した液を各ウェルに添加し、プレートを遠心して細胞凝集体を形成させる。細胞数は、血球計算盤で計数することによって求めることができる。
 細胞凝集体を形成させるために必要な浮遊培養の時間は、用いる多能性幹細胞によって適宜決定可能であるが、均一な細胞凝集体を形成するためにはできる限り短時間であることが望ましい。分散された細胞が、細胞凝集体が形成されるに至るまでの工程は、細胞が集合する工程、及び集合した細胞が凝集体を形成する工程にわけられる。分散された細胞を播種する時点(すなわち浮遊培養開始時)から細胞が集合するまでは、例えばヒト多能性幹細胞(ヒトiPS細胞等)の場合には、好ましくは約24時間以内、より好ましくは約12時間以内である。分散された細胞を播種する時点(すなわち浮遊培養開始時)から細胞凝集体が形成されるまでは、例えばヒト多能性幹細胞(ヒトiPS細胞等)の場合には、好ましくは約72時間以内、より好ましくは約48時間以内である。細胞凝集体を形成するまでの時間は、細胞を凝集させる用具や、遠心条件等を調整することにより適宜調節することが可能である。
 多能性幹細胞を迅速に集合させて細胞凝集体を形成させると、形成された凝集体から分化誘導される細胞において上皮様構造を再現性よく形成させることができる。細胞の凝集体を形成させる実験的な操作としては、例えばウェルの小さなプレート(例えばウェルの底面積が平底換算で0.1~2.0cm程度のプレート)やマイクロポア等を用いて小さいスペースに細胞を閉じ込める方法、小さな遠心チューブを用いて短時間遠心することで細胞を凝集させる方法が挙げられる。ウェルの小さなプレートとして、例えば24ウェルプレート(面積が平底換算で1.88cm程度)、48ウェルプレート(面積が平底換算で1.0cm程度)、96ウェルプレート(面積が平底換算で0.35cm程度、内径6~8mm程度)、384ウェルプレートが挙げられる。好ましくは96ウェルプレートが挙げられる。ウェルの小さなプレートの形状として、ウェルを上から見たときの底面の形状としては、多角形、長方形、楕円、真円が挙げられ、好ましくは真円が挙げられる。ウェルの小さなプレートの形状として、ウェルを横から見たときの底面の形状としては、外周部が高く内部が低くくぼんだ構造が好ましく、例えばU底、V底、M底が挙げられ、好ましくはU底又はV底、最も好ましくはV底が挙げられる。ウェルの小さなプレートとして、細胞培養皿(例えば60mm~150mmディッシュ、カルチャーフラスコ)の底面に凹凸又はくぼみがあるものを用いてもよい。ウェルの小さなプレートの底面は、細胞非接着性の底面、好ましくは細胞非接着性コートした底面を用いるのが好ましい。
 細胞凝集体を形成させる別の手法として、立体印刷機、3Dプリンターを用いることもまた好ましい。分散された単一の細胞、ないし複数の細胞から構成されるスフェロイドを、生体適合性を有するインク(バイオインク)に懸濁し、バイオ3Dプリンター(例えばCellink社製 BIO X等)で出力する、あるいは細胞集団をニードルに刺して積み上げる(サイフューズ社製 Spike等)といった手法により、所望の形態の細胞集団を調製することができる。
 細胞凝集体が形成されたことは、細胞凝集体のサイズ及び細胞数、巨視的形態、組織染色解析による微視的形態及びその均一性、分化及び未分化マーカーの発現及びその均一性、分化マーカーの発現制御及びその同期性、分化効率の凝集体間の再現性等に基づき判断することが可能である。
 第一工程の開始時において、好ましい一態様として、接着培養を実施する。工程(a)後の培養器材上の多能性幹細胞をそのまま第一工程に用いてもよいし、多能性幹細胞を単一細胞に分散させた後に再度接着性の培養器材に播種してもよい。多能性幹細胞の単一細胞への分散後の再播種を実施する際に、適切な細胞外マトリクス又は合成細胞接着分子を足場として用いてもよい。足場により、表面をコーティングした培養器材中で、多能性幹細胞を接着培養できる。細胞外マトリクスは、好ましくはマトリゲル又はラミニンである。合成細胞接着分子としては、ポリ-D-リジン、RGD配列等細胞接着性のドメインを含有する合成ペプチド等が挙げられる。細胞の播種数としては下垂体への分化が生じる限り特に限定されないが、細胞間の接着と相互作用を再現する観点から、培養器材への播種後72時間以内に細胞密度が器材の培養スペースの6割以上に相当するセミコンフルエントに到達するような密度であることもまた好ましい。
 接着性の培養器材として、マイクロパターンが施された培養器材を用いることもまた好ましい。培養器材上のマイクロパターンは、細胞接着性領域と細胞非接着性領域から構成することができ、細胞接着性領域で細胞が接着培養されることが好ましい。細胞接着性領域と細胞非接着性領域の形状は、培養器材上に展開可能である限り限定されない。細胞接着性領域と細胞非接着性領域は、一つの培養器材上に単一の領域が形成されていてもよいし、複数個形成されていてもよい。細胞接着性領域は、接着性を向上させる目的で人工的に処理されていることが好ましい。マイクロパターンが施された培養器材としては、例えばCYTOOchip(CYTOO社製)、ibidi Micropatterning(ibidi社製)等が挙げられる。PDMS製モールドとマトリクス等を用いて培養器材を調製することもできる。あるいは、細胞外マトリクス、細胞接着を促進する基質等でコートされた培養器材を例えば細胞プロセシング装置(Model:CPD-017、片岡製作所社製)等を用いてレーザー等で加工し、細胞接着性領域と細胞非接着性領域を任意の形状に作成しても良い。工程(a)で得られた多能性幹細胞をマイクロパターンが施された培養器材上で培養する場合、例えば既報の方法を参照し実施することができる(Nature protocols,11(11),2223-2232.)。
 培養器材が培地の灌流を行なうための流路(マイクロ流路)を有することも好ましく、第一工程及びその後の工程において、灌流環境下で細胞を培養してもよい。このような培養器材をマイクロ流体チップともいう。培養器材(例えばマイクロ流体チップ)は、本発明の製造方法において培養される細胞以外の細胞又は組織を培養する他の培養器材(例えばマイクロ流体チップ)と流路により接続されていてもよい。これにより、下垂体と他の細胞又は組織との相互作用を再現することができる。下垂体と共培養する他の細胞又は組織としては、下垂体から分泌されるホルモンによる調節を受ける組織、下垂体の成長、分化、成熟、生存を促進する組織、例えば脳、血管、骨、筋肉、脂肪、甲状腺、肝臓、副腎、精巣、卵巣、乳房の細胞又は組織等が挙げられるが、これらに限定されない。培地の灌流の為の方法としては、例えばマグネティックスターラー、ペリスタルティックポンプ等の使用が挙げられるが、これに限定されない。
 培養器材は、酸素又は培地を透過可能な膜を有してもよい。培養器材は、化合物、増殖因子等の濃度勾配を形成可能であってもよい。膜は、例えば多孔質膜である。このような膜を有する培養器材においては、膜で隔てた一方で本発明の製造方法によって細胞を培養し、他方でそれ以外の細胞又は組織、フィーダー細胞などを培養することができる。これにより、下垂体を構成する細胞又はその前駆細胞及びこれらを含む細胞集団と、他の細胞又は組織とをコンタミネーションさせることなく培養することができる。
 第一工程及び以降の工程において、培地交換操作を行う場合、例えば元ある培地を捨てずに新しい培地を加える操作(培地添加操作)、元ある培地を半量程度(元ある培地の体積量の30~90%程度、例えば40~60%程度)捨てて新しい培地を半量程度(元ある培地の体積量の30~90%、例えば40~60%程度)加える操作(半量培地交換操作)、元ある培地を全量程度(元ある培地の体積量の90%以上)捨てて新しい培地を全量程度(元ある培地の体積量の90%以上)加える操作(全量培地交換操作)が挙げられる。
 ある時点で、特定の成分を添加する場合、例えば終濃度を計算した上で、元ある培地を半量程度捨てて、特定の成分を終濃度よりも高い濃度で含む新しい培地を半量程度加える操作(半量培地交換操作)を行ってもよい。ある時点で、元の培地に含まれる成分を希釈して濃度を下げる場合、例えば培地交換操作を、1日に複数回、好ましくは1時間以内に複数回(例えば2~3回)行ってもよい。また、ある時点で、元の培地に含まれる成分を希釈して濃度を下げる場合、細胞又は細胞凝集体を別の培養容器に移してもよい。培地交換操作に用いる道具は特に限定されないが、例えばピペッター、ピペットマン(登録商標)、マルチチャンネルピペット、連続分注器等が挙げられる。例えば培養器材として96ウェルプレートを用いる場合、マルチチャンネルピペットを使ってもよい。
 第一工程における培養の時間は、通常8時間~6日間程度、好ましくは12時間~60時間程度である。
 第一工程及び以降の工程において、下垂体の製造効率を向上させる観点から、プラコード領域への分化を促進する化合物を添加することもまた好ましい。上記のような作用を有する化合物として、例えば米国特許US20160326491A1号に記載のBRL-54443、Phenanthroline、Parthenolide等が挙げられる。プラコード領域への分化を促進する化合物としてBRL-54443を用いる場合は通常約10nM~約100μM、Phenanthrolineを用いる場合は通常約10nM~約100μM、Parthenolideを用いる場合は通常約10nM~約100μMの濃度で用いられる。
 第一工程において、下垂体への分化誘導効率を改善する観点から、ソニック・ヘッジホッグシグナル伝達経路作用物質の存在下で培養を実施することもできる。第一工程において用いられるShhシグナル伝達経路作用物質としては工程(a)で例示したものと同様のものが用いられ得る。工程(a)及び第一工程のShhシグナル伝達経路作用物質は同一であっても異なっていてもよいが、好ましくは同一であり、また好ましくはSAGである。
 培地中のShhシグナル伝達経路作用物質の濃度は、上述の効果を達成可能な範囲で用いる物質に応じて適宜設定することが可能である。第一工程においてShhシグナル伝達経路作用物質としてSAGを用いる場合は、通常、約1nM~約3μM、好ましくは約10nM~約2μM、より好ましくは約30nM~約1μM、更に好ましくは約50nM~約500nMの濃度で使用される。
 <工程(2)>:第二工程
 工程(2)は、BMPシグナル伝達経路作用物質及びソニック・ヘッジホッグシグナル伝達経路作用物質の存在下で、第一工程で得られた細胞集団を培養する。第一工程で細胞を浮遊培養している場合は、工程(2)でも引き続き形成された細胞凝集体を浮遊培養すればよい。第一工程で細胞を接着培養している場合は、工程(2)でも引き続き細胞を接着培養すればよい。第一工程で細胞を浮遊培養した後、工程(2)で接着培養してもよい。
 BMPシグナル伝達経路作用物質とは、BMPにより媒介されるシグナル伝達経路を増強し得る物質である。BMPにより媒介されるシグナル伝達経路を増強し得る物質は、例えば培養環境中のBMPリガンドを安定化し、力価を向上させる物質、I型BMP受容体であるALK-1、ALK-2、ALK-3、ALK-6と結合し、受容体の下流の細胞内シグナル伝達を活性化、惹起する物質、細胞内のBMPシグナル伝達に関与するSmad-1、Smad-5、 Smad-8、Smad-9のリン酸化を惹起する物質、Smad-1/5/8/9による遺伝子の転写の活性化や抑制等の機能を誘導・増強する物質等が挙げられる。BMPシグナル伝達経路作用物質としては、例えばBMP2、BMP4もしくはBMP7等のBMPタンパク質、GDF5、6、7等のGDFタンパク質、抗BMP受容体抗体及びBMP部分ペプチド等が挙げられる。これらの物質は単独又は組み合わせて用いてもよい。生物学的活性の見地からのBMPシグナル伝達経路作用物質の定義として、例えばマウス前駆軟骨細胞株ATDC5、マウス頭蓋冠由来細胞株MC3T3-E1、マウス横紋筋由来細胞株C2C12等の細胞に対する骨芽細胞様細胞への分化誘導能、及びアルカリホスファターゼ産生誘導能を有する物質が挙げられる。上記活性を有する物質としては、例えばBMP2、BMP4、BMP5、BMP6、BMP7、BMP9、BMP10、BMP13/GDF6、BMP14/GDF5、GDF7等が挙げられる。
 BMP2タンパク質及びBMP4タンパク質は例えばR&D Systemsから、BMP7タンパク質は例えばBiolegend社から、GDF5タンパク質は例えばペプロテック社から、GDF6タンパク質は例えばプライムジーン社から、GDF7タンパク質は例えば富士フイルム和光純薬株式会社から入手可能である。BMPシグナル伝達経路作用物質は、好ましくはBMP2、BMP4、BMP7、BMP13及びGDF7からなる群より選ばれる少なくとも1つのタンパク質を含み、より好ましくはBMP4を含む。
 培地中のBMPシグナル伝達経路作用物質の濃度は、上述の効果を達成可能な範囲で用いる物質に応じて適宜設定することが可能である。下垂体を構成する細胞の製造効率向上の観点から、BMPシグナル伝達経路作用物質としてBMP4を用いる場合は、通常約1pM~約100nM、好ましくは約10pM~約50nM、より好ましくは約25pM~約25nM、さらに好ましくは約25pM~約5nM、特に好ましくは約100pM~約5nM、最も好ましくは約500pM~約2nMの濃度で使用される。また、BMP4以外のBMPシグナル伝達経路作用物質を使用する場合、上述の濃度のBMP4と同等のBMPシグナル伝達経路促進活性を示す濃度で用いられることが望ましい。当業者であれば、BMPシグナル伝達経路作用物質として例えば市販の組み換えBMPタンパク質等を用いる場合、製品添付書類に記載の活性、例えばマウス前駆軟骨細胞株ATDC5に対するアルカリホスファターゼ産生誘導能のED50等の値と上述のBMP4の濃度と活性を比較することにより、添加するBMPシグナル伝達経路作用物質濃度を容易に決定することができる。
 BMPシグナル伝達経路作用物質として、当業者に周知の化合物を使用することもできる。BMPシグナル伝達経路作用物質としては、例えばSmurf1阻害物質、Chk1阻害物質、リン酸化Smad安定化物質等が挙げられる。上記のような活性を有する化合物としては、例えばA-01([4-[[4-Chloro-3-(trifluoromethyl)phenyl]sulfonyl]-1-piperazinyl][4-(5-methyl-1H-pyrazol-1-yl)phenyl]methanone)、PD 407824(9-Hydroxy-4-phenyl-pyrrolo[3,4-c]carbazole-1,3(2H,6H)-dione)、SB4(2-[[(4-Bromophenyl)methyl]thio]benzoxazole)、SJ000291942(2-(4-Ethylphenoxy)-N-(4-fluoro-3-nitrophenyl)-acetamide)及びこれらの誘導体等が挙げられる。
 工程(2)において用いられるShhシグナル伝達経路作用物質としては工程(a)で例示したものと同様のものが用いられ得る。工程(a)及び工程(2)のShhシグナル伝達経路作用物質、場合によっては工程(1)のShhシグナル伝達経路作用物質は同一であっても異なっていてもよいが、好ましくは同一であり、また好ましくはSAGである。
 培地中のShhシグナル伝達経路作用物質の濃度は、上述の効果を達成可能な範囲で用いる物質に応じて適宜設定することが可能である。工程(2)においてShhシグナル伝達経路作用物質としてSAGを用いる場合は、通常、約1nM~約5μM、好ましくは約10nM~約4.5μM、より好ましくは約50nM~約4μM、更に好ましくは約100nM~約3μMの濃度で使用される。
 工程(2)において用いられる培地は、Shhシグナル伝達経路作用物質及びBMPシグナル伝達経路作用物質を含む限り特に限定されない。工程(2)において用いられる培地としては、第一工程に挙げた培地が挙げられる。
 下垂体の製造効率向上の観点から、工程(2)の開始時期は、第一工程における培養開始から好ましくは0.5時間以降6日以内であり、より好ましくは0.5時間以降72時間以内であり、さらに好ましくは24時間以降60時間以内である。浮遊培養を実施する場合、Wntシグナル経路阻害物質存在下で上記期間に工程(2)を開始すると、細胞凝集体の表面に非神経上皮様の組織が形成され、極めて効率よく下垂体が形成される。
 第一工程で浮遊培養を行なっている場合、下垂体を構成する細胞の製造効率向上の観点から、工程(2)の開始時期は、好ましくは第一工程において形成された細胞凝集体の表層における1割以上、より好ましくは3割以上、さらに好ましくは5割以上の細胞が互いに密着結合を形成している時期である。細胞凝集体において密着結合が形成しているかは、当業者であれば例えば顕微鏡による観察、抗ZO-1抗体を用いた免疫染色等の手法により容易に判別することができる。
 工程(2)におけるBMPシグナル伝達経路作用物質の存在下での培養開始は、第一工程を行った培養容器を用いて、上述の培地交換操作(例えば培地添加操作、半量培地交換操作、全量培地交換操作等)を行ってもよいし、細胞を別の培養容器に移してもよい。
 工程(2)におけるBMPシグナル伝達経路作用物質を含む培地での培養の期間は、適宜設定できる。工程(2)における培養の時間は、通常8時間以上、好ましくは10時間以上、より好ましくは12時間以上、さらに好ましくは14時間以上、最も好ましくは16時間以上である。
 工程(2)におけるShhシグナル伝達経路作用物質を含む培地での培養の期間は、適宜設定できる。なお、工程(1)における浮遊培養がさらにShhシグナル伝達経路作用物質の存在下で実施される場合、下垂体ホルモン(特にACTH)分泌能向上の観点から、工程(1)および工程(2)におけるShhシグナル伝達経路作用物質の存在下における培養期間は、30日であることが好ましい。
 工程(2)および以降の工程において、下垂体プラコードへの分化を促進する観点から、FGFシグナル伝達経路作用物質を培養環境中に添加することもまた好ましい。FGFシグナル伝達経路作用物質とは、FGF(線維芽細胞増殖因子)により媒介されるシグナル伝達経路を増強し得る物質である限り特に限定はされない。FGFシグナル伝達経路作用物質としては、例えばFGF1、FGF2(bFGFと称することもある。)、FGF3、FGF8、FGF10等のFGFタンパク質、抗FGF受容体抗体、FGF部分ペプチド等が挙げられる。これらの物質は単独又は組み合わせて用いてもよい。
 FGF2タンパク質及びFGF8タンパク質は、例えば富士フイルム和光純薬株式会社から入手可能である。FGFシグナル伝達経路作用物質は、好ましくはFGF2、FGF3、FGF8及びFGF10、並びにこれらの改変体からなる群より選ばれる少なくとも1つを含み、より好ましくはFGF2を含み、さらに好ましくは組換えヒトFGF2を含む。
 培地中のFGFシグナル伝達経路作用物質の濃度は、上述の効果を達成可能な範囲で用いる物質に応じて適宜設定することが可能である。下垂体を構成する細胞への分化及び細胞の生存と増殖の促進の観点からは、FGFシグナル伝達経路作用物質としてFGF2を用いる場合は、通常約1pg/ml~約100μg/ml、好ましくは約10pg/ml~約50μg/ml、より好ましくは約100pg/ml~約10μg/ml、さらに好ましくは約500pg/ml~約1μg/ml、最も好ましくは約1ng/ml~約200ng/mlの濃度で使用される。また、FGF2以外のFGFシグナル伝達経路作用物質を使用する場合、上記濃度のFGF2と同等のFGFシグナル伝達経路促進活性を示す濃度で用いられることが望ましい。添加する物質のFGFシグナル伝達経路促進活性については、例えば3T3細胞を用いた細胞増殖試験等の手法により測定することができる。
 培地中でのFGFタンパク質の活性を保持する目的から、FGFタンパク質を含む培地中にヘパリン、ヘパラン硫酸を添加することも好ましい。ヘパリンはナトリウム塩として例えば富士フイルム和光純薬株式会社から入手可能である。培地中のヘパリン又はヘパラン硫酸の濃度は、上述の効果を達成可能な範囲で適宜設定することが可能である。培地中のヘパリンナトリウムの濃度は、通常約1ng/ml~約100mg/ml、好ましくは約10ng/ml~約50mg/ml、より好ましくは約100ng/ml~約10mg/ml、さらに好ましくは約500ng/ml~約1mg/ml、最も好ましくは約1μg/ml~約200μg/mlである。ヘパラン硫酸を用いる場合、上記濃度のヘパリンと同様のFGFタンパク質保護の活性をもつ濃度であることが好ましい。37℃等での細胞培養環境下でFGFタンパク質の活性を保持する目的から、例えば米国特許US8772460B2号に記載のThermostable FGF2等のFGFの改変体や生分解性ポリマーにFGF2を結合させたStemBeads FGF2等のFGF2徐放性ビーズを用いることもまた好ましい。Thermostable FGF2は、例えばHumanZyme社から入手可能である。StemBeads FGF2は例えばStemCulture社から入手可能である。
 工程(2)および以降の工程におけるFGFシグナル伝達経路作用物質の添加時期は適宜設定できる。好ましい一態様としては、工程(2)のBMPシグナル伝達経路作用物質の添加より6時間以降、より好ましくは12時間以降、さらにこのましくは18時間以降にFGFシグナル伝達経路作用物質を添加する。
 工程(2)において、工程(a)又は第一工程において用いた添加物、例えばJNKシグナル伝達経路阻害物質、Wntシグナル伝達経路阻害物質、TGFβシグナル伝達経路阻害物質、TAK1阻害物質等を引き続き添加することもまた好ましい。工程(2)で添加するJNKシグナル伝達経路阻害物質、Wntシグナル伝達経路阻害物質又はTGFβシグナル伝達経路阻害物質は、それ以前の工程に用いられた物質と異なっていてもよいが、好ましくは同一である。添加物の濃度及び種類については、適宜調整することができる。これらの物質の添加時期は、工程(2)の開始と同時であってもよいし、異なっていてもよい。
<工程(b)>:b工程
 工程(b)は、BMPシグナル伝達経路阻害物質の添加条件下で、工程(2)で得られた細胞集団を培養する。工程(2)で細胞を浮遊培養している場合は、工程(b)でも引き続き形成された細胞凝集体を浮遊培養すればよい。工程(2)で細胞を接着培養している場合は、工程(b)でも引き続き細胞を接着培養すればよい。
 BMPシグナル伝達経路阻害物質とは、BMPファミリー・タンパク質により惹起されるシグナル伝達を抑制し得るものである限り限定されない。核酸、タンパク質、低分子有機化合物のいずれであってもよい。当該物質として例えばBMPのプロセシングと細胞外への分泌を阻害する物質、BMPに直接作用する物質(例えばタンパク質、抗体、アプタマー等)、BMPをコードする遺伝子の発現を抑制する物質(例えばアンチセンスオリゴヌクレオチド、siRNA等)、BMP受容体とBMPの結合を阻害する物質、BMP受容体によるシグナル伝達に起因する生理活性を阻害する物質を挙げることができる。BMP受容体にはI型BMP受容体とII型BMP受容体が存在し、I型BMP受容体としてはBMPR1A、BMPR1B、ACVR、II型BMP受容体としてはTGF-beta R-II、ActR-II、ActR-IIB、BMPR2、MISR-IIが知られている。
 BMPシグナル伝達経路阻害物質として知られているタンパク質として、例えばNoggin、Chordin、Follistatin、Gremlin、Inhibin、Twisted Gastrulation、Coco、DANファミリーに属する分泌タンパク質等が挙げられる。上記工程(2)において培養液中にBMPシグナル伝達経路作用物質を添加していることから、以降のBMPシグナル伝達経路をより効果的に阻害するという観点から、工程(b)におけるBMPシグナル伝達経路阻害物質は、細胞外へのBMPの分泌よりも後のシグナル伝達経路を阻害する物質、例えばBMP受容体とBMPの結合を阻害する物質、BMP受容体によるシグナル伝達に起因する生理活性を阻害する物質等を含むことが好ましく、より好ましくはI型BMP受容体の阻害剤を含む。
 BMPシグナル伝達経路阻害物質として、当業者に周知の化合物を使用することもできる。BMPシグナル伝達経路阻害物質としては、例えばI型BMP受容体の阻害物質が挙げられる。上記のような活性を有する化合物としては、例えばK02288(3-[(6-Amino-5-(3,4,5-trimethoxyphenyl)-3-pyridinyl]phenol)、Dorsomorphin(6-[4-[2-(1-Piperidinyl)ethoxy]phenyl]-3-(4-pyridinyl)pyrazolo[1,5-a]pyrimidine)、LDN-193189(4-[6-[4-(1-Piperazinyl)phenyl]pyrazolo[1,5-a]pyrimidin-3-yl]quinoline dihydrochloride)、LDN-212854(5-[6-[4-(1-Piperazinyl)phenyl]pyrazolo[1,5-a]pyrimidin-3-yl]quinoline)、LDN-214117(1-(4-(6-methyl-5-(3,4,5-trimethoxyphenyl)pyridin-3-yl)phenyl)piperazine)、ML347(5-[6-(4-Methoxyphenyl)pyrazolo[1,5-a]pyrimidin-3-yl]quinoline)、DMH1(4-(6-(4-Isopropoxyphenyl)pyrazolo[1,5-a]pyrimidin-3-yl)quinoline)、DMH2(4-[6-[4-[2-(4-Morpholinyl)ethoxy]phenyl]pyrazolo[1,5-a]pyrimidin-3-yl]-quinoline)、Compound 1(3-(1,2,3-benzothiadiazol-6-yl)-1-[2-(cyclohex-1-en-1-yl)ethyl]urea)、VU0465350(7-(4-isopropoxyphenyl)-3-(1H-pyrazol-4-yl)imidazo[1,2-a]pyridine)、VU0469381(5-(6-(4-methoxyphenyl)pyrazolo[1,5-a]pyrimidin-3-yl)quinolone)、OD36(4-chloro-7,10-dioxa-13,17,18,21-tetrazatetracyclo[12.5.2.12,6.017,20]docosa-1(20),2(22),3,5,14(21),15,18-heptaene)、OD52、E6201((3S,4R,5Z,8S,9S,11E)-14-(ethylamino)-8,9,16-trihydroxy-3,4-dimethyl-3,4,9,10-tetrahydro-1H-benzo[c][1]oxacyclotetradecine-1,7(8H)-dione)、Saracatinib(N-(5-chloro-1,3-benzodioxol-4-yl)-7-[2-(4-methylpiperazin-1-yl)ethoxy]-5-(oxan-4-yloxy)quinazolin-4-amine)、BYL719((2S)-1-N-[4-methyl-5-[2-(1,1,1-trifluoro-2-methylpropan-2-yl)pyridin-4-yl]-1,3-thiazol-2-yl]pyrrolidine-1,2-dicarboxamide)等が挙げられる。これらの物質は単独又は組み合わせて用いてもよい。
 BMPシグナル伝達経路阻害物質は、好ましくはI型BMP受容体阻害剤であり、より好ましくはK02288、Dorsomorphin、LDN-193189、LDN-212854、LDN-214117、ML347、DMH1及びDMH2からなる群より選ばれる少なくとも1つを含み、さらに好ましくはK02288乃至LDN-193189を含む。
 培地中のBMPシグナル伝達経路阻害物質の濃度は、上述の効果を達成可能な範囲で用いる物質に応じて適宜設定することが可能である。下垂体組織の形成効率の観点から、工程(b)におけるBMPシグナル伝達経路阻害物質としてK02288を用いる場合は、通常約1nM~約100μM、好ましくは約10nM~約50μM、より好ましくは約100nM~約50μM、さらに好ましくは約500nM~約25μMの濃度で使用される。BMPシグナル伝達経路阻害物質としてLDN-193189を用いる場合は、通常約1nM~約100μM、好ましくは約10nM~約10μM、より好ましくは約25nM~約1μM、さらに好ましくは約100nM~約500nMの濃度で使用される。BMPシグナル伝達経路阻害物質としてLDN-212854を用いる場合は、通常約1nM~約100μM、好ましくは約10nM~約10μM、より好ましくは約25nM~約5μM、さらに好ましくは約250nM~約3μMの濃度で使用される。BMPシグナル伝達経路阻害物質としてML347を用いる場合は、通常約1nM~約100μM、好ましくは約10nM~約50μM、より好ましくは約100nM~約50μM、さらに好ましくは約1μM~約25μMの濃度で使用される。BMPシグナル伝達経路阻害物質としてDMH2を用いる場合は、通常約1nM~約100μM、好ましくは約10nM~約10μM、より好ましくは約25nM~約5μM、さらに好ましくは約250nM~約3μMの濃度で使用される。また、K02288以外のBMPシグナル伝達経路阻害物質を使用する場合、上記濃度のK02288と同等のBMPシグナル伝達経路阻害活性を示す濃度で用いられることが望ましい。
 工程(2)を実施した後に工程(b)を開始する時期に関しては、適宜設定できる。工程(b)を開始する時期は、通常工程(2)を開始してから8時間以上、15日間以内、好ましくは10時間以上、12日間以内、より好ましくは12時間以上、9日間以内、さらに好ましくは14時間以上、8日間以内、最も好ましくは16時間以上、7日間以内である。
 工程(2)及び以降の工程において、培地に副腎皮質ホルモン類を添加することにより、細胞集団を副腎皮質ホルモン類により処理してもよい。副腎皮質ホルモン類処理により、下垂体プラコード及び/又はラトケ嚢からACTH産生細胞以外の下垂体ホルモン産生細胞(即ち、GH産生細胞、PRL産生細胞、TSH産生細胞、LH産生細胞、FSH産生細胞等)への分化が促進される。副腎皮質ホルモン類としては、ハイドロコルチゾン、酢酸コルチゾン、酢酸フルドロコルチゾン等の天然糖質コルチコイド;デキサメサゾン、ベタメタゾン、プレドニゾロン、メチルプレドニゾロン、トリアムシノロン等の人工的に合成された糖質コルチコイド等を挙げることができるが、これらに限定されない。
 培地中における、副腎皮質ホルモン類の濃度は、下垂体プラコード及び/又はラトケ嚢から、下垂体ホルモン産生細胞(但し、ACTH産生細胞を除く)への分化を促進し得る限り特に限定されず、また、副腎皮質ホルモン類の種類により適宜設定することができる、例えば、ハイドロコルチゾンの場合、通常100ng/ml以上、好ましくは、1μg/ml以上である。下垂体ホルモン産生細胞(但し、ACTH産生細胞を除く)への分化に悪影響がない限りハイドロコルチゾン濃度の上限値は特にないが、培養コストの観点から、通常1000μg/ml以下、好ましくは100μg/ml以下である。一態様において、培地中のハイドロコルチゾン濃度は、通常約100ng/ml~約1000μg/ml、好ましくは約1~約100μg/mlである。副腎皮質ホルモン類として、デキサメサゾンを使用する場合、その培地中の濃度は、ハイドロコルチゾンの1/25程度とすることが出来る。
 工程(2)及び以降の工程において、培地に副腎皮質ホルモン類を添加する時期は、下垂体プラコード及び/又はラトケ嚢から、下垂体ホルモン産生細胞(但し、ACTH産生細胞を除く)への分化を促進し得る限り特に限定されず、第二工程開始時から培地に副腎皮質ホルモン類を添加してもよいし、第二工程開始後、副腎皮質ホルモン類を添加しない培地中で一定期間培養後、培地に副腎皮質ホルモン類を添加してもよい。好適には、第二工程を開始後、細胞集団中に、ACTH産生細胞の出現が確認された段階で、培地に副腎皮質ホルモン類を添加する。即ち、細胞凝集塊中に、ACTH産生細胞の出現が確認されるまでは、細胞凝集塊を副腎皮質ホルモン類を添加しない培地中で培養し、ACTH産生細胞の出現が確認された後に、副腎皮質ホルモン類を含む培地中で第二工程乃至以降の工程を継続する。ACTH産生細胞の出現は、ACTHに対する抗体を用いて免疫組織学的染色により確認することが出来る。ヒト多能性幹細胞を用いた場合、一般的に、第一工程開始から30日以降であれば、ACTH産生細胞の出現が期待できるので、一態様において第一工程開始から30日以降に、培地に副腎皮質ホルモン類を添加する。
 細胞凝集塊を副腎皮質ホルモン類で処理する期間は、下垂体プラコード及び/又はラトケ嚢から、下垂体ホルモン産生細胞(但し、ACTH産生細胞を除く)への分化を促進し得る限り特に限定されないが、通常、副腎皮質ホルモン類非処理群と比較して、副腎皮質ホルモン類処理群において、下垂体ホルモン産生細胞(但し、ACTH産生細胞を除く)への分化の促進が確認されるまで、細胞凝集塊を副腎皮質ホルモン類で処理する。処理期間は、通常、7日以上、好ましくは12日以上である。処理期間の上限値は、特に限定されないが、副腎皮質ホルモン類非処理群と比較して、副腎皮質ホルモン類処理群において、下垂体ホルモン産生細胞(但し、ACTH産生細胞を除く)への分化の促進が確認された段階で、培地から副腎皮質ホルモン類を除去してもよい。
 工程(2)及び以降の工程において、下垂体への分化及び成長ホルモン産生細胞への分化を促進する観点から、レチノイン酸シグナル伝達経路作用物質の存在下で行うこともまた好ましい。レチノイン酸伝達経路作用物質としては、例えばレチノイン酸受容体(RAR)又はレチノイドX受容体(RXR)に結合し、下流の転写を活性化させる物質等が挙げられる。上記のような作用を有する化合物としては、例えばオールトランスレチノイン酸、イソトレチノイン、9-cisレチノイン酸、TTNPB(4-[(E)-2-[(5,5,8,8-Tetramethyl-5,6,7,8-tetrahydronaphthalene)-2-yl]-1-propenyl]benzoic acid)、Ch55(4-[(E)-3-(3,5-di-tert-butylphenyl)-3-oxo-1-propenyl]benzoic acid)、EC19(3-[2-(5,6,7,8-Tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)ethynyl]benzoic acid)、EC23(4-[2-(5,6,7,8-Tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)ethynyl]-benzoicacid)、Fenretinide(4-hydroxyphenylretinamide)、Acitretin((all-e)-9-(4-methoxy-2,3,6-trimethylphenyl)-3,7-dimethyl-2,4,6,8-nonatetraen)、Trifarotene、Adapalene、AC 261066(4-[4-(2-Butoxyethoxy-)-5-methyl-2-thiazolyl]-2-fluorobenzoicacid)、AC 55649(4-N-Octylbiphenyl-4-carboxylic acid)、AM 580(4-[(5,6,7,8-Tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)carboxamido]benzoic acid)、AM80(4-[(5,5,8,8-Tetramethyl-6,7-dihydronaphthalen-2-yl)carbamoyl]benzoic acid)、BMS 753(4-[[(2,3-Dihydro-1,1,3,3-tetramethyl-2-oxo-1H-inden-5-yl)carbonyl]amino]benzoicacid)、BMS 961(3-Fluoro-4-[(r)-2-hydroxy-2-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-naphthalen-2-yl)-acetylamino]-benzoic acid)、CD1530(4-(6-Hydroxy-7-tricyclo[3.3.1.13,7]dec-1-yl-2-naphthalenyl)benzoicacid)、CD2314(5-(5,6,7,8-Tetrahydro-5,5,8,8-tetramethyl-2-anthracenyl)-3-thiophenecarboxylic acid)、CD437(2-naphthalenecarboxylicacid,6-(4-hydroxy-3-tricyclo(3.3.1.1(3,7))dec-1-ylphen))、CD271(6-[3-(1-Adamantyl)-4-methoxyphenyl]-2-naphthalene carboxylic acid)及びこれらの誘導体等が挙げられる。これらの物質は単独又は組み合わせて用いてもよい。
 工程(2)及び以降の工程におけるレチノイン酸伝達経路作用物質は、好ましくはオールトランスレチノイン酸乃至EC23を含む。培地中のレチノイン酸伝達経路作用物質の濃度は、上述の効果を達成可能な範囲であれば特に限定されないが、レチノイン酸伝達経路作用物質としてEC23を用いる場合は、例えばEC23の濃度が約10pM~約30μMであり、好ましくは約100pM~約20μMであり、より好ましくは約10nM~約10μMであり、さらに好ましくは約100nM~約5μMである。EC23以外のレチノイン酸伝達経路作用物質を使用する場合、上記濃度のEC23と同等のレチノイン酸伝達経路作用活性を示す濃度で用いられることが望ましい。
 分化傾向の調節の観点からは、工程(2)及び以降の工程をNotchシグナル伝達経路阻害物質の存在下で行うこともまた好ましい。本発明において、Notchシグナル伝達経路とは、細胞膜上に発現する受容体であるNotchタンパク質と隣接細胞の膜上に発現するNotchリガンド(Delta、Jagged等)との直接相互作用により活性化されるシグナル伝達経路を表す。Notchシグナルが伝達された細胞においては、Notchタンパク質が段階的にプロセシングを受け膜上で切り出された細胞内ドメインが核内へと運ばれて下流遺伝子の発現を制御する。
 Notchシグナル伝達経路阻害物質は、Notchにより媒介されるシグナル伝達を抑制し得るものである限り特に限定されない。核酸、タンパク質、低分子有機化合物のいずれであってもよい。当該物質として例えば、機能欠失型のNotch受容体及びリガンド、Notchのプロセシング(S1切断)を阻害する物質、Notch及びNotchリガンドの糖鎖修飾を阻害する物質、細胞膜移行を阻害する物質、Notchの細胞内ドメイン(NICD)のプロセシング(S2切断、S3切断)を阻害する物質(γセクレターゼ阻害剤)、NICDを分解する物質、NICD依存的な転写を阻害する物質等を挙げることができる。
 Notchシグナル伝達経路阻害物質として、当業者に周知の化合物を使用することもできる。Notchシグナル伝達経路阻害物質としての活性を有する化合物として、例えばDAPT(N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester)、DBZ((2S)-2-[[2-(3,5-difluorophenyl)acetyl]amino]-N-[(7S)-5-methyl-6-oxo-7H-benzo[d][1]benzazepin-7-yl]propanamide)、MDL28170(benzyl N-[(2S)-3-methyl-1-oxo-1-[[(2S)-1-oxo-3-phenylpropan-2-yl]amino]butan-2-yl]carbamate)、FLI-06(cyclohexyl 2,7,7-trimethyl-4-(4-nitrophenyl)-5-oxo-1,4,6,8-tetrahydroquinoline-3-carboxylate)、L-685,458(tert-butyl N-[6-[[1-[(1-amino-1-oxo-3-phenylpropan-2-yl)amino]-4-methyl-1-oxopentan-2-yl]amino]-5-benzyl-3-hydroxy-6-oxo-1-phenylhexan-2-yl]carbamate)、CB-103(6-(4-tert-butylphenoxy)pyridin-3-amine)及びこれらの誘導体等、並びにOnco Targets Ther.2013;6:943-955.に記載の物質等が挙げられる。Notchシグナル伝達経路阻害物質は、好ましくはDAPTを含む。
 培地中におけるNotchシグナル伝達経路阻害物質の濃度は、上述の効果を達成可能な範囲であれば特に限定されないが、例えばNotchシグナル伝達経路阻害物質としてDAPTを用いる場合は、例えばDAPTの濃度が約100pM~約50μMであり、好ましくは約1nM~約30μMであり、より好ましくは約100nM~約20μMであり、さらに好ましくは約1μM~約10μMである。DAPT以外のNotchシグナル伝達経路阻害物質を使用する場合、上記濃度のDAPTと同等のNotchシグナル伝達経路阻害活性を示す濃度で用いられることが望ましい。
<工程(3)>、<工程(3’)>:第三工程
 第三工程は、ソニック・ヘッジホッグシグナル(Shh)伝達経路作用物質の非添加条件下で、工程(2)又は工程(b)で培養した細胞集団を培養する。第二工程で得られた細胞集団をShhシグナル伝達経路作用物質の非存在下で培養し、下垂体組織を含む細胞集団を得る第三工程を工程(3)、b工程で得られた細胞集団をShhシグナル伝達経路作用物質の非存在下で培養し、下垂体組織を含む細胞集団を得る第三工程を工程(3’)とする。工程(2)又は工程(b)で細胞を浮遊培養している場合は、第三工程でも引き続き形成された細胞凝集体を浮遊培養すればよい。工程(2)又は工程(b)で細胞を接着培養している場合は、第三工程でも引き続き細胞を接着培養すればよい。工程(2)又は工程(b)で細胞を浮遊培養した後、第三工程で接着培養してもよい。
 第三工程において用いられる培地は、Shhシグナル伝達経路作用物質を含有しない限り特に限定されない。本工程におけるShhシグナル伝達経路作用物質の非添加条件とは、意図的にShhシグナル伝達経路作用物質を細胞集団の培養環境に添加しない条件を表し、細胞集団による自己分泌等で意図せずShhシグナル伝達経路作用物質が培養環境中に含まれる場合も、Shhシグナル伝達経路作用物質の非添加条件に含まれる。第三工程において用いられる培地としては、第一工程に挙げた培地や10%乃至20%のKSRを含有するgfCDM培地等が挙げられる。
 第三工程及び以降の工程において、下垂体を構成する細胞の生存及び分化成熟を促進する観点から、細胞凝集体をゲル中に包埋して培養する工程を含んでもよい。ゲルとしては、例えばアガロース、メチルセルロース、コラーゲン、マトリゲル等を用いたゲルが挙げられ、マトリゲルを用いることが好ましい。
 第三工程及び以降の工程のゲル中に包埋して細胞を培養する工程において、細胞凝集体をそのまま包埋してもよいし、分散及び単離した後の細胞をゲル中に播種してもよい。セルソーター等を用いて基底細胞等特定の細胞種を分取した後に播種してもよい。ゲル中に包埋する培養法のさらなる一態様として、線維芽細胞、間葉系細胞、血管系の細胞等の下垂体以外の細胞との共培養を実施することもできる。上記のようなゲル包埋培養は、例えばNature 501,373-379(2013)、Nature,499,481-484(2013)、Nat Protoc 14,518-540(2019)、Genes 2020,11,603等を参照して実施することができる。
 第三工程及び以降の工程において、細胞への栄養及び酸素供給を改善し、物質交換を改善する目的から、細胞が物理的に揺動される培養方法を実施することも好ましい。このような培養方法としては、振盪培養、回転培養、攪拌培養等の静置培養以外の方法が挙げられる。振盪培養、回転培養、攪拌培養等を実施するための手段は特に限定されないが、例えば細胞を培養している培養器材をローテーター、シェーカー等に設置する、又は細胞をスターラー等が回転している環境下に置くことにより実施することができる。振盪培養、回転培養、攪拌培養の速度等のパラメーターは当業者であれば細胞への傷害を生じない範囲で適宜設定可能である。例えば波動形揺動の3Dシェーカー(例えばMini-Shaker 3D、Biosan社製)を用いて振盪培養を実施する場合は、例えば5~60rpm、好ましくは5~40rpm、より好ましくは5~20rpmの範囲で振盪速度範囲を設定可能である。往復式のシェーカー(例えばNS-LR、アズワン社製)を用いて振盪培養を実施する場合は、例えば15~60rpm、好ましくは15~50rpm、より好ましくは15~45rpmの範囲で振盪速度範囲を設定可能である。シーソー式のシェーカー(例えばNS-S、アズワン社製)を用いて振盪培養を実施する場合は、例えば5~50rpm、好ましくは5~40rpm、より好ましくは5~30rpmの範囲で振盪速度範囲を設定可能である。細胞凝集体を攪拌培養、回転培養で培養する場合は、例えばスピナーフラスコ(例えば3152、コーニング社製)をマグネティックスターラー上に設置し、細胞凝集体が目視で沈降しない程度の回転数で培養を実施することもできる。三次元回転浮遊培養装置(例えばCellPet CUBE、ジェイテック社製;Clinostar、Celvivo社製)を用いて培養を実施することもできる。細胞への摩擦等の物理的な傷害を抑制する観点から、前記のゲルに包埋した細胞凝集体を振盪培養、回転培養又は攪拌培養することもまた好ましい。
 第三工程及び以降の工程において、細胞死を抑制し、細胞の増殖を促進する観点から、高酸素の雰囲気下で培養することもまた好ましい。培養過程における高酸素条件は、例えば細胞を培養するインキュベーターに酸素ボンベを接続し、人工的に酸素を供給することにより実現できる。かかる目的での酸素濃度は、通常25%~80%であり、より好ましくは30%~60%である。
 第三工程及び以降の工程において、細胞凝集体を培養する培地中への酸素供給量を増やす観点から、ガス交換効率の高い培養器材を用いることもできる。このような培養器材の例として、細胞培養ディッシュ、プレートの底面をガス透過性のフイルムとしたLumoxディッシュ(ザルスタット株式会社製)、VECELL 96well plate(株式会社ベセル製)等が挙げられる。前述した高酸素濃度条件下での培養と組み合わせて用いることもまた好ましい。
 第三工程及び以降の工程において、細胞凝集体中の非神経上皮組織の構造を維持する観点から、細胞保護剤を培地に添加することもできる。第三工程及び以降の工程において用いられる細胞保護剤としては、上述したFGFシグナル伝達経路作用物質、ヘパリン、ROCK阻害物質、基底膜標品、ミオシン阻害物質、ポリアミン類、ISR阻害剤、カスパーゼ阻害剤、血清、又は血清代替物等が挙げられる。ミオシン阻害物質としては例えば非筋型ミオシンII ATPアーゼの阻害物質であるBlebbistatin、ミオシン軽鎖キナーゼ(MLCK)の阻害物質であるML-7、ML-9、W-7、MLCK inhibitor peptide 18及びこれらの誘導体等が挙げられる。添加する細胞保護剤は第一工程で添加したものと異なっていてもよいが、好ましくは同一である。好ましい細胞保護剤としては、ROCK阻害物質が挙げられる。第三工程及び以降の工程において、細胞保護剤としてROCK阻害物質であるY-27632を添加する場合は、通常約10nM~約10mM、好ましくは約100nM~約1mM、より好ましくは約1μM~約100μMの濃度となるように培養環境中に添加する。ROCK阻害物質であるChroman 1を添加する場合は通常約10pM~約1mM、好ましくは約100pM~約100μM、より好ましくは約1nM~約10μMの濃度となるように培養環境中に添加する。細胞保護剤として非筋型ミオシンII ATPアーゼの阻害物質であるBlebbistatinを添加する場合は、通常約10nM~約10mM、好ましくは約100nM~約1mM、より好ましくは約1μM~約100μMの濃度となるように培養環境中に添加する。
 第三工程及び以降の工程において、細胞保護剤以外の非神経上皮組織の構造を維持する作用を有する物質を添加することもできる。上記のような物質として例えば細胞接着を促進する物質、基底膜成分の合成を促進する物質、基底膜成分の分解を阻害する物質等が挙げられる。細胞接着を促進する物質は細胞-細胞間の接着、細胞-基底膜間の接着、細胞-培養器材間の接着等いずれを促進するものであってもよいし、細胞接着に関与する因子の産生を促すものであってもよい。細胞接着を促進する物質として例えばアドヘサミン、アドヘサミン-RGDS誘導体、Pyrintegrin、Biotin tripeptide-1、Acetyl Tetrapeptide-3、RGDS Peptide及びこれらの誘導体等が挙げられる。基底膜成分の合成を促進する物質として例えばアスコルビン酸誘導体等が挙げられる。アスコルビン酸誘導体としては、例えばアスコルビン酸リン酸ナトリウム、アスコルビン酸リン酸マグネシウム、アスコルビン酸2-グルコシド、3-O-エチルアスコルビン酸、テトラヘキシルデカン酸アスコルビル、パルミチン酸アスコルビル、ステアリン酸アスコルビル、アスコルビン酸-2リン酸-6パルミチン酸、グリセリルオクチルアスコルビン酸等が挙げられる。基底膜成分の分解を阻害する物質として、例えばマトリックスメタロプロテアーゼ及びセリンプロテアーゼの阻害剤等が挙げられる。基底膜成分の合成を促進する物質であるアスコルビン酸誘導体の一種であるアスコルビン酸2-リン酸を添加する場合は、通常10μg/ml以上、1000μg/ml以下、好ましくは30μg/ml以上500μg/ml以下、さらに好ましくは50μg/ml以上300μg/ml以下の濃度となるように培養環境中に添加する。他のアスコルビン酸及びアスコルビン酸の誘導体等を添加する際は、上記の濃度とモル当量が同程度となるように添加すればよい。
 第三工程及び以降の工程において、下垂体細胞の生存を促進する観点から、酸化ストレスを軽減する作用を有する物質を添加することも好ましい。上記のような活性を有する物質として例えば抗酸化物質、フリーラジカルスカベンジャー作用を有する物質、NADPHオキシダーゼ阻害物質、シクロオキシゲナーゼ阻害物質、リポキシゲナーゼ(LOX)阻害物質、スーパーオキシドジスムターゼ(SOD)様物質、Nrf2活性化剤等が挙げられる。上記のような活性を有する物質として例えばアスコルビン酸、N-アセチル-L-システイン、酢酸(±)-α-トコフェロール、Apocynin(4’-Hydroxy-3’-methoxyacetophenone)、ニコチンアミド、タウリン(2-アミノエタンスルホン酸)、IM-93(1-Isopropyl-3-(1-methyl-1H-Indole-3-yl)-4-(N,N-dimethyl-1,3-propanediamine)-1H-Pyrrole-2、5H-dione)、Caffeic Acid(3,4-Dihydroxycinnamic Acid)、Celastrol(3-Hydroxy-24-nor-2-oxo-1(10),3,5,7-friedelatetraen-29-oic Acid;Tripterin)、Ebselen(2-Phenyl-1,2-benzisoselenazol-3(2H)-one)、(-)-Epigallocatechin Gallate((2R,3R)-2-(3,4,5-Trihydroxyphenyl)-3,4-dihydro-1[2H]-benzopyran-3,5,7-triol-3-(3,4,5-trihydroxybenzoate))、EUK-8(N,N’-Bis(salicylideneamino)ethane-manganese(II))、Edaravone(3-Methyl-1-phenyl-2-pyrazolin-5-one)、MnTBAP(Mn(III)tetrakis(4-benzoic acid)porphyrin Chloride)、Nordihydroguaiaretic Acid、Resveratrol(trans-3,4,5-Trihydroxystilbene)及びこれらの誘導体等が挙げられるが、これらに限定はされない。細胞培養用に調製済の試薬(例えば抗酸化サプリメント、Sigma Aldrich社製、A1345)を用いることもできる。本発明で用いる酸化ストレスを軽減する作用を有する物質は、好ましくはアスコルビン酸、N-アセチル-L-システイン並びにこれらの誘導体からなる群より選ばれる少なくとも1つを含む。アスコルビン酸は、例えばその誘導体であるアスコルビン酸2リン酸として、約1nM~約1M、好ましくは約10nM~約100mM、より好ましくは約100nM~約10mM、さらに好ましくは約1μM~約3mMの濃度で、N-アセチル-L-システインは、例えば約1nM~約1M、好ましくは約10nM~約100mM、より好ましくは約100nM~約10mM、さらに好ましくは約1μM~約5mMの濃度で培地中に添加することができる。
 第三工程及び以降の工程において、下垂体細胞の生存を促進する観点から、ストレス応答シグナル伝達経路に対する阻害物質(ストレスに対する細胞内シグナル伝達機構を阻害する物質)を添加することもまた好ましい。ストレス応答性MAPキナーゼ経路(stress-activated protein kinase:SAPK)はストレスに対する細胞内シグナル伝達機構の主要なものの一つである。ストレス応答性MAPキナーゼ経路の阻害剤としては例えばMAP3K阻害剤、MAP2K阻害剤、ASK阻害剤、MEK阻害剤、Akt阻害剤、Rhoファミリーキナーゼ阻害剤、JNK阻害剤、p38阻害剤、MSK阻害剤、STAT阻害剤、NF-κB阻害剤、CAMK阻害剤等が挙げられる。
 MEK阻害剤としては例えばSelumetinib(AZD6244,6-(4-bromo-2-chloroanilino)-7-fluoro-N-(2-hydroxyethoxy)-3-methylbenzimidazole-5-carboxamide)、Mirdametinib(PD0325901,N-[(2R)-2,3-dihydroxypropoxy]-3,4-difluoro-2-(2-fluoro-4-iodoanilino)benzamide)、Trametinib(GSK1120212,N-[3-[3-cyclopropyl-5-(2-fluoro-4-iodoanilino)-6,8-dimethyl-2,4,7-trioxopyrido[4,3-d]pyrimidin-1-yl]phenyl]acetamide)、U0126(1,4-diamino-2,3-dicyano-1,4-bis(2-aminophenylthio)butadiene)、PD184352(CI-1040,2-(2-chloro-4-iodoanilino)-N-(cyclopropylmethoxy)-3,4-difluorobenzamide)、PD98059(2-(2-amino-3-methoxyphenyl)chromen-4-one)、BIX 02189(3-[N-[3-[(dimethylamino)methyl]phenyl]-C-phenylcarbonimidoyl]-2-hydroxy-N,N-dimethyl-1H-indole-6-carboxamide)、Pimasertib(AS-703026,N-[(2S)-2,3-dihydroxypropyl]-3-(2-fluoro-4-iodoanilino)pyridine-4-carboxamide)、Pelitinib(EKB-569,(E)-N-[4-(3-chloro-4-fluoroanilino)-3-cyano-7-ethoxyquinolin-6-yl]-4-(dimethylamino)but-2-enamide)、BIX 02188(3-[N-[3-[(dimethylamino)methyl]phenyl]-C-phenylcarbonimidoyl]-2-hydroxy-1H-indole-6-carboxamide)、TAK-733(3-[(2R)-2,3-dihydroxypropyl]-6-fluoro-5-(2-fluoro-4-iodoanilino)-8-methylpyrido[2,3-d]pyrimidine-4,7-dione)、AZD8330(2-(2-fluoro-4-iodoanilino)-N-(2-hydroxyethoxy)-1,5-dimethyl-6-oxopyridine-3-carboxamide)、Binimetinib(MEK162,6-(4-bromo-2-fluoroanilino)-7-fluoro-N-(2-hydroxyethoxy)-3-methylbenzimidazole-5-carboxamide)、SL-327((Z)-3-amino-3-(4-aminophenyl)sulfanyl-2-[2-(trifluoromethyl)phenyl]prop-2-enenitrile)、Refametinib(RDEA119,N-[3,4-difluoro-2-(2-fluoro-4-iodoanilino)-6-methoxyphenyl]-1-[(2S)-2,3-dihydroxypropyl]cyclopropane-1-sulfonamide)、GDC-0623(5-(2-fluoro-4-iodoanilino)-N-(2-hydroxyethoxy)imidazo[1,5-a]pyridine-6-carboxamide)、BI-847325(3-[3-[N-[4-[(dimethylamino)methyl]phenyl]-C-phenylcarbonimidoyl]-2-hydroxy-1H-indol-6-yl]-N-ethylprop-2-ynamide)、RO5126766(CH5126766,3-[[3-fluoro-2-(methylsulfamoylamino)pyridin-4-yl]methyl]-4-methyl-7-pyrimidin-2-yloxychromen-2-one)、Cobimetinib(GDC-0973,[3,4-difluoro-2-(2-fluoro-4-iodoanilino)phenyl]-[3-hydroxy-3-[(2S)-piperidin-2-yl]azetidin-1-yl]methanone)及びこれらの誘導体等が挙げられる。
 p38阻害剤としては例えば、SB203580(4-[4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-1H-imidazol-5-yl]pyridine)、Doramapimod(BIRB 796,1-[5-tert-butyl-2-(4-methylphenyl)pyrazol-3-yl]-3-[4-(2-morpholin-4-ylethoxy)naphthalen-1-yl]urea)、SB202190(FHPI,4-[4-(4-fluorophenyl)-5-pyridin-4-yl-1H-imidazol-2-yl]phenol)、Ralimetinib dimesylate(5-[2-tert-butyl-4-(4-fluorophenyl)-1H-imidazol-5-yl]-3-(2,2-dimethylpropyl)imidazo[4,5-b]pyridin-2-amine;methanesulfonic acid)、VX-702(6-(N-carbamoyl-2,6-difluoroanilino)-2-(2,4-difluorophenyl)pyridine-3-carboxamide)、PH-797804(3-[3-bromo-4-[(2,4-difluorophenyl)methoxy]-6-methyl-2-oxopyridin-1-yl]-N,4-dimethylbenzamide)、Neflamapimod(VX-745,5-(2,6-dichlorophenyl)-2-(2,4-difluorophenyl)sulfanylpyrimido[1,6-b]pyridazin-6-one)、TAK-715(N-[4-[2-ethyl-4-(3-methylphenyl)-1,3-thiazol-5-yl]pyridin-2-yl]benzamide)、PD 169316(4-[4-(4-fluorophenyl)-2-(4-nitrophenyl)-1H-imidazol-5-yl]pyridine)、TA-02(4-[2-(2-fluorophenyl)-4-(4-fluorophenyl)-1H-imidazol-5-yl]pyridine)、SD 0006(1-[4-[3-(4-chlorophenyl)-4-pyrimidin-4-yl-1H-pyrazol-5-yl]piperidin-1-yl]-2-hydroxyethanone)、Pamapimod(6-(2,4-difluorophenoxy)-2-(1,5-dihydroxypentan-3-ylamino)-8-methylpyrido[2,3-d]pyrimidin-7-one)、BMS-582949(4-[5-(cyclopropylcarbamoyl)-2-methylanilino]-5-methyl-N-propylpyrrolo[2,1-f][1,2,4]triazine-6-carboxamide)、SB239063(4-[4-(4-fluorophenyl)-5-(2-methoxypyrimidin-4-yl)imidazol-1-yl]cyclohexan-1-ol)、Skepinone-L(13-(2,4-difluoroanilino)-5-[(2R)-2,3-dihydroxypropoxy]tricyclo[9.4.0.03,8]pentadeca-1(11),3(8),4,6,12,14-hexaen-2-one)、DBM 1285(N-cyclopropyl-4-[4-(4-fluorophenyl)-2-piperidin-4-yl-1,3-thiazol-5-yl]pyrimidin-2-amine;dihydrochloride)、SB 706504(1-cyano-2-[2-[[8-(2,6-difluorophenyl)-4-(4-fluoro-2-methylphenyl)-7-oxopyrido[2,3-d]pyrimidin-2-yl]amino]ethyl]guanidine)、SCIO 469(2-[6-chloro-5-[(2R,5S)-4-[(4-fluorophenyl)methyl]-2,5-dimethylpiperazine-1-carbonyl]-1-methylindol-3-yl]-N,N-dimethyl-2-oxoacetamide)、Pexmetinib(1-[5-tert-butyl-2-(4-methylphenyl)pyrazol-3-yl]-3-[[5-fluoro-2-[1-(2-hydroxyethyl)indazol-5-yl]oxyphenyl]methyl]urea)、UM-164(2-[[6-[4-(2-hydroxyethyl)piperazin-1-yl]-2-methylpyrimidin-4-yl]amino]-N-[2-methyl-5-[[3-(trifluoromethyl)benzoyl]amino]phenyl]-1,3-thiazole-5-carboxamide)、p38 MAPK Inhibitor(4-(2,4-difluorophenyl)-8-(2-methylphenyl)-7-oxido-1,7-naphthyridin-7-ium)、p38 MAP Kinase Inhibitor III(4-[5-(4-fluorophenyl)-2-methylsulfanyl-1H-imidazol-4-yl]-N-(1-phenylethyl)pyridin-2-amine)、p38 MAP Kinase Inhibitor IV(3,4,6-trichloro-2-(2,3,5-trichloro-6-hydroxyphenyl)sulfonylphenol)、CAY105571(4-[5-(4-fluorophenyl)-2-[4-(methylsulfonyl)phenyl]-1H-imidazol-4-yl]-pyridine)及びこれらの誘導体等が挙げられる。
 JNK阻害剤としては例えば第一工程で記載したものと同様の物が挙げられる。本発明で用いるストレスに対する細胞内シグナル伝達機構を阻害する物質は、好ましくはMEK阻害剤、p38阻害剤、JNK阻害剤からなる群から選ばれる一つ以上である。p38阻害剤としてSB203580を用いる場合は、通常約1nM~約1mM、好ましくは約10nM~約100μM、より好ましくは約100nM~約10μM、さらに好ましくは約500nM~約5μMの濃度で、培地中に添加することができる。MEK阻害剤としてPD0325901を用いる場合は、通常約1nM~約1mM、好ましくは約10nM~約100μM、より好ましくは約100nM~約10μM、さらに好ましくは約500nM~約5μMの濃度で、培地中に添加することができる。JNK阻害剤としてJNK-IN-8を用いる場合は、第一工程に記載の濃度と同様の濃度で、培地中に添加することができる。他のMEK阻害剤、p38阻害剤、JNK阻害剤を用いる場合は上記阻害剤の添加濃度と同等の阻害活性を有する濃度で添加することが好ましい。
3.下垂体組織を含む細胞集団
 本発明は、下垂体組織を含む細胞集団、特に1)神経系細胞又は神経組織、2)下垂体組織、及び3)間葉系細胞を含む細胞集団を提供する。以下、本発明の細胞集団とも称する。本発明の細胞集団は、好ましくは上記した本発明の製造方法により製造することができる。
 本発明の細胞集団における1)神経系細胞又は神経組織は、好ましくは中枢神経系の細胞若しくは組織、又はその前駆組織であり、中枢神経系の細胞又は組織としては、網膜、大脳皮質、間脳(例、視床下部)及びそれらの組織に由来する細胞が挙げられ、より好ましくは間脳(視床下部)またはその前駆組織であり、さらに好ましくは組織中に脳室様の構造を有している間脳またはその前駆組織である。1)神経系細胞又は神経組織は、例えばN-Cadherin陽性の神経上皮組織である。
 本発明の細胞集団における2)下垂体組織は、好ましくは非神経上皮組織と連続して形成されており、非神経上皮組織及び下垂体組織が1)神経系細胞又は神経組織及び3)間葉系細胞の少なくとも一方を被覆していることがさらに好ましい。
 前記非神経上皮組織が口腔上皮またはその前駆組織であることもまた好ましい。下垂体組織は下垂体ホルモン産生細胞やその前駆細胞である下垂体前駆細胞を含むことが好ましく、下垂体幹細胞を含むことが好ましく、濾胞星状細胞を含むことが好ましく、下垂体ホルモン産生細胞、下垂体前駆細胞、下垂体幹細胞、濾胞星状細胞すべてを含むことがさらに好ましい。下垂体ホルモン産生細胞としては、例えば成長ホルモン(GH)産生細胞、プロラクチン(PRL)産生細胞及び副腎皮質刺激ホルモン(ACTH)産生細胞からなる群から選ばれる少なくとも1種が挙げられる。
 下垂体組織中に下垂体ニッチが形成されていることもまた好ましく、下垂体ニッチが下垂体前葉と中葉の間に残る遺残腔周辺のMCLニッチ様の構造であることもまた好ましく、下垂体ニッチが実質層ニッチ様の構造であることもまた好ましく、MCLニッチ様の構造と実質層ニッチ様の構造をともに含むことがさらに好ましい。
 本発明の細胞集団における3)間葉系細胞は、好ましくは頭部間葉系細胞である。
 3)間葉系細胞は、細胞集団の表面を被覆している非神経上皮組織と、細胞集団の内側に存在する1)神経系細胞又は神経組織との間に存在することが好ましい。
 本発明の細胞集団は、例えば1)神経上皮組織の内部に脳室様の空胞が形成され、該空胞に接している1)神経上皮組織の面がEzrin、PKC-zeta陽性の頂端面である。
 本発明の細胞集団に含まれる3)間葉系細胞は、例えば、Nestin、Vimentin、Cadherin-11、Laminin、CD44、CD90及びCD105からなる群から選ばれる少なくとも1種の間葉系細胞マーカーを発現する。
 本発明に含まれうる非神経上皮組織は、例えば、サイトケラチン、E-Cadherin及びEpCAMからなる群から選ばれる少なくとも1種の非神経上皮組織マーカーを発現する。
 本発明の細胞集団に含まれうる下垂体幹細胞は、例えばSox2、Sox9、E-Cadherin、Nestin、S100β、GFRα2、Prop1、CD133、β-Catenin、Klf4、Oct4、Pax6、コクサッキーウイルス・アデノウイルス共通受容体(CXADR)、PRRX1/2、Ephrin-B2及びACEからなる群から選ばれる少なくとも1種の下垂体幹細胞マーカーを発現する。本発明の細胞集団の好ましい態様は、下垂体幹細胞マーカー(例、CXADR)陽性の下垂体幹細胞を含む。該細胞集団における下垂体幹細胞数の割合(下垂体幹細胞数の存在割合)が1%以上、好ましくは3%以上又は5%以上であってもよい
4.下垂体組織の製造方法
 本発明は、下垂体組織の製造方法を提供し、該方法は、上記、「2.下垂体組織を含む細胞集団の製造方法」により得られた下垂体組織を含む細胞集団から下垂体組織を回収することを特徴とする。一実施態様は、下記工程(1)、(2)及び(4)を含む。
(1)多能性幹細胞を、JNKシグナル伝達経路阻害物質とWntシグナル伝達経路阻害物質の存在下で培養し、細胞集団を得る第一工程、
(2)第一工程で得られた細胞集団を、BMPシグナル伝達経路作用物質及びソニック・ヘッジホッグシグナル伝達経路作用物質の存在下で培養(好ましくは浮遊培養)し、下垂体組織を含む細胞集団を得る第二工程、
(4)第二工程で得られた細胞集団から下垂体組織を回収する第四工程。
 第一工程及び第二工程は、上記、「2.下垂体組織を含む細胞集団の製造方法」の第一工程及び第二工程と同様にして実施することができる。また、所望により第一工程の前にa工程を実施してもよい。また、所望により第二工程と第四工程の間に、第三工程を実施してもよい。
 下垂体組織を含む細胞集団から下垂体組織を回収する第四工程は、形成された細胞集団が接着培養等で得られた平面的な組織である場合は、例えば顕微鏡観察下でニードル等を用い、下垂体組織を物理的に剥離する等の手法で回収することができる。形成された細胞集団が細胞塊等の立体的な組織である場合は、顕微鏡観察下でピンセット等を用い、細胞塊の外側(ラトケ嚢部分)に形成される下垂体組織を剥離・回収することによっておこなわれる。下垂体組織は、例えばNature communications,2016,7.に記載されているように、得られた細胞塊の表層にある半透明な薄い上皮として判別することができる。第四工程における細胞集団(細胞塊)からの下垂体組織の回収方法として、凍結融解、好ましくは緩慢凍結法を用いることもできる。当該方法は、外側に下垂体組織及び内側に間葉系神経や神経上皮組織を有する細胞塊を凍結融解することで物理的処理を施すことなく外側の下垂体組織が細胞塊から剥離されるというものである。
5.毒性・薬効性評価用試薬及び毒性・薬効評価方法
 本発明の細胞集団、本発明の製造方法により製造される細胞集団、又は該細胞集団から回収される組織は、下垂体組織であり得る。従って、本発明の細胞集団、本発明の製造方法により製造される細胞集団又は該細胞集団から回収される下垂体組織を含有してなる、被験物質の毒性・薬効性評価用試薬が提供され得る。
 また、本発明は、上述の細胞集団又は該細胞集団から回収される下垂体組織を用いて、毒性・薬効評価方法を提供することができる。
 例えば、細胞集団又は該細胞集団から回収される下垂体組織と、被験物質とを接触させる工程と、該被験物質が該細胞集団又は下垂体組織に及ぼす影響を検定する工程とを含む、被験物質の毒性・薬効評価方法が挙げられる。
 あるいは、細胞集団又は該細胞集団から回収される下垂体組織と、細胞への特定配列の核酸・遺伝子導入に用いるベクターとを接触させる工程と、該ベクター乃至導入遺伝子・核酸の該細胞集団又は下垂体組織に及ぼす影響、例えば導入遺伝子の効果、導入遺伝子の送達性、細胞障害の程度等を検定する工程とを含む、該ベクターの遺伝子治療法及びその他の用法に用いた際の毒性・薬効評価方法が挙げられる。
 本発明の細胞集団、本発明の製造方法により製造される細胞集団又は該細胞集団から回収され、被験物質の毒性・薬効性評価用試薬として用いられる下垂体組織は、ゲノム編集により遺伝子を操作された多能性幹細胞を原料として用いて製造されたものであることもまた好ましい。原料の多能性幹細胞において編集された遺伝子は疾患関連遺伝子であることが好ましく、下垂体疾患の疾患関連遺伝子であることがさらに好ましい。前記下垂体疾患としては、例えば先端巨大症、クッシング病、プロラクチン産生下垂体腺腫、TSH(甲状腺刺激ホルモン)産生下垂体腺腫、頭蓋咽頭腫、ラトケ嚢胞、下垂体炎、下垂体機能低下症、小児成長ホルモン分泌不全症、男性低ゴナドトロピン(LH、FSH)性性腺機能低下症、視床下部・下垂体性無月経、多発性内分泌腫瘍症等が挙げられ、これらの原因遺伝子、疾患関連遺伝子が多能性幹細胞におけるゲノム編集の標的として好ましいが、これに限定されない。別の態様の疾患関連遺伝子は、下垂体乃至視床下部の癌及び腫瘍発生に関わる遺伝子である。このような疾患関連遺伝子としては、例えばAIP、GPR101、MEN1、MEN4、CDKN1B、PRKAR1A、PRKACB 2q16、SDHA/B/C/D、SDHAF2、NF1、DICER1、GNAS、USP8、PIK3CA、MTND1,2,4,5、MTTL2、MTTM、MTCYB、MTRNR2等が挙げられるが、これに限定されない。あるいは、健常人ないし患者の下垂体およびその他の組織の正常部及び病変部から細胞を採取し、iPS細胞を樹立し、本願に記載の下垂体組織を調製することもできる。
6.医薬組成物、治療薬及び疾患の治療方法
 本発明の一態様として、本発明の細胞集団、本発明の製造方法により製造される細胞集団又は該細胞集団から回収される下垂体組織を含有してなる医薬組成物(移植用組成物、移植用組織またはTransplant)が挙げられる。医薬組成物は好ましくは、本発明の細胞集団、本発明の製造方法により製造される細胞集団又は該細胞集団から回収される下垂体組織の他に、さらに医薬として許容される担体を含む。
 医薬として許容される担体としては、生理的な水性溶媒(生理食塩水、緩衝液、無血清培地等)を用いることができる。必要に応じて、医薬組成物には、移植医療において、移植する組織又は細胞を含む医薬に、通常使用される保存剤、安定剤、還元剤、等張化剤等を配合させてもよい。
 本発明の一態様として、本発明の細胞集団、本発明の製造方法により製造される細胞集団又は該細胞集団から回収される下垂体組織を含有してなる、下垂体の障害に基づく疾患の治療薬が提供され得る。
 下垂体の障害に基づく疾患の治療薬としては、例えば本発明の細胞集団もしくは本発明の製造方法により製造される細胞集団を含む懸濁液を含む移植片が挙げられる。
 懸濁液としては、例えば細胞集団を培地、人工涙液または生理食塩水に懸濁した液が挙げられる。懸濁液は、細胞集団から単離された非神経上皮細胞を含んでいてもよく、細胞の接着を促進する因子、例えば細胞外基質やヒアルロン酸等を含んでいてもよい。
 細胞塊に代えて細胞集団から回収した下垂体組織を用いてもよい。
 さらに、本発明の細胞集団、本発明の製造方法により製造される細胞集団から、下垂体組織の有効量を、移植を必要とする対象に移植する工程を含む、下垂体の障害に基づく疾患の治療方法が提供され得る。
 前記下垂体の障害に基づく疾患は、下垂体の障害に基づく動物の疾患であってよく、下垂体の障害に基づく非ヒト動物の疾患であってよい。下垂体の障害に基づく疾患としては、具体的には、汎下垂体機能低下症、下垂体性小人症、副腎皮質機能低下症、部分的下垂体機能低下症、下垂体前葉ホルモン単独欠損症、下垂体腺腫等の手術後の下垂体機能・ホルモン分泌不全、頭蓋咽頭腫などが挙げられる。
 本発明の細胞集団、本発明の製造方法により製造される細胞集団又は該細胞集団から回収され、下垂体の障害に基づく疾患の治療薬として用いられる下垂体組織は、ゲノム編集により遺伝子を操作された多能性幹細胞を原料として用いて製造されたものであることもまた好ましい。ゲノム編集の対象となる遺伝子は、本発明の製造方法による下垂体組織の分化に関与する遺伝子、本発明の製造方法によって副生する下垂体以外の目的外細胞への分化に関わる遺伝子、下垂体から分泌されるホルモン関連遺伝子、疾患の感染に関わる遺伝子等であるが、これに限定されない。
 以下に実施例を示して、本発明をより詳細に説明するが、これらは本発明の範囲を限定するものではない。また、使用する試薬及び材料は特に限定されない限り商業的に入手可能である。
[実施例1:ヒトiPS細胞からの下垂体組織を含む細胞集団(下垂体オルガノイド)の製造におけるJNK阻害剤の細胞分化に対する効果の検討]
 ヒトiPS細胞(HC-6#10株、理化学研究所より入手)を、Scientific Reports, 4, 3594 (2014)に記載の方法に準じてフィーダーフリー条件で培養した。フィーダーフリー培地としてはStemFit培地(味の素社製)、フィーダーフリー足場にはLaminin511-E8(ニッピ社製)を用いた。
 具体的な維持培養操作としては、まずサブコンフレントになったヒトiPS細胞(HC-6#10株)を、0.5mM EDTA/PBSにて2回洗浄後、さらに5mM EDTA/PBSで37℃10分間処理した。ピペッティングを行い、培養ディッシュ表面から細胞を剥がし、単一細胞へ分散した。その後、単一細胞へ分散されたヒトiPS細胞を、Laminin511-E8にてコートしたプラスチック培養ディッシュに播種し、Y-27632(ROCK阻害物質、富士フイルム和光純薬社製、10μM)存在下、StemFit培地にてフィーダーフリー培養した。プラスチック培養ディッシュとして、6ウェルプレート(Corning社製、細胞培養用、培養面積9.5cm)を用いた場合、単一細胞へ分散されたヒトiPS細胞の播種細胞数は7×10とした。播種した1日後に、Y-27632を含まないStemFit培地に全量培地交換した。以降、1日~2日に1回、Y-27632を含まないStemFit培地にて全量培地交換した。播種後7日間、サブコンフレント(培養面積の6割が細胞に覆われる程度)になるまで培養した。
 培養した多能性幹細胞を分化誘導に用いる際には、播種した6日後にStemFit培地の培地交換と同時にSB431542(TGF-βシグナル伝達経路阻害物質、富士フイルム和光純薬社製、終濃度5μM)とSAG(Shhシグナル経路作用物質、Enzo Life Sciences社製、終濃度300nM)を添加して24時間培養した(工程(a)開始)。
 調製したサブコンフレントのヒトiPS細胞を、上記継代時と同様に0.5mM EDTA/PBSにて処理した。分化誘導用の無血清培地を添加し、ピペッティングを行って培養ディッシュ表面から細胞を剥がし、単一細胞へ分散した。
 その後、単一細胞に分散されたヒトES細胞を非細胞接着性の96ウェル培養プレート(PrimeSurface 96V底プレート、MS-9096V、住友ベークライト社製)に、1ウェルあたり9×10細胞になるように100μlの無血清培地に懸濁し、37℃、5%COの条件下で浮遊培養した。その際の無血清培地には、F-12+Glutamax培地(Thermo Fisher Scientific社製)とIMDM+Glutamax培地(Thermo Fisher Scientific社製)の体積比1:1混合液に5% Knockout Serum Replacement(Thermo Fisher Scientific社製)、450μM 1-モノチオグリセロール(富士フイルム和光純薬社製)、1x Chemically defined lipid concentrate(Thermo Fisher Scientific社製)、50unit/mlペニシリン-50μg/mlストレプトマイシン(ナカライテスク社製)を添加した無血清培地を用いた。以降、この無血清培地を5% KSR gfCDMともいう。浮遊培養開始時(浮遊培養開始後0日目、工程(1)開始)に、前記無血清培地にY-27632(終濃度10μM)、IWP-2(Wntシグナル伝達経路阻害物質、Tocris Bioscience社製、0.5μM)、SB431542(TGFシグナル伝達経路阻害物質、和光純薬社製、1μM)を添加した。さらに、多能性幹細胞からの下垂体分化誘導におけるJNKシグナル伝達経路阻害の効果を検証するために、c-Jun N末キナーゼ(JNK)阻害剤であるJNK-IN-8(メルク社製、1μM)を添加した条件と無添加条件を比較した。
 浮遊培養開始後2日目にY-27632を含まず、IWP-2、SB431542、BMP4(BMPシグナル伝達経路作用物質)、SAGを含む無血清培地を1ウェルあたり100μl加えた。BMP4は添加する培地に1nM添加し、ウェル中の終濃度を0.5nMとし、SAGは添加する培地に1.4μM添加し、ウェル中の終濃度を700nMとなるようにした。その後、浮遊培養開始後6、10、13、17、21及び24日目にY-27632とBMP4を含まず、IWP-2、SB431542とSAGを含む無血清培地を用いて半量培地交換を行った。
 浮遊培養開始後28日目に倒立顕微鏡(キーエンス社製、BIOREVO BZ-9000)を用いて、位相差観察を行った(図1下図)。上記分化誘導法により直径約1000μm程度の球状の細胞凝集体が形成されていた。JNK阻害剤を添加した条件と無添加条件を比較したところ、JNK阻害剤を添加した条件では無添加条件よりも細胞塊の大きさが直径で100μm程度小さく、細胞塊の表面が下垂体組織の基となる非神経上皮組織・プラコード様組織で被覆されている割合が大きく、非神経上皮組織以外の目的外細胞の増殖が抑制され、分化効率が向上していることが分かった。上記の結果より、ヒト多能性幹細胞からの下垂体組織製造において、JNK阻害剤を添加することにより製造効率が改善することが示された。
[実施例2:ヒトiPS細胞からの下垂体組織を含む細胞集団(下垂体オルガノイド)の製造におけるJNK阻害剤の添加時期の検討]
 実施例2では、図2Aに示す工程に従って、下垂体組織を構成する細胞を含む細胞集団を製造した。具体的には、ヒトiPS細胞(1231A3株、理化学研究所より入手)を、Scientific Reports, 4, 3594 (2014)に記載の方法に準じてフィーダーフリー条件で培養した。フィーダーフリー培地としてはStemFit培地、フィーダーフリー足場にはLaminin511-E8を用いた。
 分化誘導の条件としては、実施例1の条件に対し、JNK阻害剤の添加条件以外は実施例1と同様の条件にて分化誘導を実施した。JNK阻害剤の添加条件として、分化誘導開始0、2、6、10、13日目にc-Jun N末キナーゼ(JNK)阻害剤であるJNK-IN-8(メルク社製、1μM)を添加した条件と無添加条件を比較した。分化誘導開始2、6、10、13日目にJNK阻害剤を添加する際は、培地添加ないし交換する際の培地に2μM添加し、ウェル中の終濃度を1μMとなるようにした。
 浮遊培養開始後28日目に倒立顕微鏡(キーエンス社製、BIOREVO BZ-X800)を用いて、偏射照明による明視野観察を行った(図2B)。その結果、分化誘導開始0、2、6日目にJNK阻害剤を添加した条件では非神経上皮・下垂体が非添加条件よりも効率よく形成されていたが、分化誘導開始10、13日目に添加した条件では非添加条件との差が見られなかった。上記の結果より、ヒト多能性幹細胞からの下垂体組織製造において、JNK阻害剤は分化誘導の開始10目よりも以前に添加することが好ましいことが示された。
[実施例3:ヒトiPS細胞からの下垂体組織を含む細胞集団(下垂体オルガノイド)の製造におけるJNK阻害剤の下垂体ホルモン分泌能に対する効果の検討]
 実施例3では、図3Aに示す工程に従って、下垂体組織を構成する細胞を含む細胞集団を製造した。具体的にはヒトiPS細胞(201B7株、京都大学より入手)を、Scientific Reports, 4, 3594 (2014)に記載の方法に準じてフィーダーフリー条件で培養した。フィーダーフリー培地としてはStemFit培地、フィーダーフリー足場にはLaminin511-E8を用いた。
 前記サブコンフルエントのヒトiPS細胞を、TrypLE Selectを用いて細胞分散液処理し、さらにピペッティング操作により単一細胞に分散した。その後、前記単一細胞に分散されたヒトES細胞を非細胞接着性の96ウェル培養プレートの1ウェルあたり9000細胞になるように100μLの無血清培地に浮遊させ、37℃、5%COの条件下で浮遊培養した。その際の無血清培地(gfCDM+KSR)には、F-12培地とIMDM培地の1:1混合液に5%KSR、450μM 1-モノチオグリセロール、1xChemically defined lipid concentrateを添加した無血清培地を用いた。浮遊培養開始時(分化誘導開始後0日目)に、前記無血清培地にY-27632(終濃度10μM)、IWP-2(0.5μM)、SB431542(1μM)、SAG(100nM)を添加した。
 分化誘導開始後2日目にY-27632を含まず、IWP-2、SB431542、BMP4(0.5nM)、SAG(700nM)を含む無血清培地を1ウェルあたり100μL加えた。その後、分化誘導開始後6、9、12、15、19、22、26日目にY-27632とBMP4を含まず、IWP-2、SB431542とSAGを含む無血清培地を用いて半量培地交換を行った。19日目以降は、培養時の酸素分圧を40%とした。
 分化誘導開始後29日目の前記細胞凝集体を、それぞれ4%パラホルムアルデヒドで固定し、凍結切片を作製した。これらの凍結切片に関し、下垂体の前駆マーカーであるPitx1(抗Pitx1抗体、自家製(Nature Communications, 7: 10351, 2016、Cell Reports, 30, 18-24, January 7, 2020))およびLhx3(抗Lhx3抗体、自家製(Nature Communications, 7: 10351, 2016、Cell Reports, 30, 18-24, January 7, 2020))、上皮細胞マーカーであるE-cadherin(タカラバイオ社製)に対する抗体を用いて免疫染色を行った。一次抗体反応後、Alexa488、555、647で蛍光標識した二次抗体(ライフテクノロジーズ社製)を用いて検出した。その結果、上記分化誘導法で誘導された分化誘導開始後29日目の細胞凝集体において、無添加のコントロールと比較し、分化誘導0日目より1μM JNK-IN-8を添加した条件では細胞塊表面がE-Cadherin陽性の上皮組織に覆われている割合がより高く、下垂体前駆マーカーであるPitx1およびLhx3陽性細胞の割合も高かった(図3B)。上記の結果から、JNK阻害剤の添加は多能性幹細胞からの下垂体分化誘導を促進することが示された。
[実施例4:ヒトiPS細胞からの下垂体組織を含む細胞集団(下垂体オルガノイド)の製造におけるJNK阻害剤の下垂体ホルモン分泌能に対する効果の検討]
 実施例4では、図4Aに示す工程に従って、下垂体組織を構成する細胞を含む細胞集団を製造した。具体的には、実施例3に記載の方法で調製したヒトiPS細胞株201B7由来の細胞塊の培養上清を経時的に回収し、細胞塊あたりのACTHの分泌量を測定した。具体的な測定法としては、分化誘導0日目から30日目まで、JNK阻害剤JNK-IN-8を1μM、3μM又は10μM添加した条件および無添加コントロールの4条件で下垂体組織を含む細胞塊を調製した。このうち、JNK-IN-8を10μM添加した条件では細胞塊の崩壊が確認された。その後、無添加コントロール及びJNK-IN-8を1μM又は3μMを添加し調製した細胞塊を、10cmディッシュ、培地20mlの条件で各条件の細胞塊を浮遊培養し、3乃至4日毎に半量培地交換した。分化誘導61日目、103日目、152日目、201日の半量培地交換前に培養上清を回収し、-150℃で凍結し、すべての検体が揃ったのちに臨床検査で使われているELISA法によって回収した培地中のACTH濃度を測定した(株式会社SRLへ検査委託)。取得したACTHの濃度(pg/mL)のデータをもとに、サンプリング時の細胞塊の総数及び培養培地の総量から細胞塊20個を20mlの培地で培養した条件のACTH濃度に補正し、グラフにした。同様の実験を2回実施した。
 その結果、JNK阻害剤を添加しない条件と比較して、分化誘導0日目から1μM JNK-IN-8を添加した条件では、培地中のACTH濃度が分化誘導61日目の時点で5倍程度、分化誘導103日目、152日目の時点で2倍程度、分化誘導201日目の時点で1.3倍程度高かった。3μM JNK-IN-8を添加した条件では、分化誘導61日目、103日目の時点では無添加条件より培地中のACTH濃度が高かったが、分化誘導152日目、201日目の時点では無添加条件よりも低かった。上記の結果から、多能性幹細胞からの下垂体組織分化誘導においてJNK阻害剤の添加により細胞塊あたりのACTH分泌能が向上すること、および添加するJNK阻害剤の濃度は3μM以下が好ましいことが示された(図4B)。
[実施例5:ヒトiPS細胞からの下垂体組織を含む細胞集団(下垂体オルガノイド)の製造における振盪培養の効果の検討]
 実施例5では、図5上図に示す工程に従って、下垂体組織を構成する細胞を含む細胞集団を製造した。具体的には、実施例2に記載の方法でヒトiPS細胞株1231A3から製造した分化誘導30日目の細胞塊を、細胞非接着性のT75組織培養用フラスコ(コーニング社製)に移し、以降の浮遊培養を実施した。浮遊培養の条件としては、F-12培地とIMDM培地の1:1混合液に10%KSR、450μM 1-モノチオグリセロール、1xChemically defined lipid concentrateを添加した無血清培地を用い、1μM SB431542、700nM SAGを添加した。48個の細胞塊を25mlの培地中で浮遊培養し、3日乃至4日毎に半量培地交換を実施した。上記細胞塊を入れたフラスコを往復式のシェーカー(NS-LR、アズワン社製)を用いて30rpmの条件で振盪培養を実施し、同じフラスコで静置培養を実施した条件と比較した。分化誘導43日目に倒立顕微鏡(キーエンス社製、BIOREVO BZ-X800)を用いて、偏射照明による明視野観察を行った(図5下図)。
 その結果、振盪培養を実施した細胞塊では、細胞塊表面の上皮構造が発達し、下垂体組織の成長が改善しており、振盪培養が多能性幹細胞からの下垂体組織の製造に有用であることが示された。
[実施例6:ヒトiPS細胞からの下垂体組織を含む細胞集団(下垂体オルガノイド)の製造における酸化ストレスを軽減する作用を有する物質の効果の検討]
 実施例6では、図6上図に示す工程に従って、下垂体組織を構成する細胞を含む細胞集団を製造した。具体的には、実施例5に記載の方法でヒトiPS細胞株1231A3から下垂体組織を含む細胞塊を調製した。分化誘導30日目にT75フラスコへ細胞塊を移し、培養条件を変更した。酸化ストレスを軽減する作用を有する物質として、Nアセチルシステイン(NAC)を分化誘導の10日目より1mMの濃度で培地中に添加し、無添加条件と比較した。分化誘導30日目及び51日目に倒立顕微鏡(キーエンス社製、BIOREVO BZ-X800)を用いて、偏射照明による明視野観察を行った(図6下図)。
 その結果、NACを添加した条件では、分化誘導30日目の時点で非添加条件よりも細胞塊が直径で50μm程度小さく、目的外細胞の増殖が抑制されていた。さらに浮遊培養を実施することにより、分化誘導51日目で下垂体を含む上皮組織で被覆された割合の多い細胞塊が形成された。上記の結果より、酸化ストレスを軽減する作用を有する物質の添加が多能性幹細胞からの下垂体組織の製造に有用であることが示された。
[参考例1:ヒトES細胞からの下垂体組織を含む細胞集団(下垂体オルガノイド)の製造におけるa工程実施の効果の検討]
 ヒトES細胞(RAX::VenusをノックインしたKhES-1株、理化学研究所)を用いて、図7Aに示す工程に従って、a工程を実施する群と実施しない群を設け、下垂体組織を構成する細胞を含む細胞集団を製造した。
 具体的には、サブコンフルエントのヒトES細胞を、実施例1と同様に、Laminin511-E8にてコートしたプラスチック培養ディッシュに播種し、300nM SAGおよび5μM SB431542を含むStemFit培地にてフィーダーフリー培養した(工程(a))。播種した1日後、前記ヒトES細胞を、TrypLE Selectを用いて細胞分散液処理し、さらにピペッティング操作により単一細胞に分散した。その後、前記単一細胞に分散されたヒトES細胞を非細胞接着性の96ウェル培養プレートの1ウェルあたり1.0×10細胞になるように100μLの無血清培地に浮遊させ、37℃、5%COの条件下で浮遊培養した。その際の無血清培地(gfCDM+KSR)には、F-12培地とIMDM培地の1:1混合液に5%KSR、450μM 1-モノチオグリセロール、1xChemically defined lipid concentrateを添加した無血清培地を用いた。浮遊培養開始時(分化誘導開始後0日目)に、前記無血清培地にY-27632(終濃度20μM)、SAG(100nM)を添加した(工程(1))。
 分化誘導開始後2日目にY-27632を含まず、BMP4(5nM)、SAG(2μM)を含む無血清培地を1ウェルあたり100μL加えた。分化誘導開始後6、9、12、15日目にY-27632を含まず、BMP4とSAGを含む無血清培地を用いて半量培地交換を行った(工程(2)の開始)。その後、分化誘導開始後19、22、26日目にY-27632およびBMP4を含まず、SAGを含む無血清培地を用いて半量培地交換を行った。19日目以降は、培養時の酸素分圧を40%とした。浮遊培養開始後32日目の細胞凝集体を、実施例3と同様に、凍結切片を作製した。凍結切片に関し、下垂体の前駆マーカーであるPITX1(抗Pitx1抗体、自家製)および上皮細胞マーカーであるE-cadherin(タカラバイオ社製)に対する抗体を用いて免疫染色を行い、DAPIで細胞核を染色した。その結果、a工程を実施しない群では、凝集体がうまく形成されず崩壊してしまった(data not shown)。一方で、a工程を実施した群では、PITX1陽性かつE-cadherin陽性細胞を有する組織およびRAX::Venus陽性細胞を有する組織の2種類の層を含む細胞凝集体が形成されていることが確認された。(図7B)しかし、下垂体前駆細胞マーカーであるLHX3(rabbit;1:3,000、タカラバイオ社製)に対する抗体を用いて染色した結果、LHX3陽性細胞はそれほど多く検出されなかった。この結果から、a工程を実施することによって、2層の組織を有する細胞凝集体が得られることが示唆された。図7Bの右下のスケールバーは200μmを示す。
[参考例2:ヒトiPS細胞からの下垂体組織を含む細胞集団(下垂体オルガノイドの製造におけるTGFβ/Nodal/Activin/BMPおよび Wntシグナル調節の効果の検討]
 ヒトES細胞(RAX::VenusをノックインしたKhES-1株、理化学研究所)を用いて、図8Aに示す工程に従って、a工程を実施した後、BMP4(5nM)およびSAG(100nM(工程(1))または2μM(工程(2)))に加え、Wntシグナル阻害剤であるIWP2(2μM)およびTGFβシグナル阻害剤であるSB431542(1μM)を添加した培地で浮遊培養を行った。IWP2およびSB431542の添加は、浮遊培養開始0日目から6日目までの期間(図8B-1)、浮遊培養開始0日目から12日目までの期間(図8B-2)または浮遊培養開始0日目から29日目までの期間(図8B-3)行われ、BMP4の添加は、浮遊培養開始2日目から6日目までの期間(図8B-1~3のそれぞれ上段)または浮遊培養開始2日目から18日目までの期間(図8B-1~3のそれぞれ下段)行われた。浮遊培養開始29日目の細胞凝集体を用い、実施例3と同様に、凍結切片を作製した。凍結切片に関し、PITX1(抗Pitx1抗体、自家製)および上皮細胞マーカーであるE-cadherin(タカラバイオ社製)に対する抗体を用いて免疫染色を行った。その結果、凝集体の外側はPITX1陽性かつE-cadherin陽性である非神経上皮組織が存在し、内側はRAX::Venus陽性である神経上皮組織であることが確認された(図8B-1~3)。
 またPITX1陽性かつE-cadherin陽性である非神経上皮組織を含む外側の細胞層に、LHX3陽性細胞が存在することがわかった(図8B-1~3)。PITX1陽性かつE-cadherin陽性である非神経上皮組織が最も高確率で形成される条件は、IWP2およびSB431542の添加が浮遊培養開始0日目から29日目までの期間行われ、さらにBMP4の添加が浮遊培養開始2日目から6日目の期間行われた場合であった(図8B-3)。この結果から、ヒトiPS細胞からWntシグナル阻害剤とTGFβシグナル阻害剤を添加した分化誘導条件により、外側の非神経上皮組織が高効率で形成され、外側の非神経上皮の一部がLHX3陽性の下垂体プラコードである細胞塊が製造可能であることが示された。図8B-1~3の右下のスケールバーは200μmを示す。
[参考例3:ヒトES細胞からの下垂体組織を含む細胞集団(下垂体オルガノイドの製造における各シグナル調節剤の濃度検討]
 次に、各工程で添加するIWP2、BMP4およびSAGの至適濃度を検討する目的で、高濃度群(IWP2;2μM、BMP4;5nM、SAG;2μM)および低濃度群(IWP2;0.5μM、BMP4;0.5nM、SAG;700nM)の2群を設け、分化誘導61日目、103日目、152日目、201日目、250日目における培養液中のACTH濃度を指標に比較検討を行った。細胞にはヒトES細胞(KhES-1株)を用い、図9Aに示す工程に従って、下垂体組織を構成する細胞を含む細胞集団を製造した。実施例4に記載されている方法を用いて、培地中のACTH濃度の測定を行った。検討の結果、低濃度群の方が高い培養液中ACTH濃度を示した(図9B)。この結果から、ACTH分泌能の優れた組織を分化誘導するためには、低濃度群(IWP2;0.5μM、BMP4;0.5nM、SAG;700nM)の濃度が適していることが示唆された。
[実施例7:ヒトiPS細胞からの下垂体組織を含む細胞集団(下垂体オルガノイド)の製造におけるJNK阻害剤の下垂体上皮組織および下垂体ホルモン分泌細胞誘導に対する効果の検討]
 図10Aに示した工程に従って、ヒトiPS細胞(201B7株)を用いて、実施例4と同様の方法で浮遊培養を行い、103日目まで継続し、得られた細胞凝集体を用いて、実施例3と同様に、それぞれ凍結切片を作製した。得られた切片に対して、抗ACTH抗体(Fitzgerald Industries社製)および抗E-cadherin抗体(タカラバイオ社製)を用いて免疫染色を行い、DAPIで細胞核を染色した。その結果、無添加のコントロールと比較し、JNK―IN-8を添加した条件では、細胞凝集体表面を覆う層におけるE-cadherin陽性細胞の割合が高く、細胞凝集体全体におけるACTH陽性細胞の割合も多くなっていることがわかった(JNKi(+);42.2±4.4%,JNKi(-);28.8±4.0% of total cells,mean±SEM,n=8-12)(図10B)。図10Bの右下のスケールバーは200μmを示す。
[実施例8:ヒトiPS細胞からの下垂体組織を含む細胞集団(下垂体オルガノイド)の製造における下垂体ホルモン分泌細胞の存在の確認]
 ヒトiPS細胞(1231A3株)を用いて、実施例6と同様の方法で浮遊培養を行い、培養59日目の細胞凝集体を用いて、実施例3と同様に、凍結切片を作製した。得られた切片に対し、抗ACTH抗体(Lab Vision社製)及び抗SOX2抗体(Santa Cruz社製)を用いた免疫染色を行い、DAPIで細胞核を染色した。その結果、細胞凝集体表面の層に下垂体上皮組織が形成され、細胞凝集体全体にACTH陽性細胞が存在していることが確認された(図11)。図11の右下のスケールバーは200μmを示す。
[実施例9:ヒトiPS細胞からの下垂体組織を含む細胞集団(下垂体オルガノイド)の製造におけるSAG添加期間の検討]
 ヒトiPS細胞(201B7株)を用いて、図12Aに示した工程に従って、細胞凝集体を製造した。ただし、SAGの処理期間について、分化誘導開始直後から30日目までSAGを添加する群と、分化誘導開始直後から30日目以降(61日目、103日目及び131日目まで)もSAGを添加する群の2群を設定し、ACTH分泌能を比較した。ACTHの測定は実施例4と同様の方法で行った。
 その結果、分化誘導開始30日後にSAG処理を止めることにより、ACTH分泌能が向上することが分かった(図12B)。
[実施例10:ヒトES細胞からの下垂体組織を含む細胞集団(下垂体オルガノイド)の製造における遺伝子発現変動の検討]
 ヒトES細胞(KhES-1株)を用いて、図13Aに示した工程に従って、細胞凝集体を製造した。分化誘導開始後の各培養日数における分化の程度を確認するために、下垂体マーカー(PITX1,LHX3,POMC(ACTH前駆細胞))及び視床下部マーカー(RAX,NKX2.1(TTF1))の発現変化を、定量PCRにより検討した。具体的には、以下の通り実施した。
 RNeasy Micro Kit(Qiagen社)を用いて、1サンプル当たり6つの細胞凝集体からRNAを抽出した。定量PCRは、Biomark HD(Fluidigm)を用いて実施した。なお、各遺伝子のプローブは、GAPDH(Hs02758991_g1)、PITX1(Hs00267528-m1)、LHX3(Hs01033412_m1)、POMC(Hs01596743_m1)、RAX(Hs00429459-m1)、TTF1(Hs00968940-m1)(TaqMan Probes;Thermo Fisher Scientific)を用いた。得られたデータは内在性のコントロールとしてGAPDHを用いて規格化(normalize)した上で、比較Ct法(ΔΔCt法)を用いて定量結果を得た。
 その結果、LHX3の発現は分化誘導開始6日目から60日目にかけて増加し、LHX3の発現は分化誘導開始19日目から30日目にかけて増加し、POMCの発現は分化誘導開始30日目以降に増加した(図13B)。これらの結果から、段階的に下垂体への分化が誘導されていることが示された。
 一方、RAXの発現は分化誘導開始3日目から6日目頃にはプラトーに達し、その後減少した(図13C)。また、TTF1の発現は分化誘導開始6日目から19日目にかけて増加し、その後減少した(図13C)。これらの結果から、分化の初期段階において、下垂体前駆組織への分化と共に、視床下部(腹側視床下部)への分化が進行していることが示唆された。
[実施例11:ヒトES細胞からの下垂体組織を含む細胞集団(下垂体オルガノイド)の製造における各種ホルモン分泌細胞発現の確認]
 ヒトES細胞(KhES-1株)を用いて、実施例10と同様の分化誘導法を用いて、細胞凝集体を製造した。浮遊培養開始103日後の細胞凝集体を用いて、実施例3と同様に、凍結切片を作製した。抗プロラクチン(PRL)抗体(Dako社製)、抗POU1F1抗体(自家製)、抗甲状腺刺激ホルモン(TSH)抗体(Dako社製)、抗黄体形成ホルモン(LH)抗体(Dako社製)および抗卵胞刺激ホルモン(FSH)抗体(Dako社製)を用いて免疫染色を行い、DAPIで細胞核を染色した。また、浮遊培養開始152日後における細胞凝集体に対して、抗成長ホルモン(GH)抗体(Santa Cruz社製)を用いて免疫染色を行い、DAPIで細胞核を染色した。その結果、用いた全ての抗体に反応する細胞の存在が確認された。この結果から、下垂体前駆細胞を含む細胞凝集体が、複数種類のホルモンを分泌する能力を有することが示された(図14)。図14の右下のスケールバーは50μmを示す。
[実施例12:電子顕微鏡を用いた下垂体組織を含む細胞凝集体(下垂体オルガノイド)の構造の検討]
 実施例10と同様の分化誘導法を用いて、下垂体組織を含む細胞凝集体を製造し、図13Aにおける浮遊培養開始後51日目以降の培養を201日目まで継続した。細胞凝集体を4%パラホルムアルデヒド、1%グルタルアルデヒド及び2%スクロースを用い、4℃で3日間固定した。常法に従い、アルコール溶液による脱水及びLR-WHlTE樹脂(Nissin EM)により重合及び包埋の後、超薄切片を作成し、電子顕微鏡(Hitachi H-7500)により観察した。
 その結果、下垂体組織中の多くの細胞が、ホルモン分泌顆粒(hormone-secreting granules)を含んでいた(図15B、C、D)。細胞凝集体の内層(視床下部組織)、特により深い層では、細胞死や繊維化が認められた(図15A:「*」が示す部分)。オルガノイド壁内には、下垂体前葉に相当する、細胞内に分泌顆粒を有する内分泌細胞が存在していた(図15A、B、C)。多くの領域において、下垂体細胞層(pituitary cell layer)は、薄い嚢胞壁(cystic wall)を形成し、偽多列円柱上皮(a false multi-row columnar epithelium)の内分泌細胞から構成されていた。下垂体細胞層の最下層は基底膜様構造を形成し(図15A:arrow head)、最外層には繊毛細胞(ciliated cells)が薄く被覆していた(図15A、B、C:「→」が示す部分)。分泌顆粒を多く含む内分泌細胞が散在していたが、これらの細胞は一定の未熟な状態を維持しており、内分泌細胞の種類ははっきりしなかった。内分泌細胞は基底膜及び外側との境界の方向に強い極性を示している様であり、例えば、デスモソームが外側の層に偏在していた(図15C:arrow head)。加えて、オルガノイド壁内には、濾胞星状細胞(folliculo-stellate cells:FSCs)の存在も認められた(図15D:破線)。図15Aの右下のスケールバーは8μm、図15B、Cの右下のスケールバーは2μm、図15Dの右下のスケールバーは500nmを示す。
[実施例13:免疫染色による、下垂体組織を含む細胞凝集体(下垂体オルガノイド)における下垂体幹細胞の存在の検討]
 実施例12において確認された下垂体中の濾胞星状細胞は、成体下垂体幹細胞の一種であると報告されており、本製法により製造した下垂体-視床下部オルガノイドは、ホルモン産生細胞のみならず下垂体幹細胞を含むことが示唆された。そこで、実施例10と同様の方法にて下垂体組織を含む細胞凝集体を製造し、浮遊培養(分化誘導)開始後103日目の細胞凝集体に対し、下垂体幹細胞のマーカーであるCXADRの免疫染色を行った。具体的には、実施例3と同様に、それぞれ凍結切片を作製した。これらの凍結切片に対し、抗ACTH抗体(mouse,1:200;Fitzgerald)及び抗CXADR抗体(rabbit;1:100;Atlas antibodies)を用いて免疫染色を行い、DAPIで細胞核を染色した。これらの染色された切片を、共焦点レーザー走査型顕微鏡(オリンパス社製)を用いて観察し、免疫染色像を取得した。
 その結果、下垂体組織が存在する領域において、ACTH陽性細胞が細胞凝集体の内側に、CXADR陽性及びACTH陰性細胞がその反対側(細胞凝集体の外側)に存在していた(図16)。従って、ホルモン産生細胞及び下垂体幹細胞が、極性を示していることが示唆された。多能性幹細胞から誘導した下垂体-視床下部オルガノイドにおいて、これまで下垂体幹細胞の存在は報告されておらず、本実施例にて初めて確認した。図16の右下のスケールバーは50μmを示す。
[実施例14:下垂体組織を含む細胞凝集体(下垂体オルガノイド)のACTH分泌能の検討]
 実施例10と同様の方法にて下垂体組織を含む細胞凝集体を製造し、ACTH分泌能を検討した。浮遊培養開始後の培養日数の異なる細胞凝集体20個を、20%KSRを添加した無血清培地(20mL)を含む10cm浮遊培養用ディッシュに移し、37℃において3~4日間培養後、培養上清を回収した。回収した培養上清中のACTH濃度は、臨床検査で使われているELISA法によって測定した(株式会社SRLへ検査委託)。その結果、浮遊培養開始後29日目からACTHの分泌が認められ(23pg/mL)、その後培養日数が長くなるにつれてACTH分泌量は顕著に増加した(図17A)。
 次に、CRHによるACTH分泌増加及びグルココルチコイドによるACTH分泌抑制が認められるかどうか検討した。具体的には、浮遊培養開始後103日目の細胞凝集体20個を、20%KSRを添加した無血清培地(10mL)が入った10cm浮遊培養用ディッシュに移し、37℃、40%O2条件下で24時間培養後、培養上清を回収した。細胞凝集体を、20%KSRを添加した無血清培地で洗浄後、20%KSRを添加した新しい無血清培地 10mLが入った10cm浮遊培養用ディッシュに移し、CRH(ニプロESファーマ社製)5μg/mL又はDexamethasone(DX、アスペンジャパン社製)500ng/mLを添加した。それぞれ、無添加群をコントロールとして設定した。37℃、40%O2条件下で24時間培養後、培養上清を回収した。回収した培養上清中のACTH濃度は、上記の通り測定した。その結果、CRH刺激により、ACTH分泌量は約三倍に増加した(図17B)。
 一方、DX処理により、ACTH分泌量は約40%減少した(図17C)。これらの結果より、本製法により製造した下垂体-視床下部オルガノイドにおいて、ホルモンによるホメオスタシスが維持されていることが示された。
[実施例15:ヒトES細胞から作製した下垂体オルガノイドに発現する目的外細胞の特定(遺伝子解析・免疫染色)]
 目的外細胞を特定する目的で、遺伝子発現解析の手法を用いて、浮遊培養細胞凝集体に発現している遺伝子の特定を行った。解析のために、分化誘導していないヒトES細胞(KhES-1株)と、図13Aに示した工程に従って作製した浮遊培養開始30日後、60日後および100日後の細胞凝集体をそれぞれ5または6個ずつ用意し、細胞凝集体ごとにRLTバッファーおよびRNeasy Micro Kit(ともにキアゲン社製)を用いて遺伝子解析用サンプルを作製した(全17サンプル)。作製したRNAサンプルをBiomark HD(Fluidigm)を用いて、解析した。プローブには、サーモフィッシャーサイエンティフィック社製のTaqManプローブ(GAPDH (Hs02758991_g1)、ACTB(Hs01060665-g1)、PITX1(Hs00267528-m1)、PITX2 (Hs04234069-mH)、LHX3(Hs01033412_m1)、POMC(Hs01596743_m1)、E-cadherin(Hs01023895_m1)、EpCAM(Hs00901885_m1)、RAX(Hs00429459-m1)、TTF1(Hs00968940-m1)、NESTIN(Hs04187831-g1)、SOX11(Hs00846583_s1)、LIN28A(Hs00702808-s1)、NANOG(Hs04260366-g1)、POU5F1(Hs04260367-gH)を使用した。その結果、図18AのHeat mapに示すように、浮遊培養開始30日後、60日後および100日後の組織において、神経前駆細胞マーカーであるNESTINおよびSOX11が発現していることがわかった。
 次に、浮遊培養開始後103日目における組織から、実施例3と同様の手法を用いて凍結切片を作製し、NESTIN(マウス;1:500;R&Dシステムズ社製)およびSOX11(ヒツジ;1:100;R&Dシステムズ社製)に対する抗体を用いて免疫染色を行い、DAPIで細胞核を染色した。その結果、複数の細胞凝集体において、凝集体内部の細胞層にNESTIN陽性かつSOX11陽性の細胞が存在することがわかった(図18B)。上記の結果から、多能性幹細胞からの分化誘導された細胞塊には、下垂体組織、視床下部組織および神経系前駆細胞が存在することが示された(図18B)。図18Bのaの右下のスケールバーは200μm、図18Bのb~dの右下のスケールバーは50μmを示す。
[実施例16:分割されたマイクロウェルを有する培養器材を用いたヒトiPS細胞からの下垂体オルガノイドの製造・分化誘導]
 図19Aに示す工程に従って、分割されたマイクロウェルを有する培養器材を用いてヒト多能性幹細胞から下垂体オルガノイドを製造した。多能性幹細胞として、ヒトiPS細胞1231A3株を用いた。分化誘導に用いる細胞は、実施例1と同様に調製した。
 事前に35mm EZSPHERE Dish Type 905(旭テクノグラス社製)に後述する分化誘導用の無血清培地2mlを添加し、1時間程度、COインキュベーター中に静置し、マイクロウェル内の気泡の除去を顕微鏡で確認した。
 その後、調製したサブコンフルエントのヒトiPS細胞1231A3株を、実施例1に記載の方法と同様に5mM EDTA/PBSにて処理した。細胞回収時に分化誘導用の無血清培地を添加し、ピペッティングを行って培養ディッシュ表面から細胞を剥がし、単一細胞へ分散し、事前に調製した35mm EZSPHERE Dishに、1ディッシュあたり1.8×10細胞になるように3mlの無血清培地に懸濁し、37℃、5%COの条件下で浮遊培養した。その際の無血清培地には、5% KSR gfCDMを用いた(工程(1)開始)。
 浮遊培養開始時(浮遊培養開始後0日目、工程(1)開始)に、上記無血清培地にY-27632(終濃度10μM)、IWP-2(終濃度1μM)、SB431542(終濃度1μM)、JNK-IN-8(終濃度1μM)、SAG(終濃度100nM)を添加した。
 浮遊培養開始後1日目に顕微鏡にてEZSPHERE Dishの底面のマイクロウェル内に細胞凝集体が形成されているのを確認した後に、Y-27632を含まず、IWP-2、SB431542、JNK-IN-8、SAG(終濃度700nM)、BMP4(終濃度0.5nM)を含む無血清培地を1ディッシュあたり1ml加えた(工程(2)開始)。
 さらに、浮遊培養開始後3日目に、ワイドボアの1000μlピペットチップを用いて細胞凝集体を回収し、10cm浮遊培養用ディッシュへと移送した。その際の培地には、Y-27632とBMP4を含まず、IWP-2、SB431542、JNK-IN-8、SAG(終濃度700nM)を含む5% KSR gfCDMを12ml用いた。以降、培養6、10、13、17日目にディッシュより6mlの培地を、細胞凝集体を吸わないように回収し、新しい培地を6ml添加する半量培地交換を行った。
 浮遊培養開始後29日目に倒立蛍光顕微鏡(BIOREVO BZ-X800、キーエンス社製)を用いて偏斜照明観察を行った(図19B)。その結果、細胞塊の表面に厚みのある透明性の高い上皮として観察される、プラコード様の下垂体組織を有する下垂体オルガノイドが形成された。上記の結果より、前記96ウェルマイクロウェルプレートを用いた際と同様に、分割されたマイクロウェルを有する培養器材を用いることによって、表面に下垂体組織を有する下垂体オルガノイドをヒト多能性幹細胞より製造可能であった。分割されたマイクロウェルを有する培養器材を用いることによって下垂体組織の大量生産が可能になる。
[実施例17:ヒトiPS細胞からの下垂体組織を含む細胞集団(下垂体オルガノイド)の製造におけるJNK阻害剤添加条件下でのBMP添加時期の検討]
 実施例17では、図20Aに示す工程に従って、下垂体組織を構成する細胞を含む細胞集団を製造した。具体的には、ヒトiPS細胞(1231A3株、理化学研究所より入手)を、Scientific Reports, 4, 3594 (2014)に記載の方法に準じてフィーダーフリー条件で培養した。フィーダーフリー培地としてはStemFit培地、フィーダーフリー足場にはLaminin511-E8を用いた。
 分化誘導の条件としては、BMP4の添加条件およびIWP-2の終濃度を1μMに変更した点以外は実施例1と同様の条件にて分化誘導を実施した。BMP4の添加条件として、分化誘導の開始後約24時間後(1日目)および約48時間後(2日目)に工程(2)を実施した。
 浮遊培養開始後28日目に倒立蛍光顕微鏡(BIOREVO BZ-X800、キーエンス社製)を用いて偏斜照明観察を行った(図20B)。その結果、分化誘導の開始後約24時間後(1日目)および約48時間後(2日目)のいずれのBMP4添加条件においても、細胞塊の表面に厚みのある透明性の高い上皮として観察される、プラコード様の下垂体組織を有する下垂体オルガノイドが形成された。上記の条件を比較すると、24時間後(1日目)BMP4添加条件の方が、形成された下垂体オルガノイドの大きさが均一であり、細胞塊の表面が下垂体組織に被覆されている割合が高く、下垂体以外の細胞の割合が少なかった。上記の結果より、JNK阻害剤添加条件下における下垂体オルガノイド製造時の好ましいBMPシグナル伝達経路活性化物質の添加時期の一態様として、ヒト多能性幹細胞の分化誘導開始から12時間後以降、60時間以内であることが示された。
 本出願は、日本で出願された特願2021-162255(出願日:2021年9月30日)及び特願2022-116716(出願日:2022年7月21日)を基礎としておりそれらの内容は本明細書に全て包含されるものである。

Claims (17)

  1.  下記工程(1)及び(2)を含む、下垂体組織を含む細胞集団の製造方法;
    (1)多能性幹細胞をc-jun N末キナーゼ(JNK)シグナル伝達経路阻害物質およびWntシグナル伝達経路阻害物質の存在下で培養し、細胞集団を得る第一工程、
    (2)第一工程で得られた細胞集団を、BMPシグナル伝達経路作用物質及びソニック・ヘッジホッグシグナル伝達経路作用物質の存在下で培養し、下垂体組織を含む細胞集団を得る第二工程。
  2.  第一工程の前に、多能性幹細胞を下記工程(a)に付すことを特徴とする、請求項1記載の製造方法;
    (a)多能性幹細胞を、フィーダー細胞非存在下で、1)TGFβファミリーシグナル伝達経路阻害物質及び/又はソニック・ヘッジホッグシグナル伝達経路作用物質、並びに2)未分化維持因子を含む培地で培養するa工程。
  3.  第一工程における培養がさらにソニック・ヘッジホッグシグナル伝達経路作用物質の存在下であって、第一工程および第二工程におけるソニック・ヘッジホッグシグナル伝達経路作用物質の存在下における培養期間が、30日である、請求項1に記載の製造方法。
  4.  第二工程で得られた細胞集団を下記工程(3)に付すことを特徴とする、請求項1に記載の製造方法;
    (3)第二工程で得られた細胞集団を、ソニック・ヘッジホッグシグナル伝達経路作用物質の非存在下で培養し、下垂体組織を含む細胞集団を得る第三工程。
  5.  第三工程の前に、第二工程で得られた細胞集団を下記工程(b)に付すことを特徴とする、請求項4に記載の製造方法;
    (b)第二工程で得られた細胞集団を、BMPシグナル伝達経路阻害物質の存在下で培養するb工程。
  6.  前記JNKシグナル伝達経路阻害物質は、JNK阻害剤を含む、請求項1に記載の製造方法。
  7.  前記JNKシグナル伝達経路阻害物質は、Rac阻害剤を含む、請求項1に記載の製造方法。
  8.  前記Wntシグナル伝達経路阻害物質が、非古典的Wnt経路に対する阻害活性を有する物質を含む、請求項1に記載の製造方法。
  9.  前記第一工程、第二工程、b工程、及び第三工程のいずれか一つ以上の工程で、TGFシグナル伝達経路阻害物質がさらに存在する、請求項1~8のいずれか1項に記載の製造方法。
  10.  前記第一工程、第二工程、b工程、及び第三工程のいずれか一つ以上の工程で、TAK1阻害物質がさらに存在する、請求項1~8のいずれか1項に記載の製造方法。
  11.  前記第二工程、b工程、及び第三工程のいずれか一つ以上の工程でFGFシグナル伝達経路作用物質がさらに存在する、請求項1~8のいずれか1項に記載の製造方法。
  12.  前記第二工程、b工程、及び第三工程のいずれか一つ以上の工程で酸化ストレスを軽減する作用を有する物質がさらに存在する、請求項1~8のいずれか1項に記載の製造方法。
  13.  前記第二工程、b工程、及び第三工程のいずれか一つ以上の工程で、ストレス応答シグナル伝達経路に対する阻害物質がさらに存在する、請求項1~8のいずれか1項に記載の製造方法。
  14.  前記第二工程、b工程、及び第三工程のいずれか一つ以上の工程で、揺動しながら細胞を培養する、請求項1~8のいずれか1項に記載の製造方法。
  15.  前記第一工程で得られる細胞集団が細胞凝集体である、請求項1~8のいずれか1項に記載の製造方法。
  16.  前記第一工程、第二工程、b工程、及び第三工程のいずれか一つ以上の工程を、少なくとも1つのウェルが形成されている培養器材中で実施し、前記ウェルは、複数のマイクロウェルに分割されていて、前記マイクロウェルの1つにつき、1つの細胞塊が形成されるように浮遊培養を実施する、請求項1~8のいずれか1項に記載の製造方法。
  17.  請求項1~8のいずれか1項に記載の製造方法により得られた下垂体組織を含む細胞集団から下垂体組織を回収することを特徴とする、下垂体組織の製造方法。
PCT/JP2022/036019 2021-09-30 2022-09-27 下垂体組織を含む細胞集団の製造方法及びその細胞集団 WO2023054396A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280066380.1A CN118043447A (zh) 2021-09-30 2022-09-27 包含垂体组织的细胞群的制备方法及该细胞群
CA3234671A CA3234671A1 (en) 2021-09-30 2022-09-27 Method for producing cell mass including pituitary tissue and cell mass

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021162255 2021-09-30
JP2021-162255 2021-09-30
JP2022-116716 2022-07-21
JP2022116716 2022-07-21

Publications (1)

Publication Number Publication Date
WO2023054396A1 true WO2023054396A1 (ja) 2023-04-06

Family

ID=85782780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036019 WO2023054396A1 (ja) 2021-09-30 2022-09-27 下垂体組織を含む細胞集団の製造方法及びその細胞集団

Country Status (2)

Country Link
CA (1) CA3234671A1 (ja)
WO (1) WO2023054396A1 (ja)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996022362A1 (en) 1995-01-20 1996-07-25 Wisconsin Alumni Research Foundation Primate embryonic stem cells
WO1998030679A1 (en) 1997-01-10 1998-07-16 Life Technologies, Inc. Embryonic stem cell serum replacement
US6280718B1 (en) 1999-11-08 2001-08-28 Wisconsin Alumni Reasearch Foundation Hematopoietic differentiation of human pluripotent embryonic stem cells
WO2002101057A1 (fr) 2001-06-08 2002-12-19 Dnavec Research Inc. Transfert genique dans des cellules souches embryonnaires de primate a l'aide d'un virus de l'immunodeficience simienne de pseudo type vsv-g utilise comme vecteur
WO2013065763A1 (ja) * 2011-10-31 2013-05-10 独立行政法人理化学研究所 幹細胞の培養方法
US8772460B2 (en) 2011-12-16 2014-07-08 Wisconsin Alumni Research Foundation Thermostable FGF-2 mutant having enhanced stability
WO2016013669A1 (ja) * 2014-07-25 2016-01-28 国立研究開発法人理化学研究所 腺性下垂体又はその前駆組織の製造方法
US20160326491A1 (en) 2013-11-21 2016-11-10 Memorial Sloan-Kettering Cancer Center Specification of functional cranial placode derivatives from human pluripotent stem cells
WO2017126551A1 (ja) * 2016-01-22 2017-07-27 国立大学法人名古屋大学 ヒト多能性幹細胞から視床下部ニューロンへの分化誘導
JP2018501804A (ja) * 2015-01-16 2018-01-25 ゼネラル・エレクトリック・カンパニイ 揺動プラットフォームバイオリアクターを用いた多能性幹細胞の増殖及び継代
WO2019103129A1 (ja) * 2017-11-24 2019-05-31 住友化学株式会社 下垂体組織を含む細胞塊の製造方法及びその細胞塊
JP2021078154A (ja) 2014-12-24 2021-05-20 キヤノン株式会社 ズーム制御装置、撮像装置、ズーム制御装置の制御方法、ズーム制御装置の制御プログラム
JP2021162255A (ja) 2020-03-31 2021-10-11 大和ハウス工業株式会社 熱融通システム
JP2022116716A (ja) 2021-01-29 2022-08-10 株式会社サンセイアールアンドディ 遊技機

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996022362A1 (en) 1995-01-20 1996-07-25 Wisconsin Alumni Research Foundation Primate embryonic stem cells
US5843780A (en) 1995-01-20 1998-12-01 Wisconsin Alumni Research Foundation Primate embryonic stem cells
US6200806B1 (en) 1995-01-20 2001-03-13 Wisconsin Alumni Research Foundation Primate embryonic stem cells
WO1998030679A1 (en) 1997-01-10 1998-07-16 Life Technologies, Inc. Embryonic stem cell serum replacement
JP2001508302A (ja) 1997-01-10 2001-06-26 ライフ テクノロジーズ,インコーポレイテッド 胚性幹細胞血清置換
US6280718B1 (en) 1999-11-08 2001-08-28 Wisconsin Alumni Reasearch Foundation Hematopoietic differentiation of human pluripotent embryonic stem cells
WO2002101057A1 (fr) 2001-06-08 2002-12-19 Dnavec Research Inc. Transfert genique dans des cellules souches embryonnaires de primate a l'aide d'un virus de l'immunodeficience simienne de pseudo type vsv-g utilise comme vecteur
WO2013065763A1 (ja) * 2011-10-31 2013-05-10 独立行政法人理化学研究所 幹細胞の培養方法
US8772460B2 (en) 2011-12-16 2014-07-08 Wisconsin Alumni Research Foundation Thermostable FGF-2 mutant having enhanced stability
US20160326491A1 (en) 2013-11-21 2016-11-10 Memorial Sloan-Kettering Cancer Center Specification of functional cranial placode derivatives from human pluripotent stem cells
WO2016013669A1 (ja) * 2014-07-25 2016-01-28 国立研究開発法人理化学研究所 腺性下垂体又はその前駆組織の製造方法
JP2021078154A (ja) 2014-12-24 2021-05-20 キヤノン株式会社 ズーム制御装置、撮像装置、ズーム制御装置の制御方法、ズーム制御装置の制御プログラム
JP2018501804A (ja) * 2015-01-16 2018-01-25 ゼネラル・エレクトリック・カンパニイ 揺動プラットフォームバイオリアクターを用いた多能性幹細胞の増殖及び継代
WO2017126551A1 (ja) * 2016-01-22 2017-07-27 国立大学法人名古屋大学 ヒト多能性幹細胞から視床下部ニューロンへの分化誘導
WO2019103129A1 (ja) * 2017-11-24 2019-05-31 住友化学株式会社 下垂体組織を含む細胞塊の製造方法及びその細胞塊
JP2021162255A (ja) 2020-03-31 2021-10-11 大和ハウス工業株式会社 熱融通システム
JP2022116716A (ja) 2021-01-29 2022-08-10 株式会社サンセイアールアンドディ 遊技機

Non-Patent Citations (39)

* Cited by examiner, † Cited by third party
Title
"Biomanual Series", vol. 8, 1995, YODOSHA CO., LTD., article "Gene Targeting, Making of Mutant Mouse using ES cell"
"Gene Targeting, A Practical Approach", 1993, IRL PRESS AT OXFORD UNIVERSITY PRESS
"Manipulating the Mouse Embryo, A Laboratory Manual", 1994, COLD SPRING HARBOR LABORATORY PRESS
"Molecular Cloning, A Laboratory Manual", 1989, COLD SPRING HARBOR LABORATORY PRESS
AM J CANCER RES., vol. 5, no. 8, 2015, pages 2344 - 2360
CANCER RESEARCH, vol. 78, no. 12, 2018, pages 3101 - 3111
CELL CHEMICAL BIOLOGY, vol. 8, 2017, pages 1029 - 1039
CELL REPORTS, vol. 30, 7 January 2020 (2020-01-07), pages 18 - 24
CELL, vol. 131, no. 5, 2007, pages 861 - 872
CELL, vol. 70, 1992, pages 841 - 847
CHIKAFUMI OZONE, ET AL.: "Functional anterior pituitary generated in self-organizing culture of human embryonic stem cells", NATURE COMMUNICATIONS, vol. 7, no. 1, 1 January 2016 (2016-01-01), pages 1 - 10, XP055535023, DOI: 10.1038/ncomms10351 *
DINCER ET AL., CELL REPORTS, vol. 5, 2013, pages 1387 - 1402
EMBO J., vol. 3, 1984, pages 1463 - 1468
GENES, vol. 11, 2020, pages 603
J ENZYME INHIB MED CHEM., vol. 35, no. 1, 2020, pages 574 - 583
J. CELL BIOL., vol. 105, 1987, pages 589 - 598
M. KATOH: "WNT Signaling Pathway and Stem Cell Signaling Network", CLINICAL CANCER RESEARCH, vol. 13, no. 14, 15 July 2007 (2007-07-15), pages 4042 - 4045, XP055080256, ISSN: 10780432, DOI: 10.1158/1078-0432.CCR-06-2316 *
MOL CANCER THER., vol. 3, 2004, pages 737 - 45
MOLECULAR BIOSYSTEMS, vol. 6, no. 1, 2010, pages 44 - 54
NAT BIOTECHNOL, vol. 19, 2001, pages 971 - 974
NAT BIOTECHNOL, vol. 28, 2010, pages 611 - 615
NAT COMMUN, vol. 3, 2012, pages 1236
NAT PROTOC, vol. 14, 2019, pages 518 - 540
NAT. BIOTECHNOL., vol. 26, no. 1, 2008, pages 101 - 106
NATURE COMMUNICATIONS, vol. 7, 2016, pages 10351
NATURE METHODS, vol. 8, 2011, pages 424 - 429
NATURE PROTOCOLS, vol. 11, no. 11, pages 2223 - 2232
NATURE, vol. 499, no. 7467, 2013, pages 481 - 484
ONCO TARGETS THER., vol. 6, 2013, pages 943 - 955
ONCOGENE, vol. 26, 2007, pages 5163 - 5168
OZONE ET AL., NATURE COMMUNICATIONS, vol. 7, no. 10351, 2016, pages 1 - 10
SCIENCE, vol. 318, no. 5858, 2007, pages 1917 - 1920
SCIENCE, vol. 341, 2013, pages 651 - 654
SCIENTIFIC REPORTS, vol. 12, no. 1, 2022, pages 1 - 11
SCIENTIFIC REPORTS, vol. 4, 2014, pages 3594
SUGA ET AL., NATURE, vol. 480, no. 7375, 9 November 2011 (2011-11-09), pages 57 - 62
SUGA HIDETAKA; KADOSHIMA TAISUKE; MINAGUCHI MAKI; OHGUSHI MASATOSHI; SOEN MIKA; NAKANO TOKUSHIGE; TAKATA NOZOMU; WATAYA TAKAFUMI; : "Self-formation of functional adenohypophysis in three-dimensional culture", NATURE, vol. 480, no. 7375, 9 November 2011 (2011-11-09), London, pages 57 - 62, XP037227898, ISSN: 0028-0836, DOI: 10.1038/nature10637 *
YAMANAKA ET AL.: "mouse cell", CELL, vol. 126, no. 4, 2006, pages 663 - 676
ZIMMER ET AL., STEM CELL REPORTS, vol. 6, 2016, pages 858 - 872

Also Published As

Publication number Publication date
CA3234671A1 (en) 2023-04-06

Similar Documents

Publication Publication Date Title
US10220117B2 (en) Methods of mammalian retinal stem cell production and applications
JP7029144B2 (ja) 腺性下垂体又はその前駆組織の製造方法
JP7352553B2 (ja) 嗅神経細胞又はその前駆細胞を含む細胞塊、及びその製造方法
JP6680681B2 (ja) 小脳前駆組織の製造方法
EP3683306A1 (en) Method for producing retinal tissues
JP2019506901A (ja) ヒト人工多能性幹細胞からの皮質ニューロンの分化
US20230233617A1 (en) Methods for differentiating stem cells into dopaminergic progenitor cells
WO2023277135A1 (ja) 鼻腔上皮を構成する細胞の製造方法、及び鼻腔上皮を構成する細胞又はその前駆細胞を含む細胞集団
JPWO2019054515A1 (ja) 背側化シグナル伝達物質又は腹側化シグナル伝達物質による錐体視細胞又は桿体視細胞の増加方法
WO2019103129A1 (ja) 下垂体組織を含む細胞塊の製造方法及びその細胞塊
JP2023169391A (ja) 細胞凝集体、細胞凝集体の混合物及びそれらの製造方法
WO2023054396A1 (ja) 下垂体組織を含む細胞集団の製造方法及びその細胞集団
JP2023055915A (ja) 幹細胞からの成長ホルモン産生細胞の誘導およびその使用
WO2023054395A1 (ja) 下垂体ホルモン産生細胞を含む細胞凝集体及びその製造方法
CN118043447A (zh) 包含垂体组织的细胞群的制备方法及该细胞群

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876262

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023551555

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 3234671

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 3234671

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2022876262

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022876262

Country of ref document: EP

Effective date: 20240430