WO2013065508A1 - 燃料電池の製造方法、並びに燃料電池および電子機器 - Google Patents

燃料電池の製造方法、並びに燃料電池および電子機器 Download PDF

Info

Publication number
WO2013065508A1
WO2013065508A1 PCT/JP2012/077120 JP2012077120W WO2013065508A1 WO 2013065508 A1 WO2013065508 A1 WO 2013065508A1 JP 2012077120 W JP2012077120 W JP 2012077120W WO 2013065508 A1 WO2013065508 A1 WO 2013065508A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
electrode
negative electrode
positive electrode
conductive sheet
Prior art date
Application number
PCT/JP2012/077120
Other languages
English (en)
French (fr)
Inventor
恒俊 寒川
英之 汲田
太喜 杉山
洋樹 三田
貴晶 中川
隆平 松本
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US14/352,871 priority Critical patent/US20140287328A1/en
Priority to CN201280052864.7A priority patent/CN103907230A/zh
Publication of WO2013065508A1 publication Critical patent/WO2013065508A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8828Coating with slurry or ink
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9008Organic or organo-metallic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This technology relates to a method for manufacturing a fuel cell. More specifically, a method for producing a fuel cell in which an oxidoreductase is immobilized as a catalyst on at least one of a negative electrode and a positive electrode, a fuel cell produced using the production method, and the fuel cell are used. It relates to electronic equipment.
  • Batteries can be broadly classified into chemical batteries and physical batteries.
  • Chemical batteries include manganese batteries, alkaline batteries, nickel-based primary batteries, lithium batteries, alkaline button batteries, silver oxide batteries, and air (zinc) batteries.
  • secondary batteries such as primary batteries, nickel-cadmium batteries, nickel-metal hydride batteries, lithium ion batteries, lead livestock batteries, alkaline livestock batteries, fuel cells such as biofuel cells, and solar cells as physical batteries.
  • a primary battery is a battery that has a reactant inside and generates a current by a chemical reaction of the reactant, and can be used until all of the reactant is consumed, such as a dry battery.
  • a secondary battery has a reactive substance inside, and the reactive substance decreases by generating an electric current. However, a reverse reaction occurs by charging, and the product returns to the original reactive substance.
  • a battery that can be used repeatedly such as an automobile battery or a lithium ion battery.
  • a fuel cell in which an oxidoreductase is immobilized as a catalyst on at least one of a negative electrode and a positive electrode (hereinafter referred to as a biofuel cell) is difficult to react with a normal industrial catalyst such as glucose and ethanol. Since electrons can be efficiently extracted from fuel, it is attracting attention as a next-generation fuel cell with high capacity and high safety.
  • a reaction scheme of a biofuel cell using glucose as a fuel will be described.
  • an oxidation reaction of glucose (Glucose) proceeds at the negative electrode, and a reduction reaction of atmospheric oxygen (O 2 ) proceeds at the positive electrode.
  • O 2 atmospheric oxygen
  • the negative electrode electrons are transferred in the order of glucose (Glucose), glucose dehydrogenase, nicotinamide adenine dinucleotide (NAD + ), diaphorase, mediator, and electrode (carbon).
  • such a biofuel cell is generally prepared by dissolving a group of enzymes that decompose fuel, NAD + (nicotinamide adenine dinucleotide) and its reduced form (NADH), NADH dehydrogenase, mediator, etc. Then, each solution or a solution in which one or more of each solution is mixed is appropriately added onto the electrode material, appropriately mixed on the electrode, then dried, and further, these additional mixed dryings are repeated one or more times to produce an electrode.
  • the manufactured electrode is manufactured by laminating a proton conductor, a fuel supply layer for supplying fuel to the negative electrode, a gas-liquid separation membrane, and the like. This method is very complicated.
  • the power generation unit can be designed to be thin and small, but the fuel tank needs to have a predetermined size according to the purpose. For this reason, a space for a fuel tank is required regardless of the presence or absence of fuel, and this has resulted in a reduction in the size reduction of biofuel cells.
  • an electrode using an inkjet printing method is used from the viewpoint that a thin and uniform electrode can be manufactured flatly and a pattern having a desired shape can be economically manufactured. Manufacturing methods are used.
  • Patent Document 2 by using a solvent whose boiling point is not relatively high, an undried droplet can move away from a target point while moving due to high surface tension, or move while clumping with other droplets.
  • a high concentration film is formed by applying a diffusing agent having a high dopant concentration to the light receiving surface of a silicon substrate by an ink-jet method or offset printing according to a portion where an electrode is to be formed.
  • a diffusing agent having a lower dopant concentration than the previously applied diffusing agent by spin coating on the entire light-receiving surface of the substrate, a low concentration film is formed on the high concentration film, and then heat treatment is performed.
  • the dopant is diffused to form a high-concentration emitter layer and a low-concentration emitter layer, and a low-refractive-index antireflection film is formed on the high-concentration emitter layer by a metal compound contained in the diffusing agent.
  • Selective emitter with high photoelectric conversion efficiency at low cost by forming antireflective film with high refractive index on top and then forming light receiving surface electrode on high concentration emitter layer It discloses a technique relating to a method for producing a granulated solar cell.
  • These secondary battery and solar cell manufacturing methods have the advantage that a thin and flat battery can be manufactured by using a printing technique such as an inkjet method.
  • these secondary batteries and solar cells contain harmful substances (dangerous substances) and environmental pollutants in electrode active materials containing metals, electrolytes, fuels used, etc., and also contain rare elements. It is necessary to carry out disposal / collection after sorting. This problem is not limited to secondary batteries and solar cells, but there are similar problems in commercially available primary batteries and fuel cells.
  • the manufacturing method of the biofuel cell is very complicated.
  • the fuel tank of the biofuel cell needs to have a predetermined size according to the purpose. For this reason, the size, shape, performance, and the like of a commercially available biofuel cell are determined in advance, and design changes such as downsizing according to the purpose cannot be easily performed.
  • the present technology is a technology for manufacturing a fuel cell in which an oxidoreductase is immobilized as a catalyst on at least one of a negative electrode and a positive electrode, and its manufacturing method and disposal method are simple, and The main purpose is to provide a technique that can be easily changed in design such as miniaturization.
  • the inventors of the present invention have conducted intensive research on a biofuel cell manufacturing method and its structure. Focusing on the printing technology that was not known, we have completed this technology by establishing a new manufacturing technology.
  • a method for producing a fuel cell in which an oxidoreductase is immobilized as a catalyst on at least one of a negative electrode and a positive electrode An electrode pattern production step of producing an electrode pattern by printing on the surface of the bendable non-conductive sheet using an electrode material containing at least conductive particles; On the electrode pattern produced in the electrode pattern production process, by performing printing using a predetermined oxidoreductase, a negative electrode and positive electrode production process for producing a negative electrode and a positive electrode, A method for producing a fuel cell is provided.
  • each electrode is formed on the non-conductive sheet serving as a separator by using a printing technology.
  • the fuel cell manufacturing method according to the present technology is a method capable of manufacturing a fuel cell without using any metal.
  • the arrangement method of the electrodes printed on the non-conductive sheet is not particularly limited.
  • electrode materials are printed on both surfaces of the non-conductive sheet.
  • the method of printing a predetermined oxidoreductase on the said electrode can be employ
  • the non-conductive sheet in which the negative electrode and the positive electrode are formed on the surface through the electrode pattern manufacturing step and the negative electrode positive electrode manufacturing step, and the negative electrode and the positive electrode are not in the non-conductive state.
  • the bending method performed in the bending step is not particularly limited.
  • the non-conductive sheet is fold-folded in a state where the negative electrode and the positive electrode are printed on the sheet upper side, or It is possible to employ a method in which a non-conductive sheet is valley-folded through a non-conductive sheet that has not been printed with the negative electrode and the positive electrode printed on the sheet upper side.
  • a fuel cell in which an oxidoreductase is immobilized as a catalyst on at least one of a negative electrode and a positive electrode On the surface of the bendable non-conductive sheet, By performing printing using at least an electrode material containing at least conductive particles and the oxidoreductase, the negative electrode and the positive electrode are formed to face each other with the non-conductive sheet interposed therebetween.
  • a fuel cell is provided.
  • the fuel cell according to the present technology includes all batteries as long as the electrodes are configured on the surface of the non-conductive sheet using the printing technology. Specific examples of the configuration include the following examples. be able to.
  • the negative electrode and the positive electrode can be configured by printing on both surfaces of the non-conductive sheet so as to face each other with the non-conductive sheet interposed therebetween. Further, for example, the non-conductive sheet on which at least the electrode material and the oxidoreductase are printed is bent so that the negative electrode and the positive electrode face each other with the non-conductive sheet interposed therebetween. It is also possible to do.
  • the bending method can be freely designed according to the purpose, for example, the non-conductive sheet
  • the printing is performed in a state where the negative electrode and the positive electrode are printed on the upper side of the sheet, or the non-conductive sheet is printed on the non-conductive sheet while the negative electrode and the positive electrode are printed on the upper side of the sheet.
  • the fuel cell according to the present technology can be configured by performing valley folding through a non-conductive sheet that is not formed.
  • the fuel cell according to the present technology may include a fuel tank in which the non-conductive sheet that is not printed is bent.
  • the fuel tank can be designed to be folded when not in use and to be expanded when in use.
  • the enzyme fixed to the negative electrode of the fuel cell according to the present technology may include at least an oxidase.
  • the enzyme immobilized on the negative electrode of the fuel cell according to the present technology may include at least an oxidized coenzyme.
  • an oxidized coenzyme is included in the enzyme fixed to the negative electrode, a coenzyme oxidase can be further included.
  • an electron transfer mediator can be immobilized on at least one of the negative electrode and the positive electrode of the fuel cell according to the present technology.
  • the fuel cell according to the present technology can be suitably used for any electronic device.
  • an electronic device using a fuel cell in which an oxidoreductase is immobilized as a catalyst on at least one of a negative electrode and a positive electrode, On the surface of the bendable non-conductive sheet Provided is an electronic device using a fuel cell in which the electrode is formed by performing printing using at least an electrode material containing at least conductive particles and the oxidoreductase.
  • FIG. 5 is a top schematic plan view schematically showing a second embodiment of the fuel cell manufacturing method according to the present technology, where FIG. 3A is a schematic plan view of the manufactured fuel cell viewed from the negative electrode 13 side, FIG. Middle (B) is a schematic plan view of the manufactured fuel cell as viewed from the positive electrode 14.
  • FIG. 4A is a plan view schematically illustrating a third embodiment of the fuel cell manufacturing method according to the present technology, and FIG. 4A is a schematic plan view of the manufactured fuel cell viewed from the negative electrode 13 side.
  • Middle (B) is a schematic plan view of the manufactured fuel cell as viewed from the positive electrode 14.
  • FIG. 5A is a top schematic plan view schematically showing a fourth embodiment of the fuel cell manufacturing method according to the present technology, and FIG. 5A is a schematic plan view of the manufactured fuel cell viewed from the negative electrode 13 side;
  • FIG. Middle (B) is a schematic plan view of the manufactured fuel cell as viewed from the positive electrode 14.
  • FIG. 6A is a top schematic plan view schematically showing a fifth embodiment of the fuel cell manufacturing method according to the present technology, and FIG. 6A is a schematic plan view when the manufactured fuel cell is viewed from the negative electrode 13 side.
  • FIG. 1 is a schematic cross-sectional view showing a first embodiment of a fuel cell 1 according to the present technology. It is a cross-sectional model diagram which shows 2nd Embodiment of the fuel cell 1 which concerns on this technique. It is a cross-sectional model diagram which shows 3rd Embodiment of the fuel cell 1 which concerns on this technique. It is a perspective schematic diagram which shows an example of the storage method at the time of non-use of the fuel cell 1 which concerns on this technique.
  • FIG. 1 is a flowchart of a fuel cell manufacturing method according to the present technology.
  • the fuel cell manufacturing method according to the present technology is a method for manufacturing a fuel cell in which an oxidoreductase is immobilized as a catalyst on at least one of a negative electrode and a positive electrode, and includes an electrode pattern manufacturing step I and a negative electrode positive electrode manufacturing step. This is a method of performing at least II.
  • each step will be described in detail.
  • Electrode pattern preparation process I is a step of producing an electrode pattern by printing on the surface of the non-conductive sheet 11 using the electrode material 12.
  • the electrode material 12 uses a material containing at least conductive particles.
  • the non-conductive sheet 11 used in the electrode pattern manufacturing step I of the present technology is a sheet that is not conductive and can be bent, and may be, for example, a porous sheet that is permeable to liquid such as fuel and gas. Any material can be freely selected and used.
  • a nonwoven fabric made of polyamide fiber, polyester fiber, polyolefin fiber, cellulosic fiber or the like, a nonwoven fabric hydrophilized by plasma treatment or UV ozone treatment, or a semipermeable membrane such as cellophane may be adopted. Is possible.
  • the conductive particles used in the electrode pattern manufacturing step I of the present technology are conductive, and any particles can be freely selected and used as long as the effects of the present technology are not impaired.
  • conductive activated carbon gold, silver, platinum, copper, zinc, titanium, aluminum, magnesium, palladium, iridium, chromium, and metal particles such as manganese can be employed.
  • conductive activated carbon gold, silver, platinum, copper, zinc, titanium, aluminum, magnesium, palladium, iridium, chromium, and metal particles such as manganese.
  • the electrode material 12 used in the electrode pattern preparation step I of the present technology only needs to contain at least the conductive particles.
  • a so-called binder is used. It is also possible to contain a binder functioning as a conductive agent, a conductive aid, an organic solvent, and the like.
  • the binder that can be used in the electrode pattern manufacturing step I of the present technology functions as a binder, and any binder can be freely selected and used as long as the effect of the present technology is not impaired.
  • any binder can be freely selected and used as long as the effect of the present technology is not impaired.
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • EPDM ethylene-propylene-diene copolymer
  • EC ethylcellulose
  • CMC carbylmethylcellulose
  • hydroxypropylcellulose styrene butadiene rubber (SBR)
  • Ethylene-propylene-diene rubber EPDM
  • polybutadiene fluororubber, polyethylene oxide, polyvinyl pyrrolidone, polyester resin, acrylic resin, phenol resin, epoxy resin, polyvinyl alcohol, and the like can be employed.
  • any conductive assistant can be freely selected and used according to the type of the conductive particles. be able to.
  • conductive carbon black such as ketjen black or acetylene black, graphite, or the like can be used.
  • ketjen black it is particularly preferable to use ketjen black in the present technology. This is because ketjen black has high conductivity.
  • any solvent can be used depending on the types of the conductive particles, the binder, and the conductive auxiliary. It can be freely selected and used.
  • NMP N-methylpyrrolidone
  • 4-methyl-2-pentanone and water are particularly preferable. This is because 4-methyl-2-pentanone and water, for example, have a property that the enzyme is not easily deactivated even when the electrode component and the catalyst component (enzyme) are mixed and printed as described later. Further, 4-methyl-2-pentanone and water have an advantage that they are easy to dry because of their low boiling point.
  • the printing pattern of the electrode material on the surface of the non-conductive sheet 11 can be freely designed according to the purpose.
  • the electrode material 12 can be printed on both surfaces of the non-conductive sheet so that the electrode material faces the non-conductive sheet 11.
  • the printing method is not particularly limited, and it is possible in the present technology to use a method for printing one side at a time or a method for performing double-sided printing at a time.
  • the electrode material 12 is printed on both surfaces of the non-conductive sheet 11 so that the electrode material 12 faces the non-conductive sheet 11, in addition to the electrode pattern preparation step I
  • the fuel cell according to the present technology can be manufactured only by performing the negative electrode-positive electrode preparation step II described later. That is, since the negative electrode 13 and the positive electrode 14 can be formed so as to face each other with the non-conductive sheet 11 only by the printing technique, it is possible to manufacture the fuel cell according to the present technique very easily and in a short time. It is.
  • the printing method in the electrode pattern manufacturing step I of the present technology can be performed by freely selecting an existing printing method as long as the effect of the present technology is not impaired.
  • screen printing, offset printing, flexographic printing, gravure printing, ink jet printing, application by a dispenser, etc. can be employed.
  • Negative electrode positive electrode manufacturing process II is a step of forming the negative electrode 13 and the positive electrode 14 by printing on the electrode pattern prepared in the electrode pattern preparation step I using a predetermined oxidoreductase.
  • one or more existing enzymes can be freely selected and used depending on the type of fuel to be used unless the effect of the present technology is impaired. it can.
  • an oxidase that oxidizes and decomposes saccharides can be used.
  • oxidase examples include glucose dehydrogenase, gluconate 5 dehydrogenase, gluconate 2 dehydrogenase, alcohol dehydrogenase, aldehyde reductase, aldehyde dehydrogenase, lactate dehydrogenase, hydroxy parbate reductase, glycerate dehydrogenase, formate dehydrogenase, fructose dehydrogenase, galactose dehydrogenase, etc. Can be mentioned.
  • an oxidized coenzyme and a coenzyme oxidase may be fixed to the negative electrode 13.
  • the oxidized coenzyme include nicotinamide adenine dinucleotide (hereinafter referred to as “NAD + ”), nicotinamide adenine dinucleotide phosphate (hereinafter referred to as “NADP + ”) flavin.
  • NAD + nicotinamide adenine dinucleotide
  • NADP + nicotinamide adenine dinucleotide phosphate
  • FAD + adenine dinucleotide
  • PQQ2 + pyrrolo-quinolinequinone
  • coenzyme oxidase include diaphorase.
  • an electron transfer mediator may be fixed to the negative electrode 13 in addition to the above oxidase and oxidized coenzyme. This is for smooth delivery of the electrons generated above to the electrodes.
  • the electron transfer mediator include 2-amino-3-carboxy-1,4-naphthoquinone (ACNQ), vitamin K3, 2-amino-1,4-naphthoquinone (ANQ), 2-amino-3-methyl-1 , 4-naphthoquinone (AMNQ), 2,3-diamino-1,4-naphthoquinone, anthraquinone-1-sulfonic acid, anthraquinone-2-sulfonic acid, osmium (Os), ruthenium (Ru), iron (Fe), cobalt
  • metal complexes such as (Co), viologen compounds such as benzyl viologen, compounds having a quinone skeleton, compounds having a nicotinamide
  • an enzyme having an oxidase activity using oxygen as a reaction substrate and free from one or more existing enzymes can be used as long as the effect of the present technology is not impaired.
  • laccase, bilirubin oxidase, ascorbate oxidase and the like can be used.
  • an electron transfer mediator may be fixed to the positive electrode 14. This is to smoothly receive electrons sent from the negative electrode 13.
  • the type of electron transfer mediator that can be fixed to the positive electrode 14 is not particularly limited, and can be freely selected as necessary.
  • ABTS 2,2′-azinobis (3-ethylbenzoline-6-sulfonate)
  • K 3 [Fe (CN) 6 ] or the like can be used.
  • the printing method in the negative electrode positive electrode manufacturing step II of the present technology can be performed by freely selecting an existing printing method as long as the effect of the present technology is not impaired.
  • screen printing, offset printing, flexographic printing, gravure printing, ink jet printing, application by a dispenser, etc. can be employed.
  • the enzyme used in the negative electrode-positive electrode preparation step II of the present technology is preferably an enzyme having heat resistance. This is because by using an enzyme having heat resistance, inactivation of the enzyme in the printing process can be suppressed, and printing at room temperature instead of low temperature becomes possible.
  • a buffer solution such as a phosphate buffer solution that can maintain the enzyme activity. This is because by selecting a buffer capable of maintaining the enzyme activity, it is possible to suppress the inactivation of the enzyme in the printing process, and printing at room temperature instead of low temperature becomes possible.
  • the negative electrode-positive electrode preparation step II can be performed simultaneously with the electrode pattern preparation step I, for example, by mixing and printing an electrode component and a catalyst component (enzyme).
  • the water repellent treatment step III is a step of performing a water repellent treatment on a portion where the negative electrode 13 and the positive electrode 14 are not formed.
  • the water repellent treatment step III is not an essential step in the fuel cell manufacturing method according to the present technology, but is preferably performed in order to reliably generate power.
  • a water repellent treatment is performed on a portion of the non-conductive sheet 11 where the electrode pattern is not formed. In this way, by performing water-repellent treatment on the part where the electrode pattern is not formed in the electrode pattern manufacturing step I, it is possible to prevent the fuel from accidentally penetrating into the positive electrode 14 and preventing electric leakage. This can contribute to the improvement of the performance of the fuel cell to be manufactured.
  • water repellent treatment step III when the hydrophilic electrode material 12 is used in the electrode pattern preparation step I, water repellent is also applied to a portion of the electrode pattern where the negative electrode 13 and the positive electrode 14 are not formed. Processing can be performed. In this manner, by performing water-repellent treatment on the portion of the electrode pattern where the negative electrode 13 and the positive electrode 14 are not formed, leakage can be prevented, and as a result, contributes to higher performance of the manufactured fuel cell. can do.
  • the water repellent treatment method performed in the water repellent treatment step III can be performed by freely selecting an existing method as long as the effect of the present technology is not impaired.
  • coating a water repellent is mentioned.
  • one or more existing water repellents can be freely selected and used as long as the effect of the present technology is not impaired.
  • silicone oil polytetrafluoroethylene (PTFE), perfluoroalkoxyalkane (PFA), perfluoroethylene propene copolymer (FEP), ethylene-tetrafluoroethylene copolymer (ETFE), ethylene-chlorotrifluoroethylene copolymer (ECTFE)
  • PVDF polyvinylidene fluoride
  • PCTFE polychlorotrifluoroethylene
  • PVF polyvinyl fluoride
  • the application method of the water repellent is not particularly limited, and any existing method can be freely selected and performed as long as the effect of the present technology is not impaired.
  • a method of applying a water repellent using a printing technique can be used as in the electrode pattern preparation step I and the negative electrode positive electrode preparation step II.
  • the printing method in this case is also not particularly limited, and an existing printing method can be freely selected and performed.
  • screen printing, offset printing, flexographic printing, gravure printing, ink jet printing, application by a dispenser, etc. can be employed.
  • the timing of performing the water repellent treatment step III is not particularly limited as long as it is after the electrode pattern preparation step I is performed. It can be performed immediately after the electrode pattern preparation step I, or can be performed after the negative electrode positive electrode preparation step II. It can also be performed after the hydrophilic treatment step IV described later.
  • the hydrophilic treatment process IV is a process in which a hydrophilic treatment is performed on a portion where the negative electrode 13 and the positive electrode 14 are formed on the electrode pattern produced in the electrode pattern production process I.
  • This hydrophilic treatment step IV is not an essential step in the fuel cell production method according to the present technology, but is performed in the negative electrode positive electrode preparation step II in order to reliably immobilize the enzymes constituting the negative electrode 13 and the positive electrode 14. It is preferable.
  • This step is preferably performed when the electrode material 12 used in the electrode pattern preparation step I is hydrophobic.
  • the hydrophilic treatment method performed in the hydrophilic treatment step IV can be performed by freely selecting an existing method as long as the effect of the present technology is not impaired.
  • a method of applying a hydrophilizing agent, plasma treatment, UV ozone treatment and the like can be mentioned.
  • hydrophilizing agent When using a hydrophilizing agent, one or two or more existing hydrophilizing agents can be freely selected and used as long as the hydrophilizing agent that can be used in the present technology does not impair the effects of the present technology. Can do. For example, methanol or the like can be used.
  • the application method of the hydrophilizing agent is not particularly limited, and an existing method can be freely selected and performed as long as the effect of the present technology is not impaired.
  • Examples thereof include a method of applying a hydrophilizing agent using a printing technique, as in the electrode pattern preparation step I, the negative electrode positive electrode preparation step II, and the hydrophobic treatment step III.
  • the printing method in this case is also not particularly limited, and an existing printing method can be freely selected and performed. For example, screen printing, offset printing, flexographic printing, gravure printing, ink jet printing, application by a dispenser, etc. can be employed.
  • the hydrophilic treatment step IV needs to be performed after the electrode pattern production step I and before the negative electrode positive electrode production step II, but the order of the hydrophobic treatment step III is arbitrary.
  • the hydrophilic treatment step IV may be performed after the hydrophobic treatment step III, or the hydrophilic treatment step IV may be performed before the hydrophobic treatment step III.
  • the cutting process V is a process of cutting the non-conductive sheet 11 into a necessary size and shape.
  • this cutting process V is not an essential process in the fuel cell manufacturing method according to the present technology, for example, a third embodiment shown in FIG. 4 to be described later, a fourth embodiment shown in FIG. 5, and a first embodiment shown in FIG.
  • the step is performed when a plurality of electrodes are printed at a time.
  • the cutting process V can be performed at any timing before the bending process VI described later.
  • each step can be performed after the non-conductive sheet 11 is first cut into a desired size and shape.
  • the electrode pattern production is performed.
  • the bending step VI includes the non-conductive sheet 11 having the negative electrode 13 and the positive electrode 14 formed on the surface through the electrode pattern preparation step I and the negative electrode positive electrode preparation step II, the negative electrode 13 and the positive electrode 14. Is a step of bending so as to face each other through the non-conductive sheet 11.
  • the bending step VI is not an essential step in the fuel cell manufacturing method according to the present technology.
  • each electrode is formed on both surfaces of the non-conductive sheet 11. Except for the case where it is formed, the second embodiment shown in FIG. 3, the third embodiment shown in FIG. 4, the fourth embodiment shown in FIG. 5, the fifth embodiment shown in FIG.
  • the bending process VI will be described.
  • FIG. 3 is a top plan view schematically showing a second embodiment of the fuel cell manufacturing method according to the present technology.
  • FIG. 3A is a plan view of the manufactured fuel cell viewed from the negative electrode 13 side.
  • FIG. 3B is a schematic plan view of the manufactured fuel cell viewed from the positive electrode 14.
  • a fuel cell in which two electrodes each composed of a negative electrode 13 and a positive electrode 14 are connected in series is manufactured.
  • the non-conductive sheet 11 is fold-folded in a state where the negative electrode 13 and the positive electrode 14 are printed on the upper side of the sheet, thereby connecting the negative electrode 13 and the positive electrode 14 to the non-conductive. It is made to oppose through the sheet
  • the negative electrode terminal 16 is connected to the negative electrode 13 of one electrode and the positive electrode terminal 17 is connected to the positive electrode 14 of the other electrode.
  • 16 and the positive electrode terminal 17 are not essential for the fuel cell according to the present technology, and each terminal from an electronic device to be used can be connected, or a commercially available terminal can be connected when the fuel cell is used.
  • FIG. 4 is a top schematic plan view schematically showing a third embodiment of the fuel cell manufacturing method according to the present technology.
  • FIG. 4A is a schematic plan view of the manufactured fuel cell viewed from the negative electrode 13 side.
  • FIG. 4B is a schematic plan view of the manufactured fuel cell viewed from the positive electrode 14.
  • the third embodiment is an embodiment for manufacturing a fuel cell in which two electrodes each composed of a negative electrode 13 and a positive electrode 14 are connected in series. However, the cutting process V is performed. Is different from the second embodiment.
  • the non-conductive sheet 11 is folded in a mountain state with the negative electrode 13 and the positive electrode 14 printed on the upper side of the sheet.
  • the positive electrode 14 is opposed to the non-conductive sheet 11.
  • the negative electrode terminal 16 is connected to the negative electrode 13 of one electrode
  • the positive electrode terminal 17 is connected to the positive electrode 14 of the other electrode
  • the negative electrode terminal 16 and the positive electrode terminal 17 are not essential for the fuel cell according to the present technology.
  • the negative electrode 13 of one electrode and the positive electrode 14 of the other electrode are connected using the conductive material 12 ′.
  • the material 12 ′ is not essential for the fuel cell according to the present technology.
  • the printed pattern of the electrode material 12 is devised so that the negative electrode 13 of one electrode and the positive electrode 14 of the other electrode are connected. It is also possible to connect a commercially available removable conductive material 12 'when using the fuel cell.
  • FIG. 5 is an upper schematic plan view schematically showing the fourth embodiment of the fuel cell manufacturing method according to the present technology.
  • FIG. 5A is a schematic plan view of the manufactured fuel cell viewed from the negative electrode 13 side.
  • FIG. 5B is a schematic plan view of the manufactured fuel cell viewed from the positive electrode 14.
  • the fourth embodiment is an embodiment for manufacturing a fuel cell in which two electrodes including a negative electrode 13 and a positive electrode 14 are connected in parallel.
  • the non-conductive sheet 11 is folded in a mountain state with the negative electrode 13 and the positive electrode 14 printed on the sheet upper side.
  • the negative electrode 13 and the positive electrode 14 are opposed to each other with the non-conductive sheet 11 interposed therebetween.
  • the negative electrode terminal 16 and the positive electrode terminal 17 are connected to the said electrode pattern connected in parallel,
  • the negative electrode terminal 16 and the positive electrode terminal 17 are this technique. It is not essential for the fuel cell according to the above, and it is also possible to connect each terminal from the electronic device to be used, or to connect a commercially available removable terminal when using the fuel cell.
  • FIG. 6 is a top plan view schematically showing a fifth embodiment of the fuel cell manufacturing method according to the present technology.
  • FIG. 6A is a plan view of the manufactured fuel cell viewed from the negative electrode 13 side.
  • FIG. As in the second and third embodiments, the fifth embodiment is an embodiment in which a fuel cell in which two electrodes composed of a negative electrode 13 and a positive electrode 14 are connected in series is manufactured.
  • the non-conductive sheet 11 is valley-folded via the non-conductive sheet 11 ′ that has not been printed in a state where the negative electrode 13 and the positive electrode 14 are printed on the upper side of the sheet.
  • the negative electrode 13 and the positive electrode 14 are opposed to each other with the non-conductive sheet 11 interposed therebetween.
  • the non-conductive sheet 11 is bent so that the electrode pattern a connected to the negative electrode 13 of one electrode and the electrode pattern b connected to the positive electrode 14 of the other electrode are in contact with each other. It is possible to manufacture a fuel cell in which two electrodes 13 and a positive electrode 14 are connected in series.
  • the nonconductive sheet 11 ′ sandwiched between the negative electrode 13 and the positive electrode 14 may be the same as the nonconductive sheet 11 on which the negative electrode 13 and the positive electrode 14 are printed.
  • a non-conductive sheet made of another material may be used.
  • the negative electrode terminal 16 is connected to the negative electrode 13 of one electrode and the positive electrode terminal 17 is connected to the positive electrode 14 of the other electrode.
  • 16 and the positive electrode terminal 17 are not essential for the fuel cell according to the present technology. For example, it is also possible to connect each terminal from the electronic device to be used, or connect a commercially available removable terminal when using the fuel cell.
  • Fuel tank formation process VII is a step of forming a fuel tank by bending the non-conductive sheet 11 ′ that has not been printed.
  • This fuel tank formation step VII is not an essential step in the fuel cell manufacturing method according to the present technology, but is preferably performed in order to achieve further miniaturization of the fuel cell to be manufactured.
  • the non-conductive sheet 11 ′ used may be the same as the non-conductive sheet 11 on which the negative electrode 13 and the positive electrode 14 are printed, or a non-conductive sheet made of other materials.
  • An adhesive sheet may be used.
  • the non-conductive sheet 11 ′ to be used may be a new non-conductive sheet 11 ′ that has not been printed, or the electrode pattern preparation step I and the negative electrode / positive electrode. You may use the part which is not printed by the preparation process II.
  • the bending method of the non-conductive sheet 11 ′ is not particularly limited, and can be freely designed as long as it can be bent into a form capable of storing fuel.
  • the fuel tank 15 can be formed by forming it in a box shape as shown in FIG. 7 or forming it in a bag shape as shown in FIG.
  • FIG. 9 is a schematic cross-sectional view showing the first embodiment of the fuel cell 1 according to the present technology.
  • the fuel cell 1 according to the present technology is a fuel cell in which an oxidoreductase is immobilized as a catalyst on at least one of a negative electrode and a positive electrode, and includes at least a non-conductive sheet 11, an electrode material 12, It comprises a negative electrode 13 and a positive electrode 14.
  • the fuel cell 1 according to the present technology may further include a fuel tank 15, a negative electrode terminal 16, a positive electrode terminal 17, a proton permeable membrane 18, a fuel diffusion layer 19, and a gas-liquid separation membrane 20 as necessary. It is.
  • the negative electrode 13 is printed on the surface of the non-conductive sheet 11 by using at least an electrode material 12 containing conductive particles and the oxidoreductase. And the positive electrode 14 is formed.
  • the structure method of each electrode pattern, the printing method, etc. are the same as the fuel cell manufacturing method mentioned above, description is omitted here.
  • each configuration will be described in detail.
  • Non-conductive sheet 11 In the fuel cell 1 according to the present technology, the nonconductive sheet 11 functions as a separator that electrically separates the negative electrode 13 and the positive electrode 14.
  • the non-conductive sheet 11 used in the fuel cell 1 according to the present technology is a sheet that is not conductive and can be bent, and any material can be freely selected and used as long as the effect of the present technology is not impaired. be able to. Since the specific example of the non-conductive sheet 11 is the same as the fuel cell manufacturing method described above, description thereof is omitted here.
  • Electrode material 12 The electrode material 12 used for the fuel cell 1 according to the present technology contains at least conductive particles.
  • the conductive particles used in the fuel cell 1 according to the present technology are conductive, and any particles can be freely selected and used as long as the effects of the present technology are not impaired.
  • a specific example of the conductive particles is the same as that of the fuel cell manufacturing method described above, and thus the description thereof is omitted here.
  • the electrode material 12 used in the fuel cell 1 according to the present technology only needs to contain at least the conductive particles, but in order to reliably perform printing on the non-conductive sheet 11, for example, as a so-called binder It is also possible to contain a functioning binder, a conductive aid, an organic solvent, and the like. Specific examples of the binder, the conductive auxiliary agent, and the organic solvent are the same as those in the fuel cell manufacturing method described above, and thus the description thereof is omitted here.
  • Negative electrode 13 In the fuel cell 1 according to the present technology, the negative electrode 13 is configured by printing on the electrode material 12 printed on the surface of the non-conductive sheet 11 using a predetermined enzyme.
  • an enzyme used for producing the negative electrode 13 one or more existing oxidases can be freely selected and used depending on the type of fuel to be used unless the effect of the present technology is impaired. Can do. Since the specific example of an oxidase is the same as the fuel cell manufacturing method mentioned above, description is omitted here.
  • an oxidized coenzyme, a coenzyme oxidase, an electron transfer mediator, and the like can be immobilized on the negative electrode 13 of the fuel cell 1 according to the present technology as necessary.
  • Specific examples of the oxidized coenzyme, coenzyme oxidase, electron transfer mediator, and the like are the same as those in the fuel cell manufacturing method described above, and will not be described here.
  • the positive electrode 14 is configured by performing printing using a predetermined enzyme on the electrode material 12 printed on the surface of the non-conductive sheet 11.
  • an enzyme used for producing the positive electrode 14 an enzyme having an oxidase activity using oxygen as a reaction substrate and free from one or more existing enzymes can be used as long as the effect of the present technology is not impaired. Can be selected and used. Since the specific example of the enzyme is the same as the fuel cell manufacturing method described above, description thereof is omitted here.
  • an electron transfer mediator or the like can be immobilized on the positive electrode 14 of the fuel cell 1 according to the present technology as necessary.
  • Specific examples of the electron transfer mediator and the like are the same as those in the fuel cell manufacturing method described above, and thus the description thereof is omitted here.
  • the negative electrode 13 and the positive electrode 14 are formed to face each other with the non-conductive sheet 11 interposed therebetween.
  • the formation method is not particularly limited as long as the negative electrode 13 and the positive electrode 14 can be formed so as to face each other with the non-conductive sheet 11 therebetween, and can be freely designed.
  • the electrode material 12 is printed on both surfaces of the nonconductive sheet 11 so that the electrode material 12 faces the nonconductive sheet 11.
  • the enzyme used for the negative electrode 13 is printed on the electrode material 12 on one side
  • the enzyme used for the positive electrode 14 is printed on the electrode material 12 on the other side.
  • the non-conductive sheet 11 can be formed to face each other.
  • the non-conductive sheet 11 having at least the electrode material 12 and the oxidoreductase printed on the surface thereof. Can be formed such that the negative electrode 13 and the positive electrode 14 are bent with the non-conductive sheet 11 therebetween.
  • the non-conductive sheet 11 is folded in a mountain shape in a state where the negative electrode 13 and the positive electrode 14 are printed on the sheet upper side. 13 and the positive electrode 14 are formed so as to face each other with the non-conductive sheet 11 interposed therebetween (see the fuel cell manufacturing method shown in FIGS. 3, 4, and 5).
  • the non-conductive sheet 11 is printed on the non-conductive sheet 11 with the negative electrode 13 and the positive electrode 14 printed on the upper side of the sheet.
  • the negative electrode 13 and the positive electrode 14 are formed so as to be opposed to each other with the non-conductive sheet 11 interposed therebetween (see the fuel cell manufacturing method shown in FIG. 6).
  • the number of electrodes (the negative electrode 13 and the positive electrode 14) is not particularly limited.
  • the number of electrodes (the negative electrode 13 and the positive electrode 14) can be freely changed in design according to the required electric energy.
  • connection method is not particularly limited, and either a serial connection or a parallel connection can be adopted according to a required electric energy.
  • a specific example of series connection is the same as the fuel cell manufacturing method shown in FIG. 3, FIG. 4, and FIG. 6, and a specific example of parallel connection is the same as the fuel cell manufacturing method shown in FIG. Therefore, the explanation is omitted here.
  • Fuel tank 15 The fuel cell 1 according to the present technology may include a fuel tank 15 as necessary.
  • the fuel tank 15 is not an essential component for the fuel cell 1 according to the present technology, and a fuel tank 15 having a form capable of storing commercially available fuel can be attached and used at the time of use.
  • the fuel tank 15 may be provided in advance in the fuel cell 1 according to the present technology.
  • the fuel tank 15 may be designed to be removable and may be designed to be detached when not in use and attached when in use. It is.
  • the fuel tank 15 can be freely designed using a free material as long as the fuel tank 15 can store fuel.
  • the non-conductive sheet 11 ′ not subjected to the printing is used. It is possible to form the fuel tank 15 by bending.
  • the power generation unit can be designed to be very thin depending on the design, whereas the fuel tank always takes up a large space regardless of the presence or absence of fuel, leading to an increase in the size of the biofuel cell. It was a cause. Although it is possible to use a thin fuel tank to reduce the size of the battery, the fuel tank with a small capacity will run out of fuel in a short time, so the problem of having to replenish fuel frequently Had occurred.
  • the fuel tank 15 can be formed by bending the non-conductive sheet 11 ′, thereby contributing to further downsizing of the battery.
  • the fuel tank 15 can be stored compactly when not in use. It can be formed simply by expanding the non-conductive sheet 11 ′. With such a configuration, the fuel cell 1 according to the present technology can be used as a very useful battery in an emergency such as a disaster or an emergency.
  • the fuel tank 15 can be formed by bending the non-conductive sheet 11 ′ so that the fuel cell 1 according to the present technology is familiar and safe as described later. This is because a high beverage can be used as fuel.
  • a high beverage can be used as fuel.
  • the fuel is gaseous or highly volatile methanol, it can be completely sealed, and the fuel tank is robust so that dangerous fuel does not leak out. There was a need to design.
  • the non-conductive sheet 11 ′ used for forming the fuel tank 15 of the fuel cell 1 according to the present technology may be the same as the non-conductive sheet 11 on which the negative electrode 13 and the positive electrode 14 are printed. However, non-conductive sheets made of other materials may be used.
  • the non-conductive sheet 11 ′ used for forming the fuel tank 15 of the fuel cell 1 according to the present technology may be a new non-conductive sheet 11 ′ that has not been printed. A portion of the non-conductive sheet 11 where the negative electrode 13 or the positive electrode 14 is not printed may be used.
  • the method of bending the non-conductive sheet 11 ′ is not particularly limited, and can be freely designed as long as it can be bent into a form capable of storing fuel. .
  • Negative terminal 16 and positive terminal 17 The fuel cell 1 according to the present technology may include the negative electrode terminal 16 and / or the positive electrode terminal 17.
  • the negative electrode terminal 16 and the positive electrode terminal 17 are not essential components in the fuel cell 1 according to the present technology.
  • each terminal from an electronic device to be used or a commercially available detachable device can be used when using the fuel cell. It is also possible to connect the terminals.
  • the negative electrode terminal 16 and the positive electrode terminal 17 that can be used in the fuel cell 1 according to the present technology can be configured using any known material.
  • the material is not particularly limited as long as the material can be electrically connected to the outside, for example, Pt, Ag, Au, Ru, Rh, Os, Nb, Mo, In, Ir, Zn, Mn, Fe, Co , Ti, V, Cr, Pd, Re, Ta, W, Zr, Ge, Hf and other metals, alumels, brass, duralumin, bronze, nickelel, platinum rhodium, hyperco, permalloy, permender, foreign silver, phosphor bronze and other alloys , Conductive polymers such as polyacetylenes, carbon materials such as graphite and carbon black, borides such as HfB2, NbB, CrB 2 and B 4 C, nitrides such as TiN and ZrN, VSi 2 , NbSi 2 and MoSi 2 , silicides such as
  • Proton permeable membrane 18 In the fuel cell 1 according to the present technology, it is necessary to allow protons to pass between the negative electrode 13 and the positive electrode 14. In order to allow protons to pass therethrough, a proton permeable membrane 18 can be disposed between the negative electrode 13 and the positive electrode 14, but in the present technology, by utilizing the liquid permeability of the non-conductive sheet 11, Proton can permeate through water as a medium. At this time, a buffer substance is used in combination to maintain the pH. In addition, this buffer substance is used by a method of putting in the fuel F in advance, a method of putting it in the fuel tank 15 or a fuel diffusion layer 19 described later, a method of infiltrating the non-conductive sheet 11, and the like. It can be used for proton conduction between the negative electrode 13 and the positive electrode 14.
  • any buffer substance that can be used in the fuel cell 1 according to the present technology can be freely selected and used as long as the effects of the present technology are not impaired.
  • dihydrogen phosphate ions such as sodium dihydrogen phosphate (NaH 2 PO 4), potassium dihydrogen phosphate (KH 2 PO 4) is produced (H 2 PO 4 -), 2- amino-2-hydroxymethyl- 1,3-propanediol (abbreviated tris), 2- (N-morpholino) ethanesulfonic acid (MES), cacodylic acid, carbonic acid (H 2 CO 3 ), hydrogen citrate ion, N- (2-acetamido) imino Diacetic acid (ADA), piperazine-N, N′-bis (2-ethanesulfonic acid) (PIPES), N- (2-acetamido) -2-aminoethanesulfonic acid (ACES), 3- (N-morpholino) Propanesulfonic acid (MOPS), N-2-hydroxye
  • Fuel diffusion layer 19 The fuel cell 1 according to the present technology may include a fuel diffusion layer 19.
  • the fuel diffusion layer 19 is not an essential component for the fuel cell 1 according to the present technology, but to supply fuel to the negative electrode 13 reliably and accurately and to adjust the speed and amount of fuel supply. Is preferably provided.
  • the structure of the fuel diffusion layer 19 is not particularly limited as long as the fuel can be diffused and supplied to the negative electrode 13.
  • a material such as paper, cloth, flow path, polymer, and hydrophilic coating material. More specifically, for example, cotton, hemp, hair, silk, tencel, cupra, rayon, polynosic, acetate, triacetate, promix, nylon, polyester, acrylic, polyurethane, etc.
  • hydrophilic carbon fiber material Materials such as gelatin, collagen gel, casein, agar, starch, polyvinyl alcohol, polyacrylic acid, polyacrylamide, carboxymethylcellulose, hydroxyethylcellulose, polyvinylpyrrolidone, dextran and other hydrophilic polymers, titanium oxide coatings and other hydrophilic coating agents It can be configured using.
  • Gas-liquid separation membrane 20 The fuel cell 1 according to the present technology can also include a gas-liquid separation membrane 20. Although this gas-liquid separation membrane 20 is not an essential component for the fuel cell 1 according to the present technology, in order to reliably supply oxygen from the air to the positive electrode 14 and smoothly advance the reduction reaction at the positive electrode 14. Is preferably provided.
  • the configuration of the gas-liquid separation membrane 20 is not particularly limited as long as oxygen from the air can be supplied to the positive electrode 14.
  • a material such as polytetrafluoroethylene (PTFE) or polyvinylidene fluoride (PVDF) can be used.
  • the type of the fuel F supplied to the fuel cell 1 according to the present technology described above is not particularly limited, and any known fuel for the fuel cell can be supplied.
  • any known fuel for the fuel cell can be supplied.
  • proteins, fatty acids, carbohydrates, or other compounds can be used.
  • carbohydrates are particularly preferable from the viewpoints of availability, price, versatility, safety, ease of handling, and the like from foods, residues thereof, fermentation products, or biomass.
  • a fuel that can be eaten or contacted by the human body For example, drinks such as juices, sports drinks, sugar water, alcohols, and cosmetics such as lotions can be used. That is, beverages, cosmetics, and the like taken in daily life can be used as fuel for the fuel cell 1 according to the present technology. In this way, using fuel that can be eaten or contacted by the human body produces not only safety but also the advantage that it becomes possible to replenish any fuel at any place.
  • the fuel cell 1 according to the present technology can be manufactured only by using the printing technology, it is possible to reduce the size of the battery and facilitate the design change.
  • the fuel cell 1 according to the present technology has a sheet-like form, for example, as illustrated in FIG. 12, the fuel cell 1 is wound and stored when not in use, and is used in accordance with a target power amount and shape. It is also possible to cut and use as much as necessary.
  • the battery size, form, performance, etc. are determined in advance for all the batteries that have been marketed so far, and it is not possible for the user to change the design of the battery size, form, performance, etc. according to the purpose. It was impossible.
  • the fuel cell 1 according to the present technology can also be manufactured using a home inkjet printer or the like, for example, the user himself / herself performs design / design according to the purpose on a personal computer to obtain a desired size.
  • the fuel cell 1 having the form and performance can be produced.
  • the fuel cell 1 according to the present technology can add entertainment such that the user can freely manufacture the battery.
  • the use of experimental teaching materials and battery production kits can be expected to contribute to education.
  • the fuel cell 1 according to the present technology can manufacture an essential configuration without using metal. Therefore, compared with the conventional battery, the load given to the environment is small, and it can be discarded as a combustible material without being separated after use.
  • the fuel cell 1 according to the present technology can be suitably used for all known electronic devices by utilizing the simplicity of the manufacturing method and disposal method, the ease of design change such as miniaturization, and the like.
  • the structure, function, and the like are not particularly limited, and include all devices that operate electrically.
  • mobile devices such as mobile phones, mobile devices, robots, personal computers, game devices, in-vehicle devices, home appliances, industrial products, automobiles, motorcycles, aircraft, rockets, spacecrafts and other mobile objects, inspection devices, pacemakers
  • Power generation systems medical devices such as power supplies for in-vivo devices including biosensors, power generation systems such as systems that disassemble garbage and generate electrical energy, and cogeneration systems.
  • this technique can also take the following structures.
  • a method for producing a fuel cell in which an oxidoreductase is immobilized as a catalyst on at least one of a negative electrode and a positive electrode An electrode pattern production step of producing an electrode pattern by printing on the surface of the bendable non-conductive sheet using an electrode material containing at least conductive particles; On the electrode pattern produced in the electrode pattern production process, by performing printing using a predetermined oxidoreductase, a negative electrode and positive electrode production process for producing a negative electrode and a positive electrode, A fuel cell manufacturing method that performs at least the above.
  • the non-conductive sheet on which the negative electrode and the positive electrode are formed on the surface through the electrode pattern preparation step and the negative electrode positive electrode preparation step, and the negative electrode and the positive electrode face each other through the non-conductive sheet The method of manufacturing a fuel cell according to any one of (1) to (3), wherein a bending step of bending is performed.
  • (6) The fuel cell manufacturing method according to (5), wherein in the folding step, the non-conductive sheet is folded in a mountain state in a state where the negative electrode and the positive electrode are printed on the upper side of the sheet.
  • the non-conductive sheet is valley-folded through the non-conductive sheet that has not been printed in a state where the negative electrode and the positive electrode are printed on the upper side of the sheet (5 )
  • Fuel cell manufacturing method as described.
  • Fuel cell. (10) The fuel cell according to (9), wherein the negative electrode and the positive electrode are printed on both surfaces of the nonconductive sheet so as to face each other through the nonconductive sheet.
  • the fuel cell manufacturing method according to the present technology is a very simple method, and the manufactured fuel cell 1 can be easily discarded, and design changes such as miniaturization are facilitated. Therefore, it can be realized as a power source for all electronic devices.
  • fuel can be supplied as needed at any place. Therefore, it can contribute as an electric power source when electric power supply stops at the time of a disaster.
  • Electrode pattern production process II Negative and positive electrode fabrication process III Water repellent treatment process IV Hydrophilic treatment process V Cutting process VI Bending process VII Fuel tank formation step 1 Fuel cell 11, 11 ′ Non-conductive sheet 12 Electrode material 13 Negative electrode 14 Positive electrode 15 Fuel tank 16 Negative electrode terminal 17 Positive electrode terminal 18 Proton permeable membrane 19 Fuel diffusion layer 20 Gas-liquid separation membrane F Fuel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Materials Engineering (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

 負極又は正極の少なくとも一方の電極上に、触媒として酸化還元酵素が固定化された燃料電池を製造する技術であって、その製造方法および廃棄方法が簡便であり、かつ、小型化などの設計変更も、容易に行うことが可能な技術を提供すること。 負極又は正極の少なくとも一方の電極上に、触媒として酸化還元酵素が固定化された燃料電池の製造方法であって、曲折可能な非導電性シートの表面に、導電性粒子を少なくとも含有する電極材料を印刷する電極パターン作製工程と、該電極パターン作製工程で作製した電極パターン上に、所定の酸化還元酵素を印刷して負極および正極を作成する負極正極作製工程と、を少なくとも行う燃料電池製造方法を提供する。

Description

燃料電池の製造方法、並びに燃料電池および電子機器
 本技術は、燃料電池の製造方法に関する。より詳しくは、負極又は正極の少なくとも一方の電極上に、触媒として酸化還元酵素が固定化された燃料電池の製造方法、並びに該製造方法を用いて製造された燃料電池および該燃料電池を用いた電子機器に関する。
 電池は、大きく分けて化学電池と物理電池に分類することができ、化学電池としては、マンガン乾電池、アルカリ乾電池、ニッケル系一次電池、リチウム電池、アルカリボタン電池、酸化銀電池、空気(亜鉛)電池などの一次電池、ニカド電池、ニッケル水素電池、リチウムイオン電池、鉛畜電池、アルカリ畜電池などの二次電池、バイオ燃料電池などの燃料電池が、物理電池としては、太陽電池等が存在する。
 以下、本技術に関わりのある化学電池について説明する。一次電池とは、内部に反応物質を有しており、反応物質の化学反応により電流を生じる電池であって、反応物質がすべて消費されるまで使用できる電池であり、例えば、乾電池等が挙げられる。二次電池とは、内部に反応物質を有しており、電流を発生させることで反応物質が減少するが、充電することによって逆反応が起こり、生成物質がもとの反応物質に戻ることで繰り返し使用することが可能な電池であり、例えば、自動車のバッテリーやリチウムイオン電池などが挙げられる。
 なかでも、負極又は正極の少なくとも一方の電極上に触媒として酸化還元酵素を固定した燃料電池(以下、バイオ燃料電池という。)は、例えばグルコース及びエタノールのように通常の工業触媒では反応が困難な燃料から、効率よく電子を取り出すことができるため、高容量でかつ安全性が高い次世代の燃料電池として注目されている。
 バイオ燃料電池の一例として、グルコースを燃料とするバイオ燃料電池の反応スキームを説明する。グルコースを燃料とするバイオ燃料電池においては、負極でグルコース(Glucose)の酸化反応が進行し、正極で大気中の酸素(O)の還元反応が進行する。そして、負極では、グルコース(Glucose)、グルコース脱水素酵素(Glucose Dehydrogenase)、ニコチンアミドアデニンジヌクレオチド(NAD;NicotinamideAdenine Dinucleotide)、ジアホラーゼ(Diaphorase)、メディエーター、電極(カーボン)の順に電子が受け渡される。
 ところで、このようなバイオ燃料電池は、一般的に、燃料を分解する酵素群、NAD(ニコチンアミドアデニンジヌクレオチド)とその還元体(NADH)、NADHデヒドロゲナーゼ、メディエーター、などを溶解させて各溶液とし、各溶液あるいは各溶液を一種以上混合した溶液を、電極材料上に適宜添加し、当該電極上で適宜混合し、その後乾燥、さらにこれらの添加混合乾燥を一回以上繰り返して電極を作製し(特許文献1参照)、作製した電極に、プロトン伝導体、負極に燃料を供給するための燃料供給層、気液分離膜などを積層させることで、製造される。この方法はとても煩雑な方法である。
 また、従来のバイオ燃料電池において、発電部は薄く小さく設計できるが、燃料タンクは目的に応じて所定の大きさが必要であった。そのため、燃料の有無に関係なく、燃料タンクのためのスペースが必要であり、バイオ燃料電池の小型化に歯止めをかける結果を招いていた。
 一方、二次電池や太陽電池においては、電極を薄くて均一でありつつも、平坦に製造できて、所望の形のパターンを経済的に製造できるという観点から、インクジェット印刷方式を用いた電極の製造方法が用いられている。
 例えば、特許文献2では、沸点が相対的に高くない溶媒を用いることにより、未乾燥液滴が高い表面張力により移動しつつ、ターゲット点から離れうるか、他の液滴とかたまりつつ移動する現象の発生を抑制し、一定の表面張力を有しつつも、精密なパターンを形成することが可能な二次電池に用いることが可能で、インクジェット印刷方式により電極を作製するための電極組成物に関する技術が開示されている。
 また、特許文献3では、シリコン基板の受光面に、電極を形成する部位に応じて、インクジェット法あるいはオフセット印刷によりドーパント濃度の高い拡散剤を塗布し、高濃度膜を形成し、次に、シリコン基板の受光面全体にスピンコートによって、先に塗布した拡散剤よりもドーパント濃度の低い拡散剤を塗布して、低濃度膜を高濃度膜に重ねて形成し、次に、熱処理を行って、ドーパントを拡散させ、高濃度エミッタ層および低濃度エミッタ層を形成するとともに、拡散剤に含まれる金属化合物により、高濃度エミッタ層の上に低屈折率の反射防止膜を形成し、低濃度エミッタ層の上に高屈折率の反射防止膜を形成し、次いで、高濃度エミッタ層の上に、受光面電極を形成することによって、安価に光電変換効率が高い選択エミッタ構造の太陽電池を製造する方法に関する技術が開示されている。
 これら二次電池や太陽電池の製造方法では、インクジェット方式などの印刷技術を用いることにより、薄くて平坦な電池を製造することができると行ったメリットがある。しかしながら、これら二次電池や太陽電池は、金属を含む電極活物質、電解液、用いる燃料などに有害物質(危険物質)や環境汚染物質を含む上に、希少元素も含むため、他の廃棄物と分別した上で、廃棄・回収などを行う必要がある。この問題は、二次電池や太陽電池に限らず、市販の一次電池や燃料電池にも同様の問題がある。
 なお、バイオ燃料電池においては、酵素の活性を維持することが重要視されているからか、当業者が印刷技術を用いるといった選択をすることはこれまで行われていない。
特開2006-127957号公報 特開2010-097946号公報 特開2010-109201号公報
 前述のように、バイオ燃料電池は、その製造方法が非常に煩雑である。また、バイオ燃料電池の燃料タンクは、目的に応じて所定の大きさが必要である。そのため、市販されているバイオ燃料電池は、予め電池の大きさ、形状、性能などが決まっており、目的に合わせた小型化などの設計変更は、容易に行うことができなかった。
 また、前述のように、印刷技術を用いて二次電池や太陽電池をより簡便に作製する技術は既に存在する。しかし、この二次電池や太陽電池、更には既存の一次電池や燃料電池は、金属、有害物質(危険物質)、環境汚染物質、希少元素などを含むため、他の廃棄物と分別した上で、廃棄・回収などを行う必要があり、製造方法が簡便になった半面、廃棄方法は複雑なままであるといった問題がある。
 そこで、本技術では、負極又は正極の少なくとも一方の電極上に、触媒として酸化還元酵素が固定化された燃料電池を製造する技術であって、その製造方法および廃棄方法が簡便であり、かつ、小型化などの設計変更も、容易に行うことが可能な技術を提供することを主目的とする。
 本願発明者らは、前記課題を解決するために、バイオ燃料電池の製造方法およびその構造について鋭意研究を行った結果、従来の常識から発想を転換することで、バイオ燃料電池では常識的に行われていなかった印刷技術に注目し、新規な製造技術を確立することで、本技術を完成するに至った。
 即ち、本技術では、まず、負極又は正極の少なくとも一方の電極上に、触媒として酸化還元酵素が固定化された燃料電池の製造方法であって、
 曲折可能な非導電性シートの表面に、導電性粒子を少なくとも含有する電極材料を用いて印刷を施すことにより電極パターンを作製する電極パターン作製工程と、
 該電極パターン作製工程で作製した電極パターン上に、所定の酸化還元酵素を用いて印刷を施すことにより、負極および正極を作成する負極正極作製工程と、
 を少なくとも行う燃料電池製造方法を提供する。
 本技術に係る燃料電池製造方法では、セパレーターの役割を果たす前記非導電性シートに、印刷技術を用いて各電極を形成している。そのため、印刷パターンなどの設計を変更するだけで、目的に応じた様々な形態の電池に構成することが可能である。また、本技術に係る燃料電池製造方法は、金属を全く使用しなくても燃料電池を製造することが可能な方法である。
 本技術に係る燃料電池製造方法では、前記負極および前記正極を形成しない部分に、撥水処理を施す撥水処理工程を更に行うことも可能である。
 また、本技術に係る燃料電池製造方法では、前記電極パターン作製工程で作製した電極上の前記負極および前記正極を形成する部分に、親水処理を施す親水処理工程を更に行うことも可能である。
 本技術に係る燃料電池製造方法において、前記非導電性シートに印刷する電極の配置方法は特に限定されないが、例えば、前記電極パターン作製工程では、前記非導電性シートの両面に、電極材料を印刷し、前記負極正極作製工程では、前記負極と正極とが前記非導電性シートを介して対向するように、前記電極上に所定の酸化還元酵素を印刷する方法を採用することができる。
 本技術に係る燃料電池製造方法では、前記電極パターン作製工程および前記負極正極作製工程を経て前記負極と前記正極が表面に作成された前記非導電性シートを、前記負極と前記正極とが前記非導電性シートを介して対向するように折曲させる折曲工程を更に行うことも可能である。
 この場合、該折曲工程で行う折曲方法は特に限定されないが、例えば、前記非導電性シートを、前記負極と前記正極をシート上部側に印刷した状態で、山折りする方法、あるいは、前記非導電性シートを、前記負極と前記正極をシート上部側に印刷した状態で、前記印刷が施されていない非導電性シートを介して谷折りする方法などを採用することができる。
 本技術に係る燃料電池製造方法では、前記印刷が施されていない非導電性シートを折曲して燃料タンクを形成する燃料タンク形成工程を更に行うことも可能である。
 本技術では、次に、負極又は正極の少なくとも一方の電極上に、触媒として酸化還元酵素が固定化された燃料電池であって、
 曲折可能な非導電性シートの表面に、
 導電性粒子を少なくとも含有する電極材料と、前記酸化還元酵素と、を少なくとも用いて、印刷を施すことより、前記負極と前記正極とが前記非導電性シートを介して対向するように形成された燃料電池を提供する。
 本技術に係る燃料電池は、非導電性シート表面に、印刷技術を用いて電極を構成した電池であれば、全てを包含するが、その具体的な構成としては、以下のような例を挙げることができる。
 例えば、前記負極および前記正極を、前記非導電性シートを介して対向するように、該非導電性シート両面に印刷して構成することができる。
 また、例えば、前記電極材料と前記酸化還元酵素が少なくとも表面に印刷された前記非導電性シートを、前記負極と前記正極とが前記非導電性シートを介して対向するように折曲させて形成することも可能である。
 本技術に係る燃料電池を、前記非導電性シートを折曲して構成する場合、その折曲方法は目的に合わせて自由に設計することができるが、例えば、前記非導電性シートを、前記負極と前記正極がシート上部側に印刷された状態で、山折りしたり、あるいは、前記非導電性シートを、前記負極と前記正極がシート上部側に印刷された状態で、前記印刷が施されていない非導電性シートを介して谷折りしたりすることで、本技術に係る燃料電池を構成することができる。
 本技術に係る燃料電池には、前記印刷が施されていない非導電性シートを折曲させた燃料タンクを備えることも可能である。
 この燃料タンクは、例えば、非使用時には折畳しておき、使用時に拡開する構成に設計することも可能である。
 本技術に係る燃料電池の前記負極に固定された前記酵素には、少なくとも酸化酵素を含ませることができる。
 また、本技術に係る燃料電池の前記負極に固定された前記酵素には、少なくとも酸化型補酵素を含ませることもできる。
 前記負極に固定された前記酵素に、酸化型補酵素を含ませる場合には、更に、補酵素酸化酵素を含ませることも可能である。
 また、本技術に係る燃料電池の前記負極又は前記正極の少なくとも一方の電極上には、前記酵素に加え、電子伝達メディエーターを固定化することもできる。
 本技術に係る燃料電池は、あらゆる電子機器に好適に用いることが可能である。具体的に、本技術では、負極又は正極の少なくとも一方の電極上に、触媒として酸化還元酵素が固定化された燃料電池を用いる電子機器であって、
 曲折可能な非導電性シートの表面に、
 導電性粒子を少なくとも含有する電極材料と、前記酸化還元酵素と、を少なくとも用いて、印刷を施すことより前記電極が形成された燃料電池が用いられた電子機器を提供する。
 本技術をバイオ燃料電池に用いることで、その製造方法および廃棄方法の簡便化、かつ、小型化などの設計変更の容易化を実現することが可能である。
本技術に係る燃料電池製造方法のフロー図である。 本技術に係る燃料電池製造方法の第1実施形態を模式的に示す断面模式図である。 本技術に係る燃料電池製造方法の第2実施形態を模式的に示す上方視平面模式図であり、図3中(A)は製造した燃料電池を負極13側から視た平面模式図、図3中(B)は製造した燃料電池を正極14から視た平面模式図である。 本技術に係る燃料電池製造方法の第3実施形態を模式的に示す上方視平面模式図であり、図4中(A)は製造した燃料電池を負極13側から視た平面模式図、図4中(B)は製造した燃料電池を正極14から視た平面模式図である。 本技術に係る燃料電池製造方法の第4実施形態を模式的に示す上方視平面模式図であり、図5中(A)は製造した燃料電池を負極13側から視た平面模式図、図5中(B)は製造した燃料電池を正極14から視た平面模式図である。 本技術に係る燃料電池製造方法の第5実施形態を模式的に示す上方視平面模式図であり、図6中(A)は製造した燃料電池を負極13側から視た平面模式図である。 本技術に係る燃料電池製造方法の燃料タンク形成工程VIIにおける、燃料タンク15の形成方法の一例を示す模式図である。 本技術に係る燃料電池製造方法の燃料タンク形成工程VIIにおける、燃料タンク15の形成方法の図7とは異なる一例を示す模式図である。 本技術に係る燃料電池1の第1実施形態を示す断面摸式図である。 本技術に係る燃料電池1の第2実施形態を示す断面摸式図である。 本技術に係る燃料電池1の第3実施形態を示す断面摸式図である。 本技術に係る燃料電池1の非使用時の保管方法の一例を示す斜視模式図である。
 以下、本技術を実施するための好適な形態について図面を参照しながら説明する。なお、以下に説明する実施形態は、本技術の代表的な実施形態の一例を示したものであり、これにより本技術の範囲が狭く解釈されることはない。なお、説明は以下の順序で行う。
 1.燃料電池の製造方法
 (1)電極パターン作製工程I
 (2)負極正極作製工程II
 (3)撥水処理工程III
 (4)親水処理工程IV
 (5)裁断工程V
 (6)折曲工程VI
 (7)燃料タンク形成工程VII
 2.燃料電池1
 (1)非導電性シート11
 (2)電極材料12
 (3)負極13
 (4)正極14
 (5)燃料タンク15
 (6)負極端子16、正極端子17
 (7)プロトン透過膜18
 (8)燃料拡散層19
 (9)気液分離膜20
 3.電子機器
 <1.燃料電池製造方法>
 図1は、本技術に係る燃料電池製造方法のフロー図である。本技術に係る燃料電池製造方法は、負極又は正極の少なくとも一方の電極上に、触媒として酸化還元酵素が固定化された燃料電池の製造方法であって、電極パターン作製工程I、負極正極作製工程IIを少なくとも行う方法である。また、必要に応じて、撥水処理工程III、親水処理工程IV、折曲工程V、燃料タンク形成工程VIなどを行うことも可能である。以下、各工程について、詳細に説明する。
 (1)電極パターン作製工程I
 電極パターン作製工程Iは、非導電性シート11の表面に、電極材料12を用いて印刷を施すことにより電極パターンを作製する工程である。電極パターン作製工程Iで用いる非導電性シートは、曲折可能であるものを採用する。また、電極材料12は、少なくとも導電性粒子を含有する材料を用いる。
 本技術の電極パターン作製工程Iで用いる非導電性シート11は、導電性がなく、曲折可能であるシートであって、燃料などの液体透過性および気体透過性を有する例えば多孔質のシートであれば、あらゆる素材を自由に選択して用いることができる。例えば、ポリアミド系繊維、ポリエステル系繊維、ポリオレフィン系繊維、セルロース系繊維などからなる不織布やそれらをプラズマ処理やUVオゾン処理などで親水化処理した不織布、セロファンなどの半透膜などを採用することが可能である。
 本技術の電極パターン作製工程Iで用いる導電性粒子は、導電性があり、本技術の効果を損なうことがなければ、あらゆる粒子を自由に選択して用いることができる。例えば、導電性活性炭、金、銀、白金、銅、亜鉛、チタン,アルミニウム,マグネシウム,パラジウム,イリジウム,クロム,およびマンガンなどの金属粒子などを採用することが可能である。この中でも本技術では特に、導電性活性炭を用いることが好ましい。導電性活性炭は水溶液中で化学的に安定であり、かつ安価であるからである。
 本技術の電極パターン作製工程Iで用いる電極材料12は、前記導電性粒子を少なくとも含有していればよいが、前記非導電性シート11への印刷を確実に行うためにも、例えば、いわゆるバインダーとして機能する結着剤、導電助剤、有機溶媒などを含有させることも可能である。
 本技術の電極パターン作製工程Iで用いることができる結着剤は、バインダーとして機能し、本技術の効果を損なうことがなければ、あらゆる結着剤を自由に選択して用いることができる。例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、エチレン-プロピレン-ジエン共重合体(EPDM)、エチルセルロース(EC)、カルボチルメチルセルロース(CMC)、ヒドロキシプロピルセルロース、スチレンブタジエンラバー(SBR)、エチレン-プロピレン-ジエンラバー(EPDM)、ポリブタジエン、フッ素ゴム、ポリエチレンオキシド、ポリビニルピロリドン、ポリエステル樹脂、アクリル樹脂、フェノール樹脂、エポキシ樹脂、ポリビニルアルコールなどを採用することが可能である。
 本技術の電極パターン作製工程Iで用いることができる導電助剤は、本技術の効果を損なうことがなければ、前記導電性粒子の種類に応じて、あらゆる導電助剤を自由に選択して用いることができる。例えば、ケッチェンブラックやアセチレンブラックなどの導電性カーボンブラックや黒鉛などを採用することが可能である。この中でも本技術では特に、ケッチェンブラックを用いることが好ましい。ケッチェンブラックは、導電性が高いからである。
 本技術の電極パターン作製工程Iで用いることができる溶媒は、本技術の効果を損なうことがなければ、前記導電性粒子、前記結着剤、前記導電助剤の種類に応じて、あらゆる溶媒を自由に選択して用いることができる。例えば、テルピネオール、ドデカノール、2-フェノキシエタノール、イソプロパノール、ブタノール、1,2-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、プロピレンカーボネート、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジプロピル、フタル酸ジオクチル、酢酸エチル、酢酸ブチル、酢酸ブチルカルビトール、ブチルカルビトール、テトラヒドロフラン、トルエン、キシレン、ベンジルアルコール、N-メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルスルホキサイド、4-メチル-2-ペンタノン、水などを採用することが可能である。この中でも本技術においては特に、4-メチル-2-ペンタノン、水を用いることが好ましい。4-メチル-2-ペンタノン、水は、例えば、後述するように、電極成分と触媒成分(酵素)を混ぜて印刷する際においても、酵素が失活しにくいという性質を有するからである。また、4-メチル-2-ペンタノン、水は、沸点が低いため乾燥させやすいという利点もある。
 本技術の電極パターン作製工程Iにおいて、非導電性シート11の表面への電極材料の印刷パターンは、目的に応じて自由に設計することができる。例えば、図2の第1実施形態のように、前記電極材料が前記非導電性シート11を介して対向するように、前記非導電性シートの両面に、前記電極材料12を印刷することができる。この際、印刷方法は特に限定されず、片面ずつ印刷する方法であっても、一度に両面印刷を行う方法であっても、本技術においては可能である。
 このように、前記電極材料12が前記非導電性シート11を介して対向するように、前記非導電性シート11の両面に、前記電極材料12を印刷すれば、電極パターン作製工程Iに加えて後述する負極正極作製工程IIを行うだけで、本技術に係る燃料電池を製造することができる。即ち、印刷技術のみで、負極13と正極14とが前記非導電性シート11を介して対向するように形成できるため、非常に簡単かつ短時間で本技術に係る燃料電池を製造することが可能である。
 その他の印刷パターンとしては、直列接続した電池を作製するには、例えば、後述する図3に示す第2実施形態、図4に示す第3実施形態、および図6に示す第5実施形態など、並列接続した電池を作製するには、例えば、後述する図5に示す第4実施形態などの印刷パターンを採用することができる。
 本技術の電極パターン作製工程Iにおける印刷方法は、本技術の効果を損なうことがなければ、既存の印刷方法を自由に選択して行うことができる。例えば、スクリーン印刷、オフセット印刷、フレキソグラフィー印刷、グラビア印刷、インクジェット印刷、ディスペンサーによる塗布などを採用することができる。
 (2)負極正極作製工程II
 負極正極作製工程IIは、電極パターン作製工程Iで作製した電極パターン上に、所定の酸化還元酵素を用いて印刷を施すことにより、負極13および正極14を作成する工程である。
 負極13を作製するために用いる酵素としては、本技術の効果を損なうことがなければ、用いる燃料の種類に応じて、既存の酵素を1種または2種以上、自由に選択して用いることができる。例えば、燃料として糖類を含む燃料を用いる場合には、糖類を酸化分解する酸化酵素を用いることができる。酸化酵素の一例としては、グルコースデヒドロゲナーゼ、グルコネート5デヒドロゲナーゼ、グルコネート2デヒドロゲナーゼ、アルコールデヒドロゲナーゼ、アルデヒドレダクターゼ、アルデヒドデヒドロゲナーゼ、ラクテートデヒドロゲナーゼ、ヒドロキシパルベートレダクターゼ、グリセレートデヒドロゲナーゼ、フォルメートデヒドロゲナーゼ、フルクトースデヒドロゲナーゼ、ガラクトースデヒドロゲナーゼなどが挙げられる。
 また、負極13には、上記の酸化酵素に加え、酸化型補酵素および補酵素酸化酵素を固定してもよい。酸化型補酵素としては、例えば、ニコチンアミドアデニンジヌクレオチド(nicotinamideadenine dinucleotide、以下「NAD」と称する。)、ニコチンアミドアデニンジヌクレオチドリン酸(nicotinamideadenine dinucleotide phosphate、以下「NADP」と称する。)フラビンアデニンジヌクレオチド(flavin adenine dinucleotide、以下「FAD」と称する。)、ピロロキノリンキノン(pyrrollo-quinolinequinone、以下「PQQ2」と称する。)などが挙げられる。補酵素酸化酵素としては、例えば、ジアフォラーゼが挙げられる。
 更に、負極13には、上記の酸化酵素及び酸化型補酵素に加え、電子伝達メディエーターを固定してもよい。上記で発生した電子の電極への受け渡しをスムーズにするためである。電子伝達メディエーターとしては、例えば、2-アミノ-3-カルボキシ-1,4-ナフトキノン(ACNQ)、ビタミンK3、2-アミノ-1,4-ナフトキノン(ANQ)、2-アミノ-3-メチル-1,4-ナフトキノン(AMNQ)、2、3-ジアミノ-1,4-ナフトキノン、アントラキノン-1-スルホン酸、アントラキノン-2-スルホン酸、オスミウム(Os)、ルテニウム(Ru)、鉄(Fe)、コバルト(Co)などの金属錯体、ベンジルビオローゲンなどのビオローゲン化合物、キノン骨格を有する化合物、ニコチンアミド構造を有する化合物、リボフラビン構造を有する化合物、ヌクレオチド-リン酸構造を有する化合物などなどが挙げられる。
 正極14を作製するために用いる酵素としては、酸素を反応基質とするオキシダーゼ活性を有する酵素であって、本技術の効果を損なうことがなければ、既存の酵素を1種または2種以上、自由に選択して用いることができる。例えば、ラッカーゼ、ビリルビンオキシダーゼ、アスコルビン酸オキシダーゼ等を用いることができる。
 また、正極14には、上記の酵素に加え、電子伝達メディエーターを固定してもよい。負極13から送り込まれる電子の受け取りをスムーズにするためである。正極14に固定し得る電子伝達メディエーターの種類も特に限定されず、必要に応じて自由に選択することができる。例えば、ABTS(2,2'-azinobis(3-ethylbenzoline-6-sulfonate))、K3[Fe(CN)6]等を用いることが可能である。
 本技術の負極正極作製工程IIにおける印刷方法は、本技術の効果を損なうことがなければ、既存の印刷方法を自由に選択して行うことができる。例えば、スクリーン印刷、オフセット印刷、フレキソグラフィー印刷、グラビア印刷、インクジェット印刷、ディスペンサーによる塗布などを採用することができる。
 本技術の負極正極作製工程IIで用いる酵素は、耐熱性を有する酵素を用いることが好ましい。耐熱性を有する酵素を用いることで、印刷工程における酵素の失活を抑制することができ、低温ではなく常温での印刷が可能となるからである。
 また、酵素活性を維持することが可能な例えば、リン酸緩衝液などの緩衝液を選択することが好ましい。酵素活性を維持することが可能な緩衝液を選択することで、印刷工程における酵素の失活を抑制することができ、低温ではなく常温での印刷が可能となるからである。
 なお、負極正極作製工程IIは、例えば、電極成分と触媒成分(酵素)を混ぜて印刷することにより、前記電極パターン作製工程Iと同時に行うことも可能である。
 (3)撥水処理工程III
 撥水処理工程IIIは、前記負極13および前記正極14を形成しない部分に、撥水処理を施す工程である。この撥水処理工程IIIは、本技術に係る燃料電池製造方法において必須の工程ではないが、確実に発電を行うために、行うことが好ましい。
 撥水処理工程IIIでは、前記非導電性シート11の前記電極パターンを形成していない部分に、撥水処理を行う。このように、前記電極パターン作製工程Iにおいて前記電極パターンを形成していない部分を撥水処理することで、前記正極14へ誤って燃料が浸透することや漏電を防止することができ、その結果、製造する燃料電池の高性能化に貢献することができる。
 また、撥水処理工程IIIでは、前記電極パターン作製工程Iにおいて親水性の前記電極素材12を用いた場合に、前記電極パターン上の前記負極13および前記正極14を形成しない部分にも、撥水処理を行うことができる。このように、前記電極パターン上の前記負極13および前記正極14を形成しない部分を撥水処理することで、漏電などを防止することができ、その結果、製造する燃料電池の高性能化に貢献することができる。
 撥水処理工程IIIで行う撥水処理方法は、本技術の効果を損なうことがなければ、既存の方法を自由に選択して行うことが可能である。例えば、撥水剤を塗布する方法が挙げられる。
 本技術に用いることができる撥水剤は、本技術の効果を損なうことがなければ、既存の撥水剤を1種または2種以上、自由に選択して用いることができる。例えば、シリコーンオイル、ポリテトラフルオロエチレン(PTFE)、パーフルオロアルコキシアルカン(PFA)、パーフルオロエチレンプロペンコポリマー(FEP)、エチレン-テトラフルオロエチレンコポリマー(ETFE)、エチレン-クロロトリフルオロエチレンコポリマー(ECTFE)、ポリフッ化ビニリデン(PVDF)、ポリクロロトリフルオロエチレン(PCTFE)、ポリビニルフルオライド(PVF)などのフッ素系高分子を有機溶剤に溶かしたフッ素コーティング剤などを用いることが可能である。
 撥水剤の塗布方法も特に限定されず、本技術の効果を損なうことがなければ、既存の方法を自由に選択して行うことができる。例えば、前記電極パターン作製工程Iや前記負極正極作製工程IIと同様に、印刷技術を用いて撥水剤を塗布する方法などを挙げることができる。この場合の印刷方法も特に限定されず、既存の印刷方法を自由に選択して行うことができる。例えば、スクリーン印刷、オフセット印刷、フレキソグラフィー印刷、グラビア印刷、インクジェット印刷、ディスペンサーによる塗布などを採用することができる。
 撥水処理工程IIIを行うタイミングは、前記電極パターン作製工程Iを行った後であれば特に限定されない。前記電極パターン作製工程Iの直後に行うことも可能であるし、前記負極正極作製工程IIを経た後に行うことも可能である。また、後述する親水処理工程IVを行った後に行うことも可能である。
 (4)親水処理工程IV
 親水処理工程IVは、前記電極パターン作製工程Iで作製した電極パターン上の前記負極13および前記正極14を形成する部分に、親水処理を施す工程である。この親水処理工程IVは、本技術に係る燃料電池製造方法において必須の工程ではないが、前記負極正極作製工程IIにおいて、負極13や正極14を構成する酵素を確実に固定化するために、行うことが好ましい。この工程は、前記電極パターン作製工程Iで用いる電極材料12が疎水性である場合には行うことが好ましい。
 親水処理工程IVで行う親水処理方法は、本技術の効果を損なうことがなければ、既存の方法を自由に選択して行うことができる。例えば、親水化剤を塗布する方法、プラズマ処理、UVオゾン処理などが挙げられる。
 親水化剤を用いる場合、本技術に用いることができる親水化剤は、本技術の効果を損なうことがなければ、既存の親水化剤を1種または2種以上、自由に選択して用いることができる。例えば、メタノールなどを用いることが可能である。
 親水化剤の塗布方法も特に限定されず、本技術の効果を損なうことがなければ、既存の方法を自由に選択して行うことができる。例えば、前記電極パターン作製工程I、前記負極正極作製工程II、前記疎水処理工程IIIと同様に、印刷技術を用いて親水化剤を塗布する方法などを挙げることができる。この場合の印刷方法も特に限定されず、既存の印刷方法を自由に選択して行うことができる。例えば、スクリーン印刷、オフセット印刷、フレキソグラフィー印刷、グラビア印刷、インクジェット印刷、ディスペンサーによる塗布などを採用することができる。
 親水処理工程IVは、前記電極パターン作製工程Iを行った後であって、前記負極正極作製工程IIを行う前に行う必要があるが、前記疎水処理工程IIIとの順番は自由である。前記疎水処理工程IIIを行った後に親水処理工程IVを行ってもよいし、前記疎水処理工程IIIを行う前に親水処理工程IVを行うこともできる。
 (5)裁断工程V
 裁断工程Vは、前記非導電性シート11を必要な大きさや形状に切断する工程である。この裁断工程Vは、本技術に係る燃料電池製造方法において必須の工程ではないが、例えば、後述する図4に示す第3実施形態、図5に示す第4実施形態、および図6に示す第5実施形態などのように、前記電極パターン作製工程Iや前記負極正極作製工程IIにおいて、一度に複数の電極を印刷する場合などに行う工程である。
 裁断工程Vは、後述する折曲工程VIを行う前であれば、いずれのタイミングで行うことも可能である。例えば、最初に前記非導電性シート11を所望の大きさや形状に裁断した後に、各工程を行うことも可能であるが、製造方法の効率化を考慮すると、前記のように、前記電極パターン作製工程Iや前記負極正極作製工程IIにおいて、一度に複数の電極を印刷した後に、裁断工程Vを行うことが好ましい。
 (6)折曲工程VI
 折曲工程VIは、前記電極パターン作製工程Iおよび前記負極正極作製工程IIを経て前記負極13と前記正極14が表面に作成された前記非導電性シート11を、前記負極13と前記正極14とが前記非導電性シート11を介して対向するように折曲させる工程である。
 この折曲工程VIは、本技術に係る燃料電池製造方法において必須の工程ではないが、例えば、前述した図2に示す第1実施形態のように、非導電性シート11の両面に各電極を形成する場合を除き、図3に示す第2実施形態、図4に示す第3実施形態、図5に示す第4実施形態、および図6に示す第5実施形態などのように、非導電性シート11の片面に各電極を形成する場合には、この折曲工程VIを行うことで、前記負極13と正極14とを前記非導電性シート11を介して対向させることができる。
 以下、折曲工程VIの具体例を説明する。
 図3は、本技術に係る燃料電池製造方法の第2実施形態を模式的に示す上方視平面模式図であり、図3中(A)は製造した燃料電池を負極13側から視た平面模式図、図3中(B)は製造した燃料電池を正極14から視た平面模式図である。この第2実施形態は、負極13および正極14からなる電極が、2つ直列接続した燃料電池を製造する実施形態である。
 第2実施形態では、前記非導電性シート11を、前記負極13と前記正極14をシート上部側に印刷した状態で、山折りすることにより、前記負極13と前記正極14とを前記非導電性シート11を介して対向させている。
 なお、第2実施形態では、折曲工程VIを行った後に、一方の電極の負極13に負極端子16を、他方の電極の正極14に正極端子17を、それぞれ接続しているが、負極端子16および正極端子17は、本技術に係る燃料電池に必須ではなく、用いる電子機器からの各端子を接続したり、燃料電池を使用する際に市販の端子を接続することが可能である。
 図4は、本技術に係る燃料電池製造方法の第3実施形態を模式的に示す上方視平面模式図であり、図4中(A)は製造した燃料電池を負極13側から視た平面模式図、図4中(B)は製造した燃料電池を正極14から視た平面模式図である。この第3実施形態は、前記第2実施形態と同様に、負極13および正極14からなる電極が、2つ直列接続した燃料電池を製造する実施形態であるが、裁断工程Vを行っていることが第2実施形態と異なる点である。
 第3実施形態では、前記第2実施形態と同様に、前記非導電性シート11を、前記負極13と前記正極14をシート上部側に印刷した状態で、山折りすることにより、前記負極13と前記正極14とを前記非導電性シート11を介して対向させている。
 なお、第3実施形態では、前記第2実施形態と同様に、折曲工程VIを行った後に、一方の電極の負極13に負極端子16を、他方の電極の正極14に正極端子17を、それぞれ接続しているが、負極端子16および正極端子17は、本技術に係る燃料電池に必須ではない。例えば、用いる電子機器からの各端子を接続したり、燃料電池を使用する際に市販の取り外し可能な端子を接続したりして用いることも可能である。
 また、第3実施形態では、折曲工程VIを行った後に、一方の電極の負極13と他方の電極の正極14とを、導電性材料12’を用いて接続しているが、この導電性材料12’は本技術に係る燃料電池に必須ではない。例えば、前記第2実施形態のように、電極パターン作製工程Iを行う際、一方の電極の負極13と他方の電極の正極14とが接続されるように、前記電極材料12の印刷パターンを工夫したり、燃料電池を使用する際に市販の取り外し可能な導電性材料12’を接続したりして用いることも可能である。
 図5は、本技術に係る燃料電池製造方法の第4実施形態を模式的に示す上方視平面模式図であり、図5中(A)は製造した燃料電池を負極13側から視た平面模式図、図5中(B)は製造した燃料電池を正極14から視た平面模式図である。この第4実施形態は、負極13および正極14からなる電極が、2つ並列接続した燃料電池を製造する実施形態である。
 第4実施形態では、前記第2実施形態および第3実施形態と同様に、前記非導電性シート11を、前記負極13と前記正極14をシート上部側に印刷した状態で、山折りすることにより、前記負極13と前記正極14とを前記非導電性シート11を介して対向させている。
 なお、第4実施形態では、折曲工程VIを行った後に、負極端子16と正極端子17を、並列接続した前記電極パターンに接続しているが、負極端子16および正極端子17は、本技術に係る燃料電池に必須ではなく、用いる電子機器からの各端子を接続したり、燃料電池を使用する際に市販の取り外し可能な端子を接続したりして用いることも可能である。
 図6は、本技術に係る燃料電池製造方法の第5実施形態を模式的に示す上方視平面模式図であり、図6中(A)は製造した燃料電池を負極13側から視た平面模式図である。この第5実施形態は、前記第2実施形態および第3実施形態と同様に、負極13および正極14からなる電極が、2つ直列接続した燃料電池を製造する実施形態である。
 第5実施形態では、前記非導電性シート11を、前記負極13と前記正極14をシート上部側に印刷した状態で、前記印刷が施されていない非導電性シート11’を介して谷折りすることにより、前記負極13と前記正極14とを前記非導電性シート11を介して対向させている。この際、一方の電極の負極13に接続する電極パターンaと、他方の電極の正極14に接続する電極パターンbとが接触するように、前記非導電性シート11を折曲することで、負極13および正極14からなる電極が、二つ直列接続した燃料電池を製造することができる。
 第5実施形態において、前記負極13と前記正極14との間に挟み込む非導電性シート11’は、前記負極13と前記正極14を印刷した前記非導電性シート11と同一であってもよいし、他の素材からなる非導電性シートであってもよい。
 なお、第5実施形態では、折曲工程VIを行う際に、一方の電極の負極13に負極端子16を、他方の電極の正極14に正極端子17を、それぞれ接続しているが、負極端子16および正極端子17は、本技術に係る燃料電池に必須ではない。例えば、用いる電子機器からの各端子を接続したり、燃料電池を使用する際に市販の取り外し可能な端子を接続したりして用いることも可能である。
 (7)燃料タンク形成工程VII
 燃料タンク形成工程VIIは、前記印刷が施されていない非導電性シート11’を折曲して燃料タンクを形成する工程である。この燃料タンク形成工程VIIは、本技術に係る燃料電池製造方法では必須の工程ではないが、製造する燃料電池の更なる小型化を達成するためには、行うことが好ましい。
 燃料タンク形成工程VIIにおいて、用いる非導電性シート11’は、前記負極13と前記正極14を印刷した前記非導電性シート11と同一のものを用いてもよいし、他の素材からなる非導電性シートを用いてもよい。
 また、燃料タンク形成工程VIIにおいて、用いる非導電性シート11’は、前記印刷が施されていない新たな非導電性シート11’を用いてもよいし、前記電極パターン作製工程Iおよび前記負極正極作製工程IIで印刷が施されない部分を用いてもよい。
 燃料タンク形成工程VIIにおいて、非導電性シート11’の折曲方法は特に限定されず、燃料を貯蔵することが可能な形態に折曲できれば、自由に設計することができる。例えば、図7に示すように箱状に形成したり、図8に示すように袋状に形成したりして、燃料タンク15を構成することが可能である。
 <2.燃料電池>
 図9は、本技術に係る燃料電池1の第1実施形態を示す断面摸式図である。本技術に係る燃料電池1は、負極又は正極の少なくとも一方の電極上に、触媒として酸化還元酵素が固定化された燃料電池であって、少なくとも、非導電性シート11と、電極材料12と、負極13と、正極14と、から構成する。また、本技術に係る燃料電池1には、必要に応じて、燃料タンク15、負極端子16、正極端子17、プロトン透過膜18、燃料拡散層19、気液分離膜20を更に備えることも可能である。
 本技術に係る燃料電池1は、前記非導電性シート11の表面に、導電性粒子を少なくとも含有する電極材料12と、前記酸化還元酵素と、を少なくとも用いて、印刷を施すことより前記負極13と前期正極14とを形成していることを特徴とする。なお、各電極のパターンの構成方法、印刷方法などは、前述した燃料電池製造方法と同一であるため、ここでは説明を割愛する。以下、各構成について、それぞれの詳細に説明する。
 (1)非導電性シート11
 本技術に係る燃料電池1において、非導電性シート11は、負極13と正極14を電気的に分離するセパレーターとして機能する。本技術に係る燃料電池1に用いる非導電性シート11は、導電性がなく、曲折可能であるシートであって、本技術の効果を損なうことがなければ、あらゆる素材を自由に選択して用いることができる。非導電性シート11の具体例は、前述した燃料電池製造方法と同一であるため、ここでは説明を割愛する。
 (2)電極材料12
 本技術に係る燃料電池1に用いる電極材料12は、少なくとも導電性粒子を含有する。本技術に係る燃料電池1に用いる導電性粒子は、導電性があり、本技術の効果を損なうことがなければ、あらゆる粒子を自由に選択して用いることができる。導電性粒子の具体例は、前述した燃料電池製造方法と同一であるため、ここでは説明を割愛する。
 本技術に係る燃料電池1に用いる電極材料12は、前記導電性粒子を少なくとも含有していればよいが、前記非導電性シート11への印刷を確実に行うためにも、例えば、いわゆるバインダーとして機能する結着剤、導電助剤、有機溶媒などを含有させることも可能である。結着剤、導電助剤、有機溶媒の具体例は、前述した燃料電池製造方法と同一であるため、ここでは説明を割愛する。
 (3)負極13
 本技術に係る燃料電池1では、前記非導電性シート11表面に印刷された電極材料12上に、所定の酵素を用いて印刷を施すことにより、負極13が構成されている。負極13を作製するために用いる酵素としては、本技術の効果を損なうことがなければ、用いる燃料の種類に応じて、既存の酸化酵素を1種または2種以上、自由に選択して用いることができる。酸化酵素の具体例は、前述した燃料電池製造方法と同一であるため、ここでは説明を割愛する。
 本技術に係る燃料電池1の負極13には、前記酸化酵素の他に、必要に応じて、酸化型補酵素、補酵素酸化酵素、電子伝達メディエーターなども固定化することができる。酸化型補酵素、補酵素酸化酵素、電子伝達メディエーターなどの具体例は、前述した燃料電池製造方法と同一であるため、ここでは説明を割愛する。
 (4)正極14
 本技術に係る燃料電池1では、前記非導電性シート11表面に印刷された電極材料12上に、所定の酵素を用いて印刷を施すことにより、正極14が構成されている。正極14を作製するために用いる酵素としては、酸素を反応基質とするオキシダーゼ活性を有する酵素であって、本技術の効果を損なうことがなければ、既存の酵素を1種または2種以上、自由に選択して用いることができる。酵素の具体例は、前述した燃料電池製造方法と同一であるため、ここでは説明を割愛する。
 本技術に係る燃料電池1の正極14には、前記酵素の他に、必要に応じて、電子伝達メディエーターなども固定化することができる。電子伝達メディエーターなどの具体例は、前述した燃料電池製造方法と同一であるため、ここでは説明を割愛する。
 本技術に係る燃料電池1では、負極13と正極14とが前記非導電性シート11を介して対向するように形成する。その形成方法は、負極13と正極14とが前記非導電性シート11を介して対向するように形成できれば特に限定されず、自由に設計することができる。例えば、図9に示す第1実施形態のように、前記電極材料12が前記非導電性シート11を介して対向するように、前記非導電性シート11の両面に、前記電極材料12を印刷し、更に、一方の面の前記電極材料12上に負極13に用いる酵素を印刷し、他方の面の前記電極材料12上に正極14に用いる酵素を印刷することで、負極13と正極14とが前記非導電性シート11を介して対向するように形成することができる。
 また、その他の方法としては、図10に示す第2実施形態や図11に示す第3実施形態のように、電極材料12と前記酸化還元酵素が少なくとも表面に印刷された前記非導電性シート11を、負極13と正極14とが前記非導電性シート11を介して対向するように折曲させて形成することができる。
 より具体的に説明すると、図10に示す第2実施形態は、前記非導電性シート11を、前記負極13と前記正極14がシート上部側に印刷された状態で、山折りすることにより、負極13と正極14とが前記非導電性シート11を介して対向するように形成した例である(図3、図4、および図5に示す燃料電池の製造方法参照)。
 一方、図11に示す第3実施形態は、前記非導電性シート11を、前記負極13と前記正極14がシート上部側に印刷された状態で、前記印刷が施されていない非導電性シート11’を介して谷折りすることにより、負極13と正極14とが前記非導電性シート11を介して対向するように形成した例である(図6に示す燃料電池の製造方法参照)。
 本技術に係る燃料電池1では、負極13で燃料の酸化反応により電子を放出し、該電子が正極14へ移動し、正極14で該電子と外部から供給される酸素を用いて還元反応が進行する、という一連の反応を進行させることにより電気エネルギーを発生させる。
 本技術に係る燃料電池1では、電極(負極13、正極14)の数は特に限定されない。必要な電力量に合わせて、電極(負極13、正極14)の数は自由に設計変更することが可能である。
 また、電極(負極13、正極14)を複数形成する場合、その接続方法も特に限定されず、必要な電力量に合わせて、直列接続および並列接続のいずれを採用することも可能である。なお、直列接続の具体例は、前述した図3、図4、および図6に示す燃料電池製造方法と同一であり、並列接続の具体例は、前述した図5に示す燃料電池製造方法と同一であるため、ここでは説明を割愛する。
 (5)燃料タンク15
 本技術に係る燃料電池1には、必要に応じて、燃料タンク15を備えることができる。この燃料タンク15は、本技術に係る燃料電池1に必須の構成ではなく、市販の燃料を貯蔵することが可能な形態を呈するものを、使用時に取り付けて使用することも可能である。
 また、燃料タンク15は、本技術に係る燃料電池1に予め備えてもよいが、取り外し可能な形態に設計し、非使用時には取り外した状態にしておき、使用時に取り付けるように設計することも可能である。
 燃料タンク15は、燃料を貯蔵することが可能な形態であれば、自由な素材を用いて自由に設計することができるが、本技術では、前記印刷が施されていない非導電性シート11’を折曲させることで、燃料タンク15を形成することが可能である。
 バイオ燃料電池では、発電部は設計次第で非常に薄く設計することができるのに対し、燃料タンクは、燃料の有無に関わらず、常に大きなスペースを取るため、バイオ燃料電池の大型化を招く一因になっていた。電池の小型化のために、薄い小さな燃料タンクを用いることも可能ではあるが、容量が小さな燃料タンクでは、短時間で燃料が無くなってしまうので、燃料の補給をこまめに行わなければならないという問題が発生していた。
 しかし、本技術に係る燃料電池1のように、燃料タンク15を、非導電性シート11’を折曲させて形成することで、電池の更なる小型化に貢献することができる。
 特に、燃料タンク15を、非使用時には折畳しておき、使用時に拡開するように設計すれば、非使用時はコンパクトに収納でき、使用時には、目的に応じた容量の燃料タンク15を、非導電性シート11’を拡開するだけで、形成することが可能である。このような構成にすることで、本技術に係る燃料電池1は、災害時、緊急時などの非常時において、非常に有用な電池として用いることができる。
 このように、燃料タンク15を、非導電性シート11’を折曲させて形成することで構成することができるのは、本技術に係る燃料電池1が、後述するように、身近で安全性の高い飲料などを燃料として用いることができるからである。例えば、一般的な従来の燃料電池は、燃料が気体であったり、揮発性の高いメタノールであったりするので、完全に密閉でき、かつ、危険な燃料が漏れださないような頑強に燃料タンクを設計する必要があった。
 本技術に係る燃料電池1の燃料タンク15を形成するために用いる非導電性シート11’は、前記負極13と前記正極14を印刷した前記非導電性シート11と同一のものを用いてもよいし、他の素材からなる非導電性シートを用いてもよい。
 また、本技術に係る燃料電池1の燃料タンク15を形成するために用いる非導電性シート11’は、前記印刷が施されていない新たな非導電性シート11’を用いてもよいし、前記非導電性シート11の前記負極13や正極14の印刷が施されていない部分を用いてもよい。
 本技術に係る燃料電池1の燃料タンク15において、非導電性シート11’の折曲方法は特に限定されず、燃料を貯蔵することが可能な形態に折曲できれば、自由に設計することができる。例えば、前述の図7に示すように箱状に形成したり、前述の図8に示すように袋状に形成したりして、燃料タンク15を構成することが可能である。
 (6)負極端子16、正極端子17
 本技術に係る燃料電池1には、負極端子16および/または正極端子17を備えることができる。この負極端子16および正極端子17は、本技術に係る燃料電池1では必須の構成ではなく、例えば、用いる電子機器からの各端子を接続したり、燃料電池を使用する際に市販の取り外し可能な端子を接続したりして用いることも可能である。
 本技術に係る燃料電池1に用いることができる負極端子16および正極端子17は、公知のあらゆる素材を用いて構成することができる。その素材は、外部と電気的に接続可能な素材であれば特に限定されず、例えば、Pt、Ag、Au、Ru、Rh、Os、Nb、Mo、In、Ir、Zn、Mn、Fe、Co、Ti、V、Cr、Pd、Re、Ta、W、Zr、Ge、Hfなどの金属、アルメル、真ちゅう、ジュラルミン、青銅、ニッケリン、白金ロジウム、ハイパーコ、パーマロイ、パーメンダー、洋銀、リン青銅などの合金類、ポリアセチレン類などの導電性高分子、グラファイト、カーボンブラックなどの炭素材、HfB2、NbB、CrB2、B4Cなどのホウ化物、TiN、ZrNなどの窒化物、VSi2、NbSi2、MoSi2、TaSi2などのケイ化物、及びこれらの合材等を用いることができる。
 (7)プロトン透過膜18
 本技術に係る燃料電池1では、負極13と正極14との間を、プロトンが透過できるようにする必要がある。プロトンを透過させるために、負極13と正極14との間にプロトン透過膜18を配置することも可能であるが、本技術においては、前記非導電性シート11の液体透過性を利用して、水を媒体としてプロトンを透過させることができる。この際、pHを維持するために、緩衝物質を併用する。なお、この緩衝物質は、予め燃料Fに入れておく方法、燃料タンク15や後述する燃料拡散層19などに入れておく方法、前記非導電性シート11に浸透させておく方法などを用いて、負極13と正極14との間のプロトン伝導に用いることができる。
 本技術に係る燃料電池1に用いることができる緩衝物質は、本技術の効果を損なわない限り、あらゆる緩衝物質を自由に選択して用いることができる。例えば、リン酸二水素ナトリウム(NaHPO)やリン酸二水素カリウム(KHPO)などが生成するリン酸二水素イオン(HPO-)、2-アミノ-2-ヒドロキシメチル-1,3-プロパンジオール(略称トリス)、2-(N-モルホリノ)エタンスルホン酸(MES)、カコジル酸、炭酸(HCO)、クエン酸水素イオン、N-(2-アセトアミド)イミノ二酢酸(ADA)、ピペラジン-N,N’-ビス(2-エタンスルホン酸)(PIPES)、N-(2-アセトアミド)-2-アミノエタンスルホン酸(ACES)、3-(N-モルホリノ)プロパンスルホン酸(MOPS)、N-2-ヒドロキシエチルピペラジン-N’-2-エタンスルホン酸(HEPES)、N-2-ヒドロキシエチルピペラジン-N’-3-プロパンスルホン酸(HEPPS)、N-[トリス(ヒドロキシメチル)メチル]グリシン(略称トリシン)、グリシルグリシン、N,N-ビス(2-ヒドロキシエチル)グリシン(略称ビシン)、イミダゾール、トリアゾール、ピリジン誘導体、ビピリジン誘導体、イミダゾール誘導体(ヒスチジン、1-メチルイミダゾール、2-メチルイミダゾール、4-メチルイミダゾール、2-エチルイミダゾール、イミダゾール-2-カルボン酸エチル、イミダゾール-2-カルボキシアルデヒド、イミダゾール-4-カルボン酸、イミダゾール-4,5-ジカルボン酸、イミダゾール-1-イル-酢酸、2-アセチルベンズイミダゾール、1-アセチルイミダゾール、N-アセチルイミダゾール、2-アミノベンズイミダゾール、N-(3-アミノプロピル) イミダゾール、5-アミノ-2-(トリフルオロメチル) ベンズイミダゾール、4-アザベンズイミダゾール、4-アザ-2-メルカプトベンズイミダゾール、ベンズイミダゾール、1-ベンジルイミダゾール、1-ブチルイミダゾール)などのイミダゾール環を含む化合物などを挙げることができる。
 (8)燃料拡散層19
 本技術に係る燃料電池1には、燃料拡散層19を備えることもできる。この燃料拡散層19は、本技術に係る燃料電池1には必須の構成ではないが、負極13に確実かつ正確に燃料を供給するためや、燃料供給の速度や量を調整可能にするためには、備えることが好ましい。
 燃料拡散層19は、燃料を拡散させて負極13に燃料を供給することができれば、その構成は特に限定されない。例えば、紙、布、流路、ポリマー、親水性コーティング材などの材料を用いて構成することが可能である。より具体的には、例えば、綿、麻、毛、絹、テンセル、キュプラ、レーヨン、ポリノジック、アセテート、トリアセテート、プロミックス、ナイロン、ポリエステル、アクリル、ポリウレタン等の布、親水化処理した炭素繊維材料、ゼラチン、コラーゲンゲル、ガゼイン、寒天、でんぷん、ポリビニルアルコール、ポリアクリル酸、ポリアクリルアミド、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリビニルピロリドン、デキストラン等の親水性ポリマー、酸化チタン被膜等の親水性コーティング剤などの材料を用いて構成することが可能である。
 (9)気液分離膜20
 本技術に係る燃料電池1には、気液分離膜20を備えることもできる。この気液分離膜20は、本技術に係る燃料電池1には必須の構成ではないが、正極14に空気中からの酸素を確実に供給し、正極14における還元反応をスムーズに進行させるためには、備えることが好ましい。
 気液分離膜20は、正極14に空気中からの酸素を供給することができれば、その構成は特に限定されない。例えば、、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)などの材料を用いて構成することが可能である。
 以上説明した本技術に係る燃料電池1に供給する燃料Fの種類は特に限定されず、燃料電池の燃料として公知のあらゆるものを供給することができる。例えば、蛋白質、脂肪酸、糖質、又はその他の化合物を利用することができる。この中でも特に糖質は、食品、その残渣、発酵産物、又はバイオマスなどからの入手の容易性、価格面、汎用性、安全性、及び扱いの容易性などの観点から、より好適である。
 また、人体が飲食又は接触可能な燃料を用いることも可能である。例えば、ジュース、スポーツ飲料、砂糖水、アルコール類などの飲料、化粧水などの化粧料等を用いることができる。即ち、日常生活において摂取する飲料や化粧料等を、本技術に係る燃料電池1の燃料として用いることが可能である。このように人体が飲食又は接触可能な燃料を用いれば、安全性のみでなく、任意の場所で、任意の燃料を補給することが可能となるといったメリットも生じる。
 本技術に係る燃料電池1は、前述したように、印刷技術を用いることだけで、電池を製造することができるため、電池の小型化や設計変更の容易化を実現することが可能である。特に、本技術に係る燃料電池1は、シート状の形態をしているため、例えば、図12に示すように、非使用時には巻回して保管し、目的の電力量や形状に合わせて使用時に必要な分だけ切断して用いることも可能である。
 また、これまでに市販されている電池は、全て、予め電池の大きさ、形態、性能などが決まっており、ユーザーが電池の大きさ、形態、性能などを目的に応じて設計変更することは不可能であった。しかし、本技術に係る燃料電池1は、家庭のインクジェットプリンタなどを用いても製造することができるため、例えば、パーソナルコンピューター上で、ユーザー自身が目的に応じたデザイン・設計を行い、所望の大きさ、形態、性能の燃料電池1を作製することが可能である。
 このように、本技術に係る燃料電池1は、ユーザー自身が自由に電池を作製できるというエンターテイメント性を付加することができる。また、実験教材や電池作製キットとすることで、教育現場への貢献も期待できる。
 更に、本技術に係る燃料電池1は、金属を用いることなく必須の構成を製造することができる。そのため、従来の電池に比べ、環境に与える負荷が小さく、使用後には、分別することなく、可燃物として廃棄することが可能である。
 <3.電子機器>
 本技術に係る燃料電池1は、その製造方法および廃棄方法の簡便性、小型化などの設計変更の容易性などを利用して、公知のあらゆる電子機器に好適に用いることができる。
 該電子機器は、本技術に係る燃料電池を少なくとも使用できるものであれば、構造、機能等は特に限定されず、電気的に作動する機器を全て含有する。例えば、携帯電話、モバイル機器、ロボット、パーソナルコンピューター、ゲーム機器、車載機器、家庭電気製品、工業製品等の電子機器、自動車、二輪車、航空機、ロケット、宇宙船等の移動体、検査機器、ペースメーカー用の電源、バイオセンサーを含む生体内機器の電源等の医療機器、生ごみを分解し電気エネルギーを発電させるシステム等の発電システムおよびコジェネレーションシステム、等を挙げることができる。
 なお、本技術は、以下のような構成も取ることができる。
 (1)負極又は正極の少なくとも一方の電極上に、触媒として酸化還元酵素が固定化された燃料電池の製造方法であって、
 曲折可能な非導電性シートの表面に、導電性粒子を少なくとも含有する電極材料を用いて印刷を施すことにより電極パターンを作製する電極パターン作製工程と、
 該電極パターン作製工程で作製した電極パターン上に、所定の酸化還元酵素を用いて印刷を施すことにより、負極および正極を作成する負極正極作製工程と、
 を少なくとも行う燃料電池製造方法。
 (2)前記負極および前記正極を形成しない部分に、撥水処理を施す撥水処理工程を更に行う(1)記載の燃料電池製造方法。
 (3)前記電極パターン作製工程で作製した電極パターン上の前記負極および前記正極を形成する部分に、親水処理を施す親水処理工程を更に行う(1)または(2)に記載の燃料電池製造方法。
 (4)前記電極パターン作製工程では、前記非導電性シートの両面に、電極材料を印刷し、
 前記負極正極作製工程では、前記負極と正極とが前記非導電性シートを介して対向するように、前記電極パターン上に所定の酸化還元酵素を印刷する(1)から(3)のいずれかに記載の燃料電池製造方法。
 (5)前記電極パターン作製工程および前記負極正極作製工程を経て前記負極と前記正極が表面に作成された前記非導電性シートを、前記負極と前記正極とが前記非導電性シートを介して対向するように折曲させる折曲工程を更に行う(1)から(3)のいずれかに記載の燃料電池製造方法。
 (6)前記折曲工程では、前記非導電性シートを、前記負極と前記正極をシート上部側に印刷した状態で、山折りする(5)記載の燃料電池製造方法。
 (7)前記折曲工程では、前記非導電性シートを、前記負極と前記正極をシート上部側に印刷した状態で、前記印刷が施されていない非導電性シートを介して谷折りする(5)記載の燃料電池製造方法。
 (8)前記印刷が施されていない非導電性シートを折曲して燃料タンクを形成する燃料タンク形成工程を更に行う(1)から(7)のいずれかに記載の燃料電池製造方法。
 (9)負極又は正極の少なくとも一方の電極上に、触媒として酸化還元酵素が固定化された燃料電池であって、
 曲折可能な非導電性シートの表面に、
 導電性粒子を少なくとも含有する電極材料と、前記酸化還元酵素と、を少なくとも用いて、印刷を施すことより、前記負極と前記正極とが前記非導電性シートを介して対向するように形成された燃料電池。
 (10)前記負極および前記正極は、前記非導電性シートを介して対向するように、該非導電性シート両面に印刷された(9)記載の燃料電池。
 (11)前記電極材料と前記酸化還元酵素が少なくとも表面に印刷された前記非導電性シートを、
 前記負極と前記正極とが前記非導電性シートを介して対向するように折曲させて形成された(9)記載の燃料電池。
 (12)前記非導電性シートは、前記負極と前記正極がシート上部側に印刷された状態で、山折りされた(11)記載の燃料電池。
 (13)前記非導電性シートは、前記負極と前記正極がシート上部側に印刷された状態で、前記印刷が施されていない非導電性シートを介して谷折りされた(11)記載の燃料電池。
 (14)前記印刷が施されていない非導電性シートを折曲させて燃料タンクが形成された(9)から(13)のいずれかに記載の燃料電池。
 (15)前記燃料タンクは、非使用時には折畳されており、使用時に拡開される(14)記載の燃料電池。
 (16)前記負極に固定された前記酵素は、酸化酵素を少なくとも含む(9)から(15)のいずれかに記載の燃料電池。
 (17)前記負極に固定された前記酵素は、酸化型補酵素を少なくとも含む(9)から(16)のいずれかに記載の燃料電池。
 (18)前記負極に固定された前記酵素は、補酵素酸化酵素を少なくとも含む(17)記載の燃料電池。
 (19)前記負極又は前記正極の少なくとも一方の電極上に電子伝達メディエーターが固定化された(9)から(18)のいずれかに記載の燃料電池。
 (20)負極又は正極の少なくとも一方の電極上に、触媒として酸化還元酵素が固定化された燃料電池を用いる電子機器であって、
 曲折可能な非導電性シートの表面に、
 導電性粒子を少なくとも含有する電極材料と、前記酸化還元酵素と、を少なくとも用いて、
 印刷を施すことより前記電極が形成された燃料電池が用いられた電子機器。
 本技術に係る燃料電池製造方法は、非常に簡便な方法であり、また、製造された燃料電池1は、簡便に廃棄することができ、また小型化などの設計変更も容易化である。そのため、あらゆる電子機器の動力源として実現することが可能である。
 また、日常生活において摂取する飲料や化粧料等を燃料として用いれば、任意の場所で必要に応じて燃料を供給することができる。従って、災害時などの電力供給がストップした場合の電力源として貢献できる。
 更に、燃料として人体が飲食又は接触可能な燃料を用いれば、燃料漏れ等を懸念せず、自由な構造に設計することができる。そのため、本技術に係る燃料電池を用いた電子機器には、エンターテイメント性を付加したり、視覚的美的効果を付加したりすることが可能である。
I 電極パターン作製工程
II 負極正極作製工程
III 撥水処理工程
IV 親水処理工程
V 裁断工程
VI 折曲工程
VII 燃料タンク形成工程
1 燃料電池
11、11’ 非導電性シート
12 電極材料
13 負極
14 正極
15 燃料タンク
16 負極端子
17 正極端子
18 プロトン透過膜
19 燃料拡散層
20 気液分離膜
F 燃料
 

Claims (20)

  1.  負極又は正極の少なくとも一方の電極上に、触媒として酸化還元酵素が固定化された燃料電池の製造方法であって、
     曲折可能な非導電性シートの表面に、導電性粒子を少なくとも含有する電極材料を用いて印刷を施すことにより電極パターンを作製する電極パターン作製工程と、
     該電極パターン作製工程で作製した電極パターン上に、所定の酸化還元酵素を用いて印刷を施すことにより、負極および正極を作成する負極正極作製工程と、
     を少なくとも行う燃料電池製造方法。
  2.  前記負極および前記正極を形成しない部分に、撥水処理を施す撥水処理工程を更に行う請求項1記載の燃料電池製造方法。
  3.  前記電極パターン作製工程で作製した電極パターン上の前記負極および前記正極を形成する部分に、親水処理を施す親水処理工程を更に行う請求項1記載の燃料電池製造方法。
  4.  前記電極パターン作製工程では、前記非導電性シートの両面に、電極材料を印刷し、
     前記負極正極作製工程では、前記負極と正極とが前記非導電性シートを介して対向するように、前記電極パターン上に所定の酸化還元酵素を印刷する請求項1記載の燃料電池製造方法。
  5.  前記電極パターン作製工程および前記負極正極作製工程を経て前記負極と前記正極が表面に作成された前記非導電性シートを、前記負極と前記正極とが前記非導電性シートを介して対向するように折曲させる折曲工程を更に行う請求項1記載の燃料電池製造方法。
  6.  前記折曲工程では、前記非導電性シートを、前記負極と前記正極をシート上部側に印刷した状態で、山折りする請求項5記載の燃料電池製造方法。
  7.  前記折曲工程では、前記非導電性シートを、前記負極と前記正極をシート上部側に印刷した状態で、前記印刷が施されていない非導電性シートを介して谷折りする請求項5記載の燃料電池製造方法。
  8.  前記印刷が施されていない非導電性シートを折曲して燃料タンクを形成する燃料タンク形成工程を更に行う請求項1記載の燃料電池製造方法。
  9.  負極又は正極の少なくとも一方の電極上に、触媒として酸化還元酵素が固定化された燃料電池であって、
     曲折可能な非導電性シートの表面に、
     導電性粒子を少なくとも含有する電極材料と、前記酸化還元酵素と、を少なくとも用いて、印刷を施すことより、前記負極と前記正極とが前記非導電性シートを介して対向するように形成された燃料電池。
  10.  前記負極および前記正極は、前記非導電性シートを介して対向するように、該非導電性シート両面に印刷された請求項9記載の燃料電池。
  11.  前記電極材料と前記酸化還元酵素が少なくとも表面に印刷された前記非導電性シートを、
     前記負極と前記正極とが前記非導電性シートを介して対向するように折曲させて形成された請求項9記載の燃料電池。
  12.  前記非導電性シートは、前記負極と前記正極がシート上部側に印刷された状態で、山折りされた請求項11記載の燃料電池。
  13.  前記非導電性シートは、前記負極と前記正極がシート上部側に印刷された状態で、前記印刷が施されていない非導電性シートを介して谷折りされた請求項11記載の燃料電池。
  14.  前記印刷が施されていない非導電性シートを折曲させて燃料タンクが形成された請求項9記載の燃料電池。
  15.  前記燃料タンクは、非使用時には折畳されており、使用時に拡開される請求項14記載の燃料電池。
  16.  前記負極に固定された前記酵素は、酸化酵素を少なくとも含む請求項9記載の燃料電池。
  17.  前記負極に固定された前記酵素は、酸化型補酵素を少なくとも含む請求項9記載の燃料電池。
  18.  前記負極に固定された前記酵素は、補酵素酸化酵素を少なくとも含む請求項17記載の燃料電池。
  19.  前記負極又は前記正極の少なくとも一方の電極上に電子伝達メディエーターが固定化された請求項9記載の燃料電池。
  20.  負極又は正極の少なくとも一方の電極上に、触媒として酸化還元酵素が固定化された燃料電池を用いる電子機器であって、
     曲折可能な非導電性シートの表面に、
     導電性粒子を少なくとも含有する電極材料と、前記酸化還元酵素と、を少なくとも用いて、
     印刷を施すことより前記電極が形成された燃料電池が用いられた電子機器。
PCT/JP2012/077120 2011-11-02 2012-10-19 燃料電池の製造方法、並びに燃料電池および電子機器 WO2013065508A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/352,871 US20140287328A1 (en) 2011-11-02 2012-10-19 Method for producing fuel battery, and fuel battery and electronic device
CN201280052864.7A CN103907230A (zh) 2011-11-02 2012-10-19 用于制造燃料电池的方法、以及燃料电池和电子装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011241196A JP2013098077A (ja) 2011-11-02 2011-11-02 燃料電池の製造方法、並びに燃料電池および電子機器
JP2011-241196 2011-11-02

Publications (1)

Publication Number Publication Date
WO2013065508A1 true WO2013065508A1 (ja) 2013-05-10

Family

ID=48191863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077120 WO2013065508A1 (ja) 2011-11-02 2012-10-19 燃料電池の製造方法、並びに燃料電池および電子機器

Country Status (4)

Country Link
US (1) US20140287328A1 (ja)
JP (1) JP2013098077A (ja)
CN (1) CN103907230A (ja)
WO (1) WO2013065508A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013143305A (ja) * 2012-01-12 2013-07-22 Sekisui Chem Co Ltd 膜・電極接合構造体、並びに微生物燃料電池モジュール
WO2018062419A1 (ja) * 2016-09-30 2018-04-05 学校法人東京理科大学 発電デバイス、発電方法及び濃度測定方法
JP2020004637A (ja) * 2018-06-29 2020-01-09 東洋インキScホールディングス株式会社 酵素発電デバイス用導電性基材、酵素発電デバイス用電極及び酵素発電デバイス

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101358286B1 (ko) * 2012-11-26 2014-02-12 서울대학교산학협력단 액체와의 접촉면 변화를 이용한 에너지 전환 장치
JPWO2016129678A1 (ja) * 2015-02-12 2017-11-24 積水化学工業株式会社 積層体及び水処理システム
JP7048076B2 (ja) * 2017-12-27 2022-04-05 学校法人立命館 発電装置
JP7048077B2 (ja) * 2017-12-27 2022-04-05 学校法人立命館 発電装置及びその製造方法
JP6952884B2 (ja) * 2018-04-19 2021-10-27 シャープ株式会社 空気極、金属空気電池及び金属空気電池の製造方法
JP7063128B2 (ja) * 2018-06-08 2022-05-09 東洋インキScホールディングス株式会社 酵素発電デバイス用導電性基材、酵素発電デバイス用電極及び酵素発電デバイス

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004165142A (ja) * 2002-06-28 2004-06-10 Aame Halme 生体触媒を使用した直接アルコール燃料電池
JP2004164861A (ja) * 2002-11-08 2004-06-10 Dainippon Printing Co Ltd 燃料電池用触媒層形成シート、該シートの製造方法及び触媒層−電解質膜積層体の製造方法
JP2006127957A (ja) * 2004-10-29 2006-05-18 Sony Corp 燃料電池及びその製造方法
JP2006347583A (ja) * 2005-06-15 2006-12-28 Sumitomo Electric Ind Ltd タンク
JP2007188810A (ja) * 2006-01-16 2007-07-26 Sony Corp 燃料電池および電子機器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004165142A (ja) * 2002-06-28 2004-06-10 Aame Halme 生体触媒を使用した直接アルコール燃料電池
JP2004164861A (ja) * 2002-11-08 2004-06-10 Dainippon Printing Co Ltd 燃料電池用触媒層形成シート、該シートの製造方法及び触媒層−電解質膜積層体の製造方法
JP2006127957A (ja) * 2004-10-29 2006-05-18 Sony Corp 燃料電池及びその製造方法
JP2006347583A (ja) * 2005-06-15 2006-12-28 Sumitomo Electric Ind Ltd タンク
JP2007188810A (ja) * 2006-01-16 2007-07-26 Sony Corp 燃料電池および電子機器

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013143305A (ja) * 2012-01-12 2013-07-22 Sekisui Chem Co Ltd 膜・電極接合構造体、並びに微生物燃料電池モジュール
WO2018062419A1 (ja) * 2016-09-30 2018-04-05 学校法人東京理科大学 発電デバイス、発電方法及び濃度測定方法
JPWO2018062419A1 (ja) * 2016-09-30 2019-08-08 学校法人東京理科大学 発電デバイス、発電方法及び濃度測定方法
JP6994184B2 (ja) 2016-09-30 2022-01-14 学校法人東京理科大学 発電デバイス、発電方法及び濃度測定方法
US11996596B2 (en) 2016-09-30 2024-05-28 Tokyo University Of Science Foundation Power generation device, power generation method, and concentration measurement method
JP2020004637A (ja) * 2018-06-29 2020-01-09 東洋インキScホールディングス株式会社 酵素発電デバイス用導電性基材、酵素発電デバイス用電極及び酵素発電デバイス
JP7063147B2 (ja) 2018-06-29 2022-05-09 東洋インキScホールディングス株式会社 酵素発電デバイス用導電性基材、酵素発電デバイス用電極及び酵素発電デバイス

Also Published As

Publication number Publication date
US20140287328A1 (en) 2014-09-25
CN103907230A (zh) 2014-07-02
JP2013098077A (ja) 2013-05-20

Similar Documents

Publication Publication Date Title
WO2013065508A1 (ja) 燃料電池の製造方法、並びに燃料電池および電子機器
JP5233176B2 (ja) 燃料電池および電子機器
WO2010041511A1 (ja) 燃料電池および酵素電極
US8841036B2 (en) Flexible fuel cell
US20110076736A1 (en) Fuel cell, method for manufacturing fuel cell, electronic apparatus, enzyme immobilization electrode, biosensor, bioreactor, energy conversion element, and enzyme reaction-utilizing apparatus
WO2010007883A1 (ja) 燃料改質器およびこれを用いた発電装置
US20110059374A1 (en) Fuel cell and electronic apparatus
KR20210018313A (ko) 연료 저장소를 갖는 바이오셀
JP5949897B2 (ja) バイオ燃料電池及び電子機器
JP2008305559A (ja) 燃料電池および電子機器
US8956772B2 (en) Fuel cell, and power supply device and electronic apparatus using the same
WO2010041685A1 (ja) 燃料電池、電子機器および燃料電池用緩衝液
US9257709B2 (en) Paper-based fuel cell
US20040197629A1 (en) Electric power generating element for fuel cell and fuel cell using the same
JP2009140646A (ja) 新規な電力供給装置及び電子機器
JP2004247294A (ja) 燃料電池用発電素子およびその製造方法ならびに前記発電素子を用いた燃料電池
EP2287956A1 (en) Fuel cell, method for production of fuel cell, electronic device, enzyme-immobilized electrode, biosensor, bioreactor, energy conversion element, and enzymatic reaction-utilizing apparatus
US20130011748A1 (en) Power supply device and electronic apparatus
EP2302722A1 (en) Fuel cell, method for production of the fuel cell, electronic device, enzyme-immobilized electrode, method for production of the electrode, water-repellent agent, and enzyme-immobilized material
JP5481822B2 (ja) 酵素電極及び該酵素電極を用いた燃料電池
JP4018500B2 (ja) 燃料電池
Konwar et al. Flexible biofuel cells: an overview
JP2010102870A (ja) 発電方法
JP2013016404A (ja) バイオ燃料電池
JP2019117743A (ja) 発電装置及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12846343

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14352871

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12846343

Country of ref document: EP

Kind code of ref document: A1