WO2013065114A1 - 配電系統電圧制御システム、配電系統電圧制御方法、及び集中電圧制御装置 - Google Patents

配電系統電圧制御システム、配電系統電圧制御方法、及び集中電圧制御装置 Download PDF

Info

Publication number
WO2013065114A1
WO2013065114A1 PCT/JP2011/075107 JP2011075107W WO2013065114A1 WO 2013065114 A1 WO2013065114 A1 WO 2013065114A1 JP 2011075107 W JP2011075107 W JP 2011075107W WO 2013065114 A1 WO2013065114 A1 WO 2013065114A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
control device
voltage control
distribution
limit value
Prior art date
Application number
PCT/JP2011/075107
Other languages
English (en)
French (fr)
Inventor
板屋 伸彦
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US14/354,610 priority Critical patent/US10345842B2/en
Priority to JP2013541503A priority patent/JP5694557B2/ja
Priority to PCT/JP2011/075107 priority patent/WO2013065114A1/ja
Publication of WO2013065114A1 publication Critical patent/WO2013065114A1/ja
Priority to IN3199CHN2014 priority patent/IN2014CN03199A/en
Priority to JP2014259260A priority patent/JP5837674B2/ja
Priority to JP2015216350A priority patent/JP2016036252A/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/003Load forecast, e.g. methods or systems for forecasting future load demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/22Flexible AC transmission systems [FACTS] or power factor or reactive power compensating or correcting units
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Definitions

  • the present invention relates to a distribution system voltage control system, a distribution system voltage control method, and a centralized voltage control apparatus that control the voltage of the distribution system.
  • the distribution system is generally composed of a high-voltage system (for example, 3300V to 6600V) and a low-voltage system (for example, 100V to 200V), and the receiving end of general consumers is connected to this low-voltage system.
  • the electric power company is obliged to maintain the voltage at the receiving end of the general consumer within an appropriate range (for example, in the case of receiving 100V, the voltage is maintained at 95V to 107V).
  • the power company can control the amount of voltage control equipment (such as LRT (Load Ratio Control Transformer) or SVR (Step Voltage Regulator)) connected to the high voltage system.
  • LRT Low Ratio Control Transformer
  • SVR Step Voltage Regulator
  • a transformer type voltage control device such as LRT or SVR is integrated with the voltage control device or installed in the voltage control device, and the voltage control device is installed.
  • Local voltage control devices that perform voltage control in a self-sustaining distributed manner based on measurement information (voltage and power flow) in the vicinity of a point are generally popular.
  • voltage control devices include automatic on / off phase adjusting equipment (phase-advancing capacitors, shunt reactors, etc.), SVC (Static Var Compensator), or reactive power adjustment.
  • a reactive power control type such as a PCS (Power Conditioning System) with a function is known, and a local voltage control device corresponding to each of these voltage control devices is also in a practical stage.
  • the PCS is, for example, a power conditioner for photovoltaic power generation, and connects the photovoltaic power generation facility or the storage battery and the power distribution system.
  • the centralized voltage control device collects voltage and power flow measurement information at each point in the distribution system and assigns optimal control to each voltage control device.
  • the optimal control plan is based on the voltage and power flow measurement information at that time. Therefore, there are concerns about the following problems when connecting low-voltage grids in solar power generation.
  • the measurement monitoring period is long (for example, about several tens of minutes), it is impossible to follow a rapid voltage fluctuation, for example, when the amount of photovoltaic power generation changes greatly due to a sudden change in the amount of solar radiation due to the flow of clouds.
  • the measurement / monitoring cycle is shortened (for example, about several minutes or less), the communication load for measurement / monitoring increases, so the capital investment in the communication network becomes enormous.
  • the present invention has been made in view of the above, and maintains voltage by following voltage fluctuations in the distribution system due to factors that are difficult to predict, such as changes in the amount of photovoltaic power generation, without increasing the communication load. It is an object of the present invention to provide a distribution system voltage control system, a distribution system voltage control method, and a centralized voltage control apparatus capable of performing the above.
  • a distribution system voltage control system comprises a high-voltage distribution line that constitutes a high-voltage distribution system and is connected to a low-voltage system including a distributed power source.
  • a plurality of voltage control devices connected to the distribution line to control the voltage of the distribution line, and ranges of voltage upper limit value and voltage lower limit value respectively connected to the voltage control devices and updated every first period.
  • a local voltage control device that adjusts a control amount of the voltage control device in a second cycle shorter than the first cycle so that a voltage value controlled by the voltage control device is maintained within the first voltage cycle,
  • the voltage upper limit value and the voltage lower limit value that are respectively connected to a local voltage control device via a communication network and are updated at each of the first periods in each local voltage control device are determined.
  • the voltage can be maintained by following the voltage fluctuation of the distribution system due to a difficult to predict factor such as a change in the amount of photovoltaic power generation without increasing the communication load.
  • FIG. 1 is a diagram illustrating an example of a configuration of a distribution system voltage control system according to an embodiment.
  • FIG. 2 is a diagram showing an example of the internal configuration of the concentrated voltage control device 8.
  • FIG. 3 is a flowchart for explaining the operation of the embodiment.
  • FIG. 4 is a flowchart for explaining details of the process of S103 of FIG.
  • FIG. 5 is a diagram for explaining the details of the process of S104 of FIG.
  • FIG. 6 is a diagram showing an example of the configuration of the low-voltage system 9.
  • FIG. 7 is a diagram showing an example of temporal variation of the voltage upper and lower limit values commanded to the local voltage control device.
  • FIG. 1 is a diagram illustrating an example of a configuration of a distribution system voltage control system according to the present embodiment.
  • a voltage control device 1 is, for example, an LRT (Load Ratio Control Transformer) as a distribution transformer installed in a substation.
  • a local voltage control device 11 is connected to the voltage control device 1, and the local voltage control device 11 controls the voltage control device 1.
  • the local voltage control device 11 can be integrated with or provided with the voltage control device 1.
  • the local voltage control device 11 controls the voltage control device 1 by adjusting the control amount of the voltage control device 1, specifically by adjusting the tap position.
  • the local voltage control device 11 has a communication function and is connected to the communication network 7.
  • the bus 2 is connected to the secondary side of the voltage control device 1.
  • two distribution lines 4-1 and 4-2 are connected to the bus 2 in parallel.
  • Distribution lines 4-1 and 4-2 are distribution lines of a high voltage system (voltage level is 3300 to 6600 V, for example).
  • One end of the distribution line 4-1 is connected to the bus 2 via the circuit breaker 3-1.
  • voltage flow measuring devices 10 for measuring the voltage and power flow of the distribution line 3-1 are respectively installed. That is, the voltage flow measuring device 10 is connected to the distribution line 4-1, measures the voltage and power flow at the connection point, and outputs the measured values as measurement information.
  • the voltage flow measuring device 10 has a communication function and is connected to the communication network 7. The voltage flow measuring device 10 transmits measurement information to the centralized voltage control device 8 periodically, for example, via the communication network 7.
  • a voltage control device 5 that is an SVR (Step Voltage Regulator) for voltage drop compensation is connected to the distribution line 4-1.
  • a local voltage control device 15 that controls the voltage control device 5 is connected to the voltage control device 5.
  • the local voltage control device 15 can be integrated with the voltage control device 5 or can be provided together.
  • the local voltage control device 15 controls the voltage control device 5 by adjusting the control amount of the voltage control device 5, specifically by adjusting the tap position.
  • the local voltage control device 15 has a communication function and is connected to the communication network 7.
  • the distribution line 4-2 has one end connected to the bus 2 via the circuit breaker 3-2. Similarly to the wiring 4-1, the voltage flow measuring devices 10 for measuring the voltage and the power flow of the distribution line 4-2 are installed at a plurality of locations on the distribution line 4-2.
  • a voltage control device 6 which is an automatic on / off phase adjusting facility for reactive power compensation is connected to the distribution line 4-2.
  • the voltage control device 6 is a shunt reactor (ShR), for example.
  • the phase adjusting equipment is generally composed of ShR and / or a phase advance capacitor (SC), and compensates reactive power by turning on or disconnecting the system via a circuit breaker (not shown). be able to.
  • a local voltage control device 16 that controls the voltage control device 6 is connected to the voltage control device 6.
  • the local voltage control device 16 can be integrated with the voltage control device 6, for example.
  • the local voltage control device 16 controls the voltage control device 6 by adjusting the control amount of the voltage control device 6, specifically by adjusting the reactive power output.
  • the local voltage control device 16 has a communication function and is connected to the communication network 7.
  • the distribution lines 4-1 and 4-2 are high-voltage distribution lines, which are not shown, but the distribution lines 4-1 and 4-2 are respectively connected to the low-voltage system (voltage level is, for example, via a transformer). 100V to 200V) is connected to a low voltage distribution line. A load is connected to the low-voltage distribution line, but a distributed power source such as a solar power generator is further connected. That is, in this embodiment, it is assumed that a distributed power source is connected to a low-voltage system. However, it goes without saying that the present embodiment can be applied even when the low-voltage system does not include a distributed power source.
  • the distribution system means a high-voltage system.
  • the voltage control of the distribution system means voltage control of the high voltage system.
  • This distribution system includes voltage control devices 1, 5 and 6, local voltage control devices 11, 15 and 16, bus 2, circuit breakers 3-1 and 3-2, distribution lines 4-1 and 4-2, and voltage flow A measurement device 10 is provided.
  • the number of distribution lines connected to the bus 2 is, for example, two, but is not limited to this example. Further, the number of installed voltage control devices is not limited to the illustrated example.
  • the voltage control device may be, for example, a static reactive power compensator (SVC: Static Var Compensator), or a PCS (Power Conditioning System: power conditioning system with a reactive power adjustment function). E) can be provided depending on the configuration.
  • the centralized voltage control device 8 is connected to the local voltage control devices 11, 15, 16 and a plurality of voltage flow measuring devices 10 via the communication network 7.
  • the communication network 7 is a dedicated network, for example, and is arranged for the purpose of distribution system monitoring control.
  • the centralized voltage control device 8 for example, based on the measurement information transmitted from the voltage flow measuring device 10, the voltage upper limit value and the voltage lower limit value (hereinafter, the voltage upper and lower limit values) that define the control target voltage range of each local voltage control device. For example, at a centralized control period (for example, one hour period), and individually command voltage upper and lower limit values to each local voltage control device via the communication network 7.
  • Each local voltage control device controls the voltage control device that is the control target based on the voltage upper / lower limit value command from the centralized voltage control device 8 so as to maintain the voltage between the voltage upper / lower limit values.
  • Each local voltage control device updates and sets the voltage upper limit value and the voltage lower limit value every time it receives a voltage upper / lower limit command from the centralized voltage control device 8. For example, the local voltage control device 11 is based on the voltage upper and lower limit values instructed from the centralized voltage control device 8, and the secondary side of the voltage control device 1 is within the central control cycle period to which the voltage upper and lower limit values are applied.
  • the control amount of the voltage control device 1 is adjusted with a local control cycle shorter than the centralized control cycle so that the voltage of the voltage is within the voltage upper and lower limit values (within the control target voltage range). Further, for example, the local voltage control device 16 distributes power of the voltage control device 6 based on the voltage upper and lower limit values instructed from the central voltage control device 8 within the central control period in which the voltage upper and lower limit values are applied. The control amount of the voltage control device 6 is set to a local control cycle (first cycle) shorter than the central control cycle (first cycle) so that the voltage at the grid connection point falls within the voltage upper and lower limit values (within the control target voltage range). 2).
  • FIG. 2 is a diagram showing an example of the internal configuration of the concentrated voltage control device 8.
  • the concentrated voltage control device 8 includes a control unit 20, a storage unit 29 connected to the control unit 20, a control unit 20, a storage unit 29, and a transmission / reception unit connected to the communication network 7. 28.
  • the control unit 20 includes a load power generation amount prediction unit 21, a load power generation amount prediction value correction unit 22, an optimum voltage distribution determination unit 23, and a voltage upper / lower limit determination unit 24 as functional configurations.
  • the load power generation amount prediction unit 21 predicts the load / power generation amount distribution of the future distribution system, for example, in a centralized control cycle (for example, one hour cycle). Details of the load / power generation amount distribution will be described later.
  • the load power generation amount predicted value correction unit 22 calculates the predicted value of the load / power generation amount distribution within the central control cycle period, the actual value of the load / power generation distribution within the central control period immediately before, and the prediction within the period. Correction is performed based on the comparison result with the value.
  • the actual value of the load / power generation distribution is calculated based on the measurement information (voltage and power flow).
  • the optimum voltage distribution determining unit 23 calculates the power flow based on the corrected predicted value of the load / power generation distribution, and searches for the best solution that optimizes the value of the distribution system evaluation function, thereby performing the centralized control. The optimum voltage distribution within the period and the optimum control amount of each voltage control device are determined.
  • the voltage upper / lower limit determination unit 24 determines a voltage upper / lower limit value that is an upper / lower limit of the control target voltage range of each local voltage control device within the central control period based on the determined optimum voltage distribution, and the communication network This is commanded to each local voltage control device via 7.
  • the details of the process of determining the voltage upper and lower limit values by the voltage upper and lower limit value determining unit 24 will be described later, but the outline is as follows.
  • the voltage upper and lower limit value determination unit 24 acquires, from the storage unit 29, information related to the voltage control responsibility range allocated in advance for each local voltage control device.
  • the voltage control responsibility range is a range (or section) on the distribution line 4-1 or 4-2, and the voltage control within the range is assigned to the local voltage control device or the local voltage control device to which the range is assigned.
  • the connected voltage control device is responsible for this.
  • An appropriate voltage range is set in advance for each voltage control responsibility range. This appropriate voltage range is an appropriate voltage range to be maintained by the high voltage system.
  • the voltage upper / lower limit determination unit 24 selects, for each local voltage control device, the smallest one from the voltage upper limit margins that are the difference between the optimum voltage and the upper limit value of the appropriate voltage within the voltage control responsibility range.
  • the voltage upper limit value of the control target voltage range is added to the voltage upper limit value of the control target voltage range, and the voltage within the control target voltage range is obtained by subtracting the minimum voltage lower limit margin within the voltage control responsibility range from the optimum voltage of the voltage control device. Determine as the lower limit.
  • the centralized voltage control device 8 can be configured as a server having a storage device such as a CPU, a memory, and a hard disk, and a communication function, for example.
  • the control unit 20 is realized by a CPU that performs control processing according to a control program stored in a memory.
  • the storage unit 29 generally represents a memory, a storage device, and the like.
  • the transmission / reception unit 28 represents a communication function.
  • the centralized voltage control device 8 can be installed in a substation, for example.
  • FIG. 3 is a flowchart for explaining the operation of the present embodiment.
  • the voltage flow measuring device 10 periodically measures the voltage and power flow at the respective installation points, and stores the voltage and power flow data.
  • the voltage flow measuring device 10 transmits, for example, an average value for 10 minutes of the measured voltage and flow data to the centralized voltage control device 8 via the communication network 7.
  • the centralized voltage control device 8 receives the average value of the voltage and power flow for 10 minutes by the transmission / reception unit 28, and then calculates the load / load at each point of the distribution system by taking the difference of the power flow average value between adjacent measurement points.
  • the amount of power generation can be obtained and stored in the storage unit 29 as load power generation amount data.
  • the load / power generation amount (load power generation amount data) corresponds to, for example, an amount obtained by subtracting the power generation amount from a pure load, and can take a positive or negative value depending on the balance between the load and the power generation amount. That is, the load / power generation amount (load power generation amount data) corresponds to the difference between the pure load and the power generation amount at each point of the distribution system.
  • the load power generation amount data is periodically stored and made into a database.
  • the load power generation amount prediction unit 21 calculates, for example, the load / power generation distribution of the distribution system every hour on the next day from the load power generation amount data of each point of the distribution system stored in the storage unit 29. Predict. At this time, the load power generation amount prediction unit 21 uses only load power generation amount data in a clear time period to predict the load and the power generation amount separately, and then uses the theoretical power generation amount (solar power generation rated capacity, solar power generation capacity). The actual load, which is a pure load, is calculated except for the optical panel installation angle, latitude, date and time, predicted temperature, and power generation efficiency.
  • the load power generation amount prediction unit 21 collects the actual loads for a plurality of days, obtains the correlation between the load on the same day of the week (weekday / holiday division) and the same time zone, and the temperature of the next day, and calculates the next day 1 Predict the load at each point of the distribution system over time.
  • the next generation power generation amount is a theoretical power generation amount, and the load power generation amount prediction unit 21 subtracts the predicted power generation amount from the predicted load to create load power generation amount data for each point of the distribution system every hour on the next day.
  • the load / power generation distribution every hour on the next day is predicted.
  • the present invention is not limited to this.
  • the load / power generation distribution for each fixed period in the future may be predicted. Note that this one hour or a certain period corresponds to the above-described centralized control cycle.
  • the load / power generation prediction is, for example, every hour, the measured values of voltage and current are not the average value of one hour but the average value of, for example, 10 minutes. This is to increase the accuracy of the correlation by increasing the number of measurement data and to grasp the fluctuation state of the load during one hour when determining the correlation between the load and temperature in the same time zone. This can be used to grasp a time zone with a large load fluctuation in setting the control limit of each voltage control device in S301 of FIG. 4 described later.
  • the measured values of voltage and power flow may be average values for one hour, for example.
  • the load power generation amount predicted value correction unit 22 corrects the predicted value of the load / power generation amount of the distribution system for one hour in the future. Specifically, the load power generation amount predicted value correction unit 22 calculates the actual value (calculated based on the actual measurement value) and the prediction value for the average value of the load / power generation amount at each point of the distribution system in the past hour. And the ratio is obtained, and this ratio is multiplied by the predicted value of the load / power generation amount for the hour in the future, thereby correcting the predicted value of the load / power generation amount at each point in the system for the next hour. This is expected to improve the accuracy of the predicted value.
  • the optimum voltage distribution determination unit 23 determines the optimum voltage distribution of the distribution system for the next hour based on the predicted value of the load / power generation amount at each point of the distribution system for the next hour created in S102. . Details of this processing will be described later with reference to FIG. In addition, the process of S102 is abbreviate
  • the load power generation amount prediction unit 21 predicts the load / power generation amount distribution for one hour in the future based on the measurement information transmitted from the voltage flow measuring device 10, but is not limited thereto, for example, A database related to load power generation amount data may be provided in advance in the storage unit 29, and the load power generation amount prediction unit 21 may predict the load / power generation amount distribution with reference to this database. In this case, the voltage flow measuring device 10 need not be provided, but the process of S102 is also omitted.
  • the voltage upper and lower limit value determination unit 24 calculates the voltage upper limit value and the voltage lower limit value of each local voltage control device for one hour in the future based on the optimum voltage distribution of the distribution system. Details of this processing will be described later with reference to FIG.
  • the voltage upper and lower limit value determination unit 24 commands the voltage upper limit value and the voltage lower limit value to each local voltage control device.
  • an SVR is installed on the load side of the LRT (see distribution line 4-1), etc.
  • another voltage control device is installed downstream of the voltage control device,
  • the voltage upper and lower limit values are commanded to the local voltage control apparatus, and the order of control is defined.
  • Each local voltage control device adjusts the control amount of each voltage control device to be controlled based on the voltage upper and lower limit command from the centralized voltage control device 8. More specifically, each local voltage control device controls the control amount of the voltage control device as necessary in the local control cycle shorter than the central control cycle (1 hour) so as to maintain the voltage between the upper and lower voltage limits. Adjust. Each local voltage control device updates and sets the voltage upper limit value and the voltage lower limit value every time it receives a voltage upper / lower limit command from the centralized voltage control device 8 in a centralized control cycle.
  • FIG. 4 is a flowchart for explaining details of the process of S103 of FIG. 3, and shows a flow for calculating the optimum voltage distribution of the distribution system for one hour in the future.
  • the optimum voltage distribution determination unit 23 controls the control limit of each voltage control device (in the case of a transformer-type voltage control device, the upper and lower limits of taps, invalidity) in order to secure room for local control of each voltage control device.
  • the reactive power output upper and lower limits are set, but a time zone in which a large voltage fluctuation is expected, that is, a time zone with a large load fluctuation (for example, morning, before and after lunch break, lighting time zone) Etc.) and a time zone in which the power generation fluctuation is large (for example, daytime when the theoretical power generation amount is large), the room for local control is made large in consideration of the direction of fluctuation such as an upward or downward tendency.
  • the optimum voltage distribution determining unit 23 initially sets the control amount of each voltage control device.
  • the tap position is set to, for example, one hour before the optimum voltage distribution calculation.
  • the reactive power output is set to 0 (none), for example.
  • the optimum voltage distribution determination unit 23 calculates the power flow at the set control amount (tap position, reactive energy amount) of each voltage control device based on the prediction of the load / power generation distribution at each point of the distribution system. To calculate the voltage at each point of the power distribution system.
  • the optimum voltage distribution determination unit 23 evaluates the distribution system based on the result of the power flow calculation. Specifically, the optimum voltage distribution determination unit 23 evaluates the distribution system by evaluating the value of the evaluation function (objective function) set for the evaluation item of the distribution system.
  • the first priority evaluation item is the amount of violation (deviation) from the appropriate voltage range (appropriate voltage upper limit value and appropriate voltage lower limit value, see FIG. 5) at each point of the distribution system. That is, first, the optimum voltage distribution is determined such that the total sum of violation (deviation) amounts from the appropriate voltage range of the voltage at each point of the distribution system is minimized.
  • the second priority evaluation item is, for example, a voltage margin at each point of the distribution system (a margin amount up to an appropriate voltage upper and lower limit value). If the voltage margin at each point of the distribution system is small, the voltage upper and lower limit width of the voltage control device becomes small, and the voltage control device frequently operates with a slight voltage fluctuation. Therefore, the higher the total voltage margin, the higher the evaluation.
  • the third priority evaluation item can be the sum of the amount of change from the initial set value of the control amount of the voltage control device.
  • the amount of change from the initial set value of the control amount of the voltage control device is the reactive power output amount in the case of the reactive power control type voltage control device (S302), and the change amount of the transformer type voltage control device.
  • the fourth priority evaluation item can be a transmission loss of the entire distribution system (active power loss + reactive power loss).
  • active power loss + reactive power loss The smaller the transmission loss, the higher the rating.
  • the transmission loss is mostly active power loss.
  • the higher the voltage the smaller the loss.
  • the voltage margin (upper limit side) at each point of the second priority distribution system is reduced accordingly. This is an evaluation item that shows the effect only when there is a considerable margin in the voltage upper and lower limits at each point of the system.
  • the evaluation function is basically set for the first priority evaluation item, but can also be set for the first priority item and the second priority item.
  • the total evaluation function is obtained by weighting each evaluation function and taking the sum.
  • higher priority items can be included in the evaluation function according to the distribution system.
  • the evaluation function can be configured to be most optimized (highly evaluated) when taking a minimum value, for example.
  • the optimum voltage distribution determination unit 23 determines whether or not a predetermined number of searches have been performed. If the predetermined number of searches has been performed (S305, Yes), the process ends, and the predetermined number of times is determined. If the search is not performed (S305, No), the process proceeds to S306.
  • the optimum voltage distribution determination unit 23 changes the control amount of each voltage control device, for example, by one unit (e.g., increases / decreases the tap by one level, increases / decreases the reactive power by, for example, 5% of the rating).
  • the voltage calculation at each point of the distribution system (same as S303) and the evaluation of the distribution system (same as S304) are performed for all voltage control devices, the evaluation results are compared, and the evaluation is most improved. Change the control amount of the voltage control device. Since the optimization algorithm is disclosed in, for example, Japanese Patent Application Laid-Open No. 2010-250599, details are omitted. For voltage controlled devices that can continuously change the controlled variable, such as SVC reactive power control, the same effect can be obtained even if the optimal controlled variable is calculated by quadratic programming, which is one of the continuous system optimization methods. Is obtained.
  • the optimum voltage distribution determining unit 23 sets the optimum voltage distribution of the distribution system for the next hour and the optimum of each voltage control device as the best solution for optimizing the value of the evaluation function.
  • a control amount can be determined.
  • FIG. 5 is a diagram for explaining the details of the process of S104 of FIG.
  • a part of the distribution system is shown on the upper side, and the relationship between the distribution line length and the voltage is shown on the lower side corresponding to this.
  • the upper part of FIG. 5 shows a portion mainly including the distribution line 4-1 in the distribution system shown in FIG. 1.
  • FIG. 5 also shows the low-voltage system 9 connected to the distribution line 4-1.
  • the low-voltage system 9 is configured as shown in FIG. 6, for example, and a load 57 and a solar power generation device 58 are connected to the distribution line 4-1 via the transformer 56.
  • the optimum voltage 30 is shown for the distribution line length of the distribution line 4-1 from the substation.
  • the optimum voltage 30 is obtained in the process of S103 in FIG.
  • FIG. 5 shows an upper limit value V_max and a lower limit value V_min of the appropriate voltage range.
  • the appropriate voltage range is determined in advance depending on the time for each installation point as the voltage range that the high-voltage side should protect at the installation point of each load, and it is possible to stably supply power to the low-voltage side. It is set as possible.
  • the appropriate voltage range is described as being the same at each point in the distribution system, for example, but is generally different at each point in the distribution system and changes depending on the time zone.
  • the secondary side (load side) of the voltage control device 1 is the starting point (distribution line length L0), the distribution line length to the primary side (power supply side) of the voltage control device 5 is L1, and the voltage The distribution line length to the secondary side of the control device 5 (SVR) is indicated by L2.
  • each voltage control device has its own responsibility for voltage control.
  • the voltage control responsibility range of the voltage control device 1 is the range from the voltage control device 1 to the downstream voltage control device 5, and in the same figure, as the range R1 of the distribution line 4-1 with the distribution line length from L0 to L1 Show.
  • the voltage control responsibility range of the voltage control device 5 is a range from the voltage control device 5 to the next voltage control device (not shown) on the downstream side. In FIG. This is shown as a range R2 of the electric wire 4-1.
  • the voltage upper and lower limit value determination unit 24 determines the voltage upper and lower limit values that are the upper and lower limits of the control target voltage range commanded to the local voltage control devices 11 and 15 as follows.
  • the voltage upper / lower limit determination unit 24 has a minimum voltage out of the upper limit voltage amount that is the difference between the optimum voltage 30 and the upper limit value V_max of the appropriate voltage within the range R1 that is the voltage control responsibility range of the local voltage control device 11. Choose one.
  • the minimum voltage upper limit margin is given at the point where the distribution line length is L0, and the value is represented by um1_min.
  • the voltage upper / lower limit determination unit 24 determines from the voltage lower limit margin that is the difference between the optimum voltage 30 and the lower limit value V_min of the appropriate voltage within the range R1 that is the voltage control responsibility range of the local voltage control device 11. Choose the smallest one.
  • the minimum voltage lower limit margin is given at the point where the distribution line length is L1, and the value is represented by lm1_min. Then, the voltage upper and lower limit value determination unit 24 sets a value obtained by adding the minimum voltage upper limit margin um1_min to the value of the optimum voltage 30 of the voltage control device 1 as the voltage upper limit value of the control target voltage range, and determines the optimum voltage control device 1 A value obtained by subtracting the minimum voltage upper limit margin lm1_min from the voltage 30 is set as the voltage lower limit value of the control target voltage range.
  • the control target voltage range of the local voltage control device 11 is not only the voltage upper / lower limit margin in the vicinity of the installation location of the voltage control device 1, but also the voltage at each point in the range R1 that is the voltage control responsibility range. Since the lower limit margin is also taken into consideration, the local voltage control device 11 itself can maintain the appropriate voltage within the wide range R1 despite the local control of the voltage control device 1 within the control target voltage range. It becomes possible.
  • the voltage upper and lower limit value determination unit 24 includes a voltage upper limit amount that is an absolute value of a difference between the optimum voltage 30 and the upper limit value V_max of the appropriate voltage within the range R2 that is the voltage control responsibility range of the local voltage control device 15. Select the smallest one. In the illustrated example, the minimum voltage upper limit margin is given at a point where the distribution line length is L4, and the value is represented by um2_min. In addition, the voltage upper and lower limit determination unit 24 has a voltage lower limit margin that is an absolute value of a difference between the optimum voltage 30 and the lower limit value V_min of the appropriate voltage within the range R2 that is the voltage control responsibility range of the local voltage control device 15.
  • the minimum voltage lower limit margin is given at a point where the distribution line length is L3, and the value is represented by lm2_min. Then, the voltage upper / lower limit determination unit 24 sets a value obtained by adding the minimum voltage upper limit margin um2_min to the value of the optimum voltage 30 of the voltage control device 5 as the voltage upper limit value of the control target voltage range, and determines the optimum voltage control device 1 A value obtained by subtracting the minimum voltage upper limit margin lm2_min from the voltage 30 is set as the voltage lower limit value of the control target voltage range.
  • the value of the optimum voltage 30 of the voltage control device 5 is specifically the value of the optimum voltage 30 on the output side (load side or secondary side) of the voltage control device 5, and is indicated by P5 in the figure. Represents the voltage value at a point.
  • the optimum voltage of the voltage control device is the optimum voltage at the distribution system interconnection point of the voltage control device.
  • the voltage upper limit value is represented by v2_max
  • the voltage upper limit value is represented by v2_min
  • the control target voltage range of the local voltage control device 15 is a range between the points P4 and P6.
  • the control target voltage range of the local voltage control device 15 is not only the voltage upper / lower limit margin in the vicinity of the installation location of the voltage control device 5, but also the voltage at each point in the range R2 that is the voltage control responsibility range. Since the lower limit margin is also taken into consideration, the local voltage control device 15 itself can maintain the appropriate voltage within the wide range R2 even though it locally controls the voltage control device 5 within the control target voltage range. It becomes possible.
  • FIG. 7 is a diagram showing an example of temporal variation of the voltage upper and lower limit values commanded to the local voltage control device.
  • the appropriate voltage range is a range of 6400V to 6800V regardless of the time zone.
  • the voltage upper and lower limit values vary depending on the time zone.
  • a transformer type voltage control device has a voltage control responsibility range on the load side (downstream side) of the transformer. However, if another voltage control device exists on the load side, The voltage control responsibility range extends to the power supply side (upstream side).
  • the reactive power control type voltage control device when there is a transformer type voltage control device on the power supply side (upstream side) of the voltage control device, the transformer of the voltage control device of this transformer type
  • the range up to the load side (downstream side) and the range on the load side (downstream side) of the voltage control device are the responsibility for voltage control, but there is another voltage control device on the load side (downstream side).
  • the voltage control responsibility range includes the power supply side (upstream side) of the other voltage control device. Therefore, for the reactive power control type voltage control device, the voltage control responsibility range overlaps with the voltage control responsibility range of the transformer type voltage control device existing on the power supply side (upstream side).
  • the integral amount threshold of the voltage upper / lower limit deviation determination is set smaller than that in the local voltage control device that controls the transformer type voltage control device.
  • the centralized voltage control device 8 obtains the optimum voltage distribution within a fixed period in the future (within the centralized control period), and the relationship between the optimum voltage distribution and the appropriate voltage range is obtained. Based on this, the voltage upper and lower limit values to be commanded to each local voltage control device are determined for each local voltage control device in consideration of the voltage upper and lower limit margins at each point within the voltage control responsibility range. On the other hand, the local voltage control device maintains the control voltage of the voltage control device that is the control target between the voltage upper and lower limit values based on the voltage upper and lower limit values commanded from the centralized voltage control device 8 via the communication network 7. Thus, the control amount is adjusted in a local control cycle shorter than the central control cycle period.
  • the centralized voltage control device 8 only gives voltage upper / lower limit command to each local voltage control device, and each local voltage control device performs local control autonomously according to the command from the centralized voltage control device 8.
  • the centralized control by the centralized voltage control device 8 and the local control by each local voltage control device are divided.
  • the voltage control device control itself is performed locally by the local voltage control device, so that the voltage is maintained following the voltage fluctuation of the distribution system due to factors that are difficult to predict, such as changes in the amount of photovoltaic power generation. Can do. That is, since the local voltage control device can cope with sudden voltage fluctuations without waiting for communication with the centralized voltage control device 8, early voltage control is possible.
  • communication between the centralized voltage control device 8 and each local voltage control device may be performed in a centralized control cycle of, for example, 1 hour, so that a voltage command is transmitted in the local control cycle, etc.
  • the communication frequency is reduced and the communication load is not increased.
  • the determination method of the voltage upper and lower limit values in the concentrated voltage control device 8 may be determined by a method other than the present embodiment. Even in such a case, as long as the centralized control by the centralized voltage control device 8 and the local control by each local voltage control device are shared as described above, the above-described problem can be achieved. However, the reliability of the voltage control of the distribution system is improved by determining the voltage upper and lower limit values as in the present embodiment.
  • control target voltage range of the voltage control device is determined according to the optimization logic, it is expected that the number of operations of the voltage control device is also optimized. For this reason, for example, for a transformer-type voltage control device such as LRT or SVR, the number of tap switching can be reduced, so that the lifetime can be extended.
  • the conventional centralized voltage control device directly instructs the control amount to the voltage control device without using the local voltage control device.
  • the control is performed in response to detecting that the current voltage measurement value deviates from the appropriate voltage range.
  • the present embodiment does not change the voltage within a certain period in the future.
  • the control amount is determined in advance so that the voltage does not deviate from the appropriate range within the certain period, and control is performed.
  • the voltage upper and lower limit values are generally determined offline and at the planning stage, and even when changing according to time changes, they are changed according to the current power flow. Therefore, it is essentially different from the method for determining the voltage upper and lower limit values in the present embodiment.
  • the load / power generation amount prediction and the voltage upper / lower limit command to the local voltage control device are executed every hour, for example.
  • the present invention is not limited to this. It is also possible to carry out at intervals of, for example, 30 minutes) to several hours or more.
  • the voltage upper / lower limit command to the local voltage control device can be executed only when the voltage upper / lower limit command value changes greatly. Thereby, the communication load is further reduced.
  • the voltage is increased in advance from the centralized voltage control device 8 to the local voltage control device. It is also possible to transmit the lower limit value for a multi-hour cross section (for example, one day on the next day) and store this in the local voltage control device.
  • the local voltage control device can operate based on the stored voltage upper and lower limit values, and the centralized voltage control device 8 uses the local voltage control device. Can be estimated. In this case, the process of S102 in FIG. 3 is omitted.
  • the present invention is useful as a distribution system voltage control system, a distribution system voltage control method, and a centralized voltage control apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

 集中電圧制御装置8は、将来の一定期間内(集中制御周期期間内)の最適電圧分布を求め、この最適電圧分布と適正電圧範囲との関係に基づいてローカル電圧制御装置毎にその電圧制御責任範囲内の各点における電圧上下限余裕量を加味して各ローカル電圧制御装置に対して指令する電圧上下限値を決定する。他方、ローカル電圧制御装置は、通信ネットワーク7を介して集中電圧制御装置8から指令された電圧上下限値に基づき、電圧制御機器の制御電圧を電圧上下限値間に維持するように集中制御周期期間よりも短周期のローカル制御周期でその制御量を調整する。

Description

配電系統電圧制御システム、配電系統電圧制御方法、及び集中電圧制御装置
 本発明は、配電系統の電圧を制御する配電系統電圧制御システム、配電系統電圧制御方法、及び集中電圧制御装置に関するものである。
 配電系統は、一般に高圧系統(例えば3300V~6600V)と低圧系統(例えば100V~200V)とから構成され、一般需要家の受電端はこの低圧系統に接続されている。電力事業者は、一般需要家の受電端の電圧を適正範囲内に維持(例えば100Vの受電の場合、電圧を95V~107Vに維持する。)することが義務付けられている。そのため、電力事業者は、高圧系統に接続された電圧制御機器(例えば、LRT(Load Ratio Control Transformer:負荷時タップ切替変圧器)又はSVR(Step Voltage Regulator:自動電圧調整器)等)の制御量を調整すること(例えばタップを操作すること)により、一般需要家の受電端での電圧維持を図っている。なお、以下では、配電系統はその高圧系統を指すものとする。
 従来、配電系統の電圧制御については、例えばLRT又SVRなどの変圧器型の電圧制御機器を、当該電圧制御機器と一体化され又は当該電圧制御装置に併設されるとともに、当該電圧制御機器の設置点付近での計測情報(電圧及び潮流)に基づいて自立分散型で電圧制御するローカル電圧制御装置が一般に普及している。なお、電圧制御機器としては、上記変圧器型のものの他、自動オンオフ調相設備(進相コンデンサ、分路リアクトル等)、SVC(Static Var Compensator:静止型無効電力補償装置)、又は無効電力調整機能付のPCS(Power Conditioning System:パワーコンディショナ)等の無効電力制御型のものが知られており、これらの電圧制御機器にそれぞれ対応するローカル電圧制御装置も実用化段階に入っている。ここで、PCSは、例えば太陽光発電用パワーコンディショナであり、太陽光発電設備又は蓄電池と配電系統とを接続するものである。
 これらのローカル電圧制御装置は、配電系統の負荷分布が一様、すなわち、時間経過に伴って配電系統各点の電圧が同方向に変化することを前提に構成されている。しかしながら、近年、電気の使い方の多様化、及び太陽光発電等による分散型電源の普及等により、配電系統の負荷分布が時間経過に伴って非一様に大きく変動する傾向にあるため、従来の配電系統の電圧制御では適正電圧の維持が困難となってきている。
 このため、自立分散型の電圧制御方式に代わり、配電系統の電圧を系統全体で整合の取れた形で集中制御することが提案されている(集中制御方式)。具体的には、配電系統内の複数地点での計測情報(電圧及び潮流)を専用のネットワークを使って集中電圧制御装置に集約させ、この集中電圧制御装置はこれらの計測情報に基づいて各電圧制御機器の制御量(タップ位置等)を決定し、集中電圧制御装置から各電圧制御機器にその制御量が自動で遠隔指令される仕組みが提案されている(例えば、特許文献1~3参照)。
 なお、太陽光発電の増大に伴い、太陽光発電量を予測・補正する技術、配電線の潮流値を太陽光発電量と実負荷に分離する技術、配電線の潮流値から系統各点の負荷分布を推定する技術などについては複数の仕組みが研究・開示されている(例えば、特許文献1~3参照)。
特開平9-154235号公報 特開平11-289663号公報 特開平11-289664号公報
 ところが、近年、太陽光発電による分散型電源の低圧系統連系が年々増大しつつあり、例えば晴天時の雲の流れによる日射量急変により太陽光発電量が大きく変化し、これによる配電系統の電圧変化が無視できないレベルに達することが想定される。集中電圧制御装置では、配電系統各点の電圧及び潮流の計測情報を収集して各電圧制御機器に最適な制御を割り当てるが、最適制御の立案は、その時点での電圧及び潮流の計測情報に基づいて行われるため、太陽光発電の低圧系統大量連系時には以下のような問題が懸念される。
 (1)計測監視周期を長く(例えば数十分程度)すると、雲の流れによる日射量急変により太陽光発電量が大きく変化した場合など、急激な電圧変動に追従できない。
 (2)逆に、計測監視周期を短く(例えば数分以下程度)すると、計測監視のための通信負荷が増大するため、通信ネットワークへの設備投資が膨大となる。
 本発明は、上記に鑑みてなされたものであって、通信負荷を増大させることなく、太陽光発電量変化などの予測困難な要因による配電系統の電圧変動にも追従して電圧維持を行うことが可能な配電系統電圧制御システム、配電系統電圧制御方法、及び集中電圧制御装置を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係る配電系統電圧制御システムは、高圧系統の配電系統を構成し分散型電源を含む低圧系統が接続される高圧系統の配電線と、この配電線に接続され当該配電線の電圧を制御する複数の電圧制御機器と、前記各電圧制御機器にそれぞれ接続され、第1の周期毎に更新される電圧上限値及び電圧下限値の範囲内に当該電圧制御機器の制御する電圧値が維持されるように前記第1の周期よりも短周期の第2の周期で当該電圧制御機器の制御量を調整するローカル電圧制御装置と、前記各ローカル電圧制御装置と通信ネットワークを介してそれぞれ接続され、前記各ローカル電圧制御装置で前記第1の周期毎に更新される前記電圧上限値及び前記電圧下限値を決定して、当該電圧上限値及び電圧下限値を前記各ローカル電圧制御装置に前記通信ネットワークを介してそれぞれ指令する電圧上下限値決定部を有する集中電圧制御装置と、を備えることを特徴とする。
 本発明によれば、通信負荷を増大させることなく、太陽光発電量変化などの予測困難な要因による配電系統の電圧変動にも追従して電圧維持を行うことができる、という効果を奏する。
図1は、実施の形態に係る配電系統電圧制御システムの構成の一例を示した図である。 図2は、集中電圧制御装置8の内部構成の一例を示した図である。 図3は、実施の形態の動作を説明するためのフローチャートである。 図4は、図3のS103の処理の詳細を説明するためのフローチャートである。 図5は、図3のS104の処理の詳細を説明するための図である。 図6は、低圧系統9の構成の一例を示した図である。 図7は、ローカル電圧制御装置に対して指令された電圧上下限値の時間変動の一例を示した図である。
 以下に、本発明に係る配電系統電圧制御システム、配電系統電圧制御方法、及び集中電圧制御装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本実施の形態に係る配電系統電圧制御システムの構成の一例を示した図である。図1において、電圧制御機器1は例えば変電所に設置された配電用変圧器としてのLRT(Load Ratio Control Transformer:負荷時タップ切替変圧器)である。電圧制御機器1にはローカル電圧制御装置11が接続されており、ローカル電圧制御装置11は電圧制御機器1の制御を行う。ローカル電圧制御装置11は、例えば電圧制御機器1と一体的に又は併設することができる。ローカル電圧制御装置11は、電圧制御機器1の制御量を調整することにより、具体的にはタップ位置を調整することにより、電圧制御機器1の制御を行う。また、ローカル電圧制御装置11は、通信機能を有し、通信ネットワーク7に接続されている。
 電圧制御機器1の二次側には母線2が接続されている。母線2には例えば2本の配電線4-1,4-2が並列に接続されている。配電線4-1,4-2は、高圧系統(電圧レベルが例えば3300V~6600V)の配電線である。
 配電線4-1は、その一端が遮断器3-1を介して母線2に接続されている。配電線4-1上の複数箇所には、配電線3-1の電圧及び潮流を計測する電圧潮流計測装置10がそれぞれ設置されている。すなわち、電圧潮流計測装置10は、配電線4-1に接続され、その接続箇所における電圧及び潮流を計測し、その計測値を計測情報として出力する。電圧潮流計測装置10は通信機能を有し、通信ネットワーク7に接続されている。電圧潮流計測装置10は、通信ネットワーク7を介して、例えば定期的に計測情報を集中電圧制御装置8に送信する。
 また、配電線4-1上には、電圧降下補償用のSVR(Step Voltage Regulator:自動電圧調整器)である電圧制御機器5が接続されている。この電圧制御機器5には、電圧制御機器5を制御するローカル電圧制御装置15が接続されている。ローカル電圧制御装置15は、例えば電圧制御機器5と一体的に又は併設することができる。ローカル電圧制御装置15は、電圧制御機器5の制御量を調整することにより、具体的にはタップ位置を調整することにより、電圧制御機器5の制御を行う。また、ローカル電圧制御装置15は、通信機能を有し、通信ネットワーク7に接続されている。
 配電線4-2は、その一端が遮断器3-2を介して母線2に接続されている。配電線4-2上の複数個所には、配線4-1と同様に、配電線4-2の電圧及び潮流を計測する電圧潮流計測装置10がそれぞれ設置されている。
 また、配電線4-2上には、無効電力補償用の自動オンオフ調相設備である電圧制御機器6が接続されている。電圧制御機器6は、例えば分路リアクトル(Shunt Reactor:ShR)である。なお、調相設備は、一般に、ShR若しくは進相コンデンサ(Static Capacitor:SC)又はその双方からなり、遮断器(図示せず)を介して系統に投入又は解列することにより無効電力を補償することができる。この電圧制御機器6には、電圧制御機器6を制御するローカル電圧制御装置16が接続されている。ローカル電圧制御装置16は、例えば電圧制御機器6と一体的に又は併設することができる。ローカル電圧制御装置16は、電圧制御機器6の制御量を調整することにより、具体的には無効電力出力を調整することにより、電圧制御機器6の制御を行う。また、ローカル電圧制御装置16は、通信機能を有し、通信ネットワーク7に接続されている。
 配電線4-1,4-2は高圧系統の配電線であり、図示は省略しているが、配電線4-1,4-2にはそれぞれ変圧器を介して低圧系統(電圧レベルが例えば100V~200V)を構成する低圧配電線が接続されている。低圧配電線には負荷が接続されるが、さらに太陽光発電装置などの分散型電源が接続される。すなわち、本実施の形態は、低圧系統に分散型電源が連系されているものとする。ただし、本実施の形態は、低圧系統に分散型電源が含まれていない場合でも適用することができることは言うまでもない。以下、特に断らない限り、配電系統とは高圧系統を意味するものとする。なお、以下では、分散型電源として例えば太陽光発電装置を例に説明する。また、配電系統の電圧制御とは、高圧系統の電圧制御を意味する。この配電系統は、電圧制御機器1,5,6、ローカル電圧制御装置11,15,16、母線2、遮断器3-1,3-2、配電線4-1,4-2、及び電圧潮流計測装置10を備えて構成される。
 なお、図示例では、母線2に接続される配電線数を例えば2本としているが、この例に限定されない。また、電圧制御機器の設置台数も図示例に限定されない。また、電圧制御機器は、図1に例示したLRT,SVR,ShRの他、例えば、静止型無効電力補償装置(SVC:Static Var Compensator)、無効電力調整機能付のPCS(Power Conditioning System:パワーコンディショナ)などを構成に応じて設けることができる。
 集中電圧制御装置8は、通信ネットワーク7を介して、ローカル電圧制御装置11,15,16及び複数個の電圧潮流計測装置10とそれぞれ接続されている。通信ネットワーク7は、例えば専用のネットワークであり、配電系統監視制御を目的として配設されている。集中電圧制御装置8は、例えば電圧潮流計測装置10から送信された計測情報に基づき、各ローカル電圧制御装置の制御目標電圧範囲を規定する電圧上限値及び電圧下限値(以下、電圧上下限値ともいう。)を例えば集中制御周期(例えば1時間周期)で決定し、通信ネットワーク7を介して各ローカル電圧制御装置に対して電圧上下限値を個別に指令する。
 各ローカル電圧制御装置は、集中電圧制御装置8からの電圧上下限値指令に基づき、当該電圧上下限値間に電圧を維持するようにその制御対象である電圧制御機器を制御する。各ローカル電圧制御装置は、集中電圧制御装置8からの電圧上下限値指令を受ける毎に、電圧上限値及び電圧下限値を更新し設定する。例えば、ローカル電圧制御装置11は、集中電圧制御装置8から指令された電圧上下限値に基づき、当該電圧上下限値が適用される集中制御周期期間内においては、電圧制御機器1の二次側の電圧が当該電圧上下限値間(制御目標電圧範囲内)に収まるように電圧制御機器1の制御量を集中制御周期よりも短い周期のローカル制御周期で調整する。また、例えば、ローカル電圧制御装置16は、集中電圧制御装置8から指令された電圧上下限値に基づき、当該電圧上下限値が適用される集中制御周期期間内においては、電圧制御機器6の配電系統連系点での電圧が当該電圧上下限値間(制御目標電圧範囲内)に収まるように電圧制御機器6の制御量を集中制御周期(第1の周期)よりも短いローカル制御周期(第2の周期)で調整する。
 図2は、集中電圧制御装置8の内部構成の一例を示した図である。図2に示すように、集中電圧制御装置8は、制御部20と、この制御部20に接続された記憶部29と、制御部20、記憶部29、及び通信ネットワーク7に接続された送受信部28とを備えている。
 制御部20は、その機能構成として、負荷発電量予測部21、負荷発電量予測値補正部22、最適電圧分布決定部23、及び電圧上下限値決定部24を備えている。負荷発電量予測部21は、将来の配電系統の負荷/発電量分布を例えば集中制御周期(例えば1時間周期)で予測する。なお、負荷/発電量分布の詳細については後述する。負荷発電量予測値補正部22は、集中制御周期期間内における負荷/発電量分布の予測値を、その直前の集中制御周期期間内における負荷/発電量分布の実績値と当該期間内におけるその予測値との比較結果に基づいて補正する。ここで、負荷/発電量分布の実績値は、計測情報(電圧及び潮流)に基づいて算出される。
 最適電圧分布決定部23は、補正された負荷/発電量分布の予測値に基づいて潮流計算を行うとともに、配電系統の評価関数の値を最良にする最良解を探索することにより、当該集中制御周期期間内の最適電圧分布及び各電圧制御機器の最適制御量を決定する。
 電圧上下限値決定部24は、決定された最適電圧分布に基づき、当該集中制御周期期間内における各ローカル電圧制御装置の制御目標電圧範囲の上下限である電圧上下限値を決定し、通信ネットワーク7を介してこれを各ローカル電圧制御装置に指令する。なお、電圧上下限値決定部24による電圧上下限値を決定する処理の詳細については後述するが、概略は次の通りである。
 まず、電圧上下限値決定部24は、ローカル電圧制御装置毎に予め割り当てられた電圧制御責任範囲に関する情報を記憶部29から取得する。ここで、電圧制御責任範囲は、配電線4-1又は4-2上の範囲(又は区間)であって、当該範囲内における電圧の制御について当該範囲を割り当てられたローカル電圧制御装置又はこれに接続された電圧制御機器がその責任を負う範囲である。また、電圧制御責任範囲毎に、適正電圧範囲が予め設定されている。この適正電圧範囲は、高圧系統が維持すべき適正な電圧範囲である。電圧上下限値決定部24は、各ローカル電圧制御装置に対して、その電圧制御責任範囲内における最適電圧と適正電圧の上限値との差分である電圧上限余裕量のうちから最小のものを選択し、その電圧制御責任範囲内における最適電圧と適正電圧の下限値との差分である電圧下限余裕量のうちから最小のものを選択し、電圧制御機器の最適電圧に電圧制御責任範囲内で最小の電圧上限余裕量を加えたものを制御目標電圧範囲の電圧上限値とし、電圧制御機器の最適電圧から電圧制御責任範囲内で最小の電圧下限余裕量を差し引いたものを制御目標電圧範囲の電圧下限値として決定する。
 集中電圧制御装置8は、例えばCPU、メモリ、ハードディスク等の記憶装置、及び通信機能を備えたサーバとして構成することができる。制御部20は、メモリに記憶された制御プログラムにしたがって制御処理を行うCPUによって実現される。記憶部29は、メモリ及び記憶装置等を総括的に表している。送受信部28は通信機能を表している。なお、集中電圧制御装置8は、例えば変電所に設置することができる。
 次に、図3を参照して、本実施の形態の動作について説明する。図3は、本実施の形態の動作を説明するためのフローチャートである。
 まず、電圧潮流計測装置10は、それぞれ設置点における電圧及び潮流を定期的に計測し、電圧及び潮流データを保存している。電圧潮流計測装置10は、それぞれ計測した電圧及び潮流データの例えば10分間の平均値を、通信ネットワーク7を介して集中電圧制御装置8へ送信する。集中電圧制御装置8は、電圧及び潮流データの10分間の平均値を送受信部28により受信した後、隣り合う計測点間で潮流平均値の差分をとることなどにより、配電系統各点における負荷/発電量を求めることができ、これを負荷発電量データとして記憶部29に保存する。ここで、負荷/発電量(負荷発電量データ)は、例えば純粋な負荷から発電量を差し引いた量に相当するものであり、負荷と発電量とのバランスにより正又は負の値を取り得る。つまり、負荷/発電量(負荷発電量データ)は、配電系統各点における純粋な負荷と発電量との差分に相当する。負荷発電量データは、定期的に保存され、データベース化されている。
 次に、図3のS101では、負荷発電量予測部21は、記憶部29に保存された配電系統各点の負荷発電量データから、例えば翌日1時間毎の配電系統の負荷/発電量分布を予測する。この際、負荷発電量予測部21は、負荷と発電量を分離して予測するため、まず、快晴時間帯の負荷発電量データのみを使用し、これから理論発電量(太陽光発電定格容量、太陽光パネル設置角、緯度、日時、予想気温、及び発電効率から算出)を除いて純粋な負荷である実績負荷を算出する。
 続いて、負荷発電量予測部21は、実績負荷を複数日集め、同一曜日(平日/休日区分)、同一時間帯の負荷と気温との相関を求め、この相関と翌日の予想気温から翌日1時間毎の配電系統各点の負荷を予測する。また、翌日の発電量については理論発電量とし、負荷発電量予測部21は、予測負荷から予測発電量を差し引いて、翌日1時間毎の配電系統各点の負荷発電量データを作成する。
 なお、本実施の形態では、例えば翌日1時間毎の負荷/発電量分布を予測するとしたが、これに限らず、例えば将来の一定期間毎の負荷/発電量分布を予測するとしてもよい。なお、この1時間又は一定期間が上述した集中制御周期に相当する。また、負荷/発電量の予測が例えば1時間毎であるのに対して、電圧及び潮流の計測値は1時間の平均値ではなく例えば10分間の平均値とするのは、同一曜日(平日/休日区分)、同一時間帯の負荷と気温との相関を求めるにあたって、計測データ数を増やすことにより相関の精度を上げるためと、1時間の中での負荷の変動具合を把握するためである。これは、後述する図4のS301の各電圧制御機器の制御限界の設定において、負荷変動の大きな時間帯を把握するために使用可能である。ただし、電圧及び潮流の計測値を例えば1時間の平均値としても構わない。
 次に、S102では、負荷発電量予測値補正部22は、将来1時間の配電系統の負荷/発電量の予測値を補正する。具体的には、負荷発電量予測値補正部22は、過去1時間の配電系統各点の負荷/発電量の平均値について、実績値(実際の計測値に基づいて算出される)と予測値とを比較してその比率を求め、この比率を将来1時間の負荷/発電量の予測値に乗ずることにより、将来1時間の系統各点の負荷/発電量の予測値を補正する。これにより、予測値の精度が向上することが期待される。
 次に、S103では、最適電圧分布決定部23は、S102で作成した将来1時間の配電系統各点の負荷/発電量の予測値に基づき、将来1時間の配電系統の最適電圧分布を決定する。この処理の詳細は、図4を用いて後述する。なお、S102の処理を省略し、最適電圧分布決定部23が、S101で作成した将来1時間の配電系統各点の負荷/発電量の予測値に基づいて、将来1時間の配電系統の最適電圧分布を決定するようにしてもよい。また、S101では、負荷発電量予測部21は、電圧潮流計測装置10から送信された計測情報に基づいて将来1時間の負荷/発電量分布を予測しているが、これに限定されず、例えば負荷発電量データに関するデータベースを予め記憶部29に付与するようにし、負荷発電量予測部21が、このデータベースを参照して負荷/発電量分布を予測するようにしてもよい。この場合は、電圧潮流計測装置10を設けなくともよいが、S102の処理も省略される。
 次に、S104では、電圧上下限値決定部24は、配電系統の最適電圧分布に基づき、将来1時間の各ローカル電圧制御装置の電圧上限値及び電圧下限値を算出する。この処理の詳細は、図5を用いて後述する。
 次に、S105では、電圧上下限値決定部24は、各ローカル電圧制御装置に対して電圧上限値及び電圧下限値を指令する。なお、LRTの負荷側にSVRが設置されている場合等(配電線4-1を参照)、電圧制御機器の下流側に別の電圧制御機器が設置されている場合には、先に下流側のローカル電圧制御装置に対して電圧上下限値を指令することとし、制御の順序を規定する。
 各ローカル電圧制御装置は、集中電圧制御装置8からの電圧上下限値指令に基づき、制御対象である各電圧制御機器の制御量の調整を行う。詳細には、各ローカル電圧制御装置は、電圧上下限値間に電圧を維持するように、集中制御周期(1時間)よりも短周期のローカル制御周期で必要に応じて電圧制御機器の制御量を調整する。また、各ローカル電圧制御装置は、集中電圧制御装置8から集中制御周期で電圧上下限値指令を受ける毎に、電圧上限値及び電圧下限値を更新し設定する。
 次に、図3のS103の処理の詳細について、図4を参照して説明する。図4は、図3のS103の処理の詳細を説明するためのフローチャートであり、将来1時間の配電系統の最適電圧分布を計算するためのフローを表している。
 まず、S301では、最適電圧分布決定部23は、各電圧制御機器のローカル制御の余地を確保するため、各電圧制御機器の制御限界(変圧器型の電圧制御機器の場合はタップ上下限、無効電力制御型の電圧制御機器の場合は無効電力出力上下限)を設定するが、大きな電圧変動が予想される時間帯、すなわち、負荷変動の大きな時間帯(例えば、朝、昼休み前後、点灯時間帯等)、及び、発電変動の大きな時間帯(例えば、理論発電量が大きい昼間等)については、上昇又は下降傾向などの変動の方向性も考慮の上、ローカル制御の余地を大きくとる。
 次に、S302では、最適電圧分布決定部23は、各電圧制御機器の制御量を初期設定するが、変圧器型の電圧制御機器の場合はタップ位置を例えば1時間前の最適電圧分布計算時の算出値(ただし、前回算出値がない場合はニュートラル値)とし、無効電力制御型の電圧制御機器の場合は無効電力出力を例えば0(無し)とする。
 次に、S303では、最適電圧分布決定部23は、配電系統各点の負荷/発電分布の予測に基づき、設定された各電圧制御機器の制御量(タップ位置、無効電力量)での潮流計算を行い、配電系統各点の電圧を算出する。
 次に、S304では、最適電圧分布決定部23は、潮流計算の結果に基づき配電系統の評価を行う。具体的には、最適電圧分布決定部23は、配電系統の評価項目について設定された評価関数(目的関数)の値を評価することにより、配電系統の評価を行う。ここで、第一優先の評価項目は、配電系統各点での電圧の適正電圧範囲(適正電圧上限値及び適正電圧下限値、図5参照)からの違反(逸脱)量である。すなわち、最適電圧分布は、第一に、配電系統各点での電圧の適正電圧範囲からの違反(逸脱)量の総和が最小となるように決定される。また、第二優先の評価項目は、例えば配電系統各点での電圧余裕(適正電圧上下限値までの余裕量)である。配電系統各点での電圧余裕が小さいと電圧制御機器の電圧上下限幅が小さくなり、僅かな電圧変動で頻繁に電圧制御機器が動作してしまう。従って、電圧余裕の総和が大きいほど高評価とする。第三優先の評価項目は、電圧制御機器の制御量のその初期設定値からの変化量の総和とすることができる。ここで、電圧制御機器の制御量のその初期設定値からの変化量は、無効電力制御型の電圧制御機器の場合は、無効電力出力量であり(S302)、変圧器型の電圧制御機器の場合は、タップ位置の初期設定タップ位置からの差である(S302)。当該変化量の総和を小さくすることにより、電圧制御機器の動作回数の低減につながる。さらに、第四優先の評価項目は、配電系統全体の送電ロス(有効電力ロス+無効電力ロス)とすることができる。送電ロスが小さいほど高評価とする。なお、送電ロスは、有効電力ロスが大半を占め、電圧が高いほどロスが小さくなるが、その分、第二優先の配電系統各点での電圧余裕(上限値側)が小さくなるため、配電系統各点の電圧上下限にかなりの余裕がある場合にはじめて効果を表す評価項目である。
 評価関数は、基本的には第一優先の評価項目について設定されるが、第一優先の項目と第二優先の項目について設定することもできる。この場合、各々の評価関数に重みを付けて和をとったものを全体の評価関数とする。さらに、配電系統に応じて高次の優先項目についても評価関数に含めることができる。評価関数は、例えば最小値をとるときに最も最適化(高評価)されるように構成することができる。
 次に、S305では、最適電圧分布決定部23は、所定回数の探索を行ったか否かを判定し、所定回数の探索を行った場合には(S305,Yes)、処理を終了し、所定回数の探索を行っていない場合には(S305,No)、S306の処理に進む。
 次に、S306では、最適電圧分布決定部23は、各電圧制御機器の制御量を例えば1単位変更(タップを例えば1段上げる/下げる、無効電力を定格の例えば5%増やす/減らす等)して配電系統各点の電圧算出(S303と同様)及び配電系統の評価(S304と同様)を行い、これを全ての電圧制御機器について実施して評価結果を比較し、最も評価が改善する方向へ電圧制御機器の制御量を設定変更する。最適化のアルゴリズムについては例えば特開2010-250599等に開示されているので詳細は省略する。なお、SVCの無効電力制御等、制御量を連続的に変更可能な電圧制御機器については、連続系最適化手法の1つである2次計画法により最適制御量を算出しても同等の効果が得られる。
 以上のようにして、所定回数の探索の後、最適電圧分布決定部23は、評価関数の値を最良にする最良解として、将来1時間の配電系統の最適電圧分布及び各電圧制御機器の最適制御量を決定することができる。
 次に、図3のS104の処理の詳細について、図5を参照して説明する。図5は、図3のS104の処理の詳細を説明するための図である。図5では、上側に配電系統の一部を示し、これに対応させて下側に配電線長と電圧との関係を示している。図5の上側では、図1に示した配電系統のうち主に配電線4-1を含む部分について示したものである。ただし、図5では、配電線4-1に接続された低圧系統9も示している。ここで、低圧系統9は、例えば図6のように構成され、配電線4-1に変圧器56を介して負荷57及び太陽光発電装置58が接続される。
 図5の下側では、変電所からの配電線4-1の配電線長に対して最適電圧30が示されている。最適電圧30は、図3のS103の処理で求められたものである。また、図5では、適正電圧範囲の上限値V_maxと下限値V_minが示されている。適正電圧範囲は、各負荷の設置点で高圧側の電圧が守るべき電圧範囲としてその設置点ごとに時間にも依存して予め決められたものであり、低圧側に電力を安定供給することが可能なように設定されている。なお、図5では、適正電圧範囲は例えば配電系統各点で同じとして記載しているが、一般には配電系統各点で異なっており、かつ、時間帯によって変化する。
 図5の下側では、電圧制御機器1の二次側(負荷側)を起点(配電線長L0)とし、電圧制御機器5の一次側(電源側)までの配電線長をL1で、電圧制御機器5(SVR)の二次側までの配電線長をL2で示している。
 上述したように、各電圧制御機器はそれぞれ電圧制御責任範囲を有している。電圧制御機器1の電圧制御責任範囲は、電圧制御機器1から下流側の電圧制御機器5までの範囲であり、同図では配電線長がL0からL1までの配電線4-1の範囲R1として示している。また、電圧制御機器5の電圧制御責任範囲は、電圧制御機器5から下流側の次の電圧制御機器(図示せず)までの範囲であり、同図では配電線長がL2からそれ以降の配電線4-1の範囲R2として示している。
 電圧上下限値決定部24は、ローカル電圧制御装置11,15にそれぞれ指令する制御目標電圧範囲の上下限である電圧上下限値を以下のようにして決定する。
 まず、ローカル電圧制御装置11の場合について説明する。電圧上下限値決定部24は、ローカル電圧制御装置11の電圧制御責任範囲である範囲R1内において、最適電圧30と適正電圧の上限値V_maxとの差分である電圧上限余裕量のうちから最小のものを選択する。図示例では、最小の電圧上限余裕量は配電線長がL0の点で与えられ、その値をum1_minで表している。また、電圧上下限値決定部24は、ローカル電圧制御装置11の電圧制御責任範囲である範囲R1内において、最適電圧30と適正電圧の下限値V_minとの差分である電圧下限余裕量のうちから最小のものを選択する。図示例では、最小の電圧下限余裕量は配電線長がL1の点で与えられ、その値をlm1_minで表している。そして、電圧上下限値決定部24は、電圧制御機器1の最適電圧30の値に最小の電圧上限余裕量um1_minを加えたものを制御目標電圧範囲の電圧上限値とし、電圧制御機器1の最適電圧30の値から最小の電圧上限余裕量lm1_minを差し引いたものを制御目標電圧範囲の電圧下限値とする。ここで、電圧制御機器1の最適電圧30の値とは、詳細には、電圧制御機器1の出力側(負荷側又は二次側)における最適電圧30の値であり、図中P2で示した点における電圧値を表す。また、当該電圧上限値はv1_maxで表され、当該電圧上限値はv1_minで表されており、ローカル電圧制御装置11の制御目標電圧範囲は点P3と点P1との間の範囲である。なお、図示例では、v1_max=V_maxとなる。
 このように、ローカル電圧制御装置11の制御目標電圧範囲は、電圧制御機器1の設置箇所近傍における電圧上下限余裕量のみならず、その電圧制御責任範囲である範囲R1内の各点における電圧上下限余裕量も考慮して決定されているので、ローカル電圧制御装置11自体は制御目標電圧範囲内で電圧制御機器1をローカル制御するにもかかわらず、広域の範囲R1内で適正電圧の維持が可能となる。
 次に、ローカル電圧制御装置15の場合について説明する。電圧上下限値決定部24は、ローカル電圧制御装置15の電圧制御責任範囲である範囲R2内において、最適電圧30と適正電圧の上限値V_maxとの差の絶対値である電圧上限余裕量のうちから最小のものを選択する。図示例では、最小の電圧上限余裕量は配電線長がL4の点で与えられ、その値をum2_minで表している。また、電圧上下限値決定部24は、ローカル電圧制御装置15の電圧制御責任範囲である範囲R2内において、最適電圧30と適正電圧の下限値V_minとの差の絶対値である電圧下限余裕量のうちから最小のものを選択する。図示例では、最小の電圧下限余裕量は配電線長がL3の点で与えられ、その値をlm2_minで表している。そして、電圧上下限値決定部24は、電圧制御機器5の最適電圧30の値に最小の電圧上限余裕量um2_minを加えたものを制御目標電圧範囲の電圧上限値とし、電圧制御機器1の最適電圧30の値から最小の電圧上限余裕量lm2_minを差し引いたものを制御目標電圧範囲の電圧下限値とする。ここで、電圧制御機器5の最適電圧30の値とは、詳細には、電圧制御機器5の出力側(負荷側又は二次側)における最適電圧30の値であり、図中P5で示した点における電圧値を表す。なお、電圧制御機器が無効電力補償型のものである場合は、電圧制御機器の最適電圧は、電圧制御機器の配電系統連系点における最適電圧である。図5では、当該電圧上限値はv2_maxで表され、当該電圧上限値はv2_minで表されており、ローカル電圧制御装置15の制御目標電圧範囲は点P4と点P6との間の範囲である。
 このように、ローカル電圧制御装置15の制御目標電圧範囲は、電圧制御機器5の設置箇所近傍における電圧上下限余裕量のみならず、その電圧制御責任範囲である範囲R2内の各点における電圧上下限余裕量も考慮して決定されているので、ローカル電圧制御装置15自体は制御目標電圧範囲内で電圧制御機器5をローカル制御するにもかかわらず、広域の範囲R2内で適正電圧の維持が可能となる。
 図7は、ローカル電圧制御装置に対して指令された電圧上下限値の時間変動の一例を示した図である。図示例では、適正電圧範囲は時間帯によらずに6400V~6800Vの範囲となっている。この例のように、一般に、電圧上下限値は時間帯によって変動する。
 ここで、電圧制御機器の電圧制御責任範囲について詳述する。変圧器型の電圧制御機器は、例えば当該変圧器の負荷側(下流側)を電圧制御責任範囲とするが、負荷側に別の電圧制御機器が存在する場合は、当該別の電圧制御機器の電源側(上流側)までをその電圧制御責任範囲とする。
 また、無効電力制御型の電圧制御機器は、当該電圧制御機器の電源側(上流側)に変圧器型の電圧制御機器が存在する場合には、この変圧器型の電圧制御機器の変圧器の負荷側(下流側)までの範囲、及び、当該電圧制御機器の負荷側(下流側)の範囲を電圧制御責任範囲とするが、負荷側(下流側)にさらに別の電圧制御機器が存在する場合は、当該別の電圧制御機器の電源側(上流側)までを電圧制御責任範囲に含める。そのため、無効電力制御型の電圧制御機器については、その電圧制御責任範囲がその電源側(上流側)に存在する変圧器型の電圧制御機器の電圧制御責任範囲と重複する。
 このため、無効電力制御型の電圧制御機器を制御するローカル電圧制御装置は、変圧器型の電圧制御機器を制御するローカル電圧制御装置よりも電圧上下限値逸脱判定の積分量閾値が小さく設定されて、電圧変化に対して素早く無効電力制御(短周期制御)を行うとともに、ゆっくりと無効電力制御量積分値をゼロに近づける長周期制御を同時に行うことにより、ローカル制御の余力を確保する構成とする。すなわち、配電系統の急激な電圧変動に対しては、高速に反応が可能な無効電力制御型の電圧制御機器により即応させるとともに、次の急激な電圧変動に備えて無効電力制御型の電圧制御機器の無効電力出力を徐々に0に向かう方向に調整しつつ、これを補うように上流側に存在する変圧器型の電圧制御機器が作動するようにする。電圧制御責任範囲の重複範囲では、以上のような制御が実施される。
 以上説明したように、本実施の形態では、集中電圧制御装置8は、将来の一定期間内(集中制御周期期間内)の最適電圧分布を求め、この最適電圧分布と適正電圧範囲との関係に基づいてローカル電圧制御装置毎にその電圧制御責任範囲内の各点における電圧上下限余裕量を加味して各ローカル電圧制御装置に対して指令する電圧上下限値を決定している。他方、ローカル電圧制御装置は、通信ネットワーク7を介して集中電圧制御装置8から指令された電圧上下限値に基づき、その制御対象である電圧制御機器の制御電圧を電圧上下限値間に維持するように集中制御周期期間よりも短周期のローカル制御周期でその制御量を調整する。このように、集中電圧制御装置8は各ローカル電圧制御装置に対して電圧上下限値指令のみを行い、各ローカル電圧制御装置は集中電圧制御装置8からの指令に従って自立的にローカル制御をしており、集中電圧制御装置8による集中制御と各ローカル電圧制御装置によるローカル制御が役割分担されている。
 これにより、電圧制御機器の制御自体はローカル電圧制御装置によりローカルに実施されるので、例えば太陽光発電量変化などの予測困難な要因による配電系統の電圧変動にも追従して電圧維持を行うことができる。すなわち、急激な電圧変動に対して集中電圧制御装置8との通信を待たずにローカル電圧制御装置だけで対応できるため、早期の電圧制御が可能である。
 また、本実施の形態では、集中電圧制御装置8と各ローカル電圧制御装置との間の通信は例えば1時間である集中制御周期で行えばよいので、ローカル制御周期で電圧指令を送信する場合などと比較して、通信頻度が低減され、通信負荷を増大させることがない。
 このように、本実施の形態によれば、通信負荷を増大させることなく、太陽光発電量変化などの予測困難な要因による配電系統の電圧変動にも追従して電圧維持を行うことができる。なお、集中電圧制御装置8における電圧上下限値の決定方法は、本実施の形態以外の方法で決定するものであってもよい。その場合でも、上記のように集中電圧制御装置8による集中制御と各ローカル電圧制御装置によるローカル制御が役割分担される限りは、上記課題を達成可能である。ただし、本実施の形態のように電圧上下限値を決定することにより配電系統の電圧制御の信頼性が向上する。
 また、本実施の形態によれば、電圧制御機器の制御目標電圧範囲は最適化のロジックに従って決定されているので、電圧制御機器の操作回数も適正化されることが期待される。そのため、例えばLRT又はSVR等の変圧器型の電圧制御機器に対しては、タップの切替回数を低減することができるので、その寿命を延ばすことができる。
 他方、従来の集中電圧制御装置は、ローカル電圧制御装置を介さずに、電圧制御機器に直接その制御量の指令を行っていた。また、従来は、現時点での電圧計測値が適正電圧範囲から逸脱していることを検知したことを受けて制御を実施しているが、本実施の形態は、将来の一定期間内における電圧変動を予測し、当該一定期間内において電圧が適正範囲から逸脱しないように事前に制御量を決定して制御を実施するものである。また、従来のローカル制御装置では、その電圧上下限値は一般にオフラインでかつ計画段階で決めらており、たとえ時間変化に応じて変化させる場合でも、自端の潮流に応じて変化させている。したがって、本実施の形態における電圧上下限値の決定方法とは本質的に異なる。
 なお、本実施の形態では、負荷/発電量の予測、及び、ローカル電圧制御装置への電圧上下限値指令を例えば1時間毎に実施するとしたが、これに限定されず、例えば数十分(例えば30分)乃至数時間毎、あるいはそれ以上の時間間隔で実施することも可能である。さらに、ローカル電圧制御装置への電圧上下限値指令は、電圧上下限指令値が大きく変化した場合のみ実施することも可能である。これにより、通信負荷が一層低減される。
 また、通信障害等により集中電圧制御装置8から集中制御周期で電圧上下限値指令が受信できないローカル電圧制御装置が発生する場合に備え、集中電圧制御装置8からローカル電圧制御装置へ事前に電圧上下限値を多時間断面分(例えば、翌日1日分)送信し、ローカル電圧制御装置でこれを記憶しておくことも可能である。この場合、あるローカル電圧制御装置の通信異常時に、当該ローカル電圧制御装置はこの記憶された電圧上下限値に基づいて動作することができ、また、集中電圧制御装置8では、当該ローカル電圧制御装置の動作を推定できる。なお、この場合は、図3のS102の処理は省略される。
 以上のように、本発明は、配電系統電圧制御システム、配電系統電圧制御方法、及び集中電圧制御装置として有用である。
1,5,6 電圧制御機器
2 母線
3-1,3-2 遮断器
4-1,4-2 配電線
7 通信ネットワーク
8 集中電圧制御装置
9 低圧系統
10 電圧潮流計測装置
11,15,16 ローカル電圧制御装置
20 制御部
21 負荷発電量予測部
22 負荷発電量予測値補正部
23 最適電圧分布決定部
24 電圧上下限値決定部
28 送受信部
29 記憶部
56 変圧器
57 負荷
58 太陽光発電装置

Claims (10)

  1.  高圧系統の配電系統を構成し分散型電源を含む低圧系統が接続される高圧系統の配電線と、
     この配電線に接続され当該配電線の電圧を制御する複数の電圧制御機器と、
     前記各電圧制御機器にそれぞれ接続され、第1の周期毎に更新される電圧上限値及び電圧下限値の範囲内に当該電圧制御機器の制御する電圧値が維持されるように前記第1の周期よりも短周期の第2の周期で当該電圧制御機器の制御量を調整するローカル電圧制御装置と、
     前記各ローカル電圧制御装置と通信ネットワークを介してそれぞれ接続され、前記各ローカル電圧制御装置で前記第1の周期毎に更新される前記電圧上限値及び前記電圧下限値を決定して、当該電圧上限値及び電圧下限値を前記各ローカル電圧制御装置に前記通信ネットワークを介してそれぞれ指令する電圧上下限値決定部を有する集中電圧制御装置と、
     を備えることを特徴とする配電系統電圧制御システム。
  2.  前記集中電圧制御装置は、
     前記配電系統の各点における純粋な負荷と発電量との差分を表す負荷発電量分布を前記第1の周期で予測する負荷発電量予測部と、
     この負荷発電量予測部により予測された負荷発電量分布に基づいて潮流計算を行うとともに、前記配電系統の評価項目について設定された評価関数の値を最良にする最良解を探索することにより、前記第1の周期期間内の最適電圧分布を決定する最適電圧分布決定部と、
     を有し、
     前記電圧上下限値決定部は、前記各ローカル電圧制御装置に対して、当該ローカル電圧制御装置がそれぞれ電圧制御について責任を負う前記配電線上の範囲である電圧制御責任範囲内において前記最適電圧分布から得られる最適電圧と当該電圧責任範囲について予め設定された適正電圧範囲の上限値との差分である電圧上限余裕量のうちから最小のものを選択するとともに、当該電圧制御責任範囲内において前記最適電圧と前記適正電圧範囲の下限値との差分である電圧下限余裕量のうちから最小のものを選択し、当該ローカル電圧制御装置の制御対象である電圧制御機器の前記最適電圧に前記電圧上限余裕量を加えたものを前記電圧上限値とし、前記電圧制御機器の前記最適電圧から前記電圧下限余裕量を差し引いたものを前記電圧下限値として決定することを特徴とする請求項1に記載の配電系統電圧制御システム。
  3.  前記電圧上下限値決定部は、前記各ローカル電圧制御装置に対して、前記電圧上限値及び電圧下限値を前記第1の周期で決定し、当該電圧上限値及び電圧下限値を前記各ローカル電圧制御装置に前記第1の周期でそれぞれ送信することを特徴とする請求項2に記載の配電系統電圧制御システム。
  4.  前記配電線にそれぞれ接続され、前記通信ネットワークを介して前記集中電圧制御装置にそれぞれ接続されるとともに、前記配電線の電圧及び潮流をそれぞれ計測してその計測情報を定期的に前記集中電圧制御装置に送信する複数の電圧潮流計測装置を備え、
     前記負荷発電量予測部は、前記複数の電圧潮流計測装置から送信された前記計測情報に基づいて前記負荷発電量分布を予測することを特徴とする請求項3に記載の配電系統電圧制御システム。
  5.  前記集中電圧制御装置は、
     前記第1の周期期間内における負荷発電量分布の予測値を、当該第1の周期期間の直前の第1の周期期間内における前記計測情報に基づいて算出した負荷発電量分布の実績値と当該期間内における予測値との比率に基づいて補正する負荷発電量予測値補正部を有し、
     前記最適電圧分布決定部は、前記負荷発電量予測値補正部により補正された負荷発電量分布の予測値に基づいて前記最適電圧分布を決定することを特徴とする請求項4に記載の配電系統電圧制御システム。
  6.  前記電圧制御責任範囲は、前記ローカル電圧制御装置に接続された前記電圧制御機器が変圧器型の場合は、当該電圧制御機器の下流側の配電線上の範囲であって、当該配電線上に次の電圧制御機器が現れるまでの範囲であることを特徴とする請求項3に記載の配電系統電圧制御システム。
  7.  前記電圧制御責任範囲は、前記ローカル電圧制御装置に接続された前記電圧制御機器が無効電力制御型でありかつ当該電圧制御機器の上流側に変圧器型の電圧制御機器が存在する場合は、当該電圧制御機器の上流側の配電線上の範囲であって前記変圧器型の電圧制御機器が現れるまでの範囲と、当該電圧制御機器の下流側の配電線上の範囲であって当該配電線上に次の電圧制御機器が現れるまでの範囲とから成ることを特徴とする請求項3に記載の配電系統電圧制御システム。
  8.  前記第1の周期は、数十分乃至数時間であることを特徴とする請求項3に記載の配電系統電圧制御システム。
  9.  高圧系統の配電系統を構成し分散型電源を含む低圧系統が接続される高圧系統の配電線と、この配電線に接続され当該配電線の電圧を制御する複数の電圧制御機器と、前記各電圧制御機器にそれぞれ接続され当該電圧制御機器の制御量を調整するローカル電圧制御装置と、前記各ローカル電圧制御装置と通信ネットワークを介してそれぞれ接続された集中電圧制御装置とを備えた配電系統電圧制御システムの配電系統電圧制御方法であって、 
     前記集中電圧制御装置が、前記各ローカル電圧制御装置で第1の周期毎に更新される電圧上限値及び電圧下限値を決定して、当該電圧上限値及び電圧下限値を前記各ローカル電圧制御装置に前記通信ネットワークを介してそれぞれ指令するステップと、
     前記各ローカル電圧制御装置が、前記集中電圧制御装置から指令され前記第1の周期毎に更新される前記電圧上限値及び電圧下限値の範囲内にその制御対象である電圧制御機器の制御する電圧値が維持されるように前記第1の周期よりも短周期の第2の周期で当該電圧制御機器の制御量を調整するステップと、
     を含むことを特徴とする配電系統電圧制御方法。
  10.  高圧系統の配電系統を構成し分散型電源を含む低圧系統が接続される高圧系統の配電線と、この配電線に接続され当該配電線の電圧を制御する複数の電圧制御機器と、前記各電圧制御機器にそれぞれ接続され、第1の周期毎に更新される電圧上限値及び電圧下限値の範囲内に当該電圧制御機器の制御する電圧値が維持されるように前記第1の周期よりも短周期の第2の周期で当該電圧制御機器の制御量を調整するローカル電圧制御装置とを含む前記配電系統の前記各ローカル電圧制御装置と通信ネットワークを介してそれぞれ接続された集中電圧制御装置であって、 
     前記集中電圧制御装置は、前記各ローカル電圧制御装置で前記第1の周期毎に更新される前記電圧上限値及び前記電圧下限値を決定して、当該電圧上限値及び電圧下限値を前記各ローカル電圧制御装置に前記通信ネットワークを介してそれぞれ指令する電圧上下限値決定部を有することを特徴とする集中電圧制御装置。
PCT/JP2011/075107 2011-10-31 2011-10-31 配電系統電圧制御システム、配電系統電圧制御方法、及び集中電圧制御装置 WO2013065114A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/354,610 US10345842B2 (en) 2011-10-31 2011-10-31 Power-distribution-system voltage control system, power-distribution-system voltage control method, and centralized voltage control apparatus
JP2013541503A JP5694557B2 (ja) 2011-10-31 2011-10-31 配電系統電圧制御システム、配電系統電圧制御方法、集中電圧制御装置、及びローカル電圧制御装置
PCT/JP2011/075107 WO2013065114A1 (ja) 2011-10-31 2011-10-31 配電系統電圧制御システム、配電系統電圧制御方法、及び集中電圧制御装置
IN3199CHN2014 IN2014CN03199A (ja) 2011-10-31 2014-04-28
JP2014259260A JP5837674B2 (ja) 2011-10-31 2014-12-22 配電系統電圧制御システム、配電系統電圧制御方法、集中電圧制御装置、及びローカル電圧制御装置
JP2015216350A JP2016036252A (ja) 2011-10-31 2015-11-04 配電系統電圧制御システム、配電系統電圧制御方法、集中電圧制御装置、及びローカル電圧制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/075107 WO2013065114A1 (ja) 2011-10-31 2011-10-31 配電系統電圧制御システム、配電系統電圧制御方法、及び集中電圧制御装置

Publications (1)

Publication Number Publication Date
WO2013065114A1 true WO2013065114A1 (ja) 2013-05-10

Family

ID=48191510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075107 WO2013065114A1 (ja) 2011-10-31 2011-10-31 配電系統電圧制御システム、配電系統電圧制御方法、及び集中電圧制御装置

Country Status (4)

Country Link
US (1) US10345842B2 (ja)
JP (3) JP5694557B2 (ja)
IN (1) IN2014CN03199A (ja)
WO (1) WO2013065114A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5538639B1 (ja) * 2013-08-30 2014-07-02 三菱電機株式会社 電圧制御装置および電圧監視機器
WO2014207849A1 (ja) * 2013-06-26 2014-12-31 三菱電機株式会社 電圧監視制御システム、電圧監視制御装置、計測装置および電圧監視制御方法
WO2014207848A1 (ja) * 2013-06-26 2014-12-31 三菱電機株式会社 電圧監視制御装置および電圧監視制御方法
WO2015022746A1 (ja) * 2013-08-15 2015-02-19 三菱電機株式会社 電圧監視制御装置および電圧制御装置
JP2015055940A (ja) * 2013-09-10 2015-03-23 株式会社東芝 電力制御装置
JP2015080401A (ja) * 2013-10-17 2015-04-23 ゼネラル・エレクトリック・カンパニイ 電気ネットワークを制御するための方法およびシステム
WO2015164785A1 (en) 2014-04-24 2015-10-29 Varentec, Inc. Optimizing voltage and var on the electrical grid using distributed var sources
WO2016098256A1 (ja) * 2014-12-19 2016-06-23 三菱電機株式会社 集中電圧制御装置および計測装置
JP6045769B1 (ja) * 2016-05-24 2016-12-14 三菱電機株式会社 発電量推定装置、配電系統システムおよび発電量推定方法
JP2017028930A (ja) * 2015-07-27 2017-02-02 三菱電機株式会社 集中電圧制御装置、計測装置および電圧制御装置
EP3138177A4 (en) * 2014-04-24 2017-12-27 Varentec, Inc. Optimizing voltage and var on the electrical grid using distributed var sources
JP2018130021A (ja) * 2013-02-08 2018-08-16 日本電気株式会社 電池制御装置、制御装置、電池制御システム、電池制御方法および電池制御支援方法
WO2019150586A1 (ja) * 2018-02-05 2019-08-08 三菱電機株式会社 集中電圧制御装置および集中電圧制御システム
US10673236B2 (en) 2014-04-24 2020-06-02 Varentec, Inc. Controlling demand and energy through photovoltaic inverters delivering VARs
US11196261B2 (en) 2017-02-14 2021-12-07 Mitsubishi Electric Corporation Centralized voltage controller and centralized voltage control system
US11237535B2 (en) 2016-10-31 2022-02-01 Mitsubishi Electric Corporation Centralized voltage controller and centralized voltage control system
JP7361646B2 (ja) 2020-03-26 2023-10-16 三菱電機株式会社 潮流計算装置および潮流計算プログラム

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3008207B1 (fr) * 2013-07-04 2016-12-02 M Et R Energies Unite et procede de regulation energetique d'un systeme de production et de consommation electrique
ES2672300T3 (es) * 2014-11-18 2018-06-13 Siemens Aktiengesellschaft Control modular de un accionamiento lineal con comunicación
WO2016115067A1 (en) 2015-01-12 2016-07-21 Dominion Resources, Inc. Systems and methods for power factor control and optimization
US10439401B2 (en) * 2015-11-23 2019-10-08 Doosan Gridtech, Inc. Managing the outflow of a solar inverter
JP6572760B2 (ja) * 2015-12-04 2019-09-11 中国電力株式会社 電力系統運用システムおよび電力系統運用方法
TWI729144B (zh) * 2016-05-30 2021-06-01 美商明亮光源能源公司 熱光伏打電力產生器、其網路及用於彼等之方法
JP6663830B2 (ja) * 2016-09-28 2020-03-13 株式会社日立製作所 電力系統縮約装置及び方法、電力系統安定化装置
JP6689732B2 (ja) * 2016-11-30 2020-04-28 株式会社日立製作所 電力系統制御装置および電力系統制御方法
JP2019012375A (ja) * 2017-06-30 2019-01-24 三菱電機株式会社 計装制御システム
JP6727449B2 (ja) 2017-09-01 2020-07-22 三菱電機株式会社 系統制御装置および方法
US11070060B2 (en) * 2018-04-20 2021-07-20 Eaton Intelligent Power Limited Predictive grid control system and method based on sensitivity of variance with respect to electric power prediction
KR102068454B1 (ko) * 2018-09-19 2020-01-21 한국전력공사 전력데이터 계측기반 다수 전압조정장치의 협조 제어를 위한 전압조정장치의 설정 값 도출 방법
JP7086820B2 (ja) 2018-11-07 2022-06-20 三菱重工業株式会社 無効電力制御装置及び無効電力制御方法
WO2020121362A1 (ja) * 2018-12-10 2020-06-18 三菱電機株式会社 電力変換システム及びその管理装置、並びに、分散電源装置
JP7167791B2 (ja) 2019-03-20 2022-11-09 トヨタ自動車株式会社 需給制御装置
US11358695B2 (en) 2019-12-18 2022-06-14 Leonidas Kyros Kontopoulos Divided gear wheel for a power transmission system used in a marine engine
JP7165153B2 (ja) * 2020-02-20 2022-11-02 エナジーサポート株式会社 低圧配電系統の電圧管理システム
JP7146830B2 (ja) * 2020-02-20 2022-10-04 エナジーサポート株式会社 低圧配電系統の電圧管理システム及び電圧管理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004056996A (ja) * 2002-05-31 2004-02-19 Hitachi Ltd 地域電力情報監視システムおよびその運用方法
JP2004274812A (ja) * 2003-03-05 2004-09-30 Hitachi Ltd 配電系統における電力品質維持支援方法及びシステム
JP2005269744A (ja) * 2004-03-17 2005-09-29 National Institute Of Advanced Industrial & Technology 配電系統情報監視システムおよび系統情報監視システム
JP2007288877A (ja) * 2006-04-14 2007-11-01 Hitachi Ltd 複数の分散型電源が連系された配電系統の電力品質維持支援方法及び電力品質維持支援システム

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04127841A (ja) 1990-09-19 1992-04-28 Tokyo Electric Power Co Inc:The 無効電力補償システム
JP3044640B2 (ja) 1993-03-12 2000-05-22 株式会社日立製作所 電圧調整装置の監視制御システム
JP3317833B2 (ja) 1995-01-17 2002-08-26 株式会社日立製作所 送配電系統の制御システムおよび制御方法
JP3825173B2 (ja) 1998-04-06 2006-09-20 関西電力株式会社 配電系統制御システム
JP3825171B2 (ja) 1998-04-06 2006-09-20 関西電力株式会社 配電系統制御システム
JP3791188B2 (ja) * 1998-06-22 2006-06-28 株式会社日立製作所 電圧無効電力制御装置
JP2000102171A (ja) 1998-09-22 2000-04-07 Fuji Electric Co Ltd 電力系統電圧制御方法および装置
JP3809861B2 (ja) 2002-01-11 2006-08-16 関西電力株式会社 配電系統における電圧制御機器の最適整定方法
EP1367689A3 (en) * 2002-05-31 2008-08-06 Hitachi, Ltd. Supervising system and operating method for areal power information
JP2004056931A (ja) 2002-07-22 2004-02-19 Mitsubishi Electric Corp 配電線電圧調整装置
JP3994910B2 (ja) * 2003-05-08 2007-10-24 株式会社日立製作所 電力売買支援システム
DE102004021344A1 (de) * 2004-04-30 2005-11-17 Micronas Gmbh Gleichspannungswandler
JP2007330067A (ja) 2006-06-09 2007-12-20 Central Res Inst Of Electric Power Ind 配電系統の電圧制御方法および配電系統の電圧制御システム
US8013472B2 (en) * 2006-12-06 2011-09-06 Solaredge, Ltd. Method for distributed power harvesting using DC power sources
JP5049600B2 (ja) * 2007-01-11 2012-10-17 株式会社東芝 配電系統制御システム
JP2008278658A (ja) * 2007-04-27 2008-11-13 Toshiba Corp 配電系統監視制御システムと方法、およびプログラム
JP5006728B2 (ja) 2007-07-26 2012-08-22 一般財団法人電力中央研究所 配電系統の運用管理方法、システム及びプログラム
JP2009065788A (ja) 2007-09-06 2009-03-26 Univ Of Ryukyus 配電系統の最適電圧制御装置
JP4948432B2 (ja) 2008-01-21 2012-06-06 中国電力株式会社 電圧調整システム
US7991511B2 (en) * 2008-05-14 2011-08-02 National Semiconductor Corporation Method and system for selecting between centralized and distributed maximum power point tracking in an energy generating system
US8588993B2 (en) * 2008-11-05 2013-11-19 Abb Research Ltd. Voltage regulation optimization
US8706650B2 (en) * 2009-01-14 2014-04-22 Integral Analytics, Inc. Optimization of microgrid energy use and distribution
JP2010250599A (ja) 2009-04-16 2010-11-04 Mitsubishi Electric Corp 組合せ最適解を求めるデータ処理方法およびデータ処理装置
JP5523733B2 (ja) * 2009-04-21 2014-06-18 ルネサスエレクトロニクス株式会社 電源制御装置および電源制御方法
MX339713B (es) 2009-05-07 2016-06-07 Dominion Resources Inc Conservacion de voltaje usando infraestructura de medicion avanzada y control de voltaje centralizado en la subestacion.
US9342088B2 (en) * 2009-12-31 2016-05-17 Sunpower Corporation Power point tracking
NO334364B1 (no) * 2012-05-03 2014-02-17 Kongsberg Maritime As Prediktivt reguleringssystem.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004056996A (ja) * 2002-05-31 2004-02-19 Hitachi Ltd 地域電力情報監視システムおよびその運用方法
JP2004274812A (ja) * 2003-03-05 2004-09-30 Hitachi Ltd 配電系統における電力品質維持支援方法及びシステム
JP2005269744A (ja) * 2004-03-17 2005-09-29 National Institute Of Advanced Industrial & Technology 配電系統情報監視システムおよび系統情報監視システム
JP2007288877A (ja) * 2006-04-14 2007-11-01 Hitachi Ltd 複数の分散型電源が連系された配電系統の電力品質維持支援方法及び電力品質維持支援システム

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10784702B2 (en) 2013-02-08 2020-09-22 Nec Corporation Battery control device, battery control system, battery control method,and recording medium
JP2018130021A (ja) * 2013-02-08 2018-08-16 日本電気株式会社 電池制御装置、制御装置、電池制御システム、電池制御方法および電池制御支援方法
CN105324901A (zh) * 2013-06-26 2016-02-10 三菱电机株式会社 电压监视控制装置及电压监视控制方法
WO2014207849A1 (ja) * 2013-06-26 2014-12-31 三菱電機株式会社 電圧監視制御システム、電圧監視制御装置、計測装置および電圧監視制御方法
WO2014207848A1 (ja) * 2013-06-26 2014-12-31 三菱電機株式会社 電圧監視制御装置および電圧監視制御方法
US9667100B2 (en) 2013-06-26 2017-05-30 Mitsubishi Electric Corporation Voltage monitoring control device and voltage monitoring control method
CN105379046A (zh) * 2013-06-26 2016-03-02 三菱电机株式会社 电压监视控制系统、电压监视控制装置、测量装置和电压监视控制方法
JP5721915B1 (ja) * 2013-06-26 2015-05-20 三菱電機株式会社 電圧監視制御システム、電圧監視制御装置、計測装置および電圧監視制御方法
US9843195B2 (en) 2013-06-26 2017-12-12 Mitsubishi Electric Corporation Voltage monitoring control system, voltage monitoring control device, measurement device, and voltage monitoring control method
WO2015022746A1 (ja) * 2013-08-15 2015-02-19 三菱電機株式会社 電圧監視制御装置および電圧制御装置
CN105453365B (zh) * 2013-08-15 2018-03-09 三菱电机株式会社 电压监视控制装置及电压控制装置
CN105453365A (zh) * 2013-08-15 2016-03-30 三菱电机株式会社 电压监视控制装置及电压控制装置
US9825465B2 (en) 2013-08-15 2017-11-21 Mitsubishi Electric Corporation Voltage monitoring control device and voltage control device
US10090679B2 (en) 2013-08-30 2018-10-02 Mitsubishi Electric Corporation Voltage controller and voltage monitoring device
WO2015029227A1 (ja) * 2013-08-30 2015-03-05 三菱電機株式会社 電圧制御装置および電圧監視機器
JP5538639B1 (ja) * 2013-08-30 2014-07-02 三菱電機株式会社 電圧制御装置および電圧監視機器
CN105493382A (zh) * 2013-08-30 2016-04-13 三菱电机株式会社 电压控制装置及电压监视设备
CN105493382B (zh) * 2013-08-30 2018-04-27 三菱电机株式会社 电压控制装置及电压监视设备
JP2015055940A (ja) * 2013-09-10 2015-03-23 株式会社東芝 電力制御装置
JP2015080401A (ja) * 2013-10-17 2015-04-23 ゼネラル・エレクトリック・カンパニイ 電気ネットワークを制御するための方法およびシステム
WO2015164785A1 (en) 2014-04-24 2015-10-29 Varentec, Inc. Optimizing voltage and var on the electrical grid using distributed var sources
AU2015249324B2 (en) * 2014-04-24 2019-08-08 Sentient Energy Technology, LLC Optimizing voltage and VAR on the electrical grid using distributed VAR sources
US10680438B2 (en) 2014-04-24 2020-06-09 Varentec, Inc. Optimizing voltage and VAR on the electric grid using distributed VAR sources
US10673236B2 (en) 2014-04-24 2020-06-02 Varentec, Inc. Controlling demand and energy through photovoltaic inverters delivering VARs
EP3138177A4 (en) * 2014-04-24 2017-12-27 Varentec, Inc. Optimizing voltage and var on the electrical grid using distributed var sources
WO2016098256A1 (ja) * 2014-12-19 2016-06-23 三菱電機株式会社 集中電圧制御装置および計測装置
US10250038B2 (en) 2014-12-19 2019-04-02 Mitsubishi Electric Corporation Central voltage control device and measuring device
JP2017028930A (ja) * 2015-07-27 2017-02-02 三菱電機株式会社 集中電圧制御装置、計測装置および電圧制御装置
WO2017203610A1 (ja) * 2016-05-24 2017-11-30 三菱電機株式会社 発電量推定装置、配電系統システムおよび発電量推定方法
JP6045769B1 (ja) * 2016-05-24 2016-12-14 三菱電機株式会社 発電量推定装置、配電系統システムおよび発電量推定方法
US11237535B2 (en) 2016-10-31 2022-02-01 Mitsubishi Electric Corporation Centralized voltage controller and centralized voltage control system
US11196261B2 (en) 2017-02-14 2021-12-07 Mitsubishi Electric Corporation Centralized voltage controller and centralized voltage control system
WO2019150586A1 (ja) * 2018-02-05 2019-08-08 三菱電機株式会社 集中電圧制御装置および集中電圧制御システム
JP7361646B2 (ja) 2020-03-26 2023-10-16 三菱電機株式会社 潮流計算装置および潮流計算プログラム

Also Published As

Publication number Publication date
JP2016036252A (ja) 2016-03-17
JP5694557B2 (ja) 2015-04-01
JP5837674B2 (ja) 2015-12-24
IN2014CN03199A (ja) 2015-07-03
JP2015084645A (ja) 2015-04-30
JPWO2013065114A1 (ja) 2015-04-02
US10345842B2 (en) 2019-07-09
US20140288725A1 (en) 2014-09-25

Similar Documents

Publication Publication Date Title
JP5837674B2 (ja) 配電系統電圧制御システム、配電系統電圧制御方法、集中電圧制御装置、及びローカル電圧制御装置
JP5393934B1 (ja) 電圧監視制御装置、電圧制御装置および電圧監視制御方法
JP5721915B1 (ja) 電圧監視制御システム、電圧監視制御装置、計測装置および電圧監視制御方法
JP5436734B1 (ja) 電圧監視制御装置および電圧監視制御方法
JP5766364B1 (ja) 電圧監視制御装置および電圧制御装置
EP2506384B1 (en) System and method for operating a tap changer
US20120248873A1 (en) Energy storage systems
KR101806041B1 (ko) 스케줄링 기반 배전선로 전압제어 방법 및 전압제어 시스템
JP6191229B2 (ja) タップ計画値算出方法及びこれを用いたタップ指令値の決定方法、制御目標値算出方法、並びにタップ計画値算出装置、タップ指令値決定装置、タップ計画値算出プログラム
KR102360363B1 (ko) 전력 수요공급 관리 장치 및 그 방법
Ishii et al. Optimal smart functions of large-scale PV inverters in distribution systems
JP6452909B1 (ja) 集中電圧制御装置および集中電圧制御システム
JP5939894B2 (ja) 配電系統の電圧調整装置、電圧調整方法および電力制御システム
JP6478856B2 (ja) 集中電圧制御装置および電圧制御システム
JP6177489B1 (ja) 集中電圧制御装置および集中電圧制御システム
JP6440608B2 (ja) 集中電圧制御装置および集中電圧制御方法
JP6848234B2 (ja) 電圧監視制御装置
KR20200055554A (ko) 스마트 배전 시스템을 위한 계층적 다중시간 사전예측 cvr 프레임워크 시스템 및 장치
Soleimani Bidgoli et al. Real-time corrective control of active distribution networks: validation in future scenarios of a real system
US20230369889A1 (en) Power control device, power control method, and power control program
Suzuki et al. Planning and operation of shunt capacitors using MOPSO and DP for large-scale PV penetration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11875207

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013541503

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14354610

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11875207

Country of ref document: EP

Kind code of ref document: A1