WO2014207849A1 - 電圧監視制御システム、電圧監視制御装置、計測装置および電圧監視制御方法 - Google Patents

電圧監視制御システム、電圧監視制御装置、計測装置および電圧監視制御方法 Download PDF

Info

Publication number
WO2014207849A1
WO2014207849A1 PCT/JP2013/067558 JP2013067558W WO2014207849A1 WO 2014207849 A1 WO2014207849 A1 WO 2014207849A1 JP 2013067558 W JP2013067558 W JP 2013067558W WO 2014207849 A1 WO2014207849 A1 WO 2014207849A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
value
control device
period
cycle
Prior art date
Application number
PCT/JP2013/067558
Other languages
English (en)
French (fr)
Inventor
板屋 伸彦
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US14/898,787 priority Critical patent/US9843195B2/en
Priority to PCT/JP2013/067558 priority patent/WO2014207849A1/ja
Priority to JP2014551353A priority patent/JP5721915B1/ja
Priority to CN201380077677.9A priority patent/CN105379046B/zh
Publication of WO2014207849A1 publication Critical patent/WO2014207849A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00004Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by the power network being locally controlled
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0084Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring voltage only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • G01R19/16547Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies voltage or current in AC supplies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00032Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for
    • H02J13/00034Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving an electric power substation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J4/00Circuit arrangements for mains or distribution networks not specified as ac or dc
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/12The local stationary network supplying a household or a building
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/14District level solutions, i.e. local energy networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Definitions

  • the present invention relates to a voltage monitoring control system, a voltage monitoring control device, a measuring device, and a voltage monitoring control method.
  • the distribution system is generally composed of a high-voltage system (usually 6600 V) and a low-voltage system (for example, 100 V to 200 V), and the receiving end of general consumers is connected to this low-voltage system.
  • the electric power company is obliged to maintain the voltage at the receiving end of the general consumer within an appropriate range (for example, in the case of receiving 100V, the voltage is 95V to 107V).
  • the electric power company uses a voltage control device (for example, LRT (Load Ratio Control Transformer) or SVR (Step Voltage Regulator)) connected to the high voltage system.
  • LRT Low Ratio Control Transformer
  • SVR Step Voltage Regulator
  • a transformer-type voltage control device such as LRT or SVR is integrated with the voltage control device or installed in the voltage control device, and the voltage control device is installed.
  • LRT or SVR local voltage control devices that perform voltage control in a self-sustaining manner based on measurement information (voltage and power flow) in the vicinity of a location are widely used.
  • measurement information voltage and power flow
  • the load distribution of the distribution system tends to vary greatly over time. It is becoming difficult to maintain an appropriate voltage in the voltage control of the distribution system.
  • the centralized voltage control device collects voltage and power flow measurement information at each point of the distribution system and assigns optimal control to each voltage control device, but optimal control planning is based on the current voltage and power flow measurement information. Therefore, the following problems are concerned when photovoltaic power generation is connected to a low-voltage system in large quantities. (1) If the measurement monitoring period is long (for example, about several tens of minutes), it is impossible to follow a rapid voltage fluctuation, for example, when the amount of photovoltaic power generation changes greatly due to a sudden change in the amount of solar radiation due to the flow of clouds. (2) Conversely, if the measurement / monitoring cycle is shortened (for example, in units of seconds), the communication load for measurement / monitoring increases, so the capital investment in the communication network becomes enormous.
  • a transformer-type voltage control device controls voltage by changing the tap position, and removes voltage fluctuations (hereinafter referred to as short-period fluctuations) with a short period (for example, a period of several seconds to several tens of seconds). It ’s difficult.
  • the concentrated voltage control device has a limitation in the measurement information acquisition cycle in consideration of the communication load, and cannot grasp short-term fluctuations in voltage. For this reason, when the centralized voltage control device obtains the optimum voltage of the transformer type voltage control device by planning optimum control based on the measurement information, and commands this voltage to the transformer type voltage control device as the control amount, Short cycle fluctuations can cause voltage deviations from the proper range. In order to avoid such a deviation of the voltage from the appropriate range, the centralized voltage controller considers the voltage range (the voltage upper limit value and the voltage by adding a predetermined margin to the optimum voltage determined by the optimum control plan. A method of determining the lower limit value and instructing the voltage range to a transformer-type voltage control device is conceivable.
  • the concentrated voltage control device cannot grasp the actual short cycle fluctuation from the problem of the communication load as described above, the margin cannot be set in consideration of the actual short cycle fluctuation. For this reason, when the actual short period fluctuation of the voltage is larger than the margin, there is a problem that the voltage in the distribution system may deviate from the appropriate range. On the other hand, if the margin amount is excessively large, there is a possibility that a solution of the control amount for keeping the voltage within an appropriate range may not be obtained in the optimal control plan.
  • the magnitude of short-period fluctuation varies depending on the location in the distribution system, and the appropriate value of the margin may vary depending on the transformer-type voltage control device.
  • the concentrated voltage control device cannot determine the margin based on the actual short cycle fluctuation as described above. For this reason, while there are places where the allowance is too large compared to the magnitude of the short cycle fluctuation of the implementation, there may be places where the allowance is too small, and the voltage may deviate from the appropriate range.
  • the present invention has been made in view of the above, and maintains the voltage following the voltage fluctuation of the distribution system without increasing the communication load, and is suitable for the transformer-type voltage control device.
  • the purpose is to be able to command a wide voltage range.
  • the present invention provides a plurality of voltage control devices that are connected to a distribution line of a high-voltage system and control the voltage of the distribution line, and a control amount of the voltage control device, A plurality of local voltage control devices that adjust so that the voltage value controlled by the voltage control device is maintained within the range of the voltage upper limit value and the voltage lower limit value that are updated every first cycle, and connected to the distribution line Then, the voltage of the distribution line is measured in a second cycle shorter than the first cycle, and the voltage fluctuation is performed every third cycle longer than the second cycle based on the measured voltage.
  • a measurement device that calculates and transmits fluctuation width information indicating a width; and a central voltage control device that is connected to the local voltage control device and the measurement device via a communication network.
  • the communication network A transmitter / receiver that communicates with the local voltage control device via a network and receives the fluctuation range information from the measurement device via the communication network, and based on the fluctuation range information,
  • a voltage fluctuation range calculation unit for calculating the voltage fluctuation range, and a first threshold for a margin up to an upper limit of the appropriate voltage range based on the fluctuation range calculated by the voltage fluctuation range calculation unit and a lower limit of the appropriate voltage range
  • a second threshold value for the margin of the first threshold value and based on the difference between the margin up to the upper limit and the first threshold value, and the difference between the margin up to the lower limit and the second threshold value.
  • a control target voltage determination unit that determines a control target value to be commanded to the voltage control device, and a voltage upper limit value and a voltage lower limit value that are respectively transmitted to each local voltage control device via the transmission / reception unit based on the control target value.
  • the voltage can be maintained following the voltage fluctuation of the distribution system without increasing the communication load, and an appropriate voltage range can be commanded to the transformer-type voltage control device. , Has the effect.
  • FIG. 1 is a diagram showing an example of a configuration of a distribution system voltage control system according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an example of an internal configuration of the concentrated voltage control device.
  • FIG. 3 is a diagram illustrating the concept of voltage measurement and voltage fluctuation range calculation.
  • FIG. 4 is a flowchart illustrating an example of a processing procedure regarding information to be databased.
  • FIG. 5 is a flowchart for explaining the voltage control operation.
  • FIG. 6 is a flowchart for calculating the optimum voltage distribution of the distribution system for one hour in the future.
  • FIG. 7 is a diagram for explaining the details of the process of S14 of FIG.
  • FIG. 8 is a diagram illustrating an example in which the upper fluctuation range and the amount of solar radiation for a certain period are plotted.
  • FIG. 1 is a diagram showing an example of a configuration of a distribution system voltage control system according to an embodiment of the present invention.
  • a voltage control device 1 is, for example, an LRT (Load Ratio Control Transformer) as a distribution transformer installed in a substation.
  • a local voltage control device 11 is connected to the voltage control device 1, and the local voltage control device 11 controls the voltage control device 1.
  • the local voltage control device (voltage control device) 11 can be integrated with or provided with the voltage control device 1, for example.
  • the local voltage control device 11 controls the voltage control device 1 by adjusting the control amount of the voltage control device 1, specifically by adjusting the tap position.
  • the local voltage control device 11 has a communication function and is connected to the communication network 7.
  • the bus 2 is connected to the secondary side of the voltage control device 1.
  • two distribution lines 4-1 and 4-2 are connected to the bus 2 in parallel.
  • Distribution lines 4-1 and 4-2 are distribution lines of a high voltage system (voltage level is 6600V).
  • a voltage flow measuring device 10 (measuring device) for measuring the voltage and power flow of the distribution line 4-1 is installed at a plurality of locations on the distribution line 4-1.
  • the voltage flow measuring device 10 is connected to the distribution line 4-1, measures the voltage and power flow at the connection point, and outputs the result of processing the measured values by, for example, statistical processing as measurement information.
  • a smart meter 12 (measuring device) is also connected to the distribution line 4-1. The smart meter 12 measures the voltage at the connection point to the distribution line 4-1, and outputs the result of processing the measured value by, for example, statistical processing as measurement information.
  • the voltage flow measuring device 10 and the smart meter 12 have a communication function and are connected to the communication network 7.
  • the voltage flow measuring device 10 and the smart meter 12 periodically transmit measurement information to the centralized voltage control device 8 via the communication network 7, for example.
  • the measurement information transmitted by the voltage flow measuring device 10 and the smart meter 12 will be described later.
  • the centralized voltage control device 8 determines a target voltage distribution and an operation state of each voltage control device having a target voltage distribution for a target system range, and gives a command value to each voltage control device.
  • the centralized voltage control device 8 can be installed in a sales office or a control office that has jurisdiction over the target system range.
  • a local voltage control device 15 that controls the voltage control device 5 is connected to the voltage control device 5.
  • the local voltage control device 15 can be integrated with the voltage control device 5 or can be provided together.
  • the local voltage control device 15 controls the voltage control device 5 by adjusting the control amount of the voltage control device 5, specifically by adjusting the tap position.
  • a local voltage control device 16 that controls the voltage control device 6 is connected to the voltage control device 6.
  • the local voltage control device 16 controls the voltage control device 6.
  • the local voltage control devices 15 and 16 have a communication function and are connected to the communication network 7.
  • the distribution line 4-2 has one end connected to the bus 2 via the circuit breaker 3-2. Similarly to the distribution line 4-1, voltage flow measuring devices 10 for measuring the voltage and power flow of the distribution line 4-2 are installed at a plurality of locations on the distribution line 4-2.
  • the distribution lines 4-1 and 4-2 are high-voltage distribution lines, which are not shown, but the distribution lines 4-1 and 4-2 are respectively connected to the low-voltage system (voltage level is, for example, via a transformer). 100V to 200V) is connected to a low voltage distribution line. A load is connected to the low-voltage distribution line, but a distributed power source such as a solar power generator is further connected. That is, in this embodiment, it is assumed that a distributed power source is connected to a low-voltage system. However, the present embodiment can be applied even when the distributed power source is not included in the low-voltage system.
  • a solar power generation device will be described as an example of the distributed power source.
  • the voltage control of the distribution system means voltage control of the high voltage system. This distribution system includes voltage control devices 1, 5, 6, local voltage control devices 11, 15, 16, bus 2, circuit breakers 3-1, 3-2, distribution lines 4-1, 4-2, and voltage flow A measurement device 10 is provided.
  • the number of distribution lines connected to the bus 2 is, for example, two, but is not limited to this example. Further, the number of installed voltage control devices, the number of voltage flow measuring devices 10 and the number of smart meters 12 are not limited to the illustrated example. Further, only one of the voltage flow measuring device 10 and the smart meter 12 may be installed.
  • An MDM (Meter Data Management) device 13 is connected to a smart meter 12 via a communication network 14 and collects a measured amount measured by the smart meter 12 for automatic meter reading and the like. Provide processed results.
  • the communication network 14 may be a dedicated network or a public line.
  • the communication network 14 and the communication network 7 are different, but the communication network 14 and the communication network 7 may be the same.
  • the measurement amount collected by the MDM apparatus 13 is set independently of the voltage control of the present invention and is not limited. Therefore, description of the measurement amount processing in the MDM apparatus 13 is omitted.
  • the smart meter 12 statistically processes the voltage measurement value and uses the processing result as the measurement information, as described above, separately from the transmission of the measurement amount to the MDM device 13. Send to.
  • the contents of the measurement information transmitted to the concentrated voltage control device 8 may be instructed by the MDM device 13 to the smart meter 12 or may be set in the smart meter 12 in advance.
  • the centralized voltage control device (voltage monitoring control device) 8 is connected to the local voltage control devices 11, 15 and 16, the voltage flow measuring device 10 and the smart meter 12 via the communication network 7.
  • the communication network 7 is a dedicated network, for example, and is arranged for the purpose of monitoring and controlling the power distribution system.
  • the centralized voltage control device 8 determines, for example, a command value to be controlled by each local voltage control device based on, for example, measurement information transmitted from the voltage flow measuring device 10 in a centralized control cycle (for example, 1 hour cycle), Each local voltage control device is individually commanded via the communication network 7.
  • the centralized voltage control device 8 is a local voltage control device (in the example of FIG. 1, in the example of FIG. 1) that controls a transformer type voltage control device (in the example of FIG.
  • a voltage upper limit value and a voltage lower limit value (hereinafter also referred to as voltage upper and lower limit values) that define a voltage range as command values. Command.
  • Each local voltage control device that controls the transformer-type voltage control device is controlled based on a voltage upper / lower limit command from the centralized voltage control device 8 so as to maintain the voltage between the voltage upper / lower limit values. Control the voltage control equipment.
  • Each local voltage control device updates and sets the voltage upper limit value and the voltage lower limit value each time it receives a voltage upper / lower limit command from the centralized voltage control device 8.
  • the local voltage control device 11 is based on the voltage upper and lower limit values commanded from the centralized voltage control device 8, and the secondary voltage of the voltage control device 1 is within the centralized control period during which the voltage upper and lower limit values are applied.
  • the control amount (tap position change amount) of the voltage control device 1 is shorter than the central control cycle (first cycle) so that the voltage on the side falls within the voltage upper and lower limit values (within the control target voltage range). Adjust with the control cycle.
  • FIG. 2 is a diagram showing an example of the internal configuration of the concentrated voltage control device 8.
  • the centralized voltage control device 8 is connected to the control unit 20, the storage unit 27 connected to the control unit 20, the control unit 20, the storage unit 27, and the communication network 7.
  • the transmitter / receiver 26 communicates with the voltage control device.
  • the control unit 20 includes, as its functional configuration, a voltage fluctuation range calculation unit 21, a load power generation amount prediction unit 22, a load power generation amount prediction value correction unit 23, an optimum voltage distribution determination unit (control target voltage determination unit) 24, and a voltage upper and lower limit.
  • a value determining unit 25 is provided.
  • the voltage fluctuation width calculation unit 21 calculates the voltage fluctuation width at each point based on the measurement information received from the voltage flow measuring device 10.
  • the load power generation amount predicting unit 22 predicts the load / power generation amount distribution of the future distribution system such as the next day, for example, every central control cycle (for example, one hour cycle).
  • the load / power generation amount corresponds to an amount obtained by subtracting the power generation amount from a pure load.
  • the load power generation amount predicted value correcting unit 23 calculates the predicted value of the load / power generation amount distribution within the period of the centralized control cycle, the actual value of the load / power generation amount distribution within the period of the centralized control cycle immediately before the load / power generation amount distribution. Correction is performed based on the comparison result with the predicted value.
  • the actual value of the load / power generation distribution is calculated based on the measurement information.
  • the optimum voltage distribution determination unit 24 calculates the power flow based on the corrected predicted value of the load / power generation distribution, and considers the voltage fluctuation range calculated by the voltage fluctuation width calculation unit 21, and the voltage distribution of the distribution system By searching for the best solution that optimizes the value of the evaluation function for evaluating the optimal voltage distribution within the period of the centralized control period and the optimal control amount of each voltage control device.
  • the optimum voltage distribution is a voltage distribution at each point in the system that satisfies the constraint condition and has the optimum evaluation function.
  • the optimum control amount is a control amount that is commanded to each voltage control device so as to realize an optimum voltage distribution, and is a control target voltage.
  • the voltage upper and lower limit value determination unit 25 determines the voltage upper and lower limit values that are the upper limit and the lower limit of the control target voltage range of each local voltage control device within the period of the centralized control period based on the determined optimum voltage distribution, This is commanded to each local voltage control device via the communication network 7.
  • the details of the process of determining the voltage upper and lower limit values by the voltage upper and lower limit value determining unit 25 will be described later, but the outline is as follows.
  • the voltage upper and lower limit value determination unit 25 acquires, from the storage unit 27, information related to the voltage control responsibility range allocated in advance for each local voltage control device.
  • the voltage control responsibility range is a range (or section) on the distribution line 4-1 or 4-2, and the voltage control within the range is a local voltage control device to which the range is assigned or this The voltage control device connected to is responsible for that.
  • the reactive power control type voltage control device is a transformer-type voltage control device when there is a transformer-type voltage control device on the power supply side (the side where the distribution transformer is located, the upstream side). If the range up to the load side (downstream side) of the transformer of the control device and the range of the load side of the voltage control device is the responsibility for voltage control, and there is another voltage control device on the load side, Include the voltage control responsibility up to the power supply side of another voltage control device.
  • the voltage control device of the transformer type has a voltage control responsibility range on the load side of the transformer, but if there is another voltage control device on the load side, the power supply side of the other voltage control device The voltage control responsibility range.
  • the voltage control responsibility range setting method is not limited to the above example.
  • an appropriate voltage range is preset for each voltage control responsibility range.
  • This appropriate voltage range is an appropriate voltage range to be maintained by the high voltage system.
  • the optimum voltage of the voltage control device is required to fall within an appropriate voltage range within the voltage control responsibility range.
  • the difference between the optimum voltage and the lower limit value of the appropriate voltage is called a voltage lower limit margin, and the difference between the upper limit value of the appropriate voltage and the optimum voltage is called a voltage upper limit margin.
  • the voltage upper and lower limit value determining unit 25 determines the voltage upper and lower limit values based on the optimum voltage obtained by the optimum voltage distribution determining unit 24 for the local voltage control device that controls the transformer type voltage control device.
  • the centralized voltage control device 8 can be configured as a server having a storage device such as a CPU, a memory, and a hard disk, and a communication function, for example.
  • the control unit 20 is realized by a CPU that performs control processing according to a control program stored in a memory.
  • the storage unit 27 generally represents a memory, a storage device, and the like.
  • the transmission / reception unit 26 represents a communication function.
  • the centralized voltage control device 8 can be installed in a substation, for example.
  • the centralized voltage control device 8 controls each local voltage control device in a centralized control cycle. Therefore, the centralized control by the centralized voltage control device 8 cannot suppress voltage fluctuations (short-period fluctuations) having a period shorter than the centralized control period. Since it is not practical to remove even short-cycle fluctuations by centralized control from the viewpoint of communication load, the lifetime of the tap device, etc., in this embodiment, calculation of the optimum voltage distribution and calculation of the commanded control amount In this case, the short period fluctuation is considered as a margin, thereby suppressing voltage violation due to the short period fluctuation. In order to determine an appropriate margin, it is desirable to grasp the fluctuation range of the short period fluctuation.
  • the centralized voltage control device 8 acquires the measurement data itself (for example, every second) measured by the voltage flow measuring device 10 and the smart meter 12, and the centralized voltage control device 8 detects short cycle fluctuations based on the measurement data. Obtaining the fluctuation range is not realistic from the viewpoint of communication load. For this reason, in this embodiment, the voltage flow measuring device 10 and the smart meter 12 perform statistical processing on the measurement data to obtain fluctuation information (for example, standard deviation) indicating the fluctuation, and the fluctuation information is measured as measurement information. To the centralized voltage control device 8. The concentrated voltage control device 8 grasps the fluctuation range of the short cycle fluctuation at each point where the voltage flow measuring device 10 and the smart meter 12 are installed based on the received measurement information.
  • fluctuation information for example, standard deviation
  • FIG. 3 is a diagram illustrating the concept of voltage measurement and voltage fluctuation calculation according to the present embodiment.
  • the upper side of FIG. 3 shows a state of voltage measurement in the voltage flow measuring device 10, and the lower side of FIG. 3 shows a state of processing in the concentrated voltage control device 8.
  • the voltage flow measuring device 10 measures the voltage and the power flow at the installation point for each predetermined time Tp (second period), and stores measurement data (voltage and power flow).
  • the voltage flow measuring device 10 obtains the average value Vmean and the average value of the power flow based on the measurement data in Tm every statistical processing cycle Tm (third cycle) (for example, 1 minute).
  • the crosses in FIG. 3 indicate measurement data.
  • the voltage flow measuring apparatus 10 calculates
  • the number of measurement data in the statistical processing cycle Tm is Nd
  • Vi indicates the i-th measurement data in the statistical processing cycle Tm.
  • V ⁇ ( ⁇ (Vi ⁇ Vmean) 2 / (Nd ⁇ 1)) 1/2 (1)
  • the values of Tp and Tm are not limited to this, and any value may be set.
  • Nd 60
  • the voltage flow measuring device 10 calculates Vmean and V ⁇ based on 60 pieces of measurement data.
  • the voltage flow measuring device 10 transmits the obtained Vmean1, V ⁇ and the average value of the power flow to the concentrated voltage control device 8 for each statistical processing cycle.
  • FIG. 3 since the process of the measurement data of voltage is demonstrated, description of the average value of a tidal current is abbreviate
  • the voltage fluctuation range calculation unit 21 acquires Vmean and V ⁇ from the voltage flow measuring device 10, and based on Vmean and V ⁇ at each point, an estimated value (estimated value) of the voltage within Tm. Maximum value) Vmax1 is obtained by the following equation (2).
  • Vmax1 Vmean + 2V ⁇ (2)
  • the voltage fluctuation range calculation unit 21 of the concentrated voltage control device 8 obtains the maximum value Vmax2 of Vmax1 within the concentrated control period Tc.
  • the central control period is 1 hour
  • the number of Vmax1 in the central control period Tc is 60.
  • Vmax1 corresponds to an estimated value of the maximum value of the voltage within the central control period.
  • the voltage fluctuation calculation unit 21 similarly obtains an estimated value (estimated maximum value) Vmin1 of the maximum value of the voltage within Tm by the following equation (3).
  • Vmin1 Vmean-2V ⁇ (3)
  • the voltage fluctuation range calculation unit 21 obtains the maximum value Vmax2 of Vmax1 within the centralized control cycle Tc and the minimum value Vmin2 of Vmin1 within the centralized control cycle Tc. Further, the voltage fluctuation range calculation unit 21 obtains an average value Vmean2 of Vmean within the central control period Tc. Then, the upper fluctuation width and the lower fluctuation width within the central control period are obtained by the following equation (4).
  • Upper fluctuation range Vmax2-Vmean2
  • Lower fluctuation range Vmean2 ⁇ Vmin2 (4)
  • the voltage fluctuation width calculation unit 21 performs the above processing (statistical processing) for each voltage flow measuring device 10 to obtain the upper fluctuation width and the lower fluctuation width within the central control period.
  • the smart meter 12 measures the voltage every predetermined time Tp ′, obtains the average value Vmeam and the standard deviation V ⁇ of the measurement data within the statistical processing cycle Tm (for example, 1 minute), and transmits it to the centralized voltage control device 8.
  • Tp ′ may be the same as or different from Tp.
  • the statistical processing cycle may be different from that of the voltage flow measuring device 10, but if the statistical processing cycle is the same, the processing in the concentrated voltage control device 8 can be made common.
  • the voltage fluctuation range calculation unit 21 of the centralized voltage control device 8 determines the upper fluctuation range and the lower fluctuation range within the central control period based on Vmeam and V ⁇ received from the smart meter 12.
  • the method for obtaining the upper fluctuation width and the lower fluctuation width in the central control cycle has been described above.
  • the above-described method is an example, and the method for obtaining the upper fluctuation width and the lower fluctuation width in the central control cycle is described above. It is not limited to the example.
  • V ⁇ , 3V ⁇ or the like may be used instead of 2V ⁇ .
  • the voltage flow measuring device 10 and the smart meter 12 calculate and transmit information (variation width information) indicating the fluctuation range of short cycle fluctuations of the voltage such as V ⁇ , and the concentrated voltage control device 8 is based on the fluctuation width information. Any method may be used as long as it can calculate the upper fluctuation width and the lower fluctuation width within the central control cycle.
  • the upper fluctuation width and the lower fluctuation width in the central control cycle may be obtained by the following method.
  • the voltage flow measuring device 10 and the smart meter 12 obtain the maximum value Vmax1 ′ and the minimum value Vmin1 ′ of the measurement data of the voltage within Tm.
  • WUmax and WLmax corresponding to the upper maximum fluctuation width and the lower maximum fluctuation width in Tm are obtained as fluctuation width information by the following equation (5).
  • the voltage flow measuring device 10 and the smart meter 12 transmit Vmean, WUmax, and WLmax to the centralized voltage control device 8.
  • WUmax and WLmax may be obtained by the following equation (6).
  • the voltage flow measuring device 10 and the smart meter 12 obtain the maximum value Vmax1 ′ and the minimum value Vmin1 ′ of the measurement data of the voltage within Tm, and transmit Vmean, Vmax1 ′, Vmin1 ′ to the centralized voltage control device 8,
  • the voltage fluctuation range calculation unit 21 of the concentrated voltage control device 8 may obtain WUmax and WLmax by the above formula (5) or formula (6).
  • the voltage fluctuation range calculation unit 21 obtains the maximum value of Vmax1 ′ within the central control period and the minimum value of Vmin1 ′ within the central control period, and subtracts Vmean2 from the maximum value of Vmax1 ′ within the central control period.
  • the upper fluctuation range may be used, and the lower fluctuation range may be obtained by subtracting the minimum value of Vmin1 ′ within the central control period from Vmean2.
  • the upper fluctuation range and the lower fluctuation range within the following centralized control cycle may be obtained.
  • the voltage flow measuring device 10 and the smart meter 12 calculate V ⁇ according to the equation (1) and transmit Vmeam and V ⁇ to the concentrated voltage control device 8 in the same manner as in the above example.
  • the maximum value in the central control cycle of 2V ⁇ max may be used as the upper fluctuation width and the lower fluctuation width in the central control cycle. Also, using WUmax and WLmax in the above formula (5) or formula (6), the maximum value of WUmax in the central control cycle is set as the upper fluctuation range, and the maximum value of WLmax in the central control cycle is set as the lower fluctuation range. Also good.
  • the centralized voltage control device 8 stores information used for calculating the optimum voltage distribution in the storage unit 27 as a database.
  • FIG. 4 is a flowchart illustrating an example of a processing procedure regarding information to be databased.
  • the concentrated voltage control device 8 collects measurement information transmitted from the voltage flow measuring device 10 and the smart meter 12 (step S1). This measurement information includes an average value Vmean of voltage, an average value of power flow, and a standard deviation V ⁇ of voltage (or the above-mentioned WUmax, WLmax, etc.).
  • the concentrated voltage control device 8 calculates the upper fluctuation width and the lower fluctuation width based on the average value Vmean of the voltage and the standard deviation V ⁇ of the voltage (or the above-described WUmax, WLmax, etc.), and calculates the upper fluctuation width and the lower
  • the fluctuation range is stored in the storage unit 27 of the centralized voltage control device 8 for each point of the distribution system (installation position of the voltage flow measuring device 10 and the smart meter 12) (step S2).
  • the central control period is 1 hour, 24 hours (1 hour (24 hours), 1 hour each) (time zone from midnight to 1 am, time zone from 1 am to 2 am, ...)
  • the upper fluctuation range and the lower fluctuation range are stored for each time zone.
  • the centralized voltage control device 8 calculates the upper fluctuation width and the lower fluctuation width based on the measurement information received within the latest central control cycle for each central control cycle, and stores the calculated values in the storage unit 27. To do.
  • requiring the predicted value on the next day of an upper side fluctuation range and a lower side fluctuation range as mentioned later when using a correlation with the solar radiation amount, it matches with the solar radiation amount when it memorize
  • the upper fluctuation range and the lower fluctuation range are stored.
  • the load power generation amount prediction unit 22 of the concentrated voltage control device 8 calculates the average value of the tidal current between adjacent measurement points based on the average value of the voltage and the average value of the tidal current received from the voltage flow measuring device 10 and the smart meter 12.
  • the load / power generation amount at each point of the distribution system is obtained by taking the difference.
  • the load / power generation amount at each point of the distribution system is stored in the storage unit 27 as load power generation amount data (step S3).
  • the concentrated voltage control device 8 the temperature, and the actual measured values of the weather are acquired, and the temperature is also stored in association with the load power generation amount data.
  • the temperature and weather acquisition cycle may be equal to or less than the central control cycle.
  • the load / power generation amount corresponds to, for example, an amount obtained by subtracting the power generation amount from a pure load, and can take a positive or negative value depending on the balance between the load amount and the power generation amount.
  • the load power generation amount data is periodically stored and made into a database.
  • the load power generation amount data is stored for each weekday / holiday division. Further, when the load / power generation amount is obtained with the period acquired from the voltage flow measuring device 10 and the smart meter 12, for example, data is generated at an interval of 1 minute, and the data amount increases.
  • the average value of the tidal current an average value for one hour may be obtained, and the load / power generation amount may be obtained based on the obtained average value.
  • the voltage fluctuation range calculation unit 21 of the concentrated voltage control device 8 obtains an average value for a predetermined period in the past (for example, one month) for each of the upper fluctuation width and the lower fluctuation width for each time zone, It is stored in the storage unit 27. Therefore, the voltage fluctuation range calculation unit 21 determines whether or not the upper fluctuation range and the lower fluctuation range for the past predetermined period have been accumulated in the storage unit 27 (step S4). (S4 No) returns to step S1. If accumulated (Yes in step S4), an average value for a predetermined period in the past is obtained, stored in the storage unit 27 as a database (step S5), and the process returns to step S1.
  • the average value obtained in step S5 may be, for example, an average of one month without identifying the day of the week, or may be obtained for weekdays and holidays, respectively.
  • the average value for one month is calculated separately on weekdays and holidays
  • the average value for weekdays with the upper fluctuation range and the average value for weekdays with the lower fluctuation range and the holidays with the upper fluctuation range are calculated for each month.
  • the average value and the average value of holidays in the lower fluctuation range are generated for each time zone, stored in the storage unit 27 as a database.
  • FIG. 5 is a flowchart for explaining the voltage control operation of the present embodiment.
  • the load / power generation amount distribution of the future distribution system is predicted every day (24 hours) (fourth period).
  • FIG. 5 shows the operation for one day.
  • the load power generation amount predicting unit 22 uses the load power generation amount data of each point of the distribution system stored in the storage unit 27, for example, the load / power generation distribution and the short distribution of the distribution system every hour on the next day. Periodic fluctuation is predicted (step S10).
  • the load power generation amount prediction unit 22 separates and predicts the load and the power generation amount. Therefore, first, in the load power generation amount data stored in the storage unit 27, the load power generation amount data Actual load that uses pure load power generation data, and excluding theoretical power generation (calculated from solar power generation rated capacity, solar panel installation angle, latitude, date / time, expected temperature, and power generation efficiency) Calculate the amount.
  • the load power generation amount prediction unit 22 collects the actual load amount for a plurality of days, for example, and obtains the correlation between the load amount and the temperature on the same day of the week (weekday / holiday division) and the same time zone. This correlation is held by a relational expression obtained by regression analysis or a table or the like. Then, the load power generation amount prediction unit 22 predicts the load amount at each point of the distribution system every hour on the next day from this correlation and the predicted temperature on the next day. In addition, the power generation amount of the next day is the theoretical power generation amount based on the weather forecast of the next day, and the load power generation amount prediction unit 22 subtracts the predicted power generation amount from the predicted load amount to calculate each point of the distribution system every hour on the next day. Create load power generation data.
  • the predicted upper fluctuation range and the predicted lower fluctuation range may be obtained using the correlation with the amount of sunlight. A method of obtaining the predicted upper fluctuation range and the predicted lower fluctuation range using the correlation with the amount of sunlight will be described later.
  • the load / power generation amount distribution for every hour of the next day is predicted every day.
  • the present invention is not limited to this.
  • the load / power generation amount distribution for a certain fixed period in the future may be predicted. Good. Note that this one hour or a certain period corresponds to the above-described centralized control cycle.
  • the load / power generation prediction is, for example, every hour, the measured values of voltage and power flow stored in the database are not average values for one hour but average values for one minute, for example. The reason for this is to increase the accuracy of the correlation by increasing the number of measurement data when calculating the correlation between the load on the same day of the week (weekday / holiday division) and the same time zone, and the load within one hour.
  • average values of voltage and power flow for one hour may be stored in a database.
  • the predicted load power generation value correction unit 23 corrects the predicted value of the load / power generation amount of the distribution system for one hour in the future (step S11). Specifically, the load power generation amount prediction value correction unit 23 calculates the average value of the load / power generation amount at each point of the distribution system in the past hour based on the actual value (measurement information received in the past hour). ) And the predicted value to determine the ratio, and by multiplying this ratio by the predicted value of the load / power generation amount for the next hour, correct the predicted value of the load / power generation amount at each point in the system for the next hour To do. This is expected to improve the accuracy of the predicted value.
  • the actual value of the past one hour (the upper fluctuation range and the lower fluctuation range calculated based on the measurement information received during the past one hour) and the prediction are similarly used.
  • the optimum voltage distribution determining unit 24 determines the optimum voltage distribution of the distribution system for the next hour in the future based on the predicted load / power generation amount after correction for each point in the distribution system for the next hour created in step S11. (Step S12). Details of this processing will be described later with reference to FIG. In addition, the process which correct
  • the voltage upper / lower limit determination unit 25 calculates the voltage upper limit value and the voltage lower limit value of each local voltage control device for one hour in the future based on the optimum voltage distribution of the distribution system (step S13).
  • the voltage upper and lower limit value determination unit 25 commands the voltage upper limit value and the voltage lower limit value to each local voltage control device that controls the transformer-type voltage control device (step S14).
  • Each local voltage control device that controls the transformer-type voltage control device adjusts the control amount of each voltage control device that is a control target based on the voltage upper and lower limit command from the centralized voltage control device 8. Specifically, each local voltage control device controls the voltage control device as necessary in a local control cycle shorter than the central control cycle (1 hour) so as to maintain the voltage between the upper and lower voltage limits. Adjust the amount. Each local voltage control device updates and sets the voltage upper limit value and the voltage lower limit value each time it receives a voltage upper / lower limit command from the central voltage control device 8 in the central control period.
  • FIG. 6 is a flowchart for explaining details of the processing in step S14 in FIG. 5, and shows a flow for calculating the optimum voltage distribution of the distribution system for one hour in the future.
  • the optimum voltage distribution determining unit 24 sets a control limit in each voltage control device (a tap upper and lower limit in the case of a transformer type voltage control device) and a threshold for a voltage margin considering short cycle fluctuations (step S21). ).
  • the threshold is determined based on the predicted upper fluctuation range and the predicted lower fluctuation range.
  • the optimum voltage distribution determination unit 24 is a time zone in which a large voltage fluctuation is expected, that is, a time zone in which the load fluctuation is large (for example, morning, around lunch break, lighting time zone, etc.) and a time in which the power generation fluctuation is large.
  • threshold values larger than the predicted upper fluctuation range and the predicted lower fluctuation range may be set in consideration of the direction of fluctuation such as an upward or downward trend.
  • the optimum voltage distribution determination unit 24 initializes the control amount of each voltage control device (step S22). At this time, in the case of a transformer type voltage control device, the optimum voltage distribution determining unit 24 calculates the tap position, for example, a calculated value at the time of calculating the optimum voltage distribution one hour ago (however, if there is no previous calculated value, the neutral value). And
  • the optimum voltage distribution determination unit 24 calculates the power flow at the set control amount (tap position) of each voltage control device based on the prediction of the load / power generation amount distribution at each point of the distribution system, and each distribution system The voltage at the point is calculated (step S23).
  • the optimum voltage distribution determination unit 24 evaluates the distribution system based on the result of the power flow calculation (step S24). Specifically, the optimum voltage distribution determining unit 24 evaluates the distribution system by evaluating the value of the evaluation function (objective function) set for the evaluation item of the distribution system.
  • the first priority evaluation item is an amount of violation (deviation) from the appropriate voltage range (appropriate voltage upper limit value and appropriate voltage lower limit value) of the voltage at each point of the distribution system. That is, first, the optimum voltage distribution is determined such that the total sum of violation (deviation) amounts from the appropriate voltage range of the voltage at each point of the distribution system is minimized.
  • the second priority evaluation item is, for example, a voltage margin at each point of the distribution system (a margin amount up to an appropriate voltage upper and lower limit value). If the voltage margin at each point of the distribution system is small, the voltage control device frequently operates by deviating from the appropriate voltage range with a slight voltage fluctuation. Therefore, the higher the total voltage margin, the higher the evaluation.
  • the voltage margin is evaluated using a voltage margin reduction amount defined as follows. The voltage margin reduction amount is calculated as follows so that it becomes zero when the voltage margin is sufficiently large and increases as the voltage margin decreases.
  • the threshold value is a value set in step S21, and is a value obtained by further increasing the predicted upper fluctuation width and the predicted lower fluctuation width itself or the predicted upper fluctuation width and the predicted lower fluctuation width.
  • the predicted upper fluctuation range is used as the threshold for the voltage margin up to the upper limit value of the appropriate voltage
  • the predicted lower fluctuation range is used as the threshold value for the voltage margin to the lower limit value of the appropriate voltage.
  • the object for which the sum is obtained is the maximum value at the appropriate voltage upper limit side and the appropriate voltage lower limit side at each point within the voltage control responsibility range for each transformer (excluding those for stepping down to the low voltage system).
  • the third priority evaluation item can be the sum of the amount of change from the initial set value of the control amount of the voltage control device.
  • the amount of change from the initial set value of the control amount of the voltage control device is a difference from the initial tap position of the tap position in the case of a transformer type voltage control device.
  • the fourth priority evaluation item can be a transmission loss of the entire distribution system (active power loss + reactive power loss).
  • the transmission loss is mostly active power loss.
  • the voltage margin (upper limit side) at each point of the second-priority distribution system is reduced accordingly. It is an evaluation item that is meaningful to evaluate when there is a considerable margin in the voltage upper and lower limits at each point of the system.
  • the evaluation function may be set for the first priority evaluation item, but may be set for two or more items from the first priority to the fourth priority. In this case, the total evaluation function is obtained by weighting each evaluation function and taking the sum. Furthermore, higher priority items can be included in the evaluation function according to the distribution system.
  • the evaluation function can be configured to be most optimized (highly evaluated) when taking a minimum value, for example.
  • the evaluation function when setting the evaluation function based on all the evaluation items of the first priority to the fourth priority, the evaluation function can be defined as the following formula (8).
  • Wp, W1, W2, and W3 are weighting coefficients.
  • Evaluation function value Total sum of violations of voltage upper and lower limits at each point of distribution system ⁇ Wp + Maximum value of decrease in upper limit voltage margin at each point within the voltage control responsibility range for each transformer ⁇ W1 + Maximum value of lower limit voltage margin reduction at each point within the voltage control responsibility range for each transformer ⁇ W1 + Transformer target voltage change from previous command ⁇ W2 + Power transmission loss ⁇ W3 (8)
  • the optimum voltage distribution determination unit 24 determines whether or not a predetermined number of searches have been performed (step S25). If a predetermined number of searches has been performed (step S25 Yes), the process ends, and the predetermined voltage search is completed. When the number of times has not been searched (No at Step S25), the process proceeds to Step S26.
  • step S26 the optimum voltage distribution determining unit 24 calculates the voltage at each point in the distribution system by changing the control amount of each voltage control device by, for example, one unit (for example, raising or lowering the tap by one stage, for example) (step S23). And the evaluation of the distribution system (similar to step S24), this is performed for all voltage control devices, the evaluation results are compared, and the control amount of the voltage control device is set and changed so that the evaluation is most improved. (Step S26). As an optimization algorithm, for example, a method disclosed in JP 2010-250599 A or the like can be used. After step S26 is performed, the process returns to step S25.
  • the optimum voltage distribution determining unit 24 sets the optimum voltage distribution of the distribution system for the next one hour and the optimum of each voltage control device as the best solution for optimizing the value of the evaluation function.
  • a control amount can be determined.
  • FIG. 7 is a diagram for explaining details of the processing in step S14 in FIG.
  • the optimum voltage 30 is shown with respect to the distribution line length of the distribution line 4-1 from the substation.
  • the optimum voltage 30 is obtained by the process of S13 in FIG.
  • FIG. 7 shows an upper limit value V_max and a lower limit value V_min of the appropriate voltage range.
  • the appropriate voltage range is determined in advance depending on the time for each installation point as the voltage range that the high-voltage side should protect at the installation point of each load, and it is possible to stably supply power to the low-voltage side. It is set as possible.
  • the appropriate voltage range is described as being the same at each point in the distribution system, for example, but is generally different at each point in the distribution system and varies depending on the time zone.
  • the secondary side (load side) of the voltage control device 1 is the starting point (distribution line length L0), the distribution line length to the primary side (power supply side) of the voltage control device 5 is L1, and the voltage The distribution line length to the secondary side of the control device 5 (SVR) is indicated by L2.
  • the voltage control responsibility range of the voltage control device 1 is the range from the voltage control device 1 to the downstream voltage control device 5, and in the same figure, as the range R1 of the distribution line 4-1 with the distribution line length from L0 to L1 Show.
  • the voltage control responsibility range of the voltage control device 5 is a range from the voltage control device 5 to the next voltage control device (not shown) on the downstream side. In FIG. This is shown as a range R2 of the electric wire 4-1.
  • the voltage upper and lower limit value determination unit 25 determines the voltage upper and lower limit values that are the upper and lower limits of the control target voltage range commanded to the local voltage control devices 11 and 15 as follows.
  • the voltage upper / lower limit determination unit 25 has a minimum voltage out of the voltage upper limit margin that is the difference between the optimum voltage 30 and the upper limit value V_max of the appropriate voltage within the range R1 that is the voltage control responsibility range of the local voltage control device 11. Choose one.
  • the minimum voltage upper limit margin is given at the point where the distribution line length is L0, and the value is represented by um1_min.
  • the voltage upper and lower limit value determination unit 25 is within the voltage lower limit margin amount that is the difference between the optimum voltage 30 and the lower limit value V_min of the appropriate voltage within the range R1 that is the voltage control responsibility range of the local voltage control device 11. Choose the smallest one.
  • the minimum voltage lower limit margin is given at the point where the distribution line length is L1, and the value is represented by lm1_min. Then, the voltage upper and lower limit value determination unit 25 sets a value obtained by adding the minimum voltage upper limit margin um1_min to the value of the optimum voltage 30 of the voltage control device 1 as the voltage upper limit value of the control target voltage range, and determines the optimum voltage control device 1 A value obtained by subtracting the minimum voltage upper limit margin lm1_min from the value of the voltage 30 is set as the voltage lower limit value of the control target voltage range.
  • the control target voltage range of the local voltage control device 11 is not only the voltage upper / lower limit margin in the vicinity of the installation location of the voltage control device 1, but also the voltage at each point in the range R1 that is the voltage control responsibility range. Since the lower limit margin is also taken into consideration, the local voltage control device 11 itself can maintain the appropriate voltage within the wide range R1 despite the local control of the voltage control device 1 within the control target voltage range. It becomes possible.
  • the voltage upper and lower limit value determination unit 25 includes a voltage upper limit amount that is an absolute value of a difference between the optimum voltage 30 and the upper limit value V_max of the appropriate voltage within the range R2 that is the voltage control responsibility range of the local voltage control device 15. Select the smallest one. In the illustrated example, the minimum voltage upper limit margin is given at the point where the distribution line length is L4, and the value is represented by um2_min. In addition, the voltage upper / lower limit determination unit 25 has a voltage lower limit margin that is an absolute value of a difference between the optimum voltage 30 and the lower limit value V_min of the appropriate voltage within the range R2 that is the voltage control responsibility range of the local voltage control device 15.
  • the minimum voltage lower limit margin is given by the point where the distribution line length is L3, and the value is represented by lm2_min. Then, the voltage upper / lower limit determination unit 25 sets the voltage upper limit value um2_min that is the minimum voltage upper limit amount um2_min to the value of the optimum voltage 30 of the voltage control device 5 as the voltage upper limit value of the control target voltage range. A value obtained by subtracting the minimum voltage upper limit margin lm2_min from the voltage 30 is set as the voltage lower limit value of the control target voltage range.
  • the value of the optimum voltage 30 of the voltage control device 5 is specifically the value of the optimum voltage 30 on the output side (load side or secondary side) of the voltage control device 5, and is indicated by P5 in the figure. Represents the voltage value at a point.
  • the optimum voltage of the voltage control device is the optimum voltage at the distribution system interconnection point of the voltage control device.
  • the voltage upper limit value is represented by v2_max
  • the voltage lower limit value is represented by v2_min
  • the control target voltage range of the local voltage control device 15 is a range between the points P4 and P6.
  • the control target voltage range of the local voltage control device 15 is not only the voltage upper / lower limit margin in the vicinity of the installation location of the voltage control device 5, but also the voltage at each point in the range R2 that is the voltage control responsibility range. Since the lower limit margin is also taken into consideration, the local voltage control device 15 itself can maintain the appropriate voltage within the wide range R2 even though it locally controls the voltage control device 5 within the control target voltage range. It becomes possible.
  • FIG. 8 is a diagram illustrating an example in which the upper fluctuation range for a certain period stored in the storage unit 27 and the corresponding solar radiation amount are plotted. Each point in FIG.
  • FIG. 8 represents each data point stored in the storage unit 27.
  • FIG. 8 is a diagram for explaining the concept, and the actual state of correlation is not always as shown in FIG. Based on these data points, the approximate curve 101 is obtained by regression analysis or the like, and the correlation between the upper fluctuation range and the solar radiation amount is held by a relational expression or a table.
  • the load power generation amount prediction unit 22 similarly obtains the correlation between the lower fluctuation range and the amount of solar radiation, and holds it by a relational expression or a table.
  • the processing as described above is performed for each time zone and day of the week division, and the correlation is stored in the storage unit 27 for each combination of time zone and day of the week division. In step S10 of FIG.
  • the amount of solar radiation is estimated based on the predicted value of the weather using the correlation corresponding to the time zone and day of the week to be predicted, the upper fluctuation range corresponding to the estimated amount of solar radiation, the lower side Let the fluctuation range be the predicted upper fluctuation range and the predicted lower fluctuation range.
  • the voltage flow measuring device 10 and the smart meter 12 measure the voltage and the power flow, and transmit the result of statistical processing of the measurement data to the centralized voltage control device 8 as measurement information. Then, the centralized voltage control device 8 obtains the fluctuation range of the short cycle fluctuation (upper fluctuation width, lower fluctuation width) within the central control period based on the measurement information, and considers this fluctuation width within a certain period in the future. The optimum voltage distribution (within the central control period) is obtained. Thereafter, the centralized voltage control device 8 determines, for the transformer-type voltage control device, the voltage at each point in the voltage control responsibility range for each local voltage control device based on the relationship between the optimum voltage distribution and the appropriate voltage range. The upper and lower limit values to be commanded to each local voltage control device are determined in consideration of the upper and lower margins.
  • the voltage can be maintained following the voltage fluctuations of the distribution system due to factors that are difficult to predict, such as changes in the amount of photovoltaic power generation, and short-period fluctuations are also secured as voltage margins. Voltage violation due to period fluctuation can be suppressed. Moreover, since the voltage flow measuring apparatus 10 and the smart meter 12 transmit the result of statistical processing, the communication load can be reduced.
  • the load / power generation amount prediction and the voltage upper / lower limit command to the local voltage control device are executed, for example, every hour. It is also possible to carry out at intervals of (for example, 30 minutes) to every several hours or more. Furthermore, the transmission of the voltage upper / lower limit value command to the local voltage control device can be performed only when the voltage upper / lower limit value changes greatly. Thereby, the communication load is further reduced.
  • the voltage upper / lower limit value from the centralized voltage control device to the local voltage control device in advance Can be transmitted for a multi-hour cross section (for example, one day on the next day) and stored in the local voltage control device.
  • the local voltage control device can operate based on the stored voltage upper and lower limit values.
  • the local voltage control device The motion can be estimated. In this case, the process of correcting the predicted load / power generation value in step S11 of FIG. 5 is omitted.
  • a transformer-type voltage control device is connected to the distribution system.
  • a SVC Static Var Compensator
  • phase control equipment phase-adjusting capacitor, shunt reactor, etc.
  • a voltage control device such as a PCS (Power Conditioning System) with a reactive power adjustment function
  • a reactive power adjustment type voltage control device such as SVC
  • the reactive power adjustment type voltage control device is controlled by autonomous control by a local control device connected to the voltage control device. The control target value is not commanded from the voltage control device.
  • the reactive power adjustment type voltage control device may be set to zero.
  • the control target value may be commanded from the centralized voltage control device to the reactive power adjustment type voltage control device.
  • a control target value for the reactive power adjustment type voltage control device is also set.
  • the reactive power adjustment type voltage control device uses the control target value commanded from the centralized voltage control device as a control target, and removes short-cycle fluctuations by autonomous control.
  • the voltage control device includes a reactive power control type such as SVC as described above.
  • the reactive power control type voltage control device has a function of autonomously removing short-cycle fluctuations.
  • the reactive power control type voltage control device is expensive, and therefore, if a large number of reactive power control type voltage control devices are arranged in order to suppress short-cycle fluctuations at all locations in the distribution system, the cost increases.
  • it can be realized by adding a simple function to the voltage flow measuring device and the concentrated voltage control device, and the cost can be reduced as compared with the case where the SVC is installed. Even if reactive power control type voltage control devices are arranged, short-cycle fluctuations may remain depending on the location. In the present embodiment, even when there is a short cycle variation that cannot be removed by the reactive power control type voltage control device in this way, by controlling the short cycle variation that cannot be removed as an allowance, Voltage violation can be suppressed.
  • the voltage monitoring control system, the voltage monitoring control device, the measuring device, and the voltage monitoring control method according to the present invention are useful for a system for controlling the voltage of the distribution system that controls the voltage of the distribution system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

 配電線の電圧を制御する複数の電圧制御機器と、第1の周期ごとに更新される電圧上限値および電圧下限値の範囲内に当該電圧制御機器が制御する電圧値が維持されるように調整するローカル電圧制御装置と、配電線の電圧を第1の周期より短い第2の周期で計測した電圧に基づいて第2の周期より長い第3の周期ごとに電圧の変動幅を示す変動幅情報を算出して送信する電圧潮流計測装置10と、集中電圧制御装置8とを備え、集中電圧制御装置8は、電圧潮流計測装置10から受信した変動幅情報に基づいて第1の周期内の変動幅を算出する電圧変動幅算出部21と、変動幅に基づいて適正電圧範囲の上限および下限までの余裕に対する閾値をそれぞれ決定し、適正電圧範囲の上限および下限までの余裕と閾値との差に基づいて最適制御量を求める最適電圧分布決定部24と、最適制御量に基づいて電圧上限値および電圧下限値を決定する電圧上下限値決定部25と、を備える。

Description

電圧監視制御システム、電圧監視制御装置、計測装置および電圧監視制御方法
 本発明は、電圧監視制御システム、電圧監視制御装置、計測装置および電圧監視制御方法に関する。
 配電系統は、一般に高圧系統(通常は6600V)と低圧系統(例えば100V~200V)とから構成され、一般需要家の受電端はこの低圧系統に接続されている。電力事業者は、一般需要家の受電端の電圧を適正範囲(例えば100Vの受電の場合、電圧を95V~107V)に維持することが義務付けられている。そのため、電力事業者は、高圧系統に接続された電圧制御機器(例えば、LRT(Load Ratio Control Transformer:負荷時タップ切替器付変圧器)またはSVR(Step Voltage Regulator:ステップ電圧調整器)等)の制御量を調整すること(例えばタップを操作すること)により、一般需要家の受電端での電圧維持を図っている。なお、以下では、特に断らない限り、配電系統はその高圧系統を指すものとする。
 従来、配電系統の電圧制御については、例えばLRTまたはSVRなどの変圧器型の電圧制御機器を、当該電圧制御機器と一体化されまたは当該電圧制御装置に併設されるとともに、当該電圧制御機器の設置箇所付近での計測情報(電圧および潮流)に基づいて自立分散型で電圧制御するローカル電圧制御装置が一般に普及している。しかしながら、近年、電気の使い方の多様化、および太陽光発電等による分散型電源の普及等により、配電系統の負荷分布が時間経過に伴って非一様に大きく変動する傾向にあるため、従来の配電系統の電圧制御では適正電圧の維持が困難となってきている。
 このため、自立分散型の電圧制御方式に代わり、配電系統の電圧を系統全体で整合の取れた形で集中制御することが提案されている(集中制御方式)。具体的には、配電系統内の複数地点での計測情報(電圧および潮流)を専用のネットワークを使って集中電圧制御装置に集め、この集中電圧制御装置はこれらの計測情報に基づいて各電圧制御機器の制御量を決定し、集中電圧制御装置から各電圧制御機器にその制御量が自動で遠隔指令される仕組みが提案されている(例えば、特許文献1参照)。
特開平9-322404号公報
 ところが、近年、太陽光発電による分散型電源の低圧系統連系が年々増大しつつあり、例えば晴天時の雲の流れによる日射量急変により太陽光発電量が大きく変化し、これによる配電系統の電圧変化が無視できないレベルに達することが想定される。集中電圧制御装置では、配電系統各点の電圧および潮流の計測情報を収集して各電圧制御機器に最適な制御を割り当てるが、最適制御の立案は、その時点での電圧および潮流の計測情報に基づいて行われるため、太陽光発電が低圧系統に大量に連系される場合には、以下のような問題が懸念される。
 (1)計測監視周期を長く(例えば数十分程度)すると、雲の流れによる日射量急変により太陽光発電量が大きく変化した場合など、急激な電圧変動に追従できない。
 (2)逆に、計測監視周期を短く(例えば秒単位)すると、計測監視のための通信負荷が増大するため、通信ネットワークへの設備投資が膨大となる。
 一方、変圧器型の電圧制御機器は、タップ位置を変更することにより電圧を制御するであり、短周期(例えば数秒から数十秒周期)の電圧変動(以下、短周期変動という)を除去することは難しい。
 また、上述のとおり、集中電圧制御装置は、通信負荷を考慮すると計測情報の取得周期に制約があり、電圧の短周期変動を把握することができない。このため、集中電圧制御装置が、計測情報に基づく最適制御の立案により変圧器型の電圧制御機器の最適電圧を求め、この最適電圧を制御量として変圧器型の電圧制御機器へ指令した場合、短周期変動により適正範囲からの電圧の逸脱が発生する可能性がある。このような適正範囲からの電圧の逸脱を避けるために、集中電圧制御装置が、最適制御の立案により求めた最適電圧に対してあらかじめ定めた余裕量を加味して電圧範囲(電圧上限値と電圧下限値)を求め、電圧範囲を変圧器型の電圧制御機器へ指令する方法が考えられる。
 しかしながら、集中電圧制御装置は、上述のように通信負荷の問題から実際の短周期変動を把握することはできないため、余裕量を実際の短周期変動を考慮して設定することができない。このため、電圧の実際の短周期変動が余裕量より大きい場合、配電系統内の電圧が適正範囲から逸脱する可能性があるという問題がある。一方、余裕量を大きくしすぎると、最適制御の立案において電圧を適正範囲に収めるための制御量の解が求められない可能性がある。
 さらに、配電系統内では場所により短周期変動の大きさが異なることが考えられ、変圧器型の電圧制御機器により余裕量の適正値が異なる可能性がある。しかしながら、集中電圧制御装置は、上述のように実際の短周期変動に基づいて余裕量を決定することができない。このため、実施の短周期変動の大きさに比べ余裕量をとりすぎる箇所が生じる一方で、余裕量が少なすぎる箇所が生じる可能性があり、電圧が適正範囲から逸脱する可能性がある。
 本発明は、上記に鑑みてなされたものであって、通信負荷を増大させることなく、配電系統の電圧変動にも追従して電圧を維持するとともに、変圧器型の電圧制御機器に対して適切な電圧範囲を指令することができることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、高圧系統の配電線に接続され当該配電線の電圧を制御する複数の電圧制御機器と、前記電圧制御機器の制御量を、第1の周期ごとに更新される電圧上限値および電圧下限値の範囲内に当該電圧制御機器が制御する電圧値が維持されるように調整する複数のローカル電圧制御装置と、前記配電線に接続され当該配電線の電圧を前記第1の周期よりも短周期の第2の周期で計測し、計測した電圧に基づいて前記第2の周期より長周期の第3の周期ごとに前記電圧の変動幅を示す変動幅情報を算出して送信する計測装置と、前記ローカル電圧制御装置および前記計測装置と通信ネットワークを介して接続される集中電圧制御装置と、を備え、前記集中電圧制御装置は、前記通信ネットワークを介して前記ローカル電圧制御装置と通信し、前記計測装置から前記変動幅情報を、前記通信ネットワークを介して受信する送受信部と、前記変動幅情報に基づいて、前記第1の周期内の前記電圧の変動幅を算出する電圧変動幅算出部と、前記電圧変動幅算出部が算出した前記変動幅に基づいて適正電圧範囲の上限までの余裕に対する第1の閾値と適正電圧範囲の下限までの余裕に対する第2の閾値とを決定し、前記上限までの余裕と前記第1の閾値との差と、前記下限までの余裕と前記第2の閾値との差とに基づいて、前記各ローカル電圧制御装置に指令する制御目標値を決定する制御目標電圧決定部と、前記制御目標値に基づいて前記各ローカル電圧制御装置に送受信部を介してそれぞれ送信される電圧上限値および電圧下限値を決定する電圧上下限値決定部と、を備えることを特徴とする。
 この発明によれば、通信負荷を増大させることなく、配電系統の電圧変動にも追従して電圧を維持するとともに、変圧器型の電圧制御機器に対して適切な電圧範囲を指令することができる、という効果を奏する。
図1は、本発明にかかる実施の形態の配電系統電圧制御システムの構成の一例を示した図である。 図2は、集中電圧制御装置の内部構成の一例を示した図である。 図3は、電圧計測と電圧の変動幅算出の概念を示す図である。 図4は、データベース化される情報に関する処理手順の一例を示すフローチャートである。 図5は、電圧制御の動作を説明するためのフローチャートである。 図6は、将来1時間の配電系統の最適電圧分布を計算するためのフローチャートである。 図7は、図5のS14の処理の詳細を説明するための図である。 図8は、一定期間分の上側変動幅と日射量をプロットした例を示す図である。
 以下に、本発明にかかる電圧監視制御システム、電圧監視制御装置、計測装置および電圧監視制御方法の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態.
 図1は、本発明にかかる実施の形態の配電系統電圧制御システムの構成の一例を示した図である。図1において、電圧制御機器1は例えば変電所に設置された配電用変圧器としてのLRT(Load Ratio Control Transformer:負荷時タップ切替器付変圧器)である。電圧制御機器1にはローカル電圧制御装置11が接続されており、ローカル電圧制御装置11は電圧制御機器1を制御する。ローカル電圧制御装置(電圧制御装置)11は、例えば電圧制御機器1と一体的にまたは併設することができる。ローカル電圧制御装置11は、電圧制御機器1の制御量を調整することにより、具体的にはタップ位置を調整することにより、電圧制御機器1を制御する。また、ローカル電圧制御装置11は、通信機能を有し、通信ネットワーク7に接続されている。
 電圧制御機器1の二次側には母線2が接続されている。母線2には例えば2本の配電線4-1,4-2が並列に接続されている。配電線4-1,4-2は、高圧系統(電圧レベルが6600V)の配電線である。
 配電線4-1は、その一端が遮断器3-1を介して母線2に接続されている。配電線4-1上の複数箇所には、配電線4-1の電圧および潮流を計測する電圧潮流計測装置10(計測装置)がそれぞれ設置されている。すなわち、電圧潮流計測装置10は、配電線4-1に接続され、その接続箇所における電圧および潮流を計測し、その計測値を例えば統計処理等により処理した結果を計測情報として出力する。また、配電線4-1にはスマートメーター12(計測装置)も接続される。スマートメーター12は、配電線4-1への接続箇所における電圧を計測し、その計測値を例えば統計処理等により処理した結果を計測情報として出力する。電圧潮流計測装置10およびスマートメーター12は通信機能を有し、通信ネットワーク7に接続されている。電圧潮流計測装置10およびスマートメーター12は、通信ネットワーク7を介して、例えば定期的に計測情報を集中電圧制御装置8に送信する。電圧潮流計測装置10およびスマートメーター12が送信する計測情報については後述する。集中電圧制御装置8は、対象とする系統範囲について目標とする電圧分布および目標となる電圧分布になる各電圧制御機器の動作状態を決め、各電圧制御機器に指令値を与える。なお、集中電圧制御装置8は、対象とする系統範囲を所管する営業所または制御所などに設置することができる。
 また、配電線4-1上には、電圧降下補償用のSVR(Step Voltage Regulator:ステップ電圧調整器)である電圧制御機器5,6が接続されている。この電圧制御機器5には、電圧制御機器5を制御するローカル電圧制御装置15が接続されている。ローカル電圧制御装置15は、例えば電圧制御機器5と一体的にまたは併設することができる。ローカル電圧制御装置15は、電圧制御機器5の制御量を調整することにより、具体的にはタップ位置を調整することにより、電圧制御機器5を制御する。同様に、電圧制御機器6には、電圧制御機器6を制御するローカル電圧制御装置16が接続されている。ローカル電圧制御装置16は電圧制御機器6を制御する。また、ローカル電圧制御装置15,16は、通信機能を有し、通信ネットワーク7に接続されている。
 配電線4-2は、その一端が遮断器3-2を介して母線2に接続されている。配電線4-2上の複数個所には、配電線4-1と同様に、配電線4-2の電圧および潮流を計測する電圧潮流計測装置10がそれぞれ設置されている。
 配電線4-1,4-2は高圧系統の配電線であり、図示は省略しているが、配電線4-1,4-2にはそれぞれ変圧器を介して低圧系統(電圧レベルが例えば100V~200V)を構成する低圧配電線が接続されている。低圧配電線には負荷が接続されるが、さらに太陽光発電装置などの分散型電源が接続される。すなわち、本実施の形態は、低圧系統に分散型電源が連系されているものとする。ただし、本実施の形態は、低圧系統に分散型電源が含まれていない場合でも適用することができる。なお、以下では、分散型電源として例えば太陽光発電装置を例に説明する。また、配電系統の電圧制御とは、高圧系統の電圧制御を意味する。この配電系統は、電圧制御機器1,5,6、ローカル電圧制御装置11,15,16、母線2、遮断器3-1,3-2、配電線4-1,4-2、および電圧潮流計測装置10を備えて構成される。
 なお、図示例では、母線2に接続される配電線数を例えば2本としているが、この例に限定されない。また、電圧制御機器の設置台数、電圧潮流計測装置10およびスマートメーター12の数も図示例に限定されない。また、電圧潮流計測装置10、スマートメーター12のうちいずれか一方をのみが設置されていてもよい。
 MDM(Meter Data Management)装置13は、通信ネットワーク14を介して、スマートメーター12と接続し、自動検針等のためにスマートメーター12により計測された計測量を収集し、計測量または計測量を統計処理した結果を提供する。通信ネットワーク14は、専用ネットワークであってもよいし、公衆回線を用いてもよい。また、ここでは、通信ネットワーク14と通信ネットワーク7は異なることを前提とするが、通信ネットワーク14と通信ネットワーク7は同一であってもよい。なお、MDM装置13が、収集する計測量は本発明の電圧制御とは独立して設定されるものであり限定はないため、MDM装置13における計測量の処理についての説明は省略する。ただし、スマートメーター12は、MDM装置13への計測量の送信とは別に、本実施の形態では、上述したとおり、電圧の計測値を統計処理し、処理結果を計測情報として集中電圧制御装置8へ送信する。この集中電圧制御装置8へ送信する計測情報の内容は、MDM装置13がスマートメーター12へ指示してもよいし、あらかじめスマートメーター12に設定されてもよい。
 集中電圧制御装置(電圧監視制御装置)8は、通信ネットワーク7を介して、ローカル電圧制御装置11,15,16、電圧潮流計測装置10およびスマートメーター12とそれぞれ接続されている。通信ネットワーク7は、例えば専用のネットワークであり、配電系統を監視制御することを目的として配設されている。集中電圧制御装置8は、例えば電圧潮流計測装置10から送信された計測情報に基づき、各ローカル電圧制御装置が制御する目標となる指令値を例えば集中制御周期(例えば1時間周期)で決定し、通信ネットワーク7を介して各ローカル電圧制御装置に対してそれぞれ個別に指令する。集中電圧制御装置8は、変圧器型の電圧制御機器(図1の例では、電圧制御機器1、電圧制御機器5および電圧制御機器6)を制御するローカル電圧制御装置(図1の例では、ローカル電圧制御装置11、ローカル電圧制御装置15およびローカル電圧制御装置16)に対しては、指令値として電圧範囲を規定する電圧上限値および電圧下限値(以下、電圧上下限値ともいう。)を指令する。
 変圧器型の電圧制御機器を制御する各ローカル電圧制御装置は、集中電圧制御装置8からの電圧上下限値の指令に基づき、当該電圧上下限値の間に電圧を維持するようにその制御対象である電圧制御機器を制御する。各ローカル電圧制御装置は、集中電圧制御装置8からの電圧上下限値の指令を受けるごとに、電圧上限値および電圧下限値を更新し設定する。例えば、ローカル電圧制御装置11は、集中電圧制御装置8から指令された電圧上下限値に基づき、当該電圧上下限値が適用される集中制御周期の期間内においては、電圧制御機器1の二次側の電圧が当該電圧上下限値の間(制御目標電圧範囲内)に収まるように電圧制御機器1の制御量(タップ位置の変更量)を集中制御周期(第1の周期)よりも短いローカル制御周期で調整する。
 図2は、集中電圧制御装置8の内部構成の一例を示した図である。図2に示すように、集中電圧制御装置8は、制御部20と、この制御部20に接続された記憶部27と、制御部20、記憶部27、および通信ネットワーク7に接続されて各ローカル電圧制御装置と通信する送受信部26とを備えている。
 制御部20は、その機能構成として、電圧変動幅算出部21、負荷発電量予測部22、負荷発電量予測値補正部23、最適電圧分布決定部(制御目標電圧決定部)24および電圧上下限値決定部25を備えている。電圧変動幅算出部21は、電圧潮流計測装置10から受信した計測情報に基づいて、各点の電圧変動幅を算出する。負荷発電量予測部22は、翌日などの将来の配電系統の負荷/発電量分布を例えば集中制御周期(例えば1時間周期)ごとに予測する。負荷/発電量とは、純粋な負荷から発電量を際し引いた量に相当する。負荷/発電量が正の値の場合に負荷量であり、負の値の場合に発電量となる。なお、負荷/発電量分布を予測する方法の詳細については後述する。負荷発電量予測値補正部23は、集中制御周期の期間内における負荷/発電量分布の予測値を、その直前の集中制御周期の期間内における負荷/発電量分布の実績値と当該期間内におけるその予測値との比較結果に基づいて補正する。ここで、負荷/発電量分布の実績値は、計測情報に基づいて算出される。
 最適電圧分布決定部24は、補正された負荷/発電量分布の予測値に基づいて潮流計算を行うとともに、電圧変動幅算出部21により算出した電圧変動幅を考慮して、配電系統の電圧分布を評価する評価関数の値を最良にする最良解を探索することにより、当該集中制御周期の期間内の最適電圧分布および各電圧制御機器の最適制御量を決定する。なお、最適電圧分布とは、制約条件を満たしかつ評価関数が最適となる系統各点での電圧分布である。最適制御量とは、最適電圧分布が実現されるように各電圧制御機器に指令される制御量であり、制御目標電圧である。この制御目標電圧自体を各電圧制御機器に制御量として指令してもよいが、変圧器型の電圧制御機器の場合、頻繁なタップ位置の変更は好ましくない。このため、本実施の形態では、集中電圧制御装置8は、最適制御量=制御目標電圧に基づいて、以下に示すように制御目標範囲を定め、制御目標範囲を指令する。そして、変圧器型の各電圧制御機器電圧を制御するローカル電圧制御装置は制御目標範囲内に電圧が維持されるよう制御する。
 電圧上下限値決定部25は、決定された最適電圧分布に基づき、当該集中制御周期の期間内における各ローカル電圧制御装置の制御目標電圧範囲の上限および下限である電圧上下限値を決定し、通信ネットワーク7を介してこれを各ローカル電圧制御装置に指令する。なお、電圧上下限値決定部25による電圧上下限値を決定する処理の詳細については後述するが、概略は次の通りである。
 まず、電圧上下限値決定部25は、ローカル電圧制御装置ごとに予め割り当てられた電圧制御責任範囲に関する情報を記憶部27から取得する。ここで、電圧制御責任範囲は、配電線4-1または4-2上の範囲(または区間)であって、当該範囲内における電圧の制御について、当該範囲を割り当てられたローカル電圧制御装置またはこれに接続された電圧制御機器がその責任を負う範囲である。
 無効電力制御型の電圧制御機器は、当該電圧制御機器の電源側(配電用変圧器がある側、上流側)に変圧器型の電圧制御機器が存在する場合には、この変圧器型の電圧制御機器の変圧器の負荷側(下流側)までの範囲、および、当該電圧制御機器の負荷側の範囲を電圧制御責任範囲とし、負荷側にさらに別の電圧制御機器が存在する場合は、当該別の電圧制御機器の電源側までを電圧制御責任範囲に含める。変圧器型の電圧制御機器は、例えば当該変圧器の負荷側を電圧制御責任範囲とするが、負荷側に別の電圧制御機器が存在する場合は、当該別の電圧制御機器の電源側までをその電圧制御責任範囲とする。なお、電圧制御責任範囲の設定方法は上記の例に限定されない。
 また、電圧制御責任範囲ごとに、適正電圧範囲が予め設定されている。この適正電圧範囲は、高圧系統が維持すべき適正な電圧範囲である。電圧制御機器の最適電圧は、その電圧制御責任範囲の適正電圧範囲内に入るように求められる。最適電圧と適正電圧の下限値との差分を電圧下限余裕量と呼び、適正電圧の上限値と最適電圧との差分を電圧上限余裕量と呼ぶ。
 電圧上下限値決定部25は、変圧器型の電圧制御機器を制御するローカル電圧制御装置に対して、最適電圧分布決定部24で求めた最適電圧に基づいて電圧上下限値を決定する。
 集中電圧制御装置8は、例えばCPU、メモリ、ハードディスク等の記憶装置、および通信機能を備えたサーバとして構成することができる。制御部20は、メモリに記憶された制御プログラムにしたがって制御処理を行うCPUによって実現される。記憶部27は、メモリおよび記憶装置等を総括的に表している。送受信部26は通信機能を表している。なお、集中電圧制御装置8は、例えば変電所に設置することができる。
 次に、本実施の形態の動作について説明する。本実施の形態では、集中電圧制御装置8は、集中制御周期で各ローカル電圧制御装置を制御する。したがって、集中電圧制御装置8による集中制御では、集中制御周期より短い周期の電圧変動(短周期変動)を抑制することはできない。集中制御により、短周期変動までを除去することは通信負荷の観点、タップ装置の寿命等を考慮すると現実的ではないため、本実施の形態では、最適電圧分布の計算および指令する制御量の算出において、短周期変動分については余裕量として考慮することにより短周期変動による電圧違反を抑制する。適切な余裕量を決定するためには、短周期変動の変動幅を把握することが望ましい。しかし、電圧潮流計測装置10およびスマートメーター12が計測した(例えば1秒ごとの)計測データそのものを集中電圧制御装置8が取得し、この計測データに基づいて集中電圧制御装置8が短周期変動の変動幅を求めることは、通信負荷の観点から現実的ではない。このため、本実施の形態では、電圧潮流計測装置10およびスマートメーター12が計測データに対して統計処理を行って変動を示す変動情報(例えば、標準偏差等)を求め、この変動情報を計測情報に含めて集中電圧制御装置8へ送信する。集中電圧制御装置8は、受信した計測情報に基づいて電圧潮流計測装置10およびスマートメーター12が設置された各点の短周期変動の変動幅を把握する。
 図3は、本実施の形態の電圧計測と電圧の変動幅算出の概念を示す図である。この図3の上側には、電圧潮流計測装置10における電圧の計測の様子を示し、図3の下側には、集中電圧制御装置8における処理の様子を示している。電圧潮流計測装置10は、それぞれ設置点における電圧および潮流を一定時間Tp(第2の周期)ごとに計測し、計測データ(電圧および潮流)を保存している。電圧潮流計測装置10は、統計処理周期Tm(第3の周期)(例えば1分)ごとに、Tm内の計測データに基づいて、電圧の平均値Vmean、潮流の平均値を求める。図3の×印は計測データを示す。また、電圧潮流計測装置10は、以下の式(1)に示すように、Tm内の電圧の計測データの標準偏差Vσを求める。なお、統計処理周期Tm内の計測データ数をNdとし、Viは統計処理周期Tm内のi番目の計測データを示す。また、下記式(1)のΣは、i=1からi=Npまでの総和を示す。
 Vσ=(Σ(Vi-Vmean)2/(Nd-1))1/2 …(1)
 以下では、一例として、Tp=1秒、Tm=60秒(1分)とした場合について説明するが、Tp,Tmの値はこれに限らずどのような値を設定してもよい。ただし、Tpについては、電圧制御において考慮すべき短周期変動を計測可能なように設定することが望ましい。Tp=1秒、Tm=60秒の場合、Nd=60であり、電圧潮流計測装置10は、60個の計測データに基づいて、VmeanおよびVσを求める。電圧潮流計測装置10は、求めたVmean1、Vσ、潮流の平均値を統計処理周期ごとに集中電圧制御装置8へ送信する。なお、図3では、電圧の計測データの処理に関して説明しているため、潮流の平均値の記載を省略している。
 集中電圧制御装置8では、電圧変動幅算出部21が、電圧潮流計測装置10からVmean、Vσを取得し、各点のVmean、Vσに基づいて、Tm内の電圧の最大値の推定値(推定最大値)Vmax1を以下の式(2)により求める。
 Vmax1=Vmean+2Vσ         …(2)
 図3の下側図の四角の各点は、Vmean+2Vσ(=Vmax1)を示している。集中電圧制御装置8の電圧変動幅算出部21は、集中制御周期Tc内のVmax1の最大値Vmax2を求める。集中制御周期を1時間とすると、集中制御周期Tc内のVmax1の個数は60個である。Vmax1は、集中制御周期内の電圧の最大値の推定値に相当する。図示はしていないが、電圧変動幅算出部21は、同様に、以下の式(3)により、Tm内の電圧の最大値の推定値(推定最大値)Vmin1を求める。
 Vmin1=Vmean-2Vσ         …(3)
 そして、電圧変動幅算出部21は、集中制御周期Tc内のVmax1の最大値Vmax2と、集中制御周期Tc内のVmin1の最小値Vmin2とを求める。さらに、電圧変動幅算出部21は、集中制御周期Tc内のVmeanの平均値Vmean2を求める。そして、以下の式(4)により、集中制御周期内の上側変動幅および下側変動幅を求める。
 上側変動幅=Vmax2-Vmean2
 下側変動幅=Vmean2-Vmin2      …(4)
 電圧変動幅算出部21は、電圧潮流計測装置10ごとに以上の処理(統計処理)を行って集中制御周期内の上側変動幅および下側変動幅を求める。同様に、スマートメーター12は、一定時間Tp´ごとに電圧を計測し、統計処理周期Tm(例えば1分)内の計測データの平均値Vmeamと標準偏差Vσを求め、集中電圧制御装置8へ送信する。Tp´は、Tpと同一であってもよいし、異なっていてもよい。また、統計処理周期についても電圧潮流計測装置10と異なっていてもよいが、統計処理周期を同一としておくと、集中電圧制御装置8における処理が共通化できる。以下では、統計処理周期は、電圧潮流計測装置10とスマートメーター12で同一であるとして説明する。集中電圧制御装置8の電圧変動幅算出部21は、同様に、スマートメーター12から受信したVmeamとVσに基づいて、集中制御周期内の上側変動幅および下側変動幅を求める。
 以上、集中制御周期内の上側変動幅および下側変動幅の求め方について説明したが、上述の求め方は一例であり、集中制御周期内の上側変動幅および下側変動幅の求め方は上述の例に限定されない。例えば、上記(2)、(3)において、2Vσの代わりにVσや3Vσ等を用いてもよい。電圧潮流計測装置10およびスマートメーター12は、Vσ等の電圧の短周期変動の変動幅を示す情報(変動幅情報)を算出して送信し、集中電圧制御装置8が変動幅情報に基づいて、集中制御周期内の上側変動幅および下側変動幅を算出できる方法であればどのような方法であてもよい。
 また、例えば、以下のような方法で集中制御周期内の上側変動幅および下側変動幅を求めてもよい。電圧潮流計測装置10およびスマートメーター12は、Tm内の電圧の計測データの最大値Vmax1´および最小値Vmin1´を求める。そして、以下の式(5)により、変動幅情報として、Tm内の上側の最大変動幅、下側の最大変動幅にそれぞれ相当するWUmax、WLmaxを求める。
 WUmax=Vmax1´-Vmean
 WLmax=Vmean-Vmin1´      …(5)
 電圧潮流計測装置10およびスマートメーター12は、Vmean、WUmax、WLmaxを集中電圧制御装置8へ送信する。集中電圧制御装置8の電圧変動幅算出部21は、各Vmean、WUmax、WLmaxについて、Vmean+WUmax、Vmean-WLmaxを算出する。例えば、Tm=60秒、Tc=1時間の場合、それぞれ60個のVmean+WUmax、Vmean-WLmaxが算出される。そして、電圧変動幅算出部21は、集中制御周期内のVmean+WUmaxの最大値をVmax2とし、集中制御周期内のVmean-WLmaxの最小値をVmin2として、上記式(4)により、集中制御周期内の上側変動幅および下側変動幅を求める。この方法の場合、電圧潮流計測装置10およびスマートメーター12における処理は簡易化できるという利点があるが、計測データ自体の最大値、最小値を用いているので、ノイズのようなまれな電圧変化の影響を受ける可能性がある。
 電圧潮流計測装置10およびスマートメーター12における処理をさらに簡素化するために、以下の式(6)により、WUmax、WLmaxを求めるようにしてもよい。
 WUmax=WLmax
      =(Vmax1´-Vmin1´)/2 …(6)
 また、電圧潮流計測装置10およびスマートメーター12が、Tm内の電圧の計測データの最大値Vmax1´および最小値Vmin1´を求め、Vmean、Vmax1´、Vmin1´を集中電圧制御装置8へ送信し、集中電圧制御装置8の電圧変動幅算出部21が上記式(5)または式(6)によりWUmax、WLmaxを求めるようにしてもよい。または、電圧変動幅算出部21が、集中制御周期内のVmax1´の最大値と、集中制御周期内のVmin1´の最小値を求め、集中制御周期内のVmax1´の最大値からVmean2を引いたものを上側変動幅とし、Vmean2から集中制御周期内のVmin1´の最小値を引いたものを下側変動幅としてもよい。
 また、次のような集中制御周期内の上側変動幅および下側変動幅を求めてもよい。方法で電圧潮流計測装置10およびスマートメーター12は、上記の例を同様に、式(1)によりVσを算出して、VmeamとVσを集中電圧制御装置8へ送信する。集中電圧制御装置8の電圧変動幅算出部21は、集中制御周期内のVσの最大値Vσmaxを求め、Vmax1=Vmean+2Vσmax、Vmin1=Vmean-2Vσmaxとし、集中制御周期Tc内のVmax1の最大値Vmax2と、集中制御周期Tc内のVmin1の最小値Vmin2と、集中制御周期Tc内のVmeanの平均値Vmean2を求める。そして、上記式(4)により、集中制御周期内の上側変動幅および下側変動幅を求める。
 また、上記の2Vσmaxの集中制御周期内の最大値を集中制御周期内の上側変動幅および下側変動幅として用いてもよい。また、上記の式(5)または式(6)のWUmax、WLmaxを用い、集中制御周期内のWUmaxの最大値を上側変動幅とし、集中制御周期内のWLmaxの最大値を下側変動幅としてもよい。
 以上、電圧潮流計測装置10およびスマートメーター12における統計処理方法と集中制御周期内の上側変動幅および下側変動幅の算出方法との例を複数述べたが、以上の例に限定されず、どのような方法を用いてもよい。
 本実施の形態の集中電圧制御装置8は、最適電圧分布の算出などのために用いる情報をデータベース化して記憶部27内に保存する。図4は、データベース化される情報に関する処理手順の一例を示すフローチャートである。まず、集中電圧制御装置8は、電圧潮流計測装置10およびスマートメーター12から送信される計測情報を収集する(ステップS1)。この計測情報には、電圧の平均値Vmean、潮流の平均値、電圧の標準偏差Vσ(または上述のWUmax、WLmaxなど)が含まれる。
 集中電圧制御装置8は、電圧の平均値Vmean、電圧の標準偏差Vσ(または上述のWUmax、WLmaxなど)に基づいて上側変動幅および下側変動幅を算出し、算出した上側変動幅および下側変動幅を、配電系統の各点(電圧潮流計測装置10およびスマートメーター12の設置位置)ごとに集中電圧制御装置8の記憶部27内に保存しておく(ステップS2)。集中制御周期を1時間とした場合、1日(24時間)を1時間ずつの24の時間帯(午前0時から1時までの時間帯、午前1時から2時までの時間帯、…)に区切り、時間帯ごとに上側変動幅および下側変動幅を記憶する。そして、集中電圧制御装置8は、集中制御周期ごとに、直近の集中制御周期内で受信した計測情報に基づいて上側変動幅および下側変動幅を算出し、算出した値を記憶部27へ記憶する。なお、後述のように、上側変動幅および下側変動幅の翌日の予測値を求める際に、日射量との相関を用いる場合には、記憶部27へ記憶する際に日射量に対応付けて上側変動幅および下側変動幅を記憶しておく。
 集中電圧制御装置8の負荷発電量予測部22は、電圧潮流計測装置10およびスマートメーター12から受信した電圧の平均値および潮流の平均値に基づいて、隣り合う計測点間で潮流の平均値の差分をとることなどにより、配電系統各点における負荷/発電量を求める。この配電系統各点における負荷/発電量を負荷発電量データとして記憶部27に保存する(ステップS3)。または、集中電圧制御装置8、気温、天候の実測値も取得し、気温についても負荷発電量データと対応付けて保存しておく。気温、天候の取得周期は、集中制御周期以下であればよい。ここで、負荷/発電量(負荷発電量データ)は、例えば純粋な負荷から発電量を差し引いた量に相当するものであり、負荷量と発電量とのバランスにより正または負の値を取り得る。負荷発電量データは、定期的に保存され、データベース化されている。負荷発電量データは、平日/休日区分ごとに保存される。また、電圧潮流計測装置10およびスマートメーター12から取得した周期で負荷/発電量を求めると、例えば1分間隔でデータが生成されることになり、データ量が多くなるため、電圧の平均値および潮流の平均値について、1時間の平均値を求めて、求めた平均値に基づいて負荷/発電量を求めてもよい。
 また、集中電圧制御装置8の電圧変動幅算出部21は、時間帯ごとに、上側変動幅および下側変動幅について、それぞれ過去の所定の期間(例えば、1ヶ月)分の平均値を求め、記憶部27内に保存しておく。したがって、電圧変動幅算出部21は、過去の所定の期間分の上側変動幅および下側変動幅が記憶部27に蓄積したか否かを判断し(ステップS4)、蓄積していない場合(ステップS4 No)は、ステップS1に戻る。蓄積している場合(ステップS4 Yes)、過去の所定の期間分の平均値を求め、記憶部27へデータベース化して保存し(ステップS5)、ステップS1へ戻る。ステップS5で求める平均値は、曜日を識別せずに単純に例えば1ヶ月分を平均したものであってもよいし、平日と休日にわけて、それぞれ平均値を求めてもよい。例えば、1ヶ月間分の平均値を平日と休日にわけて求める場合、1ヶ月ごとに、上側変動幅の平日の平均値および下側変動幅の平日の平均値と、上側変動幅の休日の平均値および下側変動幅の休日の平均値とが時間帯ごとに生成されて記憶部27にデータベース化されて保存される。
 次に、本実施の形態の電圧制御について説明する。図5は、本実施の形態の電圧制御の動作を説明するためのフローチャートである。本実施の形態では、1日(24時間)(第4の周期)ごとに、将来の配電系統の負荷/発電量分布を予測する。図5は、1日分の動作を示している。図5に示すように、負荷発電量予測部22は、記憶部27に保存された配電系統各点の負荷発電量データから、翌日の例えば1時間ごとの配電系統の負荷/発電量分布と短周期変動を予測する(ステップS10)。
 この際、具体的には、例えば、負荷発電量予測部22は、負荷と発電量を分離して予測するため、まず、記憶部27に保存されている負荷発電量データのうち快晴時間帯の負荷発電量データのみを使用し、これから理論発電量(太陽光発電定格容量、太陽光パネル設置角、緯度、日時、予想気温、および発電効率から算出)を除いて純粋な負荷量である実績負荷量を算出する。
 負荷発電量予測部22は、実績負荷量を例えば複数日分集め、同一曜日(平日/休日区分)、同一時間帯の負荷量と気温との相関を求めておく。この相関は、回帰分析などにより求めた関係式、またはテーブルなどにより保持しておく。そして、負荷発電量予測部22は、この相関と翌日の予想気温から翌日1時間ごとの配電系統各点の負荷量を予測する。また、翌日の発電量については、翌日の天候予測に基づいた理論発電量とし、負荷発電量予測部22は、予測負荷量から予測発電量を差し引いて、翌日1時間ごとの配電系統各点の負荷発電量データを作成する。
 短周期変動については、データベース化されている上側変動幅および下側変動幅のうち、同一季節(1ヶ月単位でデータベース化されている場合は同一月)の同一曜日(平日/休日区分)のデータを読み出し、読み出した値を翌日1時間ごとの配電系統各点の予測上側変動幅および予測下側変動幅とする。なお、この際、日照量との相関を用いて予測上側変動幅および予測下側変動幅を求めてもよい。日照量との相関を用いた予測上側変動幅および予測下側変動幅の求め方については後述する。
 なお、本実施の形態では、例えば毎日、翌日の1時間ごとの負荷/発電量分布を予測するとしたが、これに限らず、例えば将来の一定期間ごとの負荷/発電量分布を予測するとしてもよい。なお、この1時間または一定期間が上述した集中制御周期に相当する。また、負荷/発電量の予測が例えば1時間ごとであるのに対して、データベース化しておく電圧および潮流の計測値は1時間の平均値ではなく例えば1分間の平均値とする。その理由は、同一曜日(平日/休日区分)、同一時間帯の負荷量と気温との相関を求めるにあたって、計測データ数を増やすことにより相関の精度を上げるためと、1時間の中での負荷量の変動具合を把握するためである。これは、後述する図6のステップS21の各電圧制御機器の余裕量の設定の設定において、負荷変動の大きな時間帯を把握するために使用可能である。ただし、電圧および潮流の例えば1時間の平均値をデータベース化しておいてもよい。
 次に、負荷発電量予測値補正部23は、将来1時間の配電系統の負荷/発電量の予測値を補正する(ステップS11)。具体的には、負荷発電量予測値補正部23は、過去1時間の配電系統各点の負荷/発電量の平均値について、実績値(過去1時間に受信した計測情報に基づいて算出される)と予測値とを比較してその比率を求め、この比率を将来1時間の負荷/発電量の予測値に乗ずることにより、将来1時間の系統各点の負荷/発電量の予測値を補正する。これにより、予測値の精度が向上することが期待される。この際、予測上側変動幅および予測下側変動幅についても、同様に過去1時間の実績値(過去1時間に受信した計測情報に基づいて算出された上側変動幅および下側変動幅)と予測値(予測上側変動幅および予測下側変動幅)の比率に基づいて補正してもよい。
 次に、最適電圧分布決定部24は、ステップS11で作成した将来1時間の配電系統各点の補正後の負荷/発電量の予測値に基づき、将来1時間の配電系統の最適電圧分布を決定する(ステップS12)。この処理の詳細は、図6を用いて後述する。なお、ステップS11の負荷/発電量の予測値を補正する処理を省略し、最適電圧分布決定部24が、ステップS10で作成した翌日の配電系統各点の負荷/発電量の予測値に基づいて、将来1時間の配電系統の最適電圧分布を決定するようにしてもよい。
 次に、電圧上下限値決定部25は、配電系統の最適電圧分布に基づき、将来1時間の各ローカル電圧制御装置の電圧上限値および電圧下限値を算出する(ステップS13)。
 次に、電圧上下限値決定部25は、変圧器型の電圧制御機器を制御する各ローカル電圧制御装置に対して電圧上限値および電圧下限値を指令する(ステップS14)。
 変圧器型の電圧制御機器を制御する各ローカル電圧制御装置は、集中電圧制御装置8からの電圧上下限値の指令に基づき、制御対象である各電圧制御機器の制御量の調整を行う。詳細には、各ローカル電圧制御装置は、電圧上下限値の間に電圧を維持するように、集中制御周期(1時間)よりも短周期のローカル制御周期で必要に応じて電圧制御機器の制御量を調整する。また、各ローカル電圧制御装置は、集中電圧制御装置8から集中制御周期で電圧上下限値の指令を受けるごとに、電圧上限値および電圧下限値を更新し設定する。
 次に、図5のステップS14の処理の詳細について説明する。図6は、図5のステップS14の処理の詳細を説明するためのフローチャートであり、将来1時間の配電系統の最適電圧分布を計算するためのフローを表している。
 まず、最適電圧分布決定部24は、各電圧制御機器における制御限界(変圧器型の電圧制御機器の場合はタップ上下限)と短周期変動を考慮した電圧余裕に対する閾値とを設定する(ステップS21)。閾値は、予測上側変動幅および予測下側変動幅に基づいて決定する。この際、最適電圧分布決定部24は、大きな電圧変動が予想される時間帯、すなわち、負荷変動の大きな時間帯(例えば、朝、昼休み前後、点灯時間帯等)、および、発電変動の大きな時間帯(例えば、理論発電量が大きい昼間等)については、上昇または下降傾向などの変動の方向性も考慮の上、予測上側変動幅および予測下側変動幅より大きな閾値を設定してもよい。
 次に、最適電圧分布決定部24は、各電圧制御機器の制御量を初期設定する(ステップS22)。この際、最適電圧分布決定部24は、変圧器型の電圧制御機器の場合はタップ位置を例えば1時間前の最適電圧分布計算時の算出値(ただし、前回算出値がない場合はニュートラル値)とする。
 次に、最適電圧分布決定部24は、配電系統各点の負荷/発電量分布の予測に基づき、設定された各電圧制御機器の制御量(タップ位置)での潮流計算を行い、配電系統各点の電圧を算出する(ステップS23)。
 次に、最適電圧分布決定部24は、潮流計算の結果に基づき配電系統の評価を行う(ステップS24)。具体的には、最適電圧分布決定部24は、配電系統の評価項目について設定された評価関数(目的関数)の値を評価することにより、配電系統の評価を行う。ここで、第一優先の評価項目は、配電系統各点での電圧の適正電圧範囲(適正電圧上限値および適正電圧下限値)からの違反(逸脱)量である。すなわち、最適電圧分布は、第一に、配電系統各点での電圧の適正電圧範囲からの違反(逸脱)量の総和が最小となるように決定される。
 また、第二優先の評価項目は、例えば配電系統各点での電圧余裕(適正電圧上下限値までの余裕量)である。配電系統各点での電圧余裕が小さいと、僅かな電圧変動で適正電圧範囲から逸脱して頻繁に電圧制御機器が動作してしまう。従って、電圧余裕の総和が大きいほど高評価とする。最小値をとる場合に最適とする評価関数を使用する場合には、以下のように定義する電圧余裕減少量を用いて電圧余裕を評価する。電圧余裕減少量は、電圧余裕が十分に大きい場合にゼロになり、電圧余裕が小さくなるほど大きくなるように、以下のようにして計算する。
 電圧余裕減少量=閾値-電圧余裕  電圧余裕 <  閾値 の場合
 電圧余裕減少量=0        電圧余裕 >= 閾値 の場合
                             …(7)
 閾値は、ステップS21で設定した値であり、予測上側変動幅および予測下側変動幅そのものまたは予測上側変動幅および予測下側変動幅をさらに大きくした値である。上記の電圧余裕減少量の計算において、適正電圧の上限値までの電圧余裕に関しては閾値として予測上側変動幅を用い、適正電圧の下限値までの電圧余裕に関しては閾値として予測下側変動幅を用いる。
 総和を求める対象は、変圧器(低圧系統への降圧用のものは除く)ごとに、その電圧制御責任範囲内の各点での適正電圧上限側と適正電圧下限側での最大値である。
 電圧余裕<閾値の場合で、電圧値が適正電圧範囲内である場合は、適正電圧範囲からの逸脱(電圧違反)とはならないものの、電圧余裕違反(短周期変動分の電圧余裕を確保できでいない)となるため、電圧余裕>=閾値であることが望ましい。
 第三優先の評価項目は、電圧制御機器の制御量のその初期設定値からの変化量の総和とすることができる。ここで、電圧制御機器の制御量のその初期設定値からの変化量は、変圧器型の電圧制御機器の場合は、タップ位置の初期設定タップ位置からの差である。当該変化量の総和を小さくすることにより、電圧制御機器の動作回数の低減につながる。
 さらに、第四優先の評価項目は、配電系統全体の送電ロス(有効電力ロス+無効電力ロス)とすることができる。送電ロスが小さいほど高評価とする。なお、送電ロスは、有効電力ロスが大半を占め、電圧が高いほどロスが小さくなるが、その分、第二優先の配電系統各点での電圧余裕(上限値側)が小さくなるため、配電系統各点の電圧上下限にかなりの余裕がある場合に評価することの意味がある評価項目である。
 評価関数は、第一優先の評価項目について設定してもよいが、第一優先~第四優先のうち2つ以上の項目について設定することもできる。この場合、各々の評価関数に重みを付けて和をとったものを全体の評価関数とする。さらに、配電系統に応じて高次の優先項目についても評価関数に含めることができる。評価関数は、例えば最小値をとるときに最も最適化(高評価)されるように構成することができる。
 例えば、第一優先~第四優先の全評価項目に基づいて評価関数を設定する場合、以下の式(8)のように評価関数を定めることができる。Wp,W1,W2,W3は、重み付け係数である。
 評価関数値 
 = 配電系統各点の電圧上下限違反量の総和 × Wp
 + 変圧器ごとの電圧制御責任範囲内の各点の
    上限側電圧余裕減少量の最大値 × W1
 + 変圧器ごとの電圧制御責任範囲内の各点の
    下限側電圧余裕減少量の最大値 × W1
 + 前回指令時からの変圧器目標電圧変更量 × W2
 + 送電ロス × W3               …(8)
 次に、最適電圧分布決定部24は、所定回数の探索を行ったか否かを判定し(ステップS25)、所定回数の探索を行った場合には(ステップS25 Yes)、処理を終了し、所定回数の探索を行っていない場合には(ステップS25 No)、ステップS26の処理に進む。
 次に、ステップS26では、最適電圧分布決定部24は、各電圧制御機器の制御量を例えば1単位変更(タップを例えば1段上げる/下げる等)して配電系統各点の電圧算出(ステップS23と同様)および配電系統の評価(ステップS24と同様)を行い、これを全ての電圧制御機器について実施して評価結果を比較し、最も評価が改善するよう電圧制御機器の制御量を設定変更する(ステップS26)。最適化のアルゴリズムについては例えば特開2010-250599号公報等に開示されている方法を用いることができる。ステップS26の実施後は、ステップS25へ戻る。
 以上のようにして、所定回数の探索の後、最適電圧分布決定部24は、評価関数の値を最良にする最良解として、将来1時間の配電系統の最適電圧分布および各電圧制御機器の最適制御量を決定することができる。
 次に、図5のS14の処理の詳細について説明する。図7は、図5のステップS14の処理の詳細を説明するための図である。図7の下側では、変電所からの配電線4-1の配電線長に対して最適電圧30が示されている。最適電圧30は、図5のS13の処理で求められたものである。また、図7では、適正電圧範囲の上限値V_maxと下限値V_minが示されている。適正電圧範囲は、各負荷の設置点で高圧側の電圧が守るべき電圧範囲としてその設置点ごとに時間にも依存して予め決められたものであり、低圧側に電力を安定供給することが可能なように設定されている。なお、図7では、適正電圧範囲は例えば配電系統各点で同じとして記載しているが、一般には配電系統各点で異なっており、かつ、時間帯によって変化する。
 図7の下側では、電圧制御機器1の二次側(負荷側)を起点(配電線長L0)とし、電圧制御機器5の一次側(電源側)までの配電線長をL1で、電圧制御機器5(SVR)の二次側までの配電線長をL2で示している。
 各電圧制御機器はそれぞれ電圧制御責任範囲を有している。電圧制御機器1の電圧制御責任範囲は、電圧制御機器1から下流側の電圧制御機器5までの範囲であり、同図では配電線長がL0からL1までの配電線4-1の範囲R1として示している。また、電圧制御機器5の電圧制御責任範囲は、電圧制御機器5から下流側の次の電圧制御機器(図示せず)までの範囲であり、同図では配電線長がL2からそれ以降の配電線4-1の範囲R2として示している。
 電圧上下限値決定部25は、ローカル電圧制御装置11,15にそれぞれ指令する制御目標電圧範囲の上下限である電圧上下限値を以下のようにして決定する。
 まず、ローカル電圧制御装置11の場合について説明する。電圧上下限値決定部25は、ローカル電圧制御装置11の電圧制御責任範囲である範囲R1内において、最適電圧30と適正電圧の上限値V_maxとの差分である電圧上限余裕量のうちから最小のものを選択する。図示例では、最小の電圧上限余裕量は配電線長がL0の点で与えられ、その値をum1_minで表している。また、電圧上下限値決定部25は、ローカル電圧制御装置11の電圧制御責任範囲である範囲R1内において、最適電圧30と適正電圧の下限値V_minとの差分である電圧下限余裕量のうちから最小のものを選択する。図示例では、最小の電圧下限余裕量は配電線長がL1の点で与えられ、その値をlm1_minで表している。そして、電圧上下限値決定部25は、電圧制御機器1の最適電圧30の値に最小の電圧上限余裕量um1_minを加えたものを制御目標電圧範囲の電圧上限値とし、電圧制御機器1の最適電圧30の値から最小の電圧上限余裕量lm1_minを差し引いたものを制御目標電圧範囲の電圧下限値とする。ここで、電圧制御機器1の最適電圧30の値とは、詳細には、電圧制御機器1の出力側(負荷側又は二次側)における最適電圧30の値であり、図中P2で示した点における電圧値を表す。また、当該電圧上限値はv1_maxで表され、当該電圧下限値はv1_minで表されており、ローカル電圧制御装置11の制御目標電圧範囲は点P3と点P1との間の範囲である。なお、図示例では、v1_max=V_maxとなる。
 このように、ローカル電圧制御装置11の制御目標電圧範囲は、電圧制御機器1の設置箇所近傍における電圧上下限余裕量のみならず、その電圧制御責任範囲である範囲R1内の各点における電圧上下限余裕量も考慮して決定されているので、ローカル電圧制御装置11自体は制御目標電圧範囲内で電圧制御機器1をローカル制御するにもかかわらず、広域の範囲R1内で適正電圧の維持が可能となる。
 次に、ローカル電圧制御装置15の場合について説明する。電圧上下限値決定部25は、ローカル電圧制御装置15の電圧制御責任範囲である範囲R2内において、最適電圧30と適正電圧の上限値V_maxとの差の絶対値である電圧上限余裕量のうちから最小のものを選択する。図示例では、最小の電圧上限余裕量は配電線長がL4の点で与えられ、その値をum2_minで表している。また、電圧上下限値決定部25は、ローカル電圧制御装置15の電圧制御責任範囲である範囲R2内において、最適電圧30と適正電圧の下限値V_minとの差の絶対値である電圧下限余裕量のうちから最小のものを選択する。図示例では、最小の電圧下限余裕量は配電線長がL3の点で与えられ、その値をlm2_minで表している。そして、電圧上下限値決定部25は、電圧制御機器5の最適電圧30の値に最小の電圧上限余裕量um2_minを加えたものを制御目標電圧範囲の電圧上限値とし、電圧制御機器1の最適電圧30の値から最小の電圧上限余裕量lm2_minを差し引いたものを制御目標電圧範囲の電圧下限値とする。ここで、電圧制御機器5の最適電圧30の値とは、詳細には、電圧制御機器5の出力側(負荷側又は二次側)における最適電圧30の値であり、図中P5で示した点における電圧値を表す。なお、電圧制御機器が無効電力補償型のものである場合は、電圧制御機器の最適電圧は、電圧制御機器の配電系統連系点における最適電圧である。図5では、当該電圧上限値はv2_maxで表され、当該電圧下限値はv2_minで表されており、ローカル電圧制御装置15の制御目標電圧範囲は点P4と点P6との間の範囲である。
 このように、ローカル電圧制御装置15の制御目標電圧範囲は、電圧制御機器5の設置箇所近傍における電圧上下限余裕量のみならず、その電圧制御責任範囲である範囲R2内の各点における電圧上下限余裕量も考慮して決定されているので、ローカル電圧制御装置15自体は制御目標電圧範囲内で電圧制御機器5をローカル制御するにもかかわらず、広域の範囲R2内で適正電圧の維持が可能となる。
 次に、図5のステップS10で、上側変動幅および下側変動幅の翌日の予測値を求める際に、日射量との相関を用いる場合について説明する。この場合、上側変動幅および下側変動幅を記憶部27へ記憶する際に日射量に対応付けて記憶する。負荷発電量予測部22は、記憶されている一定期間分のデータに基づいて、同一時間帯、同一曜日区分のデータごとに、上側変動幅と日射量の相関、下側変動幅と日射量の相関をそれぞれ求める。図8は、記憶部27に記憶されている一定期間分の上側変動幅と対応する日射量とをプロットした例を示す図である。図8の各点は、記憶部27に記憶された各データ点を示す。なお、図8は、概念を説明するための図であり、実際の相関の様子は図8のようになるとは限らない。これらのデータ点に基づいて、回帰分析などにより近似曲線101を求め、上側変動幅と日射量の相関を関係式またはテーブルにより保持する。負荷発電量予測部22は、下側変動幅と日射量の相関も同様に求めて、関係式またはテーブルにより保持する。以上のような処理を、時間帯、曜日区分ごとに行い、時間帯、曜日区分の組み合わせごとに相関を記憶部27へ記憶しておく。図5のステップS10では、予測対象の時間帯、曜日区分に対応する相関を用いて、天候の予測値等に基づいて日射量を推定し、推定した日射量に対応する上側変動幅、下側変動幅を予測上側変動幅、予測下側変動幅とする。
 以上説明したように、本実施の形態では、電圧潮流計測装置10およびスマートメーター12が、電圧および潮流を計測し、計測データを統計処理した結果を計測情報として集中電圧制御装置8へ送信する。そして、集中電圧制御装置8は、計測情報に基づいて集中制御周期内の短周期変動の変動幅(上側変動幅、下側変動幅)を求め、この変動幅を考慮して将来の一定期間内(集中制御周期の期間内)の最適電圧分布を求める。その後、集中電圧制御装置8は、変圧器型の電圧制御機器については、この最適電圧分布と適正電圧範囲との関係に基づいてローカル電圧制御装置ごとにその電圧制御責任範囲内の各点における電圧上下限余裕量を加味して各ローカル電圧制御装置に対して指令する電圧上下限値を決定する。
 これにより、例えば太陽光発電量の変化などの予測困難な要因による配電系統の電圧変動にも追従して電圧を維持することができるとともに、短周期変動についても電圧余裕として確保されるため、短周期変動による電圧違反を抑制することができる。また、電圧潮流計測装置10およびスマートメーター12は、統計処理した結果を送信するため、通信負荷を低減することができる。
 なお、本実施の形態では、負荷/発電量の予測、および、ローカル電圧制御装置への電圧上下限値の指令を例えば1時間ごとに実施するとしたが、これに限定されず、例えば数十分(例えば30分)ないし数時間ごと、あるいはそれ以上の時間間隔で実施することも可能である。さらに、ローカル電圧制御装置への電圧上下限値の指令の送信は、電圧上下限値が大きく変化した場合のみ実施することも可能である。これにより、通信負荷が一層低減される。
 また、通信障害等により集中電圧制御装置から集中制御周期で電圧上下限値指令が受信できないローカル電圧制御装置が発生する場合に備え、集中電圧制御装置からローカル電圧制御装置へ事前に電圧上下限値を多時間断面分(例えば、翌日1日分)送信し、ローカル電圧制御装置でこれを記憶しておくことも可能である。この場合、あるローカル電圧制御装置の通信異常時に、当該ローカル電圧制御装置はこの記憶された電圧上下限値に基づいて動作することができ、また、集中電圧制御装置では、当該ローカル電圧制御装置の動作を推定できる。なお、この場合は、図5のステップS11の負荷/発電量の予測値を補正する処理は省略される。
 本実施の形態では、配電系統に変圧器型の電圧制御機器が接続される例について説明したが、配電系統に変圧器型の電圧制御機器以外に、SVC(Static Var Compensator:静止型無効電力補償装置)、調相設備(進相コンデンサ、分路リアクトル等)、無効電力調整機能付のPCS(Power Conditioning System:パワーコンディショナ)等の電圧制御機器が接続されていてもよい。SVC等の無効電力調整型の電圧制御機器が接続される場合は、無効電力調整型の電圧制御機器については、当該電圧制御機器に接続されるローカル制御装置による自律制御により制御を実施し、集中電圧制御装置からは制御目標値を指令しない。そして、配電系統の最適電圧分布を決定する処理において、無効電力調整型の電圧制御機器をゼロと設定すればよい。なお、無効電力調整型の電圧制御機器に対して集中電圧制御装置から制御目標値を指令するようにしてもよい。この場合、配電系統の最適電圧分布を決定する処理において、無効電力調整型の電圧制御機器に対する制御目標値も設定する。無効電力調整型の電圧制御機器は、集中電圧制御装置から指令された制御目標値を制御目標として短周期変動は自律制御により除去する。
 なお、電圧制御機器としては、変圧器型のものの他、上記のようなSVC等の無効電力制御型のものがあり、無効電力制御型の電圧制御機器は短周期変動を自律的に除去する機能を有する。しかしながら、無効電力制御型の電圧制御機器は高価であるため配電系統内の全ての箇所の短周期変動を抑えるために多数の無効電力制御型の電圧制御機器を配置するとコストが上昇する。本実施の形態では、電圧潮流計測装置と集中電圧制御装置に対する簡易な機能付加で実現でき、SVCを設置する場合に比べコストを削減することができる。また、無効電力制御型の電圧制御機器を配置したとしても、場所によっては短周期変動が残る場合もある。本実施の形態では、このように無効電力制御型の電圧制御機器により除去しきれない短周期変動があった場合でも、除去しきれない短周期変動を余裕量として考慮して制御することにより、電圧違反を抑制することができる。
 以上のように、本発明にかかる電圧監視制御システム、電圧監視制御装置、計測装置および電圧監視制御方法は、配電系統の電圧を制御する配電系統の電圧を制御するシステムに有用である。
 1,5,6 電圧制御機器、2 母線、3-1,3-2 遮断器、4-1,4-2 配電線、7,14 通信ネットワーク、8 集中電圧制御装置、10 電圧潮流計測装置、11,15,16 ローカル電圧制御装置、12 スマートメーター、13 MDM装置、20 制御部、21 電圧変動幅算出部、22 負荷発電量予測部、23 負荷発電量予測値補正部、24 最適電圧分布決定部、25 電圧上下限値決定部、26 送受信部、27 記憶部。

Claims (13)

  1.  高圧系統の配電線に接続され当該配電線の電圧を制御する複数の電圧制御機器と、
     前記電圧制御機器の制御量を、第1の周期ごとに更新される電圧上限値および電圧下限値の範囲内に当該電圧制御機器が制御する電圧値が維持されるように調整する複数のローカル電圧制御装置と、
     前記配電線に接続され当該配電線の電圧を前記第1の周期よりも短周期の第2の周期で計測し、計測した電圧に基づいて前記第2の周期より長周期の第3の周期ごとに前記電圧の変動幅を示す変動幅情報を算出して送信する計測装置と、
     前記ローカル電圧制御装置および前記計測装置と通信ネットワークを介して接続される電圧監視制御装置と、
     を備え、
     前記電圧監視制御装置は、
     前記通信ネットワークを介して前記ローカル電圧制御装置と通信し、前記計測装置から前記変動幅情報を、前記通信ネットワークを介して受信する送受信部と、
     前記変動幅情報に基づいて、前記第1の周期内の前記電圧の変動幅を算出する電圧変動幅算出部と、
     前記電圧変動幅算出部が算出した前記変動幅に基づいて適正電圧範囲の上限までの余裕に対する第1の閾値と適正電圧範囲の下限までの余裕に対する第2の閾値とを決定し、前記上限までの余裕と前記第1の閾値との差と、前記下限までの余裕と前記第2の閾値との差とに基づいて、前記各ローカル電圧制御装置に指令する制御目標値を決定する制御目標電圧決定部と、
     前記制御目標値に基づいて前記各ローカル電圧制御装置に送受信部を介してそれぞれ送信される電圧上限値および電圧下限値を決定する電圧上下限値決定部と、
     を備えた電圧監視制御システム。
  2.  前記変動幅情報を、前記第3周期内の前記計測した電圧の標準偏差とすることを特徴とする請求項1に記載の電圧監視制御システム。
  3.  前記変動幅情報を、前記第3周期内の前記計測した電圧の標準偏差および平均値とすることを特徴とする請求項1に記載の電圧監視制御システム。
  4.  前記電圧変動幅算出部は、前記平均値と前記標準偏差に所定の値を乗じた値とを加算することにより前記第3周期内の推定最大値を求め、前記平均値から前記標準偏差に所定の値を乗じた値を減じることにより前記第3周期内の推定最小値を求め、前記第1の周期内の前記平均値の平均値を周期内平均値として求め、前記第1の周期内の前記推定最大値の最大値から前記周期内平均値を減じた値を上側の前記変動幅として求め、前記周期内平均値から前記第1の周期内の前記推定最小値を減じた値を下側の前記変動幅として求めることを特徴とする請求項3に記載の電圧監視制御システム。
  5.  前記変動幅情報を、前記第3周期内の前記計測した電圧の最大値および最小値とすることを特徴とする請求項1に記載の電圧監視制御システム。
  6.  前記変動幅情報を、前記第3周期内の前記計測した電圧の最大値および最小値と、前記第3周期内の前記計測した電圧の平均値と、とすることを特徴とする請求項1に記載の電圧監視制御システム。
  7.  前記電圧変動幅算出部は、前記最大値の前記第1の周期内の最大値を周期内最大値として求め、前記最小値の前記第1の周期内の最小値を周期内最小値として求め、前記第1の周期内の前記平均値の平均値を周期内平均値として求め、前記周期内最大値から前記周期内平均値を減じた値を上側の前記変動幅として求め、前記周期内平均値から前記周期内最小値を減じた値を下側の前記変動幅として求めることを特徴とする請求項6に記載の電圧監視制御システム。
  8.  前記変動幅情報を、前記第3周期内の前記計測した電圧の最大値から前記第3周期内の前記計測した電圧の平均値を引いた値と、前記平均値から最小値を引いた値と、とすることを特徴とする請求項1に記載の電圧監視制御システム。
  9.  前記変動幅情報を、前記第3周期内の前記計測した電圧の最大値から前記第3周期内の前記計測した電圧の最小値を引いた値に1/2を乗じた値とすることを特徴とする請求項1に記載の電圧監視制御システム。
  10.  前記配電線の各点における純粋な負荷と発電量との差分を表す負荷発電量分布を前記第1の周期以上の周期である第4の周期で予測する負荷発電量予測部、
     を備え、
     前記制御目標電圧決定部は、前記負荷発電量予測部により予測された負荷発電量分布に基づいて潮流計算を行うとともに、前記配電系統の評価項目について設定された評価関数の値を最良にする最良解を探索することにより、前記第1の周期の期間内の最適電圧分布を決定し、前記最適電圧分布に基づいて前記制御目標値を決定し、前記評価関数として前記上限までの余裕と前記第1の閾値との差と前記下限までの余裕と前記第2の閾値との差とに基づく評価関数を含むことを特徴とする請求項1~9のいずれか1つに記載の電圧監視制御システム。
  11.  高圧系統の配電線に接続され当該配電線の電圧を制御する複数の電圧制御機器の制御量を、第1の周期ごとに更新される電圧上限値および電圧下限値の範囲内に当該電圧制御機器が制御する電圧値が維持されるように調整する複数のローカル電圧制御装置との間で通信ネットワークを介してそれぞれ通信するとともに、前記配電線に接続され当該配電線の電圧を前記第1の周期よりも短周期の第2の周期で計測した電圧に基づいて前記第2の周期より長周期の第3の周期ごとに前記電圧の変動幅を示す変動幅情報を算出する計測装置から、前記変動幅情報を、前記通信ネットワークを介して受信する送受信部と、
     前記変動幅情報に基づいて、前記第1の周期内の前記電圧の変動幅を算出する電圧変動幅算出部と、
     前記第1の周期ごとに、前記電圧変動幅算出部が算出した前記変動幅に基づいて適正電圧範囲の上限までの余裕に対する第1の閾値と適正電圧範囲の下限までの余裕に対する第2の閾値とを決定し、前記上限までの余裕と前記第1の閾値との差と、前記下限までの余裕と前記第2の閾値との差とに基づいて、前記各ローカル電圧制御装置に指令する制御目標値を決定する制御目標電圧決定部と、
     前記制御目標値に基づいて前記各ローカル電圧制御装置に送受信部を介してそれぞれ送信される前記電圧上限値および前記電圧下限値を決定する電圧上下限値決定部と、
     を備えた電圧監視制御装置。
  12.  高圧系統の配電線に接続され当該配電線の電圧を制御する複数の電圧制御機器と、前記電圧制御機器の制御量を、第1の周期ごとに更新される電圧上限値および電圧下限値の範囲内に当該電圧制御機器が制御する電圧値が維持されるように調整する複数のローカル電圧制御装置と、前記第1の周期ごとに前記電圧上限値および前記電圧下限値を前記ローカル電圧制御装置へ通信ネットワークを介して指令する電圧監視制御装置とを備える監視制御システムにおいて前記配電線に接続される計測装置であって、
     前記配電線の電圧を前記第1の周期よりも短周期の第2の周期で計測し、計測した電圧に基づいて前記第2の周期より長周期の第3の周期ごとに前記電圧の変動幅を示す変動幅情報を算出し、前記変動幅情報を、前記通信ネットワークを介して前記電圧監視制御装置へ送信する計測装置。
  13.  高圧系統の配電線に接続され当該配電線の電圧を制御する複数の電圧制御機器と、前記電圧制御機器の制御量を、第1の周期ごとに更新される電圧上限値および電圧下限値に基づいて調整する複数のローカル電圧制御装置と、前記第1の周期ごとに前記電圧上限値および前記電圧下限値を前記ローカル電圧制御装置へ通信ネットワークを介して指令する電圧監視制御装置とを備える監視制御システムにおける電圧監視制御方法であって、
     前記計測装置が、前記配電線の電圧を前記第1の周期よりも短周期の第2の周期で計測し、計測した電圧に基づいて前記第2の周期より長周期の第3の周期ごとに前記電圧の変動幅を示す変動幅情報を算出し、前記変動幅情報を、前記通信ネットワークを介して前記電圧監視制御装置へ送信する送信ステップと、
     前記電圧監視制御装置が、前記変動幅情報を受信する受信ステップと、
     前記電圧監視制御装置が、変動幅情報に基づいて、前記第1の周期内の前記電圧の変動幅を算出する電圧変動幅算出ステップと、
     前記電圧監視制御装置が、前記第1の周期ごとに、前記電圧変動幅算出ステップにおいて算出した前記変動幅に基づいて適正電圧範囲の上限までの余裕に対する第1の閾値と適正電圧範囲の下限までの余裕に対する第2の閾値とを決定し、前記上限までの余裕と前記第1の閾値との差と、前記下限までの余裕と前記第2の閾値との差とに基づいて、前記各ローカル電圧制御装置に指令する制御目標値を決定する制御目標電圧決定ステップと、
     前記電圧監視制御装置が、前記制御目標値に基づいて前記各ローカル電圧制御装置に対する前記電圧上限値および前記電圧下限値を決定するステップと、
     前記各ローカル電圧制御装置に前記電圧上限値および前記電圧下限値を送信する指令ステップと、
     前記ローカル電圧制御装置が、前記電圧制御機器の制御量を、第1の周期ごとに更新される電圧上限値および電圧下限値の範囲内に当該電圧制御機器が制御する電圧値が維持されるように調整する制御ステップと、
     を含む電圧監視制御方法。
PCT/JP2013/067558 2013-06-26 2013-06-26 電圧監視制御システム、電圧監視制御装置、計測装置および電圧監視制御方法 WO2014207849A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/898,787 US9843195B2 (en) 2013-06-26 2013-06-26 Voltage monitoring control system, voltage monitoring control device, measurement device, and voltage monitoring control method
PCT/JP2013/067558 WO2014207849A1 (ja) 2013-06-26 2013-06-26 電圧監視制御システム、電圧監視制御装置、計測装置および電圧監視制御方法
JP2014551353A JP5721915B1 (ja) 2013-06-26 2013-06-26 電圧監視制御システム、電圧監視制御装置、計測装置および電圧監視制御方法
CN201380077677.9A CN105379046B (zh) 2013-06-26 2013-06-26 电压监视控制系统、电压监视控制装置、测量装置和电压监视控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/067558 WO2014207849A1 (ja) 2013-06-26 2013-06-26 電圧監視制御システム、電圧監視制御装置、計測装置および電圧監視制御方法

Publications (1)

Publication Number Publication Date
WO2014207849A1 true WO2014207849A1 (ja) 2014-12-31

Family

ID=52141254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/067558 WO2014207849A1 (ja) 2013-06-26 2013-06-26 電圧監視制御システム、電圧監視制御装置、計測装置および電圧監視制御方法

Country Status (4)

Country Link
US (1) US9843195B2 (ja)
JP (1) JP5721915B1 (ja)
CN (1) CN105379046B (ja)
WO (1) WO2014207849A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016208654A (ja) * 2015-04-22 2016-12-08 株式会社日立製作所 電力系統電圧無効電力監視制御装置及び方法
JP2016208698A (ja) * 2015-04-23 2016-12-08 富士電機株式会社 計算装置、計算システム、及びプログラム
JP2016214019A (ja) * 2015-05-13 2016-12-15 三菱電機株式会社 電圧上昇抑制装置
JP2017046506A (ja) * 2015-08-28 2017-03-02 株式会社日立製作所 電圧無効電力制御システム
JP2017085728A (ja) * 2015-10-26 2017-05-18 三菱電機株式会社 集中電圧制御装置および集中電圧制御方法
WO2018037476A1 (ja) * 2016-08-23 2018-03-01 東芝三菱電機産業システム株式会社 データ送信装置及びデータ送信方法
US20190148940A1 (en) * 2016-05-24 2019-05-16 Mitsubishi Electric Corporation Power distribution system state estimation device and power distribution system state estimation method
CN116243097A (zh) * 2023-05-11 2023-06-09 新风光电子科技股份有限公司 基于大数据的电能质量检测方法
CN116738158A (zh) * 2023-08-11 2023-09-12 山东凌远机电科技有限公司 一种配电箱系统损耗智能评估方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3008207B1 (fr) * 2013-07-04 2016-12-02 M Et R Energies Unite et procede de regulation energetique d'un systeme de production et de consommation electrique
JP5933857B1 (ja) * 2015-05-27 2016-06-15 三菱電機株式会社 電圧制御装置および電圧計測装置
JP6623696B2 (ja) * 2015-11-09 2019-12-25 株式会社ソシオネクスト 電源装置及び半導体装置
JP2019012375A (ja) * 2017-06-30 2019-01-24 三菱電機株式会社 計装制御システム
JP6972143B2 (ja) * 2017-09-12 2021-11-24 三菱電機株式会社 分散電源システム
US10803733B2 (en) * 2018-07-06 2020-10-13 Schneider Electric USA, Inc. Systems and methods for managing voltage event alarms in an electrical system
US11282369B2 (en) 2018-07-06 2022-03-22 Schneider Electric USA, Inc. Systems and methods for managing voltage event alarms in an electrical system
CN112444658B (zh) * 2019-09-03 2024-08-02 广州汽车集团股份有限公司 一种电源电压模式管理方法、装置及汽车
US11768000B2 (en) * 2020-03-24 2023-09-26 Johnson Controls Tyco IP Holdings LLP System and method to operate HVAC system during voltage variation event
CN112039102B (zh) * 2020-04-24 2022-04-15 国家电网有限公司 一种直流解锁前换流母线电压的控制范围确定方法及装置
CN112286338B (zh) * 2020-11-09 2023-05-05 维沃移动通信有限公司 芯片的控制方法、芯片的控制装置、电子设备及存储介质
US20240077523A1 (en) * 2021-02-26 2024-03-07 Mitsubishi Electric Corporation Voltage management device, voltage command device, power system monitoring system, measurement device, voltage management method, and storage medium
US20230079292A1 (en) * 2021-09-10 2023-03-16 Ampere Computing Llc Method, apparatus, and system for calibrating a processor power level estimate
CN115333101B (zh) * 2022-10-12 2023-04-07 国网浙江省电力有限公司宁波市北仑区供电公司 一种智能配电柜系统及配电方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09322404A (ja) * 1996-05-31 1997-12-12 Kansai Electric Power Co Inc:The 配電系統制御装置
JP2004056931A (ja) * 2002-07-22 2004-02-19 Mitsubishi Electric Corp 配電線電圧調整装置
WO2013065114A1 (ja) * 2011-10-31 2013-05-10 三菱電機株式会社 配電系統電圧制御システム、配電系統電圧制御方法、及び集中電圧制御装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60241725A (ja) 1984-05-14 1985-11-30 三菱電機株式会社 電圧・無効電力制御方式
JP3317833B2 (ja) 1995-01-17 2002-08-26 株式会社日立製作所 送配電系統の制御システムおよび制御方法
US5760492A (en) * 1995-01-17 1998-06-02 Hitachi, Ltd. Control system for power transmission and distribution system
JP3825173B2 (ja) 1998-04-06 2006-09-20 関西電力株式会社 配電系統制御システム
JP3825171B2 (ja) 1998-04-06 2006-09-20 関西電力株式会社 配電系統制御システム
JP2000102171A (ja) 1998-09-22 2000-04-07 Fuji Electric Co Ltd 電力系統電圧制御方法および装置
JP2002165367A (ja) 2000-11-24 2002-06-07 Kansai Electric Power Co Inc:The 電圧・無効電力制御システムおよび電圧・無効電力制御方法
JP4019150B2 (ja) 2004-03-17 2007-12-12 独立行政法人産業技術総合研究所 配電系統情報監視システム
DE102004021344A1 (de) * 2004-04-30 2005-11-17 Micronas Gmbh Gleichspannungswandler
JP2007330067A (ja) 2006-06-09 2007-12-20 Central Res Inst Of Electric Power Ind 配電系統の電圧制御方法および配電系統の電圧制御システム
WO2008109341A2 (en) * 2007-03-01 2008-09-12 Rambus Inc. Optimized power supply for an electronic system
JP5006728B2 (ja) 2007-07-26 2012-08-22 一般財団法人電力中央研究所 配電系統の運用管理方法、システム及びプログラム
JP2009065788A (ja) 2007-09-06 2009-03-26 Univ Of Ryukyus 配電系統の最適電圧制御装置
US7991511B2 (en) * 2008-05-14 2011-08-02 National Semiconductor Corporation Method and system for selecting between centralized and distributed maximum power point tracking in an energy generating system
US9077206B2 (en) * 2008-05-14 2015-07-07 National Semiconductor Corporation Method and system for activating and deactivating an energy generating system
US8624561B1 (en) * 2009-12-29 2014-01-07 Solarbridge Technologies, Inc. Power conversion having energy storage with dynamic reference
JP5645244B2 (ja) * 2010-02-05 2014-12-24 パナソニックIpマネジメント株式会社 エネルギー需給制御システム
CN102709923B (zh) * 2012-06-14 2014-07-02 济南大学 基于负荷波动规律的时变限值区域电网无功优化控制方法
JP5973263B2 (ja) * 2012-07-09 2016-08-23 京セラ株式会社 電力管理装置及び電力管理方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09322404A (ja) * 1996-05-31 1997-12-12 Kansai Electric Power Co Inc:The 配電系統制御装置
JP2004056931A (ja) * 2002-07-22 2004-02-19 Mitsubishi Electric Corp 配電線電圧調整装置
WO2013065114A1 (ja) * 2011-10-31 2013-05-10 三菱電機株式会社 配電系統電圧制御システム、配電系統電圧制御方法、及び集中電圧制御装置

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10673235B2 (en) 2015-04-22 2020-06-02 Hitachi, Ltd. Power system voltage reactive power monitoring control device and method
JP2016208654A (ja) * 2015-04-22 2016-12-08 株式会社日立製作所 電力系統電圧無効電力監視制御装置及び方法
JP2016208698A (ja) * 2015-04-23 2016-12-08 富士電機株式会社 計算装置、計算システム、及びプログラム
JP2016214019A (ja) * 2015-05-13 2016-12-15 三菱電機株式会社 電圧上昇抑制装置
JP2017046506A (ja) * 2015-08-28 2017-03-02 株式会社日立製作所 電圧無効電力制御システム
US10283961B2 (en) 2015-08-28 2019-05-07 Hitachi, Ltd. Voltage and reactive power control system
JP2017085728A (ja) * 2015-10-26 2017-05-18 三菱電機株式会社 集中電圧制御装置および集中電圧制御方法
US10847974B2 (en) * 2016-05-24 2020-11-24 Mitsubishi Electric Corporation Device and method for estimating a voltage distribution along a power distribution line in a high-voltage system
US20190148940A1 (en) * 2016-05-24 2019-05-16 Mitsubishi Electric Corporation Power distribution system state estimation device and power distribution system state estimation method
EP3506569A4 (en) * 2016-08-23 2020-01-15 Toshiba Mitsubishi-Electric Industrial Systems Corporation DATA TRANSMISSION APPARATUS AND DATA TRANSMISSION METHOD
WO2018037476A1 (ja) * 2016-08-23 2018-03-01 東芝三菱電機産業システム株式会社 データ送信装置及びデータ送信方法
US10958476B2 (en) 2016-08-23 2021-03-23 Toshiba Mitsubishi-Electric Industrial Systems Corporation Data transmission device and data transmission method
CN116243097A (zh) * 2023-05-11 2023-06-09 新风光电子科技股份有限公司 基于大数据的电能质量检测方法
CN116243097B (zh) * 2023-05-11 2023-08-15 新风光电子科技股份有限公司 基于大数据的电能质量检测方法
CN116738158A (zh) * 2023-08-11 2023-09-12 山东凌远机电科技有限公司 一种配电箱系统损耗智能评估方法
CN116738158B (zh) * 2023-08-11 2023-10-24 山东凌远机电科技有限公司 一种配电箱系统损耗智能评估方法

Also Published As

Publication number Publication date
CN105379046B (zh) 2018-01-23
JP5721915B1 (ja) 2015-05-20
US9843195B2 (en) 2017-12-12
JPWO2014207849A1 (ja) 2017-02-23
CN105379046A (zh) 2016-03-02
US20160204614A1 (en) 2016-07-14

Similar Documents

Publication Publication Date Title
JP5721915B1 (ja) 電圧監視制御システム、電圧監視制御装置、計測装置および電圧監視制御方法
JP5436734B1 (ja) 電圧監視制御装置および電圧監視制御方法
JP5837674B2 (ja) 配電系統電圧制御システム、配電系統電圧制御方法、集中電圧制御装置、及びローカル電圧制御装置
US9733277B2 (en) Voltage monitoring control device, voltage control device, and voltage monitoring control method
US11353907B2 (en) Systems and methods for stabilizer control
US9825465B2 (en) Voltage monitoring control device and voltage control device
US10756543B2 (en) Method and apparatus for stabalizing power on an electrical grid using networked distributed energy storage systems
US20140070756A1 (en) Method for balancing frequency instability on an electric grid using networked distributed energy storage systems
JP5837384B2 (ja) 電圧調整装置及び電圧調整方法
JP6452909B1 (ja) 集中電圧制御装置および集中電圧制御システム
JP6177489B1 (ja) 集中電圧制御装置および集中電圧制御システム
JP6615052B2 (ja) 集中電圧制御装置、集中電圧制御システムおよび計測装置
AU2019239703B2 (en) System for controlling power consumption on a distribution grid
JP6991410B1 (ja) 電圧管理装置、電圧指令装置、電力系統監視システム、計測装置、電圧管理方法および電圧管理プログラム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014551353

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13888201

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14898787

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13888201

Country of ref document: EP

Kind code of ref document: A1