WO2013061805A1 - 新規なトリフェニレン誘導体及び該誘導体が使用されている有機エレクトロルミネッセンス素子 - Google Patents

新規なトリフェニレン誘導体及び該誘導体が使用されている有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2013061805A1
WO2013061805A1 PCT/JP2012/076434 JP2012076434W WO2013061805A1 WO 2013061805 A1 WO2013061805 A1 WO 2013061805A1 JP 2012076434 W JP2012076434 W JP 2012076434W WO 2013061805 A1 WO2013061805 A1 WO 2013061805A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
triphenylene
organic
layer
Prior art date
Application number
PCT/JP2012/076434
Other languages
English (en)
French (fr)
Inventor
紀昌 横山
直朗 樺澤
寛史 大熊
秀一 林
英治 高橋
Original Assignee
保土谷化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 保土谷化学工業株式会社 filed Critical 保土谷化学工業株式会社
Priority to CN201280051830.6A priority Critical patent/CN103889945A/zh
Priority to US14/349,438 priority patent/US20150034924A1/en
Priority to KR1020147010562A priority patent/KR20140084051A/ko
Publication of WO2013061805A1 publication Critical patent/WO2013061805A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/54Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/57Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
    • C07C211/61Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton with at least one of the condensed ring systems formed by three or more rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D265/00Heterocyclic compounds containing six-membered rings having one nitrogen atom and one oxygen atom as the only ring hetero atoms
    • C07D265/281,4-Oxazines; Hydrogenated 1,4-oxazines
    • C07D265/341,4-Oxazines; Hydrogenated 1,4-oxazines condensed with carbocyclic rings
    • C07D265/38[b, e]-condensed with two six-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/60Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings condensed with carbocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/76Dibenzothiophenes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/008Triarylamine dyes containing no other chromophores
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/10Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
    • C07C2603/12Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
    • C07C2603/18Fluorenes; Hydrogenated fluorenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/40Ortho- or ortho- and peri-condensed systems containing four condensed rings
    • C07C2603/42Ortho- or ortho- and peri-condensed systems containing four condensed rings containing only six-membered rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1037Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • H10K50/181Electron blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom

Definitions

  • the present invention relates to a novel compound (triphenylene derivative) suitable for an organic electroluminescence element which is a self-luminous element suitable for various display devices, and an organic electroluminescence element comprising an organic layer containing the compound.
  • organic electroluminescence elements (hereinafter sometimes referred to as organic EL elements) are self-luminous elements, they are brighter and more visible than liquid crystal elements, and can be clearly displayed. I came.
  • organic electroluminescence elements using organic materials practical by developing a laminated structure element that shares various roles with each material. They consist of a stack of a phosphor capable of transporting electrons and an aromatic amine compound capable of transporting holes, and both charges are injected into the phosphor layer. By emitting light, high luminance of 1000 cd / m 2 or more can be obtained at a voltage of 10 V or less.
  • an element having a structure in which various roles are further subdivided and an anode, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and a cathode are sequentially provided on a substrate is known.
  • Such an element achieves high efficiency and durability.
  • the light emitting layer can also be prepared by doping a charge transporting compound generally called a host material with a phosphor or a phosphorescent light emitter.
  • a charge transporting compound generally called a host material with a phosphor or a phosphorescent light emitter.
  • an organic EL element charges injected from both electrodes recombine in the light emitting layer to emit light, but it is important to efficiently transfer both holes and electrons to the light emitting layer. For example, the probability of recombination of holes and electrons is improved by increasing the hole injection property and blocking the electron injected from the cathode, and further excitons generated in the light emitting layer. By confining, high luminous efficiency can be obtained. Therefore, the role of the hole transport material is important, and there is a demand for a hole transport material that has high hole injectability, high hole mobility, high electron blocking properties, and high durability against electrons. ing.
  • the heat resistance and amorphous nature of the material are important for the lifetime of the element.
  • thermal decomposition occurs even at a low temperature due to heat generated when the element is driven, and the material is deteriorated.
  • the thin film is crystallized even in a short time, and the element is deteriorated. For this reason, the material used is required to have high heat resistance and good amorphous properties.
  • NPD N, N′-diphenyl-N, N′-di ( ⁇ -naphthyl) benzidine
  • Tg glass transition point
  • Patent Document 1 and Patent Document 2 various aromatic amine derivatives
  • the aromatic amine derivatives described in Patent Document 1 and Patent Document 2 there are those having an excellent mobility of hole mobility of 10 ⁇ 3 cm 2 / Vs or more, but the electron blocking property. Insufficient amount of electrons pass through the light-emitting layer, and improvement in luminous efficiency cannot be expected.For higher efficiency, electron blocking is higher, thin film is more stable and heat resistant High-quality materials were demanded.
  • Patent Documents 3 and 4 propose arylamine compounds A and B having a substituted triphenylene structure represented by the following formula.
  • JP-A-8-48656 Japanese Patent No. 3194657 WO2010 / 002850 publication WO2011 / 081423
  • the present inventors have a high hole injection / transport capability of the aromatic tertiary amine structure, and the triphenylene ring structure has good heat resistance and thin film stability. Focusing on this, various compounds having a triphenylene ring structure were designed and chemically synthesized, and various organic electroluminescence devices were prototyped using the compounds. As a result, the present invention has been completed.
  • a triphenylene derivative represented by the following general formula (1) is provided.
  • p and q each represents 0 or an integer of 1 to 4;
  • s represents 0 or an integer of 1 to 3;
  • n represents 0 or an integer of 1 to 2,
  • Ar 1 and Ar 2 each represent an aromatic hydrocarbon group or an aromatic heterocyclic group, and
  • Ar 1 and Ar 2 are a single bond, a methyl group which may have a substituent, or an oxygen atom.
  • R 1 , R 2 and R 3 are each a deuterium atom, a fluorine atom, a chlorine atom, a cyano group, a nitro group, an alkyl group having 1 to 6 carbon atoms, or a carbon atom number of 5
  • Each of A 1 and A 2 represents a divalent aromatic hydrocarbon group or a divalent aromatic heterocyclic group;
  • a 1 and Ar 1 may be bonded to each other via a single bond, an optionally substituted methylene group, an oxygen atom or a sulfur atom to form a ring, When n is 1, A 1 or A 2 and
  • n 2
  • a 1 or A 2 and Ar 1 may have a single bond or a substituent methylene group And may be bonded to each other via an oxygen atom or a sulfur atom to form a ring.
  • the organic electroluminescence device having a pair of electrodes and at least one organic layer sandwiched therebetween, At least one layer of the organic layer contains the triphenylene derivative, and an organic electroluminescence device is provided.
  • the organic EL device of the present invention has, for example, a hole transport layer, an electron blocking layer, a hole injection layer, or a light emitting layer as the organic layer containing the triphenylene derivative.
  • the triphenylene derivative of the present invention represented by the general formula (1) described above is a novel compound, and has a structure in which an aromatic tertiary amine is introduced into the triphenylene ring. And have the following characteristics.
  • the triphenylene derivative of the present invention is useful as a hole transporting material used in an organic EL device and has a stable thin film state. Therefore, the triphenylene derivative is particularly used as an organic layer provided in the organic EL device.
  • the following characteristics can be imparted to the element.
  • an organic EL device in which a hole injection layer and / or a hole transport layer are formed using the triphenylene derivative of the present invention has a high hole injection / transfer rate, a high electron blocking property, and a high resistance to electrons. Since the stability is high, excitons generated in the light emitting layer can be confined, and further, the probability of recombination of holes and electrons is improved, and high luminous efficiency is exhibited. Further, the driving voltage is lowered, and the durability can be improved.
  • the organic EL device having the electron blocking layer formed using the triphenylene derivative of the present invention has a high emission efficiency due to an excellent electron blocking ability and an excellent hole transport property, and a driving voltage is high. Low, current resistance is improved, and maximum light emission brightness is improved.
  • the triphenylene derivative of the present invention has excellent hole transport properties and a wide band gap as compared with conventional materials, it can be used as a host material for a light-emitting layer.
  • a fluorescent luminescent material or phosphorescent luminescent material called a dopant By supporting a fluorescent luminescent material or phosphorescent luminescent material called a dopant and using it as a luminescent layer, the driving voltage of the organic EL element can be lowered and the luminous efficiency can be improved.
  • the triphenylene derivative of the present invention is extremely useful as a constituent material of the hole injection layer, the hole transport layer, the electron blocking layer, or the light emitting layer of the organic EL element, and improves the light emission efficiency and power efficiency of the organic EL element. It is possible to improve, lower the practical driving voltage, and increase the durability.
  • the triphenylene derivative of the present invention is represented by the following general formula (1), and has a structure in which an aromatic tertiary amine is bonded to the triphenylene ring via a divalent group.
  • p and q indicating the number of substituents R 1 and R 2 bonded to the triphenylene ring are each 0 or an integer of 1 to 4. Further, s indicating the number of substituents R 3 bonded to the triphenylene ring represents 0 or an integer of 1 to 3. Furthermore, n indicating the number of divalent groups A 2 existing between the nitrogen atom of the aromatic amine and the triphenylene ring represents 0 or an integer of 1 to 2.
  • Ar 1 and Ar 2 bonded to a nitrogen atom each represent an aromatic hydrocarbon group or an aromatic heterocyclic group.
  • Such an aromatic hydrocarbon group and aromatic heterocyclic group may have a monocyclic structure or may have a condensed polycyclic structure.
  • aromatic groups include phenyl group, biphenylyl group, terphenylyl group, naphthyl group, anthryl group, phenanthryl group, fluorenyl group, indenyl group, pyrenyl group, perylenyl group, fluoranthenyl group, triphenylenyl group, pyridyl group.
  • aromatic heterocyclic group examples include furanyl group, benzofuranyl group, benzoxazolyl group, and dibenzofuranyl group.
  • the aromatic hydrocarbon group is preferably a phenyl group, a biphenylyl group, a naphthyl group, or a fluorenyl group.
  • the above aromatic group may have a substituent.
  • substituents include: deuterium atom; cyano group; nitro group; halogen atom such as fluorine atom, chlorine atom, bromine atom and iodine atom; methyl group, ethyl group, n-propyl group, isopropyl group, n- A linear or branched alkyl group having 1 to 6 carbon atoms such as butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, n-hexyl group; methyloxy group, ethyloxy A linear or branched alkyloxy group having 1 to 6 carbon atoms such as a propyloxy group; an alkenyl group such as an allyl group; an aralkyl group such as a benzyl group, a naphthylmethyl group, and a phene
  • the substituent of the aromatic group is preferably a linear or branched alkyl group having 1 to 6 carbon atoms, particularly preferably a methyl group or a tert-butyl group.
  • Ar 1 and Ar 2 may be bonded to each other via a single bond, a methylene group which may have a substituent, an oxygen atom or a sulfur atom to form a ring.
  • R 1 , R 2 and R 3 bonded to the triphenylene ring are each a deuterium atom, a fluorine atom, a chlorine atom, a cyano group, a nitro group, or a C 1-6 carbon atom.
  • the alkyl group having 1 to 6 carbon atoms may be linear or branched, and specific examples thereof include a methyl group, an ethyl group, and n-propyl.
  • these alkyl groups may have a substituent, such as a deuterium atom; a fluorine atom, a chlorine atom, a cyano group, an aryl group (for example, a phenyl group, a naphthyl group, an anthryl group). , A fluorenyl group, a stil group, and the like), an aromatic heterocyclic group (such as a pyridyl group, a pyridoindolyl group, a quinolyl group, and a benzothiazolyl group).
  • the alkyl group may be a group such as a trifluoromethyl group.
  • cycloalkyl group having 5 to 10 carbon atoms the alkyloxy group having 1 to 6 carbon atoms, and the cycloalkyloxy group having 5 to 10 carbon atoms in R 1 to R 3 are all linear. It may be branched or branched, and specifically, the following can be exemplified. Examples of cycloalkyl groups; Cyclopentyl group, cyclohexyl group, 1-adamantyl group, 2-adamantyl group and the like.
  • alkyloxy groups Methyloxy group, ethyloxy group, n-propyloxy group, isopropyloxy group, n-butyloxy group, tert-butyloxy group, n-pentyloxy group, n-hexyloxy group and the like.
  • cycloalkyloxy groups Cyclopentyloxy group, cyclohexyloxy group, cycloheptyloxy group, cyclooctyloxy group, 1-adamantyloxy group and 2- Adamantyloxy group and the like.
  • these cycloalkyl groups, alkyloxy groups, and cycloalkyloxy groups may also have a substituent. Examples of such substituents include the aromatic hydrocarbon group and the aromatic complex in Ar 1 and Ar 2 described above. The thing similar to the substituent which a cyclic group may have can be mentioned.
  • aromatic hydrocarbon group and aromatic heterocyclic group in R 1 to R 3 are the same groups as those exemplified for Ar 1 and Ar 2 described above, and the same may be included in the substituent. is there.
  • aryloxy group in R 1 to R 3 phenyloxy group, tolyloxy group, biphenylyloxy group, terphenylyloxy group, naphthyloxy group, anthryloxy group, phenanthryloxy group, fluorenyloxy group Indenyloxy group, pyrenyloxy group, perylenyloxy group and the like can be mentioned.
  • these aryloxy groups may also have a substituent, and as such a substituent, the aromatic hydrocarbon group and the aromatic heterocyclic group in Ar 1 and Ar 2 may have a substituent. The same thing as a group can be mentioned.
  • a 1 and A 2 each represent a divalent aromatic hydrocarbon group or a divalent aromatic heterocyclic group, and through these groups, a nitrogen atom of an aromatic amino group And the triphenylene ring are bonded.
  • Such a divalent aromatic hydrocarbon group and aromatic heterocyclic group are not limited to a single ring, and may have a polycyclic structure in which a hydrocarbon ring or a heterocyclic ring is bonded.
  • the divalent aromatic hydrocarbon group has an aromatic ring structure such as benzene, biphenyl, terphenyl, tetrakisphenyl, styrene, naphthalene, anthracene, acenaphthalene, fluorene, phenanthrene, indane, and pyrene.
  • aromatic ring structure such as benzene, biphenyl, terphenyl, tetrakisphenyl, styrene, naphthalene, anthracene, acenaphthalene, fluorene, phenanthrene, indane, and pyrene.
  • a divalent group having an aromatic ring structure having benzene, biphenyl, or fluorene is particularly preferred.
  • Divalent aromatic heterocyclic groups include pyridine, pyrimidine, triazine, furan, pyran, thiophene, quinoline, isoquinoline, benzofuran, benzothiophene, indoline, carbazole, benzoxazole, benzothiazole, quinoxaline, benzimidazole, and pyrazole.
  • each of the above divalent aromatic hydrocarbon group and divalent aromatic heterocyclic group may have a substituent, and examples of such a substituent include aromatic groups in Ar 1 and Ar 2 .
  • substituent which an aromatic hydrocarbon group and an aromatic heterocyclic group may have can be mentioned.
  • a 1 and Ar 1 when n representing the number of A 2 is 0 (that is, when there is no A 2 ), A 1 and Ar 1 have a single bond and a substituent. They may be bonded to each other via a methylene group, an oxygen atom or a sulfur atom to form a ring. When n is 1, A 1 or A 2 and Ar 1 are bonded to each other through a single bond, an optionally substituted methylene group, an oxygen atom or a sulfur atom to form a ring. May be. Further, when n is 2, a plurality of A 2 may be different from each other, and A 1 or A 2 and Ar 1 may have a single bond or a substituent. A ring may be formed by bonding to each other via a methylene group, an oxygen atom or a sulfur atom.
  • triphenylene derivative is a novel compound and is synthesized, for example, as follows.
  • triphenylene corresponding to the triphenylene ring possessed by the triphenylene derivative of the general formula (1) is used, and the site (for example, 2-position) to which the group A 1 of the triphenylene ring is bonded is brominated, and this bromine is converted into boronic acid or boronic acid. Conversion into an ester (see, for example, WO2010 / 002850).
  • the boronic acid ester thus obtained and the bromo compound of the amine corresponding to the aromatic amine moiety of the triphenylene derivative of the general formula (1) are subjected to a cross coupling reaction such as Suzuki coupling (for example, Chem. Rev., 95, 2457 (1995)), the desired triphenylene derivative can be synthesized.
  • the compound obtained can be purified by column chromatography, adsorption purification using silica gel, activated carbon, activated clay, etc., recrystallization or crystallization using a solvent, etc., and identification can be performed by NMR analysis. Is called.
  • triphenylene derivative of the present invention those in which n in the general formula (1) is zero are preferable, and among them, the divalent group A 1 in the general formula (1) may have a substituent.
  • a group (especially unsubstituted) is particularly preferred.
  • Such a preferable triphenylene derivative is specifically represented by the following general formula (1a).
  • the divalent group A 1 in the aforementioned general formula (1) is bonded to the 2-position of the triphenylene ring, specifically represented by the following general formula (1 ′). Those are also suitable. Where p, q, s, n, Ar 1 , Ar 2 , R 1 to R 3 , A 1 and A 2 have the same meanings as described in the general formula (1).
  • Particularly preferred are good phenylene groups (especially unsubstituted ones).
  • a suitable compound of this type is represented, for example, by the following general formula (b). Where p, q, s, Ar 1 , Ar 2 and R 1 to R 3 have the same meaning as described in the general formula (1).
  • a phenylene group (corresponding to A 1 ) in which an aromatic amino group (—NAr 1 Ar 2 ) is bonded to the 2-position of the triphenylene ring. )
  • a compound represented by the following general formula (1b-1) is preferable.
  • p, q, s, Ar 1 , Ar 2 and R 1 to R 3 have the same meaning as described in the general formula (1).
  • the above-described triphenylene derivative of the present invention has a glass transition point (Tg) and a melting point higher than those of conventionally known hole transport materials, can form a thin film with excellent heat resistance, and maintains an amorphous state stably. Therefore, the thin film state can be stably maintained.
  • the electron blocking ability is high. For example, when the work function is measured by forming a deposited film having a thickness of 100 ⁇ m using the triphenylene derivative of the present invention, an extremely high value is shown. Therefore, the triphenylene derivative of the present invention is extremely useful as a material for forming an organic layer of an organic EL element.
  • the organic EL element provided with the organic layer formed using the triphenylene derivative of the present invention described above has a layer structure shown in FIG. 17, for example. That is, a transparent anode 2, a hole injection layer 3, a hole transport layer 4, a light emitting layer 5, an electron transport layer 6, an electron injection on a glass substrate 1 (a transparent substrate such as a transparent resin substrate may be used). A layer 7 and a cathode 8 are provided.
  • the organic EL element to which the triphenylene derivative of the present invention is applied is not limited to the above layer structure, and an electron blocking layer, a light emitting layer 5 and a hole transport layer 4 are disposed between the hole transport layer 4 and the light emitting layer 5.
  • a hole blocking layer or the like can be provided between the electron transport layer 6 and a simple layer structure in which the electron injection layer 7 and the hole injection layer 3 are omitted can be obtained.
  • some layers can be omitted.
  • a simple layer structure in which the anode 2, the hole transport layer 3, the light emitting layer 4, the electron transport layer 6, and the cathode 8 are provided on the substrate 1 can be used.
  • the benzotriazole derivative of the present invention has an organic layer (for example, a hole injection layer 3, a hole transport layer 4, an electron blocking layer not shown, or a light emitting layer) provided between the anode 2 and the cathode 8 described above. It is suitably used as a forming material of 4).
  • an organic layer for example, a hole injection layer 3, a hole transport layer 4, an electron blocking layer not shown, or a light emitting layer
  • the transparent anode 2 may be formed of a known electrode material, and an electrode material having a large work function such as ITO or gold is formed on the substrate 1 (transparent substrate such as a glass substrate). It is formed by vapor deposition.
  • the hole injection layer 3 provided on the transparent electrode 2 can be formed using the above-described triphenylene derivative of the present invention, or a conventionally known material such as the following materials.
  • Application-type polymer materials such as poly (3,4-ethylenedioxythiophene) (PEDOT), poly (styrene sulfonate) (PSS), etc .; Acceptor heterocyclic compounds such as hexacyanoazatriphenylene;
  • Formation of a layer (thin film) using the above materials can be performed by a known method such as a spin coating method or an ink jet method in addition to a vapor deposition method. Similarly, various layers described below can be formed by vapor deposition, spin coating, ink jetting, or the like.
  • the hole transport layer 4 provided on the hole injection layer 3 can also be formed using the above-described triphenylene derivative of the present invention, or can be formed using a conventionally known hole transport material. You can also. Typical examples of such conventionally known hole materials are as follows.
  • Benzidine derivatives such as N, N′-diphenyl-N, N′-di (m-tolyl) benzidine (hereinafter abbreviated as TPD); N, N′-diphenyl-N, N′-di ( ⁇ -naphthyl) benzidine (hereinafter abbreviated as NPD); N, N, N ′, N′-tetrabiphenylylbenzidine; Amine derivatives such as 1,1-bis [4- (di-4-tolylamino) phenyl] Cyclohexane (hereinafter abbreviated as TAPC); Various triphenylamine trimers and tetramers; The above coating type polymer material that is also used for a hole injection layer;
  • Such a compound of the hole transport material may be formed alone, but may be formed by mixing two or more kinds, or by using one or more of the above compounds.
  • a multilayer film in which a plurality of layers are formed and in which such layers are stacked can be used as a hole transport layer.
  • hole injection layer 3 and the hole transport layer 4 can also be used.
  • a hole injection / transport layer is made of poly (3,4-ethylenedioxythiophene (hereinafter referred to as PEDOT). It can be formed by coating with a polymer material such as (abbreviated).
  • the hole transport layer 4 (the same applies to the hole injection layer 3), it is possible to use a material which is usually used for the layer and further P-doped with trisbromophenylamine hexachloroantimony or the like.
  • the hole transport layer 4 (or the hole injection layer 3) can be formed using a polymer compound having a basic skeleton of TPD.
  • an electron blocking layer (not shown) (which can be provided between the light emitting layer 4 and the hole transport layer 3) can be formed using the triphenylene derivative of the present invention having an electron blocking action, It can also be formed using a known electron blocking compound such as a carbazole derivative or a compound having a triphenylsilyl group and a triarylamine structure. Specific examples of the compound having a carbazole derivative and a triarylamine structure are as follows.
  • TCTA 9,9-bis [4- (carbazol-9-yl) phenyl] Fluorene
  • mCP 1,3-bis (carbazol-9-yl) benzene
  • Ad-Cz 2,2-bis (4-carbazol-9-ylphenyl) adamantane
  • the electron blocking layer is formed using one or more of the triphenylene compound of the present invention and the above-described known hole transport materials alone or in combination of two or more of these hole transport materials.
  • a plurality of layers can be used to form a multilayer film in which such layers are stacked as an electron blocking layer.
  • the light-emitting layer 5 of the organic EL element is composed of various metal complexes such as zinc, beryllium, and aluminum, anthracene derivatives, bisstyrylbenzene derivatives, pyrene derivatives, oxazole derivatives, poly quinolinol derivatives and other metal complexes including Alq 3.
  • a light-emitting material such as a paraphenylene vinylene derivative can be used.
  • the light emitting layer 5 can also be comprised with a host material and a dopant material.
  • a host material in this case, in addition to the above light emitting material, a thiazole derivative, a benzimidazole derivative, a polydialkylfluorene derivative, or the like can be used, and further, the above-described triphenylene derivative of the present invention can also be used.
  • the dopant material quinacridone, coumarin, rubrene, perylene and derivatives thereof, benzopyran derivatives, rhodamine derivatives, aminostyryl derivatives, and the like can be used.
  • Such a light-emitting layer 5 can also have a single-layer configuration using one or more of the light-emitting materials, or a multilayer structure in which a plurality of layers are stacked.
  • the light emitting layer 4 can also be formed using a phosphorescent light emitting material as the light emitting material.
  • a phosphorescent material a phosphorescent material of a metal complex such as iridium or platinum can be used.
  • green phosphorescent emitters such as Ir (ppy) 3
  • blue phosphorescent emitters such as FIrpic and FIr6
  • red phosphorescent emitters such as Btp 2 Ir (acac)
  • the material is used by doping into a hole injecting / transporting host material or an electron transporting host material.
  • the triphenylene derivative of the present invention carbazole derivatives such as 4,4′-di (N-carbazolyl) biphenyl (hereinafter abbreviated as CBP), TCTA, and mCP are used. be able to.
  • CBP 4,4′-di (N-carbazolyl) biphenyl
  • TCTA 4,4′-di (N-carbazolyl) biphenyl
  • mCP mCP
  • an electron transporting host material p-bis (triphenylsilyl) benzene (hereinafter abbreviated as UGH2), 2,2 ′, 2 ′′-(1,3,5-phenylene) -tris ( 1-phenyl-1H-benzimidazole) (hereinafter abbreviated as TPBI) and the like can be used.
  • the host material with a phosphorescent light emitting material by co-evaporation in the range of 1 to 30 weight percent with respect to the entire light emitting layer in order to avoid concentration quenching.
  • a hole blocking layer (not shown in FIG. 17) that can be provided between the light emitting layer 5 and the electron transport layer 6 can be formed using a compound having a known hole blocking action.
  • known compounds having such a hole blocking action include phenanthroline derivatives such as bathocuproin (hereinafter abbreviated as BCP), aluminum (III) bis (2-methyl-8-quinolinato) -4-phenylpheno
  • BCP bathocuproin
  • BAlq metal complexes of quinolinol derivatives
  • triazole derivatives, triazine derivatives, oxadiazole derivatives, and the like can be given.
  • These materials can also be used for forming the electron transport layer 6 described below, and the hole blocking layer and the electron transport layer 6 can be used in combination.
  • Such a hole blocking layer can also have a single layer or multilayer structure, and each layer is formed using one or more of the compounds having the hole blocking action described above.
  • the electron transport layer 6 is an electron transport compound known per se, for example, metal complexes of quinolinol derivatives such as Alq 3 and BAlq, as well as various metal complexes such as zinc, beryllium, and aluminum, triazole derivatives, and triazine derivatives. Oxadiazole derivatives, thiadiazole derivatives, carbodiimide derivatives, quinoxaline derivatives, phenanthroline derivatives, silole derivatives, and the like.
  • the electron transport layer 6 can also have a single layer or multilayer structure, and each layer is formed using one or more of the electron transport compounds described above.
  • the electron injection layer 7 is also known per se, for example, an alkali metal salt such as lithium fluoride or cesium fluoride, an alkaline earth metal salt such as magnesium fluoride, or a metal oxide such as aluminum oxide. Can be formed.
  • an alkali metal salt such as lithium fluoride or cesium fluoride
  • an alkaline earth metal salt such as magnesium fluoride
  • a metal oxide such as aluminum oxide.
  • an electrode material having a low work function such as aluminum, or an alloy having a lower work function such as a magnesium silver alloy, a magnesium indium alloy, or an aluminum magnesium alloy is used as the electrode material.
  • the organic EL device in which at least one of the organic layers (for example, the hole injection layer 3, the hole transport layer 4, the electron blocking layer or the light emitting layer 5) is formed using the triphenylene derivative of the present invention has a luminous efficiency and power. It has high efficiency, low practical driving voltage, low light emission starting voltage, and extremely excellent durability.
  • the mixture was allowed to cool to room temperature, 50 ml of water and 100 ml of toluene were added, and then the organic layer was collected by a liquid separation operation.
  • the organic layer was dried over anhydrous magnesium sulfate and then concentrated under reduced pressure to obtain an orange crude product.
  • the crude product was purified by column chromatography (carrier: silica gel, eluent: cyclohexane / toluene), followed by crystallization with a mixed solvent of toluene / hexane, followed by reflux washing with methanol (4-tert.
  • Tetrakis (triphenylphosphine) palladium 0.57g The mixture was heated and stirred at 68 ° C. for 8.5 hours. After allowing to cool to room temperature and adding 400 ml of water, the organic layer was collected by a liquid separation operation. The organic layer was dried over anhydrous magnesium sulfate and then concentrated under reduced pressure to obtain a brown crude product.
  • the crude product is purified by column chromatography (carrier: silica gel, eluent: hexane / toluene), followed by crystallization with a mixed solvent of toluene / hexane, followed by reflux washing with methanol (4′-tert -Butylbiphenyl-4-yl)-(9,9-dimethyl-9H-fluoren-2-yl)- ⁇ 4- (triphenylene-2-yl) phenyl ⁇ amine (compound 83) 12.8 g (white powder) Yield 71%).
  • the mixture was allowed to cool to room temperature, 270 ml of water was added, and then the organic layer was collected by a liquid separation operation.
  • the organic layer was dried over anhydrous magnesium sulfate and then concentrated under reduced pressure to obtain a black crude product.
  • the crude product was purified by column chromatography (carrier: silica gel, eluent: hexane / toluene), crystallized with a mixed solvent of toluene / hexane, and washed with refluxing with methanol to obtain (9,9-dimethyl-9H).
  • Example 17 For the compounds (triphenylene derivatives) obtained in Examples 1 to 16, the melting point and glass transition point were determined by a high-sensitivity differential scanning calorimeter (manufactured by Bruker AXS, DSC3100S). The results were as follows. Melting point Glass transition point Compound of Example 1 257 ° C 116 ° C Compound of Example 2 236 ° C. 115 ° C. Compound of Example 3 160 ° C 131 ° C Compound of Example 4 Not determined. 129 ° C Compound of Example 5 236 ° C 116 ° C Compound of Example 6 Not determined. 115 ° C Compound of Example 7 Not determined. 134 ° C Compound of Example 8 245 ° C.
  • the compounds of the present invention obtained in Examples 1 to 16 have a glass transition point as high as 95 ° C. or higher. From this, it can be seen that the thin film formed by the compound of the present invention is maintained stably.
  • Example 18 Using the compounds of the present invention obtained in Examples 1 to 5, 8 to 12, and 14 to 16, a deposited film having a film thickness of 100 nm was prepared on an ITO substrate, and an atmospheric photoelectron spectrometer (manufactured by Riken Keiki Co., Ltd.). , AC-3 type). The results were as follows.
  • the triphenylene derivative of the present invention shows a favorable energy level as compared with the work function 5.4 eV of general hole transport materials such as NPD and TPD, and has good hole It can be seen that it has transportation capability.
  • Example 19 On a glass substrate 1 on which an ITO electrode is previously formed as a transparent anode 2, a hole injection layer 3, a hole transport layer 4, a light emitting layer 5, an electron transport layer 6, an electron injection layer 7, a cathode (aluminum electrode)
  • the organic EL elements having a layer structure shown in FIG.
  • the glass substrate 1 on which ITO having a thickness of 150 nm was formed was washed with an organic solvent, and then the surface was washed by oxygen plasma treatment. Then, this glass substrate with an ITO electrode was mounted in a vacuum vapor deposition machine and the pressure was reduced to 0.001 Pa or less. Subsequently, a compound 115 represented by the following structural formula was formed to a thickness of 20 nm as the hole injection layer 3 so as to cover the transparent anode 2.
  • the compound of Example 2 (Compound 15) was formed as a hole transport layer 4 to a film thickness of 40 nm.
  • lithium fluoride was formed as the electron injection layer 7 so as to have a film thickness of 0.5 nm.
  • aluminum was deposited to a thickness of 150 nm to form the cathode 8.
  • Example 20 The organic EL device was fabricated in the same manner as in Example 19 except that the compound (Compound 66) of Example 1 was used as the material for the hole transport layer 4 and the hole transport layer 4 was formed to a film thickness of 40 nm. Produced. The light emission characteristics when a DC voltage was applied to the organic EL element were measured in the same manner as in Example 19, and the results are shown in Table 1.
  • Example 21 The organic EL device was fabricated in the same manner as in Example 19 except that the compound of Example 3 (Compound 67) was used as the material for the hole transport layer 4 and the hole transport layer 4 was formed to a film thickness of 40 nm. Produced. The light emission characteristics when a DC voltage was applied to the organic EL element were measured in the same manner as in Example 19, and the results are shown in Table 1.
  • Example 22 The organic EL device was fabricated in the same manner as in Example 19 except that the compound of Example 4 (Compound 79) was used as the material for the hole transport layer 4 and the hole transport layer 4 was formed to a film thickness of 40 nm. Produced. The light emission characteristics when a DC voltage was applied to the organic EL element were measured in the same manner as in Example 19, and the results are shown in Table 1.
  • Example 23 The organic EL device was fabricated in the same manner as in Example 19 except that the compound of Example 5 (Compound 80) was used as the material for the hole transport layer 4 and the hole transport layer 4 was formed to a film thickness of 40 nm. Produced. The light emission characteristics when a DC voltage was applied to the organic EL element were measured in the same manner as in Example 19, and the results are shown in Table 1.
  • Example 24 The organic EL device was fabricated in the same manner as in Example 19 except that the compound of Example 6 (Compound 81) was used as the material for the hole transport layer 4 and the hole transport layer 4 was formed to a film thickness of 40 nm. Produced. The light emission characteristics when a DC voltage was applied to the organic EL element were measured in the same manner as in Example 19, and the results are shown in Table 1.
  • Example 25 The organic EL device was fabricated in the same manner as in Example 19 except that the compound of Example 7 (Compound 82) was used as the material for the hole transport layer 4 and the hole transport layer 4 was formed to a film thickness of 40 nm. Produced. The light emission characteristics when a DC voltage was applied to the organic EL element were measured in the same manner as in Example 19, and the results are shown in Table 1.
  • Example 26 The organic EL device was fabricated in the same manner as in Example 19 except that the compound of Example 8 (Compound 83) was used as the material for the hole transport layer 4 and the hole transport layer 4 was formed to a film thickness of 40 nm. Produced. The light emission characteristics when a DC voltage was applied to the organic EL element were measured in the same manner as in Example 19, and the results are shown in Table 1.
  • Example 27 The organic EL device was fabricated in the same manner as in Example 19 except that the compound (Compound 84) of Example 9 was used as the material for the hole transport layer 4 and the hole transport layer 4 was formed to a film thickness of 40 nm. Produced. The light emission characteristics when a DC voltage was applied to the organic EL element were measured in the same manner as in Example 19, and the results are shown in Table 1.
  • Example 28 The organic EL device was fabricated in the same manner as in Example 19 except that the compound of Example 10 (Compound 85) was used as the material for the hole transport layer 4 and the hole transport layer 4 was formed to a film thickness of 40 nm. Produced. The light emission characteristics when a DC voltage was applied to the organic EL element were measured in the same manner as in Example 19, and the results are shown in Table 1.
  • Example 29 An organic EL device was prepared in the same manner as in Example 19 except that the compound of Example 11 (Compound 86) was used as the material for the hole transport layer 4 and the hole transport layer 4 was formed to a film thickness of 40 nm. Produced. The light emission characteristics when a DC voltage was applied to the organic EL element were measured in the same manner as in Example 19, and the results are shown in Table 1.
  • Example 30 An organic EL device was produced in the same manner as in Example 19 except that the compound of Example 12 (Compound 87) was used as the material for the hole transport layer 4 and the hole transport layer 4 was formed to a film thickness of 40 nm. did.
  • the light emission characteristics when a DC voltage was applied to the organic EL element were measured in the same manner as in Example 19, and the results are shown in Table 1.
  • Example 31 An organic EL device was prepared in the same manner as in Example 19 except that the compound (Compound 46) of Example 13 was used as the material for the hole transport layer 4 and the hole transport layer 4 was formed to a film thickness of 40 nm. Produced. The light emission characteristics when a DC voltage was applied to the organic EL element were measured in the same manner as in Example 19, and the results are shown in Table 1.
  • Example 32 An organic EL device was produced in the same manner as in Example 19 except that the compound of Example 14 (Compound 88) was used as the material for the hole transport layer 4 and the hole transport layer 4 was formed to a film thickness of 40 nm. Produced. The light emission characteristics when a DC voltage was applied to the organic EL element were measured in the same manner as in Example 19, and the results are shown in Table 1.
  • Example 33 An organic EL device was produced in the same manner as in Example 19 except that the compound of Example 15 (Compound 89) was used as the material for the hole transport layer 4 and the hole transport layer 4 was formed to a film thickness of 40 nm. Produced. The light emission characteristics when a DC voltage was applied to the organic EL element were measured in the same manner as in Example 19, and the results are shown in Table 1.
  • Example 34 An organic EL device was prepared in the same manner as in Example 19 except that the compound of Example 16 (Compound 90) was used as the material for the hole transport layer 4 and the hole transport layer 4 was formed to a film thickness of 40 nm. Produced. The light emission characteristics when a DC voltage was applied to the organic EL element were measured in the same manner as in Example 19, and the results are shown in Table 1.
  • Example 1 the driving voltage when a current of 10 mA / cm 2 was passed was 5.17 V for Compound 118 (Comparative Example 1), compared to 4.73 for the compounds of Examples 1-16. The voltage was reduced to -5.15V. Also, in terms of power efficiency, Examples 1 to 16 significantly improved 5.55 to 6.84 lm / W compared to 5.49 lm / W of Comparative Example 1.
  • the organic EL device having an organic layer formed using the triphenylene derivative of the present invention has a light emission efficiency and a power higher than those of the known organic EL device using the compound 118. It was found that the efficiency can be improved and the practical driving voltage can be lowered.
  • the triphenylene derivative of the present invention is excellent as a compound for an organic EL device because it has a high hole transport capability, is excellent in amorphous properties, and is stable in a thin film state.
  • high luminous efficiency and power efficiency can be obtained, practical driving voltage can be lowered, and durability can be improved. For example, it has become possible to develop home appliances and lighting.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本発明のトリフェニレン誘導体は、下記一般式(1); 式中、Ar及びArは芳香族基である、 で表される。この化合物は、トリフェニレン環に芳香族第三級アミンが導入された構造を有しており、このような構造に関連して、(A)正孔の注入特性が良い、(B)正孔の移動度が大きい、(C)電子阻止能力に優れている、(D)薄膜状態が安定である及び(E)耐熱性に優れているという特性を有しており、有機EL素子に使用される正孔輸送性物質として有用である。

Description

新規なトリフェニレン誘導体及び該誘導体が使用されている有機エレクトロルミネッセンス素子
 本発明は、各種の表示装置に好適な自発光素子である有機エレクトロルミネッセンス素子に適した新規化合物(トリフェニレン誘導体)及び該化合物を含む有機層を備えた有機エレクトロルミネッセンス素子に関するものである。
 有機エレクトロルミネッセンス素子(以下、有機EL素子と呼ぶことがある)は自己発光性素子であるため、液晶素子にくらべて明るく視認性に優れ、鮮明な表示が可能であるため、活発な研究がなされてきた。
 1987年にイーストマン・コダック社のC.W.Tangらは各種の役割を各材料に分担した積層構造素子を開発することにより有機材料を用いた有機エレクトロルミネッセンス素子を実用的なものにした。彼らは電子を輸送することのできる蛍光体と正孔を輸送することのできる芳香族アミン化合物とを積層することにより構成されるものであり、両方の電荷を蛍光体の層の中に注入して発光させることにより、10V以下の電圧で1000cd/m以上の高輝度が得られるというものである。
 現在まで、有機エレクトロルミネッセンス素子の実用化のために多くの改良がなされている。例えば、各種の役割をさらに細分化して、基板上に順次に、陽極、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層、陰極を設けた構造の素子が知られており、このような素子によって高効率と耐久性が達成されている。
 また発光効率の更なる向上を目的として三重項励起子の利用が試みられ、燐光発光体の利用も検討されている。
 発光層は、一般的にホスト材料と称される電荷輸送性の化合物に、蛍光体や燐光発光体をドープして作製することもできる。有機EL素子における各層を形成する有機材料の選択は、その素子の効率や耐久性などの諸特性に大きな影響を与える。
 有機EL素子においては、両電極から注入された電荷が発光層で再結合して発光するが、正孔、電子の両電荷を如何に効率良く発光層に受け渡すかが重要である。例えば、正孔注入性を高め且つ陰極から注入された電子をブロックする電子阻止性を高めることによって、正孔と電子が再結合する確率を向上させ、更には発光層内で生成した励起子を閉じ込めることによって、高発光効率を得ることができる。そのため、正孔輸送材料の果たす役割は重要であり、正孔注入性が高く、正孔の移動度が大きく、電子阻止性が高く、さらには電子に対する耐久性が高い正孔輸送材料が求められている。
 また、素子の寿命に関しては材料の耐熱性やアモルファス性も重要である。耐熱性が低い材料では、素子駆動時に生じる熱により、低い温度でも熱分解が起こり、材料が劣化する。アモルファス性が低い材料では、短い時間でも薄膜の結晶化が起こり、素子が劣化してしまう。そのため使用する材料には耐熱性が高く、アモルファス性が良好な性質が求められる。
 有機EL素子に用いられる正孔輸送材料としては、N,N’-ジフェニル-N,N’-ジ(α-ナフチル)ベンジジン(以後、NPDと略称する)や種々の芳香族アミン誘導体が知られている(例えば、特許文献1および特許文献2参照)。
 NPDは良好な正孔輸送能力を持っているが、耐熱性の指標となるガラス転移点(Tg)が96℃と低く、高温条件下では結晶化による素子特性の低下が起こってしまう。また、特許文献1や特許文献2に記載の芳香族アミン誘導体の中には、正孔の移動度が10-3cm/Vs以上と優れた移動度を有するものがあるが、電子阻止性が不十分であるため、電子の一部が発光層を通り抜けてしまい、発光効率の向上が期待できないなど、更なる高効率化のため、より電子阻止性が高く、薄膜がより安定で耐熱性の高い材料が求められていた。
 耐熱性や正孔注入性などの特性を改良した化合物として、特許文献3及び4では、下記の式で表される置換トリフェニレン構造を有するアリールアミン化合物A及びBが提案されている。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 しかしながら、これらの化合物を正孔注入層または正孔輸送層に用いた素子では、耐熱性や発光効率などの改良はされているものの、未だ十分とはいえず、また、低駆動電圧化や電流効率も十分とはいえず、アモルファス性にも問題があった。そのため、アモルファス性を高めつつ、さらなる低駆動電圧化や、さらなる高発光効率化を可能とする化合物が求められている。
特開平8-48656号公報 特許第3194657号公報 WO2010/002850号公報 WO2011/081423号公報
 本発明者らは上記の目的を達成するために、芳香族三級アミン構造が高い正孔注入・輸送能力を有していることと、トリフェニレン環構造が耐熱性や薄膜安定性が良好であることに着目し、トリフェニレン環構造を有する種々の化合物を設計して化学合成し、該化合物を用いて種々の有機エレクトロルミネッセンス素子を試作し、素子の特性評価を鋭意行った結果、高い効率及び優れた耐久性が得られることを確認し、本発明を完成するに至った。
 本発明によれば、下記一般式(1)で表されるトリフェニレン誘導体が提供される。
Figure JPOXMLDOC01-appb-C000007
 式中、
  p及びqは、それぞれ、0または1~4の整数を表し、
  sは、0または1~3の整数を表し、
  nは、0または1~2の整数を表し、
  Ar及びArは、それぞれ、芳香族炭化水素基または芳香族複素環
 基を表すが、ArとArとは、単結合、置換基を有していてもよいメ
 チレン基、酸素原子または硫黄原子を介して、互いに結合して環を形成
 してもよく、
  R、R及びRは、それぞれ、重水素原子、フッ素原子、塩素原子
 、シアノ基、ニトロ基、炭素原子数1~6のアルキル基、炭素原子数5
 ~10のシクロアルキル基、炭素原子数1~6のアルキルオキシ基、炭
 素原子数5~10のシクロアルキルオキシ基、芳香族炭化水素基、芳香
 族複素環基またはアリールオキシ基を表し、
  A及びAは、それぞれ、2価の芳香族炭化水素基または2価の芳香
 族複素環基を表し、
  nが0の場合、AとArとは、単結合、置換基を有していてもよい
 メチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成
 してもよく、
  nが1の場合、AまたはAとArとは、単結合、置換基を有して
 いてもよいメチレン基、酸素原子または硫黄原子を介して、互いに結合
 して環を形成してもよく、
  nが2の場合、複数個存在するAは、互いに異なる基であってもよく
 、且つ、AまたはAとArとは、単結合、置換基を有していてもよい
 メチレン基、酸素原子または硫黄原子を介して、互いに結合して環を形成
 してもよい。
 本発明によれば、また、一対の電極とその間に挟まれた少なくとも一層の有機層を有する有機エレクトロルミネッセンス素子において、
 前記有機層の少なくとも一つの層は、前記トリフェニレン誘導体を含んでいることを特徴とする有機エレクトロルミネッセンス素子が提供される。
 本発明の有機EL素子は、前記トリフェニレン誘導体を含んでいる有機層として、例えば、正孔輸送層、電子阻止層、正孔注入層或いは発光層を有する。
 前述した一般式(1)で表される本発明のトリフェニレン誘導体は、新規化合物であり、トリフェニレン環に芳香族第三級アミンが導入された構造を有しており、このような構造に関連して、次のような特性を有している。
 (A)正孔の注入特性が良いこと。
 (B)正孔の移動度が大きいこと。
 (C)電子阻止能力に優れること。
 (D)薄膜状態が安定であること(優れたアモルファス性を示すこと)。
 (E)耐熱性に優れていること。
 従って、本発明のトリフェニレン誘導体は、有機EL素子に使用される正孔輸送性物質として有用であり、薄膜状態が安定であることから、特に有機EL素子に設けられる有機層として利用され、有機EL素子に次のような特性を付与することができる。
 (F)発光効率や電力効率が高いこと。
 (G)発光開始電圧が低いこと。
 (H)実用駆動電圧が低いこと。
 (I)素子寿命が長いこと(高い耐久性を示す)。
 例えば、本発明のトリフェニレン誘導体を用いて正孔注入層および/または正孔輸送層が形成されている有機EL素子は、正孔の注入・移動速度が速く、電子阻止性が高く、しかも電子に対する安定性が高いことから、発光層内で生成した励起子を閉じ込めることができ、さらに正孔と電子とが再結合する確率を向上させ、高発光効率を示す。また、駆動電圧が低下して、耐久性の向上も実現できる。
 また、本発明のトリフェニレン誘導体を用いて形成された電子阻止層を有する有機EL素子では、優れた電子の阻止能力と優れた正孔輸送性とにより、高い発光効率を有しながら、駆動電圧が低く、電流耐性が改善されており、最大発光輝度が向上している。
 さらに、本発明のトリフェニレン誘導体は、従来の材料に比べて正孔輸送性に優れ、かつバンドギャップの広いという特性も有していることから、発光層のホスト材料として用いることができ、例えば、ドーパントと呼ばれている蛍光発光体や燐光発光体を担持させて、発光層として用いることにより、有機EL素子の駆動電圧を低下せしめ、発光効率を改善することができる。
 このように、本発明のトリフェニレン誘導体は、有機EL素子の正孔注入層、正孔輸送層、電子阻止層或いは発光層の構成材料として極めて有用であり、有機EL素子の発光効率および電力効率を向上させ、実用駆動電圧を低くさせ、耐久性を高めることができる。
実施例1の化合物(化合物66)のH-NMRチャート図。 実施例2の化合物(化合物15)のH-NMRチャート図。 実施例3の化合物(化合物67)のH-NMRチャート図。 実施例4の化合物(化合物79)のH-NMRチャート図。 実施例5の化合物(化合物80)のH-NMRチャート図。 実施例6の化合物(化合物81)のH-NMRチャート図。 実施例7の化合物(化合物82)のH-NMRチャート図。 実施例8の化合物(化合物83)のH-NMRチャート図。 実施例9の化合物(化合物84)のH-NMRチャート図。 実施例10の化合物(化合物85)のH-NMRチャート図。 実施例11の化合物(化合物86)のH-NMRチャート図。 実施例12の化合物(化合物87)のH-NMRチャート図。 実施例13の化合物(化合物46)のH-NMRチャート図。 実施例14の化合物(化合物88)のH-NMRチャート図。 実施例15の化合物(化合物89)のH-NMRチャート図。 実施例16の化合物(化合物90)のH-NMRチャート図。 有機EL素子の層構造の一例を示した図。
 本発明のトリフェニレン誘導体は、下記一般式(1)で表されるものであり、トリフェニレン環に2価の基を介して芳香族第三級アミンが結合している構造を有している。
Figure JPOXMLDOC01-appb-C000008
 上記の一般式(1)において、トリフェニレン環に結合している置換基R及びRの個数を示すp及びqは、それぞれ、0または1~4の整数を表す。
 また、トリフェニレン環に結合している置換基Rの個数を示すsは、0または1~3の整数を表す。
 さらに、芳香族アミンの窒素原子とトリフェニレン環との間に存在する2価の基Aの個数を示すnは、0または1~2の整数を表す。
 また、一般式(1)中、窒素原子に結合しているAr及びArは、それぞれ、芳香族炭化水素基または芳香族複素環基を表す。かかる芳香族炭化水素基及び芳香族複素環基は、単環構造を有するものであってもよいし、縮合多環構造を有するものであってもよい。
 これらの芳香族基の例としては、フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントリル基、フェナントリル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基、ピリジル基、フラニル基、ピラニル基、チエニル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、およびカルボリニル基などを挙げることができる。
 上記で例示した芳香族基(芳香族炭化水素基及び芳香族複素環基)の中で、芳香族複素環基としては、フラニル基、ベンゾフラニル基、ベンゾオキサゾリル基、ジベンゾフラニル基などの含酸素芳香族複素環基;チエニル基、ベンゾチエニル基、ベンゾチアゾリル基、ジベンゾチエニル基などの含硫黄芳香族複素環基;が好ましく、特に含硫黄芳香族複素環基がより好ましく、ジベンゾチエニル基が特に好ましい。
 また、芳香族炭化水素基としては、フェニル基、ビフェニリル基、ナフチル基、フルオレニル基が好ましい。
 さらに、上記の芳香族基は置換基を有していてもよい。このような置換基としては、重水素原子;シアノ基;ニトロ基;フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基などの炭素原子数1~6の直鎖状もしくは分岐状のアルキル基;メチルオキシ基、エチルオキシ基、プロピルオキシ基などの炭素原子数1~6の直鎖状もしくは分岐状のアルキルオキシ基;アリル基などのアルケニル基;ベンジル基、ナフチルメチル基、フェネチル基などのアラルキル基;フェニルオキシ基、トリルオキシ基などのアリールオキシ基;ベンジルオキシ基、フェネチルオキシ基などのアリールアルキルオキシ基;フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントラセニル基、フェナントリル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基などの芳香族炭化水素基;ピリジル基、フラニル基、ピラニル基、チエニル基、ピロリル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、カルボリニル基などの芳香族複素環基;スチリル基、ナフチルビニル基などのアリールビニル基;アセチル基、ベンゾイル基などのアシル基;をあげることができる。これらの置換基は、トリフルオロメチル基のように、さらに置換基を有していてもよいし、Arに結合している置換基同士、或いはArに結合している置換基同士が結合して環を形成していてもよい。
 本発明において、上記の芳香族基が有する置換基としては、炭素原子数1~6の直鎖状もしくは分岐状のアルキル基が好ましく、メチル基、tert-ブチル基が特に好ましい。
 また、上記のArとArとは、単結合、置換基を有していてもよいメチレン基、酸素原子または硫黄原子を介して、互いに結合して環を形成してもよい。
 前記一般式(1)において、トリフェニレン環に結合しているR、R及びRは、それぞれ、重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、炭素原子数1~6のアルキル基、炭素原子数5~10のシクロアルキル基、炭素原子数1~6のアルキルオキシ基、炭素原子数5~10のシクロアルキルオキシ基、芳香族炭化水素基、芳香族複素環基またはアリールオキシ基を表す。
 上記のR~Rにおいて、炭素原子数1~6のアルキル基は、直鎖状であっても分岐状であってもよく、その具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基などを挙げることができる。
 さらに、これらのアルキル基は、置換基を有していてもよく、かかる置換基としては、重水素原子;フッ素原子、塩素原子、シアノ基、アリール基(例えば、フェニル基、ナフチル基、アントリル基、フルオレニル基、スチル基など)、芳香族複素環基(ピリジル基、ピリドインドリル基、キノリル基、ベンゾチアゾリル基など)等を挙げることができる。例えば、上記アルキル基は、トリフルオロメチル基などの基であってもよい。
 また、R~Rにおける炭素原子数5~10のシクロアルキル基、炭素原子数1~6のアルキルオキシ基及び炭素原子数5~10のシクロアルキルオキシ基としは、何れも直鎖状であっても分岐状であってもよく、具体的には、以下のものを例示することができる。
シクロアルキル基の例;
  シクロペンチル基、シクロヘキシル基、1-アダマンチル基、2-アダ
 マンチル基など。
アルキルオキシ基の例;
  メチルオキシ基、エチルオキシ基、n-プロピルオキシ基、イソプロピ
 ルオキシ基、n-ブチルオキシ基、tert-ブチルオキシ基、n-ペン
 チルオキシ基、n-ヘキシルオキシ基など。
シクロアルキルオキシ基の例;
  シクロペンチルオキシ基、シクロヘキシルオキシ基、シクロヘプチルオ
 キシ基、シクロオクチルオキシ基、1-アダマンチルオキシ基および2-
 アダマンチルオキシ基など。
 また、これらシクロアルキル基、アルキルオキシ基及びシクロアルキルオキシ基も置換基を有していてよく、このような置換基としては、前述したAr及びArにおける芳香族炭化水素基及び芳香族複素環基が有していてよい置換基と同様のものを挙げることができる。
 さらにR~Rにおける芳香族炭化水素基や芳香族複素環基も、前述したAr及びArで例示したものと同様の基であり、置換基を有していてよい点も同じである。
 R~Rにおけるアリールオキシ基としては、フェニルオキシ基、トリルオキシ基、ビフェニリルオキシ基、ターフェニリルオキシ基、ナフチルオキシ基、アントリルオキシ基、フェナントリルオキシ基、フルオレニルオキシ基、インデニルオキシ基、ピレニルオキシ基、ペリレニルオキシ基などをあげることができる。
 勿論、これらのアリールオキシ基も置換基を有していてよく、このような置換基としては、Ar及びArにおける芳香族炭化水素基及び芳香族複素環基が有していてもよい置換基と同じものを挙げることができる。
 一般式(1)において、A及びAは、それぞれ、2価の芳香族炭化水素基または2価の芳香族複素環基を表し、これらの基を介して、芳香族アミノ基の窒素原子とトリフェニレン環が結合している。このような2価の芳香族炭化水素基及び芳香族複素環基は、単環に限らず、さらに炭化水素環や複素環が結合した多環構造を有するものであってよい。
 例えば、上記の2価の芳香族炭化水素基としては、ベンゼン、ビフェニル、ターフェニル、テトラキスフェニル、スチレン、ナフタレン、アントラセン、アセナフタレン、フルオレン、フェナントレン、インダン、ピレン等の芳香族環構造を有するもの、特に好ましくは、ベンゼン、ビフェニル、フルオレンを有する芳香族環構造の2価の基が好ましい。
 また、2価の芳香族複素環基としては、ピリジン、ピリミジン、トリアジン、フラン、ピラン、チオフェン、キノリン、イソキノリン、ベンゾフラン、ベンゾチオフェン、インドリン、カルバゾール、ベンゾオキサゾール、ベンゾチアゾール、キノキサリン、ベンゾイミダゾール、ピラゾール、ジベンゾフラン、ジベンゾチオフェン、ナフチリジン、フェナントロリン、アクリジニン等の複素環を有するものを挙げることができ、特に、フラン、ベンゾフラン、ベンゾオキサゾール、ジベンゾフランなどの含酸素芳香族複素環や、チオフェン、ベンゾチオフェン、ベンゾチアゾール、ジベンゾチオフェンなどの含硫黄芳香族複素環を有するものが好ましく、含硫黄芳香族複素環を有するものが特に好ましい。
 さらに、上記の2価の芳香族炭化水素基及び2価の芳香族複素環基は、何れも置換基を有していてもよく、このような置換基としては、Ar及びArにおける芳香族炭化水素基及び芳香族複素環基が有していてもよい置換基と同じものを挙げることができる。
 尚、上述した一般式(1)において、Aの個数を表すnが0の場合(即ち、Aが無い場合)、AとArとは、単結合、置換基を有していてもよいメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成してもよい。
 また、nが1の場合、AまたはAとArとは、単結合、置換基を有していてもよいメチレン基、酸素原子または硫黄原子を介して、互いに結合して環を形成してもよい。
 さらに、nが2の場合、複数個存在するAは、互いに異なる基であってもよく、且つ、AまたはAとArとは、単結合、置換基を有していてもよいメチレン基、酸素原子または硫黄原子を介して、互いに結合して環を形成してもよい。
 上述したトリフェニレン誘導体は、新規な化合物であり、例えば、以下のようにして合成される。
 まず、一般式(1)のトリフェニレン誘導体が有するトリフェニレン環に相当するトリフェニレンを使用し、このトリフェニレン環の基Aが結合する部位(例えば2位)をブロモ化し、この臭素をボロン酸やボロン酸エステルに変換する(例えば、WO2010/002850号公報参照)。
 このようにして得られたボロン酸エステル体と、一般式(1)のトリフェニレン誘導体が有する芳香族アミン部分に相当するアミンのブロモ体などをSuzukiカップリングなどのクロスカップリング反応(例えば、Chem.Rev.,95,2457(1995)参照)を行うことによって、目的とするトリフェニレン誘導体を合成することができる。
 尚、得られた化合物の精製は、カラムクロマトグラフによる精製、シリカゲル、活性炭、活性白土などによる吸着精製、溶媒による再結晶や晶析法などによって行うことができ、その同定は、NMR分析による行われる。
 上述した本発明のトリフェニレン誘導体においては、一般式(1)におけるnがゼロであるものが好ましく、中でも前記一般式(1)における2価の基Aが置換基を有していてもよいフェニレン基(特には無置換のもの)であることが特に好ましい。このような好ましいトリフェニレン誘導体は、具体的には、下記一般式(1a)で表される。
Figure JPOXMLDOC01-appb-C000009
 式中、
  p,q,s,Ar,Ar及びR~Rは、前記一般式(1)に記
 載したとおりの意味である。
 また、本発明においては、前述した一般式(1)における2価の基Aが、トリフェニレン環の2位に結合しているもの、具体的には、下記一般式(1’)で表されるものも好適である。
Figure JPOXMLDOC01-appb-C000010
 式中、
  p,q,s,n,Ar,Ar、R~R、A及びAは、前記
 一般式(1)に記載したとおりの意味である。
 さらに、2価の基Aが、トリフェニレン環の2位に結合しているタイプの化合物においても、n=0であることが好ましく、2価の基Aが置換基を有していてもよいフェニレン基(特には無置換のもの)であることが特に好ましい。この種の好適な化合物は、例えば下記一般式(b)で表される。
Figure JPOXMLDOC01-appb-C000011
 式中、
  p,q,s,Ar,Ar及びR~Rは、前記一般式(1)に記
 載したとおりの意味である。
 さらに、上記のような一般式(1b)で表されるトリフェニレン誘導体の中でも、芳香族アミノ基(-NArAr)が、トリフェニレン環の2位に結合しているフェニレン基(Aに相当)のp位に結合していること、具体的には、下記一般式(1b-1)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000012
 式中、
  p,q,s,Ar,Ar及びR~Rは、前記一般式(1)に記
 載したとおりの意味である。
 上述した一般式(1)で表されるトリフェニレン誘導体の中で好ましいものの具体例を以下に示す。
 尚、以下に示した化合物において、化合物No.1及び2は欠番となっている。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000114
Figure JPOXMLDOC01-appb-C000115
Figure JPOXMLDOC01-appb-C000116
Figure JPOXMLDOC01-appb-C000117
Figure JPOXMLDOC01-appb-C000118
Figure JPOXMLDOC01-appb-C000119
Figure JPOXMLDOC01-appb-C000120
Figure JPOXMLDOC01-appb-C000121
Figure JPOXMLDOC01-appb-C000122
Figure JPOXMLDOC01-appb-C000123
Figure JPOXMLDOC01-appb-C000124
 上述した本発明のトリフェニレン誘導体は、従来公知の正孔輸送材料に比してガラス転移点(Tg)や融点が高く、耐熱性優れた薄膜を形成することができ、しかもアモルファス状態が安定に維持される為、薄膜状態を安定に保持することができる。また、電子の阻止能力が高く、例えば、本発明のトリフェニレン誘導体を用いて100μm厚みの蒸着膜を形成し、その仕事関数を測定すると、極めて高い値を示す。
 従って、本発明のトリフェニレン誘導体は、有機EL素子が有する有機層の形成材料として極めて有用である。
<有機EL素子>
 上述した本発明のトリフェニレン誘導体を用いて形成される有機層を備えた有機EL素子は、例えば図17に示す層構造を有している。
 即ち、ガラス基板1(透明樹脂基板など、透明基板であればよい)の上に、透明な陽極2、正孔注入層3、正孔輸送層4、発光層5、電子輸送層6、電子注入層7及び陰極8が設けられている。
 勿論、本発明のトリフェニレン誘導体が適用される有機EL素子は、上記の層構造に限定されるものではなく、正孔輸送層4と発光層5との間に電子阻止層や、発光層5と電子輸送層6との間に正孔阻止層などを設けることができるし、また、電子注入層7や正孔注入層3などを省略したシンプルな層構造とすることができる。例えば、上記の多層構造において、いくつかの層を省略することもできる。例えば基板1上に、陽極2、正孔輸送層3、発光層4、電子輸送層6及び陰極8を設けたシンプルな層構造とすることもできる。
 即ち、本発明のベンゾトリアゾール誘導体は、上記の陽極2と陰極8との間に設けられる有機層(例えば正孔注入層3、正孔輸送層4、図示されていない電子阻止層、あるいは発光層4)の形成材料として好適に使用される。
 上記の有機EL素子において、透明陽極2は、それ自体公知の電極材料で形成されていてよく、ITOや金のような仕事関数の大きな電極材料を基板1(ガラス基板等の透明基板)上に蒸着することにより形成される。
 また、透明電極2上に設けられる正孔注入層3としては、上述した本発明のトリフェニレン誘導体を用いて形成できるほか、従来公知の材料、例えば以下の材料を用いて形成することもできる。
  銅フタロシアニンに代表されるポルフィリン化合物;
  スターバースト型のトリフェニルアミン誘導体;
  単結合或いはヘテロ原子を含まない2価基により、複数のトリフェニル
 アミン骨格が連結された構造を有するアリールアミン(例えばトリフェニ
 ルアミンの3量体や4量体);
  塗布型の高分子材料、例えばポリ(3,4-エチレンジオキシチオフェ
 ン)(PEDOT)、ポリ(スチレンスルフォネート)(PSS)など;
  ヘキサシアノアザトリフェニレンのようなアクセプター性の複素環化合
 物;
 上記の材料を用いての層(薄膜)形成は、蒸着法の他、スピンコート法やインクジェット法などの公知の方法によって行うことができる。以下に述べる各種の層も同様に、蒸着やスピンコート、インクジェットなどにより成膜することができる。
 上記の正孔注入層3上に設けられている正孔輸送層4も、前述した本発明のトリフェニレン誘導体を用いて形成することができるし、従来公知の正孔輸送材料を用いて形成することもできる。
 このような従来公知の正孔材料として代表的なものは、次のとおりである。
 ベンジジン誘導体、例えば、
  N,N’-ジフェニル-N,N’-ジ(m-トリル)ベンジジン
 (以下、TPDと略す);
  N,N’-ジフェニル-N,N’-ジ(α-ナフチル)ベンジジン
 (以下、NPDと略す);
  N,N,N’,N’-テトラビフェニリルベンジジン;
 アミン系誘導体、例えば、
  1,1-ビス[4-(ジ-4-トリルアミノ)フェニル]
 シクロヘキサン (以下、TAPCと略す);
   種々のトリフェニルアミン3量体および4量体;
   正孔注入層用としても使用される上記の塗布型高分子材料;
 このような正孔輸送材料の化合物は、それぞれ単独で成膜しても良いが、2種以上を混合して成膜することもできるし、また、上記化合物の1種または複数種を用いて複数の層を形成し、このような層が積層された多層膜を正孔輸送層とすることもできる。
 また、正孔注入層3と正孔輸送層4とを兼ねた層とすることもでき、このような正孔注入・輸送層は、ポリ(3,4-エチレンジオキシチオフェン(以後、PEDOTと略称する)などの高分子材料を用いてのコーティングにより形成することができる。
 尚、正孔輸送層4(正孔注入層3も同様)において、該層に通常使用される材料に対し、さらにトリスブロモフェニルアミンヘキサクロルアンチモンなどをPドーピングしたものを使用することができる。また、TPDの基本骨格を有する高分子化合物などを用いて正孔輸送層4(或いは正孔注入層3)を形成することもできる。
 さらに、図示されていない電子阻止層(発光層4と正孔輸送層3との間に設けることができる)は、電子阻止作用を有する本発明のトリフェニレン誘導体を用いて形成することができるが、公知の電子阻止性化合物、例えば、カルバゾール誘導体や、トリフェニルシリル基を有し且つトリアリールアミン構造を有する化合物などを用いて形成することもできる。カルバゾール誘導体及びトリアリールアミン構造を有する化合物の具体例は、以下の通りである。
<カルバゾール誘導体>
  4,4’,4’’-トリ(N-カルバゾリル)トリフェニルアミン
 (以後、TCTAと略称する);
  9,9-ビス[4-(カルバゾール-9-イル)フェニル]
 フルオレン;
 1,3-ビス(カルバゾール-9-イル)ベンゼン
 (以後、mCPと略称する);
  2,2-ビス(4-カルバゾール-9-イルフェニル)アダマンタン
 (以後、Ad-Czと略称する);
<トリアリールアミン構造を有する化合物>
  9-[4-(カルバゾール-9-イル)フェニル]-9-[4-(トリ
 フェニルシリル)フェニル]-9H-フルオレン;
 電子阻止層は、本発明のトリフェニレン化合物や上記のような公知の正孔輸送材料を1種単独或いは2種以上を用いて形成されるが、これらの正孔輸送材料の1種または複数種を用いて複数の層を形成し、このような層が積層された多層膜を電子阻止層とすることもできる。
 有機EL素子の発光層5は、Alqをはじめとするキノリノール誘導体の金属錯体の他、亜鉛やベリリウム、アルミニウムなどの各種の金属錯体、アントラセン誘導体、ビススチリルベンゼン誘導体、ピレン誘導体、オキサゾール誘導体、ポリパラフェニレンビニレン誘導体などの発光材料を用いて形成することができる。
 また、発光層5をホスト材料とドーパント材料とで構成することもできる。
 この場合のホスト材料として、上記の発光材料に加え、チアゾール誘導体、ベンズイミダゾール誘導体、ポリジアルキルフルオレン誘導体などを使用するができ、さらに、前述した本発明のトリフェニレン誘導体を用いることもできる。
 ドーパント材料としては、キナクリドン、クマリン、ルブレン、ペリレンおよびそれらの誘導体、ベンゾピラン誘導体、ローダミン誘導体、アミノスチリル誘導体などを用いることができる。
 このような発光層5も、各発光材料の1種或いは2種以上を用いた単層構成とすることもできるし、複数の層を積層した多層構造とすることもできる。
 さらに、発光材料として燐光発光材料を使用して発光層4を形成することもできる。
 燐光発光材料としては、イリジウムや白金などの金属錯体の燐光発光体を使用することができる。例えば、Ir(ppy)などの緑色の燐光発光体、FIrpic、FIr6などの青色の燐光発光体、BtpIr(acac)などの赤色の燐光発光体などを用いることができ、これらの燐光発光材料は、正孔注入・輸送性のホスト材料や電子輸送性のホスト材料にドープして使用される。
 正孔注入・輸送性のホスト材料としては、本発明のトリフェニレン誘導体や、4,4’-ジ(N-カルバゾリル)ビフェニル(以後、CBPと略称する)やTCTA、mCPなどのカルバゾール誘導体などを用いることができる。
 また、電子輸送性のホスト材料としては、p-ビス(トリフェニルシリル)ベンゼン(以後、UGH2と略称する)や2,2’,2’’-(1,3,5-フェニレン)-トリス(1-フェニル-1H-ベンズイミダゾール)(以後、TPBIと略称する)などを用いることができる。
 尚、燐光性の発光材料のホスト材料へのドープは濃度消光を避けるため、発光層全体に対して1~30重量パーセントの範囲で、共蒸着によってドープすることが好ましい。
 発光層5と電子輸送層6との間に設けることができる正孔阻止層(図17において図示せず)は、それ自体公知の正孔阻止作用を有する化合物を用いて形成することができる。
 このような正孔阻止作用を有する公知化合物の例としては、バソクプロイン(以後、BCPと略称する)などのフェナントロリン誘導体や、アルミニウム(III)ビス(2-メチル-8-キノリナート)-4-フェニルフェノレート(以後、BAlqと略称する)などのキノリノール誘導体の金属錯体の他、トリアゾール誘導体、トリアジン誘導体、オキサジアゾール誘導体などを挙げることができる。
 これらの材料は、以下に述べる電子輸送層6の形成にも使用することができ、さらには、この正孔阻止層と電子輸送層6とを兼用させることもできる。
 このような正孔阻止層も、単層或いは多層の積層構造とすることができ、各層は、上述した正孔阻止作用を有する化合物の1種或いは2種以上を用いて成膜される。
 電子輸送層6は、それ自体公知の電子輸送性の化合物、例えば、Alq、BAlqをはじめとするキノリノール誘導体の金属錯体のほか、亜鉛やベリリウム、アルミニウムなどの各種金属錯体、トリアゾール誘導体、トリアジン誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、カルボジイミド誘導体、キノキサリン誘導体、フェナントロリン誘導体、シロール誘導体などを用いて形成される。
 この電子輸送層6も、単層或いは多層の積層構造とすることができ、各層は、上述した電子輸送性化合物の1種或いは2種以上を用いて成膜される。
 さらに、電子注入層7も、それ自体公知のもの、例えば、フッ化リチウム、フッ化セシウムなどのアルカリ金属塩、フッ化マグネシウムなどのアルカリ土類金属塩、酸化アルミニウムなどの金属酸化物などを用いて形成することができる。
 有機EL素子の陰極8としては、アルミニウムのような仕事関数の低い電極材料や、マグネシウム銀合金、マグネシウムインジウム合金、アルミニウムマグネシウム合金のような、より仕事関数の低い合金が電極材料として用いられる。
 本発明のトリフェニレン誘導体を用いて有機層の少なくとも一つ(例えば正孔注入層3、正孔輸送層4、電子阻止層あるいは発光層5)が形成されている有機EL素子は、発光効率および電力効率が高く、実用駆動電圧が低く、発光開始電圧も低く、極めて優れた耐久性を有している。
 以下、本発明を実施例により具体的に説明するが、本発明は以下の実施例に限定されるものではない。
<実施例1>
ビス(ビフェニル-4-イル)-{4-(トリフェニレン-2-イル)フェニル}アミンの合成;
(化合物66の合成)
Figure JPOXMLDOC01-appb-C000125
  ビス(ビフェニル-4-イル)-(4-ブロモフェニル)アミン
                          3.85g
  4,4,5,5-テトラメチル-2-(トリフェニレン-2-イル)
 -[1,3,2]ジオキサボラン  2.83g
  トルエン  59ml
  エタノール  15ml
  2M炭酸カリウム水溶液  6ml
を、窒素雰囲気下、反応容器に加え、超音波を照射しながら30分間窒素ガスを通気した。
 次いで、
  テトラキス(トリフェニルホスフィン)パラジウム  0.19g
を加えて加熱し、72℃で4.5時間攪拌した。室温まで放冷し、メタノール50mlを加え、析出する粗製物をろ過によって採取した。
 この粗製物をトルエン300mlに溶解し、シリカゲル7.5gを用いた吸着精製を行い、減圧下で濃縮した後、1,2-ジクロロベンゼン/トルエンの混合溶媒によって結晶を析出させた。メタノールによる還流洗浄を行うことによって、ビス(ビフェニル-4-イル)-{4-(トリフェニレン-2-イル)フェニル}アミン(化合物66)の白色粉体3.30g(収率66%)を得た。
 得られた白色粉体についてNMRを使用して構造を同定した。H-NMR測定結果を図1に示した。
 H-NMR(THF-d)で以下の33個の水素のシグナルを検出した。
   δ(ppm)=8.98(1H)
          8.87(1H)
          8.78-8.71(4H)
          7.94(1H)
          7.84(2H)
          7.65-7.59(12H)
          7.39(4H)
          7.32-7.22(8H)
<実施例2>
(9,9-ジメチル-9H-フルオレン-2-イル)-フェニル-{4-(トリフェニレン-2-イル)フェニル}アミンの合成;
(化合物15の合成)
Figure JPOXMLDOC01-appb-C000126
  4-ブロモフェニル-(9,9-ジメチル-9H-フルオレン-2-
 イル)-フェニルアミン  3.89g
  4,4,5,5-テトラメチル-2-(トリフェニレン-2-イル)
 -[1,3,2]ジオキサボラン  3.08g
  トルエン  59ml
  エタノール  15ml
  2M炭酸カリウム水溶液  6.5ml
を、窒素雰囲気下、反応容器に加え、超音波を照射しながら30分間窒素ガスを通気した。
 次いで、
  テトラキス(トリフェニルホスフィン)パラジウム  0.21g
を加えて加熱し、72℃で5.5時間攪拌した。室温まで放冷し、水50ml、トルエン30mlを加えた後、分液操作によって有機層を採取した。この有機層を無水硫酸マグネシウムで乾燥させた後、減圧下で濃縮することによって褐色の粗製物を得た。
 この粗製物をトルエン250mlに溶解し、シリカゲル7.5gを用いた吸着精製を行い、減圧下で濃縮した後、さらにカラムクロマトグラフ(担体:シリカゲル、溶離液:ヘキサン/トルエン)によって精製し、トルエン/メタノールの混合溶媒によって結晶を析出させた。この結晶をメタノールを用いて還流洗浄することにより、(9,9-ジメチル-9H-フルオレン-2-イル)-フェニル-{4-(トリフェニレン-2-イル)フェニル}アミン(化合物15)の白色粉体3.34g(収率65%)を得た。
 得られた白色粉体についてNMRを使用して構造を同定した。H-NMR測定結果を図2に示した。
 H-NMR(THF-d)で以下の33個の水素のシグナルを検出した。
   δ(ppm)=8.98(1H)
          8.88(1H)
          8.79-8.73(4H)
          7.95(1H)
          7.82(2H)
          7.69-7.62(6H)
          7.41(1H)
          7.35(1H)
          7.30-7.19(8H)
          7.09(1H)
          7.04(1H)
          1.43(6H)
<実施例3>
(ビフェニル-4-イル)-(9,9-ジメチル-9H-フルオレン-2-イル)-{4-(トリフェニレン-2-イル)フェニル}アミンの合成;
(化合物67の合成)
Figure JPOXMLDOC01-appb-C000127
  (ビフェニル-4-イル)-(9,9-ジメチル-9H-フルオレン-
 2-イル)アミン  17.9g
  2-(4-ブロモフェニル)トリフェニレン  19.0g
  tert-ブトキシナトリウム  5.72g
  トルエン  200ml
を、窒素雰囲気下、反応容器に加え、超音波を照射しながら30分間窒素ガスを通気した。
 次いで、
  酢酸パラジウム  0.22g
  トリス-tert-ブチルホスフィンのトルエン溶液
 (50%、w/v)  1.9ml
を加えて加熱し、80℃で1.5時間攪拌した。室温まで放冷し、水100ml、トルエン100mlを加えた後、分液操作によって有機層を採取した。この有機層を無水硫酸マグネシウムで乾燥させた後、減圧下で濃縮することによって褐色の粗製物を得た。
 この粗製物をトルエン750mlに溶解し、シリカゲル30gを用いた吸着精製を行った後、トルエン/ヘキサンの混合溶媒による晶析、続いて、メタノールによる還流洗浄を行うことによって、(ビフェニル-4-イル)-(9,9-ジメチル-9H-フルオレン-2-イル)-{4-(トリフェニレン-2-イル)フェニル}アミン(化合物67)の白色粉体28.2g(収率83%)を得た。
 得られた白色粉体についてNMRを使用して構造を同定した。H-NMR測定結果を図3に示した。
 H-NMR(THF-d)で以下の37個の水素のシグナルを検出した。
   δ(ppm)=8.98(1H)
          8.88(1H)
          8.79-8.73(4H)
          7.95(1H)
          7.87(2H)
          7.75-7.62(10H)
          7.44(4H)
          7.37-7.28(7H)
          7.18(1H)
          1.49(6H)
<実施例4>
(4-tert-ブチルフェニル)-(9,9-ジメチル-9H-フルオレン-2-イル)-{4-(トリフェニレン-2-イル)フェニル}アミンの合成;
(化合物79の合成)
Figure JPOXMLDOC01-appb-C000128
  (4-ブロモフェニル)-(4-tert-ブチルフェニル)-(9,
 9-ジメチル-9H-フルオレン-2-イル)アミン  15.4g
  4,4,5,5-テトラメチル-2-(トリフェニレン-2-イル)
 -[1,3,2]ジオキサボラン  11.0g
  トルエン  88ml
  エタノール  22ml
  2M炭酸カリウム水溶液  31ml
を、窒素雰囲気下、反応容器に加え、超音波を照射しながら30分間窒素ガスを通気した。
 次いで、
  テトラキス(トリフェニルホスフィン)パラジウム  0.62g
を加えて加熱し、72℃で3時間攪拌した。室温まで放冷し、水50ml、トルエン100mlを加えた後、分液操作によって有機層を採取した。この有機層を無水硫酸マグネシウムで乾燥させた後、減圧下で濃縮することによって橙色の粗製物を得た。
 この粗製物をカラムクロマトグラフ(担体:シリカゲル、溶離液:シクロヘキサン/トルエン)によって精製した後、トルエン/ヘキサンの混合溶媒による晶析、続いて、メタノールによる還流洗浄を行うことによって、(4-tert-ブチルフェニル)-(9,9-ジメチル-9H-フルオレン-2-イル)-{4-(トリフェニレン-2-イル)フェニル}アミン(化合物79)の白色粉体14.5g(収率73%)を得た。
 得られた白色粉体についてNMRを使用して構造を同定した。H-NMR測定結果を図4に示した。
 H-NMR(THF-d)で以下の41個の水素のシグナルを検出した。
   δ(ppm)=8.98(1H)
          8.87(1H)
          8.77(4H)
          7.95(1H)
          7.81(2H)
          7.68-7.64(6H)
          7.41(1H)
          7.36(3H)
          7.27-7.22(4H)
          7.13(2H)
          7.06(1H)
          1.44(6H)
          1.35(9H)
<実施例5>
(ビフェニル-4-イル)-(4-tert-ブチルフェニル)-{4-(トリフェニレン-2-イル)フェニル}アミンの合成;
(化合物80の合成)
Figure JPOXMLDOC01-appb-C000129
  (ビフェニル-4-イル)-(4-ブロモフェニル)
  -(4-tert-ブチルフェニル)アミン  15.1g
  4,4,5,5-テトラメチル-2-(トリフェニレン-2-イル)
 -[1,3,2]ジオキサボラン  11.7g
  トルエン  96ml
  エタノール  24ml
  2M炭酸カリウム水溶液  33ml
を、窒素雰囲気下、反応容器に加え、超音波を照射しながら30分間窒素ガスを通気した。
 次いで、
  テトラキス(トリフェニルホスフィン)パラジウム  0.77g
を加えて加熱し、72℃で4時間攪拌した。室温まで放冷し、水100ml、トルエン150mlを加えた後、分液操作によって有機層を採取した。有機層を無水硫酸マグネシウムで乾燥させた後、減圧下で濃縮することによって灰色の粗製物を得た。
 この粗製物をトルエン300mlに溶解し、シリカゲル20gを用いた吸着精製を行った後、トルエン/ヘキサンの混合溶媒による晶析、トルエン/メタノールの混合溶媒による晶析、さらに、メタノールによる還流洗浄を行うことによって、(ビフェニル-4-イル)-(4-tert-ブチルフェニル)-{4-(トリフェニレン-2-イル)フェニル}アミン(化合物80)の白色粉体16.7g(収率83%)を得た。
 得られた白色粉体についてNMRを使用して構造を同定した。H-NMR測定結果を図5に示した。
 H-NMR(THF-d)で以下の37個の水素のシグナルを検出した。
   δ(ppm)=8.97(1H)
          8.87(1H)
          8.77(4H)
          7.95(1H)
          7.81(2H)
          7.64(6H)
          7.56(2H)
          7.41-7.37(4H)
          7.26(3H)
          7.19(2H)
          7.14(2H)
          1.34(9H)
<実施例6>
(9,9-ジメチル-9H-フルオレン-2-イル)-(3-メチルフェニル)-{4-(トリフェニレン-2-イル)フェニル}アミンの合成;
(化合物81の合成)
Figure JPOXMLDOC01-appb-C000130
  (4-ブロモフェニル)-(9,9-ジメチル-9H-フルオレン
 -2-イル)-(3-メチルフェニル)アミン  15.0g
  4,4,5,5-テトラメチル-2-(トリフェニレン-2-イル)
 -[1,3,2]ジオキサボラン  12.3g
  トルエン  120ml
  エタノール  30ml
  2M炭酸カリウム水溶液  33ml
を、窒素雰囲気下、反応容器に加え、超音波を照射しながら30分間窒素ガスを通気した。
 次いで、
  テトラキス(トリフェニルホスフィン)パラジウム  0.76g
を加えて加熱し、72℃で20.5時間攪拌した。室温まで放冷し、水50ml、トルエン50mlを加えた後、分液操作によって有機層を採取した。この有機層を無水硫酸マグネシウムで乾燥させた後、減圧下で濃縮することによって褐色の粗製物を得た。
 この粗製物をカラムクロマトグラフ(担体:シリカゲル、溶離液:ヘキサン/トルエン)によって精製した後、トルエン/メタノールの混合溶媒による晶析、トルエン/ヘキサンの混合溶媒による晶析、さらに、メタノールによる還流洗浄を行うことによって、(9,9-ジメチル-9H-フルオレン-2-イル)-(3-メチルフェニル)-{4-(トリフェニレン-2-イル)フェニル}アミン(化合物81)の白色粉体13.1g(収率66%)を得た。
 得られた白色粉体についてNMRを使用して構造を同定した。H-NMR測定結果を図6に示した。
 H-NMR(THF-d)で以下の35個の水素のシグナルを検出した。
   δ(ppm)=8.98(1H)
          8.88(1H)
          8.79-8.73(4H)
          7.95(1H)
          7.80(2H)
          7.68-7.62(6H)
          7.41(1H)
          7.33-7.14(6H)
          7.06(2H)
          6.97(1H)
          6.87(1H)
          2.27(3H)
          1.43(6H)
<実施例7>
(ビフェニル-4-イル)-(9,9-ジメチル-9H-フルオレン-2-イル)-{3-メチル-4-(トリフェニレン-2-イル)フェニル}アミンの合成;
(化合物82の合成)
Figure JPOXMLDOC01-appb-C000131
  (ビフェニル-4-イル)-(4-ブロモ-3-メチルフェニル)
 -(9,9-ジメチル-9H-フルオレン-2-イル)アミン
                          17.0g
  4,4,5,5-テトラメチル-2-(トリフェニレン-2-イル)
 -[1,3,2]ジオキサボラン  11.4g
  トルエン  136ml
  エタノール  34ml
  2M炭酸カリウム水溶液  32ml
を、窒素雰囲気下、反応容器に加え、超音波を照射しながら30分間窒素ガスを通気した。
 次いで、
  テトラキス(トリフェニルホスフィン)パラジウム  0.74g
を加えて加熱し、72℃で6時間攪拌した。室温まで放冷し、水100ml、トルエン100mlを加えた後、分液操作によって有機層を採取した。この有機層を無水硫酸マグネシウムで乾燥させた後、減圧下で濃縮することによって茶色の粗製物を得た。
 この粗製物をカラムクロマトグラフ(担体:シリカゲル、溶離液:ヘキサン/トルエン)によって精製した後、テトラヒドロフラン/メタノールの混合溶媒による晶析、続いて、メタノールによる還流洗浄を行うことによって、(ビフェニル-4-イル)-(9,9-ジメチル-9H-フルオレン-2-イル)-{3-メチル-4-(トリフェニレン-2-イル)フェニル}アミン(化合物82)の薄黄色粉体13.1g(収率66%)を得た。
 得られた薄黄色粉体についてNMRを使用して構造を同定した。H-NMR測定結果を図7に示した。
 H-NMR(THF-d)で以下の39個の水素のシグナルを検出した。
   δ(ppm)=8.98-8.73(6H)
          7.66-7.67(11H)
          7.43-7.35(5H)
          7.28-7.20(6H)
          7.14-7.09(2H)
          2,34(3H)
          1.43(6H)
<実施例8>
(4’-tert-ブチルビフェニル-4-イル)-(9,9-ジメチル-9H-フルオレン-2-イル)-{4-(トリフェニレン-2-イル)フェニル}アミンの合成;
(化合物83の合成)
Figure JPOXMLDOC01-appb-C000132
  (4-ブロモフェニル)-(4’-tert-ブチルビフェニル
 -4-イル)-(9,9-ジメチル-9H-フルオレン-2-イル)
 アミン  17.5g
  4,4,5,5-テトラメチル-2-(トリフェニレン-2-イル)
 -[1,3,2]ジオキサボラン  8.9g
  トルエン  314ml
  エタノール  79ml
  2M炭酸カリウム水溶液  19ml
を、窒素雰囲気下、反応容器に加え、超音波を照射しながら30分間窒素ガスを通気した。
 次いで、
  テトラキス(トリフェニルホスフィン)パラジウム  0.57g
を加えて加熱し、68℃で8.5時間攪拌した。室温まで放冷し、水400mlを加えた後、分液操作によって有機層を採取した。有機層を無水硫酸マグネシウムで乾燥させた後、減圧下で濃縮することによって茶色の粗製物を得た。粗製物をカラムクロマトグラフ(担体:シリカゲル、溶離液:ヘキサン/トルエン)によって精製した後、トルエン/ヘキサンの混合溶媒による晶析、続いて、メタノールによる還流洗浄を行うことによって、(4’-tert-ブチルビフェニル-4-イル)-(9,9-ジメチル-9H-フルオレン-2-イル)-{4-(トリフェニレン-2-イル)フェニル}アミン(化合物83)の白色粉体12.8g(収率71%)を得た。
 得られた白色粉体についてNMRを使用して構造を同定した。H-NMR測定結果を図8に示した。
 H-NMR(THF-d)で以下の45個の水素のシグナルを検出した。
   δ(ppm)=9.00(1H)
          8.88(1H)
          8.78-8.72(4H)
          7.96(1H)
          7.84(2H)
          7.69-7.68(2H)
          7.68-7.63(4H)
          7.58-7.55(4H)
          7.45-7.40(4H)
          7.32-7.23(6H)
          7.13(1H)
          1.45(6H)
          1.35(9H)
<実施例9>
(ビフェニル-4-イル)-(4’-tert-ブチルビフェニル-4-イル)-{4-(トリフェニレン-2-イル)フェニル}アミンの合成;
(化合物84の合成)
Figure JPOXMLDOC01-appb-C000133
  (4-ブロモフェニル)-(ビフェニル-4-イル)
 -(4’-tert-ブチルビフェニル-4-イル)アミン
 18.1g
  4,4,5,5-テトラメチル-2-(トリフェニレン-2-イル)
 -[1,3,2]ジオキサボラン  10.4g
  トルエン  360ml
  エタノール  90ml
  2M炭酸カリウム水溶液  22ml
を、窒素雰囲気下、反応容器に加え、超音波を照射しながら30分間窒素ガスを通気した。
 次いで、
  テトラキス(トリフェニルホスフィン)パラジウム  0.68g
を加えて加熱し、74℃で6.5時間攪拌した。室温まで放冷し、メタノール360mlを加え、析出する粗製物をろ過によって採取した。
 この粗製物をトルエン400mlに溶解し、シリカゲル30gを用いた吸着精製を行い、減圧下で濃縮した後、トルエン/メタノールの混合溶媒による晶析、続いて、メタノールによる還流洗浄を行うことによって、(ビフェニル-4-イル)-(4’-tert-ブチルビフェニル-4-イル)-{4-(トリフェニレン-2-イル)フェニル}アミン(化合物84)の黄色粉体17.4g(収率83%)を得た。
 得られた黄色粉体についてNMRを使用して構造を同定した。H-NMR測定結果を図9に示した。
 H-NMR(THF-d)で以下の41個の水素のシグナルを検出した。
   δ(ppm)=8.99(1H)
          8.88(1H)
          8.78(1H)
          7.76-7.72(3H)
          7.95(1H)
          7.84(2H)
          7.66-7.60(6H)
          7.59-7.54(6H)
          7.45(2H)
          7.40(2H)
          7.30(2H)
          7.29-7.24(5H)
          1.35(9H)
<実施例10>
(4’-tert-ブチルビフェニル-4-イル)-フェニル-{4-(トリフェニレン-2-イル)フェニル}アミンの合成;
(化合物85の合成)
Figure JPOXMLDOC01-appb-C000134
  (4-ブロモフェニル)-(4’-tert-ブチルビフェニル
 -4-イル)-フェニルアミン  15.5g
  4,4,5,5-テトラメチル-2-(トリフェニレン-2-イル)
 -[1,3,2]ジオキサボラン  11.4g
  トルエン  300ml
  エタノール  75ml
  2M炭酸カリウム水溶液  25ml
を、窒素雰囲気下、反応容器に加え、超音波を照射しながら30分間窒素ガスを通気した。
 次いで、
  テトラキス(トリフェニルホスフィン)パラジウム  0.79g
を加えて加熱し、68℃で6時間攪拌した。室温まで放冷し、水300mlを加えた後、分液操作によって有機層を採取した。有機層を無水硫酸マグネシウムで乾燥させた後、減圧下で濃縮することによって黒色の粗製物を得た。粗製物をカラムクロマトグラフ(担体:シリカゲル、溶離液:ヘキサン/トルエン)によって精製し、トルエン/メタノールの混合溶媒による晶析、続いて、メタノールによる還流洗浄を行うことによって、(4’-tert-ブチルビフェニル-4-イル)-フェニル-{4-(トリフェニレン-2-イル)フェニル}アミン(化合物85)の白色粉体12.8g(収率66%)を得た。
 得られた白色粉体についてNMRを使用して構造を同定した。H-NMR測定結果を図10に示した。
 H-NMR(THF-d)で以下の37個の水素のシグナルを検出した。
   δ(ppm)=8.97(1H)
          8.87(1H)
          8.77-8.71(4H)
          7.92(1H)
          7.81(2H)
          7.65-7.62(4H)
          7.55-7.52(4H)
          7.44(2H)
          7.29(2H)
          7.25(2H)
          7.20-7.19(4H)
          7.05(1H)
          1.33(9H)
<実施例11>
(4’-tert-ブチルビフェニル-4-イル)-(ナフタレン-1-イル)-{4-(トリフェニレン-2-イル)フェニル}アミンの合成;
(化合物86の合成)
Figure JPOXMLDOC01-appb-C000135
  (4-ブロモフェニル)-(4’-tert-ブチルビフェニル
 -4-イル)-(ナフタレン-1-イル)アミン  17.8g
  4,4,5,5-テトラメチル-2-(トリフェニレン-2-イル)
 -[1,3,2]ジオキサボラン  10.8g
  トルエン  267ml
  エタノール  67ml
  2M炭酸カリウム水溶液  23ml
を、窒素雰囲気下、反応容器に加え、超音波を照射しながら30分間窒素ガスを通気した。
 次いで、
  テトラキス(トリフェニルホスフィン)パラジウム  0.71g
を加えて加熱し、68℃で3時間攪拌した。室温まで放冷し、水50mlを加えた後、分液操作によって有機層を採取した。この有機層を無水硫酸マグネシウムで乾燥させた後、減圧下で濃縮することによって黒色の粗製物を得た。
 この粗製物をカラムクロマトグラフ(担体:シリカゲル、溶離液:ヘキサン/トルエン)によって精製し、メタノールによる還流洗浄を行うことによって、(4’-tert-ブチルビフェニル-4-イル)-(ナフタレン-1-イル)-{4-(トリフェニレン-2-イル)フェニル}アミン(化合物86)の白色粉体11.9g(収率60%)を得た。
 得られた白色粉体についてNMRを使用して構造を同定した。H-NMR測定結果を図11に示した。
 H-NMR(THF-d)で以下の39個の水素のシグナルを検出した。
   δ(ppm)=8.94(1H)
          8.85(1H)
          8.76-8.71(4H)
          8.04(1H)
          7.95(1H)
          7.90(1H)
          7.85(1H)
          7.75(2H)
          7.64-7.62(4H)
          7.54(1H)
          7.51-7.46(5H)
          7.43-7.40(3H)
          7.39(1H)
          7.19(2H)
          7.15(2H)
          1.34(9H)
<実施例12>
(ビフェニル-4-イル)-(2-メチルフェニル)-{4-(トリフェニレン-2-イル)フェニル}アミンの合成;
(化合物87の合成)
Figure JPOXMLDOC01-appb-C000136
  (4-ブロモフェニル)-(ビフェニル-4-イル)
 -(2-メチルフェニル)アミン  17.0g
  4,4,5,5-テトラメチル-2-(トリフェニレン-2-イル)
 -[1,3,2]ジオキサボラン  12.5g
  トルエン  255ml
  エタノール  64ml
  2M炭酸カリウム水溶液  27ml
を、窒素雰囲気下、反応容器に加え、超音波を照射しながら30分間窒素ガスを通気した。
 次いで、
  テトラキス(トリフェニルホスフィン)パラジウム  0.82g
を加えて加熱し、69℃で4時間攪拌した。室温まで放冷し、水250mlを加えた後、分液操作によって有機層を採取した。この有機層を無水硫酸マグネシウムで乾燥させた後、減圧下で濃縮することによって黒色の粗製物を得た。
 この粗製物をトルエン400mlに溶解し、シリカゲル40gを用いた吸着精製を行った。減圧下で濃縮した後、トルエン/メタノールの混合溶媒による晶析、メタノールによる還流洗浄を行うことによって、(ビフェニル-4-イル)-(2-メチルフェニル)-{4-(トリフェニレン-2-イル)フェニル}アミン(化合物87)の赤白色粉体11.6g(収率59%)を得た。
 得られた赤白色粉体についてNMRを使用して構造を同定した。H-NMR測定結果を図12に示した。
 H-NMR(THF-d)で以下の31個の水素のシグナルを検出した。
   δ(ppm)=8.97(1H)
          8.87(1H)
          8.76(1H)
          8.74-8.72(3H)
          7.93(1H)
          7.81(2H)
          7.65-7.62(6H)
          7.56(2H)
          7.39(2H)
          7.38-7.23(3H)
          7.20-7.18(3H)
          7.06(1H)
          6.98(1H)
          6.90(1H)
          2.28(3H)
<実施例13>
(9,9-ジメチル-9H-フルオレン-2-イル)-(ナフタレン-1-イル)-{4-(トリフェニレン-2-イル)フェニル}アミンの合成;
(化合物46の合成)
Figure JPOXMLDOC01-appb-C000137
  (4-ブロモフェニル)-(9,9-ジメチル-9H-フルオレン
 -2-イル)-(ナフタレン-1-イル)アミン  18.5g
  4,4,5,5-テトラメチル-2-(トリフェニレン-2-イル)
 -[1,3,2]ジオキサボラン  11.1g
  トルエン  275ml
  エタノール  69ml
  2M炭酸カリウム水溶液  24ml
を、窒素雰囲気下、反応容器に加え、超音波を照射しながら30分間窒素ガスを通気した。
 次いで、
  テトラキス(トリフェニルホスフィン)パラジウム  0.72g
を加えて加熱し、69℃で5時間攪拌した。室温まで放冷し、水270mlを加えた後、分液操作によって有機層を採取した。この有機層を無水硫酸マグネシウムで乾燥させた後、減圧下で濃縮することによって黒色の粗製物を得た。
 この粗製物をカラムクロマトグラフ(担体:シリカゲル、溶離液:ヘキサン/トルエン)によって精製し、トルエン/ヘキサンの混合溶媒による晶析、メタノールで還流洗浄を行うことによって、(9,9-ジメチル-9H-フルオレン-2-イル)-(ナフタレン-1-イル)-{4-(トリフェニレン-2-イル)フェニル}アミン(化合物46)の黄白色粉体7.05g(収率35%)を得た。
 得られた黄白色粉体についてNMRを使用して構造を同定した。H-NMR測定結果を図13に示した。
 H-NMR(THF-d)で以下の35個の水素のシグナルを検出した。
   δ(ppm)=8.95(1H)
          8.73(1H)
          8.71-8.65(4H)
          8.02(1H)
          7.94(2H)
          7.90(1H)
          7.87(2H)
          7.82-7.36(12H)
          7.28-7.15(4H)
          7.01(1H)
          1.40(6H)
<実施例14>
(ビフェニル-4-イル)-(ジベンゾチオフェン-2-イル)-{4-(トリフェニレン-2-イル)フェニル}アミンの合成;
(化合物88の合成)
Figure JPOXMLDOC01-appb-C000138
  (ビフェニル―4―イル)-(4-ブロモフェニル)
 -(ジベンゾチオフェン-2-イル)アミン  14.3g
  4,4,5,5-テトラメチル-2-(トリフェニレン-2-イル)
 -[1,3,2]ジオキサボラン  10.0g
  トルエン  80ml
  エタノール  20ml
  2M炭酸カリウム水溶液  7.8ml
を、窒素雰囲気下、反応容器に加え、超音波を照射しながら60分間窒素ガスを通気した。
 次いで、
  テトラキス(トリフェニルホスフィン)パラジウム  0.65g
を加えて加熱し、10時間還流攪拌した。室温まで放冷し、水、トルエンを加え、析出する粗製物をろ過によって採取した。粗製物を1,2-ジクロロベンゼンによる再結晶、トルエン/1,2-ジクロロベンゼンの混合溶媒による再結晶を行うことによって、(ビフェニル-4-イル)-(ジベンゾチオフェン-2-イル)-{4-(トリフェニレン-2-イル)フェニル}アミン(化合物88)の淡黄色粉体12.1g(収率65%)を得た。
 得られた淡黄色粉体についてNMRを使用して構造を同定した。H-NMR測定結果を図14に示した。
 H-NMR(THF-d)で以下の31個の水素のシグナルを検出した。
   δ(ppm)=8.99(1H)
          8.87(1H)
          8.79-8.74(4H)
          8.14(2H)
          7.96(1H)
          7.88-7.85(4H)
          7.65-7.58(7H)
          7.50(1H)
          7.43-7.26(10H)
<実施例15>
(ジベンゾチオフェン-2-イル)-(9,9-ジメチル-9H-フルオレン-2-イル)-{4-(トリフェニレン-2-イル)フェニル}アミンの合成;
(化合物89の合成)
Figure JPOXMLDOC01-appb-C000139
  (4-ブロモフェニル)-(ジベンゾチオフェン-2-イル)
 -(9,9-ジメチル-9H-フルオレン-2-イル)アミン
                        15.6g
  4,4,5,5-テトラメチル-2-(トリフェニレン-2-イル)
 -[1,3,2]ジオキサボラン  10.2g
  トルエン  80ml
  エタノール  20ml
  2M炭酸カリウム水溶液  8ml
を、窒素雰囲気下、反応容器に加え、超音波を照射しながら60分間窒素ガスを通気した。
 次いで、
  テトラキス(トリフェニルホスフィン)パラジウム  0.67g
を加えて加熱し、4時間還流攪拌した。室温まで放冷し、水、トルエンを加え、析出する粗製物をろ過によって採取した。粗製物をトルエン/1,2-ジクロロベンゼン/酢酸エチルの混合溶媒による再結晶、メタノールによる還流洗浄を行うことによって、(ジベンゾチオフェン-2-イル)-(9,9-ジメチル-9H-フルオレン-2-イル)-{4-(トリフェニレン-2-イル)フェニル}アミン(化合物89)の淡黄色粉体10.6g(収率53%)を得た。
 得られた淡黄色粉体についてNMRを使用して構造を同定した。H-NMR測定結果を図15に示した。
 H-NMR(THF-d)で以下の35個の水素のシグナルを検出した。
   δ(ppm)=9.00(1H)
          8.89(1H)
          8.80(1H)
          7.78-7.74(3H)
          8.13-8.11(2H)
          7.99(1H)
          7.88-7.84(4H)
          7.69-7.63(6H)
          7.44-7.42(3H)
          7.41-7.38(4H)
          7.27(1H)
          7.23(1H)
          7.14(1H)
          1.42(6H)
<実施例16>
ビス(9,9-ジメチル-9H-フルオレン-2-イル)-{4-(トリフェニレン-2-イル)フェニル}アミンの合成;
(化合物90の合成)
Figure JPOXMLDOC01-appb-C000140
  ビス(9,9-ジメチル-9H-フルオレン-2-イル)
 -(4-ブロモフェニル)アミン  15.8g
  4,4,5,5-テトラメチル-2-(トリフェニレン-2-イル)
 -[1,3,2]ジオキサボラン  9.6g
  トルエン  800ml
  エタノール  20ml
  2M炭酸カリウム水溶液  7.9ml
を、窒素雰囲気下、反応容器に加え、超音波を照射しながら30分間窒素ガスを通気した。
 次いで、
  テトラキス(トリフェニルホスフィン)パラジウム  0.66g
を加えて加熱し、4時間還流攪拌した。室温まで放冷し、水300mlを加えた後、分液操作によって有機層を採取した。この有機層を無水硫酸マグネシウムで乾燥させた後、減圧下で濃縮することによって褐色の粗製物を得た。
 この粗製物をトルエンに溶解し、シリカゲル60gを用いた吸着精製、続いて、活性炭10gを用いた吸着精製を行い、さらに、トルエン/アセトン/メタノールの混合溶媒による晶析、トルエン/ヘキサンの混合溶媒による晶析を行った。その後、70℃に加温したトルエンを用いた洗浄を行った後、1,2-ジクロロメタンに溶解し、NHシリカゲルを用いた吸着精製を行い、さらに、ヘキサンによる晶析を行うことによって、ビス(9,9-ジメチル-9H-フルオレン-2-イル)-{4-(トリフェニレン-2-イル)フェニル}アミン(化合物90)の淡黄色粉体10.2g(収率51%)を得た。
 得られた淡黄色粉体についてNMRを使用して構造を同定した。H-NMR測定結果を図16に示した。
 H-NMR(CDCl)で以下の41個の水素のシグナルを検出した。
   δ(ppm)=8.92(1H)
          8.82-8.65(5H)
          7.95(1H)
          7.81-7.62(10H)
          7.49-7.16(12H)
          1.43(12H)
<実施例17>
 実施例1~16で得られた化合物(トリフェニレン誘導体)について、高感度示差走査熱量計(ブルカー・エイエックスエス製、DSC3100S)によって融点とガラス転移点を求めた。その結果は、以下のとおりであった。
                融点     ガラス転移点
   実施例1の化合物     257℃     116℃
   実施例2の化合物     236℃     115℃
   実施例3の化合物     160℃     131℃
   実施例4の化合物     測定されず。   129℃
   実施例5の化合物     236℃     116℃
   実施例6の化合物     測定されず。   115℃
   実施例7の化合物     測定されず。   134℃
   実施例8の化合物     245℃     145℃
   実施例9の化合物     160℃     133℃
   実施例10の化合物    145℃     117℃
   実施例11の化合物    172℃     139℃
   実施例12の化合物    129℃      98℃
   実施例13の化合物    測定されず。   136℃
   実施例14の化合物    166℃     133℃
   実施例15の化合物    320℃     149℃
   実施例16の化合物    272℃     147℃
 実施例1~16で得られた本発明の化合物は、ガラス転移点が95℃以上と高く、このことから、本発明の化合物により形成される薄膜は、安定に維持されることが判る。
<実施例18>
 実施例1~5、8~12、14~16で得られた本発明の化合物を用いて、ITO基板の上に膜厚100nmの蒸着膜を作製して、大気中光電子分光装置(理研計器製、AC-3型)で仕事関数を測定した。その結果は、以下のとおりであった。
                   仕事関数
   実施例1の化合物       5.62eV
   実施例2の化合物       5.57eV
   実施例3の化合物       5.61eV
   実施例4の化合物       5.37eV
   実施例5の化合物       5.56eV
   実施例8の化合物       5.46eV
   実施例9の化合物       5.56eV
   実施例10の化合物      5.63eV
   実施例11の化合物      5.63eV
   実施例12の化合物      5.60eV
   実施例14の化合物      5.61eV
   実施例15の化合物      5.56eV
   実施例16の化合物      5.46eV
 実施例6,7及び13で得られた本発明の化合物を用いて、ITO基板の上に膜厚100nmの蒸着膜を作製して、イオン化ポテンシャル測定装置(住友重機械工業株式会社、PYS-202)を用いて仕事関数を測定した。その結果は、以下のとおりであった。
                  仕事関数
   実施例6の化合物       5.57eV
   実施例7の化合物       5.62eV
   実施例13の化合物      5.63eV
 上記の結果から、本発明のトリフェニレン誘導体は、NPD、TPDなどの一般的な正孔輸送材料がもつ仕事関数5.4eVと比較して、好適なエネルギー準位を示しており、良好な正孔輸送能力を有していることが分かる。
<実施例19>
 ガラス基板1上に透明陽極2としてITO電極をあらかじめ形成したものの上に、正孔注入層3、正孔輸送層4、発光層5、電子輸送層6、電子注入層7、陰極(アルミニウム電極)8の順に蒸着して、図17に示す層構造の有機EL素子を作製した。
 具体的には、膜厚150nmのITOを成膜したガラス基板1を有機溶媒で洗浄した後に、酸素プラズマ処理にて表面を洗浄した。その後、このITO電極付きガラス基板を真空蒸着機内に取り付け0.001Pa以下まで減圧した。
 続いて、透明陽極2を覆うように、正孔注入層3として、下記構造式で表される化合物115を膜厚20nmとなるように形成した。
Figure JPOXMLDOC01-appb-C000141
 この正孔注入層3の上に、正孔輸送層4として実施例2の化合物(化合物15)を膜厚40nmとなるように形成した。
 この正孔輸送層4の上に、発光層5として、下記構造式の化合物116と下記構造式の化合物117を、蒸着速度比が化合物116:化合物117=5:95となる蒸着速度で二元蒸着を行い、膜厚30nmとなるように形成した。この発光層5の上に、電子輸送層6としてAlqを膜厚30nmとなるように形成した。
Figure JPOXMLDOC01-appb-C000142
Figure JPOXMLDOC01-appb-C000143
 この電子輸送層6の上に、電子注入層7としてフッ化リチウムを膜厚0.5nmとなるように形成した。
 最後に、アルミニウムを膜厚150nmとなるように蒸着して陰極8を形成した。
 このようにして本発明の実施例2の化合物(化合物15)を使用して作製された有機EL素子について、大気中、常温で各種特性の測定を行なった。
 具体的には、この有機EL素子に直流電圧を印加したときの発光特性を測定し、その結果を表1に示した。
<実施例20>
 正孔輸送層4の材料として実施例1の化合物(化合物66)を使用し、膜厚40nmとなるように正孔輸送層4を形成した以外は、実施例19と同様にして有機EL素子を作製した。
 この有機EL素子に直流電圧を印加したときの発光特性を実施例19と同様にして測定し、その結果を表1に示した。
<実施例21>
 正孔輸送層4の材料として実施例3の化合物(化合物67)を使用し、膜厚40nmとなるように正孔輸送層4を形成した以外は、実施例19と同様にして有機EL素子を作製した。
 この有機EL素子に直流電圧を印加したときの発光特性を実施例19と同様にして測定し、その結果を表1に示した。
<実施例22>
 正孔輸送層4の材料として実施例4の化合物(化合物79)を使用し、膜厚40nmとなるように正孔輸送層4を形成した以外は、実施例19と同様にして有機EL素子を作製した。
 この有機EL素子に直流電圧を印加したときの発光特性を実施例19と同様にして測定し、その結果を表1に示した。
<実施例23>
 正孔輸送層4の材料として実施例5の化合物(化合物80)を使用し、膜厚40nmとなるように正孔輸送層4を形成した以外は、実施例19と同様にして有機EL素子を作製した。
 この有機EL素子に直流電圧を印加したときの発光特性を実施例19と同様にして測定し、その結果を表1に示した。
<実施例24>
 正孔輸送層4の材料として実施例6の化合物(化合物81)を使用し、膜厚40nmとなるように正孔輸送層4を形成した以外は、実施例19と同様にして有機EL素子を作製した。
 この有機EL素子に直流電圧を印加したときの発光特性を実施例19と同様にして測定し、その結果を表1に示した。
<実施例25>
 正孔輸送層4の材料として実施例7の化合物(化合物82)を使用し、膜厚40nmとなるように正孔輸送層4を形成した以外は、実施例19と同様にして有機EL素子を作製した。
 この有機EL素子に直流電圧を印加したときの発光特性を実施例19と同様にして測定し、その結果を表1に示した。
<実施例26>
 正孔輸送層4の材料として実施例8の化合物(化合物83)を使用し、膜厚40nmとなるように正孔輸送層4を形成した以外は、実施例19と同様にして有機EL素子を作製した。
 この有機EL素子に直流電圧を印加したときの発光特性を実施例19と同様にして測定し、その結果を表1に示した。
<実施例27>
 正孔輸送層4の材料として実施例9の化合物(化合物84)を使用し、膜厚40nmとなるように正孔輸送層4を形成した以外は、実施例19と同様にして有機EL素子を作製した。
 この有機EL素子に直流電圧を印加したときの発光特性を実施例19と同様にして測定し、その結果を表1に示した。
<実施例28>
 正孔輸送層4の材料として実施例10の化合物(化合物85)を使用し、膜厚40nmとなるように正孔輸送層4を形成した以外は、実施例19と同様にして有機EL素子を作製した。
 この有機EL素子に直流電圧を印加したときの発光特性を実施例19と同様にして測定し、その結果を表1に示した。
<実施例29>
 正孔輸送層4の材料として実施例11の化合物(化合物86)を使用し、膜厚40nmとなるように正孔輸送層4を形成した以外は、実施例19と同様にして有機EL素子を作製した。
 この有機EL素子に直流電圧を印加したときの発光特性を実施例19と同様にして測定し、その結果を表1に示した。
<実施例30>
 正孔輸送層4の材料として実施例12化合物(化合物87)を使用し、膜厚40nmとなるように正孔輸送層4を形成した以外は、実施例19と同様にして有機EL素子を作製した。
 この有機EL素子に直流電圧を印加したときの発光特性を実施例19と同様にして測定し、その結果を表1に示した。
<実施例31>
 正孔輸送層4の材料として実施例13の化合物(化合物46)を使用し、膜厚40nmとなるように正孔輸送層4を形成した以外は、実施例19と同様にして有機EL素子を作製した。
 この有機EL素子に直流電圧を印加したときの発光特性を実施例19と同様にして測定し、その結果を表1に示した。
<実施例32>
 正孔輸送層4の材料として実施例14の化合物(化合物88)を使用し、膜厚40nmとなるように正孔輸送層4を形成した以外は、実施例19と同様にして有機EL素子を作製した。
 この有機EL素子に直流電圧を印加したときの発光特性を実施例19と同様にして測定し、その結果を表1に示した。
<実施例33>
 正孔輸送層4の材料として実施例15の化合物(化合物89)を使用し、膜厚40nmとなるように正孔輸送層4を形成した以外は、実施例19と同様にして有機EL素子を作製した。
 この有機EL素子に直流電圧を印加したときの発光特性を実施例19と同様にして測定し、その結果を表1に示した。
<実施例34>
 正孔輸送層4の材料として実施例16の化合物(化合物90)を使用し、膜厚40nmとなるように正孔輸送層4を形成した以外は、実施例19と同様にして有機EL素子を作製した。
 この有機EL素子に直流電圧を印加したときの発光特性を実施例19と同様にして測定し、その結果を表1に示した。
<比較例1>
 比較のため、正孔輸送層4の材料として、実施例2の化合物の代わりに下記構造式の化合物118を使用し、膜厚40nmとなるように正孔輸送層4を形成した以外は、実施例19と同様にして有機EL素子を作製した。
Figure JPOXMLDOC01-appb-C000144
 この有機EL素子に直流電圧を印加したときの発光特性を実施例19と同様にして測定し、その結果を表1に示した。
Figure JPOXMLDOC01-appb-T000145
 表1に示す様に、電流密度10mA/cmの電流を流したときの駆動電圧は、化合物118(比較例1)の5.17Vに対して、実施例1~16の化合物では4.73~5.15Vといずれも低電圧化した。
 また、電力効率においても、比較例1の5.49lm/Wに対して、実施例1~16では5.55~6.84lm/Wといずれも大きく向上した。
 以上の結果から明らかなように、本発明のトリフェニレン誘導体を用いて形成された有機層を有する有機EL素子は、既知の前記化合物118を用いた有機EL素子と比較しても、発光効率や電力効率の向上や、実用駆動電圧の低下を達成できることがわかった。
 本発明のトリフェニレン誘導体は、正孔輸送能力が高く、アモルファス性に優れており、薄膜状態が安定であるため、有機EL素子用の化合物として優れている。該化合物を用いて有機EL素子を作製することにより、高い発光効率および電力効率を得ることができると共に、実用駆動電圧を低下させることができ、耐久性を改善させることができる。例えば、家庭電化製品や照明の用途への展開が可能となった。
  1:ガラス基板
  2:透明陽極
  3:正孔注入層
  4:正孔輸送層
  5:発光層
  6:電子輸送層
  7:電子注入層
  8:陰極

Claims (12)

  1.  下記一般式(1)で表されるトリフェニレン誘導体;
    Figure JPOXMLDOC01-appb-C000001
     式中、
      p及びqは、それぞれ、0または1~4の整数を表し、
      sは、0または1~3の整数を表し、
      nは、0または1~2の整数を表し、
      Ar及びArは、それぞれ、芳香族炭化水素基または芳香族
     複素環基を表すが、ArとArとは、単結合、置換基を有して
     いてもよいメチレン基、酸素原子または硫黄原子を介して、互い
     に結合して環を形成してもよく、
      R、R及びRは、それぞれ、重水素原子、フッ素原子、塩
     素原子、シアノ基、ニトロ基、炭素原子数1~6のアルキル基、
     炭素原子数5~10のシクロアルキル基、炭素原子数1~6のア
     ルキルオキシ基、炭素原子数5~10のシクロアルキルオキシ基、
     芳香族炭化水素基、芳香族複素環基またはアリールオキシ基を表
     し、
      A及びAは、それぞれ、2価の芳香族炭化水素基または2価
     の芳香族複素環基を表し、
      nが0の場合、AとArとは、単結合、置換基を有していて
     もよいメチレン基、酸素原子または硫黄原子を介して互いに結合し
     て環を形成してもよく、
      nが1の場合、AまたはAとArとは、単結合、置換基を有
     していてもよいメチレン基、酸素原子または硫黄原子を介して、互
     いに結合して環を形成してもよく、
      nが2の場合、複数個存在するAは、互いに異なる基であって
     もよく、且つ、AまたはAとArとは、単結合、置換基を有し
     ていてもよいメチレン基、酸素原子または硫黄原子を介して、互い
     に結合して環を形成してもよい。
  2.  前記一般式(1)において、nが0である請求項1に記載のトリフェニレン誘導体。
  3.  前記一般式(1)において、2価の基Aが置換基を有していてもよいフェニレン基である請求項1に記載のトリフェニレン誘導体。
  4.  下記一般式(1a); 
    Figure JPOXMLDOC01-appb-C000002
     式中、
      p,q,s,Ar,Ar及びR~Rは、前記一般式
     (1)に記載したとおりの意味である、
    で表される請求項1記載のトリフェニレン誘導体。
  5.  前記2価の基Aがトリフェニレン環の2位に結合している請求項1に記載のトリフェニレン誘導体。
  6.  下記一般式(1b);
    Figure JPOXMLDOC01-appb-C000003
     式中、
      p,q,s,Ar,Ar及びR~Rは、前記一般式
     (1)に記載したとおりの意味である、
    で表される請求項5記載のトリフェニレン誘導体。
  7.  下記一般式(1b-1); 
    Figure JPOXMLDOC01-appb-C000004
     式中、
      p,q,s,Ar,Ar及びR~Rは、前記一般式
     (1)に記載したとおりの意味である、
    で表される請求項6記載のトリフェニレン誘導体。
  8.  一対の電極とその間に挟まれた少なくとも一層の有機層を有する有機エレクトロルミネッセンス素子において、
     前記有機層の少なくとも一つの層は、請求項1に記載のトリフェニレン誘導体を含んでいることを特徴とする有機エレクトロルミネッセンス素子。
  9.  前記トリフェニレン誘導体を含む有機層が正孔輸送層である請求項8記載の有機エレクトロルミネッセンス素子。
  10.  前記トリフェニレン誘導体を含む有機層が電子阻止層である請求項8記載の有機エレクトロルミネッセンス素子。
  11.  前記トリフェニレン誘導体を含む有機層が正孔注入層である請求項8記載の有機エレクトロルミネッセンス素子。
  12.  前記トリフェニレン誘導体を含む有機層が発光層である請求項8記載の有機エレクトロルミネッセンス素子。
PCT/JP2012/076434 2011-10-24 2012-10-12 新規なトリフェニレン誘導体及び該誘導体が使用されている有機エレクトロルミネッセンス素子 WO2013061805A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280051830.6A CN103889945A (zh) 2011-10-24 2012-10-12 新型苯并[9,10]菲衍生物和使用该衍生物的有机电致发光器件
US14/349,438 US20150034924A1 (en) 2011-10-24 2012-10-12 Novel triphenylene derivatives and organic electroluminescent devices using said derivatives
KR1020147010562A KR20140084051A (ko) 2011-10-24 2012-10-12 신규 트리페닐렌 유도체 및 상기 유도체를 사용하는 유기 전계발광 소자

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011232794 2011-10-24
JP2011-232794 2011-10-24

Publications (1)

Publication Number Publication Date
WO2013061805A1 true WO2013061805A1 (ja) 2013-05-02

Family

ID=48167638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076434 WO2013061805A1 (ja) 2011-10-24 2012-10-12 新規なトリフェニレン誘導体及び該誘導体が使用されている有機エレクトロルミネッセンス素子

Country Status (6)

Country Link
US (1) US20150034924A1 (ja)
JP (1) JPWO2013061805A1 (ja)
KR (1) KR20140084051A (ja)
CN (1) CN103889945A (ja)
TW (1) TW201323378A (ja)
WO (1) WO2013061805A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034793A1 (ja) * 2012-08-30 2014-03-06 出光興産株式会社 芳香族アミン誘導体およびこれを用いた有機エレクトロルミネッセンス素子
JP2016153394A (ja) * 2015-02-17 2016-08-25 機光科技股▲分▼有限公司 有機エレクトロルミネセンス素子用インデノトリフェニレン系アミン誘導体
US10381570B2 (en) * 2015-04-07 2019-08-13 Samsung Display Co., Ltd. Compound and organic light-emitting device including the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10014478B2 (en) * 2015-05-19 2018-07-03 Feng-wen Yen Indenotriphenylene-based diamine derivative and organic electroluminescence device using the same
KR102065817B1 (ko) * 2016-06-02 2020-01-13 주식회사 엘지화학 유기 발광 소자
KR102065816B1 (ko) * 2016-06-02 2020-01-13 주식회사 엘지화학 유기 발광 소자
US20190315759A1 (en) * 2018-04-13 2019-10-17 Universal Display Corporation Host materials for electroluminescent devices
KR20190125937A (ko) * 2018-04-30 2019-11-07 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 발광 소자
CN109293516B (zh) * 2018-11-03 2022-01-14 长春海谱润斯科技股份有限公司 一种三芳胺类化合物及其有机发光器件

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0848656A (ja) 1994-02-08 1996-02-20 Tdk Corp 有機el素子用化合物および有機el素子
JP3194657B2 (ja) 1993-11-01 2001-07-30 松下電器産業株式会社 電界発光素子
JP2009114068A (ja) * 2007-11-01 2009-05-28 Canon Inc トリフェニレン化合物及びこれを用いた有機発光素子
JP2009292760A (ja) * 2008-06-04 2009-12-17 Mitsubishi Chemicals Corp トリフェニレン系化合物、トリフェニレン系化合物を含有する有機電界発光素子及び有機elディスプレイ
WO2010002850A1 (en) 2008-06-30 2010-01-07 Universal Display Corporation Hole transport materials containing triphenylene
JP2010132638A (ja) * 2008-10-13 2010-06-17 Gracel Display Inc 新規な有機電界発光化合物及びこれを使用している有機電界発光素子
WO2010083359A2 (en) * 2009-01-16 2010-07-22 Universal Display Corporation New materials with aza-dibenzothiophene or aza-dibenzofuran core for pholed
WO2011081423A2 (ko) 2009-12-30 2011-07-07 주식회사 두산 트리페닐렌계 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2011081449A2 (ko) * 2009-12-30 2011-07-07 주식회사 두산 트리페닐렌계 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2011145876A2 (ko) * 2010-05-20 2011-11-24 주식회사 두산 신규 하이브리드 유기 화합물 및 이를 이용한 유기 전계 발광소자
WO2011152596A1 (ko) * 2010-06-01 2011-12-08 제일모직 주식회사 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
WO2012015274A2 (ko) * 2010-07-30 2012-02-02 롬엔드하스전재재로코리아유한회사 유기발광화합물을 발광재료로서 채용하고 있는 유기 전계 발광 소자
WO2012039561A1 (en) * 2010-09-20 2012-03-29 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2012077902A2 (ko) * 2010-12-08 2012-06-14 제일모직 주식회사 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6492041B2 (en) * 1997-12-25 2002-12-10 Nec Corporation Organic electroluminescent device having high efficient luminance
KR100577179B1 (ko) * 2001-10-30 2006-05-10 엘지전자 주식회사 유기 전계 발광 소자
US8968887B2 (en) * 2010-04-28 2015-03-03 Universal Display Corporation Triphenylene-benzofuran/benzothiophene/benzoselenophene compounds with substituents joining to form fused rings
KR101218029B1 (ko) * 2010-05-06 2013-01-02 주식회사 두산 방향족 아민을 포함하는 트리페닐렌계 화합물 및 이를 포함하는 유기 전계 발광 소자
KR20120046779A (ko) * 2010-08-05 2012-05-10 이데미쓰 고산 가부시키가이샤 모노아민 유도체 및 그것을 사용하는 유기 일렉트로루미네선스 소자
KR101443755B1 (ko) * 2010-09-20 2014-10-07 제일모직 주식회사 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
US9349964B2 (en) * 2010-12-24 2016-05-24 Lg Chem, Ltd. Organic light emitting diode and manufacturing method thereof
EP2660300B1 (en) * 2010-12-29 2019-02-13 LG Chem, Ltd. Novel compound, and organic light-emitting device using same
TWI461387B (zh) * 2011-06-28 2014-11-21 Nat Univ Tsing Hua 聯三伸苯基衍生物在有機電致發光元件上之應用
CN104662010B (zh) * 2012-08-30 2017-08-25 出光兴产株式会社 芳香族胺衍生物以及使用其的有机电致发光元件
KR102078365B1 (ko) * 2013-07-01 2020-04-03 삼성디스플레이 주식회사 유기 발광 장치
JP2015115372A (ja) * 2013-12-09 2015-06-22 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3194657B2 (ja) 1993-11-01 2001-07-30 松下電器産業株式会社 電界発光素子
JPH0848656A (ja) 1994-02-08 1996-02-20 Tdk Corp 有機el素子用化合物および有機el素子
JP2009114068A (ja) * 2007-11-01 2009-05-28 Canon Inc トリフェニレン化合物及びこれを用いた有機発光素子
JP2009292760A (ja) * 2008-06-04 2009-12-17 Mitsubishi Chemicals Corp トリフェニレン系化合物、トリフェニレン系化合物を含有する有機電界発光素子及び有機elディスプレイ
JP2011526914A (ja) * 2008-06-30 2011-10-20 ユニバーサル・ディスプレイ・コーポレーション トリフェニレンを含有するホール輸送材料
WO2010002850A1 (en) 2008-06-30 2010-01-07 Universal Display Corporation Hole transport materials containing triphenylene
JP2010132638A (ja) * 2008-10-13 2010-06-17 Gracel Display Inc 新規な有機電界発光化合物及びこれを使用している有機電界発光素子
WO2010083359A2 (en) * 2009-01-16 2010-07-22 Universal Display Corporation New materials with aza-dibenzothiophene or aza-dibenzofuran core for pholed
WO2011081423A2 (ko) 2009-12-30 2011-07-07 주식회사 두산 트리페닐렌계 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2011081449A2 (ko) * 2009-12-30 2011-07-07 주식회사 두산 트리페닐렌계 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2011145876A2 (ko) * 2010-05-20 2011-11-24 주식회사 두산 신규 하이브리드 유기 화합물 및 이를 이용한 유기 전계 발광소자
WO2011152596A1 (ko) * 2010-06-01 2011-12-08 제일모직 주식회사 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
WO2012015274A2 (ko) * 2010-07-30 2012-02-02 롬엔드하스전재재로코리아유한회사 유기발광화합물을 발광재료로서 채용하고 있는 유기 전계 발광 소자
WO2012039561A1 (en) * 2010-09-20 2012-03-29 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2012077902A2 (ko) * 2010-12-08 2012-06-14 제일모직 주식회사 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEM. REV., vol. 95, 1995, pages 2457

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034793A1 (ja) * 2012-08-30 2014-03-06 出光興産株式会社 芳香族アミン誘導体およびこれを用いた有機エレクトロルミネッセンス素子
CN104662010A (zh) * 2012-08-30 2015-05-27 出光兴产株式会社 芳香族胺衍生物以及使用其的有机电致发光元件
JPWO2014034793A1 (ja) * 2012-08-30 2016-08-08 出光興産株式会社 芳香族アミン誘導体およびこれを用いた有機エレクトロルミネッセンス素子
CN104662010B (zh) * 2012-08-30 2017-08-25 出光兴产株式会社 芳香族胺衍生物以及使用其的有机电致发光元件
US10985325B2 (en) 2012-08-30 2021-04-20 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescent element using same
JP2016153394A (ja) * 2015-02-17 2016-08-25 機光科技股▲分▼有限公司 有機エレクトロルミネセンス素子用インデノトリフェニレン系アミン誘導体
US10381570B2 (en) * 2015-04-07 2019-08-13 Samsung Display Co., Ltd. Compound and organic light-emitting device including the same

Also Published As

Publication number Publication date
US20150034924A1 (en) 2015-02-05
CN103889945A (zh) 2014-06-25
KR20140084051A (ko) 2014-07-04
TW201323378A (zh) 2013-06-16
JPWO2013061805A1 (ja) 2015-04-02

Similar Documents

Publication Publication Date Title
JP6329937B2 (ja) 有機エレクトロルミネッセンス素子
WO2013157367A1 (ja) 新規なトリフェニレン誘導体及び該誘導体が使用されている有機エレクトロルミネッセンス素子
JP5850835B2 (ja) アクリダン環構造を有する化合物および有機エレクトロルミネッセンス素子
JP5936229B2 (ja) インデノカルバゾール環構造を有する化合物および有機エレクトロルミネッセンス素子
JP5836358B2 (ja) インドロカルバゾール環構造を有する化合物および有機エレクトロルミネッセンス素子
WO2013061805A1 (ja) 新規なトリフェニレン誘導体及び該誘導体が使用されている有機エレクトロルミネッセンス素子
WO2014199567A1 (ja) 有機エレクトロルミネッセンス素子
JP6251675B2 (ja) アクリダン環構造を有する化合物および有機エレクトロルミネッセンス素子
WO2019159919A1 (ja) 有機エレクトロルミネッセンス素子
WO2014034092A1 (ja) インデノアクリダン環構造を有する化合物および有機エレクトロルミネッセンス素子
WO2014038417A1 (ja) 新規なベンゾチエノインドール誘導体および該誘導体が使用されている有機エレクトロルミネッセンス素子
JP2011178742A (ja) フェノキサジン環構造またはフェノチアジン環構造を有する化合物および有機エレクトロルミネッセンス素子
WO2017122813A1 (ja) 有機エレクトロルミネッセンス素子
JPWO2017033927A1 (ja) 有機エレクトロルミネッセンス素子
JP6389459B2 (ja) ジカルバゾール誘導体及び有機エレクトロルミネッセンス素子
TW201805292A (zh) 具有苯并唑環結構之化合物及有機電致發光元件
WO2014042006A1 (ja) 新規なチエノインドール誘導体及び該誘導体を用いた有機エレクトロルミネッセンス素子
JP6580553B2 (ja) ベンゾフロインドール誘導体および有機エレクトロルミネッセンス素子
JP6370225B2 (ja) インデノアクリダン環構造を有する化合物および有機エレクトロルミネッセンス素子
JP6173305B2 (ja) アクリダン環構造を有する化合物および有機エレクトロルミネッセンス素子
JP5525665B1 (ja) アクリダン環構造を有する化合物および有機エレクトロルミネッセンス素子
JP2014227405A (ja) シクロペンタインドール環構造を有する化合物および有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12843356

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013540725

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14349438

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147010562

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE