WO2013060290A1 - 一种橡胶组合物及其制备方法和其硫化胶 - Google Patents

一种橡胶组合物及其制备方法和其硫化胶 Download PDF

Info

Publication number
WO2013060290A1
WO2013060290A1 PCT/CN2012/083590 CN2012083590W WO2013060290A1 WO 2013060290 A1 WO2013060290 A1 WO 2013060290A1 CN 2012083590 W CN2012083590 W CN 2012083590W WO 2013060290 A1 WO2013060290 A1 WO 2013060290A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
latex
particles
styrene
rubber particles
Prior art date
Application number
PCT/CN2012/083590
Other languages
English (en)
French (fr)
Inventor
乔金樑
丛悦鑫
张晓红
李迎
高建明
张乾民
宋志海
孙艳玲
郭梅芳
宋培军
蔡传伦
赵国训
施红伟
戚桂村
赖金梅
张红彬
王亚
李秉海
王湘
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司北京化工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201110330407.7A external-priority patent/CN103073758B/zh
Priority claimed from CN201210402962.0A external-priority patent/CN103772766B/zh
Priority claimed from CN201210402963.5A external-priority patent/CN103772767B/zh
Priority to EP12843797.7A priority Critical patent/EP2772512B1/en
Priority to CA2853513A priority patent/CA2853513C/en
Priority to PL12843797.7T priority patent/PL2772512T3/pl
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司北京化工研究院 filed Critical 中国石油化工股份有限公司
Priority to KR1020147012677A priority patent/KR101748600B1/ko
Priority to US14/354,222 priority patent/US9453122B2/en
Priority to ES12843797T priority patent/ES2940461T3/es
Priority to JP2014537482A priority patent/JP6084623B2/ja
Priority to RU2014121110A priority patent/RU2607581C2/ru
Priority to SG11201401847UA priority patent/SG11201401847UA/en
Publication of WO2013060290A1 publication Critical patent/WO2013060290A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • C08L9/08Latex
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/005Processes for mixing polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/26Crosslinking, e.g. vulcanising, of macromolecules of latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C08L23/20Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
    • C08L23/22Copolymers of isobutene; Butyl rubber ; Homo- or copolymers of other iso-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2309/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2309/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08J2309/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2309/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08J2309/06Copolymers with styrene
    • C08J2309/08Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2321/00Characterised by the use of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2409/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08J2409/02Copolymers with acrylonitrile
    • C08J2409/04Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/22Mixtures comprising a continuous polymer matrix in which are dispersed crosslinked particles of another polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • C08L2312/06Crosslinking by radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2555/00Characteristics of bituminous mixtures
    • C08L2555/20Mixtures of bitumen and aggregate defined by their production temperatures, e.g. production of asphalt for road or pavement applications
    • C08L2555/22Asphalt produced above 140°C, e.g. hot melt asphalt
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to the field of rubber, and more particularly to a rubber composition modified by rubber particles, a preparation method thereof and a polishing agent thereof.
  • Tire rolling resistance is also one of the important factors. Tire rolling resistance fuel consumption accounts for 14-17% of car fuel consumption, and tire rolling resistance decreases: ⁇ 0%, usually Reduce fuel consumption by ⁇ 2% Therefore, reducing tire rolling resistance is one of the important measures to reduce fuel consumption.
  • a rubber gel prepared by a direct polymerization method or a chemical crosslinking method such as a peroxide can improve the performance of the gel after the formulation is appropriate.
  • the European patent and the German patent DE 4220563 respectively report that a neoprene gel and a cis-T rubber gel are separately added to the rubber composition to improve the wear resistance and fatigue temperature rise of the disc rubber, but the wet skid resistance is lost.
  • US Patent No. S61842% uses surface-modified cis-butyl and butadiene rubber gels (the latex particles in the gel swell) The index 4 ⁇ 5, particle size 60 ⁇ 450 ⁇ m ), the rolling resistance of the natural rubber ( NR ) formula system bowl rubber is reduced, and the strong performance is not affected.
  • the chloromethyl benzene is grafted onto the butyl surface, and then used in the NR formulation system to reduce the rolling resistance of the bismuth rubber and improve the wet skid resistance.
  • U.S. Patent No. 6,207,757 uses chloromethylstyrene modified styrene butadiene rubber to reduce the rolling resistance of the NR formulation system and improve the traction performance and durability of the tire.
  • U.S. Patent No. 6,242,534 uses a styrene-butadiene rubber gel containing a few bases and a # base to the NR formulation system, which not only reduces the rolling resistance of the system, but also improves the wet skid resistance and significantly improves the tensile stress.
  • the specific gravity of the vulcanizate is also small.
  • U.S. Patent No. 6,699,935 uses a copolymerized modified styrene butadiene rubber gel to impart a low rolling resistance to the modified styrene butadiene rubber formulation system and excellent wet skid resistance and wear resistance.
  • the rubber gels mentioned in the above patent documents are all crosslinked by chemical crosslinking method. This method requires the use of higher-priced cross-linking monomers and consumes more energy, and mainly involves natural rubber formula systems or styrene-butadiene rubber. White carbon black system and modified styrene-butadiene rubber formula system. It is also important to improve the rolling resistance, wet skid resistance and wear resistance only after the rubber gel obtained by crosslinking has been modified. ⁇ Although the particle size of the rubber gel is reported in these patents, can the particle size of the first grade be dispersed when it is dispersed in the bowl gel? The modification of rubber gels has not been reported in any patent. Summary of the invention
  • the rubber composition of the rubber composition is improved in wet skid resistance, rolling resistance and abrasion resistance, and can be used as an excellent automotive tread rubber.
  • Another object of the present invention is to provide a method of preparing the disclosed elastomeric composition.
  • Still another object of the present invention is to provide a bowling gel of the rubber composition.
  • the international patent application WOO1/40356 (priority ⁇ 1999/February 3 U) submitted by the applicant on September 18, 20th, and the international patent application W submitted by the applicant on June 15th, 1st, 1st A fully vulcanized powdered rubber is disclosed in «!/98395 (Priority ⁇ 2 «June 06 IS).
  • the latex particles (rubber particles) in the rubber latex reach a certain amount of gel due to the irradiation cross-linking, and the particle size of the latex particles is fixed, and will not be after Adhesive or coagulated during the drying process.
  • the inventors found in the study that the radiation-crosslinked rubber latex and the uncrosslinked styrene-butadiene rubber latex were mixed, and then coagulated to obtain a crosslinked rubber particle-modified styrene-butadiene rubber rubber composition. .
  • the rubber particles having a crosslinked structure which are crosslinked by irradiation do not stick and coagulate, and the latex particles of the ordinary uncrosslinked styrene-butadiene rubber latex are coagulated, so that the rubber particles having a crosslinked structure are
  • the particle size of the original particles is dispersed in the raw body of the uncrosslinked styrene-butadiene rubber, and the uniformity of the ⁇ 3 ⁇ 4 is more than that of the whole
  • the mixture of the powdered powder and the raw rubber is much better.
  • the rubber composition obtained by coagulating the two types of latex is deuterated and finally prepared into a bismuth gel.
  • the rubber particles after irradiation crosslinking have a crosslinked structure, it is not necessary to consider vulcanization of the dispersed phase, thus solving The problem of common dishing of compositions composed of different rubbers; at the same time, the crosslinked crosslinked rubber particles are still very uniformly dispersed in the styrene butadiene rubber with very small original particle size, so the final The wet-slip resistance, rolling resistance and abrasion resistance of the obtained vulcanizate can be simultaneously improved.
  • a rubber composition of the present invention comprises an uncrosslinked rubber and rubber particles having a crosslinked structure dispersed therein.
  • the uncrosslinked rubber is a continuous phase
  • the rubber particles having a crosslinked structure are dispersed phases.
  • the rubber particles having a crosslinked structure are synthetic rubber particles or/and natural rubber particles, and may be, for example, any one or more of the following: natural rubber particles, styrene-butadiene rubber particles, styrene-butadiene rubber particles, nitrile rubber particles, Carboxy-butadiene rubber particles, neoprene particles, polybutadiene rubber particles, broken rubber particles or acrylate rubber particles, styrene-butadiene rubber particles, etc., any one or more of the following: nitrile rubber particles, butyl
  • the benzopyrene rubber particles, the styrene-butadiene rubber particles, and the carboxylated styrene-butadiene rubber particles are more
  • the average dispersed particle diameter is 2O ⁇ SO0nm, preferably 50 ⁇ 300nm, more preferably 50 ⁇ 200nm, the gel content is 6 ⁇ % by weight or higher;
  • the uncrosslinked rubber is butyl phthalate;
  • the weight ratio of the structural rubber particles to the uncrosslinked rubber is I: 99-2: 80, preferably 1: 99-10: 90, more preferably 2: 98-8: 92.
  • the rubber particles having a crosslinked structure as described above have a homogeneous structure. Moreover, no bonding modification or surface modification is performed. More preferably, the rubber particles having a crosslinked structure have a gel content of 75% by weight or more, more preferably 80% by weight or more, and an average particle diameter of from 50 to 30 ⁇ m, more preferably S « To 200nm.
  • the rubber composition of the present invention comprises a mixture of a non-crosslinked rubber latex and a component of a rubber particle having a crosslinked structure, and is obtained by coagulating: a rubber particle having a crosslinked structure.
  • the latex is a rubber latex obtained by irradiation crosslinking.
  • the method for preparing the rubber composition of the present invention comprises the following steps:
  • the rubber latex is cross-linked by irradiation, so that the rubber particles in the latex have a cross-linked structure to reach the gel content, and the rubber particles in the milk are fixed within the average particle size range;
  • the above-mentioned radiation crosslinked rubber latex is mixed with the uncrosslinked styrene butadiene rubber latex to be uniform;
  • the T benzene rubber latex is a synthetic rubber latex commonly used in the prior art, and comprises a latex polybutadiene latex prepared directly by the emulsion polymerization method in the prior art and a latex obtained by emulsifying the styrene-butadiene block gel prepared by any existing method; An emulsion polystyrene-butadiene latex prepared directly in the prior art emulsion polymerization process.
  • the rubber latex before radiation crosslinking is a synthetic rubber latex or/and a natural rubber latex commonly used in the prior art, including any one of the following: natural rubber latex, styrene-butadiene rubber latex, carboxylated styrene-butadiene rubber latex, Nitrile rubber latex, carboxylated nitrile rubber latex, neoprene latex, polybutadiene rubber latex, rubber latex or acrylate rubber latex, styrene-butadiene rubber latex, etc., preferably any one or the other of the following: nitrile rubber Latex, styrene-butadiene rubber latex, styrene-butadiene latex, carboxylated rubber latex, more preferably any one or more of the following: styrene-butadiene rubber latex, carboxylated styrene-butadiene rubber latex, T-nitrile rubber latex
  • the irradiation cross-linking of the rubber latex in the above step (1) is carried out in the preparation method of the whole bowl of powdered rubber disclosed in the international patent application WO 01/40356 (priority ⁇ 199 ⁇ ), December. The same method of irradiating crosslinked rubber latex.
  • the obtained radiation-crosslinked rubber latex is also a rubber latex before irradiation in WO01/4035.
  • a crosslinking aid may be used in the rubber latex, and a crosslinking assistant may also be used.
  • the crosslinking assistant used is selected from the group consisting of a monofunctional crosslinking assistant, a difunctional crosslinking assistant, and a trifunctional crosslinking aid. Agent, tetrafunctional cross-linking aid or polyfunctional cross-linking aid and any combination thereof.
  • Examples of the monofunctional crosslinking crosslinking aids include, but are not limited to, (meth) octyl acrylate, (meth) isooctyl propyl acrylate, glycidyl (meth) acrylate;
  • Examples of functional group crosslinking assistants include, but are not limited to: 1 > 4-T diol di(meth) acrylate, 1,6-hexanediol di(methyl)propanate, diethylene glycol Di(meth)acrylate, triethylene glycol di(meth)acrylate, neopentyl glycol di(meth)propionate, divinylbenzene;
  • examples of trifunctional crosslinking aids Including, but not limited to: trimethylol propyl tris(meth) acrylate, pentaerythritol tris(methyl) propyl acrylate;
  • examples of the tetrafunctional crosslinking auxiliaries include (but are not limited to): Pent
  • the amount of the crosslinking assistant added above is generally from ⁇ " to 10% by weight of the weight of the latex in the latex. Yi is preferably from 0.5 to 9% by weight, more preferably to 0.7,% by weight of ⁇
  • the source of high energy radiation for irradiation is selected from a cobalt source, an ultraviolet or high energy electron accelerator, preferably a cobalt source.
  • the dose of irradiation may be 0, l ⁇ 30Mra ⁇ 1, preferably 0, 5 ⁇ 20Mr.
  • the irradiation dose should be such that the rubber particle content of the rubber latex after irradiation crosslinking is 60% by weight or more. Preferably, it is 7 S% by weight or more, more preferably 80% by weight or more.
  • the rubber composition obtained by mixing the radiation-crosslinked rubber latex with the usual uncrosslinked styrene-butadiene rubber latex is dispersed in a continuous phase composed of uncrosslinked green rubber.
  • the rubber particle dispersed phase also has the characteristics of the fully vulcanized powder rubber disclosed in WO01/403S6. That is, the rubber particles having a crosslinked structure are rubber particles having a gel content of 6 % by weight or more, more preferably 75% by weight or more, more preferably 8% by weight or more.
  • Each of the rubber particles having a crosslinked structure is homogeneous, that is, the individual particles are homogeneous in composition, and no delamination or fraction is found in the particles under the observation of the existing microscopic technique. Equal heterogeneity.
  • the crosslinked structure The rubber particles are determined by cross-linking the corresponding rubber latex to determine the particle size of the rubber particles, and the particle size is consistent with the particle size of the latex particles in the original rubber latex. Rubber particles in raw rubber late
  • the (particle size of the latex particles) is generally from 20 to 5 angstroms, preferably from ⁇ to 30 )) ⁇ , more preferably from SO to 200 t»n.
  • the average particle diameter of the rubber particles having a crosslinked structure after irradiation crosslinking is also generally 20 to SOOnra, and is preferably: H im, more preferably 50 to 2 ⁇ ⁇ , because the two types of latex are uniformly mixed in the method.
  • the rubber particles in the rubber latex after irradiation and cross-linking have been cross-linked, have a certain dish content, will not stick or coagulate during the latex condensation process, and can be in uncrosslinked styrene-butadiene rubber.
  • the dispersion is uniform, and therefore, in the finally obtained rubber composition, the average particle diameter of the rubber particles having a crosslinked structure as a fraction is also 20 to S qing, and the yell is 50 to 3 ⁇ , more preferably, 50 to 2 miscellaneous iim's Fan Yu.
  • the uncrosslinked styrene-butadiene rubber latex and the radiation-crosslinked rubber latex are mixed and coagulated in accordance with the weight ratio, and the rubber composition is prepared.
  • the mixing device used in the mixing step of the two rubber latexes is a commonly used mixing device, which is selected from the prior art high-speed agitator, kneading machine and the like.
  • the latex coagulation conditions and equipment are based on the latex coagulating equipment commonly used in the existing rubber industry.
  • the rubber composition of the present invention which is prepared by mixing and coagulating a rubber latex which has not been crosslinked with a rubber latex and rubber particles having a crosslinked structure may further contain a filler which is commonly used in the field of rubber processing.
  • a filler which is commonly used in the field of rubber processing.
  • the following materials are particularly suitable fillers for the preparation of the rubber compounds and vulcanized rubbers of the present invention, including carbon black, chalk black, metal oxides, silicates, carbonates, acid salts, hydroxides, glass fibers. Or one of glass beads or the like or a mixture thereof.
  • the metal oxide is at least one of titanium oxide, aluminum oxide, magnesium oxide, calcium oxide, cerium oxide, and zinc oxide.
  • the rubber Mia compound of the present invention may further contain a crosslinking agent such as a crosslinking agent, a reduction accelerator, an antioxidant, a heat stabilizer, a light stabilizer, an ozone stabilizer, a processing aid, a plasticizer, a softener, and an anti-blocking agent.
  • a crosslinking agent such as a crosslinking agent, a reduction accelerator, an antioxidant, a heat stabilizer, a light stabilizer, an ozone stabilizer, a processing aid, a plasticizer, a softener, and an anti-blocking agent.
  • the amount of additives used in the rubber processing process is usually used, or according to the actual amount. The requirements of the situation are adjusted.
  • the addition of various additives mentioned above may be added when the two rubber latexes are mixed, or may be added after the two rubber latexes are mixed and then added by the usual rubber mixing process, and the equipment may be commonly used in the rubber industry.
  • common mixing equipment an open mill, an internal mixer, a single screw extruder or a twin screw extruder can be used.
  • the creped rubber prepared from the rubber composition of the present invention has a styrene-butadiene rubber base and a rubber particle having a crosslinked structure dispersed therein in an average particle diameter in a weight ratio.
  • the microscopic phase state of the rubber composition according to the present invention is as follows: the uncrosslinked styrene-butadiene rubber is a continuous phase, and the rubber particles having a crosslinked structure are dispersed phases, and It is dispersed at a fine particle diameter of 20 to 100 nm, preferably SO to 300 nm, and preferably 50 to 200 nm.
  • the rubber composition obtained vulcanizates phase still has! « ⁇ 3 ⁇ 4 of the structure
  • the vulcanizate prepared from the rubber composition of the present invention is not affected by the vulcanization system and can be vulcanized in a conventional sulfur deuteration system or a non-peeling system.
  • the vulcanizate prepared by the rubber composition of the invention is not affected by the bowling process, and can be flat plate, injection cupping, vulcanization tank deuteration, individual engraving machine bowl, co-melting salt bowl, bubbling bed thinning, microwave curing and high energy ray-curing and other ⁇
  • the mixing and thinning process of preparing the bowling rubber from the rubber composition of the invention adopts the methods commonly used in the rubber industry and the common mixing equipment, and can use an open mill, an internal mixer, a single screw extruder or a twin screw extruder. Wait.
  • the rubber compound of the invention can also be used as a solid masterbatch, and then the un-crosslinked block rubber is obtained by a blending process such as an internal mixer, a double mill, a screw extruder or the like to obtain a rubber compound.
  • the rubber latex is cross-linked by irradiation to make the rubber particles in the latex have a crosslinked structure, and then the radiation-crosslinked rubber latex and the uncrosslinked rubber latex are mixed on a common mixing device.
  • the solid masterbatch is obtained by coagulation using a rubber latex commonly used in a coagulation method.
  • the solid masterbatch is further added to the uncrosslinked block rubber by a mixing method commonly used in the rubber industry, and then mixed with a common rubber processing aid to obtain a bowl of rubber.
  • the rubber compound thus obtained can also be crosslinked by silver-irradiated cross-linking
  • the rubber particles of the structure achieve a dispersion in the particle size range in the uncrosslinked rubber matrix. Since the rubber particles in the rubber latex are determined by the particle size of the original latex particles by irradiation crosslinking, the crosslinked rubber particles are irradiated during the coagulation process and during the vulcanization process of the subsequent bowl rubber preparation.
  • the fine particle size to SOOnm is dispersed in the uncrosslinked butylphthalide, so that it has such a microscopic morphology that the rubber particles having a crosslinked structure can exert an effect and simultaneously solve the common existence of different rubbers in the bowling process.
  • the problem of vulcanization enables the simultaneous improvement of wet skid resistance, rolling resistance and abrasion resistance of the rubberized composition of the rubber composition of the present invention.
  • said rubber bowl s prepared from the rubber composition of the present invention not only has a low rolling resistance and excellent wet skid resistance, while having excellent abrasion resistance can be used as a tread rubber of high performance automobiles.
  • the rubber composition of the present invention and the preparation method thereof are simple, easy to operate, and the process conditions are all normal conditions, and are easy to be widely used.
  • a rubber composition comprising an uncrosslinked rubber and a rubber particle having a crosslinked structure therein; wherein the rubber particles having a crosslinked structure are synthetic rubber particles or/and natural rubber particles, and an average dispersed particle The diameter is 20 ⁇ 500imi, the gel content is weight or higher; wherein the uncrosslinked rubber is styrene-butadiene rubber; the weight ratio of the rubber particles having cross-linking structure to the uncrosslinked rubber is .1 : 99-20: 80.
  • the rubber composition according to the embodiment of the present invention characterized in that the rubber particles having a crosslinked structure are one or the following: natural rubber particles, styrene-butadiene rubber particles, carboxylated styrene-butadiene rubber particles , nitrile rubber particles, carboxylated nitrile rubber particles, neoprene particles, polybutane rubber particles, silicone rubber particles, propionate rubber particles, styrene-butadiene rubber particles, etc.
  • nitrile rubber particles anthraquinone rubber particles, styrene-butadiene rubber particles, carboxylated styrene-butadiene rubber particles, more preferably one or more of the following potassium: butyl rubber particles, carboxyl styrene-butadiene rubber particles 3.
  • the rubber composition according to embodiment 1 or 2 characterized in that the rubber particles having a crosslinked structure have a homogeneous structure.
  • the latex of the rubber particles having a crosslinked structure is a rubber latex obtained by irradiation crosslinking.
  • the synthetic rubber or/and the natural rubber latex is cross-linked by irradiation, and the synthetic rubber or/and the natural rubber-like particles in the milk have a cross-linked structure, reach the amount of the gel, and make the latex Synthetic rubber or/and natural rubber particles are fixed within the average particle size range;
  • the rubber latex is any one or the following: natural rubber latex, styrene butadiene rubber latex, carboxylated styrene butadiene rubber latex, nitrile rubber latex, carboxylated nitrile rubber latex, neoprene rubber polybutadiene rubber latex, Silicone rubber latex or propionate rubber latex, T-phenylpyrubber rubber latex, etc., preferably one or the other of the following: nitrile rubber latex, ⁇ benzopyrene latex, styrene butadiene rubber latex, carboxyl T rubber rubber rolling More preferably, any one or more of the following: T. benzene rubber latex, carboxyl T benzene rubber latex, butyronitrile rubber M ⁇ milk, most preferably T nitrile rubber J «milk.
  • Figure 1 is a photograph of a microscopic phase transmission electron microscope ( ⁇ ) of a rubber composition of the rubber composition obtained in Example 1. Specific implementation method:
  • Rolling resistance The rolling power loss was measured using a ⁇ rubber rolling resistance tester (Beijing Wanhui Technology Development Co., Ltd.).
  • the constant-speed moving ⁇ -shaped rubber sample is in close contact with the drum for relative movement.
  • the surface of the rubber sample in contact with the drum is deformed under pressure load, and the deformation gradually increases from the beginning of the contact point to the intermediate point; and gradually decreases from the intermediate point to the exit point to zero.
  • the resultant force of the rubber sample during the deformation from the beginning of the contact point to the intermediate point will be higher than the resultant force during the recovery from the intermediate point to the exit point.
  • This force parallel to the load force is the rubber sample. Power loss Value U/r). According to this, the rolling resistance of the rubber formulation can be characterized.
  • Rolling resistance index (%) The rolling resistance of pure rubber is measured as the base. The measured value of other modified rubber accounts for the rolling rubber force index as a percentage of the measured value of pure rubber rolling resistance.
  • the principle is: The sample and the grinding wheel are rubbed under a certain inclination angle and a certain load to determine the wear volume of a certain mileage.
  • the wear volume is calculated as follows:
  • the wear volume of the modified rubber is the wear volume of the modified rubber.
  • Abrasion index (%) The measured value of the abrasion volume of pure rubber is the base. The percentage of the measured volume of the other modified rubber to the measured value of the pure rubber is the abrasion index.
  • the friction of the compound on the wet surface is related to the hysteresis loss, and the iand surface at 0 e C is usually used to resist wet skid performance.
  • Anti-slip index (%): The tand resistance of pure rubber is determined as the base. The anti-wet slip measurement value of other modified rubber accounts for the percentage of pure rubber anti-slip measurement.
  • Milk polyprecipitated milk SBR1502 solid content 2 wt % ? combined with styrene bromide content 23 wt %, Mooney viscosity 50, Qilu Petrochemical Company rubber plant production.
  • Nitrile rubber L brand is nitrile-26, Zhaodong Tianyuan Chemical Co., Ltd. produces beta carbon black: Tianjin Dolphin Carbon Black Co., Ltd.
  • Accelerator TBBS tert-butyl ⁇ 2-benzothiazole hypoxanthine knee, Zheng Jinshan Chemical Plant Calcium Chloride: Commercially available
  • the milk is added to the coagulant solution, stirred for 15 minutes, filtered, washed, and thousand
  • Solid rubber (green rubber).
  • rotor speed SOrrain '1 is a process in which Bantmry mixer: Add raw rubber or styrene-butadiene rubber composition of the present invention, carbon black and other additives (great sulphur, accelerator, except), put down the top plug, mix 3miii. Dispense (temperature in !50 ⁇ rc).
  • the film was placed on the ⁇ -6 ⁇ type open mill (product of Shanghai Rubber Calendar Machinery Factory) after six times. Then, under the ⁇ 6 ⁇ , press the positive bowling time ⁇ 9 ⁇ , then the spalled rubber samples are made into standard splines, and various mechanical performance tests are carried out. The results are shown in Table 3.
  • the formulation of the rubber compound is shown in Table 2, and the unit is the parts by weight.
  • nitrile rubber gas butyronitrile-26
  • the solid content of nitrile latex After adding 3 % wt of the cross-linking aid trimethylolpropane triacrylate, the irradiation cross-linking was carried out at an irradiation dose of 3.0 Mmd to obtain a radiation-crosslinked nitrile rubber latex, which was irradiated and crosslinked in the latex.
  • the average particle size of the nitrile rubber particles is IdOnm
  • the gel content is 9 %% ⁇
  • the irradiated cross-linked nitrile rubber latex is added to the uncrosslinked lactopolyphenylene rubber SBR1502 according to a certain solid content ratio, wherein the solid content of the nitrile rubber latex after irradiation crosslinking is not
  • the combined solid content of styrene-butadiene rubber latex was 5;95.
  • the solid rubber composition was obtained by coagulation according to the previous gelation method, and the composition of the coagulant solution was the same as in Table 1.
  • the rubber obtained in step 2 is obtained.
  • the composition is vulcanized by a peroxide deuteration system, and the specific formulation is: Dicumyl peroxide is added to the rubber composition, and 1.5 parts by weight of dicumyl peroxide is used in 1 part by weight of the rubber composition.
  • the preparation and bowling method of the rubber compound are the same as described above, and the obtained vulcanized rubber sample is cut into an ultrathin section of about O.
  • the nitrile rubber particles are lightly dyed, which can be distinguished from the dark continuous phase styrene-butadiene rubber.
  • the nitrile rubber particles are dispersed in the continuous phase of the styrene-butadiene rubber with an average particle size of 100 nra.
  • the latex was changed from the mixed two latexes to the purely polystyrene-butadiene rubber latex S:BR3502, and the composition of the rubber compound of the specific rubber composition is shown in Table 2. ⁇ *i See Table 3.
  • Milk polystyrene T-bar rubber leg SBR1502 HI content 20 wt%, combined with styrene content 23 wt%, Mooney viscosity S «, Qilu Petrochemical Company rubber plant production.
  • Styrene-butadiene rubber latex 1 Latex-polybutan rubber latex, graded as styrene-butadiene "70, combined with styrene content of 70%, produced by Henan Yanshi Rubber Factory.
  • T benzene rubber latex 2 latex polystyrene-butadiene rubber latex, grade is styrene-butene - 5 ⁇ , combined with styrene content of 50% Shandong Qixiang Rubber Factory.
  • Carbon black N234 Tianjin Dolphin Carbon Black Co., Ltd.
  • Zinc oxide Commercially available ⁇
  • Stearic acid Commercially available.
  • Accelerator TBBS Tert-decyl 2-benzothiazole hypoxanthine > Zhengzhou Jinshan Chemical Plant.
  • Glycerin Commercially available.
  • Dicumyl peroxide Commercially available. Latex coagulation method:
  • the coagulant solution was prepared according to the formulation of Table 4, and then added to the coagulant solution according to the same amount of rubber latex as the coagulant, stirred for 15 minutes, filtered, washed, and dried to obtain Solid rubber (green rubber).
  • the styrene-butadiene rubber latex after cross-linking by irradiation is added to the uncrosslinked emulsion polystyrene-butadiene rubber latex SBR1502 according to a certain solid content ratio, wherein the solid content of the butyl emulsion after irradiation crosslinking is
  • the weight ratio of the uncrosslinked milk polystyrene-butadiene rubber Mm milk iH was 5:95. After stirring at a high speed for 15 minutes in a stirrer, it was coagulated according to the aforementioned latex coagulation method to obtain an enamel rubber composition.
  • the composition of the coagulant solution is the same as that of Table 4 ⁇
  • the crosslinking aid tributyl trimethylolpropane triacrylate was added at 3% by weight of the styrene-butadiene latex, and then irradiated.
  • Cross-linking, the irradiation dose is: IMnid
  • the radiation-crosslinked styrene-butadiene rubber latex is obtained
  • the average particle diameter of the radiation-crosslinked T-benzene rubber particles in the latex is Oiioi, and the amount of the limbs is 89%.
  • the radiation-crosslinked styrene-butadiene rubber rubber L is added to the uncrosslinked emulsion polystyrene-butadiene rubber latex SBR1502 according to a certain solid content ratio, wherein the emulsion solid content and uncrosslinked after irradiation crosslinking
  • the emulsion polystyrene-butadiene rubber latex has a weight ratio of 3:97. After stirring at a high speed for a minute in the agitator, it was coagulated according to the pre-lactation method to obtain a solid rubber composition.
  • the composition of the coagulant solution is the same as that of Table 4 ⁇
  • the rubber composition obtained above is added to the relevant auxiliary agent for kneading to obtain a rubber compound.
  • the formulation composition is shown in Table 5 in parts by weight, and the preparation and deuteration method of the rubber compound is the same as before.
  • the sample was then vulcanized rubber article prepared standard sample, for testing the mechanical properties, which junction Gao ⁇ shown in Table 6 as Comparative Example 2
  • the kneading emulsion was changed from the mixed two kinds of latex to the emulsion polystyrene-butadiene rubber latex SBm502, and the others were the same as in Example 3.
  • the composition of the rubber compound of the specific rubber composition is shown in Table 5.
  • the performance of the rose rubber is shown in the table » Comparative Example and Example Formulation
  • the rolling resistance index, the abrasion index and the wet skid index of the bowling rubber can be simultaneously improved, which is due to the crosslinked structure after radiation crosslinking.
  • the benzene rubber particles are dispersed in a continuous phase styrene-butadiene rubber matrix at a fine particle diameter of S0 to 300 nm. This property of the rubber composition of the present invention is particularly suitable for use as a tread rubber for automobiles.
  • Milk poly-T-phenyl rubber SBR1S02 ⁇ content 2 ⁇ wt%, combined with styrene content 23 wt%, Mooney viscosity 5 Qilu Petrochemical Company sample rubber factory production.
  • Carboxyl styrene-butadiene rubber latex The brand name is bullying benzene-70, produced by Yanshan Henan Yanshi Rubber Factory, carbon black: N2M Tianjin Dolphin Carbon Black Co., Ltd.
  • Zinc Oxide Commercially available.
  • Glycerin Commercially available.
  • Dicumyl peroxide Commercially available. Latex coagulation method:
  • the coagulant solution was prepared according to the formula of Table 7, and then added to the coagulant solution according to the same amount of rubber glue as the coagulant. After 5 minutes, it was filtered, washed and dried to obtain a solid rubber. (Raw rubber).
  • Banbury mixer product of Fanrei Bridge, UK
  • the volume is 1.57L
  • the rotor speed is SOr-miif 1
  • the process is: adding styrene-butadiene rubber or rubber group of the invention Compound, carbon black and other auxiliaries (except sulfonate, accelerator, except), put down the top plug, mix miiu rubber (temperature is 150 ⁇ said. C).
  • the irradiation cross-linking is carried out.
  • dose is 3.0Mrad, to obtain irradiation crosslinked gas-based styrene-butadiene rubber latex, average particle diameter ⁇ butyl rubber latex particles of lOOnm irradiation crosslinked, gel content of 93% ⁇
  • the radiation-crosslinked carboxylated styrene-butadiene rubber latex is added to the uncrosslinked milk-polybutanized snail emulsion SBR1502 according to a certain solid content ratio, wherein the irradiated i ⁇ butyl-transfer milk solid content and The uncrosslinked milk polystyrene-butadiene rubber content is 3:97 by weight. After stirring at a high speed for 15 minutes in a stirrer, it was coagulated according to the aforementioned latex coagulation method to obtain a solid rubber composition ⁇ in which the composition of the coagulant solution was the same as in Table 7.
  • the latex was changed from the mixed two kinds of glue to the purely polystyrene-butadiene rubber latex SBR1502, and the others were the same as those in the example S.
  • the composition of the rubber compound of the specific rubber composition is listed in Table 9. Comparative Example and Example Formulation
  • the rolling resistance index, the abrasion index and the wet skid resistance index of the rubberized rubber of the present invention can be simultaneously improved, which is due to the crosslinked structure after irradiation crosslinking.
  • the carboxystyrene-butadiene rubber particles are dispersed in a continuous phase T-benzene rubber matrix at a fine particle diameter of Si iOOnm. This property of the rubber composition of the present invention is particularly suitable for use as a tread rubber for automobiles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

一种橡胶组合物及其制备方法和其硫化胶。所述橡胶组合物包含未交联橡胶和分散在其中的具有交联结构的橡胶粒子;其中具有交联结构的橡胶粒子为合成橡胶粒子或/和天然橡胶粒子,例如可以是以下任何一种或几种:天然橡胶粒子、丁苯橡胶粒子、羧基丁苯橡胶粒子、丁腈橡胶粒子、羧基丁腈橡胶粒子、氯丁橡胶粒子、聚丁二烯橡胶粒子、硅橡胶粒子或丙烯酸酯橡胶粒子、丁苯吡橡胶粒子等,平均粒径为20-500nm,凝胶含量为60%重量或更高;其中未交联橡胶为丁苯橡胶;所述具有交联结构的橡胶粒子与未交联橡胶的重量比为1:99-20:80。所述橡胶组合物包括将未交联橡胶胶乳与具有交联结构的橡胶粒子的胶乳在内的组分混合后凝并而得。其中具有交联结构的橡胶粒子的胶乳为经过辐照交联后得到的橡胶胶乳。所述橡胶组合物的硫化胶滚动阻力、湿滑性能、耐磨性能能够同时得到改善,可以用于制备高性能汽车胎面胶。

Description

Figure imgf000003_0001
技术领域
本发明涉及橡胶领域, 进一步地讲, 涉及一种由橡胶粒子改性的橡胶組 合物及其制备方法和其疏化胶》 背景技术
汽车越来越成为现代生活不可或缺的工具, 汽车所用的动力基本来自 于石油, 石油资源是有限的, 同时汽车工业的快速发展也面临二氧化鑲排放 减量压力, 如何降低汽车燃油消耗变得越来越迫切。 降低燃油消耗, 不仅可 以降低汽牟运行成本, 而且可以减少二氧化鑲排放量和緩解石油资源的紧张 状况。 汽车燃油消耗除了受汽车自身设计闺素影响外, 轮胎滚动阻力也是重 要闺素之一,轮胎滾动阻力燃油消耗占汽车燃油消耗的 14 ~ 17%, 轮胎滚动 阻力每降低: ΐ0%, 通常可以降低燃油消耗 ~ 2% 因此, 降低轮胎滚动阻 力被作为降低燃油消耗的重要措施之一。
但是在降低轮胎胶料(主要是胎面胶)滾动阻力研究中遇到了 手的 问题。 即滚动阻力、 湿滑性能、 耐磨性能相互矛盾的所谓的 "魔三角"问题。 简单的增加软化剂用量, 可以改善轮胎的抗湿滑性, 但其耐磨性降低和滚动 阻力增加。 改善补强填料(戾黑或白炭黑)的用量, 可以在一定程度上降低 滚动阻力, 却使补强填料在胶料中很难分散均匀, 并使抗湿滑性降低。 加大 碗化剂的用量, 即改善交联密度, 和增加补强填料用量的效果一样, 降低滚 动阻力同时使抗湿滑性变差。 为了实现三方面性能的平衡, 除了对轮胎结构 设计进行优化外, 国内外 ¾ ^股料(以胎面胶为主)配方进行了广浥深入的 研究。 一方面合成适用的橡胶原料(如溶聚丁苯橡胶 SSBR、 反式聚异戊二 錄 ΤΡί、 丁二婦 -异戊二烯苯乙婦集成橡股81腿、 高乙烯基顺 Τ橡胶 等), 另一方面着手寻求具有较好综合性能的改性剂和实用配方。 在配方研 究中已获得了一些 , 比较有代表性的是: 溶聚丁^ j¾ ( SSBR ) 等与 炭黑和白炭黑并用或倒易 (反转)炭黑体系, 体系特点是主配方基本不变, 只是在补强填料上有所不同, 容易在工业上实现; 其缺点是需要使用较多的 硅烷偶联剂且炼胶时设备负荷大, 鬼化胶的耐磨性也不理想。
采用直接聚合方法或过氧化物等化学交联方法制备的橡胶凝胶在配方 适当时, 可以改善疏化胶的性能。 例如, 欧洲专利 和德国专利 DE4220563 中分别报道了在橡胶组合物中分別加入氯丁橡胶凝胶和顺 T橡 胶凝胶来改善碟化胶的耐磨性和疲劳温升, 但是损失了耐湿滑性《
所以艮多专利开始采用改性的橡胶凝胶来改善樣胶碗化胶的性能, 例如 美国专利 l〗S61842%使用经过表面改性的顺丁和丁笨橡胶凝胶(凝胶中胶乳 粒子溶胀指数 4 ~ 5, 粒径 60 ~ 450η m ), 使天然橡胶 ( NR )配方体系碗化胶 的滚动阻力降低, 且强力性能未受影响。
美闺专利 中, 把氯甲基苯乙錄接枝到丁^ ^胶凝 面上, 然后将其用于 NR配方体系中,使槐化胶的滾动阻力降低,而抗湿滑性改善。
美国专利 US6207757用氯甲基苯乙烯改性的丁苯橡胶 达到了降低 NR配方体系碗化胶滚动阻力的作用 同时改善了轮胎的牵引性能和耐用性。
美国专利 US6242534把含幾基和■#基的丁苯橡胶凝胶一并用于 NR配方 体系, 不仅降低了体系蹺化胶的滚动阻力, 改善了抗湿滑性, 而且明显改善 了定伸应力。
欧洲专利 ΕΡ14 ί075 用丁苯橡胶凝胶和增塑淀粉来改善丁苯橡胶 ( SB )与顺 Τ橡胶( )并用的白炭黑体系的性能, 结杲耐磨性得到了改 进, 滚动阻力降低, 硫化胶的比重也较小。
美国专利 US6699935 用共聚改性丁苯橡胶凝胶使改性丁苯橡胶配方体 系具有低滚动阻力兼有出色的抗湿滑性与耐磨性。 上迷专利文献提到的橡胶凝胶全部采用化学交联方法交联, 这种方法需 要使用价格较高的交联单体且能耗较大, 并且主要涉及天然橡胶配方体系或 丁苯橡胶的白炭黑体系及改性丁苯橡胶配方体系。 面且重要的是必须将交联 后得到的橡胶凝胶在进行改性后才可以达到滾动阻力、 抗湿滑性与耐磨性的 同时改善。 ^且虽然在这些专利中有报道橡皎凝胶的粒径, 但是当这些橡胶 凝胶分散到碗化胶中时, 能否还能达到最初级粒径的分散, 能否真正发挥纳 来级橡胶凝胶的改性作用, 没有在任何专利中报道。 发明内容
针对现有技术的问题,本发明的目的之一是提供一种橡胶组合物。该橡胶 組合物的碗化胶抗湿滑性、 滚动阻力和耐磨性同时得到改善, 可以作为优良 的汽车胎面胶使用。
本发明的另一个目的是提供所迷橡肢組合物的制备方法。
本发明的再一个目的是提供所迷橡胶组合物的碗化胶。 本申请人于 20輔年 9月 18日提交的国际专利申请 WOO1/40356 (优先权 曰 1999年 Ϊ2月 3 U )以及本申请人于 2肺1年 6月 15日递交的国际专利申 请 W() «!/98395 (优先权曰 2«00年 6月 IS曰) 中公开了一种全硫化粉末橡 胶。 提出当采用辐照方法交联橡 m乳后, 由于辐照交联使得橡 乳中的 胶乳粒子(橡胶粒子)达到一定的凝胶舍量, 其胶乳粒子的粒径固定下来, 不会在之后的千燥过程中粘连或凝并。 发明人在研究中发现, 将这种辐照交 联后的橡胶胶乳和未交联的丁苯橡胶胶乳混合, 之后共凝并得到一种交联的 橡胶粒子改性丁苯橡胶的橡胶组合物。 其中由于辐照交联的具有交联结构的 橡胶粒子之间不会粘连和凝并, 而普通的未交联丁苯橡胶胶乳的胶乳粒子会 凝并, 因此具有交联结构的橡胶粒子便会以其原始粒子的粒径分散在未交联 的丁苯橡皿乳凝并后得到的生^ ^体中, 而且^ ¾均匀程度要比直接将全 碗化粉末樣胶与生胶混炼得到的混合物中好得多。 将所迷两种胶乳凝并后得 到的橡胶组合物戚化, 最终制备成琉化胶, 由于辐照交联后的橡胶粒子已经 具有交联结构, 不需要考虑分散相的硫化, 这样就解决了不同橡胶組成的组 合物的共碟化问题; 同时辐照交联的具有交联結构的橡狡粒子依然以非常小 的原始粒径非常均勾地分散在丁苯礁化橡胶中, 所以最终得到的硫化胶的抗 湿滑性、 滚动阻力和耐磨性可以得到同时的改善。
具体来讲, 本发明的一种橡胶组合物, 包含未交联橡胶和分散在其中的 具有交联結构的橡胶粒子。 未交联橡胶为连续相, 真有交联结构的橡.胶粒子 为分散相。 其中具有交联结构的橡胶粒子为合成橡胶粒子或 /和天然橡胶粒 子, 例如可以是以下任何一种或几种: 天然橡胶粒子、 丁苯橡胶粒子、 丁苯椽胶粒子、 丁腈橡胶粒子、 羧基丁腈橡胶粒子、 氯丁橡胶粒子、 聚丁二 烯橡胶粒子、 破橡胶粒子或丙烯酸酯橡胶粒子、 丁苯纰橡胶粒子等, 优逸以 下任何一种或几种: 丁腈橡胶粒子、 丁苯吡橡胶粒子、 丁苯橡胶粒子、 羧基 丁苯橡胶粒子, 更优选以下任何一种或几种: 丁苯橡胶粒子、 羧基丁苯橡胶 粒子、 丁腈橡胶粒子, 更优选丁腈橡胶粒子。 平均分散粒径为 2O ~ SO0nm, 优选为 50 〜300nm, 更优逸 50~200nm, 凝胶含量为 6β%重量或更高; 其申 未交联橡胶为丁苯椽胶; 所述具有交联结构的橡胶粒子与未交联橡胶的重量 比为 I: 99-2 : 80, 优选 1: 99-10: 90, 更优选为 2: 98-8: 92。
以上所迷具有交联结构的橡胶粒子为均相結构。 而且不进行任何接技改 性、 表面改性。 更优选的, 所述具有交联結构的橡胶粒子的凝胶含量为 75% 重量或更高, 更优选 80%重量或更高, 其平均粒径优逸为 50 至 30ihim, 更 优逸 S«至 200nm。 本发明所述的橡胶組合物的制备, 是包括将未交联橡胶胶乳与具有交联 结构的橡胶粒子的腚乳在内的组分混合后凝并而得: 其中具有交联结构的橡 胶粒子的胶乳为经过辐照交联后得到的橡胶胶乳。 具体地讲, 本发明的橡胶組合物的制备方法, 包括以下步骤:
( 1 ) 将橡胶胶乳经过辐照交联, 使胶乳中的橡胶粒子具有交联结构 , 达到所述凝胶含量, 乳中的橡肢粒子固定在所述平均粒径范围内;
( 2 ) 然后按所迷具有交联结构的橡胶粒子与未交联丁苯橡胶的重量 比计, 取上述辐照交联的橡胶胶乳与未交联的丁苯橡胶胶乳进行混合至均 匀;
( 3 ) 将以上所得混合胶乳进行共凝并得所迷橡胶组合物 a
以上所述的橡胶组合物的制备方法,。 其中 T苯橡胶胶乳为现有技术中 常见的合成橡胶胶乳, 包括现有技术中乳液聚合方法直接制备的乳聚丁零胶 乳和任何现有方法制备的丁苯块状胶乳化后得到的胶乳; 优选为现有技术中 乳液聚合方法直接制备的乳聚丁苯胶乳。 其中辐照交联之前的橡胶胶乳为现 有技术中常用的合成橡胶胶乳或 /和天然橡胶胶乳, 包括以下任何一种或凡 种: 天然橡胶胶乳、 丁苯橡胶胶乳、 羧基丁苯橡胶胶乳、 丁腈橡胶胶乳、 羧 基丁腈橡胶胶乳、 氯丁橡胶胶乳、 聚丁二烯橡胶胶乳、 袭橡胶胶乳或丙烯酸 酯橡胶胶乳、丁苯 橡胶胶乳等,优选以下任何一种或凡种: 丁腈橡胶胶乳、 丁苯吡橡胶胶乳、 丁苯椽皿乳、 羧基丁笨橡胶胶乳, 更优选以下任何一种 或几种: 丁苯橡胶胶乳、 羧基丁苯橡胶胶乳、 T腈橡胶胶乳, 最优选 T腈橡 胶胶乳。 其中橡胶胶乳的闺含量与丁笨橡胶胶乳的固含量的重量比为 1 : 99-20: 8 , 优选 ί: 99-1 : 90, 更优选 2: 98-8: 92。
以上所述步骤 (1 ) 中橡胶胶乳的辐照交联采自按照国际专利申请 WO01/40356 (优先权曰 199<)年 .12月 3 曰)所公开的全碗化粉末橡胶的制 备方法中相同的辐照交联橡胶胶乳的方法。 所得的辐照交联后的橡殷胶乳也 WO01/4035 中辐照后未千燥之前的橡胶胶乳。
具体来讲, 在橡股胶乳可以不使用交联助剂, 也可以使用交联助剂。 所 用的交联助剂选自单官能团交联助剂、 二官能团交联助剂、 三官能团交联助 剂、 四官能团交联助剂或多官能团交联助剂及其任意组合。 所迷的单官能团 交联助剂的实例包括(但不限于): (甲基) 丙烯酸辛酯、 (甲基) 丙蟑酸异 辛酯、 (甲基)丙烯酸縮水甘油酯; 所迷的二官能团交联助剂的实例包括(但 不限于): 1 > 4-T二醇二(甲基) 丙烯酸酯、 1 , 6-己二醇二(甲基) 丙婦酸 酯、 二乙二醇二(甲基) 丙烯酸酯、 三乙二醇二(甲基) 丙烯酸酯、 新戊二 醇二(甲基) 丙錄酸酯、 二乙烯基苯; 所迷的三官能团交联助剂的实例包括 (但不限于): 三羟甲基丙垸三(甲基) 丙烯酸酯、 季戊四醇三(甲基) 丙 婦酸酯; 所述的四官能团交联助剂的实例包括(但不限于): 季戊四醇四(甲 基) 丙烯酸酯、 乙氧化季戊 醇四 (甲基) 丙烯酸酯; 所迷的多官能团交联 助剂的实例包括(但不限于): 二季戊四醇五(甲基) 丙烯酸酯。 在本文中, " (甲基) 丙烯酸酯"指丙烯酸酯或甲基丙烯酸酯。 这些交联助剂可以以任意 組合的方式使用, 只要它们在辐照下有助于交联即可。
以上所述交联助剂的加入量一般为胶乳中千胶重量的 β』至 10%重量。 优逸为 0.5至 9 %重量, 更优选为 0.7至, %重量 Θ
所迷辐照用的高能射线源选自钴源、紫外或高能电子加速器,优选钴源。 辐照的剂量可以为 0,l ~ 30Mra<l, 优选 0,5 ~ 20Mr —般情况下, 辐照剂 量应使得橡胶胶乳辐照交联后的橡胶粒子凝胶含量达到 60%重量或更高,优 选 7S%重量或更高, 更优选 80%重量或更高。
由此, 由该种辐照交联后的橡胶胶乳同通常的未交联的丁苯橡胶胶乳混 合后凝并而得的橡胶组合物中, 分散在未交联生胶构成的连续相中的橡胶粒 子分散相, 也具有 WO01/403S6所公开的全硫化粉末橡胶的特性。 即该种具 有交联结构的橡胶粒子是凝胶含量达 6〖ϊ%重量或更高, 更优为 75%重量或 更高的橡胶粒子, 更优选 8Θ%重量或更高。 该种具有交联结构的橡胶粒子中 的每一个耀啦都是均相的, 即单个微粒在组成上都是均质的, 在现有显微技 术的观察下微粒内没有发现分层、 分相等不均相的现象。 该具有交联结构的 橡狡粒子是通过将相应的橡胶胶乳辐照交联^将橡胶粒子粒径闺定的, 其粒 径与原始橡胶胶乳中的胶乳粒子的粒径一致。 原始橡胶胶乳中的橡胶粒子
(胶乳粒子)的平均粒径一般为 20至 5卿 nm, 优选为 ϊ至 30ί)ηηι, 更优 选 SO至 200t»n。 经过輻照交联后的具有交联結构的橡胶粒子的平均粒径一 般也为 20至 SOOnra, 优逸为 至: H im, 更优选 50至 2ΘΟϋΐΜβ 由于该方 法中利用两种胶乳混合均匀而凝并, 辐照交联后的橡胶胶乳中橡胶粒子已经 交联, 具有一定的皿含量, 不会在胶乳凝并过程中粘连或是凝并, ¾且可 以在未交联的丁苯橡胶中分散均 , 因此, 最后得到的橡胶组合物中, 其中 作为分 的具有交联结构的橡胶粒子的平均粒径也在 20至 S卿 um, 优逸 为 50 至 3雜 n , 更优选,50至 2雜 iim的范闺内。
本发明按照所述重量比将未交联丁苯橡胶胶乳、 辐照交联后的橡胶胶乳 混合后共凝并, 制备得到该橡胶组合物。 其制备过程中, 在两种橡胶胶乳混 合步骤所用的混合设备就是常用的混合设备, 选自现有技术中的高速搅拌 机, 捏合机等机械混合设备。 胶乳的凝并条件和设备就采用现有橡胶工业中 常用的胶乳凝并 和设备。
从未交联橡胶胶乳和具有交联结构的橡胶粒子的橡胶胶乳混合凝并制 备的本发明的橡胶组合物还可含有橡胶加工领域中常用的填充剂。 下述物质 是制备本发明的混炼胶和硫化橡胶的特別适宜的填充剂, 包括炭黑、白褒黑、 金属氧化物、 硅酸盐、 碳酸盐、 破酸盐、 氢氧化物、 玻璃纤维、 或玻璃微珠 等中一种或其混合物。 其中所述金属氧化物优逸氧化钛、 氧化铝、 氧化镁、 氧化钙、 氧化钡和氧化锌等中的至少一种。 本发明的橡 Mia合物中还可以含 有倒如交联剂、减化促进剂、 抗氧化剂、 热稳定剂、 光稳定剂、 臭氧稳定剂、 加工助剂、 增塑剂、 软化剂、 防粘连剂、 发泡剂、 染料、 颜料、 蜡、 增量剂、 有机酸、 阻燃剂、 和偶联剂等橡胶加工咸化过程中常用的助剂 所用助剂用 量均为常规用量, 或根据实际情况的要求进行调整。 以上所述的各种助剂的加入可以在两种橡胶胶乳混合时就加入, 也可以 在两种橡胶胶乳混合凝并后通过橡胶通常的混炼工艺加入, 设备可采用橡胶 工业中常用的方法和常用混炼设备, 可以使用开炼机、 密炼机、 单螺杆挤出 机或双螺杆挤出机等。 由本发明所迷的橡胶組合物制备的毓化胶, 包舍有按所迷重量比计的, 砥化丁苯橡胶基体以及以所迷平均粒径分散在其中的具有交联結构的橡胶 粒子。
具体来讲, 如前所述本发明所述的橡胶组合物的微观相态是: 所述的未 交联丁苯橡胶为连续相, 所迷的具有交联结构的橡胶粒子为分散相, 且以 20 至 SOOnm, 优选 SO至 300nm, 优逸 50至 200nm的细小粒径分散。 在该橡 胶组合物制得的硫化胶中依然具有相! ¾的«结构 β
本发明的橡股组合物制备的硫化胶不受硫化体系的影 , 可在常规的硫 磺硗化体系或非¾^疏化体系中硫化。 本发明橡胶組合物制备的硫化胶不受 碗化工艺的影响, 可以平板 ί化、 注压碗化、硫化罐戚化、 个体翁化机碗化、 共熔盐碗化、 沸腾床疏化、 微波硫化以及高能射线硫化等 β
由本发明橡胶组合物制备碗化胶的混炼和疏化过程采用橡胶工业中常 用的方法和常用混炼设备, 可以使用开炼机、 密炼机、 单螺杆挤出机或双螺 杆挤出机等。
本发明的橡^ a合物还可以作为固体母胶,再和未交联的块状橡胶通过密 炼机、 双 磨机、 螺杆挤出机等共混工艺得到混炼胶。 比如, 将橡胶胶乳 采用辐照的方法交联, 使胶乳中的橡胶粒子具有交联结构, 然后将辐照交联 后的橡胶胶乳和与未交联的橡胶胶乳在常用混合设备上混合后, 采用橡胶胶 乳常用的凝并方法凝并得到固体母胶。 将该固体母胶再采用橡胶工业中常用 的混炼方法加入到未交联的块状橡胶中, 再加入常用的橡胶加工助剂混炼、 璩化后得到碗化胶。 如此得到的混炼胶, 也可以保银辐照交联的具有交联结 构的橡胶粒子在未交联的橡胶基体中达到所迷的粒径范围内的分散状况。 由于通过辐照交联使得橡胶胶乳中的橡胶粒子以原始胶乳粒子的粒径 闺定下来, 所以在凝并过程中和后续碗化胶制备的硫化过程中, 辐照交联的 橡胶粒子以 20至 SOOnm的细小粒径分散在未交联丁苯椽腚中, 所以才具有 这样的微观形态, 才可以使具有交联结构的橡胶粒子发挥效应 同时解决了 不同橡胶在碗化过程中存在的共硫化问题, 使得本发明的橡胶组合物的戚化 胶抗湿滑性、 滚动阻力和耐磨性可以得到同时的改善。
进一步地说 s 由本发明的橡胶组合物所制备的碗化橡胶不仅具有低的滚 动阻力和优异的耐湿滑性, 同时具有优异的耐磨性 可以作为高性能汽车胎 面胶使用。
本发明的橡胶组合物及其硗化胶的制备方法筒单, 操作容易, 工艺条件 均为通常条件, 易于广泛应用。
本发明进一步涉及如下实施方案:
1、 一种橡胶組合物, 包含未交联橡胶和^ :在其中的具有交联结构的 橡腚粒子; 其中具有交联结构的橡胶粒子为合成橡胶粒子或 /和天然橡胶粒 子, 平均分散粒径为 20 ~ 500imi,凝胶含量为 重量或更高; 其中未交联 橡胶为丁苯橡胶; 所述具有交联结构的橡胶粒子与未交联橡胶的重量比为 .1 : 99-20: 80。
2、 根椐实施方案 ί 所迷的橡胶组合物, 其特征在于所述具有交联结构 的橡胶粒子为以下任餌一种或凡种: 天然橡胶粒子、 Τ苯橡胶粒子、 羧基丁 苯橡胶粒子、 丁腈橡胶粒子、 羧基丁腈橡胶粒子、 氯丁橡胶粒子、 聚丁二蜂 橡狡粒子、 硅橡胶粒子、 丙燁酸酯橡胶粒子、 丁苯 *橡胶粒子等, 优逸以下 任何一种或凡种: 丁腈橡股粒子、 Τ苯吡橡胶粒子、 丁苯橡胶粒子、 羧基丁 苯橡胶粒子, 更优选以下任钾一种或几种: 丁笨橡胶粒子、 羧基丁苯橡胶粒 3、 根据实施方案 1或 2所迷的橡胶组合物, 其特征在于所述具有交联 结构的橡胶粒子为均相结构。
4、 根据实施方案 1 ~ 3之任一项所迷的橡胶组合物, 其特狃在于所述具 有交联结构的橡胶粒子的凝胶含量为 7S%重量或更高, 更优选 80%重量或 更高。
5、 根据实施方案 1 ~ 4之任一项所述的橡胶組合物, 其特征在于所迷具 有交联结构的橡胶粒子的平均粒径为 S 至 3O0nm , 优选 SO至 2iKhime
6、 根据实施方案 i 之任一项所述的橡胶组合物, 其特狃在于所迷具 有交联结构的橡胶粒子与未交联橡胶的重量比为 1: 99 θ: 90.
7、 根据实施方案 ~ 6之任一项所迷的橡胶組合物, 其特狃在于所述具 有交联结构的橡胶粒子与未交联橡胶的重量比为 2: 98-8: 92。
8、 根据实施方案 1 ~ 7之任一项所迷的橡胶组合物, 其特征在于所迷组 合物包括将未交联橡胶胶乳与具有交联结构的橡胶粒子的胶乳在内的組分 混合后凝并而得; 其中具有交联結构的橡胶粒子的胶乳为经过辐照交联后得 到的橡皿乳。
9、 一种根据实施方案 1至 8之任一项所迷的橡胶组合物的制备方法, 包括以下步骤:
( .1 )将合成樣胶或 /和天然橡胶胶乳经过辐照交联, 乳中的合成橡 胶或 /和天然橡肢粒子具有交联结构, 达到所迷凝胶舍量, 并使胶乳中的合成 橡胶或 /和天然橡胶粒子固定在所述平均粒径范闺内;
{ 2 )然后按所迷具有交联结构的橡胶粒子与未交联丁苯橡胶的重量比 计,取上迷辐照交联的合成樣胶或 /和天然樣胶服乳与未交联的 Τ苯橡胶胶乳 进行混合至均勾;
( 3 )将以上所得混合胶乳进行共凝并得所述橡胶组合物。
10、根据实施方案 9所述的制备方法,其特征在于所述合成橡胶或 /和天 然橡胶胶乳为以下任何一种或凡种: 天然橡胶胶乳、 丁苯橡胶胶乳、 羧基丁 苯橡胶胶乳、 丁腈橡胶胶乳、 羧基丁腈橡胶胶乳、 氯丁橡胶胶專 聚丁二烯 橡胶胶乳、 硅橡胶胶乳或丙婦酸酯橡胶胶乳、 T苯吡橡胶胶乳等, 优选以下 任轲一种或凡种: 丁腈橡胶胶乳、 τ苯吡橡胶胶乳、 丁苯橡胶胶乳、 羧基 T 苯橡胶胶轧, 更优选以下任何一种或几种'. T苯橡胶胶乳、 羧基 T苯橡胶胶 乳、 丁腈橡 M ^乳, 最优选 T腈橡 J«乳。
n、一种根据实施方案 1至 8之任一项所述的橡胶组合物制备的璩化胶, 包含有按所迷重量比计的碗化丁苯橡胶基体> 以及以所迷平均粒径分散在硫 化丁苯橡胶基体中的具有交联结构的橡胶粗子 β
附图说明:
图 1是实施例 1制得的橡胶組合物疏化胶的微现相态透射电镜(ΤΕΜ ) 照片。 具体实施方法:
下面用实施例进一步描迷了本发明, 但是本发明的范围不受这些实施例 的限制。 本发明的范围由后附的权利要求书确定。
(一 )实施例中实验数据用以下仪器设备及测定方法测定:
( 1 )滚动阻力: 使用 Π橡胶滚动阻力试验机(北京万汇一方科技 发展有限公司 )测定滚动功率损失。
在给定负荷下, 恒速运动的圃轮状橡胶试样与轮鼓密切接触作相对运 动。 橡胶试样与轮鼓接触的表面在压力负荷下产生变形, 变形从开始接触点 到中间点逐渐增大; 再从中间点到离开点逐渐减少至零。 由于各种橡胶配方 的粘弹特性 , 橡胶试样在开始接触点到中间点变形期间的合力将比中间点到 离开点复原期间的合力高, 这个与负荷力平行的力即为橡胶试样的功率损耗 值 U/r )。 据此可以表征该橡胶配方的滚动阻力。
滚动阻力指数(%): 将纯橡胶的滚动阻力测定值为基数, 其它改性胶 的测定值占純橡胶滚动阻力测定值之百分数即为滚动陣力指数。
( 2 )耐磨性能测试: 按照 GB/T 16894998, 采用 WML 76型阿克隆磨 耗试验机测定琉化胶的磨耗值。
原理是: 将试样与砂轮在一定的倾斜角度和一定的负荷作用下进行摩 擦, 测定一定里程的磨耗体积。 磨耗体积计算如下:
Figure imgf000014_0001
V=
P
V—试样磨耗体积, cm3
nij―试样磨损前质量,
试样磨损后质量, g
p "-"斌样密度, crn3
试样磨耗指数计算: 磨耗指数= X 100%
标准配方橡胶的磨耗体积。
改性橡胶的磨耗体积。
磨耗指数(%): 将纯橡胶的磨耗体积测定值为基数, 其它改性胶的磨 耗体积測定值占纯橡胶测定值的百分数即为磨耗指数。
( 3 )动态力学性能试验(測定湿滑): 采用美国 Rheometrk Scientific 公司生产的 DMTA iV (动态机械热分析仪)测试, 试验条件为 10Hz, 0.5% 应变, 升温速度 2eC/miii。
胶料在湿表面上的摩擦与滯后损失有关,通常采用 0eC下的 iand表狃抗 湿滑性能。 0eC下的 tan8值越大,轮胎在湿路面上的牵引性能越好 β
抗湿滑指数(%): 将純橡胶的抗湿滑测定值 tand为基数, 其它改性胶 的抗湿滑测定值占纯橡胶抗湿滑测定值的百分数即为抗湿滑指数
( 4 )力学性能'. 按有关标准要求测定。
( 5 ) 辐照交联橡胶胶乳的凝胶含量的测定: 将胶乳按照一定的条件进 行辐照交 , 进行喷雾千燥, 得到全碱化粉末橡胶, 然后按照国际专利申 请 (优先杈日 1999年 12月 3日) 中公开的方法測定全硫化粉 末樣胶的凝胶含量, 就是该辐照交联后橡胶胶乳的«含量。
(二)采用辐照交联的丁腈橡胶胶乳的实施例及对比倒
原料:
乳聚丁 乳 SBR1502:固含量 2 wt %?结合苯乙蜂含量 23 wt %, 门尼粘度 50, 齐鲁石化公司橡胶厂生产。 丁腈橡胶艘 L: 牌号为丁腈 -26, 犖东市天源化工有限公司生产 β 炭黑: 天津海豚炭黑有限公司
氧化锌: 市售
硬脂酸: 市售
硫磺: 临沂巿罗庄化工厂
促进剂 TBBS: 叔丁基~2-苯并噻唑次黄酰膝, 郑 金山化工厂 氯化钙: 市售
淀粉: 市售
甘油: 市售
5%石骧酸液: 市售 过氧化二异丙苯: 市售 胶乳凝并方法:
按照表 1 的配方配置凝并剂溶液,然后按照与凝并剂溶液相同
皿乳加入到该凝并剂溶液中, 搅拌 15分钟后, 过滤、 洗涤、 千
固态橡胶(生胶)。
Figure imgf000016_0001
Figure imgf000016_0002
注: 表 1中均为重量份数
混炼胶的制备及硫化的方法:
一段工艺:
在 Bantmry密炼机(英国 Farre! Bridge公司产品)中进行》容积 1.57L, 转子转速 SOrrain'1 其过程为: 加入丁苯橡胶生胶或者是本发明的橡胶组 合物、 炭黑和其他助剂 (瑰磺、 促进剂、 除外), 放下上顶栓, 混炼 3miii。 排胶 (温度在 !50 ~ rc )。
^ ,
将上迷一段母胶加入琅磺、 促进剂后在 ΧΚ- 6Θ型开炼机(上海橡歷机 械厂产品)上薄通六次 之后下片。 然后在 ΐ6ου下按正碗化时间 τ9ίϊ琥化, 然后将疏化橡胶样片制成标准样条, 进行各项力学牲能测试, 其结果如表 3 所示。 混炼胶的配方见表 2, 单位是重量份数。
实施例 1
1、 辐照交联丁腈橡 «乳的制备
在固含量为 45%wt的丁腈橡皿氣(丁腈 -26 ) 中, 按丁腈胶乳固含量 的 3 %wt加入交联助剂三羟甲基丙烷三丙烯酸酯后, 进行辐照交联, 辐照剂 量为 3.0Mmd, 得到辐照交联的丁腈橡胶胶乳, 胶乳中辐照交联的丁腈橡胶 粒子的平均粒径 IdOnm, 凝胶含量为 9ί%β
2、 将輻照交联后的丁腈橡胶胶乳按照一定的固含量比例加入到未交联 的乳聚 Τ苯橡 乳 SBR1502中,其中辐照交联后的丁腈橡胶胶乳固含量和 未交联的扎聚丁苯橡胶胶乳固含量重量比为 5;95。 攮拌器中高速搅拌 15分 钟后, 按照前迷胶乳凝并方法凝并得到固态橡胶组合物 其中凝并剂溶液的 组成同表 1 。
3、 将上迷所得橡胶组合物加入相关助剂进行混炼, 得到混炼胶, 其配 方組成以重量份数计见表 2, 混炼胶的制备及蔬化方法同前所迷 然后将鑲 化橡胶样片制成标准样条, 进行各项力学性能测试, 其结果如表 3所示。
此外, 为了防止在步骤 3的碗化配方中的炭黑和氧化锌以及减 影响最 终样品的微观相态透射电镜图片中具有交联结果的橡胶粒子分散情况的现 察, 将步骤 2得到的橡胶組合物通过过氧化物毓化体系硫化, 具体配方为: 在该橡胶组合物中加入过氧化二异丙苯, 以橡胶组合物 1輔重量份计, 过氧 化二异丙苯为 1.5份。 混炼胶的制备及碗化方法同前所述, 得到的硫化胶样 品经冷冻超薄切片机切成厚约为 O. ira的超薄切片, 然后在四氧化锇蒸汽中 染色 3分钟后, 傲微观相态透射电镜( 1ΈΜ )图片, 在这样的 ¾9氧化锇蒸汽 中染色条件下, 丁腈橡胶粒子染色较浅, 可 J¾和深色的连续相丁苯橡胶区別 开来。见附图 1,丁腈橡胶粒子以平均粒径 lOOnra在 Τ苯橡胶连续相中分散。
实施例 2
只有所迷辐照交联后的丁腈橡胶胶乳固含量和未交联的乳聚丁苯橡胶 胶專 L 含量重量比改为 7:93, 其它和实施例 1相同, 具体橡胶组合物的混炼 胶配方组成列于表 1 疏化胶性能见表 3。 比较例 ϊ
将胶乳由混合的两种胶乳改为单纯采用乳聚丁苯橡胶胶乳 S:BR3502, , 和实施例 . I相同, 具体橡胶组合物的混炼胶配方组成列于表 2。 琬化胶 *i 见表 3。
表 2 比较例和实施例配方
Figure imgf000018_0001
表 3比较例和实施例的主要性能
Figure imgf000018_0002
錄 3结果可以看出, 采用本发明的橡胶组合物其碗化胶的滾动阻力 4 、 磨耗指数、 抗湿滑指数可以得到同时的改善, 其原因就是辐照交联后 δ 有交联结构的丁腈橡胶粒子以 50至 2肺 的细小粒径分 ¾&连续相的 T 苯橡胶基体中。 本发明的橡胶组合物的这种特性特别适合用作汽车用胎面
乳聚 T苯橡腿乳 SBR1502: HI含量 20 wt %,结合苯乙烯含量 23 wt %, 门尼粘度 S«, 齐鲁石化公司橡胶厂生产。
丁苯橡胶胶乳 1.: 乳聚丁笨橡胶胶乳, 牌号为丁苯《70, 结合苯乙烯含量 为 70%, 河南偃师橡胶厂生产。
T苯橡胶胶乳 2: 乳聚丁苯橡胶胶乳, 牌号为丁苯- 5β, 结合苯乙烯含量 为 50% 山东齐翔橡胶厂生产。
炭黑: N234 天津海豚炭黑有限公司。
氧化锌: 市售 Θ
硬脂酸: 市售。
硫磺: 临沂市罗庄化工厂 β
促进剂 TBBS: 叔 Τ基 2-苯并噻唑次黄 胺> 郑州金山化工厂。
氯化钙: 市售。
淀粉: 市售 β
甘油: 市售。
5%石碳酸液: 市售。
过氧化二异丙苯: 市售。 胶乳凝并方法:
按照表 4 的配方配置凝并剂溶液,然后按照与凝并剂溶 同重量的橡 胶胶乳加入到该凝并剂溶液中, 搅拌 15分钟后, 过滤、 洗涤、 干燥, 得到 固态橡胶(生胶)。
Figure imgf000020_0001
Figure imgf000020_0002
—段工艺:
在 Banbury密炼机(英国 F rrei Bridge公司产品)中进行,容积 1.57L, 转子转速 SOi-min"1; 其过程为: 加入丁苯橡胶生胶或者是本发明的橡股组 合物、 炭黑和其弛助剂 (碗磺、 促进剂、 除外), 放下上顶栓, 混炼 3mm。 排胶 (温度在 150 - mv )。 将上述一段母胶加入瑰磺、 促进剂后在 XK- 60型开炼机(上海橡胶机 械厂产品)上薄通六次, 之后下片。 然后在 16 Ό下按正蔬化时间 T9«碗化, 然后将碗化橡胶样片制成标准样条, 进行各项力学性能测试, 其结果如表 6 所示。 混炼胶的配方见表; ή 单位是重量份数。
实施例 3
Κ 辐照交联丁苯橡胶胶乳的制备
在固舍量为 4S%wi的丁笨橡皿乳 1 (丁苯 -70 ) 中5 按丁苯胶專 L闺含 量的 3 % wt加入交联助剂三羟甲基丙烷三丙烯酸酯后, 进行辐照交联, 辐照 剂量为 3.0Mrad, 得到辐照交联的 T笨橡胶胶乳, 胶乳中辐照交联的丁苯橡 胶粒子的平均粒径 150ϊΐϊχι, ¾ ^舍量为 90%。
2、 将辐照交联后的丁苯橡胶胶乳按照一定的固含量比例加入到未交联 的乳聚丁苯橡胶胶乳 SBR1502中,其中辐照交联后的丁 乳固含量和 未交联的乳聚丁苯橡 Mm乳 iH含量重量比为 5:95。 搅拌器中高速搅拌 15分 钟后 按照前述胶乳凝并方法凝并得到闺态橡胶组合物。 其中凝并剂溶液的 组成同表 4 β
3、 将上迷所得橡胶组合物加入相关助剂进行混炼, 得到混炼胶, 其配 方组成以重量份数奸见表 5, 混炼胶的制备及减化方法闳前所迷。 然后将 化橡胶样片制成标准样条, 进行各项力学性能测试, 其结果如表 6所示。 实施例 4
1、 辐照交联丁苯橡胶胶乳的制备
在固舍量为 4S%wi的丁. 皿乳 2 (丁苯 -SO ) 中, 按丁苯胶乳固含 量的 3 %wt加入交联助剂三羟甲基丙烷三丙烯酸酯后, 进行辐照交联, 辐照 剂量为: IMnid, 得到辐照交联的丁苯橡胶胶乳, 胶乳中辐照交联的 T苯橡 胶粒子的平均粒径 l Oiioi, 凝肢舍量为 89%。
2、 将辐照交联后的丁苯橡胶胶 L按照一定的固含量比例加入到未交联 的乳聚丁苯橡胶胶乳 SBR1502中,其中辐照交联后的丁 乳固含量和 未交联的乳聚丁苯橡胶胶乳闺含量重量比为 3:97。 搅拌器中高速搅拌 分 钟后, 按照前 乳凝并方法凝并得到固态橡胶組合物。 其中凝并剂溶液的 组成同表 4 β
3、 将上述所得橡胶组合物加入相关助剂进行混炼, 得到混炼胶, 其配 方組成以重量份数计见表 5, 混炼胶的制备及硗化方法同前所迷。 然后将硫 化橡胶样片制成标准样条, 进行各项力学性能测试, 其结杲如表 6所示 β 比较例 2
将腚乳由混合的两种胶乳改为单純采用乳聚丁苯橡胶胶乳 SBm502,其 它和实施例 3相同, 具体橡胶組合物的混炼胶配方組成列于表 5。 瑰化胶性 能见表 » 比较例和实施例配方
Figure imgf000022_0001
表 6比较例和实施例的主要性能
Figure imgf000022_0002
6结果可以看出, 采用本发明的橡胶组合物其碗化胶的滾动阻力指 数、 磨耗指数、 抗湿滑指数可以得到同时改善, 其原因就是辐照交联后的具 有交联结构的丁苯橡胶粒子以 S0~300nm的细小粒径分散在连续相的丁苯橡 胶基体中。 本发明的橡胶组合物的这种特性特別适合用作汽车用胎面胶。
(四)采用辐照交联的羧基丁苯橡胶胶乳的实施例及对比例
原料:
乳聚 T苯橡 乳 SBR1S02:闺含量 2Θ wt %,结合苯乙烯含量 23 wt %, 门尼粘度 5 齐鲁石化公司樣胶厂生产。 羧基丁苯槔胶胶乳: 牌号为欺基丁苯 -70, 燕山河南偃师橡胶厂生产, 炭黑: N2M 天津海豚炭黑有限公司
氧化锌: 市售。
硬脂酸; 市售。
硫磺: 临沂巿罗庄化工厂。
促进剂 Ν»叔 T基》2-苯并噻唑次黄醜胺, 郑州金 化工厂。
氯化钙: 市售。
淀粉: 市售。
甘油: 市售。
S%石碳酸液: 市售。
过氧化二异丙苯: 市售。 胶乳凝并方法:
按照表 7 的配方配置凝并剂溶液,然后按照与凝并剂溶^^同重量的橡 胶胶 加入到该凝并剂溶液中, 操拌 !5分钟后, 过滤、 洗涤、 干燥, 得到 固态橡胶 (生胶)。
Figure imgf000023_0001
注: 表?中均为重量份数
炼胶的制备及 ^直化的:
—段工艺:
在 Banbury密炼机(英国 Fanrei Bridge公司产品)中进行,容积 1.57L, 转子转速 SOr-miif1; 其过程为: 加入丁苯橡胶生胶或者是本发明的橡胶組 合物、 炭黑和其他助剂 (碌磺、 促进剂、 除外), 放下上顶栓, 混炼 miiu 排胶 (温度在 150 ~謂。 C )。
二段工艺:
将上迷一段母胶加入硫 >磺、 促进剂后在 型开炼机(上海橡胶机 械厂产品)上薄通六次, 之后下片。 然后在 下按正碗化时间 Τ9»戚化, 然后将碗化橡胶样片制成标准样条, 进行各项力学性能测试, 其结杲如表 9 所示。 混炼胶的配方见表 8, 单位是重量份数。
实施例 5
辐照交联羧基丁苯橡狡胶乳的制备
在固含量为 48%wt的幾基丁苯橡胶艘乳中, 按羧基丁苯胶乳闺含量的 3 %wt加入交联助剂三羟甲基丙烷三丙烯酸酯后, 进行辐照交联, 辐照剂量 为 3.0Mrad, 得到辐照交联的氣基丁苯橡胶胶乳, 胶乳中辐照交联的 丁 ^ 胶粒子的平均粒径 lOOnm, 凝胶含量为 93%β
2、 将輻照交联后的羧基丁苯橡胶胶乳按照一定的固含量比例加入到未 交联的乳聚丁笨橡舰乳 SBR1502中,其中辐照交 的 i ^丁轉匿乳 固含量和未交联的乳聚丁苯橡皿乳 ®含量重量比为 3:97。 搅拌器中高速搅 拌 15分钟后, 按照前述胶乳凝并方法凝并得到固态橡胶组合物 β 其中凝并 剂溶液的组成同表 7。
3> 将上迷所得橡肢组合物加入相关助剂进行混炼, 得到混炼胶, 其配 方组成以重量份数计见表 , 混炼股的制备及蹺化方法同前所迷。 然后将破 化橡胶样片制成标准样条, 进行各项力学性能测试, 其结果如表 所示。
比较例 3
将胶乳由混合的两种胶 改为单纯采用乳聚丁苯橡胶胶乳 SBR1502,其 它和实施例 S相同, 具体橡胶組合物的混炼胶配方组成列于表 硫化胶性 能见表 9。 比较例和实施例配方
Figure imgf000025_0001
表 9比较例和实施例的主要性能
Figure imgf000025_0002
从表 9结果可以看出, 采用本发明的橡胶组合物其琉化胶的滚动阻力指 数、 磨耗指数、 抗湿滑指数可以得到同时改善, 其原因就是辐照交联后的具 有交联結构的羧基丁苯橡胶粒子以 Si iOOnm的细小粒径分散在连续相的 T 苯橡胶基体中。 本发明的橡胶组合物的这种特性特別适合用作汽车用胎面 胶。

Claims

1、一种橡胶組合物, 包含未交联橡胶和^ ^其中的具有交联结构的 橡胶粒子;其中具有交联结构的橡胶粒子为合成橡胶粒子或 /和天然橡胶粒 子, 平均分散粒径为 20 ~ SOOnm, 凝胶含量为 60%重量或更高; 其中未交 联橡胶为丁苯橡胶; 所迷具有交联结构的橡胶粒子与未交联橡胶的重量比 为 1: 99-20: 80。
2、根据权利要求 1所迷的橡胶组合物,其特征在于所述具有交联结构 的橡胶粒子为以下任何一种或几种: 天然橡胶粒子、 丁苯樣胶粒子、 幾基 T苯橡胶粒子、 丁腈橡胶粒子、 羧基丁腈橡胶粒子、 氯丁橡胶粒子、 聚 T 二烯橡胶粒子、 硅橡胶粒子、 丙烯酸酯橡胶粒子、 丁苯 橡胶粒子等, 优 逸以下任何一种或几种: 丁腈橡胶粒子、 丁苯吡橡胶粒子、 丁苯橡胶粒子、 羧基丁苯橡胶粒子, 更优选以下任軻一种或几种: 丁苯橡胶粒子、 羧基丁 苯橡胶粒子、 丁腈橡胶粒子, 最优选丁腈橡胶粒子。
3、根据权利要求 1或 2所述的橡胶组合物,其特狃在于所迷具有交联 結构的像胶粒子为均相結构。
4、 根椐权利要求 1 ~ 3之任一项所迷的橡胶组合物, 其特扭在于所迷 具有交联结构的橡胶粒子的凝胶含量为 7S%重量或更高,更优逸 80%重量
^^^·高。
5、 根据权利要求 之任一项所迷的橡跤組合物, 其特征在于所迷 具有交联结构的橡肢粒子的平均粒径为 50 至 300nm ,优选 SO至 20Gnra。
6、 根据权利要求 i ~ S之任一项所迷的橡胶组合物, 其特征在于所述 具有交联结构的橡胶粒子与未交联橡胶的重量比为 1: 99»1 ): ,
7、 根据权利要求 之任一项所迷的橡胶组合物, 其特征在于所迷 具有交联结构的橡胶粒子与未交联橡胶的重量比为 2: 98-8: 92.
8 根椐权利要求 1 7之任一项所迷的橡胶组合物, 其特粗在于所迷 组合物包括将未交联橡 乳与具有交联结构的橡胶粒子的胶乳在内的组 分混合后凝并面得; 其中具有交联结构的橡胶粒子的胶乳为经过辐照交联 后得到的橡胶胶乳 β
9. 一种根据权利要求 1至 8之任一项所迷的橡胶組合物的制备方法, 包括以下步骤:
( 1 )将合成橡胶或 /和天然橡胶胶乳经过辐照交联, 使胶乳中的合成 橡胶或 /和天然橡胶粒子具有交联结构, 达到所述凝胶含量, 并使胶乳中的 合成橡胶或 /和天然橡胶粒子固定在所迷平均粒径范围内;
{ 2 )然后按所述具有交联结构的橡胶粒子与未交联丁苯橡胶的重量比 计,取上述辐照交联的合成橡胶或 /和天然橡胶胶乳与未交联的丁苯椽胶胶 乳进行混合至均匀;
( 3 )将以上所得混合胶乳进行共凝并得所述橡胶组合物。
ί0、 根据权利要求 9 所述的制备方法, 其特征在于所迷合成橡跤或 / 和天然橡胶胶乳为以下任何一种或几种: 天然橡胶胶乳、 丁苯橡胶胶乳、 羧基丁苯橡腚胶乳、 丁腈橡胶胶乳、 羧基丁腈橡胶胶乳、 氯 Τ橡胶胶乳、 聚丁二烯橡胶胶乳、硅橡胶胶乳或丙烯酸酯橡胶胶乳、丁苯吡橡胶胶乳等, 优选以下任何一种或几种: 丁腈橡胶胶乳、 丁苯吡橡胶胶乳、 Τ苯橡胶胶 乳、 幾基 Τ苯橡胶胶乳, 更优选以下任何一种或几种: 丁笨橡肤胶乳、 羧 基丁苯橡胶胶乳、 丁腈橡胶胶乳, 最优选丁腈橡胶胶乳。
II, 一种根据权利要求 至 8之任一项所述的橡胶组合物制备的硫化 胶, 包含有按所迷重量比计的硫>化丁苯橡胶基体, 以及以所迷平均粒径分 散在硫化 Τ苯橡 体中的具有交联结构的橡胶粒子。
PCT/CN2012/083590 2011-10-26 2012-10-26 一种橡胶组合物及其制备方法和其硫化胶 WO2013060290A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
SG11201401847UA SG11201401847UA (en) 2011-10-26 2012-10-26 Rubber composition and preparation method and vulcanized rubber thereof
RU2014121110A RU2607581C2 (ru) 2011-10-26 2012-10-26 Резиновая смесь, способ ее получения и вулканизированная резина, полученная из нее
JP2014537482A JP6084623B2 (ja) 2011-10-26 2012-10-26 ゴム組成物、その調製方法及び加硫ゴム
CA2853513A CA2853513C (en) 2011-10-26 2012-10-26 Rubber composition and preparation method and vulcanized rubber thereof
PL12843797.7T PL2772512T3 (pl) 2011-10-26 2012-10-26 Kompozycja kauczukowa i sposób jej wytwarzania oraz wykonania z niej kauczuku wulkanizowanego
EP12843797.7A EP2772512B1 (en) 2011-10-26 2012-10-26 Rubber composition and preparation method and vulcanized rubber thereof
KR1020147012677A KR101748600B1 (ko) 2011-10-26 2012-10-26 고무 조성물, 그것의 제조 방법 및 가황 고무
US14/354,222 US9453122B2 (en) 2011-10-26 2012-10-26 Rubber composition, preparation method and vulcanized rubber thereof
ES12843797T ES2940461T3 (es) 2011-10-26 2012-10-26 Composición de caucho y método de preparación y caucho vulcanizado de la misma

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201110330407.7A CN103073758B (zh) 2011-10-26 2011-10-26 一种橡胶组合物及其制备方法和其硫化胶
CN201110330407.7 2011-10-26
CN201210402963.5 2012-10-22
CN201210402963.5A CN103772767B (zh) 2012-10-22 2012-10-22 一种橡胶组合物及其制备方法和其硫化胶
CN201210402962.0 2012-10-22
CN201210402962.0A CN103772766B (zh) 2012-10-22 2012-10-22 一种橡胶组合物及其制备方法和其硫化胶

Publications (1)

Publication Number Publication Date
WO2013060290A1 true WO2013060290A1 (zh) 2013-05-02

Family

ID=48167127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/083590 WO2013060290A1 (zh) 2011-10-26 2012-10-26 一种橡胶组合物及其制备方法和其硫化胶

Country Status (11)

Country Link
US (1) US9453122B2 (zh)
EP (1) EP2772512B1 (zh)
JP (1) JP6084623B2 (zh)
KR (1) KR101748600B1 (zh)
CA (1) CA2853513C (zh)
ES (1) ES2940461T3 (zh)
PL (1) PL2772512T3 (zh)
RU (1) RU2607581C2 (zh)
SG (1) SG11201401847UA (zh)
TW (1) TWI546343B (zh)
WO (1) WO2013060290A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150106228A (ko) * 2014-03-11 2015-09-21 주식회사 엘지화학 카르본산 변성 니트릴계 공중합체 라텍스 조성물을 포함하는 딥 성형용 조성물 및 이로부터 제조된 딥 성형품
US11413905B2 (en) 2016-05-19 2022-08-16 The Yokohama Rubber Co., Ltd. Tire rubber composition

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104031323B (zh) * 2014-05-19 2016-09-14 滁州迪蒙德模具制造有限公司 一种塑料模具的制造方法
CN104974387A (zh) * 2015-07-08 2015-10-14 徐州徐轮橡胶有限公司 低饱和度花纹耐油轮胎及胎面胶配方
EP3564277A4 (en) * 2016-12-27 2020-11-11 Zeon Corporation NITRILE RUBBER CONTAINING CARBOXYL GROUP, PROCESS FOR MANUFACTURING THEREOF, NETWORKABLE NITRILE RUBBER COMPOSITION AND CROSSLINKED RUBBER
KR102167527B1 (ko) 2017-12-19 2020-10-19 주식회사 엘지화학 공액디엔계 공중합체 조성물, 이의 제조방법 및 이를 포함하는 고무 조성물
CN112223958B (zh) * 2020-10-26 2022-07-29 吉林工程技术师范学院 一种仿生机构防爆自行车轮胎及其制备方法
CN113072722B (zh) * 2021-03-03 2022-08-23 中国科学院化学研究所 一种辐射交联反式-1,4-聚异戊二烯材料的制备方法及反式-1,4-聚异戊二烯材料
CN113933325B (zh) * 2021-10-14 2024-07-05 思通检测技术有限公司 将处于拉伸状态橡胶制成透射电镜样品并进行透射电镜表征的方法
WO2024005029A1 (ja) * 2022-07-01 2024-01-04 株式会社ブリヂストン タイヤ用加硫ゴム組成物及びタイヤ

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0405216A1 (de) 1989-06-24 1991-01-02 Bayer Ag Kautschukmischungen enthaltend Schwefel-modifiziertes Polychloroprengel
DE4220563A1 (de) 1992-06-24 1994-01-13 Bayer Ag Kautschukmischungen enthaltend Polybutadien-Gel
US6133364A (en) 1998-08-01 2000-10-17 Continental Aktiengesellschaft Rubber composition, method of formulating the composition and vehicle tire made from the composition
US6184296B1 (en) 1997-01-17 2001-02-06 Bayer Ag Rubber mixtures containing surface-modified cross-linked rubber gels
US6207757B1 (en) 1998-08-01 2001-03-27 Continental Aktiengesellschaft Rubber composition, method of adding and blending the composition and vehicle tire made from the composition
US6242534B1 (en) 1998-08-01 2001-06-05 Continental Aktiengesellschaft Rubber composition, method of formulating and blending the same and article and tires made therefrom
WO2001040356A1 (fr) 1999-12-03 2001-06-07 China Petro-Chemical Corporation Caoutchouc en poudre entierement vulcanise a diametre de particules regulable, son procede de preparation et des utilisations
EP1149867A2 (en) * 2000-04-27 2001-10-31 JSR Corporation Crosslinked rubber particles and rubber compositions
WO2001098395A1 (fr) 2000-06-15 2001-12-27 China Petroleum & Chemical Corporation Silicone sous forme de fine poudre de sulfure, son procede de preparation et ses applications
CN1342183A (zh) * 1999-11-01 2002-03-27 东海橡胶工业株式会社 橡胶防振器及其生产方法
WO2002032990A2 (de) * 2000-10-20 2002-04-25 Bayer Aktiengesellschaft Kautschukgele und phenolharzedukte enthaltende kautschukmischungen
US6699935B2 (en) 2000-06-29 2004-03-02 Jsr Corporation Rubber composition
EP1431075A1 (en) 2002-12-19 2004-06-23 The Goodyear Tire & Rubber Company Pneumatic tire having a rubber component containing a rubber gel and starch composite
CN101787148A (zh) * 2009-01-22 2010-07-28 中国科学院化学研究所 含双亲性淀粉衍生物的绿色轮胎材料及其制备方法
CN102050973A (zh) * 2009-10-30 2011-05-11 中国石油化工股份有限公司 一种轮胎胎面胶复合材料及其制备方法
CN102050972A (zh) * 2009-10-27 2011-05-11 中国石油化工股份有限公司 一种改性橡胶组合物及其制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6390163B1 (en) 1998-10-09 2002-05-21 The Goodyear Tire & Rubber Company Tread rubber for high traction tires
DE19962862A1 (de) * 1999-12-24 2001-06-28 Bayer Ag Kautschukmischungen auf Basis von unvernetzten Kautschuken und vernetzten Kautschukpartikeln sowie multifunktionellen Isocyanaten
EP1149866A3 (en) 2000-04-27 2003-04-23 JSR Corporation Rubber mixtures based on crosslinked rubber particles and non-crosslinked rubbers
JP2002012703A (ja) 2000-04-27 2002-01-15 Jsr Corp ゴム組成物
JP4660959B2 (ja) * 2000-04-27 2011-03-30 Jsr株式会社 ゴム組成物
JP5443661B2 (ja) 2000-08-22 2014-03-19 中国石油化工股▲分▼有限公司 強化されたプラスチック及びその調製
CN1239587C (zh) * 2003-04-03 2006-02-01 中国石油化工股份有限公司 一种复合粉末及其制备方法和用途
US7642316B2 (en) * 2004-10-14 2010-01-05 Dow Global Technologies, Inc. Rubber modified monovinylidene aromatic polymers and fabricated articles prepared therefrom
JP5821858B2 (ja) 2011-02-14 2015-11-24 Jsr株式会社 ゴム組成物およびその製造方法並びにタイヤ
CN103022996B (zh) 2011-09-21 2015-02-11 中芯国际集成电路制造(北京)有限公司 静电放电保护电路和静电放电保护方法

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0405216A1 (de) 1989-06-24 1991-01-02 Bayer Ag Kautschukmischungen enthaltend Schwefel-modifiziertes Polychloroprengel
DE4220563A1 (de) 1992-06-24 1994-01-13 Bayer Ag Kautschukmischungen enthaltend Polybutadien-Gel
US6184296B1 (en) 1997-01-17 2001-02-06 Bayer Ag Rubber mixtures containing surface-modified cross-linked rubber gels
US6133364A (en) 1998-08-01 2000-10-17 Continental Aktiengesellschaft Rubber composition, method of formulating the composition and vehicle tire made from the composition
US6207757B1 (en) 1998-08-01 2001-03-27 Continental Aktiengesellschaft Rubber composition, method of adding and blending the composition and vehicle tire made from the composition
US6242534B1 (en) 1998-08-01 2001-06-05 Continental Aktiengesellschaft Rubber composition, method of formulating and blending the same and article and tires made therefrom
CN1342183A (zh) * 1999-11-01 2002-03-27 东海橡胶工业株式会社 橡胶防振器及其生产方法
WO2001040356A1 (fr) 1999-12-03 2001-06-07 China Petro-Chemical Corporation Caoutchouc en poudre entierement vulcanise a diametre de particules regulable, son procede de preparation et des utilisations
EP1149867A2 (en) * 2000-04-27 2001-10-31 JSR Corporation Crosslinked rubber particles and rubber compositions
WO2001098395A1 (fr) 2000-06-15 2001-12-27 China Petroleum & Chemical Corporation Silicone sous forme de fine poudre de sulfure, son procede de preparation et ses applications
US6699935B2 (en) 2000-06-29 2004-03-02 Jsr Corporation Rubber composition
WO2002032990A2 (de) * 2000-10-20 2002-04-25 Bayer Aktiengesellschaft Kautschukgele und phenolharzedukte enthaltende kautschukmischungen
EP1431075A1 (en) 2002-12-19 2004-06-23 The Goodyear Tire & Rubber Company Pneumatic tire having a rubber component containing a rubber gel and starch composite
CN101787148A (zh) * 2009-01-22 2010-07-28 中国科学院化学研究所 含双亲性淀粉衍生物的绿色轮胎材料及其制备方法
CN102050972A (zh) * 2009-10-27 2011-05-11 中国石油化工股份有限公司 一种改性橡胶组合物及其制备方法
CN102050973A (zh) * 2009-10-30 2011-05-11 中国石油化工股份有限公司 一种轮胎胎面胶复合材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2772512A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150106228A (ko) * 2014-03-11 2015-09-21 주식회사 엘지화학 카르본산 변성 니트릴계 공중합체 라텍스 조성물을 포함하는 딥 성형용 조성물 및 이로부터 제조된 딥 성형품
KR101590694B1 (ko) 2014-03-11 2016-02-01 주식회사 엘지화학 카르본산 변성 니트릴계 공중합체 라텍스 조성물을 포함하는 딥 성형용 조성물 및 이로부터 제조된 딥 성형품
US11413905B2 (en) 2016-05-19 2022-08-16 The Yokohama Rubber Co., Ltd. Tire rubber composition

Also Published As

Publication number Publication date
SG11201401847UA (en) 2014-09-26
EP2772512A4 (en) 2015-09-16
CA2853513C (en) 2018-06-19
EP2772512B1 (en) 2023-01-11
EP2772512A1 (en) 2014-09-03
ES2940461T3 (es) 2023-05-08
KR20140084168A (ko) 2014-07-04
JP6084623B2 (ja) 2017-02-22
PL2772512T3 (pl) 2023-05-02
RU2014121110A (ru) 2015-12-10
KR101748600B1 (ko) 2017-06-20
JP2014530941A (ja) 2014-11-20
US9453122B2 (en) 2016-09-27
TW201326315A (zh) 2013-07-01
US20150105490A1 (en) 2015-04-16
TWI546343B (zh) 2016-08-21
RU2607581C2 (ru) 2017-01-10
CA2853513A1 (en) 2013-05-02

Similar Documents

Publication Publication Date Title
WO2013060290A1 (zh) 一种橡胶组合物及其制备方法和其硫化胶
JP6228157B2 (ja) ゴム組成物及び空気入りタイヤ
JP6091511B2 (ja) 修飾ゴムマスターバッチ、並びにゴム組成物及びそれを使用して製造される加硫ゴム及びその調製方法
EP1245630B1 (en) Rubber composition and crosslinked rubber
JP2012052028A (ja) トレッド用ゴム組成物及び空気入りタイヤ
JP3392249B2 (ja) ゴム組成物及びその製法
JP3992523B2 (ja) ゴム組成物
JP2007231085A (ja) タイヤ用ゴム組成物
JP2012116983A (ja) トレッド用ゴム組成物及び競技用タイヤ
JP2013071938A (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP6741874B2 (ja) 共役ジエン系共重合体組成物、その製造方法およびこれを含むゴム組成物
JPH08217917A (ja) ゴム組成物及びその製造方法
JP2009209262A (ja) タイヤトレッド用ゴム組成物
JP2011026414A (ja) タイヤ用ゴム組成物及びその製造方法
JP2022094898A (ja) ゴム組成物の製造方法、その方法で製造されたゴム組成物及びそれを用いて製造されたタイヤ
JP2001323071A (ja) カーボンマスターバッチの製造方法
JP3392246B2 (ja) ゴム組成物及びその製法
JP2006152197A (ja) タイヤ用ゴム組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12843797

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2853513

Country of ref document: CA

Ref document number: 2014537482

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14354222

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012843797

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147012677

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014121110

Country of ref document: RU

Kind code of ref document: A