WO2013058001A1 - 光検出装置 - Google Patents

光検出装置 Download PDF

Info

Publication number
WO2013058001A1
WO2013058001A1 PCT/JP2012/069727 JP2012069727W WO2013058001A1 WO 2013058001 A1 WO2013058001 A1 WO 2013058001A1 JP 2012069727 W JP2012069727 W JP 2012069727W WO 2013058001 A1 WO2013058001 A1 WO 2013058001A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
semiconductor
main surface
semiconductor substrate
semiconductor region
Prior art date
Application number
PCT/JP2012/069727
Other languages
English (en)
French (fr)
Inventor
輝昌 永野
暢郎 細川
智史 鈴木
馬場 隆
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to DE112012004412.6T priority Critical patent/DE112012004412T8/de
Priority to US14/350,647 priority patent/US9368528B2/en
Priority to CN201280051817.0A priority patent/CN103890972B/zh
Publication of WO2013058001A1 publication Critical patent/WO2013058001A1/ja
Priority to US15/150,859 priority patent/US9768222B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1446Devices controlled by radiation in a repetitive configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14618Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14658X-ray, gamma-ray or corpuscular radiation imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes

Definitions

  • the present invention relates to a photodetection device.
  • a front-illuminated photodiode array (semiconductor photodetecting element) having a plurality of avalanche photodiodes operating in Geiger mode and a quenching resistor connected in series to each avalanche photodiode is known.
  • a quenching resistor is provided on a semiconductor substrate on which an avalanche photodiode constituting each pixel is formed.
  • the quenching resistor is disposed on the light incident surface (front surface) side of the semiconductor substrate. For this reason, the aperture ratio has to be lowered by the space where the quenching resistor is arranged, and there is a limit to the improvement of the aperture ratio.
  • the quenching resistor is disposed on the surface (back surface) side facing the light incident surface of the semiconductor substrate.
  • the size of each pixel may be small due to factors such as an increase in the number of pixels.
  • the multiplication region formed when each avalanche photodiode operates in the Geiger mode is located in the active region. As a result, the aperture ratio has to be lowered by the amount that the quenching resistor is disposed outside the active region.
  • An object of the present invention is to provide a photodetection device capable of remarkably improving the aperture ratio.
  • the present invention relates to a photodetection device, a semiconductor photodetection element having a semiconductor substrate including first and second main surfaces facing each other, a second photodetection element disposed opposite to the semiconductor photodetection element, A semiconductor substrate having a third main surface facing the surface, the semiconductor photodetector operating in Geiger mode and a plurality of avalanche photodiodes formed in the semiconductor substrate, and for each avalanche photodiode And a first electrode disposed on the second main surface side of the semiconductor substrate, and the mounting substrate is disposed on the third main surface side corresponding to each first electrode.
  • a second electrode and a quenching circuit electrically connected to each second electrode and disposed on the third main surface side, the first electrode, and the first electrode Corresponding second electrode , They are coupled with each other through the bump electrode.
  • the quenching circuit is arranged not on the semiconductor substrate of the semiconductor photodetecting element but on the mounting substrate. Therefore, each avalanche photodiode is formed on the semiconductor substrate without considering the space for arranging the quenching circuit. As a result, the aperture ratio of the light detection device (semiconductor light detection element) can be significantly improved.
  • each avalanche photodiode is formed in the first conductor semiconductor substrate, the second conductivity type first semiconductor region formed on the first main surface side of the semiconductor substrate, and the first semiconductor region.
  • a through-electrode that penetrates the avalanche photodiode from the first main surface side to the second main surface side and electrically connects the corresponding third electrode and the first electrode is formed. It may be. In this case, the aperture ratio can be remarkably improved even when a front-illuminated semiconductor photodetecting element is used.
  • the third electrode and the first electrode are electrically connected through the through electrode, the third electrode, the through electrode, the first electrode, the bump electrode, and the second electrode from the second semiconductor region through the second electrode
  • the wiring distance to the quenching circuit is relatively short. Therefore, the influence of the resistance and capacitance of the wiring is suppressed, and the time resolution is improved.
  • each avalanche photodiode has a PN junction between a semiconductor substrate of a first conductor, a first semiconductor region of a second conductivity type formed on the second main surface side of the semiconductor substrate, and the first semiconductor region. And a second semiconductor region of a first conductivity type having a higher impurity concentration than the semiconductor substrate, and the first semiconductor region and the first electrode may be electrically connected.
  • the aperture ratio can be remarkably improved even when a back-illuminated semiconductor photodetecting element is used.
  • the first electrode and the second electrode are electrically connected via the bump electrode, the wiring distance from the first semiconductor region to the quenching circuit is extremely short. Therefore, the influence of the resistance and capacitance of the wiring is remarkably suppressed, and the time resolution is further improved.
  • the mounting board may further include a common electrode to which a quenching circuit is connected in parallel.
  • a quenching circuit quenching circuit
  • each avalanche photodiode (quenching circuit) can be connected in parallel without increasing the wiring distance.
  • the quenching circuit may be a passive quenching circuit or an active quenching circuit.
  • FIG. 1 is a schematic perspective view showing a photodetection device according to an embodiment of the present invention.
  • FIG. 2 is a diagram for explaining a cross-sectional configuration of the photodetecting device according to the present embodiment.
  • FIG. 3 is a schematic plan view of the semiconductor photodetecting element.
  • FIG. 4 is a schematic plan view of the semiconductor photodetecting element.
  • FIG. 5 is a schematic plan view of the mounting substrate.
  • FIG. 6 is a circuit diagram of the photodetector.
  • FIG. 7 is a diagram for explaining a cross-sectional configuration of a photodetection device according to a modification of the present embodiment.
  • FIG. 8 is a schematic plan view of the semiconductor photodetector element.
  • FIG. 9 is a diagram for explaining a cross-sectional configuration of a light detection device according to a modification of the present embodiment.
  • FIG. 10 is a schematic plan view of the mounting substrate.
  • FIG. 1 is a schematic perspective view showing a photodetecting device according to the present embodiment.
  • FIG. 2 is a diagram for explaining a cross-sectional configuration of the photodetecting device according to the present embodiment.
  • 3 and 4 are schematic plan views of the semiconductor photodetector element.
  • FIG. 5 is a schematic plan view of the mounting substrate.
  • FIG. 6 is a circuit diagram of the photodetector.
  • the photodetecting device 1 includes a semiconductor photodetecting element 10A, a mounting substrate 20, and a glass substrate 30, as shown in FIGS.
  • the mounting substrate 20 is disposed to face the semiconductor photodetecting element 10A.
  • the glass substrate 30 is disposed to face the semiconductor photodetecting element 10A.
  • the semiconductor photodetecting element 10 ⁇ / b> A is disposed between the mounting substrate 20 and the glass substrate 30.
  • the semiconductor photodetecting element 10A is composed of a front-illuminated photodiode array PDA1.
  • the photodiode array PDA1 has a semiconductor substrate 1N that has a rectangular shape in plan view.
  • the semiconductor substrate 1N includes a main surface 1Na and a main surface 1Nb facing each other.
  • the semiconductor substrate 1N is an N-type (first conductivity type) semiconductor substrate made of Si.
  • the photodiode array PDA1 includes a plurality of avalanche photodiodes APD formed on the semiconductor substrate 1N.
  • One avalanche photodiode APD constitutes one pixel in the photodiode array PDA1.
  • the avalanche photodiodes APD are all connected in parallel with being connected in series with the quenching resistor R1, and a reverse bias voltage is applied from the power supply.
  • the output current from the avalanche photodiode APD is detected by a signal processing unit SP described later.
  • Each avalanche photodiode APD has a P-type (second conductivity type) first semiconductor region 1PA and a P-type (second conductivity type) second semiconductor region 1PB.
  • the first semiconductor region 1PA is formed on the main surface 1Na side of the semiconductor substrate 1N.
  • the second semiconductor region 1PB is formed in the first semiconductor region 1PA and has a higher impurity concentration than the first semiconductor region 1PA.
  • the planar shape of the second semiconductor region 1PB is, for example, a polygon (in this embodiment, an octagon).
  • the depth of the first semiconductor region 1PA is deeper than that of the second semiconductor region 1PB.
  • the semiconductor substrate 1N has an N-type (first conductivity type) semiconductor region 1PC.
  • the semiconductor region 1PC is formed on the main surface 1Na side of the semiconductor substrate 1N.
  • the semiconductor region 1PC prevents a PN junction formed between the N-type semiconductor substrate 1N and the P-type first semiconductor region 1PA from being exposed to a through-hole TH in which a later-described through-electrode TE is disposed.
  • the semiconductor region 1PC is formed at a position corresponding to the through hole TH (through electrode TE).
  • the avalanche photodiode APD has an electrode E1 arranged on the main surface 1Na side of the semiconductor substrate 1N as shown in FIG.
  • the electrode E1 is connected to the second semiconductor region 1PB.
  • the electrode E1 is disposed on the semiconductor substrate 1N outside the second semiconductor region 1PB as viewed from the main surface 1Na side via the insulating layer L1. In FIG. 3, the description of the insulating layer L1 shown in FIG. 2 is omitted for clarity of the structure.
  • the first semiconductor region 1PA is electrically connected to the electrode E1 through the second semiconductor region 1PB.
  • the avalanche photodiode APD includes electrodes (not shown) electrically connected to the semiconductor substrate 1N, respectively disposed on the main surface 1Nb side of the semiconductor substrate 1N, an electrode E5, And an electrode E7 connected to the electrode E5.
  • the electrode E5 is disposed on the semiconductor substrate 1N outside the second semiconductor region 1PB as viewed from the main surface 1Nb side via the insulating layer L2.
  • the electrode E7 is disposed on the semiconductor substrate 1N overlapping with the second semiconductor region 1PB when viewed from the main surface 1Nb side via the insulating layer L2. That is, the electrode E7 is disposed on a region corresponding to the second semiconductor region 1PB on the main surface 1Nb.
  • the description of the passivation film PF shown in FIG. 2 is omitted for clarity of the structure.
  • the photodiode array PDA1 includes a plurality of through electrodes TE.
  • the through electrode TE is provided for each individual avalanche photodiode APD.
  • the through electrode TE is formed so as to penetrate the semiconductor substrate 1N from the main surface 1Na side to the main surface 1Nb side. That is, the through electrode TE is disposed in the through hole TH that penetrates the semiconductor substrate 1N.
  • the insulating layer L2 is also formed in the through hole TH. Therefore, the through electrode TE is disposed in the through hole TH via the insulating layer L2.
  • the through electrode TE has one end connected to the electrode E1 and the other end connected to the electrode E5.
  • the second semiconductor region 1PB is electrically connected to the electrode E7 via the electrode E1, the through electrode TE, and the electrode E5.
  • the through electrode TE is disposed in a region between the avalanche photodiodes APD in plan view.
  • the avalanche photodiodes APD are two-dimensionally arranged in M rows in the first direction and N columns (M and N are natural numbers) in the second direction orthogonal to the first direction.
  • the through electrode TE is formed in a region surrounded by four avalanche photodiodes APD. Since the through electrodes TE are provided for each avalanche photodiode APD, they are two-dimensionally arranged in M rows in the first direction and N columns in the second direction.
  • the electrodes E1, E5, E7 and the through electrode TE are made of a metal such as aluminum.
  • the semiconductor substrate is made of Si, AuGe / Ni or the like is often used as the electrode material in addition to aluminum.
  • the electrode E5, the electrode E7, and the through electrode TE can be integrally formed.
  • a sputtering method can be used as a method of forming the electrodes E1, E5, E7 and the through electrode TE.
  • a Group 3 element such as B is used as the P-type impurity, and a Group 5 element such as N, P, or As is used as the N-type impurity. Even if N-type and P-type semiconductors are substituted for each other to form an element, the element can function.
  • a diffusion method or an ion implantation method can be used as a method for adding these impurities.
  • SiO 2 or SiN can be used as a material of the insulating layers L1 and L2.
  • SiO 2 or SiN can be used as a material of the insulating layers L1 and L2.
  • the mounting substrate 20 has a main surface 20a and a main surface 20b facing each other.
  • the mounting substrate 20 has a rectangular shape in plan view.
  • Main surface 20a is opposed to main surface 1Nb of semiconductor substrate 1N.
  • the mounting substrate 20 includes a plurality of electrodes E9 arranged on the main surface 20a side. As shown in FIGS. 2 and 6, the electrode E9 is disposed corresponding to the through electrode TE. Specifically, the electrode E9 is formed on each region of the main surface 20a facing the electrode E7.
  • the side surface 1Nc of the semiconductor substrate 1N and the side surface 20c of the mounting substrate 20 are flush with each other.
  • the outer edge of the semiconductor substrate 1N and the outer edge of the mounting substrate 20 coincide with each other in plan view.
  • the electrode E7 and the electrode E9 are connected by a bump electrode BE.
  • the through electrode TE is electrically connected to the electrode E9 via the electrode E5, the electrode E7, and the bump electrode BE.
  • the second semiconductor region 1PB is electrically connected to the electrode E9 via the electrode E1, the through electrode TE, the electrode E5, the electrode E7, and the bump electrode BE.
  • the electrode E9 is also made of a metal such as aluminum like the electrodes E1, E5, E7 and the through electrode TE.
  • As an electrode material AuGe / Ni or the like may be used in addition to aluminum.
  • the bump electrode BE is made of, for example, solder.
  • the bump electrode BE is formed on the electrode E7 via an unillustrated UBM (Under Bump Metal).
  • the UBM is made of a material that is electrically and physically connected to the bump electrode BE.
  • An electroless plating method can be used as a method for forming the UBM.
  • a method for forming the bump electrode BE a method of mounting a solder ball or a printing method can be used.
  • the mounting board 20 includes a plurality of quenching resistors R1 and a signal processing unit SP, as shown in FIG.
  • the mounting board 20 constitutes an ASIC (Application Specific Integrated Circuit).
  • ASIC Application Specific Integrated Circuit
  • FIG. 5 the description of the passivation film PF shown in FIG. 2 is omitted for clarity of the structure.
  • the quenching resistor R1 is disposed on the main surface 20a side.
  • the quenching resistor R1 has one end electrically connected to the electrode E9 and the other end connected to the common electrode CE.
  • the quenching resistor R1 constitutes a passive quenching circuit.
  • a quenching resistor R1 is connected in parallel to the common electrode CE.
  • the signal processor SP is disposed on the main surface 20a side.
  • the signal processing unit SP has an input end electrically connected to the electrode E9 and an output end connected to the signal line TL.
  • An output signal from each avalanche photodiode APD is input to the signal processing unit SP via the electrode E1, the through electrode TE, the electrode E5, the electrode E7, the bump electrode BE, and the electrode E9.
  • the signal processing unit SP processes an output signal from each avalanche photodiode APD.
  • the signal processing unit SP includes a CMOS circuit that converts an output signal from each avalanche photodiode APD into a digital pulse.
  • a passivation film PF having openings formed at positions corresponding to the bump electrodes BE is disposed on the main surface 1Nb side of the semiconductor substrate 1N and the main surface 20a side of the mounting substrate 20.
  • the passivation film PF is made of SiN, for example.
  • a CVD (Chemical Vapor Deposition) method can be used as a method of forming the passivation film PF.
  • the glass substrate 30 has a main surface 30a and a main surface 30b facing each other.
  • the glass substrate 30 has a rectangular shape in plan view.
  • Main surface 30a faces main surface 1Nb of semiconductor substrate 1N.
  • the main surface 30b is flat. In the present embodiment, the main surface 30a is also flat.
  • the glass substrate 30 and the semiconductor photodetecting element 10A are optically connected by an optical adhesive OA.
  • the glass substrate 30 may be directly formed on the semiconductor photodetecting element 10A.
  • a scintillator is optically connected to the main surface 30b of the glass substrate 30 by an optical adhesive.
  • the scintillation light from the scintillator passes through the glass substrate 30 and enters the semiconductor photodetecting element 10A.
  • the side surface 1Nc of the semiconductor substrate 1N and the side surface 30c of the glass substrate 30 are flush with each other as shown in FIG. In other words, the outer edge of the semiconductor substrate 1N and the outer edge of the glass substrate 30 coincide with each other in plan view.
  • an avalanche photodiode APD is formed by forming a PN junction between the N-type semiconductor substrate 1N and the P-type first semiconductor region 1PA. Yes.
  • the semiconductor substrate 1N is electrically connected to an electrode (not shown) formed on the back surface of the substrate 1N, and the first semiconductor region 1PA is connected to the electrode E1 through the second semiconductor region 1PB.
  • the quenching resistor R1 is connected in series with the avalanche photodiode APD (see FIG. 6).
  • each avalanche photodiode APD is operated in the Geiger mode.
  • a reverse voltage (reverse bias voltage) larger than the breakdown voltage of the avalanche photodiode APD is applied between the anode and the cathode of the avalanche photodiode APD. That is, the ( ⁇ ) potential V1 is applied to the anode and the (+) potential V2 is applied to the cathode.
  • the polarities of these potentials are relative, and one of the potentials can be a ground potential.
  • the anode is a P-type first semiconductor region 1PA
  • the cathode is an N-type semiconductor substrate 1N.
  • light (photons) enters the avalanche photodiode APD photoelectric conversion is performed inside the substrate to generate photoelectrons.
  • Avalanche multiplication is performed in a region near the PN junction interface of the first semiconductor region 1PA, and the amplified electron group flows toward an electrode formed on the back surface of the semiconductor substrate 1N.
  • the quenching resistor R1 is arranged on the mounting substrate 20 instead of the semiconductor substrate 1N of the semiconductor photodetector 10A. Therefore, each avalanche photodiode APD is formed in the semiconductor substrate 1N without considering the space for disposing the quenching resistor R1. As a result, the aperture ratio of the light detection device 1 (semiconductor light detection element 10A) can be remarkably improved.
  • Each avalanche photodiode APD has a semiconductor substrate 1N, a first semiconductor region 1PA, a second semiconductor region 1PB, and an electrode E1 electrically connected to the second semiconductor region 1PB.
  • a penetrating electrode TE penetrating from the main surface 1Na side to the main surface 1Nb side and electrically connecting the corresponding electrode E1 and electrode E5 is formed.
  • the electrode E1 and the electrode E5 are electrically connected through the through electrode TE, the second semiconductor region 1PB through the electrode E1, the through electrode TE, the electrodes E5 and E7, the bump electrode BE, and the electrode E9.
  • To the quenching resistance R1 is relatively short. Therefore, in the photodetector 1, the influence of the resistance and capacitance of the wiring from the second semiconductor region 1PB to the quenching resistor R1 is suppressed, and the time resolution is improved.
  • the mounting substrate 20 includes a common electrode CE to which a quenching resistor R1 is connected in parallel. Thereby, each avalanche photodiode APD (quenching resistor R1) can be connected in parallel without increasing the wiring distance.
  • the mechanical strength of the semiconductor substrate 1N can be increased by the glass substrate 30 disposed to face the semiconductor photodetector 10A. This is particularly effective when the semiconductor substrate 1N is thinned.
  • FIG. 7 is a diagram for explaining a cross-sectional configuration of a photodetection device according to a modification of the present embodiment.
  • FIG. 8 is a schematic plan view of the semiconductor photodetector element.
  • the photodetection device 1 includes a semiconductor photodetection element 10B, a mounting substrate 20, and a glass substrate 30, as shown in FIGS.
  • the mounting substrate 20 is disposed to face the semiconductor photodetecting element 10B.
  • the glass substrate 30 is disposed to face the semiconductor photodetecting element 10B.
  • the semiconductor photodetecting element 10 ⁇ / b> B is disposed between the mounting substrate 20 and the glass substrate 30.
  • the semiconductor photodetecting element 10B is composed of a back-illuminated photodiode array PDA2.
  • the photodiode array PDA2 has a semiconductor substrate 2N that has a rectangular shape in plan view.
  • the semiconductor substrate 2N includes a main surface 2Na and a main surface 2Nb facing each other.
  • the semiconductor substrate 2N is a P-type (first conductivity type) semiconductor substrate made of Si.
  • the semiconductor substrate 2N is electrically connected to an electrode (not shown) formed on the main surface 2Nb side of the substrate 1N.
  • the photodiode array PDA2 includes a plurality of avalanche photodiodes APD formed on the semiconductor substrate 2N.
  • One avalanche photodiode APD constitutes one pixel in the photodiode array PDA2.
  • Each avalanche photodiode APD has an N-type (first conductivity type) first semiconductor region 2PA and a P-type (second conductivity type) second semiconductor region 2PB.
  • the first semiconductor region 2PA is formed on the main surface 2Nb side of the semiconductor substrate 2N.
  • the second semiconductor region 2PB forms a PN junction with the first semiconductor region 2PA and has an impurity concentration higher than that of the semiconductor substrate 2N.
  • the planar shape of the first semiconductor region 2PA is, for example, a polygon (in this embodiment, an octagon).
  • the first semiconductor region 2PA functions as a cathode layer, and the second semiconductor region 2PB functions as a multiplication layer.
  • An accumulation layer and an insulating layer are disposed on the main surface 2Na side of the semiconductor substrate 2N (both not shown).
  • the accumulation layer is formed by ion-implanting or diffusing P-type impurities in the semiconductor substrate 2N from the main surface 2Na side so as to have an impurity concentration higher than that of the semiconductor substrate 2N.
  • the insulating layer is formed on the accumulation layer.
  • the material of the insulating layer SiO 2 or SiN can be used.
  • As a method for forming the insulating layer if the insulating layer is made of SiO 2 may be used a thermal oxidation method or a sputtering method.
  • the avalanche photodiode APD has an electrode E11 disposed on the main surface 2Nb side of the semiconductor substrate 2N as shown in FIG.
  • the electrode E11 is connected to the first semiconductor region 2PA.
  • the electrode E11 is disposed on the semiconductor substrate 2N corresponding to the first semiconductor region 2PA through the insulating layer L4 when viewed from the main surface 2Nb side.
  • the description of the insulating layer L4 and the passivation film PF shown in FIG. 2 is omitted for clarification of the structure.
  • the electrode E11 and the electrode E9 are connected by a bump electrode BE. Thereby, the first semiconductor region 2PA is electrically connected to the electrode E9 via the electrode E11 and the bump electrode BE.
  • the electrode E11 is also made of a metal such as aluminum, like the electrode E9. As an electrode material, AuGe / Ni or the like may be used in addition to aluminum.
  • the quenching resistor R1 is arranged on the mounting substrate 20 instead of the semiconductor substrate 2N of the semiconductor photodetector 10B. Therefore, each avalanche photodiode APD is formed in the semiconductor substrate 2N without considering the space for disposing the quenching resistor R1. As a result, the aperture ratio of the light detection device 1 (semiconductor light detection element 10B) can be significantly improved.
  • Each avalanche photodiode APD has a semiconductor substrate 2N, a first semiconductor region 2PA, and a second semiconductor region 2PB, and the first semiconductor region 2PA and the electrode E9 are electrically connected. Thereby, even when the back-illuminated semiconductor photodetecting element 10B is used, the aperture ratio can be remarkably improved.
  • the electrode E11 and the electrode E9 are electrically connected via the bump electrode BE, the wiring distance from the first semiconductor region 2PA to the quenching resistor R1 is extremely short. Therefore, the influence of the resistance and capacitance of the wiring from the first semiconductor region 2PA to the quenching resistor R1 is remarkably suppressed, and the time resolution is further improved.
  • the mechanical strength of the semiconductor substrate 2N can be increased by the glass substrate 30 disposed opposite to the semiconductor photodetector 10B. This is particularly effective when the semiconductor substrate 2N is thinned.
  • the region where the plurality of avalanche photodiodes APD are formed is thinned from the main surface 2Na side, and the region where the plurality of avalanche photodiodes APD are formed in the semiconductor substrate 2N.
  • the part corresponding to is removed.
  • the semiconductor substrate 2N exists as a frame portion.
  • the removal of the semiconductor substrate 2N can be performed by etching (for example, dry etching) or polishing.
  • an accumulation layer AC and an insulating layer L5 are arranged on the main surface 2Na side of the semiconductor substrate 2N.
  • Accumulation layer AC is formed by ion-implanting or diffusing P-type impurities in semiconductor substrate 2N from the main surface 2Na side so as to have a higher impurity concentration than semiconductor substrate 2N.
  • the insulating layer L5 is formed on the accumulation layer AC.
  • SiO 2 or SiN can be used.
  • As a method for forming the insulating layer L5, when the insulating layer L5 is formed of SiO 2 may be used a thermal oxidation method or a sputtering method.
  • the mounting substrate 20 may include an active quenching circuit AQ as shown in FIG. 10 instead of the passive quenching circuit (quenching resistor).
  • the active quenching circuit AQ also functions as the signal processing unit SP and includes a CMOS circuit.
  • a common electrode CE and a signal line TL are connected to each active quenching circuit AQ.
  • the active quenching circuit AQ converts the output signal from each avalanche photodiode APD into a digital pulse, and performs the ON / OFF operation of the MOS using the converted digital pulse to perform the forced drop of the voltage and the reset operation. Do. Since the mounting substrate 20 includes the active quenching circuit AQ, the voltage recovery time when the semiconductor photodetector elements 10A and 10B operate in the Geiger mode can be reduced.
  • the shape of the first and second semiconductor regions 1PB, 1PB, 2PA, 2PB is not limited to the shape described above, and may be another shape (for example, a circular shape).
  • the number (number of rows and number of columns) and arrangement of the avalanche photodiodes APD formed on the semiconductor substrates 1N and 2N are not limited to those described above.
  • the present invention can be used for a light detection device that detects weak light.
  • SYMBOLS 1 Photodetector, 1N, 2N ... Semiconductor substrate, 1Na, 1Nb, 2Na, 2Nb ... Main surface, 1PA ... First semiconductor region, 1PB ... Second semiconductor region, 2PA ... First semiconductor region, 2PB ... Second semiconductor Area: 10A, 10B ... Semiconductor photodetecting element, 20 ... Mounting substrate, 20a, 20b ... Main surface, APD ... Avalanche photodiode, AQ ... Active quenching circuit, BE ... Bump electrode, CE ... Common electrode, E1, E5 E7, E9, E11 ... electrodes, PDA1, PDA2 ... photodiode array, R1 ... quenching resistor, TE ... penetrating electrode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Measurement Of Radiation (AREA)

Abstract

 光検出装置1は、半導体基板1Nを有する半導体光検出素子10Aと、半導体光検出素子10に対向配置される搭載基板20とを備える。半導体光検出素子10Aは、ガイガーモードで動作すると共に半導体基板1N内に形成された複数のアバランシェフォトダイオードAPDと、それぞれのアバランシェフォトダイオードAPDに対して電気的に接続されると共に半導体基板1Nの主面1Nb側に配置された電極E7とを含む。搭載基板20は、電極E7毎に対応して主面20a側に配置された複数の電極E9と、それぞれの電極E9に対して電気的に接続されると共に主面20a側に配置されたクエンチング抵抗R1とを含む。電極E7と電極E9とが、バンプ電極BEを介して接続されている。

Description

光検出装置
 本発明は、光検出装置に関する。
 ガイガーモードで動作する複数のアバランシェフォトダイオードと、それぞれのアバランシェフォトダイオードに対して直列に接続されたクエンチング抵抗と、を備えている表面入射型のフォトダイオードアレイ(半導体光検出素子)が知られている(たとえば、特許文献1参照)。このフォトダイオードアレイでは、各画素を構成するアバランシェフォトダイオードが形成された半導体基板にクエンチング抵抗が設けられている。
特開2011-003739号公報
 特許文献1に記載された表面入射型の半導体光検出素子では、クエンチング抵抗は半導体基板の光入射面(表面)側に配置される。このため、クエンチング抵抗が配置されるスペース分、開口率が低くならざるを得ず、開口率の向上には限界があった。
 ところで、裏面入射型の半導体光検出素子では、クエンチング抵抗は半導体基板の光入射面に対向する面(裏面)側に配置される。裏面入射型の半導体光検出素子においても、画素数の増加などの要因により、各画素のサイズが小さい場合がある。この場合、プロセス設計での制約上、各画素の領域(アクティブ領域)外にクエンチング抵抗を配置しなければならないことがある。各アバランシェフォトダイオードがガイガーモードで動作する際に形成される増倍領域は、アクティブ領域内に位置する。結果的に、クエンチング抵抗をアクティブ領域外に配置する分、開口率は低くならざるを得ない。
 本発明は、開口率を著しく向上することが可能な光検出装置を提供することを目的とする。
 本発明は、光検出装置であって、互いに対向する第一及び第二主面を含む半導体基板を有する半導体光検出素子と、半導体光検出素子に対向配置されると共に、半導体基板の第二主面と対向する第三主面を有する搭載基板と、を備え、半導体光検出素子は、ガイガーモードで動作すると共に半導体基板内に形成された複数のアバランシェフォトダイオードと、それぞれのアバランシェフォトダイオードに対して電気的に接続されると共に半導体基板の第二主面側に配置された第一電極と、を含み、搭載基板は、第一電極毎に対応して第三主面側に配置された複数の第二電極と、それぞれの第二電極に対して電気的に接続されると共に第三主面側に配置されたクエンチング回路と、を含んでおり、第一電極と、該第一電極に対応する第二電極と、がバンプ電極を介して接続されている。
 本発明では、クエンチング回路が、半導体光検出素子の半導体基板ではなく、搭載基板に配置される。このため、半導体基板において、クエンチング回路を配置するスペースを考慮することなく、各アバランシェフォトダイオードが形成される。この結果、光検出装置(半導体光検出素子)の開口率を著しく向上することができる。
 本発明では、各アバランシェフォトダイオードは、第一導電体の半導体基板と、半導体基板の第一主面側に形成された第二導電型の第一半導体領域と、第一半導体領域内に形成され且つ第一半導体領域よりも不純物濃度が高い第二導電型の第二半導体領域と、半導体基板の第一主面側に配置され且つ第二半導体領域に電気的に接続された第三電極と、を有し、半導体基板には、アバランシェフォトダイオードに、第一主面側から第二主面側まで貫通し且つ対応する第三電極と第一電極とを電気的に接続する貫通電極が形成されていてもよい。この場合、表面入射型の半導体光検出素子が用いられた場合でも、開口率を著しく向上することができる。また、第三電極と第一電極とが貫通電極を介して電気的に接続されるため、第三電極、貫通電極、第一電極、バンプ電極、及び第二電極を介した第二半導体領域からクエンチング回路までの配線距離が比較的短い。したがって、配線が有する抵抗及び容量の影響が抑制され、時間分解能が向上する。
 本発明では、各アバランシェフォトダイオードは、第一導電体の半導体基板と、半導体基板の第二主面側に形成された第二導電型の第一半導体領域と、第一半導体領域とでPN接合を構成し且つ半導体基板よりも不純物濃度が高い第一導電型の第二半導体領域と、を有し、第一半導体領域と第一電極とが電気的に接続されていてもよい。この場合、裏面入射型の半導体光検出素子が用いられた場合でも、開口率を著しく向上することができる。また、第一電極と第二電極とがバンプ電極を介して電気的に接続されるため、第一半導体領域からクエンチング回路までの配線距離が極めて短い。したがって、配線が有する抵抗及び容量の影響が著しく抑制され、時間分解能がより一層向上する。
 本発明では、搭載基板は、クエンチング回路が並列に接続されたコモン電極を更に含んでいてもよい。この場合、配線距離が長くなることなく、各アバランシェフォトダイオード(クエンチング回路)を並列に接続することができる。
 本発明では、クエンチング回路が、パッシブクエンチング回路又はアクティブクエンチング回路であってもよい。
 本発明によれば、開口率を著しく向上することが可能な光検出装置を提供することができる。
図1は、本発明の実施形態に係る光検出装置を示す概略斜視図である。 図2は、本実施形態に係る光検出装置の断面構成を説明するための図である。 図3は、半導体光検出素子の概略平面図である。 図4は、半導体光検出素子の概略平面図である。 図5は、搭載基板の概略平面図である。 図6は、光検出装置の回路図である。 図7は、本実施形態の変形例に係る光検出装置の断面構成を説明するための図である。 図8は、半導体光検出素子の概略平面図である。 図9は、本実施形態の変形例に係る光検出装置の断面構成を説明するための図である。 図10は、搭載基板の概略平面図である。
 以下、添付図面を参照して、本発明の好適な実施形態について詳細に説明する。なお、説明において、同一要素又は同一機能を有する要素には、同一符号を用いることとし、重複する説明は省略する。
 図1~図6を参照して、本実施形態に係る光検出装置1の構成を説明する。図1は、本実施形態に係る光検出装置を示す概略斜視図である。図2は、本実施形態に係る光検出装置の断面構成を説明するための図である。図3及び図4は、半導体光検出素子の概略平面図である。図5は、搭載基板の概略平面図である。図6は、光検出装置の回路図である。
 光検出装置1は、図1及び図2に示されるように、半導体光検出素子10A、搭載基板20、及びガラス基板30を備えている。搭載基板20は、半導体光検出素子10Aに対向配置されている。ガラス基板30は、半導体光検出素子10Aに対向配置されている。半導体光検出素子10Aは、搭載基板20とガラス基板30との間に配置されている。
 半導体光検出素子10Aは、表面入射型のフォトダイオードアレイPDA1からなる。フォトダイオードアレイPDA1は、平面視で矩形形状を呈する半導体基板1Nを有している。半導体基板1Nは、互いに対向する主面1Naと主面1Nbとを含んでいる。半導体基板1Nは、Siからなる、N型(第一導電型)の半導体基板である。
 フォトダイオードアレイPDA1は、半導体基板1Nに形成された複数のアバランシェフォトダイオードAPDを含んでいる。一つのアバランシェフォトダイオードAPDは、フォトダイオードアレイPDA1における一つの画素を構成している。各アバランシェフォトダイオードAPDは、それぞれクエンチング抵抗R1と直列に接続された状態で、全て並列に接続されており、電源から逆バイアス電圧が印加される。アバランシェフォトダイオードAPDからの出力電流は、後述する信号処理部SPによって検出される。
 個々のアバランシェフォトダイオードAPDは、P型(第二導電型)の第一半導体領域1PAと、P型(第二導電型)の第二半導体領域1PBと、を有している。第一半導体領域1PAは、半導体基板1Nの主面1Na側に形成されている。第二半導体領域1PBは、第一半導体領域1PA内に形成され且つ第一半導体領域1PAよりも不純物濃度が高い。第二半導体領域1PBの平面形状は、たとえば多角形(本実施形態では、八角形)である。第一半導体領域1PAの深さは、第二半導体領域1PBよりも深い。
 半導体基板1Nは、N型(第一導電型)の半導体領域1PCを有している。半導体領域1PCは、半導体基板1Nの主面1Na側に形成されている。半導体領域1PCは、N型の半導体基板1NとP型の第一半導体領域1PAとの間に形成されるPN接合が、後述する貫通電極TEが配置される貫通孔THに露出するのを防ぐ。半導体領域1PCは、貫通孔TH(貫通電極TE)に対応する位置に形成されている。
 アバランシェフォトダイオードAPDは、図3にも示されるように、半導体基板1Nの主面1Na側に配置された電極E1を有している。電極E1は、第二半導体領域1PBに接続されている。電極E1は、主面1Na側から見て、第二半導体領域1PBの外側の半導体基板1N上に、絶縁層L1を介して配置されている。図3では、構造の明確化のため、図2に示した絶縁層L1の記載を省略している。第一半導体領域1PAは、第二半導体領域1PBを介して電極E1に電気的に接続されている。
 アバランシェフォトダイオードAPDは、図4にも示されるように、半導体基板1Nの主面1Nb側にそれぞれ配置された、半導体基板1Nに電気的に接続された電極(図示省略)と、電極E5と、当該電極E5に接続された電極E7と、を有している。電極E5は、主面1Nb側から見て、第二半導体領域1PBの外側の半導体基板1N上に、絶縁層L2を介して配置されている。電極E7は、主面1Nb側から見て、第二半導体領域1PBと重複する半導体基板1N上に、絶縁層L2を介して配置されている。すなわち、電極E7は、主面1Nbにおける第二半導体領域1PBに対応する領域上に配置されている。図4では、構造の明確化のため、図2に示したパッシベーション膜PFの記載を省略している。
 フォトダイオードアレイPDA1は、複数の貫通電極TEを含んでいる。貫通電極TEは、個々のアバランシェフォトダイオードAPD毎に設けられている。貫通電極TEは、半導体基板1Nを、主面1Na側から主面1Nb側まで貫通して形成されている。すなわち、貫通電極TEは、半導体基板1Nを貫通する貫通孔TH内に配置されている。絶縁層L2は、貫通孔TH内にも形成されている。したがって、貫通電極TEは、絶縁層L2を介して、貫通孔TH内に配置される。
 貫通電極TEは、その一方端が電極E1に接続され、その他方端が電極E5に接続されている。第二半導体領域1PBは、電極E1、貫通電極TE、及び電極E5を介して、電極E7に電気的に接続されている。
 貫通電極TEは、平面視で、アバランシェフォトダイオードAPD間の領域に配置されている。本実施形態では、アバランシェフォトダイオードAPDは、第一方向にM行、第一方向に直交する第二方向にN列(M,Nは自然数)に2次元配列されている。貫通電極TEは、4つのアバランシェフォトダイオードAPDに囲まれる領域に形成されている。貫通電極TEは、アバランシェフォトダイオードAPD毎に設けられているため、第一方向にM行、第二方向にN列に2次元配列される。
 電極E1,E5,E7及び貫通電極TEはアルミニウムなどの金属からなる。半導体基板がSiからなる場合には、電極材料としては、アルミニウムの他に、AuGe/Niなどもよく用いられる。プロセス設計にも因るが、電極E5、電極E7、及び貫通電極TEは一体に形成することができる。電極E1,E5,E7及び貫通電極TEの形成方法としては、スパッタ法を用いることができる。
 Siを用いた場合におけるP型不純物としてはBなどの3族元素が用いられ、N型不純物としては、N、P又はAsなどの5族元素が用いられる。半導体の導電型であるN型とP型は、互いに置換して素子を構成しても、当該素子を機能させることができる。これらの不純物の添加方法としては、拡散法やイオン注入法を用いることができる。
 絶縁層L1,L2の材料としては、SiO又はSiNを用いることができる。絶縁層L1,L2の形成方法としては、絶縁層L1,L2がSiOからなる場合には、熱酸化法又はスパッタ法を用いることができる。
 搭載基板20は、互いに対向する主面20aと主面20bとを有している。搭載基板20は、平面視で矩形状を呈している。主面20aは、半導体基板1Nの主面1Nbと対向している。搭載基板20は、主面20a側に配置された複数の電極E9を含んでいる。電極E9は、図2及び図6に示されるように、貫通電極TEに対応して配置されている。具体的には、電極E9は、主面20aにおける、電極E7に対向する各領域上に形成されている。
 半導体基板1Nの側面1Ncと搭載基板20の側面20cとは、図1及び図2に示されているように、面一とされている。すなわち、平面視で、半導体基板1Nの外縁と、搭載基板20の外縁とは、一致している。
 電極E7と電極E9とは、バンプ電極BEにより接続されている。これにより、貫通電極TEは、電極E5、電極E7、及びバンプ電極BEを介して、電極E9に電気的に接続されている。そして、第二半導体領域1PBは、電極E1、貫通電極TE、電極E5、電極E7、及びバンプ電極BEを介して、電極E9に電気的に接続されている。電極E9も、電極E1,E5,E7及び貫通電極TEと同じくアルミニウムなどの金属からなる。電極材料としては、アルミニウムの他に、AuGe/Niなどを用いてもよい。バンプ電極BEは、たとえば、はんだからなる。
 バンプ電極BEは、不図示のUBM(Under Bump Metal)を介して、電極E7に形成される。UBMは、バンプ電極BEと電気的及び物理的に接続が優れた材料からなる。UBMの形成方法は、無電解めっき法を用いることができる。バンプ電極BEの形成方法は、ハンダボールを搭載する手法又は印刷法を用いることができる。
 搭載基板20は、図5に示されるように、それぞれ複数のクエンチング抵抗R1と信号処理部SPとを含んでいる。搭載基板20は、ASIC(Application Specific Integrated Circuit)を構成している。図5では、構造の明確化のため、図2に示したパッシベーション膜PFの記載を省略している。
 クエンチング抵抗R1は、主面20a側に配置されている。クエンチング抵抗R1は、その一方端が電極E9に電気的に接続され、その他方端がコモン電極CEに接続されている。クエンチング抵抗R1は、パッシブクエンチング回路を構成している。コモン電極CEには、クエンチング抵抗R1が並列に接続されている。
 信号処理部SPは、主面20a側に配置されている。信号処理部SPは、その入力端が電極E9に電気的に接続され、その出力端が信号線TLに接続されている。信号処理部SPには、電極E1、貫通電極TE、電極E5、電極E7、バンプ電極BE、及び電極E9を介して、各アバランシェフォトダイオードAPD(半導体光検出素子10A)からの出力信号が入力される。信号処理部SPは、各アバランシェフォトダイオードAPDからの出力信号を処理する。信号処理部SPは、各アバランシェフォトダイオードAPDからの出力信号をデジタルパルスに変換するCMOS回路を含んでいる。
 半導体基板1Nの主面1Nb側及び搭載基板20の主面20a側には、バンプ電極BEに対応する位置に開口が形成されたパッシベーション膜PFが配置されている。パッシベーション膜PFは、たとえばSiNからなる。パッシベーション膜PFの形成方法としては、CVD(Chemical Vapor Deposition)法を用いることができる。
 ガラス基板30は、互いに対向する主面30aと主面30bとを有している。ガラス基板30は、平面視で矩形状を呈している。主面30aは、半導体基板1Nの主面1Nbと対向している。主面30bは、平坦である。本実施形態では、主面30aも平坦である。ガラス基板30と半導体光検出素子10Aとは、光学接着剤OAにより光学的に接続されている。ガラス基板30は、半導体光検出素子10A上に直接形成されていてもよい。
 図示を省略するが、ガラス基板30の主面30bには光学接着剤によりシンチレータが光学的に接続される。シンチレータからのシンチレーション光は、ガラス基板30を通り、半導体光検出素子10Aに入射する。
 半導体基板1Nの側面1Ncとガラス基板30の側面30cとは、図1にも示されているように、面一とされている。すなわち、平面視で、半導体基板1Nの外縁と、ガラス基板30の外縁とは、一致している。
 光検出装置1(半導体光検出素子10A)では、N型の半導体基板1NとP型の第一半導体領域1PAとの間に、PN接合が構成されることで、アバランシェフォトダイオードAPDが形成されている。半導体基板1Nは、基板1Nの裏面に形成された電極(図示省略)に電気的に接続され、第一半導体領域1PAは、第二半導体領域1PBを介して、電極E1に接続されている。クエンチング抵抗R1はアバランシェフォトダイオードAPDに対して直列に接続されている(図6参照)。
 フォトダイオードアレイPDA1においては、個々のアバランシェフォトダイオードAPDをガイガーモードで動作させる。ガイガーモードでは、アバランシェフォトダイオードAPDのブレークダウン電圧よりも大きな逆方向電圧(逆バイアス電圧)を、アバランシェフォトダイオードAPDのアノードとカソードとの間に印加する。すなわち、アノードには(-)電位V1を、カソードには(+)電位V2を印加する。これらの電位の極性は相対的なものであり、一方の電位をグランド電位とすることも可能である。
 アノードはP型の第一半導体領域1PAであり、カソードはN型の半導体基板1Nである。アバランシェフォトダイオードAPDに光(フォトン)が入射すると、基板内部で光電変換が行われて光電子が発生する。第一半導体領域1PAのPN接合界面の近傍領域において、アバランシェ増倍が行われ、増幅された電子群は半導体基板1Nの裏面に形成された電極に向けて流れる。すなわち、半導体光検出素子10A(フォトダイオードアレイPDA1)のいずれかの画素(アバランシェフォトダイオードAPD)に光(フォトン)が入射すると、増倍されて、信号として電極E9から取り出されて、対応する信号処理部SPに入力される。
 以上のように、本実施形態では、クエンチング抵抗R1が、半導体光検出素子10Aの半導体基板1Nではなく、搭載基板20に配置される。このため、半導体基板1Nにおいて、クエンチング抵抗R1を配置するスペースを考慮することなく、各アバランシェフォトダイオードAPDが形成される。この結果、光検出装置1(半導体光検出素子10A)の開口率を著しく向上することができる。
 各アバランシェフォトダイオードAPDは、半導体基板1Nと、第一半導体領域1PAと、第二半導体領域1PBと、第二半導体領域1PBに電気的に接続された電極E1と、を有し、半導体基板1Nには、アバランシェフォトダイオードAPD毎に、主面1Na側から主面1Nb側まで貫通し且つ対応する電極E1と電極E5とを電気的に接続する貫通電極TEが形成されている。これにより、表面入射型の半導体光検出素子10Aが用いられた場合でも、開口率を著しく向上することができる。また、電極E1と電極E5とが貫通電極TEを介して電気的に接続されるため、電極E1、貫通電極TE、電極E5,E7、バンプ電極BE、及び電極E9を介した第二半導体領域1PBからクエンチング抵抗R1までの配線距離が比較的短い。したがって、光検出装置1では、第二半導体領域1PBからクエンチング抵抗R1までの配線が有する抵抗及び容量の影響が抑制され、時間分解能が向上する。
 搭載基板20は、クエンチング抵抗R1が並列に接続されたコモン電極CEを含んでいる。これにより、配線距離が長くなることなく、各アバランシェフォトダイオードAPD(クエンチング抵抗R1)を並列に接続することができる。
 本実施形態では、半導体光検出素子10Aに対向配置されたガラス基板30により、半導体基板1Nの機械的強度を高めることができる。特に、半導体基板1Nが薄化されている場合に、極めて有効である。
 次に、図7及び図8を参照して、本実施形態の変形例に係る光検出装置1の構成を説明する。図7は、本実施形態の変形例に係る光検出装置の断面構成を説明するための図である。図8は、半導体光検出素子の概略平面図である。
 光検出装置1は、図7及び図8に示されるように、半導体光検出素子10B、搭載基板20、及びガラス基板30を備えている。搭載基板20は、半導体光検出素子10Bに対向配置されている。ガラス基板30は、半導体光検出素子10Bに対向配置されている。半導体光検出素子10Bは、搭載基板20とガラス基板30との間に配置されている。
 半導体光検出素子10Bは、裏面入射型のフォトダイオードアレイPDA2からなる。フォトダイオードアレイPDA2は、平面視で矩形形状を呈する半導体基板2Nを有している。半導体基板2Nは、互いに対向する主面2Naと主面2Nbとを含んでいる。半導体基板2Nは、Siからなる、P型(第一導電型)の半導体基板である。半導体基板2Nは、基板1Nの主面2Nb側に形成された電極(図示省略)に電気的に接続されている。
 フォトダイオードアレイPDA2は、半導体基板2Nに形成された複数のアバランシェフォトダイオードAPDを含んでいる。一つのアバランシェフォトダイオードAPDは、フォトダイオードアレイPDA2における一つの画素を構成している。
 個々のアバランシェフォトダイオードAPDは、N型(第一導電型)の第一半導体領域2PAと、P型(第二導電型)の第二半導体領域2PBと、を有している。第一半導体領域2PAは、半導体基板2Nの主面2Nb側に形成されている。第二半導体領域2PBは、第一半導体領域2PAとでPN接合を構成し且つ半導体基板2Nよりも不純物濃度が高い。第一半導体領域2PAの平面形状は、たとえば多角形(本実施形態では、八角形)である。第一半導体領域2PAはカソード層として機能し、第二半導体領域2PBは増倍層として機能する。
 半導体基板2Nの主面2Na側には、アキュムレーション層と絶縁層とが配置されている(いずれも、不図示)。アキュムレーション層は、半導体基板2N内において主面2Na側からP型不純物を半導体基板2Nよりも高い不純物濃度となるようにイオン注入又は拡散させることにより、形成される。絶縁層は、アキュムレーション層上に形成される。絶縁層の材料としては、SiO又はSiNを用いることができる。絶縁層の形成方法としては、絶縁層がSiOからなる場合には、熱酸化法又はスパッタ法を用いることができる。
 アバランシェフォトダイオードAPDは、図8にも示されるように、半導体基板2Nの主面2Nb側に配置された電極E11を有している。電極E11は、第一半導体領域2PAに接続されている。電極E11は、主面2Nb側から見て、第一半導体領域2PAに対応する半導体基板2N上に、絶縁層L4を介して配置されている。図8では、構造の明確化のため、図2に示した絶縁層L4及びパッシベーション膜PFの記載を省略している。
 電極E11と電極E9とは、バンプ電極BEにより接続されている。これにより、第一半導体領域2PAは、電極E11及びバンプ電極BEを介して、電極E9に電気的に接続されている。電極E11も、電極E9と同じくアルミニウムなどの金属からなる。電極材料としては、アルミニウムの他に、AuGe/Niなどを用いてもよい。
 以上のように、本変形例においても、クエンチング抵抗R1が、半導体光検出素子10Bの半導体基板2Nではなく、搭載基板20に配置される。このため、半導体基板2Nにおいて、クエンチング抵抗R1を配置するスペースを考慮することなく、各アバランシェフォトダイオードAPDが形成される。この結果、光検出装置1(半導体光検出素子10B)の開口率を著しく向上することができる。
 各アバランシェフォトダイオードAPDは、半導体基板2Nと、第一半導体領域2PAと、第二半導体領域2PBと、を有し、第一半導体領域2PAと電極E9とが電気的に接続されている。これにより、裏面入射型の半導体光検出素子10Bが用いられた場合でも、開口率を著しく向上することができる。また、電極E11と電極E9とがバンプ電極BEを介して電気的に接続されるため、第一半導体領域2PAからクエンチング抵抗R1までの配線距離が極めて短い。したがって、第一半導体領域2PAからクエンチング抵抗R1までの配線が有する抵抗及び容量の影響が著しく抑制され、時間分解能がより一層向上する。
 本変形例でも、半導体光検出素子10Bに対向配置されたガラス基板30により、半導体基板2Nの機械的強度を高めることができる。特に、半導体基板2Nが薄化されている場合に、極めて有効である。
 半導体基板2Nは、図9に示されるように、複数のアバランシェフォトダイオードAPDが形成された領域が主面2Na側から薄化されて、半導体基板2Nにおける複数のアバランシェフォトダイオードAPDが形成された領域に対応する部分が除去されている。薄化された領域の周囲には、半導体基板2Nが枠部として存在している。半導体基板2Nの除去は、エッチング(たとえば、ドライエッチングなど)又は研磨などにより行うことができる。
 半導体基板2Nの主面2Na側には、アキュムレーション層ACと絶縁層L5とが配置されている。アキュムレーション層ACは、半導体基板2N内において主面2Na側からP型不純物を半導体基板2Nよりも高い不純物濃度となるようにイオン注入又は拡散させることにより、形成される。絶縁層L5は、アキュムレーション層AC上に形成される。絶縁層L5の材料としては、SiO又はSiNを用いることができる。絶縁層L5の形成方法としては、絶縁層L5がSiOからなる場合には、熱酸化法又はスパッタ法を用いることができる。
 以上、本発明の好適な実施形態について説明してきたが、本発明は必ずしも上述した実施形態に限定されるものではなく、その要旨を逸脱しない範囲で様々な変更が可能である。
 搭載基板20は、パッシブクエンチング回路(クエンチング抵抗)の代わりに、図10に示されるように、アクティブクエンチング回路AQを含んでいてもよい。アクティブクエンチング回路AQは、信号処理部SPとしても機能し、CMOS回路を含んでいる。各アクティブクエンチング回路AQには、コモン電極CEと信号線TLとが接続されている。
 アクティブクエンチング回路AQは、各アバランシェフォトダイオードAPDからの出力信号をデジタルパルスに変換すると共に、変換したデジタルパルスを利用してMOSのON/OFF動作を行い、電圧の強制ドロップとリセット動作とを行う。搭載基板20がアクティブクエンチング回路AQを含むことにより、半導体光検出素子10A,10Bがガイガーモードで動作する際の電圧回復時間を低減することができる。
 第一及び第二半導体領域1PB,1PB,2PA,2PBの形状は、上述した形状に限られることなく、他の形状(たとえば、円形状など)であってもよい。また、半導体基板1N,2Nに形成されるアバランシェフォトダイオードAPDの数(行数及び列数)や配列は、上述したものに限られない。
 本発明は、微弱光を検出する光検出装置に利用することができる。
 1…光検出装置、1N,2N…半導体基板、1Na,1Nb,2Na,2Nb…主面、1PA…第一半導体領域、1PB…第二半導体領域、2PA…第一半導体領域、2PB…第二半導体領域、10A,10B…半導体光検出素子、20…搭載基板、20a,20b…主面、APD…アバランシェフォトダイオード、AQ…アクティブクエンチング回路、BE…バンプ電極、CE…コモン電極、E1,E5,E7,E9,E11…電極、PDA1,PDA2…フォトダイオードアレイ、R1…クエンチング抵抗、TE…貫通電極。

Claims (5)

  1.  光検出装置であって、
     互いに対向する第一及び第二主面を含む半導体基板を有する半導体光検出素子と、
     前記半導体光検出素子に対向配置されると共に、前記半導体基板の前記第二主面と対向する第三主面を有する搭載基板と、を備え、
     前記半導体光検出素子は、ガイガーモードで動作すると共に半導体基板内に形成された複数のアバランシェフォトダイオードと、それぞれの前記アバランシェフォトダイオードに対して電気的に接続されると共に前記半導体基板の前記第二主面側に配置された第一電極と、を含み、
     前記搭載基板は、前記第一電極毎に対応して前記第三主面側に配置された複数の第二電極と、それぞれの前記第二電極に対して電気的に接続されると共に前記第三主面側に配置されたクエンチング回路と、を含んでおり、
     前記第一電極と、該第一電極に対応する前記第二電極と、がバンプ電極を介して接続されている。
  2.  請求項1に記載の光検出装置であって、
     各前記アバランシェフォトダイオードは、
      第一導電体の前記半導体基板と、
      前記半導体基板の前記第一主面側に形成された第二導電型の第一半導体領域と、
      前記第一半導体領域内に形成され且つ前記第一半導体領域よりも不純物濃度が高い第二導電型の第二半導体領域と、
      前記半導体基板の前記第一主面側に配置され且つ前記第二半導体領域に電気的に接続された第三電極と、を有し、
     前記半導体基板には、前記アバランシェフォトダイオード毎に、前記第一主面側から前記第二主面側まで貫通し且つ対応する前記第三電極と前記第一電極とを電気的に接続する貫通電極が形成されている。
  3.  請求項1に記載の光検出装置であって、
     各前記アバランシェフォトダイオードは、
      第一導電体の前記半導体基板と、
      前記半導体基板の前記第二主面側に形成された第二導電型の第一半導体領域と、
      前記第一半導体領域とでPN接合を構成し且つ前記半導体基板よりも不純物濃度が高い第一導電型の第二半導体領域と、を有し、
     前記第一半導体領域と前記第一電極とが電気的に接続されている。
  4.  請求項1~3のいずれか一項に記載の光検出装置であって、
     前記搭載基板は、前記クエンチング回路が並列に接続されたコモン電極を更に含んでいる。
  5.  請求項1~4のいずれか一項に記載の光検出装置であって、
     前記クエンチング回路が、パッシブクエンチング回路又はアクティブクエンチング回路である。
PCT/JP2012/069727 2011-10-21 2012-08-02 光検出装置 WO2013058001A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112012004412.6T DE112012004412T8 (de) 2011-10-21 2012-08-02 Lichterfassungsvorrichtung
US14/350,647 US9368528B2 (en) 2011-10-21 2012-08-02 Light detection device having a semiconductor light detection element and a mounting substrate with quenching circuits
CN201280051817.0A CN103890972B (zh) 2011-10-21 2012-08-02 光检测装置
US15/150,859 US9768222B2 (en) 2011-10-21 2016-05-10 Light detection device including a semiconductor light detection element, a mounting substrate, and quenching circuits wherein the first electrodes of the light detection element corresponding to the second electrodes of the mounting substrate are electrically connected through bump electrodes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011232109A JP5926921B2 (ja) 2011-10-21 2011-10-21 光検出装置
JP2011-232109 2011-10-21

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/350,647 A-371-Of-International US9368528B2 (en) 2011-10-21 2012-08-02 Light detection device having a semiconductor light detection element and a mounting substrate with quenching circuits
US15/150,859 Continuation US9768222B2 (en) 2011-10-21 2016-05-10 Light detection device including a semiconductor light detection element, a mounting substrate, and quenching circuits wherein the first electrodes of the light detection element corresponding to the second electrodes of the mounting substrate are electrically connected through bump electrodes

Publications (1)

Publication Number Publication Date
WO2013058001A1 true WO2013058001A1 (ja) 2013-04-25

Family

ID=48140658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069727 WO2013058001A1 (ja) 2011-10-21 2012-08-02 光検出装置

Country Status (6)

Country Link
US (2) US9368528B2 (ja)
JP (1) JP5926921B2 (ja)
CN (2) CN105870244B (ja)
DE (1) DE112012004412T8 (ja)
TW (2) TWI569429B (ja)
WO (1) WO2013058001A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150115131A1 (en) * 2013-10-28 2015-04-30 Omnivision Technologies, Inc. Stacked chip spad image sensor
JP2016062996A (ja) * 2014-09-16 2016-04-25 株式会社東芝 光検出器
WO2021172071A1 (ja) * 2020-02-28 2021-09-02 浜松ホトニクス株式会社 光検出装置
US11374043B2 (en) * 2016-07-27 2022-06-28 Hamamatsu Photonics K.K. Photodetection device with matrix array of avalanche diodes

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5832852B2 (ja) * 2011-10-21 2015-12-16 浜松ホトニクス株式会社 光検出装置
JP5926921B2 (ja) * 2011-10-21 2016-05-25 浜松ホトニクス株式会社 光検出装置
JP5791461B2 (ja) 2011-10-21 2015-10-07 浜松ホトニクス株式会社 光検出装置
CN104752340B (zh) * 2013-12-31 2018-05-01 上海丽恒光微电子科技有限公司 雪崩光电二极管阵列装置及形成方法、激光三维成像装置
JP6193171B2 (ja) 2014-04-11 2017-09-06 株式会社東芝 光検出器
CN105655435B (zh) * 2014-11-14 2018-08-07 苏州瑞派宁科技有限公司 光电转换器、探测器及扫描设备
CN105842706B (zh) * 2015-01-14 2019-02-22 上海丽恒光微电子科技有限公司 激光三维成像装置及其制造方法
JP6755855B2 (ja) 2015-03-31 2020-09-16 浜松ホトニクス株式会社 半導体装置
JP6474892B2 (ja) * 2015-04-28 2019-02-27 オリンパス株式会社 半導体装置
WO2018021413A1 (ja) 2016-07-27 2018-02-01 浜松ホトニクス株式会社 光検出装置
JP6701135B2 (ja) 2016-10-13 2020-05-27 キヤノン株式会社 光検出装置および光検出システム
EP3309847B1 (en) 2016-10-13 2024-06-05 Canon Kabushiki Kaisha Photo-detection apparatus and photo-detection system
JP6712215B2 (ja) 2016-11-11 2020-06-17 浜松ホトニクス株式会社 光検出装置
JP6431574B1 (ja) * 2017-07-12 2018-11-28 浜松ホトニクス株式会社 電子管
JP6932580B2 (ja) * 2017-08-04 2021-09-08 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子
JP6860467B2 (ja) * 2017-10-26 2021-04-14 ソニーセミコンダクタソリューションズ株式会社 フォトダイオード、画素回路、および、フォトダイオードの製造方法
KR20200110782A (ko) * 2018-01-26 2020-09-25 하마마츠 포토닉스 가부시키가이샤 광 검출 장치
JP6878338B2 (ja) * 2018-03-14 2021-05-26 株式会社東芝 受光装置および受光装置の製造方法
JP2019212684A (ja) * 2018-05-31 2019-12-12 株式会社クオンタムドライブ 可視光無線通信用の受光装置
JP7454917B2 (ja) 2018-12-12 2024-03-25 浜松ホトニクス株式会社 光検出装置
US11901379B2 (en) 2018-12-12 2024-02-13 Hamamatsu Photonics K.K. Photodetector
JP2020073889A (ja) * 2019-12-04 2020-05-14 株式会社東芝 光検出器およびこれを用いたライダー装置
CN113782510B (zh) * 2021-11-12 2022-04-01 深圳市灵明光子科技有限公司 一种3d堆叠芯片的键合键布设结构
JP2024028045A (ja) * 2022-08-19 2024-03-01 ソニーセミコンダクタソリューションズ株式会社 光検出装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001318155A (ja) * 2000-02-28 2001-11-16 Toshiba Corp 放射線検出器、およびx線ct装置
WO2004019411A1 (ja) * 2002-08-09 2004-03-04 Hamamatsu Photonics K.K. フォトダイオードアレイ、その製造方法、及び放射線検出器
JP2004165602A (ja) * 2002-09-24 2004-06-10 Hamamatsu Photonics Kk 半導体装置及びその製造方法
WO2008004547A1 (fr) * 2006-07-03 2008-01-10 Hamamatsu Photonics K.K. Ensemble photodiode

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2411542C2 (ru) * 2005-04-22 2011-02-10 Конинклейке Филипс Электроникс Н.В. Цифровой кремниевый фотоумножитель для врп-пэт
GB2426575A (en) * 2005-05-27 2006-11-29 Sensl Technologies Ltd Photon detector using controlled sequences of reset and discharge of a capacitor to sense photons
RU2416840C2 (ru) * 2006-02-01 2011-04-20 Конинклейке Филипс Электроникс, Н.В. Лавинный фотодиод в режиме счетчика гейгера
DE102007037020B3 (de) * 2007-08-06 2008-08-21 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Avalanche-Photodiode
TW200950109A (en) 2008-05-21 2009-12-01 Univ Nat Formosa UV inspector for zinc oxide nano-pillar
DE102009017505B4 (de) * 2008-11-21 2014-07-10 Ketek Gmbh Strahlungsdetektor, Verwendung eines Strahlungsdetektors und Verfahren zur Herstellung eines Strahlungsdetektors
US8017902B2 (en) * 2008-12-12 2011-09-13 Infineon Technologies Ag Detector
JP2010283223A (ja) 2009-06-05 2010-12-16 Hamamatsu Photonics Kk 半導体光検出素子及び半導体光検出素子の製造方法
JP5297276B2 (ja) 2009-06-18 2013-09-25 浜松ホトニクス株式会社 フォトダイオードアレイ
JP5600690B2 (ja) * 2010-01-15 2014-10-01 浜松ホトニクス株式会社 アバランシェフォトダイオード及びその製造方法
US8860166B2 (en) * 2010-03-23 2014-10-14 Stmicroelectronics S.R.L. Photo detector array of geiger mode avalanche photodiodes for computed tomography systems
CN102024863B (zh) * 2010-10-11 2013-03-27 湘潭大学 高速增强型紫外硅选择性雪崩光电二极管及其制作方法
JP5562207B2 (ja) * 2010-10-29 2014-07-30 浜松ホトニクス株式会社 フォトダイオードアレイ
JP5926921B2 (ja) * 2011-10-21 2016-05-25 浜松ホトニクス株式会社 光検出装置
JP5832852B2 (ja) * 2011-10-21 2015-12-16 浜松ホトニクス株式会社 光検出装置
JP5791461B2 (ja) * 2011-10-21 2015-10-07 浜松ホトニクス株式会社 光検出装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001318155A (ja) * 2000-02-28 2001-11-16 Toshiba Corp 放射線検出器、およびx線ct装置
WO2004019411A1 (ja) * 2002-08-09 2004-03-04 Hamamatsu Photonics K.K. フォトダイオードアレイ、その製造方法、及び放射線検出器
JP2004165602A (ja) * 2002-09-24 2004-06-10 Hamamatsu Photonics Kk 半導体装置及びその製造方法
WO2008004547A1 (fr) * 2006-07-03 2008-01-10 Hamamatsu Photonics K.K. Ensemble photodiode

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150115131A1 (en) * 2013-10-28 2015-04-30 Omnivision Technologies, Inc. Stacked chip spad image sensor
US9299732B2 (en) * 2013-10-28 2016-03-29 Omnivision Technologies, Inc. Stacked chip SPAD image sensor
JP2016062996A (ja) * 2014-09-16 2016-04-25 株式会社東芝 光検出器
US11374043B2 (en) * 2016-07-27 2022-06-28 Hamamatsu Photonics K.K. Photodetection device with matrix array of avalanche diodes
WO2021172071A1 (ja) * 2020-02-28 2021-09-02 浜松ホトニクス株式会社 光検出装置
US11747195B2 (en) 2020-02-28 2023-09-05 Hamamatsu Photonics K.K. Light detection apparatus

Also Published As

Publication number Publication date
CN105870244A (zh) 2016-08-17
CN103890972A (zh) 2014-06-25
US20160254307A1 (en) 2016-09-01
TWI601278B (zh) 2017-10-01
DE112012004412T5 (de) 2014-08-07
JP5926921B2 (ja) 2016-05-25
JP2013089919A (ja) 2013-05-13
CN103890972B (zh) 2016-06-01
TW201318154A (zh) 2013-05-01
US9368528B2 (en) 2016-06-14
CN105870244B (zh) 2017-10-20
TWI569429B (zh) 2017-02-01
US20140291486A1 (en) 2014-10-02
US9768222B2 (en) 2017-09-19
DE112012004412T8 (de) 2014-11-20
TW201717370A (zh) 2017-05-16

Similar Documents

Publication Publication Date Title
JP5926921B2 (ja) 光検出装置
JP5832852B2 (ja) 光検出装置
JP5791461B2 (ja) 光検出装置
JP6282368B2 (ja) 光検出装置
JP6663167B2 (ja) 光検出装置
JP6140868B2 (ja) 半導体光検出素子
JP5927334B2 (ja) 光検出装置
JP5911629B2 (ja) 光検出装置
JP6318190B2 (ja) 光検出装置
JP6186038B2 (ja) 半導体光検出素子
JP6244403B2 (ja) 半導体光検出素子
JP6116728B2 (ja) 半導体光検出素子
JP6282307B2 (ja) 半導体光検出素子
JP5989872B2 (ja) 光検出装置の接続構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12840941

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14350647

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120120044126

Country of ref document: DE

Ref document number: 112012004412

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12840941

Country of ref document: EP

Kind code of ref document: A1