WO2013055138A2 - 단순화된 유기 발광 소자 및 이의 제조 방법 - Google Patents

단순화된 유기 발광 소자 및 이의 제조 방법 Download PDF

Info

Publication number
WO2013055138A2
WO2013055138A2 PCT/KR2012/008290 KR2012008290W WO2013055138A2 WO 2013055138 A2 WO2013055138 A2 WO 2013055138A2 KR 2012008290 W KR2012008290 W KR 2012008290W WO 2013055138 A2 WO2013055138 A2 WO 2013055138A2
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
conductive polymer
layer
low molecular
low
Prior art date
Application number
PCT/KR2012/008290
Other languages
English (en)
French (fr)
Other versions
WO2013055138A3 (ko
Inventor
이태우
한태희
Original Assignee
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항공과대학교 산학협력단 filed Critical 포항공과대학교 산학협력단
Priority to JP2014533222A priority Critical patent/JP5981999B2/ja
Priority to DE112012004269.7T priority patent/DE112012004269T8/de
Priority to US14/349,659 priority patent/US9281488B2/en
Priority to CN201280049985.6A priority patent/CN103875088B/zh
Publication of WO2013055138A2 publication Critical patent/WO2013055138A2/ko
Publication of WO2013055138A3 publication Critical patent/WO2013055138A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers

Definitions

  • An organic light emitting device and a method of manufacturing the same.
  • the organic light emitting device is a self-luminous device, which has a wide viewing angle, excellent contrast, fast response time, excellent luminance, driving voltage and response speed, and multicoloring.
  • a general organic light emitting device may include an anode and a cathode and an organic layer interposed between the anode and the cathode.
  • the organic layer may include an electron injection layer, a hole transport layer, a light emitting layer, an electron transport layer and a cathode.
  • Carriers such as holes and electrons recombine in the emission layer to generate excitons, which generate light as the excitons change from excited to ground state.
  • the organic light emitting device has been developed in the direction of gradually increasing auxiliary layers (or buffer layers) such as a hole injection layer, a hole transport layer, and an electron transport layer in order to increase the efficiency and lifetime of the device.
  • auxiliary layers or buffer layers
  • materials and process costs required for device manufacturing have gradually increased, and solving these problems has become a major issue in organic light emitting devices.
  • auxiliary layer of the organic light emitting device When the auxiliary layer of the organic light emitting device is formed or removed as a thin film, the distance between the light emitting layer and the electrode (for example, an anode or a cathode) is reduced. As a result, exciton quenching occurs in the light emitting layer. . That is, auxiliary layers such as the hole injection layer, the hole transport layer, and the electron transport layer may also serve to prevent the exciton disappearance of the light emitting layer.
  • the low-molecular light emitting layer having an anode, a first surface A (surface 1A) and a conductive polymer layer having a second A surface facing the first A surface, the first B surface and the second B surface opposite to the first B surface and
  • the cathodes are stacked one after the other;
  • One surface of the anode is in contact with the first A surface of the conductive polymer layer, the second A surface of the conductive polymer layer is in contact with the first B surface of the low molecular light emitting layer, and the second B surface of the low molecular light emitting layer is formed of the cathode Contact with one side and each other;
  • the conductive polymer layer is a single layer including a conductive polymer having a conductivity of 1 ⁇ 10 ⁇ 7 S / cm or more and less than 0.1 S / cm and a material having low surface energy,
  • concentration of the low surface energy material is greater than the concentration of the low surface energy material on the first A side
  • the absolute value of the low unoccupied molecular orbital (LUMO) energy level on the second A side is the LUMO of the low molecular light emitting layer.
  • the second A surface serves to prevent exciton quenching;
  • the low molecular weight light emitting layer includes a low molecular weight light emitting material, and the electron mobility of the low molecular weight light emitting material is greater than or equal to the hole mobility of the low molecular weight light emitting material.
  • an absolute value (ie, ionization potential) of a high occupied molecular orbital (HOMO) energy level on the first A surface may be greater than a work function of the anode.
  • an absolute value of a high occupied molecular orbital (HOMO) energy level on the second A surface may be greater than an absolute value of the HOMO energy level of the low molecular weight emission layer.
  • an exciton formation region may be formed at an interface between the conductive polymer layer and the low molecular emission layer.
  • the concentration of the low-surface energy material may gradually increase in a direction from the first A plane toward the second A plane.
  • the low surface energy material may be a fluorinated material comprising at least one F.
  • the conductive polymer may be at least one of polythiophene, polyaniline, polypyrrole, poly (para-phenylene), polyfluorene, poly (3,4-ethylenedioxythiophene), self-doped conductive polymer and derivatives thereof. It may include.
  • the conductive polymer may further include a polymer acid such as sulfonated polystyrene.
  • the ionization potential of the second A surface may be selected in the range of 5.0 eV to 6.5 eV.
  • the low molecular emission layer may include a host and a dopant, and the host may include an electron transporting low molecule.
  • the cathode may include an electron injection layer and a metal-containing layer, and the electron injection layer may contact the second B surface of the low molecular emission layer.
  • a conductive polymer layer-forming composition including a conductive polymer, the low-surface energy material and a solvent on the anode to form a conductive polymer layer;
  • the organic light emitting device Provided is a method of manufacturing the organic light emitting device.
  • the solvent included in the conductive polymer layer-forming composition may be a polar solvent, and the polar solvent may be at least one of water, alcohol, ethylene glycol, glycerol, dimethylformamide (DMF), dimethyl sulfoxide (DMSO), and acetone. .
  • the low molecular emission layer forming step may be performed using a vacuum deposition method and a solution process method.
  • the organic light emitting device has a high efficiency and has a simplified structure, manufacturing costs can be reduced.
  • 1 is a view schematically illustrating a cross section of an embodiment of the organic light emitting device.
  • 2 is a view showing the absolute value of the interlayer energy level of the organic light emitting device.
  • FIG. 3 is a diagram illustrating a molecular distribution of sputtering time of the conductive polymer layer 5 of Evaluation Example 1.
  • 4A and 4B are photoluminescence (PL) spectra of samples including conductive polymer layers 2 to 5 and polymer layer A of Evaluation Example 1, respectively.
  • FIG. 5 is a diagram illustrating PL life of samples including conductive polymer layers 1 to 5 and polymer layer A of Evaluation Example 1.
  • FIG. 5 is a diagram illustrating PL life of samples including conductive polymer layers 1 to 5 and polymer layer A of Evaluation Example 1.
  • FIG. 6A to 6D are diagrams showing light emission efficiency of the organic light emitting diodes of Comparative Examples 1 to 4 and Example 5.
  • FIG. 6A to 6D are diagrams showing light emission efficiency of the organic light emitting diodes of Comparative Examples 1 to 4 and Example 5.
  • the organic light emitting diode 100 includes an anode 120 as a hole injection electrode, a conductive polymer layer 130, a low molecular light emitting layer 150, and a cathode 170 as an electron injection electrode.
  • the conductive polymer layer 130 includes a first surface A (surface 1A) 141 and a second surface A (145) facing the first surface A (141), and the low molecular light emitting layer 150 has a first surface B ( 145 and a second B surface 147 opposite to the first B surface 145.
  • One surface of the anode 120 is in contact with the first A surface 141 of the conductive polymer layer 130, and the second A surface 145 of the conductive polymer layer 130 is formed of the low molecular light emitting layer 150.
  • the first B surface 145 is in contact with each other, and the second B surface 147 of the low molecular light emitting layer 150 is in contact with one surface of the cathode 170. Accordingly, the second A side and the first B side are denoted by the same reference numeral 145.
  • the anode 130 may be formed on a substrate.
  • a substrate used in a conventional semiconductor process can be used.
  • the substrate may be glass, sapphire, silicon, silicon oxide, metal foil (e.g., copper foil and aluminum foil), and steel substrate (e.g., stainless steel, etc.), Metal oxides, polymer substrates, and combinations of two or more thereof.
  • the metal oxide include aluminum oxide, molybdenum oxide, indium oxide, tin oxide, indium tin oxide, vanadium oxide, and the like
  • examples of the polymer substrate may include methtone foil and polyethersulfone (PES).
  • Polyacrylate PAR, polyacrylate
  • PEI polyetherimide
  • PEN polyethylene naphthalate
  • PET polyethylene terepthalate
  • PPS polyphenylene sulfide
  • Polyallylate polyimide, polycarbonate (PC), cellulose tri acetate (TAC), cellulose acetate propionate (CAP), and the like, but are not limited thereto.
  • the anode 120 may be formed by providing an anode forming material on the substrate using a deposition method or a sputtering method.
  • the anode 120 may be selected from materials having a relatively high work function to facilitate hole injection.
  • the anode 120 may be a reflective electrode or a transmissive electrode.
  • the anode forming material is transparent and excellent indium tin oxide (ITO), indium zinc oxide (IZO), tin oxide (SnO2), zinc oxide (ZnO), metal oxide / metal / metal oxide multilayer, graphene (graphene) and carbon nano tube (carbon nano tube) and the like can be used.
  • the anode 120 may be formed as a reflective electrode.
  • the anode 120 may include two different materials. For example, various modifications are possible such that the anode 120 may be formed in a two-layer structure including two different materials.
  • the conductive polymer layer 130 is a single layer including a conductive polymer having a conductivity of 1 ⁇ 10 ⁇ 7 S / cm or more and less than 0.1 S / cm and a material having low surface energy.
  • the concentration of the low-surface energy material on the second A surface 145 of the conductive polymer layer 130 is greater than the concentration of the low-surface energy material on the first A surface 141 of the conductive polymer layer 130.
  • the absolute value of the HOMO energy level, that is, the ionization potential of the second A surface 145 may be 5.0 eV or more, for example, 5.0 eV to 6.5 eV.
  • the term "low surface energy material” refers to a material capable of forming a film having a low surface energy, and specifically, refers to a material having a lower surface energy than the conductive polymer.
  • phase separation occurs due to the surface energy difference between the low-surface energy material and the conductive polymer, so that the low-surface energy material forms an upper phase and is conductive.
  • the polymer forms the lower phase.
  • the low surface energy material may include at least one F material, and may have a hydrophobicity greater than that of the conductive polymer.
  • the low surface energy material may be a material capable of providing a work function larger than the work function of the conductive polymer.
  • the low-surface energy material may include a thin film of the low-surface energy material having a surface energy of 30 mN / m or less and a conductivity of 10 ⁇ 1 S / cm to 10 ⁇ 15 S / cm at 100 nm thickness. It may be a material to have.
  • a thin film prepared using the conductive polymer composition including the low-surface energy material has a surface energy of 30 mN / m or less, and has a surface energy of 1 ⁇ 10 ⁇ 7 S / cm to less than 0.1 S / cm at a thickness of 100 nm. It may be a material to have a conductivity of S / cm.
  • the conductive polymer and the low-surface are due to the low surface energy of the low-surface energy material.
  • Energy materials are not homogeneous to mix. Instead, the concentration of the low-surface energy material has a slope that gradually increases along the direction from the first A surface 141 toward the second A surface 145, wherein the concentration of the conductive polymer is relatively higher than that of the second A surface.
  • the conductive polymer and the low-surface energy material may be distributed to have a slope that gradually increases in the direction from the surface 145 toward the first A surface 141.
  • the concentration of the low surface energy material is 1A.
  • the conductive polymer layer 130 gradually increasing in the direction toward the second A surface 145 may be formed.
  • the conductive polymer layer 130 is formed by self-organization of the conductive polymer and the low-surface energy material through a single solution film-forming process.
  • the surface energy material layer is in the form of an undivided single layer.
  • FIG. 2 is a view schematically showing energy levels between the anode 120, the conductive polymer layer 130, and the low molecular light emitting layer 150 of the organic light emitting diode 100.
  • FIG. 2 shows the absolute numbers of the HOMO and LUMO values of the conductive polymer layer 130 and the low molecular light emitting layer 105.
  • the concentration of low-surface energy material gradually increases along the direction from the first A side 141 to the second A side 145 of the conductive polymer layer 130. Therefore, the absolute value Y 1 of the HOMO energy level of the first A surface 141 of the conductive polymer layer 130 is smaller than the absolute value Y 3 of the HOMO energy level of the second A surface 145, and the first A surface.
  • the absolute value Y 2 of the LUMO energy level of 141 is greater than the absolute value Y 4 of the LUMO energy level of the second A plane 145.
  • the absolute value Y 4 of the low unoccupied molecular orbital (LUMO) energy level of the second A surface 145 of the conductive polymer layer 130 may be smaller than the absolute value Z 2 of the LUMO energy level of the low molecular emission layer. . Therefore, electrons injected from the cathode 170 and transferred to the low molecular light emitting layer 150 may not be substantially transferred to the conductive polymer layer 130.
  • the conductive polymer layer 130 may serve as an electron blocking layer (EBL).
  • the absolute value Y 1 of the high occupied molecular orbital (HOMO) energy level of the first A surface 141 of the conductive polymer layer 130 may be greater than the work function X 1 of the anode 120. .
  • the absolute value (Y 3 ) of the high occupied molecular orbital (HOMO) energy level of the second A surface 145 of the conductive polymer layer 130 is the absolute value (Z 1 ) of the HOMO energy level of the low molecular emission layer 150. May be greater than). Therefore, the hole injection from the anode 120 to the conductive polymer layer 130 and the hole transfer from the conductive polymer layer 130 to the low molecular light emitting layer 150 may be smoothly performed.
  • the exciton formation region 160 in which the exciton is formed by recombination of holes and electrons may be formed between the conductive polymer layer 130 and the low molecular emission layer 150.
  • the organic light emitting diode 100 may have excellent light emission efficiency.
  • the exciton formed in the exciton formation region 160 may be formed on the second A surface 145. Due to the conductive polymer included in the conductive polymer layer 130, quenching may be substantially prevented. As a result, the organic light emitting diode 100 may have excellent light emission efficiency.
  • the low surface energy material may be a material having a solubility of at least 90%, for example at least 95%, with respect to the polar solvent.
  • the low surface energy material may be dispersed in the polar solvent in the form of nanoparticles having an average particle diameter of 10 nm or less.
  • the polar solvent include water, alcohols (methanol, ethanol, n-propanol, 2-propanol, n-butanol, etc.), ethylene glycol, glycerol, dimethylformamide (DMF), dimethyl sulfoxide (DMSO), acetone, and the like. It may include, but is not limited thereto.
  • the low surface energy material may be a material comprising at least one F.
  • the low surface energy material may be a fluorinated polymer or fluorinated oligomer comprising at least one F.
  • the low surface energy material may be a fluorinated polymer having a repeating unit of any one of the following Chemical Formulas 1-3:
  • a is a number from 0 to 10,000,000
  • b is a number from 1 to 10,000,000
  • Q 1 is-[OC (R 1 ) (R 2 ) -C (R 3 ) (R 4 )] c- [OCF 2 CF 2 ] d -R 5 , -COOH or -OR f -R 6 ;
  • R 1 , R 2 , R 3 and R 4 are, independently from each other, -F, -CF 3 , -CHF 2 or -CH 2 F;
  • C and d are each independently a number from 0 to 20;
  • R f is-(CF 2 ) z- (z is an integer from 1 to 50) or-(CF 2 CF 2 O) z -CF 2 CF 2- (z is an integer from 1 to 50);
  • R 5 and R 6 are, independently from each other, -SO 3 M, -PO 3 M 2 or -CO 2 M;
  • M is Na + , K + , Li + , H + , CH 3 (CH 2 ) w NH 3 + (w is an integer of 0 to 50), NH 4 + , NH 2 + , NHSO 2 CF 3 + , CHO + , C 2 H 5 OH + , CH 3 OH + , CH 3 (CH 2 ) w CHO + (w is an integer of 0 to 50);
  • Q 2 is hydrogen, a substituted or unsubstituted C 5 -C 60 aryl group, or -COOH;
  • Q 3 is hydrogen or a substituted or unsubstituted C 1 -C 20 alkyl group
  • Q 4 is -O- (CF 2 ) r -SO 3 M, -O- (CF 2 ) r -PO 3 M 2 , -O- (CF 2 ) r -CO 2 M, or -CO-NH- ( CH 2 ) s- (CF 2 ) t -CF 3 ,
  • R, s and t are independently of each other a number from 0 to 20;
  • M is Na + , K + , Li + , H + , CH 3 (CH 2 ) w NH 3 + (w is an integer of 0 to 50), NH 4 + , NH 2 + , NHSO 2 CF 3 + , CHO + , C 2 H 5 OH + , CH 3 OH + , CH 3 (CH 2 ) w CHO + (w is an integer of 0 to 50);
  • n 0 ⁇ m ⁇ 10,000,000, 0 ⁇ n ⁇ 10,000,000;
  • x and y are each independently a number from 0 to 20;
  • Y is -SO 3 M, -PO 3 M 2 or -CO 2 M;
  • M is Na + , K + , Li + , H + , CH 3 (CH 2 ) w NH 3 + (w is an integer of 0 to 50), NH 4 + , NH 2 + , NHSO 2 CF 3 + , CHO + , C 2 H 5 OH + , CH 3 OH + , CH 3 (CH 2 ) w CHO + (w is an integer of 0 to 50);
  • the low surface energy material may be a fluorinated polymer including a repeating unit represented by Chemical Formula 1, but is not limited thereto.
  • the low surface energy material is a fluorinated polymer including a repeating unit represented by Chemical Formula 1, wherein a is a number from 100 to 10000, b is a number from 50 to 1000, and Q 1 is-[OC ( R 1 ) (R 2 ) -C (R 3 ) (R 4 )] c- [OCF 2 CF 2 ] d -R 5 .
  • the low surface energy material is a fluorinated polymer including a repeating unit represented by Formula 1, wherein a is a number of 100 to 10000, b is a number of 50 to 1000, and Q 1 is-[OC (R 1 ) (R 2 ) -C (R 3 ) (R 4 )] c- [OCF 2 CF 2 ] d -R 5 , wherein c is a number from 1 to 3, and R 1 , R 2 and R 3 is -F, R 4 is -CF 3 , d is a number of 1 to 3, R 5 may be -SO 3 M, but is not limited thereto.
  • Formula 1 is-[OC (R 1 ) (R 2 ) -C (R 3 ) (R 4 )] c- [OCF 2 CF 2 ] d -R 5 , wherein c is a number from 1 to 3, and R 1 , R 2 and R 3 is -F, R 4 is -CF 3 , d is
  • the low surface energy material may be a fluorinated silane-based material represented by the formula (10):
  • X is a terminal group
  • M f represents a unit or a fluorinated C 1 -C 20 alkylene group derived from a fluorinated monomer obtained from the condensation reaction of a perfluoropolyether alcohol, a polyisocyanate and an isocyanate reactive-non-fluorinated monomer;
  • M h represents a unit derived from a non-fluorinated monomer
  • M a represents a unit having a silyl group represented by -Si (Y 4 ) (Y 5 ) (Y 6 );
  • Y 4 , Y 5 and Y 6 independently represent a halogen atom, a substituted or unsubstituted C 1 -C 20 alkyl group, a substituted or unsubstituted C 6 -C 30 aryl group or a hydrolyzable substituent, and Y At least one of 4 , Y 5 and Y 6 is the hydrolyzable substituent;
  • G is a monovalent organic group comprising residues of a chain transfer agent
  • n is a number from 1 to 100;
  • n is a number from 0 to 100;
  • r is a number from 0 to 100;
  • n + m + r is at least 2;
  • p is a number from 0 to 10.
  • X may be a halogen atom
  • M f may be a fluorinated C 1 -C 10 alkylene group
  • M h may be a C 2 -C 10 alkylene group
  • the Y 4 , Y 5 And Y 6 may be independently of each other, a halogen atom (Br, Cl, F, etc.), and p may be 0.
  • the fluorinated silane-based material represented by Chemical Formula 10 may be CF 3 CH 2 CH 2 SiCl 3 , but is not limited thereto.
  • the conductive polymer may be a conductive polymer having high conductivity of 0.1 S / cm or more, for example, 1 S / cm or more.
  • the conductive polymer may be polythiophene, polyaniline, polypyrrole, polystyrene, sulfonated polystyrene, poly (3,4-ethylenedioxythiophene), self-doped conductive polymer, derivatives thereof, or two or more thereof. Combinations.
  • the derivative may mean that it may further include various sulfonic acids and the like.
  • the conductive polymer may include Pani: DBSA (Polyaniline / Dodecylbenzenesulfonic acid: polyaniline / dodecylbenzenesulfonic acid, the following chemical formula), PEDOT: PSS (Poly (3,4-ethylenedioxythiophene) / Poly (4-styrenesulfonate): Poly (3,4-ethylenedioxythiophene) / poly (4-styrenesulfonate), see formula below), Pani: CSA (Polyaniline / Camphor sulfonicacid: polyaniline / camphorsulfonic acid) or PANI: PSS (Polyaniline) / Poly ( 4-styrenesulfonate): polyaniline) / poly (4-styrenesulfonate)) and the like, but is not limited thereto.
  • DBSA Polyaniline / Dodecylbenzenesulfonic acid: polyaniline / dodec
  • R may be H or a C1-C10 alkyl group.
  • the self-doped conductive polymer may have a polymerization degree of 10 to 10,000,000, and may have a repeating unit represented by Formula 13 below:
  • R One , R 2 , R 3 , R ' One , R ' 2 , R ' 3 And R ' 4 At least one includes an ionic group, and A, B, A ', and B' are each independently selected from C, Si, Ge, Sn, or Pb;
  • R 1 , R 2 , R 3 , R ' 1 , R' 2 , R ' 3 and R' 4 are each independently hydrogen, halogen, nitro group, substituted or unsubstituted amino group, cyano group, substituted or unsubstituted Substituted C 1 -C 30 alkyl group, substituted or unsubstituted C 1 -C 30 alkoxy group, substituted or unsubstituted C 6 -C 30 aryl group, substituted or unsubstituted C 6 -C 30 arylalkyl group, substituted or Unsubstituted C 6 -C 30 aryloxy group, substituted or unsubstituted C 2 -C 30 heteroaryl group, substituted or unsubstituted C 2 -C 30 heteroarylalkyl group, substituted or unsubstituted C 2 -C 30 heteroaryloxy group, substituted or unsubstituted C 5 -C 30 cycloalky
  • R 4 consists of a conjugated conductive polymer chain
  • X and X ' are each independently a simple bond, O, S, a substituted or unsubstituted C 1 -C 30 alkylene group, a substituted or unsubstituted C 1 -C 30 heteroalkylene group, a substituted or unsubstituted C 6 -C 30 arylene group, substituted or unsubstituted C 6 -C 30 arylalkylene group, substituted or unsubstituted C 2 -C 30 heteroarylene group, substituted or unsubstituted C 2 -C 30 heteroarylalkyl
  • a ylene group, a substituted or unsubstituted C 5 -C 20 cycloalkylene group, and a substituted or unsubstituted C 5 -C 30 heterocycloalkylene group arylester group, optionally selected from carbon in the formula Hydrogen or halogen elements may be bonded.
  • the ionic group is PO 3 2-, SO 3 -, COO -, I -, CH 3 COO - group and anion group Na +, selected from the consisting of K +, Li +, Mg +2 , Zn +2 , A metal ion selected from Al +3 , H + , NH 4 + , CH 3 (-CH 2- ) n O + (n is a natural number of 1 to 50) selected from the group consisting of an anionic group and It may comprise a cationic group forming.
  • R 1 , R 2 , R 3 , R ' 1 , R' 2 , R ' 3, and R' 4 is each fluorine or substituted with fluorine. It may be, but is not limited to.
  • unsubstituted alkyl group examples include methyl, ethyl, propyl, isobutyl, sec-butyl, tert-butyl, pentyl, iso-amyl, hexyl and the like as the linear or branched alkyl group.
  • One or more hydrogen atoms included are a halogen atom, a hydroxyl group, a nitro group, a cyano group, a substituted or unsubstituted amino group (-NH 2 , -NH (R), -N (R ') (R “), R' and R ′′ is independently an alkyl group having 1 to 10 carbon atoms), amidino group, hydrazine, or hydrazone group, carboxyl group, sulfonic acid group, phosphoric acid group, C 1 -C 20 alkyl group, C 1 -C 20 halogenated alkyl group, C 1 -C 20 alkenyl group, C 1 -C 20 alkynyl group, C 1 -C 20 heteroalkyl group, C 6 -C 20 aryl group, C 6 -C 20 arylalkyl group, C 6 -C 20 It may be substituted with a heteroaryl group, or a C 6 -C 20 heteroarylalky
  • a heteroalkyl group means that at least one of carbon atoms in the main chain of the alkyl group, preferably 1 to 5 carbon atoms is substituted with a hetero atom such as an oxygen atom, a sulfur atom, a nitrogen atom, a person atom and the like.
  • aryl group herein is meant a carbocycle aromatic system comprising at least one aromatic ring, which rings may be attached or fused together in a pendant manner.
  • aryl group include aromatic groups such as phenyl, naphthyl, tetrahydronaphthyl and the like, and one or more hydrogen atoms in the aryl group may be substituted with the same substituents as in the alkyl group.
  • Heteroaryl group used herein refers to a ring aromatic system having 5 to 30 ring atoms containing 1, 2 or 3 heteroatoms selected from N, O, P or S, and the remaining ring atoms are C, wherein the rings are pendant May be attached or fused together in a manner. At least one hydrogen atom in the heteroaryl group may be substituted with the same substituent as in the alkyl group.
  • Alkoxy groups in this specification refer to the radical —O-alkyl, wherein alkyl is as defined above. Specific examples thereof include methoxy, ethoxy, propoxy, isobutyloxy, sec-butyloxy, pentyloxy, iso-amyloxy, hexyloxy, and the like. At least one hydrogen atom of the alkoxy group is an alkyl group. Substituents similar to the above can be substituted.
  • Heteroalkoxy groups which are substituents used in the present invention, have essentially the alkoxy meaning that one or more heteroatoms, for example oxygen, sulfur or nitrogen, may be present in the alkyl chain, for example CH 3 CH 2 OCH 2 CH 2 O—, C 4 H 9 OCH 2 CH 2 OCH 2 CH 2 O—, and CH 3 O (CH 2 CH 2 O) n H and the like.
  • An arylalkyl group in this specification means that some of the hydrogen atoms in the aryl group as defined above are substituted with radicals such as lower alkyl, for example methyl, ethyl, propyl and the like. For example benzyl, phenylethyl and the like. At least one hydrogen atom of the arylalkyl group may be substituted with the same substituent as in the alkyl group.
  • the heteroarylalkyl group means that some hydrogen atoms of the heteroaryl group are substituted with lower alkyl groups, and the definition of heteroaryl in the heteroarylalkyl group is as described above. At least one hydrogen atom of the heteroarylalkyl group may be substituted with the same substituent as in the alkyl group.
  • aryloxy group in this specification refers to the radical -O-aryl, where aryl is as defined above. Specific examples include phenoxy, naphthoxy, anthracenyloxy, phenanthrenyloxy, fluorenyloxy, indenyloxy, and the like, and at least one hydrogen atom in the aryloxy group may be substituted with the same substituent as in the alkyl group. Do.
  • Heteroaryloxy group in the present specification refers to the radical —O-heteroaryl, wherein heteroaryl is as defined above.
  • heteroaryloxy group in the present specification include a benzyloxy, a phenylethyloxy group, and the like, and at least one hydrogen atom in the heteroaryloxy group may be substituted with the same substituent as in the alkyl group.
  • Cycloalkyl group in the present specification means a monovalent monocyclic system having 5 to 30 carbon atoms. At least one hydrogen atom in the cycloalkyl group may be substituted with the same substituent as in the alkyl group.
  • Heterocycloalkyl group herein refers to a monovalent monocyclic system having 5 to 30 ring atoms containing 1, 2 or 3 heteroatoms selected from N, O, P or S, and the remaining ring atoms being C. At least one hydrogen atom of the cycloalkyl group may be substituted with the same substituent as in the alkyl group.
  • the alkyl ester group means a functional group to which an alkyl group and an ester group are bonded, wherein the alkyl group is as defined above.
  • heteroalkyl ester group in the present specification means a functional group to which a heteroalkyl group and an ester group are bonded, and the heteroalkyl group is as defined above.
  • the aryl ester group means a functional group having an aryl group and an ester group bonded thereto, wherein the aryl group is as defined above.
  • the heteroaryl ester group means a functional group having a heteroaryl group and an ester group bonded thereto, wherein the heteroaryl group is as defined above.
  • the amino group used in the present invention means -NH 2 , -NH (R) or -N (R ') (R “), R' and R" are independently an alkyl group having 1 to 10 carbon atoms.
  • Halogen in the present specification is fluorine, chlorine, bromine, iodine or asstatin, among which fluorine is particularly preferable.
  • the total concentration of the low-surface energy material in the conductive polymer layer 130 may be 10 parts by weight to 500 parts by weight, for example, 20 parts by weight to 400 parts by weight per 100 parts by weight of the conductive polymer, but is not limited thereto. no.
  • the conductive polymer layer 130 may have a concentration gradient of the low-surface energy material as described above, and may provide an organic light emitting device having high light emission efficiency. Can be implemented.
  • the conductive polymer layer 130 may have a thickness of 2 nm to 300 nm, for example, 5 nm to 100 nm.
  • the energy level gradient, high surface ionization potential (Y 3 ), and high luminous efficiency may be achieved.
  • the low molecular weight emitting layer 150 may include a low molecular weight emitting material. Electron mobility of the low molecular weight light emitting material may be equal to or greater than hole mobility of the low molecular weight light emitting material.
  • the organic light emitting device 100 may have a relationship of X 1 ⁇ Y 1 ⁇ Y 3 , holes may be rapidly transferred from the anode 120 to the low molecular light emitting layer 150. .
  • the organic light emitting device 100 may have a relationship of Y 4 ⁇ Z 2 , as shown in FIG. 2, electron injection from the cathode 170 to the low molecular light emitting layer 150 may be delayed.
  • the organic light emitting diode 100 may have a high luminous efficiency.
  • the low molecular weight emitting layer 150 may have a thickness of 10 nm to 100 nm, for example, 10 nm to 60 nm. When the thickness of the low molecular weight emitting layer 150 satisfies the above range, excellent light emission characteristics may be obtained without increasing the driving voltage.
  • the low molecular weight emission layer 150 may include a host and a dopant.
  • the host may comprise at least one of an ambipolar transport material and an electron transport material.
  • the bipolar transport material may be arbitrarily selected from known materials having both a hole transporting capability and an electron transporting capability.
  • the bipolar transport material may be a ter (9,9-diarylfluorene) derivative (eg, 2,7-bis [9,9-di (4-methylphenyl) -fluoren-2-yl] -9 , 9-di (4-methylphenyl) fluorine (2,7-bis [9,9-di (4-methylphenyl) -fluoren-2-yl] -9,9-di (4-methylphenyl) fluorine: TDAF) , 2,7-bis (9,9-spirobifluoren-2-yl) -9,9-spirobibifluorene (2,7-bis (9,9-spirobifluoren-2-yl) -9,9 -spirobifluorene): BDAF)], 9,10-di (naphth-2-yl) anthracene (9,10
  • the electron transporting material may be a material having a high electron mobility walk under the same electric field.
  • the electron transporting material may be selected from an electron transporting layer and / or an electron injection layer material of the organic light emitting device.
  • the electron transporting material is tris (8-hydroxyquinoline) aluminum (Alq 3 ), 2,2 ', 2 "-(benzene-1,3,5-triyl) -tris (1-phenyl-1H-benzimidazole) ((2,2 ', 2 "-(benzene-1,3,5-triyl)-tris (1-phenyl-1H-benzimidazole: TPBI), 2,9- Dimethyl-4,7-diphenyl-1,10-phenanthroline (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), 4,7-diphenyl-1,10-phenan Troline (4,7-diphenyl-1,10-phenanthroline (Bphen), bis (2-methyl-8-quinol
  • the host of the low molecular weight emission layer 150 may further include a hole transport material in addition to at least one of the bipolar transport material and the electron transport material as described above.
  • the hole transporting material may be a material having a hole mobility greater than an electron mobility under the same electric field.
  • the hole transport material may be a hole injection layer or a hole transport layer material of the organic light emitting device.
  • the hole transporting material may be 1,3-bis (carbazol-9-yl) benzene (1,3-bis (carbazol-9-yl) benzene (MCP), 1,3,5-tris ( Carbazol-9-yl) benzene (1,3,5-tris (carbazol-9-yl) benzene: TCP), 4,4 ', 4 "-tris (carbazol-9-yl) triphenylamine (4 , 4 ', 4 "-tris (carbazol-9-yl) triphenylamine: TcTa), 4,4'-bis (carbazol-9-yl) biphenyl (4,4'-bis (carbazol-9-yl) biphenyl: CBP), N, N'-bis (naphthalen
  • Di- [4,-(N, N-ditolyl-amino) -phenyl] cyclohexane Di- [4,-(N, N-ditolyl-amino) -phenyl] cyclohexane (Di- [4- (N, N-ditolyl-amino) -phenyl] cyclohexane (TAPC), N, N, N ' , N "-tetra-naphthalen-2-yl-benzidine (N, N, N ', N'-tetra-naphthalen-2-yl-benzidine: ⁇ -TNB) and N4, N4, N4', N4'-tetra (biphenyl-4-yl) biphenyl-4,4'-diamine (TPD15) and the like are examples, but are not limited thereto.
  • the dopant of the low molecular emission layer 150 one or more of red, green, and blue dopants may be used.
  • red dopant of the low molecular light emitting layer 150 rubrene (5,6,11,12-tetraphenylnaphthacene), Pt (II) octaethylporphine (PtOEP), Tris (1-phenylisoquinoline) iridium (III) (Ir (piq) ) 3 ), Bis (1-phenylisoquinoline) (acetylacetonate) iridium (III) (Ir (piq) 2 (acac)), Btp 2 Ir (acac), 5,6,11,12-tetraphenylnaphthacene (Rubrene) It may be, but is not limited thereto.
  • Bis (3,5-difluoro-2- (2-pyridyl) phenyl- (2-carboxypyridyl) iridium (III) (FIrPic), F 2 Irpic, (F 2 ppy ) 2 Ir (tmd), Ir (dfppz) 3 , ter-fluorene, 4,4'-bis [4- (di-p-tolylamino) styryl] biphenyl (DPAVBi), 2,5 , 8,11-tetra- tert -butyl perylene (TBP) may be used, but is not limited thereto.
  • the low molecular light emitting layer 150 may implement red light, green light and blue light, respectively, including one of the red, green, and blue dopants, or may include white light of two or more of the red, green, and blue dopants.
  • red light, green light and blue light respectively, including one of the red, green, and blue dopants, or may include white light of two or more of the red, green, and blue dopants.
  • the dopant may be doped only in a portion of the low molecular emission layer 150.
  • the interface between the low molecular light emitting layer 150 and the conductive polymer layer 130, that is, 20 from the first B surface 145 of the low molecular light emitting layer 150 may be reduced.
  • the host and dopant are present in the 20 nm thick region within nm, and only the host may be present in the remaining 50 nm thick region without dopant.
  • the interface is in contact with the conductive polymer layer 130 of the low molecular emission layer 150, that is, within 10 nm of the first B surface 145 of the low molecular emission layer 150.
  • the host may be present without a dopant, and the host and dopant may be present in the 20 nm thick region 10 nm to 30 nm away from the first B surface 140, and without the dopant in the remaining 40 nm thick region.
  • Various modifications are possible, such that only a host can exist.
  • the light emitting layer in the present invention can be prepared by vacuum deposition and solution process.
  • Vacuum deposition typically uses thermal deposition, and the solution process is spin-coating, ink-jet printing, nozzle printing, spray coating, screen printing Printing, doctor blade coating, gravure printing and offset printing methods can be used.
  • the cathode 170 may be a metal, an alloy, an electrically conductive compound, or a combination thereof. Specific examples include lithium (Li), magnesium (Mg), aluminum (Al), aluminum-lithium (Al-Li), calcium (Ca), magnesium-indium (Mg-In), magnesium-silver (Mg-Ag), yes Graphene, carbon nanotubes, conductive polymers, and the like.
  • ITO, IZO, or the like may be used to obtain a top light emitting device.
  • the cathode 170 may have a single layer or a multilayer structure.
  • the cathode 170 may include an electron injection layer and a metal-containing layer.
  • the electron injection layer may be LiF, NaCl, CsF, Li 2 O, BaO, BaF 2 , Liq (lithium quinolate), which is a known electron injection material.
  • the metal-containing layer may be a single metal layer, may include two or more metals, or may include a metal oxide.
  • metal-containing layer examples include lithium (Li), magnesium (Mg), aluminum (Al), aluminum-lithium (Al-Li), calcium (Ca), magnesium-indium (Mg-In), and magnesium-silver (Mg -Ag) may be used, but is not limited thereto.
  • the second B surface 147 of the low molecular emission layer 150 may contact one surface of the electron injection layer of the cathode 170.
  • the electron injection layer 160 may have a thickness of about 0.1 nm to 10 nm, for example, 0.5 nm to 5 nm. When the thickness of the electron injection layer 160 satisfies the aforementioned range, a satisfactory electron injection characteristic may be obtained without a substantial increase in driving voltage.
  • an anode 120 is formed on a substrate.
  • the material for forming the anode 120 is referred to the above.
  • the anode 120 may be formed using various methods such as a deposition method and a sputtering method.
  • the conductive polymer layer 130 as described above is formed on the anode 120.
  • the conductive polymer layer 130 may be formed on the anode 120 by providing a composition for forming a conductive polymer layer including the conductive polymer, a low-surface energy material, and a solvent, and then heat-treating the conductive polymer layer.
  • the solvent in the conductive polymer layer-forming composition may be a solvent that is compatible with the conductive polymer and the low-surface energy material and easily removed by heating.
  • the solvent may be a polar solvent, for example, water, alcohols (methanol, ethanol, n-propanol, 2-propanol, n-butanol, etc.), polar organic solvents (eg ethylene glycol) , Glycerol, dimethylformamide (DMF), dimethyl sulfoxide (DMSO), or the like, or a combination of two or more thereof.
  • the solvent may be a mixture of two or more different materials.
  • the solvent may include the polar organic solvent.
  • the solvent may be a polar organic solvent, a mixture of water and an alcohol, a mixture of water and a polar organic solvent, a mixture of alcohol and a polar organic solvent, or a mixture of water, alcohol and a polar organic solvent.
  • polar organic solvent examples include, but are not limited to, ethylene glycol, glycerol, DMF, DMSO, and combinations of two or more thereof.
  • the polar organic solvent may improve aggregation and crystallization of the conductive polymer included in the composition for forming the conductive polymer layer, thereby forming the composition for forming the conductive polymer layer and the conductive polymer layer prepared from the composition.
  • the conductivity of 130 may be adjusted or improved.
  • the content of the polar organic solvent may be 1% to 30% by weight per 100% by weight of the conductive polymer layer-forming composition, but is not limited thereto.
  • the conductive polymer layer 130 does not separately form the conductive polymer-containing layer and the low-surface energy material layer, but the conductive polymer layer including the conductive polymer, the low-surface energy material, and the solvent as described above.
  • the conductive polymer layer 130 After forming a composition for forming on the anode 120, it can be formed by a one-time film forming process (heat due to the difference in the surface energy of the conductive polymer and low-surface energy material, each material is self- Arranged so as to form respective concentration gradients), the manufacturing process is simple. Therefore, the conductive polymer layer 130 may be formed using a solution process that can reduce manufacturing costs, and may contribute to reducing manufacturing cost and manufacturing a large area of the organic light emitting device 100.
  • the low molecular weight light emitting layer 150 is a vacuum deposition method, cast method, quantitative Muir-blojet (LB) method, Spin-coating, ink-jet printing, nozzle printing, spray coating, screen printing, doctor blade coating, yes It may be formed according to a method arbitrarily selected from a variety of known methods such as via printing and offset printing.
  • the low molecular weight emitting layer 150 may be formed using a vacuum deposition method.
  • the deposition conditions vary depending on the target compound, the structure and thermal properties of the target layer, and the like, for example, a deposition temperature range of 100 to 500 ° C., 10 -10 To 10 -3 It may be selected within a vacuum degree range of torr, and a deposition rate range of 0.01 to 100 kW / sec.
  • the coating conditions vary depending on the target compound, the structure of the target layer and the thermal properties, but the coating speed range of 2000 rpm to 5000 rpm, the heat treatment temperature of 80 °C to 200 °C (removing solvent after coating Heat treatment temperature).
  • low molecular weight light emitting material that may be included in the low molecular weight light emitting layer 150, see the above description.
  • a cathode 170 is formed on the low molecular emission layer 150.
  • the material for forming the cathode 170 is referred to above.
  • the organic light emitting diode 100 may have the following advantages:
  • the organic light emitting device 100 includes the conductive polymer layer 130 as described above, thereby satisfying the relationship of X 1 ⁇ Y 1 ⁇ Y 3 (see FIG. 2), and gradually increasing Y 3 to Y 1 . As the ionization potential increases, the hole injection from the anode 120 to the low molecular light emitting layer 150 can be effectively performed without forming the hole transport layer.
  • the organic light emitting device 100 includes the conductive polymer layer 130 as described above, so that the relationship of Y 4 ⁇ Z 2 (see FIG. 2) can be satisfied.
  • the organic light emitting device 100 is injected from the cathode 170 and has a low molecular weight. Transport of electrons injected into the light emitting layer 150 to the conductive polymer layer 130 may be blocked. As a result, an exciton formation region in which electrons accumulate at an interface and holes and electrons recombine may be formed between the conductive polymer layer 130 and the low molecular light emitting layer 150.
  • the second A surface 145 having a relatively high concentration of the surface energy material serves as a buffer layer to prevent exciton disappearance, thereby forming an electron blocking layer between the conductive polymer layer 130 and the low molecular emission layer 150. Even if it is not formed, it can have high luminous efficiency.
  • the organic light emitting device 100 includes the conductive polymer layer 130 as described above, and satisfies the relationship of X 1 ⁇ Y 1 ⁇ Y 3 (see FIG. 2) to form a light emitting layer with a hole injection. After satisfying the relationship of Y 4 ⁇ Z 2 (see FIG. 2), electrons are well accumulated at the interface before being transferred to the conductive polymer layer 130. It is possible to employ a low molecular weight luminescent material that is equal to or greater than the mobility. As a result, it is possible to have a high luminous efficiency even without forming an electron transporting layer between the low molecular light emitting layer 150 and the cathode 170.
  • the conductive polymer layer 130 of the organic light emitting device 100 is a single layer that can be formed in one solution process, and the organic light emitting device 100 can be formed without a separate hole transport layer, an electron transport layer, or the like. Since the light emitting efficiency may be improved, the structure of the organic light emitting diode 100 may be simplified. Therefore, the manufacturing cost of the organic light emitting device 100 can be reduced, which is advantageous for mass production of a large area organic light emitting device.
  • the organic light emitting device has been described above with reference to FIGS. 1 and 2, but is not limited thereto.
  • Conductive poly (3,4-ethylenedioxythiophene): poly (styrenesulfonate) (PEDOT: PSS) solution (6 parts by weight of PSS per 1 part by weight of Clevios TM AI4083 / PEDOT from Heraeus / 1 ⁇ 10 -3 Has a conductivity of S / cm) and a polymer 100 dispersed at 5% by weight in a solution of polymer 100 (a mixture of water and alcohol (water: alcohol 4.5: 5.5 (v / v)), Aldrich Co. Product) containing a conductive polymer layer forming composition (100% by weight) was prepared.
  • the mixing ratio of the PEDOT: PSS solution and the solution of the polymer 100 was adjusted so that the content (solid content basis) of the polymer 100 per 1 part by weight of PEDOT was 1.6 parts by weight.
  • a thermally conductive polymer layer 1 having a thickness of 50 nm was formed by heat treatment at 200 ° C. for 10 minutes.
  • the mixture ratio of the PEDOT: PSS solution and the solution of the polymer 100 is adjusted so that the content of the polymer 100 per 3.2 parts by weight of PEDOT is 3.2 parts by weight, 6.3 parts by weight, 12.7 parts by weight and 25.4 parts by weight to form a conductive polymer layer.
  • the conductive polymer layers 2, 3, 4, and 5 the surface of the conductive polymer layer in contact with the glass substrate may be formed on the glass substrate using the same method as the method of manufacturing the conductive polymer layer 1).
  • Surface 1A, and the surface opposite to the first A surface is the second A surface).
  • the polymer layer A was formed using the same method as the manufacturing method of the conductive polymer layer 1.
  • the X-ray photoelectron spectroscopy (XPS, manufactured by VG Scientific and model name is ESCALAB 220iXL) was evaluated for the conductive polymer layer 5.
  • the results are shown in FIG. 3.
  • 3 is an XPS spectrum of the sputtering time of the conductive polymer layer 5 (ie, the depth of the conductive polymer layer 5).
  • the concentration of each moiety was analyzed by analyzing the PEDOT (164.5 eV) peak, PSS and PSSH (168.4 and 168.9 eV) peaks (S2p), and peaks for Polymer 100 (CF 3 , F1s) in the XPS spectrum for conductive polymer layer 5 was evaluated.
  • the concentration of the CF 3 moiety representing the concentration of the polymer 100 is substantially It can be seen that the concentration of PEDOT decreases substantially. Therefore, it can be seen that the concentrations of PEDOT: PSS and the polymer 100 in the conductive polymer layer 5 have a gradient that varies with the depth of the conductive polymer layer 4.
  • the ionization potential was evaluated by using ultraviolet photoelectron spectroscopy in air (manufactured by Niken Keiki, model name AC2). Is shown in Table 1.
  • Ionization potential values of the conductive polymer layers 1 to 5 correspond to Y 3 of FIG. 2.
  • Bebq 2 and C545T (weight ratio is 98: 2) are co-deposited on the conductive polymer layer 1 (ie, the second surface of the conductive polymer layer 1) to form a light emitting layer having a thickness of 50 nm.
  • Photoluminescence (PL) spectra of Samples 2 (50 nm) to Sample 5 (50 nm) and Sample A (50 nm) were evaluated using an ISC PC1 Spectrofluorometer equipped with a Xenon lamp. The results are shown in Figure 4A.
  • the PL strengths of Samples 2 (50 nm) to Samples 5 (50 nm) each having conductive polymer layers 2 to 5 are superior to the PL strengths of Sample A (50 nm). It can be seen that Samples 5 (50 nm) have better blocking of exciton quenching than Sample A (50 nm).
  • the PL strengths of Samples 2 (10 nm) to Samples 5 (10 nm) each having conductive polymer layers 2 to 5 are superior to those of Sample A (10 nm), and Sample 2 (10 nm). It can be seen that Samples 5 (10 nm) have better exciton extinction prevention ability than Sample A (10 nm).
  • Samples 1 (50 nm) to Samples 5 (50 nm) each having a low molecular emission layer on the conductive polymer layers 1 to 5 have better PL life characteristics than Sample A (50 nm).
  • the PL lifetime increases as the content of the polymer 100 increases in the conductive polymer layer. From this, it can be seen that the exciton disappearance of the low molecular light emitting layer is reduced by employing the conductive polymer layer.
  • Liq and Al are sequentially deposited to form a 1 nm Liq layer and an 130 nm Al layer, thereby forming a Li / Al cathode to form an organic light emitting device (ITO anode / conductive polymer layer 1 (50 nm) / light emitting layer ( 70 nm) / Liq (1 nm) / Al cathode).
  • ITO anode / conductive polymer layer 1 (50 nm) / light emitting layer ( 70 nm) / Liq (1 nm) / Al cathode organic light emitting device
  • the organic light emitting device ITO anode / conductive polymer layer 2 (50nm) / light emitting layer (70nm) / Liq (1 nm) / Al cathode) was prepared.
  • the organic light emitting device (ITO anode / conductive polymer layer 3 (50nm) / light emitting layer (70nm) / using the same method as Example 1, except that the conductive polymer layer 3 was formed instead of the conductive polymer layer 1 Liq (1 nm) / Al cathode) was prepared.
  • the organic light emitting device (ITO anode / conductive polymer layer 4 (50nm) / light emitting layer (70nm) / using the same method as Example 1, except that the conductive polymer layer 4 was formed instead of the conductive polymer layer 1 Liq (1 nm) / Al cathode) was prepared.
  • the organic light emitting device ITO anode / conductive polymer layer 5 (50nm) / light emitting layer (70nm) / Liq (1 nm) / Al cathode) was made.
  • An organic light emitting device (ITO anode / NPB layer (20 nm) was manufactured in the same manner as in Example 1, except that NPB layer having a thickness of 20 nm was formed by depositing NPB on ITO anode instead of conductive polymer layer 1. ) / Light emitting layer (70nm) / Liq (1nm) / Al cathode) was produced.
  • an organic light emitting device (ITO anode / light emitting layer (70nm) / Liq (1nm) / Al cathode) was manufactured in the same manner as in Example 1.
  • 2-TNATA (4,4 ', 4 "-Tris (N- (2-naphthyl) -N-phenyl-amino) -triphenylamine) was deposited on the ITO anode to form a 50 nm thick 2-TNATA. Except for the formation of the layer, the organic light emitting device (ITO anode / 2-TNATA layer (50nm) / light emitting layer (70nm) / Liq (1nm) / Al cathode) by using the same method as in Example 1 above Produced.
  • the organic light emitting device ITO anode / conductive polymer layer A using the same method as in Example 1 (50 nm) / light emitting layer (70 nm) / Liq (1 nm) / Al cathode) was prepared.
  • Example 5 The luminous efficiency of the organic light emitting diodes of Example 5 and Comparative Examples 1 to 4 was evaluated using a Keithley 236 source measuring instrument and Minolta CS 2000 spectroradiometer, and the results are shown in FIGS. 6A (Comparative Examples 1 and 2) and FIG. 6B. (Comparative Example 3), FIG. 6C (Comparative Example 4) and FIG. 6D (Example 5).
  • the organic light emitting device of Example 5 has better luminous efficiency than the organic light emitting devices of Comparative Examples 1 to 4.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

구조가 단순화된 유기 발광 소자 및 이의 제조 방법을 제공한다.

Description

단순화된 유기 발광 소자 및 이의 제조 방법
유기 발광 소자 및 이의 제조 방법에 관한 것이다.
유기 발광 소자(organic light emitting device)는 자발광형 소자로서 시야각이 넓고 콘트라스트가 우수할 뿐만 아니라, 응답시간이 빠르며, 휘도, 구동전압 및 응답속도 특성이 우수하고 다색화가 가능하다는 장점을 가지고 있다.
일반적인 유기 발광 소자는 애노드 및 캐소드와 상기 애노드 및 캐소드 사이에 개재된 유기층을 포함할 수 있다. 상기 유기층은, 전자주입층, 정공수송층, 발광층, 전자수송층 및 캐소드 등을 포함할 수 있다. 상기 애노드 및 캐소드 간에 전압을 인가하면, 애노드로부터 주입된 정공은 정공수송층을 경유하여 발광층으로 이동하고, 캐소드로부터 주입된 전자는 전자수송층을 경유하여 발광층으로 이동한다. 상기 정공 및 전자와 같은 캐리어들은 발광층 영역에서 재결합하여 엑시톤(exiton)을 생성하는데, 이 엑시톤이 여기 상태에서 기저상태로 변하면서 광이 생성된다.
유기 발광 소자는 지금까지의 소자의 효율과 수명을 증가시키기 위해서 정공주입층, 정공수송층 및 전자수송층 등의 보조층 (혹은 버퍼층)을 점차로 늘려가는 방향으로 발전이 되어 왔다. 이에 따라 소자 제조에 필요한 재료 및 공정 비용이 점차로 증가되어 와서 이를 해결하는 것이 유기 발광 소자 에서 큰 이슈가 되고 있다.
상기 유기 발광 소자의 보조층을 박막으로 형성하거나 제거하면, 발광층과 전극(예를 들면, 애노드 또는 캐소드) 사이의 거리가 감소되게 되는데, 그 결과 발광층 중 엑시톤 소멸 (exciton quenching) 현상이 발생하게 된다. 즉, 상기 정공주입층, 정공수송층 및 전자수송층 등의 보조층은 발광층 중 엑시톤 소멸 현상을 방지하는 역할도 할 수 있다.
따라서, 정공주입층, 정공수송층 및 전자수송층 등의 보조층을 제거하여 소자 구조를 단순화하면서도 엑시톤 소멸 현상을 최소화하는 것은 고품위 유기 발광 소자 제작을 위한 중요한 과제이다.
고효율을 가지면서도 구조가 단순화되어 제조 비용이 절감된 유기 발광 소자를 제공하는 것이다.
일 측면에 따르면, 애노드, 제1A면 (surface 1A) 및 상기 제1A면에 대향되는 제2A면을 갖는 전도성 고분자층, 제1B면 및 상기 제1B면에 대향되는 제2B면을 갖는 저분자 발광층 및 캐소드가 차례로 적층되어 있고;
상기 애노드의 일면은 상기 전도성 고분자층의 제1A면과 서로 접촉하고, 상기 전도성 고분자층의 제2A면은 상기 저분자 발광층의 제1B면과 서로 접촉하고, 상기 저분자 발광층의 제2B면은 상기 캐소드의 일면과 서로 접촉하고;
상기 전도성 고분자층은, 1×10-7 S/cm 이상 0.1 S/cm 미만의 전도도를 갖는 전도성 고분자 및 저-표면 에너지 물질(material having low surface energy)을 포함한 단일층이고, 상기 제2A면의 저-표면 에너지 물질의 농도가 상기 제1A면의 저-표면 에너지 물질의 농도보다 크고, 상기 제2A면의 LUMO(low unoccupied molecular orbital) 에너지 레벨의 절대값(absolute value)은 상기 저분자 발광층의 LUMO 에너지 레벨의 절대값보다 작고, 상기 제2A면은 엑시톤 소멸(exiton quenching) 방지 역할을 하고;
상기 저분자 발광층은 저분자 발광 물질을 포함하고, 상기 저분자 발광 물질의 전자 이동도는 상기 저분자 발광 물질의 정공 이동도보다 같거나 큰, 유기 발광 소자가 제공된다.
상기 유기 발광 소자 중, 상기 제1A면의 HOMO(high occupied molecular orbital) 에너지 레벨의 절대값(즉, 이온화 포텔셜, ionization potential)은 상기 애노드의 일함수보다 클 수 있다.
상기 유기 발광 소자 중, 상기 제2A면의 HOMO(high occupied molecular orbital) 에너지 레벨의 절대값은 상기 저분자 발광층의 HOMO 에너지 레벨의 절대값보다 클 수 있다.
상기 유기 발광 소자 구동시, 상기 전도성 고분자층과 상기 저분자 발광층 사이의 계면에서 엑시톤 형성 영역이 형성될 수 있다.
상기 유기 발광 소자 중, 상기 저-표면 에너지 물질의 농도는 상기 제1A면에서 상기 제2A면을 향하는 방향을 따라 점진적으로 증가할 수 있다.
상기 저-표면 에너지 물질은, 적어도 하나의 F를 포함한 불화 물질일 수 있다.
상기 전도성 고분자는 폴리티오펜, 폴리아닐린, 폴리피롤, 폴리(파라-페닐렌), 폴리플루오렌, 폴리(3,4-에틸렌디옥시티오펜), 셀프-도핑 전도성 고분자 및 이들의 유도체 중 1종 이상을 포함할 수 있다. 상기 전도성 고분자는, 술폰화된 폴리스티렌과 같은 고분자 산을 더 포함할 수 있다.
상기 제2A면의 이온화 포텐셜은 5.0eV 내지 6.5eV의 범위에서 선택될 수 있다.
상기 저분자 발광층은 호스트와 도펀트를 포함하고, 상기 호스트는 전자 수송성 저분자를 포함할 수 있다.
상기 캐소드는 전자 주입층 및 금속-함유층을 포함하고, 상기 전자 주입층은 상기 저분자 발광층의 제2B면과 접촉할 수 있다.
다른 측면에 따르면,
기판 상에 애노드를 형성하는 단계;
상기 애노드 상에 전도성 고분자, 상기 저-표면 에너지 물질 및 용매를 포함한 전도성 고분자층 형성용 조성물을 제공 및 열처리하여, 전도성 고분자층을 형성하는 단계;
상기 전도성 고분자층 상에 저분자 발광층을 형성하는 단계; 및
상기 저분자 발광층 상에 캐소드를 형성하는 단계;
를 포함하는, 상기 유기 발광 소자의 제조 방법이 제공된다.
상기 전도성 고분자층 형성용 조성물에 포함된 용매는 극성 용매이고, 상기 극성 용매는 물, 알코올, 에틸렌 글리콜, 글리세롤, 디메틸포름아마이드(DMF), 디메틸설폭사이드(DMSO) 및 아세톤 중 1종 이상일 수 있다.
상기 저분자 발광층 형성 단계를 진공 증착법 및 용액 공정법을 이용하여 수행할 수 있다.
상기 유기 발광 소자는 고효율을 가지면서도, 단순화된 구조를 가지므로, 제조 비용이 절감될 수 있다.
도 1은 상기 유기 발광 소자의 일 구현예의 단면을 개략적으로 설명한 도면이다.
도 2는 상기 유기 발광 소자의 층간 에너지 레벨의 절대값을 도시한 도면이다.
도 3은 평가예 1의 전도성 고분자층 5의 스퍼터 시간별 분자 분포를 나타낸 도면이다.
도 4a 및 4b는 평가예 1의 전도성 고분자층 2 내지 5 및 고분자층 A를 각각 포함한 샘플들의 광발광(PL) 스펙트럼이다.
도 5는 평가예 1의 전도성 고분자층 1 내지 5 및 고분자층 A를 각각 포함한 샘플들의 PL 수명을 나타낸 도면이다.
도 6a 내지 6d는 비교예 1 내지 4 및 실시예 5의 유기 발광 소자의 발광 효율을 나타낸 도면이다.
이하, 첨부된 도면들을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하면 다음과 같다.
도 1은 일 구현예에 따른 유기 발광 소자(100)의 일 구현예를 개략적으로 도시한 도면이다. 유기 발광 소자(100)는 정공 주입 전극인 애노드(120), 전도성 고분자층(130), 저분자 발광층(150) 및 전자 주입 전극인 캐소드(170)를 차례로 구비한다. 상기 유기 발광 소자(100)의 애노드(120) 및 캐소드(170) 간에 전압을 인가하면, 애노드(120)로부터 주입된 정공은 전도성 고분자층(130)을 경유하여 발광층(150)으로 이동하고, 캐소드(170)로부터 주입된 전자는 저분자 발광층(150)으로 이동하여, 상기 정공과 전자는 상기 전도성 고분자층(130)과 저분자 발광층(150) 사이에서 재조합하여 엑시톤(exiton)을 생성하는데, 이 엑시톤이 여기 상태에서 기저상태로 변하면서 광이 생성된다.
상기 전도성 고분자층(130)은 제1A면(surface 1A)(141) 및 상기 제1A면(141)에 대향되는 제2A면(145)를 포함하고, 상기 저분자 발광층(150)은 제1B면(145) 및 상기 제1B면(145)에 대향되는 제2B면(147)을 포함한다.
상기 애노드(120)의 일면은 상기 전도성 고분자층(130)의 제1A면(141)과 서로 접촉하고, 상기 전도성 고분자층(130)의 제2A면(145)은 상기 저분자 발광층(150)의 제1B면(145)과 서로 접촉하고, 상기 저분자 발광층(150)의 제2B면(147)은 상기 캐소드(170)의 일면과 서로 접촉한다. 따라서, 상기 제2A면과 상기 제1B면은 동일한 참조번호 145로 표시되어 있다.
도 1에는 미도시되어 있으나, 상기 애노드(130)는 기판 상에 형성되어 있을 수 있다. 상기 기판으로서, 통상적인 반도체 공정에서 사용되는 기판이 사용될 수 있다. 예를 들어, 상기 기판은 유리, 사파이어, 실리콘, 실리콘 산화물, 금속 호일(metal foil, 예를 들면, 구리 호일 및 알루미늄 호일), 및 steel 기판 (예를 들면, 스테인레스 스틸(stainless steel) 등), 금속 산화물, 고분자 기판(polymer substrate) 및 이들 중 2 이상의 조합을 포함할 수 있다. 상기 금속 산화물의 예로는, 알루미늄 산화물, 몰리브덴 산화물, 인듐 산화물, 주석 산화물, 인듐주석 산화물, 및 바나듐 산화물 등을 들 수 있고, 상기 고분자 기판의 예로는, 켑톤 호일, 폴리에테르술폰(PES, polyethersulfone), 폴리아크릴레이트(PAR, polyacrylate), 폴리에테르 이미드(PEI, polyetherimide), 폴리에틸렌 나프탈레이트(PEN, polyethylene napthalate), 폴리에틸렌 테레프탈레이드(PET, polyethyleneterepthalate), 폴리페닐렌 설파이드(polyphenylene sulfide: PPS), 폴리아릴레이트(polyallylate), 폴리이미드(polyimide), 폴리카보네이트(PC), 셀룰로오스 트리 아세테이트(TAC), 셀룰로오스 아세테이트 프로피오네이트(cellulose acetate propinonate: CAP) 등을 들 수 있으나, 이에 한정되는 것은 아니다.
상기 애노드(120)는 상기 기판 상부에 애노드 형성용 물질을 증착법 또는 스퍼터링법 등을 이용하여 제공함으로써 형성될 수 있다. 상기 애노드(120)는 정공 주입이 용이하도록 비교적 높은 일함수를 갖는 물질 중에서 선택될 수 있다. 상기 애노드(120)는 반사형 전극 또는 투과형 전극일 수 있다. 상기 애노드 형성용 물질로는 투명하고 전도성이 우수한 산화인듐주석(ITO), 산화인듐아연(IZO), 산화주석(SnO2), 산화아연(ZnO), 금속산화물/금속/금속산화물 다중층, 그래핀 (graphene) 및 카본 나노 튜브 (carbon nano tube) 등을 이용할 수 있다. 또는, 마그네슘(Mg), 알루미늄(Al), Ag, Ag/ITO, Ag/IZO, 알루미늄-리튬(Al-Li), 칼슘(Ca), 마그네슘-인듐(Mg-In), 마그네슘-은(Mg-Ag)등을 이용하면, 상기 애노드(120)를 반사형 전극으로 형성할 수도 있다. 상기 애노드(120)를 서로 다른 2종의 물질을 포함할 수 있다. 예를 들어, 상기 애노드(120)을 서로 다른 2종의 물질을 포함한 2층 구조로 형성할 수 있는 등 다양한 변형예가 가능하다.
상기 전도성 고분자층(130)은 1×10-7 S/cm 이상 0.1 S/cm 미만의 전도도를 갖는 전도성 고분자 및 저-표면 에너지 물질(material having low surface energy)을 포함한 단일층이다. 상기 전도성 고분자층(130)의 제2A면(145)의 저-표면 에너지 물질의 농도는 상기 전도성 고분자층(130)의 제1A면(141)의 저-표면 에너지 물질의 농도보다 크다. 상기 제2A면(145)의 HOMO 에너지 레벨의 절대값, 즉 이온화 포텐셜은 5.0eV 이상, 예를 들면, 5.0eV 내지 6.5eV일 수 있다.
본 명세서 중 "저-표면 에너지 물질"이란 낮은 표면 에너지(surface energy)를 갖는 막을 형성할 수 있는 물질로서, 구체적으로는 상기 전도성 고분자보다 낮은 표면 에너지를 갖는 물질을 가리킨다. 상기 저-표면 에너지 물질과 상기 전도성 고분자를 혼합한 조성물에서는 상기 저-표면 에너지 물질과 상기 전도성 고분자의 표면 에너지 차이에 의하여 상분리가 일어나, 저-표면 에너지 물질이 상부 상(phase)을 이루고, 전도성 고분자가 하부 상을 이루게 된다. 상기 저-표면 에너지 물질은 적어도 하나의 F를 포함한 물질로서, 상기 전도성 고분자의 소수성보다 큰 소수성을 가질 수 있다. 또한, 상기 저-표면 에너지 물질은 상기 전도성 고분자의 일함수보다 큰 일함수를 제공할 수 있는 물질일 수 있다. 예를 들어, 상기 저-표면 에너지 물질은, 상기 저-표면 에너지 물질로 이루어진 박막이 30mN/m 이하의 표면 에너지를 갖고, 100nm 두께에서 10-1 S/cm 내지 10-15 S/cm의 전도도를 갖도록 하는 물질일 수 있다. 또한 상기 저-표면 에너지 물질을 포함하는 전도성 고분자 조성물을 이용하여 제조된 박막이 30 mN/m 이하의 표면 에너지를 갖고, 100 nm 두께에서 1×10-7 S/cm 내지 0.1 S/cm 미만의 S/cm의 전도도를 갖도록 하는 물질일 수 있다.
따라서, 상기 전도성 고분자와 상기 저-표면 에너지 물질을 포함한 전도성 고분자층 형성용 조성물을 포함한 막을 애노드(120) 상에 형성하면, 상기 저-표면 에너지 물질의 낮은 표면 에너지 때문에 전도성 고분자와 상기 저-표면 에너지 물질은 균일하게(homogeneous) 혼합되지 못한다. 대신, 상기 저-표면 에너지 물질의 농도는 상기 제1A면(141)에서 상기 제2A면(145)을 향하는 방향을 따라 점진적으로 증가하는 경사를 가지고, 상대적으로 상기 전도성 고분자의 농도는 상기 제2A면(145)에서 상기 제1A면(141)을 향하는 방향을 따라 점진적으로 증가하는 경사를 갖도록, 전도성 고분자와 저-표면 에너지 물질이 분포할 수 있다. 이 후, 애노드(120) 상에 형성된 상기 전도성 고분자와 상기 저-표면 에너지 물질을 포함한 전도성 고분자층 형성용 조성물을 포함한 막을 베이킹함으로써 성막 공정을 완성하면, 저-표면 에너지 물질의 농도가 제1A면(141)에서 제2A면(145)을 향하는 방향을 따라 점진적으로 증가하는 전도성 고분자층(130)을 형성할 수 있다.
상기 전도성 고분자층(130)은 단 한번의 용액 성막 공정(solution film-forming process)을 통하여 전도성 고분자와 저-표면 에너지 물질의 자가-배열(self-organization)에 의하여 형성되므로, 전도성 고분자층과 저-표면 에너지 물질층이 구분되지 않는 단일층(single layer)의 형태를 갖는다.
도 2는 유기 발광 소자(100)의 애노드(120), 전도성 고분자층(130) 및 저분자 발광층(150) 간의 에너지 레벨을 개략적으로 도시한 도면이다.
전도성 고분자층(130) 및 저분자 발광층(150)의 HOMO 및/또는 LUMO 값은 진공 준위(vacuum level)보다 아래에 존재하여 음수(negative number)로 표현되나, 양수(positive number)로 표현되는 애노드(120)의 일함수(X1)와 함께 비교하기 위하여, 도 2에는 전도성 고분자층(130) 및 저분자 발광층(105)의 HOMO 및 LUMO 값의 절대값(absolute number)을 표기하였다.
저-표면 에너지 물질의 농도는 전도성 고분자층(130)의 제1A면(141)에서 제2A면(145)를 향하는 방향을 따라 점진적으로 증가한다. 따라서, 전도성 고분자층(130)의 제1A면(141)의 HOMO 에너지 레벨의 절대값(Y1)은 제2A면(145)의 HOMO 에너지 레벨의 절대값(Y3)보다 작고, 제1A면(141)의 LUMO 에너지 레벨의 절대값(Y2)은 제2A면(145)의 LUMO 에너지 레벨의 절대값(Y4)보다 크다.
상기 전도성 고분자층(130)의 제2A면(145)의 LUMO(low unoccupied molecular orbital) 에너지 레벨의 절대값(Y4)은 상기 저분자 발광층의 LUMO 에너지 레벨의 절대값(Z2)보다 작을 수 있다. 따라서, 캐소드(170)로부터 주입되어 저분자 발광층(150)로 전달된 전자는 전도성 고분자층(130)으로 실질적으로 전달되지 못할 수 있다. 따라서, 상기 전도성 고분자층(130)은 전자 방지층(EBL)의 역할을 수행할 수 있다.
한편, 상기 전도성 고분자층(130)의 제1A면(141)의 HOMO(high occupied molecular orbital) 에너지 레벨의 절대값(Y1)은 상기 애노드(120)의 일함수(X1)보다 클 수 있다. 또한, 상기 전도성 고분자층(130)의 제2A면(145)의 HOMO(high occupied molecular orbital) 에너지 레벨의 절대값(Y3)은 상기 저분자 발광층(150)의 HOMO 에너지 레벨의 절대값(Z1)보다 클 수 있다. 따라서, 애노드(120)에서 전도성 고분자층(130)으로의 정공 주입 및 전도성 고분자층(130)에서 저분자 발광층(150)으로의 정공 전달은 원활히 이루어질 수 있다.
그 결과, 정공과 전자가 재조합하여 엑시톤이 형성되는 엑시톤 형성 영역(160)은 전도성 고분자층(130)과 저분자 발광층(150) 사이에 형성될 수 있다. 이로써, 상기 유기 발광 소자(100)는 우수한 발광 효율을 가질 수 있다.
상기 전도성 고분자층(130)의 제2A면(145)에는 상기 전도성 고분자 대신 상기 저-표면 에너지 물질이 상대적으로 다량 존재하므로, 상기 제2A면(145)은 엑시톤 형성 영역(160)에서 형성된 엑시톤이 전도성 고분자층(130)에 포함된 전도성 고분자로 인하여 소멸(quenching)되는 것을 실질적으로 방지할 수 있다. 이로써, 상기 유기 발광 소자(100)는 우수한 발광 효율을 가질 수 있다.
상기 저-표면 에너지 물질은 극성 용매에 대하여, 90% 이상의 용해도, 예를 들면, 95% 이상의 용해도를 갖는 물질일 수 있다. 상기 저-표면 에너지 물질은 평균 입경이 10nm 이하인 나노 입자의 형태로 상기 극성 용매에 분산될 수 있다. 상기 극성 용매의 예로는, 물, 알코올(메탄올, 에탄올, n-프로판올, 2-프로판올, n-부탄올 등), 에틸렌 글리콜, 글리세롤, 디메틸포름아마이드(DMF), 디메틸설폭사이드(DMSO), 아세톤 등을 들 수 있으나, 이에 한정되는 것은 아니다.
상기 저-표면 에너지 물질은 적어도 하나의 F를 포함한 물질일 수 있다. 예를 들어, 상기 저-표면 에너지 물질은 적어도 하나의 F를 포함한 불화 고분자 또는 불화 올리고머일 수 있다.
일 구현예에 따르면, 상기 저-표면 에너지 물질은 하기 화학식 1 내지 3 중 어느 하나의 반복 단위를 갖는 불화 고분자일 수 있다:
<화학식 1>
Figure PCTKR2012008290-appb-I000001
상기 화학식 1 중,
a는 0 내지 10,000,000의 수이고;
b는 1 내지 10,000,000의 수이고;
Q1은 -[O-C(R1)(R2)-C(R3)(R4)]c-[OCF2CF2]d-R5, -COOH 또는 -O-Rf-R6이고;
상기 R1, R2, R3 및 R4는 서로 독립적으로, -F, -CF3, -CHF2 또는 -CH2F이고;
상기 c 및 d는 서로 독립적으로, 0 내지 20의 수이고;
상기 Rf는 -(CF2)z-(z는 1 내지 50의 정수임) 또는 -(CF2CF2O)z-CF2CF2-(z는 1 내지 50의 정수임)이고;
상기 R5 및 R6는 서로 독립적으로, -SO3M, -PO3M2 또는 -CO2M이고;
상기 M은 Na+, K+, Li+, H+, CH3(CH2)wNH3 + (w는 0 내지 50의 정수), NH4 +, NH2 +, NHSO2CF3 +, CHO+, C2H5OH+, CH3OH+, CH3(CH2)wCHO+ (w는 0 내지 50의 정수)을 나타낸다;
<화학식 2>
Figure PCTKR2012008290-appb-I000002
상기 화학식 2 중,
Q2는 수소, 치환 또는 비치환된 C5-C60아릴기 또는 -COOH이고;
Q3는 수소 또는 치환 또는 비치환된 C1-C20알킬기이고;
Q4는 -O-(CF2)r-SO3M, -O-(CF2)r-PO3M2, -O-(CF2)r-CO2M, 또는 -CO-NH-(CH2)s-(CF2)t-CF3이고,
상기 r, s 및 t는 서로 독립적으로, 0 내지 20의 수이고;
상기 M은 Na+, K+, Li+, H+, CH3(CH2)wNH3 + (w는 0 내지 50의 정수), NH4 +, NH2 +, NHSO2CF3 +, CHO+, C2H5OH+, CH3OH+, CH3(CH2)wCHO+ (w는 0 내지 50의 정수)을 나타낸다;
<화학식 3>
Figure PCTKR2012008290-appb-I000003
상기 화학식 3 중,
m 및 n은 0 ≤ m < 10,000,000, 0 < n ≤ 10,000,000이고;
x 및 y는 각각 독립적으로 0 내지 20의 수이며;
Y는 -SO3M, -PO3M2 또는 -CO2M이고;
상기 M은 Na+, K+, Li+, H+, CH3(CH2)wNH3 + (w는 0 내지 50의 정수), NH4 +, NH2 +, NHSO2CF3 +, CHO+, C2H5OH+, CH3OH+, CH3(CH2)wCHO+ (w는 0 내지 50의 정수)을 나타낸다;
예를 들어, 상기 저-표면 에너지 물질은 상기 화학식 1로 표시되는 반복 단위를 포함한 불화 고분자일 수 있으나, 이에 한정되는 것은 아니다.
예를 들어, 상기 저-표면 에너지 물질은 상기 화학식 1로 표시되는 반복 단위를 포함한 불화 고분자로서, a는 100 내지 10000의 수이고, b는 50 내지 1000의 수이고, Q1은 -[O-C(R1)(R2)-C(R3)(R4)]c-[OCF2CF2]d-R5인 불화 고분자일 수 있다.
예를 들어, 상기 저-표면 에너지 물질은 상기 화학식 1로 표시되는 반복 단위를 포함한 불화 고분자로서, a는 100 내지 10000의 수이고, b는 50 내지 1000의 수고, Q1은 -[O-C(R1)(R2)-C(R3)(R4)]c-[OCF2CF2]d-R5인 불화 고분자이되, 상기 c는 1 내지 3의 수이고, R1, R2 및 R3는 -F이고, R4는 -CF3이고, d는 1 내지 3의 수이고, R5는 -SO3M일 수 있으나, 이에 한정되는 것은 아니다.
한편, 상기 저-표면 에너지 물질은 하기 화학식 10으로 표시되는 불화 실란계 물질일 수 있다:
<화학식 10>
X-Mf n-Mh m-Ma r-(G)p
상기 화학식 10 중,
X는 말단기이고;
Mf는 퍼플루오로폴리에테르 알코올, 폴리이소시아네이트 및 이소시아네이트 반응성-비불소화 모노머의 축합 반응으로부터 수득한 불화 모노머로부터 유래된 단위 또는 플루오르화 C1-C20알킬렌기를 나타내고;
Mh는 비불소화 모노머로부터 유래된 단위를 나타내고;
Ma는 -Si(Y4)(Y5)(Y6)으로 표시되는 실릴기를 갖는 단위를 나타내고;
상기 Y4, Y5 및 Y6는 서로 독립적으로, 할로겐 원자, 치환 또는 비치환된 C1-C20알킬기, 치환 또는 비치환된 C6-C30아릴기 또는 가수분해성 치환기를 나타내고, 상기 Y4, Y5 및 Y6 중 적어도 하나는 상기 가수분해성 치환기이고;
G는 사슬전달제(chain transfer agent)의 잔기를 포함한 1가 유기 그룹이고;
n은 1 내지 100의 수이고;
m은 0 내지 100의 수이고;
r은 0 내지 100의 수이고;
n+m+r은 적어도 2이고;
p는 0 내지 10의 수이다.
예를 들어, 상기 X는 할로겐 원자일 수 있고, 상기 Mf는 플루오르화 C1-C10알킬렌기일 수 있고, Mh는 C2-C10알킬렌기일 수 있고, 상기 Y4, Y5 및 Y6는 서로 독립적으로, 할로겐 원자(Br, Cl, F 등)일 수 있고, p는 0일 수 있다. 예를 들어, 상기 화학식 10으로 표시되는 불화 실란계 물질은 CF3CH2CH2SiCl3일 수 있으나, 이에 한정되는 것은 아니다.
상기 화학식 10으로 표시되는 불화 실란계 물질에 대한 상세한 설명은 미국특허 제7728098에 기술되어 있으며, 이는 참조되어 본 명세서에 통합된다.
상기 전도성 고분자는 0.1 S/cm 이상, 예를 들면, 1S/cm 이상의 고전도성을 갖는 전도성 고분자일 수 있다.
예를 들어, 상기 전도성 고분자는, 폴리티오펜, 폴리아닐린, 폴리피롤, 폴리스티렌, 술폰화된 폴리스티렌, 폴리(3,4-에틸렌디옥시티오펜), 셀프-도핑 전도성 고분자, 이들의 유도체 또는 이들 중 2 이상의 조합을 포함할 수 있다. 상기 유도체는 각종 술폰산 등을 더 포함할 수 있음을 의미할 수 있다.
예를 들어, 상기 전도성 고분자는, Pani:DBSA(Polyaniline/Dodecylbenzenesulfonic acid:폴리아닐린/도데실벤젠술폰산, 하기 화학식 참조), PEDOT:PSS(Poly(3,4-ethylenedioxythiophene)/Poly(4-styrenesulfonate):폴리(3,4-에틸렌디옥시티오펜)/폴리(4-스티렌술포네이트), 하기 화학식 참조), Pani:CSA (Polyaniline/Camphor sulfonicacid:폴리아닐린/캠퍼술폰산) 또는 PANI:PSS (Polyaniline)/Poly(4-styrenesulfonate):폴리아닐린)/폴리(4-스티렌술포네이트)) 등을 포함할 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2012008290-appb-I000004
Pani:DBSA
Figure PCTKR2012008290-appb-I000005
PEDOT:PSS
상기 R은 H 또는 C1-C10알킬기일 수 있다.
상기 셀프-도핑 전도성 고분자는 중합도 10 내지 10,000,000을 가질 수 있고, 하기 화학식 13으로 표시되는 반복단위를 가질 수 있다:
<화학식 13>
Figure PCTKR2012008290-appb-I000006
상기 화학식 13에서, 0<m<10,000,000, 0<n<10,000,000, 0≤a≤20, 0≤b≤20이고;
R1, R2, R3, R'1, R'2, R'3 및 R'4 중 적어도 하나는 이온기를 포함하고 있으며, A, B, A', B'는, 각각 독립적으로, C, Si, Ge, Sn, 또는 Pb에서 선택되고;
R1, R2, R3, R'1, R'2, R'3 및 R'4는, 각각 독립적으로 수소, 할로겐, 니트로기, 치환 또는 비치환된 아미노기, 시아노기, 치환 또는 비치환된 C1-C30 알킬기, 치환 또는 비치환된 C1-C30 알콕시기, 치환 또는 비치환된 C6-C30 아릴기, 치환 또는 비치환된 C6-C30의 아릴알킬기, 치환 또는 비치환된 C6-C30의 아릴옥시기, 치환 또는 비치환된 C2-C30의 헤테로아릴기, 치환 또는 비치환된 C2-C30의 헤테로아릴알킬기, 치환 또는 비치환된 C2-C30의 헤테로아릴옥시기, 치환 또는 비치환된 C5-C30의 사이클로알킬기, 치환 또는 비치환된 C5-C30의 헤테로사이클로알킬기, 치환 또는 비치환된 C1-C30 알킬에스테르기, 및 치환 또는 C6-C30의 비치환된 아릴에스테르기로 이루어진 군으로부터 선택되며, 상기 화학식 중의 탄소에, 선택적으로 수소 또는 할로겐 원소가 결합하고;
R4는 공액계 전도성 고분자 사슬로 이루어지고;
X 및 X'는, 각각 독립적으로 단순 결합, O, S, 치환 또는 비치환된 C1-C30 알킬렌기, 치환 또는 비치환된 C1-C30 헤테로알킬렌기, 치환 또는 비치환된 C6-C30 아릴렌기, 치환 또는 비치환된 C6-C30의 아릴알킬렌기, 치환 또는 비치환된 C2-C30의 헤테로아릴렌기, 치환 또는 비치환된 C2-C30의 헤테로아릴알킬렌기, 치환 또는 비치환된 C5-C20의 사이클로알킬렌기, 및 치환 또는 비치환된 C5-C30의 헤테로사이클로알킬렌기 아릴에스테르기로 이루어진 군으로부터 선택되며, 상기 화학식 중의 탄소에, 선택적으로 수소 또는 할로겐 원소가 결합할 수 있다.
예를 들어, 상기 이온기가 PO3 2-, SO3 -, COO-, I-, CH3COO-으로 이루어진 군에서 선택된 음이온기 및 Na+, K+, Li+, Mg+2, Zn+2, Al+3 중에서 선택된 금속 이온, H+, NH4 +, CH3(-CH2-)nO+ (n은 1 내지 50 의 자연수) 중에서 선택된 유기 이온으로 이루어진 군에서 선택되고 상기 음이온기와 짝을 이루는 양이온기를 포함할 수 있다.
예를 들어, 상기 화학식 13의 셀프-도핑 전도성 고분자에서 R1, R2, R3, R'1, R'2, R'3 및 R'4 중에서 각각 적어도 하나 이상은 불소이거나 불소로 치환된 기일 수 있으나, 이에 한정되는 것은 아니다.
본 명세서 중 비치환된 알킬기의 구체적인 예로는 직쇄형 또는 분지형으로서 메틸, 에틸, 프로필, 이소부틸, sec-부틸, tert-부틸, 펜틸, iso-아밀, 헥실 등을 들 수 있고, 상기 알킬기에 포함되어 있는 하나 이상의 수소 원자는 할로겐 원자, 히드록시기, 니트로기, 시아노기, 치환 또는 비치환된 아미노기 (-NH2, -NH(R), -N(R')(R"), R'과 R"은 서로 독립적으로 탄소수 1 내지 10의 알킬기임), 아미디노기, 히드라진, 또는 히드라존기, 카르복실기, 술폰산기, 인산기, C1-C20의 알킬기, C1-C20의 할로겐화된 알킬기, C1-C20의 알케닐기, C1-C20의 알키닐기, C1-C20의 헤테로알킬기, C6-C20의 아릴기, C6-C20의 아릴알킬기, C6-C20의 헤테로아릴기, 또는 C6-C20의 헤테로아릴알킬기로 치환될 수 있다.
본 명세서 중 헤테로알킬기는, 상기 알킬기의 주쇄 중의 탄소원자 중 하나 이상, 바람직하게는 1 내지 5개의 탄소원자가 산소원자, 황원자, 질소원자, 인원자 등과 같은 헤테로 원자로 치환된 것을 의미한다.
본 명세서 중 아릴기는 하나 이상의 방향족 고리를 포함하는 카보사이클 방향족 시스템을 의미하며, 상기 고리들은 펜던트 방법으로 함께 부착되거나 또는 융합(fused)될 수 있다. 아릴기의 구체적인 예로는 페닐, 나프틸, 테트라히드로나프틸 등과 같은 방향족 그룹을 들 수 있고, 상기 아릴기 중 하나 이상의 수소 원자는 상기 알킬기의 경우와 마찬가지의 치환기로 치환가능하다.
본 명세서 중 헤테로아릴기는 N, O, P 또는 S 중에서 선택된 1, 2 또는 3개의 헤테로 원자를 포함하고, 나머지 고리 원자가 C인 고리원자수 5 내지 30의 고리 방향족 시스템을 의미하며, 상기 고리들은 펜던트 방법으로 함께 부착되거나 또는 융합 (fused)될 수 있다. 그리고 상기 헤테로아릴기중 하나 이상의 수소 원자는 상기 알킬기의 경우와 마찬가지의 치환기로 치환가능하다.
본 명세서 중 알콕시기는 라디칼 -O-알킬을 말하고, 이때 알킬은 위에서 정의된 바와 같다. 구체적인 예로는 메톡시, 에톡시, 프로폭시, 이소부틸옥시, sec-부틸옥시, 펜틸옥시, iso-아밀옥시, 헥실옥시 등을 들 수 있고, 상기 알콕시기중 하나 이상의 수소 원자는 상기 알킬기의 경우와 마찬가지의 치환기로 치환가능하다.
본 발명에서 사용되는 치환기인 헤테로알콕시기는 1개 이상의 헤테로 원자 예를 들어 산소, 황 또는 질소가 알킬 사슬 내에 존재할 수 있다는 것을 제외하면 본질적으로 상기 알콕시의 의미를 가지며, 예를 들면 CH3CH2OCH2CH2O-, C4H9OCH2CH2OCH2CH2O- 및 CH3O(CH2CH2O)nH 등이다.
본 명세서 중 아릴알킬기는 상기 정의된 바와 같은 아릴기에서 수소원자중 일부가 저급알킬, 예를 들어 메틸, 에틸, 프로필 등과 같은 라디칼로 치환된 것을 의미한다. 예를 들어 벤질, 페닐에틸 등이 있다. 상기 아릴알킬기중 하나 이상의 수소 원자는 상기 알킬기의 경우와 마찬가지의 치환기로 치환가능하다.
본 명세서 중 헤테로아릴알킬기는 헤테로아릴기의 수소 원자 일부가 저급 알킬기로 치환된 것을 의미하며, 헤테로아릴알킬기중 헤테로아릴에 대한 정의는 상술한 바와 같다. 상기 헤테로아릴알킬기중 하나 이상의 수소 원자는 상기 알킬기의 경우와 마찬가지의 치환기로 치환가능하다.
본 명세서 중 아릴옥시기는 라디칼 -O-아릴을 말하고, 이때 아릴은 위에서 정의된 바와 같다. 구체적인 예로서 페녹시, 나프톡시, 안트라세닐옥시, 페난트레닐옥시, 플루오레닐옥시, 인데닐옥시 등이 있고, 아릴옥시기중 하나 이상의 수소 원자는 상기 알킬기의 경우와 마찬가지의 치환기로 치환가능하다.
본 명세서 중 헤테로아릴옥시기는 라디칼 -O-헤테로아릴을 말하며, 이때 헤테로아릴은 위에서 정의된 바와 같다.
본 명세서 중 헤테로아릴옥시기의 구체적인 예로서, 벤질옥시, 페닐에틸옥시기 등이 있고, 헤테로아릴옥시기중 하나 이상의 수소 원자는 상기 알킬기의 경우와 마찬가지의 치환기로 치환가능하다.
본 명세서 중 사이클로알킬기는 탄소원자수 5 내지 30의 1가 모노사이클릭 시스템을 의미한다. 상기 사이클로알킬기중 적어도 하나 이상의 수소 원자는 상기 알킬기의 경우와 마찬가지의 치환기로 치환가능하다.
본 명세서 중 헤테로사이클로알킬기는 N, O, P 또는 S 중에서 선택된 1, 2 또는 3개의 헤테로원자를 포함하고, 나머지 고리원자가 C인 고리원자수 5 내지 30의 1가 모노사이클릭 시스템을 의미한다. 상기 사이클로알킬기중 하나 이상의 수소 원자는 상기 알킬기의 경우와 마찬가지의 치환기로 치환가능하다.
본 명세서 중 알킬에스테르기는 알킬기와 에스테르기가 결합되어 있는 작용기를 의미하며, 이때 알킬기는 상기 정의한 바와 같다.
본 명세서 중 헤테로알킬에스테르기는 헤테로알킬기와 에스테르기가 결합되어 있는 작용기를 의미하며, 상기 헤테로알킬기는 상기 정의한 바와 같다.
본 명세서 중 아릴에스테르기는 아릴기와 에스테르기가 결합되어 있는 작용기를 의미하며, 이때 아릴기는 상기 정의한 바와 같다.
본 명세서 중 헤테로아릴에스테르기는 헤테로아릴기와 에스테르기가 결합되어 있는 작용기를 의미하며, 이때 헤테로아릴기는 상기에서 정의한 바와 같다.
본 발명에서 사용되는 아미노기는 -NH2, -NH(R) 또는 -N(R')(R")을 의미하며, R'과 R"은 서로 독립적으로 탄소수 1 내지 10의 알킬기이다.
본 명세서 중 할로겐은 불소, 염소, 브롬, 요오드, 또는 아스타틴이며, 이들 중에서 불소가 특히 바람직하다.
상기 전도성 고분자층(130) 중 저-표면 에너지 물질의 총 농도는 상기 전도성 고분자 100중량부 당 10중량부 내지 500중량부, 예를 들면, 20중량부 내지 400중량부일 수 있으나, 이에 한정되는 것은 아니다. 상기 저-표면 에너지 물질의 함량이 상술한 바와 같은 범위를 만족할 경우, 전도성 고분자층(130)은 상술한 바와 같은 저-표면 에너지 물질의 농도 구배를 가질 수 있으며, 고발광 효율의 유기 발광 소자를 구현할 수 있다.
상기 전도성 고분자층(130)의 두께는, 2nm 내지 300nm, 예를 들면, 5nm 내지 100nm일 수 있다. 상기 전도성 고분자층(130)의 두께가 상술한 바와 같은 범위를 만족할 경우, 에너지 레벨 구배, 높은 표면 이온화 포텐셜 (Y3), 및 높은 발광 효율을 특성을 달성할 수 있다.
상기 저분자 발광층(150)은 저분자 발광 물질을 포함할 수 있다. 상기 저분자 발광 물질의 전자 이동도는 상기 저분자 발광 물질의 정공 이동도보다 같거나 클 수 있다.
상기 유기 발광 소자(100)는 도 2에 도시된 바와 같이, X1<Y1<Y3의 관계를 가질 수 있으므로, 정공은 애노드(120)에서 저분자 발광층(150)으로 빠르게 다량 전달될 수 있다. 한편, 상기 유기 발광 소자(100)은 도 2에 도시된 바와 같이 Y4<Z2의 관계를 가질 수 있으므로, 캐소드(170)에서 저분자 발광층(150)으로의 전자 주입은 지연될 수 있다. 따라서, 전자 이동도가 정공 이동도보다 같거나 큰 저분자 발광 물질을 저분자 발광층(150)에 사용하더라도, 전도성 고분자층(130)으로의 전자 전달이 지연되면서 전도성 고분자층(130)과 저분자 발광층(150) 사이의 계면에서 전자가 축적이 되게 되고, 정공과 전자가 재조합되어 엑시톤이 형성되는 엑시톤 형성 영역(160)이 전도성 고분자층(130)과 저분자 발광층(150) 사이에 효과적으로 형성될 수 있다. 그 결과, 상기 유기 발광 소자(100)은 고 발광 효율을 가질 수 있다.
상기 저분자 발광층(150)의 두께는 10nm 내지 100nm, 예를 들면, 10nm 내지 60nm일 수 있다. 상기 저분자 발광층(150)의 두께가 상기 범위를 만족할 경우, 구동 전압 상승없이 우수한 발광 특성을 얻을 수 있다.
상기 저분자 발광층(150)은 호스트와 도펀트를 포함할 수 있다. 상기 호스트는 양극성 수송(ambipolar transport) 물질 및 전자 수송성 물질 및 중 1종 이상을 포함할 수 있다.
상기 양극성 수송 물질은 정공 수송 능력 및 전자 수송 능력을 동시에 갖는 공지의 물질 중에서 임의로 선택될 수 있다. 예를 들어, 상기 양극성 수송 물질은, ter(9,9-diarylfluorene) 유도체 (예를 들면, 2,7-비스[9,9-디(4-메틸페닐)-플루오렌-2-일]-9,9-디(4-메틸페닐)플루오린 (2,7-bis[9,9-di(4-methylphenyl)-fluoren-2-yl]-9,9- di(4-methylphenyl)fluorine : TDAF), 2,7-비스(9,9-스파이로비플루오렌-2-일)-9,9-스파이로비플루오렌 (2,7-bis(9,9-spirobifluoren-2-yl)-9,9-spirobifluorene) : BDAF)], 9,10-디(나프트-2-일)안트라센 (9,10-di(naphth-2-yl)anthracene : ADN), 2-tert-부틸-9,10-비스-(베타-나프틸)-안트라센 (2-tert-butyl-9,10-bis-(β-naphthyl)-anthracene : TBADN), 2,6-디(t-부틸)-9,10-디(2-나프틸)안트라센 (2,6-di(t-butyl)-9,10-di(2-naphthyl) anthracene : 2TBADN), 2,6-디(t-부틸)-9,10-디-[6-(t-부틸)(2-나프틸)]안트라센 (2,6-di(t-butyl)-9,10-di-[6-(t-butyl)(2-naphthyl)]anthracene : 3TBADN), 2-메틸-9,10-비스(나프탈렌-2-일)안트라센 (2-methyl-9,10-bis(naphthalen-2-yl)anthracene : MADN), 터플루오렌 (terfluorene :E3) 등을 예로 들 수 있으나 이에 한정되는 것은 아니다.
상기 전자 수송성 물질은 동일 전계 하에서 정공 이동도가 전자 이동도보가 큰 물질일 수 있다. 예를 들어, 상기 전자 수송성 물질은 유기 발광 소자의 전자 수송층 및/또는 전자 주입층 재료 중에서 선택될 수 있다. 상기 전자 수송성 물질은, 트리스(8-히드록시퀴놀린)알루미늄 (tris(8-hydroxyquinoline) aluminum : Alq3), 2,2',2"-(벤젠-1,3,5-트리일)-트리스(1-페닐-1H-벤즈이미다졸) ((2,2',2"-(benzene-1,3,5-triyl)- tris(1-phenyl-1H-benzimidazole : TPBI), 2,9-디메틸-4,7-디페닐-1,10-페난트롤린 (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline : BCP), 4,7-디페닐-1,10-페난트롤린 (4,7-diphenyl-1,10-phenanthroline : Bphen), 비스(2-메틸-8-퀴놀리놀레이트)-4-(페닐페놀라토)알루미늄 (Bis(2-methyl-8-quinolinolate)-4-(phenylphenolato)aluminium : Balq), 1,3-비스[2-(2,2'-비피리딘-6-일)-1,3,4-옥사디아조-5-일]벤젠 (1,3-bis[2-(2,2'-bipyridine-6-yl)-1,3,4-oxadiazo-5-yl]benzene : Bpy-OXD), 6,6'-비스[5-(비페닐-4-일)-1,3,4-옥사디아조-2-일]-2,2'-비피리딜 (6,6'-bis[5-(biphenyl-4-yl)-1,3,4-oxadiazo-2-yl]-2,2'-bipyridyl : BP-OXD-Bpy), 3-(4-비페닐)-4-(페닐-5-tert-부틸페닐-1,2,4-트리아졸 (3-(4-biphenyl)-4-phenyl-5-tert-butylphenyl-1,2,4-triazole : TAZ), 4-(나프탈렌-1-일)-3,5-디페닐-4H-1,2,4-트리아졸 (4-(naphthalen-1-yl)-3,5-diphenyl-4H-1,2,4-triazole : NTAZ), 2,9-비스(나프탈렌-2-일)-4,7-디페닐-1,10-페난트롤린 (2,9-bis(naphthalen-2-yl)-4,7-diphenyl-1,10-phenanthroline : NBphen), 트리스(2,4,6-트리메틸-3-(피리딘-3-일)페닐)보란 (Tris(2,4,6-trimethyl-3-(pyridin-3-yl)phenyl)borane : 3TPYMB), 페닐-디파이레닐포스핀 옥사이드 (Phenyl-dipyrenylphosphine oxide : POPy2), 3,3',5,5'-테트라[(m-피리딜)-펜-3-일]비페닐 (3,3',5,5'-tetra[(m-pyridyl)-phen-3-yl]biphenyl : BP4mPy), 1,3,5-트리[(3-피리딜)-펜-3-일]벤젠 (1,3,5-tri[(3-pyridyl)-phen-3-yl]benzene : TmPyPB), 1,3-비스[3,5-디(피리딘-3-일)페닐]벤젠 (1,3-bis[3,5-di(pyridin-3-yl)phenyl]benzene : BmPyPhB), 비스(10-히드록시벤조[h]퀴놀리나토)베릴륨 (Bis(10-hydroxybenzo[h]quinolinato)beryllium : Bepq2), 비스(10-히드록시벤조 [h] 퀴놀리나토)베릴륨 (bis(10-hydroxybenzo [h] quinolinato)-beryllium : Bebq2), 디페닐비스(4-(피리딘-3-일)페닐)실란 (Diphenylbis(4-(pyridin-3-yl)phenyl)silane : DPPS) 및 1,3,5-트리(p-피리드-3-일-페닐)벤젠 (1,3,5-tri(p-pyrid-3-yl-phenyl)benzene : TpPyPB)를 예로 들 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2012008290-appb-I000007
<Alq3>
Figure PCTKR2012008290-appb-I000008
<TDAF>
Figure PCTKR2012008290-appb-I000009
<BDAF>
Figure PCTKR2012008290-appb-I000010
Figure PCTKR2012008290-appb-I000011
<TPBI>
Figure PCTKR2012008290-appb-I000012
<PBD>
Figure PCTKR2012008290-appb-I000013
<BCP>
Figure PCTKR2012008290-appb-I000014
<Bphen>
Figure PCTKR2012008290-appb-I000015
<Balq>
Figure PCTKR2012008290-appb-I000016
<Bpy-OXD>
Figure PCTKR2012008290-appb-I000017
<BP-OXD-Bpy>
Figure PCTKR2012008290-appb-I000018
<TAZ>
Figure PCTKR2012008290-appb-I000019
<NTAZ>
Figure PCTKR2012008290-appb-I000020
<NBphen>
Figure PCTKR2012008290-appb-I000021
<3TPYMB>
Figure PCTKR2012008290-appb-I000022
<POPy2>
Figure PCTKR2012008290-appb-I000023
<BP4mPy>
Figure PCTKR2012008290-appb-I000024
<TmPyPB>
Figure PCTKR2012008290-appb-I000025
<BmPyPhB>
Figure PCTKR2012008290-appb-I000026
<Bepq2>
Figure PCTKR2012008290-appb-I000027
<Bebq2>
Figure PCTKR2012008290-appb-I000028
<DPPS>
Figure PCTKR2012008290-appb-I000029
<TpPyPB>
Figure PCTKR2012008290-appb-I000030
상기 저분자 발광층(150)의 호스트는 상술한 바와 같은 양극성 수송 물질 및 전자 수송성 물질 중 1종 이상 외에, 정공 수송성 물질을 더 포함할 수 있다.
상기 정공 수송성 물질은 동일 전계 하의 정공 이동도가 전자 이동도보다 큰 물질일 수 있다. 예를 들어, 상기 정공 수송성 물질은 유기 발광 소자의 정공 주입층 또는 정공 수송층 재료일 수 있다. 예를 들어, 상기 정공 수송성 물질은, 1,3-비스(카바졸-9-일)벤젠 (1,3-bis(carbazol-9-yl)benzene: MCP), 1,3,5-트리스(카바졸-9-일)벤젠 (1,3,5-tris(carbazol-9-yl)benzene : TCP), 4,4',4"-트리스(카바졸-9-일)트리페닐아민 (4,4',4"-tris(carbazol-9-yl)triphenylamine : TcTa), 4,4'-비스(카바졸-9-일)비페닐 (4,4'-bis(carbazol-9-yl)biphenyl: CBP), N,N'-비스(나프탈렌-1-일)-N,N'-비스(페닐)벤지딘 (N,N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)-benzidine : NPB), N,N'-비스(나프탈렌-2-일)-N,N'-비스(페닐)-벤지딘 (N,N'-bis(naphthalen-2-yl)-N,N'-bis(phenyl)-benzidine : β-NPB), N,N'-비스(나프탈렌-1-일)-N,N'-비스(페닐)-2,2'-디메틸벤지딘 (N,N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)-2,2'-dimethylbenzidine : α-NPD),
디-[4,-(N,N-디톨일-아미노)-페닐]시클로헥산 (Di-[4-(N,N-ditolyl-amino)-phenyl]cyclohexane : TAPC), N,N,N',N"-테트라-나프탈렌-2-일-벤지딘 (N,N,N',N'-tetra-naphthalen-2-yl-benzidine : β-TNB) 및 N4,N4,N4',N4'-tetra(biphenyl-4-yl)biphenyl-4,4'-diamine(TPD15) 등을 예로 들 수 있으며 이에 한정되는 것은 아니다.
Figure PCTKR2012008290-appb-I000031
<NPB>
Figure PCTKR2012008290-appb-I000032
<MCP>
Figure PCTKR2012008290-appb-I000033
<TCP>
Figure PCTKR2012008290-appb-I000034
<TcTa>
Figure PCTKR2012008290-appb-I000035
<CBP>
Figure PCTKR2012008290-appb-I000036
<β-NPB >
Figure PCTKR2012008290-appb-I000037
<α-NPD>
Figure PCTKR2012008290-appb-I000038
<TAPC>
Figure PCTKR2012008290-appb-I000039
<β-TNB >
Figure PCTKR2012008290-appb-I000040
<TPD15>
상기 저분자 발광층(150)의 도펀트로는 적색, 녹색 및 청색 도펀트 중 1종 이상을 사용할 수 있다.
상기 저분자 발광층(150)의 적색 도펀트로서 루브렌(5,6,11,12-테트라페닐나프타센), Pt(II) octaethylporphine (PtOEP), Tris(1-phenylisoquinoline)iridium(III) (Ir(piq)3), Bis(1-phenylisoquinoline)(acetylacetonate)iridium(III)( Ir(piq)2(acac)), Btp2Ir(acac), 5,6,11,12-tetraphenylnaphthacene (Rubrene) 등을 이용할 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2012008290-appb-I000041
상기 저분자 발광층(150)의 녹색 도펀트로서, Tris(2-phenylpyridine)iridium(III) (Ir(ppy)3), Bis(2-phenylpyridine)(acetylacetonate)iridium(III) (Ir(ppy)2(acac)), Ir(mpyp)3 , C545T(10-(2-벤조티아졸일)-1,1,7,7-테트라메틸-2,3,6,7-테트라히드로-1H,5H,11H-[1]벤조피라노[6,7,8-ij]퀴놀리진-11-온, 하기 화학식 참조) 등을 이용할 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2012008290-appb-I000042
Figure PCTKR2012008290-appb-I000043
C545T
한편, 저분자 발광층(150)의 청색 도펀트로서, Bis(3,5-difluoro-2-(2-pyridyl)phenyl-(2-carboxypyridyl)iridium(III)(FIrPic), F2Irpic, (F2ppy)2Ir(tmd), Ir(dfppz)3, ter-플루오렌(fluorene), 4,4'-비스[4-(디-p-톨일아미노)스티릴] 비페닐 (DPAVBi), 2,5,8,11-테트라-tert-부틸 페릴렌 (TBP) 등을 이용할 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2012008290-appb-I000044
상기 저분자 발광층(150)은 상기 적색, 녹색 및 청색 도펀트 중 1종을 포함하여 적색광, 녹색광 및 청색광을 각각 구현하거나, 상기 적색, 녹색 및 청색 도펀트 중 2종 이상을 포함하여, 백색광을 구현할 수 있는 등 다양한 변형예가 가능하다.
상기 도펀트는 상기 저분자 발광층(150) 중 일부 영역에만 도핑될 수 있다. 예를 들어, 저분자 발광층(150)의 총 두께가 70 nm일 경우, 저분자 발광층(150) 중 전도성 고분자층(130)과 접촉한 계면 즉, 저분자 발광층(150) 중 제1B면(145)로부터 20 nm 이내의 20 nm 두께의 영역에는 호스트 및 도펀트가 존재하고, 나머지 50nm 두께의 영역에는 도펀트없이 호스트만 존재할 수 있다. 또는, 저분자 발광층(150)의 총 두께가 70nm일 경우, 저분자 발광층(150) 중 전도성 고분자층(130)과 접촉한 계면, 즉, 저분자 발광층(150) 중 제1B면(145)로부터 10 nm 이내의 10 nm 두께의 영역에는 도펀트없이 호스트만 존재할 수 있고, 제1B면(140)로부터 10 nm 내지 30nm 떨어진 20 nm 두께의 영역에는 호스트 및 도펀트가 존재할 수 있고, 나머지 40 nm 두께의 영역에는 도펀트없이 호스트만 존재할 수 있는 등, 다양한 변형예가 가능하다.
본 발명에서의 상기 발광층은 진공증착 및 용액 공정에 의해서 제조될 수 있다. 진공증착은 통상적으로 열증착법을 사용하며, 용액 공정은 스핀코팅(spin-coating), 잉크젯 프린팅(ink-jet printing), 노즐 프린팅(nozzle printing), 스프레이 코팅법(spray coating), 스크린 프린팅(screen printing), 닥터 블레이드 코팅법(doctor blade coating), 그래비어 프린팅(gravure printing) 및 오프셋 프린팅(offset printing) 법이 사용될 수 있다.
상기 캐소드(170)는 금속, 합금, 전기전도성 화합물 및 이들의 조합을 사용할 수 있다. 구체적인 예로서는 리튬(Li), 마그네슘(Mg), 알루미늄(Al), 알루미늄-리튬(Al-Li), 칼슘(Ca), 마그네슘-인듐(Mg-In), 마그네슘-은(Mg-Ag), 그래핀(graphene), 카본 나노 튜브(carbon nano tube) 및 전도성 고분자 등을 들 수 있다. 또한 전면 발광 소자를 얻기 위하여 ITO, IZO 등을 사용할 수도 있다.
상기 캐소드(170)는 단일층 또는 다층 구조를 가질 수 있다. 예를 들어, 상기 캐소드(170)은 전자 주입층 및 금속-함유층을 포함할 수 있다. 예를 들어, 상기 전자 주입층은 전자 주입을 촉진하는 물질로서, 공지의 전자 주입 재료인, LiF, NaCl, CsF, Li2O, BaO, BaF2, Liq(리튬 퀴놀레이트)등을 사용될 수 있다. 상기 금속-함유층은 단일 금속층이거나, 2종 이상의 금속을 포함하거나, 금속 산화물을 포함할 수 있다. 상기 금속-함유층으로는, 리튬(Li), 마그네슘(Mg), 알루미늄(Al), 알루미늄-리튬(Al-Li), 칼슘(Ca), 마그네슘-인듐(Mg-In), 마그네슘-은(Mg-Ag)등을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 캐소드(170)가 전자 주입층 및 금속-함유층을 포함할 경우, 상기 저분자 발광층(150)의 제2B면(147)은 상기 캐소드(170)의 전자 주입층의 일면과 접촉할 수 있다. 상기 전자 주입층(160)의 두께는 약 0.1nm 내지 10nm, 예를 들면, 0.5nm 내지 5nm일 수 있다. 상기 전자 주입층(160)의 두께가 전술한 바와 같은 범위를 만족할 경우, 실질적인 구동 전압 상승없이 만족스러운 정도의 전자 주입 특성을 얻을 수 있다.
상기 유기 발광 소자(100)의 제조 방법의 일 구현예를 살피면 하기와 같다.
먼저, 기판 상에 애노드(120)를 형성한다. 상기 애노드(120) 형성용 물질은 상술한 바를 참조한다. 상기 애노드(120)는 증착법, 스퍼터링법 등 다양한 방법을 이용하여 형성할 수 있다.
이어서, 상기 애노드(120) 상에 상술한 바와 같은 전도성 고분자층(130)을 형성한다. 상기 전도성 고분자층(130)은 애노드(120) 상에 상기 전도성 고분자, 저-표면 에너지 물질 및 용매를 포함한 전도성 고분자층 형성용 조성물을 제공한 후, 이를 열처리함으로써, 형성할 수 있다.
상기 전도성 고분자층 형성용 조성물 중 전도성 고분자 및 저-표면 에너지 물질에 대한 설명은 상술한 바를 참조한다.
상기 전도성 고분자층 형성용 조성물 중 용매는 상기 전도성 고분자 및 저-표면 에너지 물질과 혼화성이 있으면서, 가열 등에 의하여 제거가 용이한 용매일 수 있다. 상기 용매는 극성 용매일 수 있는데, 예를 들면, 물, 알코올(메탄올, 에탄올, n-프로판올, 2-프로판올, n-부탄올 등), 극성 유기 용매(예를 들면, 에틸렌 클리콜 (ethylene glycol), 글리세롤(glycerol), 디메일포름아마이드(DMF), 디메틸설폭시드(DMSO) 등) 또는 이들 중 2 이상의 조합일 수 있다.
상기 용매는 서로 다른 2 이상의 물질의 혼합물일 수 있다. 또는, 상기 용매는 상기 극성 유기 용매를 포함할 수 있다. 예를 들어, 상기 용매는, 극성 유기 용매이거나, 물과 알코올의 혼합물이거나, 물과 극성 유기 용매의 혼합물이거나, 알코올과 극성 유기 용매의 혼합물이거나 또는 물, 알코올 및 극성 유기 용매의 혼합물일 수 있는 등, 다양한 변형이 가능하다.
상기 극성 유기 용매의 예로는, 상술한 바와 같이, 에틸렌 글리콜, 글리세롤, DMF, DMSO 및 이들 중 2 이상의 조합을 들 수 있으나, 이에 한정되는 것은 아니다.
상기 극성 유기 용매는, 상기 전도성 고분자층 형성용 조성물에 포함된 전도성 고분자의 응집(aggregation) 및 결정화(crystallization)를 향상시킬 수 있어, 상기 전도성 고분자층 형성용 조성물 및 상기 조성물로부터 제조되는 전도성 고분자층(130)의 전도도를 조절 또는 향상시킬 수 있다.
상기 용매가 극성 유기 용매를 포함할 경우, 상기 극성 유기 용매의 함량은 상기 전도성 고분자층 형성용 조성물 100중량% 당 1중량% 내지 30중량%일 수 있으나, 이에 한정되는 것은 아니다.
상기 전도성 고분자층(130)은 예를 들면, 전도성 고분자-함유층 및 저-표면 에너지 물질층을 개별적으로 형성하는 것이 아니라, 상술한 바와 같은 전도성 고분자, 저-표면 에너지 물질 및 용매를 포함한 전도성 고분자층 형성용 조성물을 상기 애노드(120) 상에 제공한 후, 이를 열처리하는 1회의 성막 공정에 의하여 형성될 수 있는 바(전도성 고분자와 저-표면 에너지 물질의 표면 에너지 차이로 인하여, 각 물질이 자가-배열되어 각각의 농도 구배를 형성하기 때문임), 제작 공정이 간단하다. 따라서, 상기 전도성 고분자층(130)은 제조 비용을 절감할 수 있는 용액 공정을 이용하여 형성될 수 있는 바, 유기 발광 소자(100)의 제조비 절감 및 대면적 제작에 기여할 수 있다.
상기 저분자 발광층(150)은, 진공증착법, 캐스트법, 량뮤어-블로젯(LB)법, 스핀코팅(spin-coating), 잉크젯 프린팅(ink-jet printing), 노즐 프린팅(nozzle printing), 스프레이 코팅법(spray coating), 스크린 프린팅(screen printing), 닥터 블레이드 코팅법(doctor blade coating), 그래비어 프린팅(gravure printing) 및 오프셋 프린팅(offset printing) 등과 같은 공지된 다양한 방법 중에서 임의로 선택된 방법에 따라 형성될 수 있다. 예를 들어, 상기 저분자 발광층(150)은 진공 증착법을 이용하여 형성될 수 있다. 이 때, 진공 증착법을 선택할 경우, 증착 조건은 목적 화합물, 목적으로 하는 층의 구조 및 열적 특성 등에 따라 다르지만, 예를 들면, 100 내지 500℃의 증착 온도 범위, 10-10 내지 10-3torr의 진공도 범위, 0.01 내지 100Å/sec의 증착 속도 범위 내에서 선택될 수 있다. 한편, 스핀코팅법을 선택할 경우, 코팅 조건은 목적 화합물, 목적하는 하는 층의 구조 및 열적 특성에 따라 상이하지만, 2000rpm 내지 5000rpm의 코팅 속도 범위, 80℃ 내지 200℃의 열처리 온도(코팅 후 용매 제거를 위한 열처리 온도) 범위 내에서 선택될 수 있다.
상기 저분자 발광층(150)에 포함될 수 있는 저분자 발광 물질에 대한 상세한 설명은 상술한 바를 참조한다.
이어서, 상기 저분자 발광층(150) 상부에 캐소드(170)을 형성한다. 상기 캐소드(170) 형성용 물질은 상술한 바를 참조한다.
상기 유기 발광 소자(100)는 하기와 같은 장점을 가질 수 있다:
1) 상기 유기 발광 소자(100)는 상술한 바와 같은 전도성 고분자층(130)을 구비함으로써, X1<Y1<Y3의 관계(도 2 참조)를 만족하고, Y1에서 Y3가 점진적으로 이온화포텐셜이 증가하는 바, 정공 수송층을 형성하지 않아도 애노드(120)로부터 저분자 발광층(150)으로의 정공 주입이 효과적으로 이루어질 수 있다.
2) 상기 유기 발광 소자(100)는 상술한 바와 같은 전도성 고분자층(130)을 구비함으로써, Y4<Z2의 관계(도 2 참조)를 만족할 수 있는 바, 캐소드(170)로부터 주입되어 저분자 발광층(150)에 주입된 전자가 전도성 고분자층(130)으로 수송이 저지될 수 수 있다. 이로써, 계면에서 전자가 축적이 되게 되고 정공과 전자가 재조합하는 엑시톤 형성 영역은 전도성 고분자층(130)과 저분자 발광층(150) 사이에 형성될 수 있으며, 그 결과 전도성 고분자층(130) 중 저-표면 에너지 물질의 농도가 상대적으로 높은 제2A면(145)이 엑시톤 소멸을 방지하는 버퍼층의 역할을 하게 되어, 전도성 고분자층(130)과 저분자 발광층(150) 사이에 전자 방지층(electron blocking layer)를 형성하지 않아도, 고발광 효율을 가질 수 있다.
3) 상기 유기 발광 소자(100)는 상술한 바와 같은 전도성 고분자층(130)을 구비함으로써, X1<Y1<Y3의 관계(도 2 참조)를 만족하여 정공 주입이 원할하게 발광층으로 이루어지고 있고, Y4<Z2의 관계(도 2 참조)를 만족하여 전자가 전도성 고분자층(130)으로 전달되기 전에 계면에서 잘 축적이 되고 있는 바, 저분자 발광층(150)에 전자 이동도가 정공 이동도보다 같거나 큰 저분자 발광 물질을 채용할 수 있다. 그 결과, 저분자 발광층(150)과 캐소드(170) 사이에 전자 수송층을 형성하지 않아도, 높은 발광 효율을 가질 수 있다.
4) 상기 유기 발광 소자(100)의 전도성 고분자층(130)은 1회의 용액 공정으로도 형성될 수 있는 단일층이며, 상기 유기 발광 소자(100)는 별도의 정공 수송층, 전자 수송층 등이 없어도 고발광 효율을 가질 수 있으므로, 상기 유기 발광 소자(100)의 구조는 단순화될 수 있다. 따라서, 상기 유기 발광 소자(100)의 제조 비용이 절감될 수 있어, 대면적 유기 발광 소자의 양산에 유리하다.
이상, 상기 유기 발광 소자를 도 1 및 2를 참조하여 설명하였으나, 이에 한정되는 것은 아니다.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.
평가예 1: 전도성 고분자층 평가
<전도성 고분자층 형성>
전도성 폴리(3,4-에틸렌디옥시티오펜):폴리(스티렌술포네이트)(PEDOT:PSS) 용액 (Heraeus 사의 CleviosTM AI4083 / PEDOT 1중량부 당 PSS의 함량은 6중량부임 / 1×10-3 S/cm의 전도도를 가짐) 및 하기 고분자 100의 용액(물과 알코올의 혼합물(물:알코올=4.5:5.5(v/v))에 고분자 100이 5중량%로 분산되어 있음, Aldrich Co.사 제품)을 포함한 전도성 고분자층 형성용 조성물(100중량%)을 준비하였다. 여기서, 상기 PEDOT:PSS 용액과 상기 고분자 100의 용액의 혼합비는, PEDOT 1중량부당 고분자 100의 함량(고형분 기준)이 1.6중량부가 되도록 조절하였다.
<고분자 100>
Figure PCTKR2012008290-appb-I000045
(상기 고분자 100 중, x = 1300, y = 200, x = 1임)
상기 전극 형성용 조성물을 유리 기판 상에 스핀 코팅한 후, 10분간 200℃에서 열처리하여 50nm 두께의 전도성 고분자층 1을 형성하였다.
이어서, 상기 PEDOT:PSS 용액과 고분자 100의 용액의 혼합비를, PEDOT 1중량부당 상기 고분자 100의 함량이 3.2중량부, 6.3중량부, 12.7중량부 및 25.4중량부가 되도록 조절한 후 전도성 고분자층을 형성하였다는 점을 제외하고는, 상기 전도성 고분자층 1의 제조 방법과 동일한 방법을 이용하여 유리 기판 상에 전도성 고분자층 2, 3, 4 및 5(상기 전도성 고분자층 중 유리 기판과 접촉하는 표면이 제1A면이고, 상기 제1A면에 대향되는 표면이 제2A면임)를 각각 제작하였다.
한편, 비교를 위하여, 상기 고분자 100을 사용하지 않았다는 점을 제외하고는 상기 전도성 고분자층 1의 제조 방법과 동일한 방법을 이용하여, 고분자층 A를 형성하였다.
<분자 분포 평가>
상기 전도성 고분자층 5의 표면(즉, 제2A면) 분자 분포를 알아보기 위하여, 전도성 고분자층 5에 대하여 X선 광전자 스펙트로스코피(XPS, 제조사는 VG Scientific이고, 모델명은 ESCALAB 220iXL임)를 평가를 수행하여, 그 결과를 도 3에 나타내었다. 도 3은 전도성 고분자층 5의 스퍼터 시간별(즉, 전도성 고분자층 5의 깊이별) XPS 스펙트럼이다. 전도성 고분자층 5에 대한 XPS 스펙트럼 중 PEDOT(164.5eV) 피크, PSS 및 PSSH(168.4 및 168.9eV) 피크(S2p) 및 고분자 100에 대한 피크(CF3, F1s)를 분석하여, 각 모이어티의 농도를 평가하였다.
도 3에 따르면, 전도성 고분자층 5의 제2A면(스퍼터 타임=0초)에서 전도성 고분자층 5의 제1A면을 향하는 방향을 따라, 고분자 100의 농도를 나타내는 CF3 모이어티의 농도는 실질적으로 감소하고, PEDOT의 농도는 실질적으로 증가함을 알 수 있다. 따라서, 전도성 고분자층 5 중 PEDOT:PSS 및 고분자 100의 농도는 전도성 고분자층 4의 깊이에 따라 변화하는 구배를 가짐을 확인할 수 있다.
<일함수 평가>
상기 전도성 고분자층 1 내지 5 및 고분자층 A에 대하여, 공기 중 측정 자외선 광전자 스펙트로스코피(ultraviolet photoelectron spectroscopy in air, 제조사는 Niken Keiki이고, 모델명은 AC2 임)를 이용하여 이온화 포텐셜을 평가하여, 그 결과를 표 1에 나타내었다.
표 1
PEDOT/PSS/고분자 100 (중량비) 이온화 포텐셜 (eV)
고분자층 A 1 / 6 / 0 5.20
전도성 고분자층 1 1 / 6 / 1.6 5.55
전도성 고분자층 2 1 / 6 / 3.2 5.63
전도성 고분자층 3 1 / 6 / 6.3 5.72
전도성 고분자층 4 1 / 6 / 12.7 5.79
전도성 고분자층 5 1 / 6 / 25.4 5.95
상기 전도성 고분자층 1 내지 5의 이온화 포텐셜 수치는 도 2의 Y3에 대응된다.
<전도성 고분자층 상에 형성된 저분자 발광층의 광발광(PL) 세기 특성 평가>
상기 전도성 고분자층 1의 상부(즉, 전도성 고분자층 1의 제2면)에 Bebq2 및 C545T(중량비는 98:2임)를 공증착하여, 50nm의 발광층을 형성하여, 유리 기판 / 전도성 고분자층 1(50nm) / 발광층(5nm)의 구조를 갖는 샘플 1(50nm)를 제작하였다.
상기 전도성 고분자층 1 대신 전도성 고분자층 2 내지 5 및 고분자층 A를 채용하였다는 점을 제외하고는 상기 샘플 1(50nm)의 제작 방법과 동일한 방법을 이용하여, 샘플 2(50nm), 샘플 3(50nm), 샘플 4(50nm), 샘플 5(50nm) 및 샘플 A(50nm)를 각각 제작하였다.
상기 샘플 2(50nm) 내지 샘플 5(50nm) 및 샘플 A(50nm)의 광발광(PL) 스펙트럼을 제논(Xenon) 램프가 장착되어 있는 ISC PC1 스펙트로플로로메터 (Spectrofluorometer)를 이용하여 평가하여 그 결과를 도 4A에 나타내었다.
도 4A에 따르면, 전도성 고분자층 2 내지 5를 각각 구비한 샘플 2(50nm) 내지 샘플 5(50nm)의 PL 세기는 샘플 A(50nm)의 PL 세기보다 우수함을 확인할 수 있는 바, 샘플 2(50nm) 내지 샘플 5(50nm)는 샘플 A(50nm)보다 우수한 엑시톤 소멸 방지 능력 (blocking of exciton quenching)을 가짐을 알 수 있다.
발광층 두께를 10nm로 변경하였다는 점을 제외하고는 상기 샘플 1(50nm) 내지 샘플 5(50nm) 및 샘플 A(50nm)의 제조 방법과 동일한 방법을 이용하여, 샘플 1(10nm) 내지 샘플 5(10nm) 및 샘플 A(10nm)를 제조하고, 샘플 2(10nm) 내지 샘플 5(10nm) 및 샘플 A(10nm)의 PL 스펙트럼을 상술한 바에 따라 평가하여 그 결과를 도 4B에 나타내었다.
도 4B에 따르면, 전도성 고분자층 2 내지 5를 각각 구비한 샘플 2(10nm) 내지 샘플 5(10nm)의 PL 세기는 샘플 A(10nm)의 PL 세기보다 우수함을 확인할 수 있는 바, 샘플 2(10nm) 내지 샘플 5(10nm)는 샘플 A(10nm)보다 우수한 엑시톤 소멸 방지 능력을 가짐을 알 수 있다.
<PL 수명 특성 평가>
상기 샘플 1(50nm) 내지 샘플 5(50nm) 및 샘플 A(50nm)의 PL 수명을 Time-Correlated Single Photon Counting (TCSPC) 실험을 이용하여 평가하여, 그 결과를 도 5에 나타내었다.
도 5로부터, 전도성 고분자층 1 내지 5 상에 각각 저분자 발광층을 구비한 샘플 1(50nm) 내지 샘플 5(50nm)는 샘플 A(50nm)보다 우수한 PL 수명 특성을 가짐을 확인할 수 있다. 또한, 전도성 고분자층 중 상기 고분자 100의 함량이 증가할 수록 PL 수명이 증가하는 것을 확인할 수 있는 바, 이로부터, 전도성 고분자층을 채용함으로써 저분자 발광층의 엑시톤 소멸 현상이 감소됨을 확인할 수 있다.
실시예 1
코닝사(Corning)의 15Ω/㎠ (1200Å) ITO 유리 기판을 마련하여 2 x 2mm의 사이즈로 자르고, ITO 표면을 15분 동안 UV-오존 처리하였다. 상기 ITO 애노드 상에 상기 평가예 1에 기재된 바와 동일한 방법을 이용하여 전도성 고분자층 1을 형성한 후, 상기 전도성 고분자층 1 상부에 Bebq2 및 C545T(중량비는 98:2임)를 공증착하여, 70nm의 발광층을 형성하였다. 이 후, Liq 및 Al을 차례로 증착하여, 1nm의 Liq층 및 130nm의 Al층을 차례로 형성함으로써, Li/Al 캐소드를 형성하여, 유기 발광 소자(ITO 애노드 / 전도성 고분자층 1(50nm) / 발광층(70nm) / Liq(1 nm)/Al 캐소드)를 제작하였다.
실시예 2
전도성 고분자층 1 대신 전도성 고분자층 2를 형성하였다는 점을 제외하고는, 상기 실시예 1과 동일한 방법을 이용하여, 유기 발광 소자(ITO 애노드 / 전도성 고분자층 2(50nm) / 발광층(70nm) / Liq(1 nm)/Al 캐소드)를 제작하였다.
실시예 3
전도성 고분자층 1 대신 전도성 고분자층 3을 형성하였다는 점을 제외하고는, 상기 실시예 1과 동일한 방법을 이용하여, 유기 발광 소자(ITO 애노드 / 전도성 고분자층 3(50nm) / 발광층(70nm) / Liq(1 nm)/Al 캐소드)를 제작하였다.
실시예 4
전도성 고분자층 1 대신 전도성 고분자층 4를 형성하였다는 점을 제외하고는, 상기 실시예 1과 동일한 방법을 이용하여, 유기 발광 소자(ITO 애노드 / 전도성 고분자층 4(50nm) / 발광층(70nm) / Liq(1nm)/Al 캐소드)를 제작하였다.
실시예 5
전도성 고분자층 1 대신 전도성 고분자층 5를 형성하였다는 점을 제외하고는, 상기 실시예 1과 동일한 방법을 이용하여, 유기 발광 소자(ITO 애노드 / 전도성 고분자층 5(50nm) / 발광층(70nm) / Liq (1nm)/Al 캐소드)를 제작하였다.
비교예 1
전도성 고분자층 1 대신, ITO 애노드 상에 NPB를 증착하여 20nm 두께의 NPB층을 형성하였다는 점을 제외하고는, 상기 실시예 1과 동일한 방법을 이용하여 유기 발광 소자(ITO 애노드 / NPB층(20nm) / 발광층(70nm) / Liq(1nm)/Al 캐소드)를 제작하였다.
비교예 2
전도성 고분자층 1을 형성하지 않았다는 점을 제외하고는, 상기 실시예 1과 동일한 방법을 이용하여 유기 발광 소자(ITO 애노드 / 발광층(70nm) / Liq(1nm)/Al 캐소드)를 제작하였다.
비교예 3
전도성 고분자층 1 대신, ITO 애노드 상에 2-TNATA(4,4',4"-Tris(N-(2-naphthyl)-N-phenyl-amino)-triphenylamine)를 증착하여 50nm 두께의 2-TNATA층을 형성하였다는 점을 제외하고는, 상기 실시예 1과 동일한 방법을 이용하여 유기 발광 소자(ITO 애노드 / 2-TNATA층(50nm) / 발광층(70nm) / Liq(1nm)/Al 캐소드)를 제작하였다.
비교예 4
전도성 고분자층 1 대신, 상기 평가예 1에 기재된 바와 동일한 방법으로 고분자층 A를 형성하였다는 점을 제외하고는, 상기 실시예 1과 동일한 방법을 이용하여 유기 발광 소자(ITO 애노드 / 전도성 고분자층 A(50nm) / 발광층(70nm) / Liq(1nm)/Al 캐소드)를 제작하였다.
평가예 2: 소자 평가
실시예 5 및 비교예 1 내지 4의 유기 발광 소자의 발광 효율을 Keithley 236 source 측정 기기 및 Minolta CS 2000 스펙트로라디오메트를 이용하여 평가하여, 그 결과를 도 6A(비교예 1 및 2), 도 6B(비교예 3), 도 6C(비교예 4) 및 도 6D(실시예 5)에 나타내었다.
도 6A 내지 6D로부터 실시예 5의 유기 발광 소자는 비교예 1 내지 4의 유기 발광 소자보다 우수한 발광 효율을 가짐을 확인할 수 있다.
<도면 부호의 설명>
120: 애노드
130: 전도성 고분자층
150: 발광층
170: 캐소드

Claims (18)

  1. 애노드, 제1A면 (surface 1A) 및 상기 제1A면에 대향되는 제2A면을 갖는 전도성 고분자층, 제1B면 및 상기 제1B면에 대향되는 제2B면을 갖는 저분자 발광층 및 캐소드가 차례로 적층되어 있고;
    상기 애노드의 일면은 상기 전도성 고분자층의 제1A면과 서로 접촉하고, 상기 전도성 고분자층의 제2A면은 상기 저분자 발광층의 제1B면과 서로 접촉하고, 상기 저분자 발광층의 제2B면은 상기 캐소드의 일면과 서로 접촉하고;
    상기 전도성 고분자층은, 1×10-7 S/cm 이상 0.1 S/cm 미만의 전도도를 갖는 전도성 고분자 및 저-표면 에너지 물질(material having low surface energy)을 포함한 단일층이고, 상기 제2A면의 저-표면 에너지 물질의 농도가 상기 제1A면의 저-표면 에너지 물질의 농도보다 크고, 상기 제2A면의 LUMO(low unoccupied molecular orbital) 에너지 레벨의 절대값이 상기 저분자 발광층의 LUMO 에너지 레벨의 절대값보다 작고, 상기 제2A면은 엑시톤 소멸(exiton quenching) 방지 역할을 하고;
    상기 저분자 발광층은 저분자 발광 물질을 포함하고, 상기 저분자 발광 물질의 전자 이동도는 상기 저분자 발광 물질의 정공 이동도보다 같거나 큰, 유기 발광 소자.
  2. 제1항에 있어서,
    상기 제1A면의 HOMO(high occupied molecular orbital) 에너지 레벨의 절대값이 상기 애노드의 일함수보다 큰, 유기 발광 소자.
  3. 제1항에 있어서,
    상기 제2A면의 HOMO(high occupied molecular orbital) 에너지 레벨의 절대값이 상기 저분자 발광층의 HOMO 에너지 레벨보다 큰, 유기 발광 소자.
  4. 제1항에 있어서,
    구동시, 상기 전도성 고분자층과 상기 저분자 발광층 사이의 계면에서 엑시톤 형성 영역이 형성되는, 유기 발광 소자.
  5. 제1항에 있어서,
    상기 저-표면 에너지 물질의 농도가 상기 제1A면에서 상기 제2A면을 향하는 방향을 따라 점진적으로 증가하는, 유기 발광 소자.
  6. 제1항에 있어서,
    상기 저-표면 에너지 물질은, 적어도 하나의 F를 포함한 불화 물질인, 유기 발광 소자.
  7. 제1항에 있어서,
    상기 저-표면 에너지 물질은, 하기 화학식 1 내지 3 중 어느 하나의 반복 단위를 갖는 불화 고분자인, 유기 발광 소자.
    <화학식 1>
    Figure PCTKR2012008290-appb-I000046
    상기 화학식 1 중,
    a는 0 내지 10,000,000의 수이고;
    b는 1 내지 10,000,000의 수이고;
    Q1은 -[O-C(R1)(R2)-C(R3)(R4)]c-[OCF2CF2]d-R5, -COOH 또는 -O-Rf-R6이고;
    상기 R1, R2, R3 및 R4는 서로 독립적으로, -F, -CF3, -CHF2 또는 -CH2F이고;
    상기 c 및 d는 서로 독립적으로, 0 내지 20의 수이고;
    상기 Rf는 -(CF2)z-(z는 1 내지 50의 정수임) 또는 -(CF2CF2O)z-CF2CF2-(z는 1 내지 50의 정수임)이고;
    상기 R5 및 R6는 서로 독립적으로, -SO3M, -PO3M2 또는 -CO2M이고;
    상기 M은 Na+, K+, Li+, H+, CH3(CH2)wNH3 + (w는 0 내지 50의 정수), NH4 +, NH2 +, NHSO2CF3 +, CHO+, C2H5OH+, CH3OH+, CH3(CH2)wCHO+ (w는 0 내지 50의 정수)을 나타낸다;
    <화학식 2>
    Figure PCTKR2012008290-appb-I000047
    상기 화학식 2 중,
    Q2는 수소, 치환 또는 비치환된 C5-C60아릴기 또는 -COOH이고;
    Q3는 수소 또는 치환 또는 비치환된 C1-C20알킬기이고;
    Q4는 -O-(CF2)r-SO3M, -O-(CF2)r-PO3M2, -O-(CF2)r-CO2M, 또는 -CO-NH-(CH2)s-(CF2)t-CF3이고,
    상기 r, s 및 t는 서로 독립적으로, 0 내지 20의 수이고;
    상기 M은 Na+, K+, Li+, H+, CH3(CH2)wNH3 + (w는 0 내지 50의 정수), NH4 +, NH2 +, NHSO2CF3 +, CHO+, C2H5OH+, CH3OH+, CH3(CH2)wCHO+ (w는 0 내지 50의 정수)을 나타낸다;
    <화학식 3>
    Figure PCTKR2012008290-appb-I000048
    상기 화학식 3 중,
    m 및 n은 0 ≤ m < 10,000,000, 0 < n ≤ 10,000,000이고;
    x 및 y는 각각 독립적으로 0 내지 20의 수이며;
    Y는 -SO3M, -PO3M2 또는 -CO2M이고;
    상기 M은 Na+, K+, Li+, H+, CH3(CH2)wNH3 + (w는 0 내지 50의 정수), NH4 +, NH2 +, NHSO2CF3 +, CHO+, C2H5OH+, CH3OH+, CH3(CH2)wCHO+ (w는 0 내지 50의 정수)을 나타낸다;
  8. 제1항에 있어서,
    상기 저-표면 에너지 물질은, 하기 화학식 10으로 표시되는 불화 올리고머인, 유기 발광 소자:
    <화학식 10>
    X-Mf n-Mh m-Ma r-(G)p
    상기 화학식 10 중,
    X는 말단기이고;
    Mf는 퍼플루오로폴리에테르 알코올, 폴리이소시아네이트 및 이소시아네이트 반응성-비불소화 모노머의 축합 반응으로부터 수득한 불화 모노머로부터 유래된 단위 또는 플루오르화 C1-20알킬렌기를 나타내고;
    Mh는 비불소화 모노머로부터 유래된 단위를 나타내고;
    Ma는 -Si(Y4)(Y5)(Y6)으로 표시되는 실릴기를 갖는 단위를 나타내고;
    상기 Y4, Y5 및 Y6는 서로 독립적으로, 할로겐 원자, 치환 또는 비치환된 C1-C20알킬기, 치환 또는 비치환된 C6-C30아릴기 또는 가수분해성 치환기를 나타내고, 상기 Y4, Y5 및 Y6 중 적어도 하나는 상기 가수분해성 치환기이고;
    G는 사슬전달제(chain transfer agent)의 잔기를 포함한 1가 유기 그룹이고;
    n은 1 내지 100의 수이고;
    m은 0 내지 100의 수이고;
    r은 0 내지 100의 수이고;
    n+m+r은 적어도 2이고;
    p는 0 내지 10의 수이다.
  9. 제1항에 있어서,
    상기 전도성 고분자는 폴리티오펜, 폴리아닐린, 폴리피롤, 폴리(파라-페닐렌), 폴리플루오렌, 폴리(3,4-에틸렌디옥시티오펜), 셀프-도핑 전도성 고분자 및 이들의 유도체 중 1종 이상을 포함한, 유기 발광 소자.
  10. 제1항에 있어서,
    상기 제2A면의 이온화 포텐셜이 5.0eV 내지 6.5eV의 범위에서 선택되는, 유기 발광 소자.
  11. 제1항에 있어서,
    상기 저분자 발광층이 호스트와 도펀트를 포함하고, 상기 호스트는 양극성 수송(ambipolar transport) 물질 및 전자 수송성 물질 및 중 1종 이상을 포함한, 유기 발광 소자.
  12. 제11항에 있어서,
    상기 호스트가 정공 수송성 물질을 더 포함한, 유기 발광 소자.
  13. 제11항 또는 제12항에 있어서,
    상기 도판트가 상기 발광층의 일부 영역에만 도핑되어 있는, 유기 발광 소자.
  14. 제1항에 있어서,
    상기 캐소드가 전자 주입층 및 금속-함유층을 포함하고, 상기 전자 주입층이 상기 저분자 발광층의 제2B면과 접촉한, 유기 발광 소자.
  15. 기판 상에 애노드를 형성하는 단계;
    상기 애노드 상에 전도성 고분자, 상기 저-표면 에너지 물질 및 용매를 포함한 전도성 고분자층 형성용 조성물을 제공 및 열처리하여, 전도성 고분자층을 형성하는 단계;
    상기 전도성 고분자층 상에 저분자 발광층을 형성하는 단계; 및
    상기 저분자 발광층 상에 캐소드를 형성하는 단계;
    를 포함하는, 제1항의 유기 발광 소자의 제조 방법.
  16. 제15항에 있어서,
    상기 전도성 고분자층 형성용 조성물에 포함된 용매가 극성 용매이고, 상기 극성 용매는 물, 알코올, 에틸렌 글리콜, 글리세롤, 디메틸포름아마이드(DMF), 디메틸설폭사이드(DMSO) 및 아세톤 중 1종 이상인, 유기 발광 소자의 제조 방법.
  17. 제15항에 있어서,
    상기 저분자 발광층 형성 단계를 진공 증착법을 이용하여 수행하는, 유기 발광 소자의 제조 방법.
  18. 제15항에 있어서,
    상기 저분자 발광층 형성 단계를 캐스트법, LB법, 스핀코팅(spin-coating), 잉크젯 프린팅(ink-jet printing), 노즐 프린팅(nozzle printing), 스프레이 코팅법(spray coating), 스크린 프린팅(screen printing), 닥터 블레이드 코팅법(doctor blade coating), 그래비어 프린팅(gravure printing) 및 오프셋 프린팅(offset printing)을 이용하여 수행하는, 유기 발광 소자의 제조 방법.
PCT/KR2012/008290 2011-10-12 2012-10-12 단순화된 유기 발광 소자 및 이의 제조 방법 WO2013055138A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014533222A JP5981999B2 (ja) 2011-10-12 2012-10-12 単純化された有機発光素子及びその製造方法
DE112012004269.7T DE112012004269T8 (de) 2011-10-12 2012-10-12 Vereinfachte organische lichtemittierende Diode und Verfahren zu deren Herstellung
US14/349,659 US9281488B2 (en) 2011-10-12 2012-10-12 Simplified organic emitting diode and method for preparing the same
CN201280049985.6A CN103875088B (zh) 2011-10-12 2012-10-12 简化的有机发射装置及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0104087 2011-10-12
KR1020110104087A KR101305869B1 (ko) 2011-10-12 2011-10-12 단순화된 유기 발광 소자 및 이의 제조 방법

Publications (2)

Publication Number Publication Date
WO2013055138A2 true WO2013055138A2 (ko) 2013-04-18
WO2013055138A3 WO2013055138A3 (ko) 2013-07-04

Family

ID=48082668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/008290 WO2013055138A2 (ko) 2011-10-12 2012-10-12 단순화된 유기 발광 소자 및 이의 제조 방법

Country Status (6)

Country Link
US (1) US9281488B2 (ko)
JP (1) JP5981999B2 (ko)
KR (1) KR101305869B1 (ko)
CN (1) CN103875088B (ko)
DE (1) DE112012004269T8 (ko)
WO (1) WO2013055138A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015035370A (ja) * 2013-08-09 2015-02-19 株式会社デンソー 有機el素子の製造方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101237351B1 (ko) * 2011-05-27 2013-03-04 포항공과대학교 산학협력단 전극 및 이를 포함한 전자 소자
KR102105996B1 (ko) * 2013-12-30 2020-04-29 엘지디스플레이 주식회사 유기발광다이오드 및 이를 이용한 표시장치
US10276807B2 (en) * 2014-11-06 2019-04-30 Postech Academy-Industry Foundation Light-emitting layer for perovskite light-emitting device, method for manufacturing same, and perovskite light-emitting device using same
KR101703451B1 (ko) * 2014-11-06 2017-02-09 포항공과대학교 산학협력단 엑시톤 버퍼층을 포함하는 페로브스카이트 발광 소자 및 이의 제조방법
KR102376968B1 (ko) * 2014-11-17 2022-03-22 삼성디스플레이 주식회사 유기 발광 소자
KR102318252B1 (ko) 2015-01-14 2021-10-28 삼성디스플레이 주식회사 유기 발광 소자 및 이를 포함하는 표시 장치
KR102277378B1 (ko) * 2015-01-19 2021-07-14 삼성디스플레이 주식회사 유기 발광 소자 및 이를 포함하는 유기 발광 표시 장치
CN105161635B (zh) * 2015-07-01 2018-06-19 Tcl集团股份有限公司 一种具有自组装电子传输层的qled器件及其制备方法
KR101794735B1 (ko) 2016-01-28 2017-12-01 포항공과대학교 산학협력단 금속 할라이드 페로브스카이트 발광 소자 및 이의 제조방법
EP3457449A4 (en) * 2016-05-10 2020-01-22 Hitachi Chemical Company, Ltd. CHARGE TRANSPORTATION MATERIAL, ORGANIC ELECTRONIC ELEMENT, AND ORGANIC ELECTROLUMINESCENT ELEMENT
KR102534082B1 (ko) * 2016-07-07 2023-05-19 삼성디스플레이 주식회사 표시 기판, 표시장치 및 터치패널
KR102405260B1 (ko) 2017-11-21 2022-06-02 삼성전자주식회사 양자점 소자 및 전자 장치
US11152161B2 (en) 2019-09-03 2021-10-19 Kemet Electronics Corporation Aluminum polymer capacitor with enhanced internal conductance and breakdown voltage capability

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990055417A (ko) * 1997-12-27 1999-07-15 정선종 유기물 및 전기 발광 고분자의 이종 구조를 갖는 전기 발광소자 및 그 발광 파장 제어 방법
KR19990054477A (ko) * 1997-12-26 1999-07-15 김덕중 안정성이 향상된 저전압 구동 유기발광소자

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1525801A (zh) * 2003-02-27 2004-09-01 胜园科技股份有限公司 自组装分子作为有机发光二极管的电子注入层的装置及方法
TWI386103B (zh) * 2004-06-11 2013-02-11 Organic electroluminescent element and its driving method
JP2006024648A (ja) * 2004-07-06 2006-01-26 Toyota Industries Corp 照明装置
GB0514476D0 (en) * 2005-07-14 2005-08-17 Cambridge Display Tech Ltd Conductive polymer compositions in opto-electrical devices
US7772761B2 (en) * 2005-09-28 2010-08-10 Osram Opto Semiconductors Gmbh Organic electrophosphorescence device having interfacial layers
US8148891B2 (en) 2005-10-04 2012-04-03 Universal Display Corporation Electron impeding layer for high efficiency phosphorescent OLEDs
KR20070070650A (ko) * 2005-12-29 2007-07-04 삼성에스디아이 주식회사 유기 발광 소자 및 이를 구비한 평판 표시 장치
KR20070081623A (ko) 2006-02-13 2007-08-17 삼성에스디아이 주식회사 유기 발광 소자
ES2304200B1 (es) * 2006-05-30 2009-08-13 Universitat De Valencia, Estudi Genera Capa inyectora de cargas para dispositivos electro-opticos.
KR101386216B1 (ko) * 2006-06-07 2014-04-18 삼성디스플레이 주식회사 유기 발광 소자
US7728098B2 (en) 2006-07-27 2010-06-01 3M Innovative Properties Company Fluorochemical composition comprising fluorinated oligomeric silane
KR100833764B1 (ko) * 2007-01-22 2008-05-29 삼성에스디아이 주식회사 직류-직류 컨버터를 갖는 유기 전계 발광 표시 장치
JP2008204850A (ja) * 2007-02-21 2008-09-04 Seiko Instruments Inc 有機電子デバイスの製造方法
KR100813851B1 (ko) * 2007-04-05 2008-03-17 삼성에스디아이 주식회사 투명 전도성 산화막인 캐소드를 구비하는 유기전계발광소자및 그의 제조방법
JP2009055010A (ja) * 2007-07-27 2009-03-12 Fujifilm Corp 有機電界発光素子
JP2009071189A (ja) * 2007-09-14 2009-04-02 Fujifilm Corp 有機電界発光素子
JP5424622B2 (ja) * 2008-12-01 2014-02-26 キヤノン株式会社 ペリレン化合物及びこれを用いた有機発光素子
JP2011009498A (ja) * 2009-06-26 2011-01-13 Dainippon Printing Co Ltd 有機エレクトロルミネッセンス素子
JP2011061016A (ja) * 2009-09-10 2011-03-24 Sharp Corp 有機エレクトロルミネッセンス素子
KR101097339B1 (ko) * 2010-03-08 2011-12-23 삼성모바일디스플레이주식회사 유기 발광 소자 및 이의 제조 방법
KR20110110589A (ko) * 2010-04-01 2011-10-07 삼성모바일디스플레이주식회사 유기 발광 소자

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990054477A (ko) * 1997-12-26 1999-07-15 김덕중 안정성이 향상된 저전압 구동 유기발광소자
KR19990055417A (ko) * 1997-12-27 1999-07-15 정선종 유기물 및 전기 발광 고분자의 이종 구조를 갖는 전기 발광소자 및 그 발광 파장 제어 방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
'Hole-injecting conducting-polymer compositions for highly efficient and stable organic light-emitting diodes' APPLIED PHYSICS LETTERS vol. 87, 29 November 2005, page 231106 *
'Self-Organized Gradient Hole Injection to Improve the Performance of Polymer Electroluminescent Devices' ADV. FUNCT. MATER. vol. 17, 18 January 2007, pages 390 - 396 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015035370A (ja) * 2013-08-09 2015-02-19 株式会社デンソー 有機el素子の製造方法

Also Published As

Publication number Publication date
JP5981999B2 (ja) 2016-08-31
US9281488B2 (en) 2016-03-08
DE112012004269T8 (de) 2014-09-11
CN103875088B (zh) 2016-08-24
KR101305869B1 (ko) 2013-09-09
JP2014529196A (ja) 2014-10-30
DE112012004269T5 (de) 2014-07-10
US20140239287A1 (en) 2014-08-28
WO2013055138A3 (ko) 2013-07-04
KR20130039496A (ko) 2013-04-22
CN103875088A (zh) 2014-06-18

Similar Documents

Publication Publication Date Title
WO2013055138A2 (ko) 단순화된 유기 발광 소자 및 이의 제조 방법
WO2014133373A1 (ko) 고-일함수 및 고-전도도 하이브리드 전극을 채용한 전자 소자
WO2015142036A1 (en) Electron buffering material and organic electroluminescent device comprising the same
WO2018097666A2 (ko) 이온성 화합물, 이를 포함하는 코팅 조성물 및 유기 발광 소자
WO2009091231A2 (ko) 유기발광소자 및 이의 제조 방법
WO2016068585A1 (ko) 유기 전계 발광 소자
EP3119767A1 (en) Electron buffering material and organic electroluminescent device comprising the same
WO2018216880A1 (ko) 헤테로환 화합물 및 이를 포함하는 유기 전자 소자
WO2010074422A1 (en) Novel compound for organic photoelectric device and organic photoelectric device including the same
WO2014133285A1 (ko) 전도성 박막, 이의 제조 방법 및 이를 포함한 전자 소자
WO2020138874A1 (en) Organic light emitting diode and organic light emitting device having thereof
WO2021066370A1 (en) Organic light emitting diode and organic light emitting device having the same
WO2018097654A2 (ko) 플루오렌 유도체, 이를 이용한 유기 발광 소자 및 이의 제조방법
WO2020213814A1 (ko) 패시베이션 층을 포함하는 페로브스카이트 발광 소자 및 이의 제조방법
WO2014051397A1 (ko) 광 활성층, 이를 포함한 유기 태양 전지 및 이의 제조 방법
WO2020149666A1 (ko) 유기 발광 소자
WO2017105039A1 (ko) 신규한 화합물 및 이를 포함하는 유기 발광 소자
WO2018030786A1 (ko) 화합물 및 이를 포함하는 유기발광소자
WO2022145775A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2014084619A1 (ko) 신규한 화합물, 이를 포함하는 발광 소자 및 전자 장치
WO2020242165A1 (ko) 유기 화합물 및 이를 포함하는 유기전계발광소자
WO2019168365A1 (ko) 중합체, 이를 포함하는 코팅 조성물 및 이를 이용한 유기 발광 소자
WO2021025519A1 (ko) 페로브스카이트 광전소자 및 이의 제조방법
WO2010128745A1 (ko) 유기 광전 소자용 화합물 및 이를 포함하는 유기 광전 소자
WO2021107645A1 (ko) 페로브스카이트 광전소자 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12839578

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2014533222

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14349659

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120120042697

Country of ref document: DE

Ref document number: 112012004269

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12839578

Country of ref document: EP

Kind code of ref document: A2