WO2010128745A1 - 유기 광전 소자용 화합물 및 이를 포함하는 유기 광전 소자 - Google Patents

유기 광전 소자용 화합물 및 이를 포함하는 유기 광전 소자 Download PDF

Info

Publication number
WO2010128745A1
WO2010128745A1 PCT/KR2009/007912 KR2009007912W WO2010128745A1 WO 2010128745 A1 WO2010128745 A1 WO 2010128745A1 KR 2009007912 W KR2009007912 W KR 2009007912W WO 2010128745 A1 WO2010128745 A1 WO 2010128745A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
integer
organic photoelectric
compound
photoelectric device
Prior art date
Application number
PCT/KR2009/007912
Other languages
English (en)
French (fr)
Inventor
김영훈
유은선
정성현
강의수
박영성
채미영
Original Assignee
제일모직 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일모직 주식회사 filed Critical 제일모직 주식회사
Publication of WO2010128745A1 publication Critical patent/WO2010128745A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/1466Heterocyclic containing nitrogen as the only heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present disclosure relates to a compound for an organic photoelectric device and an organic photoelectric device including the same.
  • An organic photoelectric device is a device that converts light energy into electrical energy or converts electrical energy into light energy in a broad sense.
  • Examples of the organic photoelectric device may include organic light emitting diodes (OLEDs), solar cells, and transistors.
  • OLEDs organic light emitting diodes
  • solar cells solar cells
  • transistors transistors.
  • the organic light emitting device is attracting attention as the demand for flat panel displays increases.
  • the organic light emitting device has a structure in which an anode made of a transparent electrode, an organic thin film layer including a light emitting region, and a cathode made of a metal electrode are sequentially formed on a glass substrate.
  • the organic thin film layer may include a light emitting layer, a hole injection layer, a hole transport layer, an electron transport layer or an electron injection layer, and may further include an electron blocking layer or a hole blocking layer due to light emission characteristics of the light emitting layer.
  • the light-excited excitons thus formed emit light while transitioning to ground states.
  • the light may be divided into fluorescence using singlet excitons and phosphorescence using triplet excitons according to a light emitting mechanism, and the fluorescence and phosphorescence may be used as light emitting sources of organic light emitting devices (DFO'Brien et al., Appl. Phys. Lett., 74 (3), 442, 1999; MA Baldo et al., Appl. Phys. Lett., 75 (1), 4, 1999).
  • the singlet excitons are non-luminescent transition to triplet excitons through intersystem crossing, and the triplet excitons are transferred to the ground state to emit light.
  • the generated light is called phosphorescence.
  • the triplet excitons cannot spin directly to the ground state (spin forbidden) and must undergo a flipping step of electron spin. Therefore, phosphorescence has a characteristic that the half life (luminescence time, lifetime) is longer than that of fluorescence.
  • a host material and a dopant may be added together to the light emitting layer.
  • 4,4-N, N-dicarbazolebiphenyl (CBP) was mainly used as the host material.
  • CBP has a very high structural symmetry and is easy to crystallize, and has low thermal stability, the short-circuit and pixel defects are generated as a result of heat resistance test of the device.
  • most host materials such as CBP do not effectively recombine in the light emitting layer because the movement speed of the holes is faster than the movement speed of the electrons, thereby reducing the luminous efficiency of the device.
  • One embodiment of the present invention is to provide a compound for an organic photoelectric device which is excellent in thermal stability and can transfer both holes and electrons well.
  • Another embodiment of the present invention is to provide an organic photoelectric device having excellent efficiency and driving voltage characteristics, including the compound for an organic photoelectric device.
  • Another embodiment of the present invention is to provide a display device including the organic photoelectric device.
  • a compound for an organic photoelectric device represented by Formula 1 is provided:
  • L is a substituted or unsubstituted arylene group having 6 to 30 carbon atoms, a substituted or unsubstituted heteroarylene group having 2 to 30 carbon atoms, or a combination thereof,
  • R 1 and R 2 are the same as or different from each other, each independently represent a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, a substituted or unsubstituted heteroaryl group having 2 to 30 carbon atoms, or a combination thereof,
  • R 3 and R 4 are the same as or different from each other, and each independently hydrogen or a lower alkyl group having 1 to 10 carbon atoms,
  • a1 and a2 are the same as or different from each other, and each independently an integer of 0 to 4, provided that a1 + a2 is an integer of 1 or more,
  • b is an integer from 1 to 4,
  • c is an integer from 0 to 4,
  • d is an integer of 1 to 5
  • e and f are the same as or different from each other, and each independently an integer of 1 to 4.
  • L is a substituted or unsubstituted arylene group having 6 to 30 carbon atoms
  • the arylene group is a substituted or unsubstituted phenylene group, a substituted or unsubstituted naphthylene group, a substituted or unsubstituted anthracenylene group, a substituted or unsubstituted group It may be a substituted phenanthrenylene group, a substituted or unsubstituted tetrasenylene group, a substituted or unsubstituted pyrenylene group, a substituted or unsubstituted fluorenylene group or a combination thereof.
  • A1 and a2 may be the same as or different from each other, and may be each independently an integer of 0 to 3, provided that a1 + a2 is an integer of 1 to 3.
  • the compound for an organic photoelectric device may be represented by Formula 2 below:
  • R 1 and R 2 are the same as or different from each other, and each independently represent a substituted or unsubstituted aryl group having 6 to 30 carbon atoms,
  • R 3 to R 5 are the same as or different from each other, and each independently hydrogen or a lower alkyl group having 1 to 10 carbon atoms,
  • a1 and a2 are the same as or different from each other, and each independently an integer of 0 to 3, provided that a1 + a2 is an integer of 1 to 3,
  • b is an integer from 1 to 4,
  • c is an integer from 0 to 4,
  • d is an integer of 1 to 5
  • e and f are the same as or different from each other, and each independently an integer of 1 to 4,
  • g is an integer of 1-4.
  • the compound for an organic photoelectric device may be represented by Formula 3:
  • R 3 to R 5 , and R 5 ′ are the same as or different from each other, and are each independently hydrogen or a lower alkyl group having 1 to 10 carbon atoms,
  • a1 and a2 are the same as or different from each other, and each independently an integer of 0 to 3, provided that a1 + a2 is an integer of 1 to 3,
  • b is an integer from 1 to 4,
  • c is an integer from 0 to 4,
  • e and f are the same as or different from each other, and each independently an integer of 1 to 4,
  • g and h are the same as or different from each other, and each independently an integer of 1 to 4.
  • the compound for an organic photoelectric device may be represented by the following Chemical Formulas 4 to 31.
  • the compound for an organic photoelectric device may be used as a charge transport material or a host material, and in particular, the compound for an organic photoelectric device may be used as a host material of green or red light emission, and the compound for an organic photoelectric device may have a glass transition temperature ( T g ) may be 110 ° C. or more, and the thermal decomposition temperature T d may be 400 ° C. or more.
  • the present invention comprises an anode, a cathode, and an organic thin film layer interposed between the anode and the cathode, the organic thin film layer is to include a compound for an organic photoelectric device according to an embodiment of the present invention Provided is an organic photoelectric device.
  • the organic thin film layer may be a light emitting layer, a hole transport layer, a hole injection layer, a hole blocking layer, an electron transport layer, an electron injection layer, an electron blocking layer or a combination thereof, the organic thin film layer may further include a dopant, the dopant May be a red, green, or blue phosphorescent dopant.
  • a display device including the organic photoelectric device is provided.
  • the compound for an organic photoelectric device may be used as a host material or a charge transport material having excellent thermal stability.
  • the compound for an organic photoelectric device may be used in an organic thin film layer of an organic photoelectric device to have a high luminous efficiency even at a low driving voltage and have an improved lifetime.
  • a display device may be used as a host material or a charge transport material having excellent thermal stability.
  • the compound for an organic photoelectric device may be used in an organic thin film layer of an organic photoelectric device to have a high luminous efficiency even at a low driving voltage and have an improved lifetime.
  • a display device may be used as a host material or a charge transport material having excellent thermal stability.
  • the polymer according to one embodiment of the present invention can synthesize a polymer material having a desired energy band gap without affecting the degree of polymerization of the polymer.
  • a polymer polymer may be prepared to include a functional group capable of crosslinking at the end thereof, and thus the interfacial stability of the film may be enhanced by forming the crosslinked organic thin film layer.
  • the polymer polymer has excellent hole injection and movement characteristics, and has an effect of further improving the performance of the organic photoelectric device by having an appropriate energy band gap in which energy levels between the organic thin film layers can be stepped.
  • the polymer polymer by solving the problem of dissolution or erosion of the other organic thin film layer by the solvent according to the wet process using the polymer polymer with improved interfacial stability, it is possible to provide an organic photoelectric device excellent in life and efficiency characteristics.
  • 1 to 5 are cross-sectional views illustrating various embodiments of an organic photoelectric device that may be manufactured including a compound for an organic photoelectric device according to an embodiment of the present invention.
  • hole injection layer light emitting layer + electron transport layer
  • substituted means substituted with an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 30 carbon atoms.
  • hetero means containing 1 to 3 heteroatoms including N, O, S, P, or a combination thereof in one ring group, and the rest are carbon.
  • a compound for an organic photoelectric device represented by Formula 1 is provided:
  • L is a substituted or unsubstituted arylene group having 6 to 30 carbon atoms, a substituted or unsubstituted heteroarylene group having 2 to 30 carbon atoms, or a combination thereof,
  • R 1 and R 2 are the same as or different from each other, each independently represent a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, a substituted or unsubstituted heteroaryl group having 2 to 30 carbon atoms, or a combination thereof,
  • R 3 and R 4 are the same as or different from each other, and each independently hydrogen or a lower alkyl group having 1 to 10 carbon atoms,
  • a1 and a2 are the same as or different from each other, and each independently an integer of 0 to 4, provided that a1 + a2 is an integer of 1 or more,
  • b is an integer from 1 to 4,
  • c is an integer from 0 to 4,
  • d is an integer of 1 to 5
  • e and f are the same as or different from each other, and each independently an integer of 1 to 4.
  • each of the two or more repeating units may be the same or different from each other.
  • the carbazole group performs a function as a hole transport group
  • the benzimidazole group performs a function as an electron transport group.
  • the function as the hole transporter means a function capable of having a cation characteristic by hole formation having a conduction characteristic along the HOMO level.
  • the function as the electron transport means a function capable of having an anion characteristic by electron formation, having conductive properties along the LUMO level.
  • the benzimidazole group may be directly substituted with a carbazole group to simultaneously play a role of transporting holes and electrons. That is, the compound for an organic photoelectric device may have an amphoteric property, and thus may exhibit excellent interfacial properties and charge transport capability in the light emitting layer of the organic photoelectric device in which holes and electrons are bonded.
  • the structure in which the benzimidazole group is directly substituted with a carbazole group may impart asymmetry to the overall structure of the compound for an organic photoelectric device according to the exemplary embodiment of the present invention, and may easily prevent crystallization. That is, the compound for an organic photoelectric device according to the exemplary embodiment of the present invention may be usefully applied as a host material, a hole transport material, or an electron transport material having excellent thermal stability.
  • L in Formula 1 is a substituted or unsubstituted arylene group having 6 to 30 carbon atoms
  • the arylene group is a substituted or unsubstituted phenylene group, a substituted or unsubstituted naphthylene group, a substituted or unsubstituted anthracenylene group, It may be a substituted or unsubstituted phenanthrenylene group, a substituted or unsubstituted tetrasenylene group, a substituted or unsubstituted pyrenylene group, a substituted or unsubstituted fluorenylene group or a combination thereof. More specifically, the arylene may be phenylene, but the arylene is not limited thereto.
  • R 1 and R 2 are the same as or different from each other, and each independently a substituted or unsubstituted aryl group having 6 to 30 carbon atoms of the compound for an organic photoelectric device according to an embodiment of the present invention Structural stability can be imparted. More specifically, in Formula 1, R 1 and R 2 may be a substituted or unsubstituted aryl group having 6 to 12 carbon atoms.
  • a1 and a2 are the same as or different from each other, and may each independently be an integer of 0 to 3. However, a1 + a2 is an integer of 1-3.
  • the heteroarylene group or heteroaryl group in the general formula (1) contains 1 to 3 heteroatoms each consisting of N, O, S, P or a combination thereof in one ring group, the rest is a heteroarylene group which is carbon or It may be a heteroaryl group. More specifically, the heteroarylene group or heteroaryl group may each include an N atom. More specifically, the heteroarylene group or the heteroaryl group including the N atom is each independently an imidazole ring group, an oxazole ring group, a thiazole ring group, a Selenazol ring group, a triazole ring group, or a tetrazole.
  • the compound for an organic photoelectric device may be represented by Formula 2:
  • R 1 and R 2 are the same as or different from each other, and each independently represent a substituted or unsubstituted aryl group having 6 to 30 carbon atoms,
  • R 3 to R 5 are the same as or different from each other, and each independently hydrogen or a lower alkyl group having 1 to 10 carbon atoms,
  • a1 and a2 are the same as or different from each other, and each independently an integer of 0 to 3, provided that a1 + a2 is an integer of 1 to 3,
  • b is an integer from 1 to 4,
  • c is an integer from 0 to 4,
  • d is an integer of 1 to 5
  • e and f are the same as or different from each other, and each independently an integer of 1 to 4,
  • g is an integer of 1-4.
  • each of the two or more repeating units may be the same or different from each other.
  • the compound for an organic photoelectric device may be represented by Formula 3:
  • R 3 to R 5 , and R 5 ′ are the same as or different from each other, and are each independently hydrogen or a lower alkyl group having 1 to 10 carbon atoms,
  • a1 and a2 are the same as or different from each other, and each independently an integer of 0 to 3, provided that a1 + a2 is an integer of 1 to 3,
  • b is an integer from 1 to 4,
  • c is an integer from 0 to 4,
  • e and f are the same as or different from each other, and each independently an integer of 1 to 4,
  • g and h are the same as or different from each other, and each independently an integer of 1 to 4.
  • each of the two or more repeating units may be the same or different from each other.
  • Compound for an organic photoelectric device according to an embodiment of the present invention may be represented by the formula (4) to 31.
  • the present invention is not limited to the compound.
  • the compound for an organic photoelectric device according to the exemplary embodiment of the present invention may be used in an organic thin film layer to improve efficiency characteristics of the organic photoelectric device and to lower driving voltage. In addition, the life characteristics can be improved.
  • the compound for an organic photoelectric device may be used as a charge transport material having excellent transport ability of holes and electrons.
  • the compound for an organic photoelectric device may be used alone, but may be used as a host material together with a dopant.
  • the compound for an organic photoelectric device may be used as a host material of green or red light emission.
  • the dopant is a compound having high luminous ability per se, and is also referred to as a guest because a small amount of the dopant is mixed with the host. That is, a dopant is a material that emits light by doping the host material, and generally, a material such as a metal complex that emits light by multiplet excitation that excites above a triplet state is used. .
  • a dopant fluorescent or phosphorescent dopants of red (R), green (G), and blue (B), which are generally used in the art, may be used. In particular, it is preferable to use red, green, or blue phosphorescent dopants. good. In addition, it is possible to use those having high luminous efficiency, poor aggregation, and uniform distribution in the host material.
  • the phosphorescent dopant examples include an organometallic compound including an element which is Ir, Pt, Os, Ti, Zr, Hf, Eu, Tb, Tm, or a combination thereof. More specifically, the red phosphorescent dopant may be PtOEP, Ir (Piq) 2 (acac), Ir (Piq) 3 , UDC's RD 61 and the like, and the green phosphorescent dopant may be Ir (PPy) 2 (acac), Ir (PPy) 3 , GD48 from UDC, etc. may be used, and as blue phosphorescent dopant (4,6-F2PPy) 2 Irpic (Ref. Appl. Phys.
  • the Piq means 1-phenylisoquinoline (1-phenylisoquinoline), acac means pentane-2,4-dione (pentane-2,4-dione), PPy is 2-phenylpyridine (2 -phenylpyridine).
  • the compound for an organic photoelectric device according to the embodiment of the present invention has a glass transition temperature (T g ) of 110 ° C. or more, a thermal decomposition temperature (T d ) of 400 ° C. or more, and more specifically, a glass transition temperature of 110 It can be used in the range of 200 to 200 °C, pyrolysis temperature in the range of 400 to 600 °C. More specifically, the pyrolysis temperature may be used that is 430 °C or more.
  • the compound for an organic photoelectric device according to the exemplary embodiment of the present invention may be used as a host material or a charge transport material having excellent thermal stability.
  • an organic photoelectric device comprising the compound for an organic photoelectric device.
  • the organic photoelectric device means an organic light emitting device, an organic solar cell, an organic transistor, an organic photosensitive drum, or an organic memory device.
  • a compound for an organic photoelectric device according to an embodiment of the present invention is included in an electrode or an electrode buffer layer to increase quantum efficiency, and in the case of an organic transistor, it may be used as an electrode material in a gate, a source-drain electrode, or the like. have.
  • an organic photoelectric device According to another embodiment of the present invention, an anode, a cathode, and at least one organic thin film layer disposed between the anode and the cathode, the organic thin film layer is an organic photoelectric device compound according to an embodiment of the present invention It provides an organic photoelectric device comprising a.
  • the organic thin film layer which may include the compound for an organic photoelectric device may include a light emitting layer, a hole transport layer, a hole injection layer, a hole blocking layer, an electron transport layer, an electron injection layer, an electron blocking layer, or a combination thereof. At least one of these layers includes a compound for an organic photoelectric device according to one embodiment of the present invention. More specifically, the compound for an organic photoelectric device according to the exemplary embodiment of the present invention may be included in a light emitting layer, a hole transport layer, a hole injection layer, an electron transport layer, an electron injection layer, or a combination thereof.
  • 1 to 5 are cross-sectional views of an organic photoelectric device including the compound for an organic photoelectric device.
  • the organic photoelectric device 100, 200, 300, 400, and 500 includes an anode 120, a cathode 110, and at least one organic thin film layer interposed between the anode and the cathode. It has a structure that includes (105).
  • the anode 120 may include a material having a large work function to smoothly inject holes into the organic thin film layer.
  • Specific examples of the anode include metals such as nickel, platinum, vanadium, chromium, copper, zinc, and gold or alloys of these metals, zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO). Combinations of metal oxides and metals such as metal oxides ZnO / Al, SnO 2 / Sb, etc.
  • polystyrenesulfonate Conductive polymers such as polypyrrole, polyaniline and the like.
  • the anode is not limited to the above materials. More specifically, the anode may use a transparent electrode including ITO.
  • the cathode 110 may include a material having a small work function to smoothly inject electrons into the organic thin film layer.
  • the anode include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, lead, cesium, barium, or alloys thereof LiF / Al, LiO 2 / Al, Multilayer structure materials such as LiF / Ca, LiF / Al, BaF2 / Ca and the like.
  • the negative electrode is not limited to the above materials. More specifically, the cathode may use a metal electrode such as aluminum.
  • FIG. 1 illustrates an organic photoelectric device 100 in which only the light emitting layer 130 exists as the organic thin film layer 105.
  • the organic thin film layer 105 may exist only as the light emitting layer 130.
  • FIG. 2 illustrates a two-layered organic photoelectric device 200 in which an emission layer 230 including an electron transport layer and a hole transport layer 140 exist as an organic thin film layer 105.
  • the organic thin film layer 105 may include an emission layer 230 and
  • the hole transport layer 140 may include a two-layer type.
  • the light emitting layer 130 functions as an electron transporting layer
  • the hole transporting layer 140 functions to improve bonding and hole transporting properties with a transparent electrode such as ITO.
  • FIG. 3 illustrates a three-layered organic photoelectric device 300 having an electron transport layer 150, a light emitting layer 130, and a hole transport layer 140 as an organic thin film layer 105.
  • 130 is in an independent form, and has a form in which layers (electron transport layer 150 and hole transport layer 140) having excellent electron transport properties and hole transport properties are stacked in separate layers.
  • FIG. 4 illustrates a four-layer organic photoelectric device 400 in which an electron injection layer 160, an emission layer 130, a hole transport layer 140, and a hole injection layer 170 exist as the organic thin film layer 105.
  • the hole injection layer 170 may improve adhesion to ITO used as an anode.
  • the 5-layered organic photoelectric device 500 is present, and the organic photoelectric device 500 is effective for lowering the voltage by separately forming the electron injection layer 160.
  • Combinations may include a compound for an organic photoelectric device according to an embodiment of the present invention.
  • the compound for an organic photoelectric device may be used in the electron transport layer 150 including the electron transport layer 150 or the electron injection layer 160, and in particular, when included in the electron transport layer, a hole blocking layer needs to be formed separately. It is possible to provide an organic photoelectric device having a simpler structure.
  • the compound for the organic photoelectric device when included in the light emitting layers 130 and 230, the compound for the organic photoelectric device may be used as a phosphorescent host, and the light emitting layers 130 and 230 may further include a dopant.
  • the dopant may be a phosphorescent dopant of red, green or blue.
  • the organic photoelectric device described above may be formed by spin coating, dipping, or the like, after forming an anode on a substrate, followed by dry coating methods such as evaporation, sputtering, plasma plating, and ion plating. After forming the organic thin film layer by a wet film method such as a flow coating method (flow coating) or the like, it can be prepared by forming a cathode thereon.
  • a wet film method such as a flow coating method (flow coating) or the like
  • a display device including the organic photoelectric device is provided.
  • PL emission characteristics Using a fluorescence spectrometer (fluorescence spectrometer, F4500, Hitachi, Inc.), the wavelength showing the peak (peak) was measured, shown in Table 1 below.
  • Example 1 Example 2
  • Example 3 Example 4 PL emission characteristics (nm) 436 417 427 440 Singlet Bandgap Energy ( ⁇ Es, eV) 3.26 3.30 3.30 3.30 HOMO (eV) -5.64 -5.7 -5.74 -5.75 LUMO (eV) -2.38 -2.4 -2.44 -2.45
  • the maximum light emission of the compounds synthesized in Examples 1 to 4 of the present invention shows a wavelength suitable for the green and red regions of the organic light emitting device.
  • An organic light emitting device was manufactured by using the compound prepared in Example 1 as a host and using Ir (PPy) 3 as a dopant.
  • ITO was used as a cathode of 1000 kPa
  • aluminum (Al) was used as a cathode of 1000 kPa.
  • the anode is cut in the size of 50 mm ⁇ 50 mm ⁇ 0.7 mm ITO glass substrate having a sheet resistance value of 15 ⁇ / cm 2 and each in acetone, isopropyl alcohol and pure water Ultrasonic cleaning for 15 minutes was followed by UV ozone cleaning for 30 minutes.
  • Phenyl)]-biphenyl-4,4'-diamine N, N'-diphenyl-N, N'-bis- [4- (phenyl-m-tolyl-amino) -phenyl] -biphenyl-4,4 ′ -diamine: DNTPD) (60 nm), N, N'-di (1-naphthyl) -N, N'-diphenylbenzidine (N, N'-di (1-naphtyl) -N, N'-diphenylbenzidine : NPB) (30 nm), and 4,4 ', 4 "-tri (N-carbazolyl) triphenylamine (4,4', 4" -tri (N-carbazolyl) triphenylamine (TCTA) (20 nm) Was deposited to form a hole transport layer of 1100 kPa.
  • a light emitting layer having a film thickness of 300 Pa was formed using the compound prepared in Example 1 under the same vacuum deposition conditions.
  • Ir (PPy) 3 which is a phosphorescent dopant, was simultaneously deposited.
  • the deposition rate of the phosphorescent dopant was deposited to 10% by weight.
  • Alq 3 was deposited on the light emitting layer using the same vacuum deposition conditions to form an electron transport layer having a film thickness of 200 GPa.
  • An organic light emitting device was manufactured by sequentially depositing LiF and Al as a cathode on the electron transport layer.
  • the structure of the organic light emitting device is ITO / DNTPD (60 nm) / NPB (30 nm) / TCTA (20 nm) / EML (compound of Example 1 (10% by weight) + Ir (PPy) 3 , 30 nm) / Alq 3 (20 nm) / LiF / Al (100 nm).
  • Example 3 was used as a host of the light emitting layer was prepared in the same manner as in Example 5.
  • Example 1 Using the compound prepared in Example 1 as a light emitting layer to form a light emitting layer having a film thickness of 300 ⁇ , at this time, Ir (PPy) 3 as a phosphorescent dopant was deposited at the same time, and then 50 ⁇ Vasocuproin (BCP) Further deposition, it was prepared in the same manner as in Example 5 except that it was produced in the following structure.
  • Ir (PPy) 3 as a phosphorescent dopant was deposited at the same time, and then 50 ⁇ Vasocuproin (BCP) Further deposition, it was prepared in the same manner as in Example 5 except that it was produced in the following structure.
  • BCP Vasocuproin
  • Example 8 instead of using the compound prepared in Example 1 as a host of the light emitting layer, except that the compound prepared in Example 3 was used as the host of the light emitting layer was prepared in the same manner as in Example 8.
  • the compounding amount of the phosphorescent dopant was 5% by weight.
  • An organic light-emitting device was manufactured in the same manner as in Example 8, except that the deposition was performed at%.
  • Example 5 Except for using the compound prepared in Example 1 as a host of the light emitting layer, except that 4,4-N, N-dicarbazole biphenyl (CBP) represented by the formula (32) as a host of the light emitting layer An organic light emitting device was manufactured in the same manner as in Example 5.
  • CBP 4,4-N, N-dicarbazole biphenyl
  • An organic light emitting diode was manufactured according to the same method as Example 8 except for using the compound prepared in Example 1 as a host of the emission layer, and using CBP represented by Formula 32 as a host of the emission layer.
  • the current value flowing through the unit device was measured using a current-voltmeter (Keithley 2400) while increasing the voltage from 0 V to 10 V with respect to the manufactured organic light emitting device, and the measured current value was divided by the area to obtain a result.
  • the luminance of the organic light emitting device was measured using a luminance meter (Minolta Cs-1000A) while increasing the voltage from 0 V to 10 V to obtain a result.
  • Example 5 ITO / DNTPD / NPB / TCTA / EML / Alq 3 / LiF / Al Compound of Example 1 (10 wt%) 5.30 52.09 34.23
  • Example 6 Compound of Example 3 (10 wt.%) 6.43 32.04 17.38 Comparative Example 1 CBP (10 wt%) 9.49 25.00 9.18
  • Example 8 ITO / DNTPD / NPB / TCTA / EML / BCP / Alq 3 / LiF / Al Compound of Example 1 (10 wt%) 5.34 55.95 36.47 Comparative Example 2 CBP (10 wt%) 7.70 42.70 19.20
  • the driving voltage is less than 6.5 V at a luminance of 1000 cd / cm 2 appear.
  • the organic light emitting device manufactured by using the CBP as a host of the light emitting layer in Comparative Examples 1 and 2 has a very low driving voltage compared with the driving voltage of 7.7V and 9.5V.
  • the organic light emitting diodes according to Examples 5 and 8, which are manufactured by using the compound according to Example 1 as a host of the light emitting layer have a driving voltage of 5.30 V and 5.34 V, respectively. .
  • the current efficiency and power efficiency of the organic light emitting device using the compounds prepared in Examples 1 and 3 as the host of the light emitting layer are also significantly improved compared to the organic light emitting device according to Comparative Examples 1 and 2.
  • the organic light emitting diodes according to Examples 5 and 8 have an improved power efficiency by 3.72 times and 1.89 times, respectively, compared to the organic light emitting diode according to Comparative Example 1.

Abstract

화학식 1로 표시되는 유기 광전 소자용 화합물 및 이를 포함하는 유기 광전 소자가 제공된다. 상기 유기 광전 소자용 화합물은 우수한 열적안정성을 가지는 호스트 재료 또는 전하수송 재료로 사용될 수 있고, 특히, 유기 광전 소자의 유기박막층에 사용되어 낮은 구동전압에서도 높은 발광효율을 가지고, 수명이 향상된 유기 광전 소자 및 표시장치를 제공할 수 있다.

Description

유기 광전 소자용 화합물 및 이를 포함하는 유기 광전 소자
본 기재는 유기 광전 소자용 화합물 및 이를 포함하는 유기 광전 소자에 관한 것이다.
유기 광전 소자(photoelectric device)는 넓은 의미로 빛 에너지를 전기 에너지로 변환하거나, 전기에너지를 빛 에너지로 변환하는 소자이다. 상기 유기 광전 소자는 유기 발광 소자(OLED: Organic Light Emitting Diodes), 태양전지, 트랜지스터 등을 예로 들 수 있다. 특히, 유기 발광 소자는 최근 평판디스플레이(flat panel display)의 수요가 증가함에 따라 주목받고 있다.
유기 발광 소자는 유리기판 위에 투명전극으로 이루어진 양극(anode), 발광영역을 포함하는 유기박막층 및 금속전극으로 이루어진 음극(cathode)이 순차적으로 형성되는 구조를 가진다. 상기 유기박막층은 발광층, 정공주입층, 정공수송층, 전자수송층 또는 전자주입층을 포함할 수 있으며, 발광층의 발광 특성상 전자저지층 또는 정공저지층을 추가로 포함할 수 있다.
1987년 이스트만 코닥(Eastman Kodak)사에서는 저분자의 방향족 디아민과 알루미늄 착물을 이용하여 합성된 발광층을 포함하는 유기 발광 소자를 개발하였고(Appl. Phys. Lett., 51, 913, 1987), 1987년 C. W. Tang 등은 실용적인 성능을 가진 유기 발광 소자를 최초로 보고하였다(Appl. Phys. Lett., 51(12), 913, 1987). 상기 문헌에서는 유기박막층으로서 디아민 유도체의 정공수송층과 Alq3(tris(8-hydroxy-quinolate)aluminum)의 전자수송성 발광층을 적층한 구조를 기재하고 있다.
유기 발광 소자에 전류를 가하면 양극과 음극으로부터 각각 정공과 전자가 주입되고, 주입된 정공과 전자는 각각의 정공수송층과 전자수송층을 거쳐 발광층에서 재결합(recombination)하여 발광여기자(exciton)를 형성한다. 이와 같이 형성된 발광여기자는 바닥상태(ground states)로 전이하면서 빛을 방출한다. 상기 빛은 발광 메카니즘에 따라 단일항 여기자를 이용하는 형광과 삼중항 여기자를 이용하는 인광으로 나뉠 수 있고, 상기 형광 및 인광은 유기 발광 소자의 발광원로 사용될 수 있다(D. F.O'Brien 등, Appl. Phys. Lett., 74(3), 442, 1999; M. A. Baldo 등, Appl. Phys. lett., 75(1), 4, 1999).
전자가 바닥상태에서 여기상태로 전이하면, 계간전이(intersystem crossing)를 통해 단일항 여기자가 삼중항 여기자로 비발광 전이되고, 상기 삼중항 여기자는 다시 바닥상태로 전이하여 발광이 이루어진다. 이 때, 발생하는 빛을 인광이라고 한다. 상기 삼중항 여기자는 바닥상태로 직접 전이할 수 없고(spin forbidden), 반드시 전자 스핀의 뒤바뀜(flipping) 단계를 거쳐야 한다. 따라서, 인광은 형광보다 반감기(발광시간, lifetime)가 길다는 특성을 가진다.
또한, 정공과 전자가 재결합하여 발광여기자를 형성하는 경우, 삼중항 여기자는 단일항 여기자 보다 약 3 배 정도 많이 생성된다. 따라서 단일항 여기자만을 사용하는 형광은 단일항 여기자의 발생 확률이 25 %로서 발광 효율에 한계가 존재한다. 그러나 인광은 삼중항 여기자의 발생 확률 75 %뿐만 아니라, 단일항 여기자의 발생 확률인 25 %까지 사용할 수 있어, 이론적으로 발광 효율은 100 %까지 가능하게 된다. 즉, 인광은 형광과 비교하여 약 4 배 정도 높은 발광효율을 달성할 수 있다는 장점이 있다.
한편, 유기 발광 소자의 효율과 안정성을 증가시키기 위하여 발광층에 호스트 재료와 도펀트를 함께 첨가할 수 있다. 상기 호스트 재료로는 4,4-N,N-다이카바졸바이페닐(CBP)이 주로 사용되었다. 그러나 CBP는 구조적 대칭성이 매우 높아 결정화되기 쉽고, 열적 안정성 낮기 때문에, 소자의 내열 시험결과, 단락이나 화소 결함이 발생하는 단점이 있었다. 또한, CBP와 같은 대부분의 호스트 재료들은 정공의 이동 속도가 전자의 이동 속도보다 빠르기 때문에 발광층에서 효과적으로 재결합되지 못하여, 소자의 발광 효율이 감소하는 단점이 있었다.
따라서, 고효율 및 장수명의 인광 유기 광전 소자를 구현하기 위해서는, 전기적 및 열적 안정성이 높고, 정공과 전자를 모두 잘 전달할 수 있는 바이폴라(bipolar) 특성을 가지는 인광성 호스트 재료의 개발이 필요한 실정이다.
본 발명의 일 구현예는 열적 안정성이 우수하고, 정공과 전자를 모두 잘 전달할 수 있는유기 광전 소자용 화합물을 제공하기 위한 것이다.
본 발명의 다른 일 구현예는 상기 유기 광전 소자용 화합물을 포함하여 효율, 및 구동전압 특성이 우수한 유기 광전 소자를 제공하기 위한 것이다.
본 발명의 또 다른 일 구현예는 상기 유기 광전 소자를 포함하는 표시장치를 제공하기 위한 것이다.
본 발명의 일 구현예에 따르면, 하기 화학식 1로 표시되는 유기 광전 소자용 화합물을 제공한다:
[화학식 1]
Figure PCTKR2009007912-appb-I000001
상기 화학식 1에서
L은 치환 또는 비치환된 탄소수 6 내지 30의 아릴렌기, 치환 또는 비치환된 탄소수 2 내지 30의 헤테로아릴렌기 또는 이들의 조합이고,
R1 및 R2는 서로 같거나 다른 것으로, 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 30의 아릴기, 치환 또는 비치환된 탄소수 2 내지 30의 헤테로아릴기 또는 이들의 조합이고,
R3 및 R4는 서로 같거나 다른 것으로, 각각 독립적으로 수소 또는 탄소수 1 내지 10의 저급 알킬기이고,
a1 및 a2는 서로 같거나 다른 것으로, 각각 독립적으로 0 내지 4의 정수이고, 단, a1 + a2는 1 이상의 정수이고,
b는 1 내지 4의 정수이고,
c는 0 내지 4의 정수이고,
d는 1 내지 5의 정수이고,
e 및 f는 서로 같거나 다른 것으로, 각각 독립적으로 1 내지 4의 정수이다.
상기 L은 치환 또는 비치환된 탄소수 6 내지 30의 아릴렌기이고, 상기 아릴렌기는 치환 또는 비치환된 페닐렌기, 치환 또는 비치환된 나프틸렌기, 치환 또는 비치환된 안트라세닐렌기, 치환 또는 비치환된 페난트레닐렌기, 치환 또는 비치환된 테트라세닐렌기, 치환 또는 비치환된 피레닐렌기, 치환 또는 비치환된 플루오레닐렌기 또는 이들의 조합일 수 있다.
상기 a1 및 a2는 서로 같거나 다른 것으로, 각각 독립적으로 0 내지 3의 정수일 수 있고, 단, a1 + a2는 1 내지 3의 정수이다.
상기 유기 광전 소자용 화합물은 하기 화학식 2로 표시되는 것일 수 있다:
[화학식 2]
Figure PCTKR2009007912-appb-I000002
상기 화학식 2에서
R1 및 R2는 서로 같거나 다른 것으로, 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 30의 아릴기이고,
R3 내지 R5는 서로 같거나 다른 것으로, 각각 독립적으로 수소 또는 탄소수 1 내지 10의 저급 알킬기이고,
a1 및 a2는 서로 같거나 다른 것으로, 각각 독립적으로 0 내지 3의 정수이고, 단, a1 + a2는 1 내지 3의 정수이고,
b는 1 내지 4의 정수이고,
c는 0 내지 4의 정수이고,
d는 1 내지 5의 정수이고,
e 및 f는 서로 같거나 다른 것으로, 각각 독립적으로 1 내지 4의 정수이고,
g는 1 내지 4의 정수이다.
상기 유기 광전 소자용 화합물은 하기 화학식 3으로 표시되는 것일 수 있다:
[화학식 3]
Figure PCTKR2009007912-appb-I000003
상기 화학식 3에서
R3 내지 R5, 및 R5´은 서로 같거나 다른 것으로, 각각 독립적으로 수소 또는 탄소수 1 내지 10의 저급 알킬기이고,
a1 및 a2는 서로 같거나 다른 것으로, 각각 독립적으로 0 내지 3의 정수이고, 단, a1 + a2는 1 내지 3의 정수이고,
b는 1 내지 4의 정수이고,
c는 0 내지 4의 정수이고,
e 및 f는 서로 같거나 다른 것으로, 각각 독립적으로 1 내지 4의 정수이고,
g 및 h는 서로 같거나 다른 것으로, 각각 독립적으로 1 내지 4의 정수이다.
상기 유기 광전 소자용 화합물은 하기 화학식 4 내지 31로 표시되는 것일 수 있다.
[화학식 4]
Figure PCTKR2009007912-appb-I000004
[화학식 5]
Figure PCTKR2009007912-appb-I000005
[화학식 6]
Figure PCTKR2009007912-appb-I000006
[화학식 7]
Figure PCTKR2009007912-appb-I000007
[화학식 8]
Figure PCTKR2009007912-appb-I000008
[화학식 9]
Figure PCTKR2009007912-appb-I000009
[화학식 10]
Figure PCTKR2009007912-appb-I000010
[화학식 11]
Figure PCTKR2009007912-appb-I000011
[화학식 12]
Figure PCTKR2009007912-appb-I000012
[화학식 13]
Figure PCTKR2009007912-appb-I000013
[화학식 14]
Figure PCTKR2009007912-appb-I000014
[화학식 15]
Figure PCTKR2009007912-appb-I000015
[화학식 16]
Figure PCTKR2009007912-appb-I000016
[화학식 17]
Figure PCTKR2009007912-appb-I000017
[화학식 18]
Figure PCTKR2009007912-appb-I000018
[화학식 19]
Figure PCTKR2009007912-appb-I000019
[화학식 20]
Figure PCTKR2009007912-appb-I000020
[화학식 21]
Figure PCTKR2009007912-appb-I000021
[화학식 22]
Figure PCTKR2009007912-appb-I000022
[화학식 23]
Figure PCTKR2009007912-appb-I000023
[화학식 24]
Figure PCTKR2009007912-appb-I000024
[화학식 25]
Figure PCTKR2009007912-appb-I000025
[화학식 26]
Figure PCTKR2009007912-appb-I000026
[화학식 27]
Figure PCTKR2009007912-appb-I000027
[화학식 28]
Figure PCTKR2009007912-appb-I000028
[화학식 29]
Figure PCTKR2009007912-appb-I000029
[화학식 30]
Figure PCTKR2009007912-appb-I000030
[화학식 31]
Figure PCTKR2009007912-appb-I000031
상기 유기 광전 소자용 화합물은 전하수송 재료 또는 호스트 재료로 사용될 수 있고, 특히, 상기 유기 광전 소자용 화합물은 녹색 또는 적색 발광의 호스트 재료로 사용될 수 있으며, 상기 유기 광전 소자용 화합물은 유리전이온도(Tg)가 110 ℃ 이상이고, 열분해온도(Td)가 400 ℃ 이상인 것일 수 있다.
본 발명의 다른 일 구현예에 따르면, 양극, 음극, 및 상기 양극과 음극 사이에 개재되는 유기박막층을 포함하고, 상기 유기박막층은 본 발명의 일 구현예에 따른 유기 광전 소자용 화합물을 포함하는것인 유기 광전 소자를 제공한다.
상기 유기 박막층은 발광층, 정공수송층, 정공주입층, 정공저지층, 전자수송층, 전자주입층, 전자저지층 또는 이들의 조합인 것일 수 있고, 상기 유기박막층은 도펀트를 더 포함할 수 있고, 상기 도펀트는 적색, 녹색, 또는 청색의 인광도펀트일 수 있다.
본 발명의 또 다른 일 구현예에 따르면, 상기 유기 광전 소자를 포함하는 표시장치를 제공한다.
기타 본 발명의 구현예들의 구체적인 사항은 이하의 상세한 설명에 포함되어 있다.
상기 유기 광전 소자용 화합물은 우수한 열적안정성을 가지는 호스트 재료 또는 전하수송 재료로 사용될 수 있고, 특히, 유기 광전 소자의 유기박막층에 사용되어 낮은 구동전압에서도 높은 발광효율을 가지고, 수명이 향상된 유기 광전 소자 및 표시장치를 제공할 수 있다.
본 발명의 일구현예에 따른 고분자 중합체는 고분자 중합체의 중합도의 영향없이, 원하는 에너지 밴드갭을 가지는 고분자 재료를 합성할 수 있다. 또한 말단에 가교결합이 가능한 작용기를 포함하도록 고분자 중합체를 제작하여, 형성된 유기 박막층이 가교를 형성함으로써 막의 계면안정성을 강화할 수 있다.
또한, 상기 고분자 중합체는 정공의 주입 및 이동 특성이 우수하고, 유기 박막층 사이의 에너지 레벨이 계단을 이룰 수 있는 적당한 에너지 밴드갭을 보유하여 유기 광전 소자의 성능을 더욱 우수하게 하는 효과가 있다. 또한, 계면 안정성이 향상된 상기 고분자 중합체를 사용하여 습식공정에 따른 용매에 의한 다른 유기박막층의 용해 또는 침식의 문제를 해결함으로써, 수명 및 효율 특성이 우수한 유기 광전 소자를 제공할 수 있다.
도 1 내지 도 5는 본 발명의 일 구현예에 따른 유기 광전 소자용 화합물을 포함하여 제조될 수 있는 유기 광전 소자에 대한 다양한 구현예들을 나타내는 단면도이다.
<도면의 주요 부분에 대한 부호의 설명>
100 : 유기 광전 소자 : 음극
120 : 양극 : 유기 박막층
130 : 발광층 : 정공 수송층
150 : 전자수송층 : 전자주입층
170 : 정공주입층 : 발광층 + 전자수송층
이하, 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구범위의 범주에 의해 정의될 뿐이다.
본 명세서에서 "치환"이란 별도의 정의가 없는 한, 탄소수 1 내지 10의 알킬기 또는 탄소수 6 내지 30의 아릴기로 치환된 것을 의미한다.
본 명세서에서 "헤테로"란 별도의 정의가 없는 한, 하나의 고리기 내에 N, O, S, P 또는 이들의 조합으로 이루어진 헤테로 원자를 1 내지 3개 함유하고, 나머지는 탄소인 것을 의미한다.
본 발명의 일 구현예에 따르면, 하기 화학식 1로 표시되는 유기 광전 소자용 화합물을 제공한다:
[화학식 1]
Figure PCTKR2009007912-appb-I000032
상기 화학식 1에서
L은 치환 또는 비치환된 탄소수 6 내지 30의 아릴렌기, 치환 또는 비치환된 탄소수 2 내지 30의 헤테로아릴렌기 또는 이들의 조합이고,
R1 및 R2는 서로 같거나 다른 것으로, 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 30의 아릴기, 치환 또는 비치환된 탄소수 2 내지 30의 헤테로아릴기 또는 이들의 조합이고,
R3 및 R4는 서로 같거나 다른 것으로, 각각 독립적으로 수소 또는 탄소수 1 내지 10의 저급 알킬기이고,
a1 및 a2는 서로 같거나 다른 것으로, 각각 독립적으로 0 내지 4의 정수이고, 단, a1 + a2는 1 이상의 정수이고,
b는 1 내지 4의 정수이고,
c는 0 내지 4의 정수이고,
d는 1 내지 5의 정수이고,
e 및 f는 서로 같거나 다른 것으로, 각각 독립적으로 1 내지 4의 정수이다.
또한, 상기 a1, a2, b, c, d, e 및 f가 각각 독립적으로 2 이상의 정수인 경우, 2 이상의 각 반복 단위는서로 동일하거나 상이할 수 있다.
상기 화학식 1에서 카바졸기는 정공수송기로서의 기능을 수행하고,벤즈이미다졸기는 전자수송기로서의 기능을 수행한다. 상기 정공수송기로서의 기능이란, HOMO 준위를 따라 전도 특성을 가져 정공 형성에 의한 양이온 특성을 가질 수 있는 기능을 의미한다. 또한 상기 전자수송기로서의 기능이란, LUMO 준위를 따라 전도 특성을 가져 전자 형성에 의한 음이온 특성을 가질 수 있는 기능을 의미한다.
따라서 본 발명의 일구현예에 따른 유기 광전 소자용 화합물은 상기 벤즈이미다졸기가 카바졸기에 직접 치환되어 정공 및 전자의 수송 역할을 동시에 수행할 수 있는 것이다. 즉, 상기 유기 광전 소자용 화합물은 양쪽성의 성질을 가질 수 있으므로, 정공과 전자가 결합하는 유기 광전 소자의 발광층에서 우수한 계면 특성 및 전하수송 능력을 나타낼 수 있다.
또한, 상기 벤즈이미다졸기가 카바졸기에 직접 치환되어 있는 구조는 본 발명의 일구현예에 따른 유기 광전 소자용 화합물의 전체적인 구조에 비대칭성을 부여하여, 용이하게 결정화되는 것을 방지할 수 있다. 즉, 본 발명의 일구현예에 따른 유기 광전 소자용 화합물은 우수한 열적 안정성을 가지는 호스트 재료, 정공전달 재료, 또는 전자전달 재료로 유용하게 적용될 수 있다.
상기 화학식 1에서 L은 치환 또는 비치환된 탄소수 6 내지 30의 아릴렌기이고, 상기 아릴렌기는 치환 또는 비치환된 페닐렌기, 치환 또는 비치환된 나프틸렌기, 치환 또는 비치환된 안트라세닐렌기, 치환 또는 비치환된 페난트레닐렌기, 치환 또는 비치환된 테트라세닐렌기, 치환 또는 비치환된 피레닐렌기, 치환 또는 비치환된 플루오레닐렌기 또는 이들의 조합일 수 있다. 보다 구체적으로, 상기 아릴렌은 페닐렌일 수 있으나, 상기 아릴렌이 이에 한정되는 것은 아니다.
또한, 상기 화학식 1에서 R1 및 R2는 서로 같거나 다른 것으로, 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 30의 아릴기인 것을 사용하여 본 발명의 일구현예에 따른 유기 광전 소자용 화합물의 구조적 안정성을 부여할 수 있다. 보다 구체적으로, 상기 화학식 1에서 R1 및 R2는 치환 또는 비치환된 탄소수 6 내지 12의 아릴기일 수 있다.
또한, 상기 화학식 1에서 a1 및 a2는 서로 같거나 다른 것으로, 각각 독립적으로 0 내지 3의 정수일 수 있다. 단, a1 + a2는 1 내지 3의 정수이다.
또한, 상기 화학식 1에서 헤테로아릴렌기 또는 헤테로아릴기는 각각 하나의 고리기 내에 N, O, S, P 또는 이들의 조합으로 이루어진 헤테로 원자를 1 내지 3 개 함유하고, 나머지는 탄소인 헤테로아릴렌기 또는 헤테로아릴기일 수 있다. 보다 구체적으로, 상기 헤테로아릴렌기 또는 헤테로아릴기는 각각 N 원자를 포함할 수 있다. 보다 더 구체적으로 상기 N 원자를 포함하는 헤테로아릴렌기 또는 헤테로아릴기는 각각 독립적으로 이미다졸 고리기, 옥사졸 고리기, 티아졸 고리기, 셀레나졸(Selenazol) 고리기, 트리아졸 고리기, 테트라졸 고리기, 옥사디아졸 고리기, 티아디아졸 고리기, 옥사트리아졸 고리기, 티아트리아졸 고리기, 피리미딘 고리기, 피리다진 고리기, 피라진 고리기, 트리아진 고리기, 테트라진 고리기 또는 이들의 조합으로 이루어진 고리기를 포함하는 것일 수 있다.
보다 구체적으로, 상기 유기 광전 소자용 화합물은 하기 화학식 2로 표시되는 것일 수 있다:
[화학식 2]
Figure PCTKR2009007912-appb-I000033
상기 화학식 2에서
R1 및 R2는 서로 같거나 다른 것으로, 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 30의 아릴기이고,
R3 내지 R5는 서로 같거나 다른 것으로, 각각 독립적으로 수소 또는 탄소수 1 내지 10의 저급 알킬기이고,
a1 및 a2는 서로 같거나 다른 것으로, 각각 독립적으로 0 내지 3의 정수이고, 단, a1 + a2는 1 내지 3의 정수이고,
b는 1 내지 4의 정수이고,
c는 0 내지 4의 정수이고,
d는 1 내지 5의 정수이고,
e 및 f는 서로 같거나 다른 것으로, 각각 독립적으로 1 내지 4의 정수이고,
g는 1 내지 4의 정수이다.
또한, 상기 a1, a2, b, c, d, e, f 및 g가 각각 독립적으로 2 이상의 정수인 경우, 2 이상의 각 반복 단위는 서로 동일하거나 상이할 수 있다.
또한, 상기 화학식 1 및 2에서 d가 1 또는 2인 경우, 상기 화합물을 포함하는 발광층이 원하는 파장 범위에서 발광하도록 조절하는 것이 가능하고, 승화 정제를 용이하게 수행하여 상기 화합물을 높은 순도로 얻을 수 있다.
보다 더 구체적으로, 상기 유기 광전 소자용 화합물은 하기 화학식 3으로 표시되는 것일 수 있다:
[화학식 3]
Figure PCTKR2009007912-appb-I000034
상기 화학식 3에서
R3 내지 R5, 및 R5´은 서로 같거나 다른 것으로, 각각 독립적으로 수소 또는 탄소수 1 내지 10의 저급 알킬기이고,
a1 및 a2는 서로 같거나 다른 것으로, 각각 독립적으로 0 내지 3의 정수이고, 단, a1 + a2는 1 내지 3의 정수이고,
b는 1 내지 4의 정수이고,
c는 0 내지 4의 정수이고,
e 및 f는 서로 같거나 다른 것으로, 각각 독립적으로 1 내지 4의 정수이고,
g 및 h는 서로 같거나 다른 것으로, 각각 독립적으로 1 내지 4의 정수이다.
또한, 상기 a1, a2, b, c, e, f, g 및 h가 각각 독립적으로 2 이상의 정수인 경우, 2 이상의 각 반복 단위는서로 동일하거나 상이할 수 있다.
본 발명의 일 구현예에 따른 유기 광전 소자용 화합물은 상기 화학식 4 내지 31로 표시되는 것일 수 있다. 다만, 본 발명은 상기 화합물에 한정되지 아니한다.
본 발명의 일 구현예에 따른 유기 광전 소자용 화합물은 유기박막층에 사용되어 유기 광전 소자의 효율 특성을 향상시키며, 구동전압을 낮출 수 있다. 또한, 수명특성을 향상시킬 수 있다.
상기 유기 광전 소자용 화합물은 정공 및 전자의 수송능력이 뛰어난 전하수송 재료로 사용될 수 있다. 또한, 상기 유기 광전 소자용 화합물은 그 단독으로 사용하는 것도 가능하나, 도펀트와 함께 호스트 재료로 사용될 수 있다. 특히, 상기 유기 광전 소자용 화합물은 녹색 또는 적색 발광의 호스트 재료로 사용될 수 있다.
상기 도펀트란 그 자체로서 발광능력이 높은 화합물로, 호스트에 미량 혼합하여 사용하기 때문에 이를 게스트(guest)라고도 한다. 즉, 도펀트는 호스트 재료에 도핑(doping)되어 발광을 일으키는 물질로서, 일반적으로 삼중항 상태 이상으로 여기시키는 다중항 여기(multiplet excitation)에 의해 발광하는 금속 착체(metal complex)와 같은 물질이 사용된다. 이러한 도펀트로는 당분야에서 일반적으로 사용되는 적색(R), 녹색(G), 청색(B)의 형광 또는 인광 도펀트가 모두 사용가능하나, 특히, 적색, 녹색 또는 청색의 인광도펀트를 사용하는 것이 좋다. 또한, 발광 효율이 높고, 잘 응집되지 않으며, 호스트 재료속에 균일하게 분포되는 것을 사용할 수 있다.
상기 인광 도펀트의 예로는 Ir, Pt, Os, Ti, Zr, Hf, Eu, Tb, Tm 또는 이들의 조합인 원소를 포함하는 유기 금속화합물을 들 수 있다. 보다 구체적으로, 적색 인광 도펀트로는 PtOEP, Ir(Piq)2(acac), Ir(Piq)3, UDC사의 RD 61 등을 사용할 수 있고, 녹색 인광 도펀트로는 Ir(PPy)2(acac), Ir(PPy)3, UDC사의 GD48 등을 사용할 수 있으며, 청색 인광 도펀트로는(4,6-F2PPy)2Irpic(참조문헌: Appl. Phys. Lett., 79, 2082-2084, 2001) 등을 사용할 수 있다.  이 때, 상기 Piq는 1-페닐이소퀴놀린(1-phenylisoquinoline)을 의미하고, acac는 펜탄-2,4-디온(pentane-2,4-dione)을 의미하며, PPy는 2-페닐피리딘(2-phenylpyridine)을 의미한다.
또한, 본 발명의 일 구현예에 따른 유기 광전 소자용 화합물은 유리전이온도(Tg)가 110 ℃ 이상이고, 열분해온도(Td)가 400 ℃ 이상인 것으로, 보다 구체적으로는 유리전이온도가 110 내지 200 ℃의 범위이고, 열분해온도가 400 내지 600 ℃의 범위인 것을 사용할 수 있다. 보다 더 구체적으로 상기 열분해온도는 430 ℃ 이상인 것을 사용할 수 있다. 이로써, 본 발명의 일 구현예에 따른 유기 광전 소자용 화합물은 열적안정성이 우수한 호스트 재료 또는 전하수송 재료로 사용될 수 있는 것이다.
본 발명의 다른 일 구현예에 따르면 상기 유기 광전 소자용 화합물을 포함하는 유기 광전 소자를 제공한다. 이때, 상기 유기 광전 소자라 함은 유기 발광 소자, 유기 태양 전지, 유기 트랜지스터, 유기 감광체 드럼, 유기 메모리 소자 등을 의미한다. 유기 태양 전지의 경우에는 본 발명의 일 구현예에 따른 유기 광전 소자용 화합물이 전극이나 전극 버퍼층에 포함되어 양자 효율을 증가시키며, 유기 트랜지스터의 경우에는 게이트, 소스-드레인 전극 등에서 전극 물질로 사용될 수 있다.
이하에서는 유기 광전 소자에 대하여 구체적으로 설명한다. 본 발명의 다른 일 구현예에 따르면, 양극, 음극, 및 상기 양극과 음극 사이에 배치되는 적어도 1층의 유기박막층을 포함하고, 상기 유기박막층은 본 발명의 일 구현예에 따른 유기 광전 소자용 화합물을 포함하는 것인 유기 광전 소자를 제공한다.
상기 유기 광전 소자용 화합물을 포함할 수 있는 유기박막층으로는 발광층, 정공수송층, 정공주입층, 정공저지층, 전자수송층, 전자주입층, 전자저지층 또는 이들의 조합인층을 포함할 수 있는 바, 이 중에서 적어도 어느 하나의 층은 본 발명의 일구현예에 따른 유기 광전 소자용 화합물을 포함한다. 보다 구체적으로 발광층, 정공수송층, 정공주입층, 전자수송층, 전자주입층 또는 이들의 조합인층에 본 발명의 일구현예에 따른 유기 광전 소자용 화합물을 포함할 수 있다.
도 1 내지 도 5는 상기 유기 광전 소자용 화합물을 포함하는 유기 광전 소자의 단면도이다.
도 1 내지 도 5를 참조하면, 유기 광전 소자(100, 200, 300, 400, 및 500)는 양극(120), 음극(110), 및 이 양극과 음극 사이에 개재된 적어도 1 층의 유기박막층(105)을 포함하는 구조를 갖는다.
상기 양극(120)은 유기박막층으로 정공 주입이 원활하게 일어날 수 있도록 일함수가 큰 물질을 포함하는 것이 좋다. 상기 양극의 구체적인 예로는 니켈, 백금, 바나듐, 크롬, 구리, 아연, 금 등과 같은 금속 또는 이들 금속의 합금 아연산화물, 인듐산화물, 인듐주석산화물(indium tin oxide, ITO), 인듐아연산화물(IZO) 등과 같은 금속 산화물 ZnO/Al, SnO2/Sb 등과 같은 금속 산화물과 금속의 조합 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](poly[3,4-(ehtylene-1,2-dioxy)thiophene]: PEDOT 또는 PEDT), PEDOT/폴리스티렌설포네이트(polystyrenesulfonate: PSS) 폴리피롤, 폴리아닐린 등과 같은 전도성 고분자 등을 들 수 있다. 다만, 양극이 상기한 물질에 한정되는 것은 아니다. 상기 양극은 보다 구체적으로 ITO를 포함하는 투명전극을 사용할 수 있다.
상기 음극(110)은 유기박막층으로 전자 주입이 원활하게 일어날 수 있도록 일함수가 작은 물질을 포함하는 것이 좋다. 상기 음극의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 타이타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석, 납, 세슘, 바륨 등과 같은 금속 또는 이들의 합금 LiF/Al, LiO2/Al, LiF/Ca, LiF/Al, BaF2/Ca 등과 같은 다층 구조 물질 등을 들 수 있다. 다만, 음극이 상기한 물질에 한정되는 것은 아니다. 상기 음극은 보다 구체적으로 알루미늄 등과 같은 금속전극을 사용할 수 있다.
먼저, 도 1은 유기 박막층(105)으로서 발광층(130)만이 존재하는 유기 광전 소자(100)를 나타낸 것으로, 상기 유기박막층(105)은 발광층(130)만으로 존재할 수 있다.
도 2는 유기박막층(105)으로서 전자수송층을 포함하는 발광층(230)과 정공수송층(140)이 존재하는 2 층형 유기 광전 소자(200)를 나타낸 것으로서, 유기박막층(105)은 발광층(230) 및 정공 수송층(140)을 포함하는 2 층형일 수 있다. 이 경우 발광층(130)은 전자 수송층의 기능을 하며, 정공 수송층(140)은 ITO와 같은 투명전극과의 접합성 및 정공수송성을 향상시키는 기능을 한다.
도 3은 유기박막층(105)으로서 전자수송층(150), 발광층(130), 및 정공수송층(140)이 존재하는 3 층형 유기 광전 소자(300)를 나타낸 것으로서, 상기 유기박막층(105)에서 발광층(130)은 독립된 형태로 되어 있고, 전자수송성이나 정공수송성이 우수한 막(전자수송층(150) 및 정공수송층(140))을 별도의 층으로 쌓은 형태를 나타내고 있다.
도 4는 유기박막층(105)으로서 전자주입층(160), 발광층(130), 정공수송층(140), 및 정공주입층(170)이 존재하는 4 층형 유기 광전 소자(400)를 나타낸 것으로서, 상기 정공주입층(170)은 양극으로 사용되는 ITO와의 접합성을 향상시킬 수 있다.
도 5는 유기박막층(105)으로서 전자주입층(160), 전자수송층(150), 발광층(130), 정공수송층(140), 및 정공주입층(170)과 같은 각기 다른 기능을 하는 5 개의 층이 존재하는 5 층형 유기 광전 소자(500)를 나타낸 것으로서, 상기 유기 광전 소자(500)는 전자주입층(160)을 별도로 형성하여 저전압화에 효과적이다.
상기 도 1 내지 도 5에서 상기 유기박막층(105)을 이루는 전자수송층(150), 전자주입층(160), 발광층(130, 230), 정공수송층(140), 정공주입층(170) 또는 이들의 조합에는 본 발명의 일 구현예에 따른 유기 광전 소자용 화합물이 포함될 수 있다. 이 때, 상기 유기 광전 소자용 화합물은 전자수송층(150) 또는 전자주입층(160)을 포함하는 전자수송층(150)에 사용될 수 있으며, 그 중에서도 전자수송층에 포함될 경우 정공저지층을 별도로 형성할 필요가 없어 보다 단순화된 구조의 유기 광전 소자를 제공할 수 있다.
또한, 상기 유기 광전 소자용 화합물이 발광층(130, 230) 내에 포함되는 경우 상기 유기 광전 소자용 화합물은 인광 호스트로서 사용될 수 있고, 상기 발광층(130, 230)은 도펀트를 더 포함할 수 있다. 이 때, 상기 도펀트는 적색, 녹색 또는 청색의 인광도펀트일 수 있다.
상기에서 설명한 유기 광전 소자는, 기판에 양극을 형성한 후, 진공증착법(evaporation), 스퍼터링(sputtering), 플라즈마 도금, 이온도금 등과 같은 건식성막법 스핀코팅(spin coating), 침지법(dipping), 유동코팅법(flow coating) 등과 같은 습식성막법 등으로 유기박막층을 형성한 후, 그 위에 음극을 형성하여 제조할 수 있다.
본 발명의 또 다른 일 구현예에 따르면, 상기 유기 광전 소자를 포함하는 표시장치를 제공한다.
이하에서는 본 발명의 구체적인 실시예들을 제시한다. 다만, 하기에 기재된실시예들은 본 발명을 구체적으로 예시하거나 설명하기 위한 것에 불과하며, 이로서 본 발명이 제한되어서는 아니된다.
실시예 1: 화학식 4로 표시되는 화합물의 합성
구체적인 예로서 제시된 상기 화학식 4로 표시되는 유기 광전 소자용 화합물은 아래의 반응식 1과 같이 합성되었다.
[반응식 1]
Figure PCTKR2009007912-appb-I000035
제 1단계 중간체 생성물(A)의 합성
1-브로모-2-니트로벤젠 5 g(24 mmol), 4-(1-페닐-벤즈이미다졸-2-일)-페닐 보론산 피나콜레이트(4-(1-phenyl-benzimidazol-2-yl)-phenyl boronic acid pinacolate) 9.51 g(24 mmol), 탄산칼륨 3.3 g(24 mmol) 및 테트라키스(트리페닐포스핀)팔라듐(O)2 g(24 mmol)을 테트라히드로퓨란 200 ml, 톨루엔 100 ml 및 물 20 ml에 현탁하여, 질소 분위기 하에서 24 시간 동안 가열 환류하였다.
유기용매를 감압하에서 증류하여 제거한 후, 그 잔류물을 실리카겔 컬럼 크로마토그래피로 정제하여, 중간체 생성물(A) 5 g(수율: 50 %)을 수득하였다.
제 2단계 중간체 생성물(B)의 합성
상기 1 단계에서 얻어진 중간체 생성물(A) 5 g(12 mmol)및 트리페닐포스핀 6.7 g(24 mmol)을 디클로로벤젠 50 ml에 용해하고, 아르곤 분위기 하에서 160 ℃로 24 시간 동안 가열 환류하였다.
유기용매를 감압하에서 증류하여 제거한 후, 그 잔류물을 실리카겔 컬럼 크로마토그래피로 정제하여, 중간체 생성물(B) 3 g(수율: 60 %)을 수득하였다.
제 3단계 중간체 생성물(C)의 합성
상기 2 단계에서 얻어진 중간체 생성물(B) 5 g(12 mmol), 1,4-디브로모벤젠 1.41 g(12 mmol), 탄산칼륨 3.31 g(24 mmol) 및 요오드화 구리(copper iodine) 220 mg을 자일렌 50 ml에 용해하고, 아르곤 분위기 하에서 160 ℃로 24 시간 동안 가열 환류하였다.
유기용매를 감압하에서 증류하여 제거한 후, 그 잔류물을 실리카겔 컬럼 크로마토그래피로 정제하여, 중간체 생성물(C) 3 g(수율: 48 %)을 수득하였다.
제 4단계 화학식 4로 표시되는 화합물의 합성
상기 3 단계에서 얻어진 중간체 생성물(C) 5 g(9.7 mmol), 4-(N-카바졸일)-페닐 보론산 피나콜레이트(4-(N-carbazolyl)-phenyl boronic acid pinacolate) 3.58 g(9.7 mmol) 및 테트라키스(트리페닐포스핀)팔라듐(O) 0.49 g(0.426 mmol)을 테트라히드로퓨란 100 ml 및 톨루엔 100 ml의 혼합 용액에 현탁하고, 상기 현탁액과 탄산칼륨 1.96 g(14.2 mmol) 및 물 100 ml의 혼합 용액을 혼합하여, 질소 분위기 하에서 9 시간 동안 가열 환류하였다.
반응 유체를 2 층으로 분리한 후, 유기층을 염화나트륨 포화수용액으로 세정하고, 무수 황산나트륨으로 건조하였다. 유기용매를 감압하에서 증류하여 제거한 후, 그 잔류물을 톨루엔으로 재결정하였다. 상기 석출된 결정은 여과하여 분리한 후, 톨루엔으로 세정함으로써, 화학식 4로 표시되는 화합물 4 g(수율: 60 %)을 수득하였다. 상기 수득된 화학식 4의 화합물을 원소 분석(EA(Elemental Analyzer))한 결과는 다음과 같다.
EA 분석결과 :C, 86%; H, 4.5%; N, 8.3%
실시예 2: 화학식 5로 표시되는 화합물의 합성
구체적인 예로서 제시된 상기 화학식 5로 표시되는 유기 광전 소자용 화합물은 아래의 반응식 2과 같이 합성되었다.
[반응식 2]
Figure PCTKR2009007912-appb-I000036
상기 실시예 1의 2 단계에서 얻어진 중간체 생성물(B) 5 g(14 mmol),디카바졸일-5-브로모 벤젠(1,3-dicarbazolyl-5-bromo benzene) 6.78 g(14 mmol), 요오드화 구리 260 mg(1.4 mmol) 및 탄산칼륨 1.93 g(14 mmol)을 자일렌 50 ml에 용해하고, 아르곤 분위기 하에서 160 ℃로 24 시간 동안 가열 환류하였다.
반응 유체를 2 층으로 분리한 후, 유기층을 염화나트륨 포화수용액으로 세정하고, 무수 황산나트륨으로 건조하였다. 유기용매를 감압하에서 증류하여 제거한 후, 그 잔류물을 톨루엔으로 재결정하였다. 상기 석출된 결정은 여과하여 분리한 후, 톨루엔으로 세정함으로써, 화학식 5로 표시되는 화합물 6.3 g(수율: 63 %)을 수득하였다. 상기 수득된 화학식 5의 화합물을 원소 분석(EA(Elemental Analyzer))한 결과는 다음과 같다.
EA함량 : C, 86.2%; H, 4.5%; N, 9.1%
실시예 3: 화학식 6으로 표시되는 화합물의 합성
구체적인 예로서 제시된 상기 화학식 6으로 표시되는 유기 광전 소자용 화합물은 아래의 반응식 3과 같이 합성되었다.
[반응식 3]
Figure PCTKR2009007912-appb-I000037
상기 실시예 1의 2 단계에서 얻어진 중간체 생성물(B) 5 g(14 mmol), 1,3-디카바졸일-5-(4-브로모페닐)벤젠 (1,3-dicarbazolyl-5-(4-bromophenyl) benzene) 7.88 g(14 mmol), 요오드화 구리 260 mg(1.4 mmol) 및 탄산칼륨 1.93 g(14 mmol)을 자일렌 50 ml에 용해하고, 아르곤 분위기 하에서 160 ℃로 24 시간 동안 가열 환류하였다.
반응 유체를 2 층으로 분리한 후, 유기층을 염화나트륨 포화수용액으로 세정하고, 무수 황산나트륨으로 건조하였다. 유기용매를 감압하에서 증류하여 제거한 후, 그 잔류물을 톨루엔으로 재결정하였다. 상기 석출된 결정은 여과하여 분리한 후, 톨루엔으로 세정함으로써, 화학식 6으로 표시되는 화합물 7.3 g(수율: 61 %)을 수득하였다. 상기 수득된 화학식 6의 화합물을 원소 분석(EA(Elemental Analyzer))한 결과는 다음과 같다.
EA 함량 :C, 87%; H, 4.5%; N, 8.3%
실시예 4: 화학식 7로 표시되는 화합물의 합성
구체적인 예로서 제시된 상기 화학식 7로 표시되는 유기 광전 소자용 화합물은 아래의 반응식 4와 같이 합성되었다.
[반응식 4]
Figure PCTKR2009007912-appb-I000038
상기 실시예 1의 3 단계에서 얻어진 중간체 생성물(C) 5 g(9.7 mmol), 4-((1-페닐-벤즈이미다졸-2-일)-N-카바졸일)-페닐 보론산 피나콜레이트(4-((1-phenyl-benzimidazol-2-yl)-N-carbazolyl)-phenyl boronic acid pinacolate) 5.44 g(9.7 mmol) 및 테트라키스(트리페닐포스핀)팔라듐(O)1.12 g(0.97 mmol)을 테트라히드로퓨란100 ml 및 톨루엔 100 ml의 혼합 용액에 현탁하고, 상기 현탁액과 탄산칼륨 2.68 g(18 mmol) 및 물 100 ml의 혼합 용액을 혼합하여, 질소 분위기 하에서 9 시간 동안 가열 환류하였다.
반응 유체를 2 층으로 분리한 후, 유기층을 염화나트륨 포화수용액으로 세정하고, 무수 황산나트륨으로 건조하였다. 유기용매를 감압하에서 증류하여 제거한 후, 그 잔류물을 톨루엔으로 재결정하였다. 상기 석출된 결정은 여과하여 분리한 후, 톨루엔으로 세정함으로써, 화학식 7로 표시되는 화합물 3.5 g(수율: 41 %)을 수득하였다. 상기 수득된 화학식 7의 화합물을 원소 분석(EA(Elemental Analyzer))한 결과는 다음과 같다.
EA 함량 : C, 85.5%; H, 4.6%; N, 9.67%
실험예 1: 유기 광전 소자용 화합물의 열적안정성 물성측정
상기 실시예 1 내지 4에서 합성된 유기 광전 소자용 화합물에 대하여 다음의 측정 항목별로 물성을 측정하고 그 결과를 하기 표 1에 나타내었다.
(1) PL 발광 특성(nm): 형광분석기(fluorecence spectrometer, F4500, Hitachi 사)을 이용하여, 피크(peak)를 보이는 파장을 측정하여, 하기 표 1에 기재하였다.
(2) 단일항 밴드갭 에너지(ΔEs, eV): 형광분석기(fluorecence spectrometer, F4500, Hitachi 사) 및 UV 분광광도계(UV-VIS Spectrophotometer, 1650pc, SHIMADZU 사)를 이용하여 측정함으로써, 하기 표 1에 기재하였다.
(3) HOMO(eV) : Cyclic voltametry(모델명: Epsilon, 제조사: Bioanalytical. Systems, Inc)를 이용하여 측정함으로써, 하기 표 1에 기재하였다.
(4) LUMO(eV) : 상기 측정된 HOMO 값과 단일항 밴드갭 에너지(ΔES)의 값을 합하여 계산되었다.
표 1
구분 실시예 1 실시예 2 실시예 3 실시예 4
PL발광특성(nm) 436 417 427 440
단일항 밴드갭 에너지(ΔEs, eV) 3.26 3.30 3.30 3.30
HOMO(eV) -5.64 -5.7 -5.74 -5.75
LUMO(eV) -2.38 -2.4 -2.44 -2.45
상기 표 1을 참조하면, 본 발명의 실시예 1 내지 4에서 합성된 화합물들의 최대 발광은 유기 발광 소자의 녹색 및 적색 영역에 적합한 파장을 나타내는 것을 확인할 수 있다.
유기 발광 소자의 제조
실시예 5
상기 실시예 1에서 제조된 화합물을 호스트로 사용하고, Ir(PPy)3를 도펀트로 사용하여 유기 발광 소자를 제작하였다. 양극으로는 ITO를 1000 Å의 두께로 사용하였고, 음극으로는 알루미늄(Al)을 1000 Å의 두께로 사용하였다.
구체적으로, 유기 발광 소자의 제조방법을 설명하면, 양극은 15Ω/cm2의 면저항값을 가진 ITO 유리 기판을 50 mm × 50 mm × 0.7 mm의 크기로 잘라서 아세톤과 이소프로필알코올과 순수 속에서 각 15 분 동안 초음파 세정한 후, 30 분 동안 UV 오존 세정하여 사용하였다.
상기 기판 상부에 진공도 650×10-7Pa, 증착속도 0.1 내지 0.3 nm/s의 조건으로 N,N'-디페닐-N,N'-비스-[4-(페닐-m-톨릴아미노)-페닐)]-비페닐-4,4'-디아민(N,N′-diphenyl-N,N′-bis-[4-(phenyl-m-tolyl-amino)-phenyl]-biphenyl-4,4′-diamine: DNTPD)(60 nm), N,N'-디(1-나프틸)-N,N'-디페닐벤지딘(N,N'-di(1-naphtyl)-N,N'-diphenylbenzidine: NPB)(30 nm), 및 4,4',4"-트리(N-카바졸릴)트리페닐아민(4,4',4"-tri(N-carbazolyl)triphenylamine: TCTA)(20 nm)을 증착하여 1100 Å의 정공수송층을 형성하였다.
이어서, 동일한 진공 증착조건에서 상기 실시예 1에서 제조된 화합물을 이용하여 막 두께 300 Å의 발광층을 형성하였고, 이 때, 인광 도펀트인 Ir(PPy)3을 동시에 증착하였다. 이 때, 인광 도펀트의 증착속도를 조절하여, 발광층의 전체량을 100 중량%로 하였을 때, 인광 도펀트의 배합량이 10중량%가 되도록 증착하였다.
상기 발광층 상부에 동일한 진공 증착조건을 이용하여, Alq3를 증착하여, 막 두께 200 Å의 전자수송층을 형성하였다.
상기 전자수송층 상부에 음극으로서 LiF와 Al을 순차적으로 증착하여 유기 발광 소자를 제작하였다.
상기 유기 발광 소자의 구조는 ITO/ DNTPD(60 nm)/ NPB(30 nm)/ TCTA(20nm)/ EML(실시예 1의 화합물(10 중량%) + Ir(PPy)3, 30 nm)/ Alq3(20 nm)/ LiF/ Al(100 nm)의 구조로 제작되었다.
실시예 6
상기 실시예 1에서 제조된 화합물을 발광층의 호스트로 사용한 것을 대신하여, 실시예 3에서 제조된 화합물을 발광층의 호스트로 사용한 것을 제외하고는 상기 실시예 5와 동일한 방법으로 제조되었다.
실시예 7
상기 실시예 1에서 제조된 화합물을 이용하여 막 두께 300 Å의 발광층을 형성함에 있어서, 인광 도펀트의 증착속도를 조절하여, 발광층의 전체량을 100 중량%로 하였을 때, 인광 도펀트의 배합량이 5중량%가 되도록 증착한 것을 제외하고는 상기 실시예 5와 동일한 방법으로 유기 발광 소자를 제작하였다.
실시예 8
발광층으로서 상기 실시예 1에서 제조된 화합물을 이용하여 막 두께 300 Å의 발광층을 형성하고, 이 때, 인광 도펀트인 Ir(PPy)3을 동시에 증착한 후, 바쏘쿠프로인(BCP) 50 Å을 더 증착하여, 하기 구조로 제작된 것을 제외하고는 상기 실시예 5와 동일한 방법으로 제조되었다.
ITO/ DNTPD(60 nm)/ NPB(30 nm)/ TCTA(20 nm)/ EML(실시예 1의 화합물(10 중량%) + Ir(PPy)3, 30 nm)/ BCP(5 nm)/ Alq3(20 nm)/ LiF/ Al(100 nm)
실시예 9
상기 실시예 1에서 제조된 화합물을 발광층의 호스트로 사용한 것을 대신하여, 실시예 3에서 제조된 화합물을 발광층의 호스트로 사용한 것을 제외하고는 상기 실시예 8과 동일한 방법으로 제조되었다.
실시예 10
상기 실시예 1에서 제조된 화합물을 이용하여 막 두께 300 Å의 발광층을 형성함에 있어서, 인광 도펀트의 증착속도를 조절하여, 발광층의 전체량을 100 중량%로 하였을 때, 인광 도펀트의 배합량이 5 중량%가 되도록 증착한 것을 제외하고는 상기 실시예 8과 동일한 방법으로 유기 발광 소자를 제작하였다.
비교예 1
상기 실시예 1에서 제조된 화합물을 발광층의 호스트로 사용한 것을 대신하여, 하기 화학식 32로 표시되는4,4-N,N-다이카바졸바이페닐(CBP)를 발광층의 호스트로 사용한 것을 제외하고는 상기 실시예 5와 동일한 방법으로 유기 발광 소자를 제작하였다.
[화학식 32]
Figure PCTKR2009007912-appb-I000039
비교예 2
상기 실시예 1에서 제조된 화합물을 발광층의 호스트로 사용한 것을 대신하여, 상기 화학식 32로 표시되는 CBP를 발광층의 호스트로 사용한 것을 제외하고는 상기 실시예 8과 동일한 방법으로 유기 발광 소자를 제작하였다.
실험예 2:유기 발광 소자의 성능 측정
상기 실시예 5 내지 10 및 비교예 1 내지 2에서 제조된 각각의 유기 발광 소자에 대하여 전압에 따른 전류밀도 변화, 휘도 변화 및 발광효율을 측정하였다. 구체적인 측정방법은 다음과 같고, 그 결과는 하기 표 2에 나타내었다.
(1) 전압변화에 따른 전류밀도의 변화 측정
상기 제조된 유기 발광 소자에 대하여 전압을 0 V 부터 10 V 까지 상승시키면서 전류-전압계(Keithley 2400)를 이용하여 단위 소자에 흐르는 전류값을 측정하고, 측정된 전류값을 면적으로 나누어 결과를 얻었다.
(2) 전압변화에 따른 휘도변화 측정
상기 제조된 유기 발광 소자에 대하여 전압을 0 V 부터 10 V 까지 상승시키면서 휘도계(Minolta Cs-1000A)를 이용하여 그 때의 휘도를 측정하여 결과를 얻었다.
(3) 발광효율 측정
상기 "(1) 전압 변화에 따른 전류 밀도의 변화 측정" 및 "(2) 전압 변화에 따른 휘도 변화 측정"에서 측정된 휘도와 전류밀도 및 전압을 이용하여 동일 밝기(1000 cd/m2)에서의 전류 효율(cd/A) 및 전력 효율(lm/W)을 계산하였다.
표 2
  소자구조 발광층의호스트 재료 1000 cd/cm2
구동전압 (V) 전류효율(cd/A) 전력효율(lm/W)
실시예 5 ITO/ DNTPD/ NPB/ TCTA/ EML/ Alq3/ LiF/ Al 실시예 1의 화합물(10 중량%) 5.30 52.09 34.23
실시예 6 실시예 3의 화합물(10 중량%) 6.43 32.04 17.38
비교예 1 CBP(10 중량%) 9.49 25.00 9.18
실시예 8 ITO/ DNTPD/ NPB/ TCTA/ EML/ BCP/ Alq3/ LiF/ Al 실시예 1의 화합물(10 중량%) 5.34 55.95 36.47
비교예 2 CBP(10 중량%) 7.70 42.70 19.20
상기 표 2를 참조하면, 본 발명의 실시예 1 및 3에 따른 화합물을 발광층의 호스트로 사용하여 제조된 유기 발광 소자의 소자특성 평가 결과, 휘도 1000 cd/cm2에서 구동전압은 6.5 V 이하로 나타난다. 이것은 비교예 1 및 2에서 CBP를 발광층의 호스트로 사용하여 제조된유기 발광 소자가 7.7 V 및 9.5 V의 구동전압을 가지는 것과 비교하여 매우 낮은 구동전압을 가지는 것을 확인할 수 있다. 특히, 실시예 1에 따른 화합물을 발광층의 호스트로 사용하여 제조된 실시예 5 및 8에 따른 유기 발광 소자는 구동전압이 각각 5.30 V 및 5.34 V로 구동전압의 감소 효과가 매우 우수한 것을 확인할 수 있다.
또한, 실시예 1 및 3에서 제조된 화합물을 발광층의 호스트로 사용하는 유기 발광 소자의 전류효율 및 전력효율도 비교예 1 및 2에 따른 유기 발광 소자와 비교하여, 매우 향상된 것을 확인할 수 있다. 특히, 실시예 5 및 8에 따른 유기 발광 소자는 비교예 1에 따른 유기 발광 소자와 비교하여, 각각 3.72 배 및 1.89 배 이상 향상된 전력효율을 가지는 것을 확인할 수 있다.
본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims (14)

  1. 하기 화학식 1로 표시되는 유기 광전 소자용 화합물:
    [화학식 1]
    Figure PCTKR2009007912-appb-I000040
    상기 화학식 1에서
    L은 치환 또는 비치환된 탄소수 6 내지 30의 아릴렌기, 치환 또는 비치환된 탄소수 2 내지 30의 헤테로아릴렌기 또는 이들의 조합이고,
    R1 및 R2는 서로 같거나 다른 것으로, 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 30의 아릴기, 치환 또는 비치환된 탄소수 2 내지 30의 헤테로아릴기 또는 이들의 조합이고,
    R3 및 R4는 서로 같거나 다른 것으로, 각각 독립적으로 수소 또는 탄소수 1 내지 10의 저급 알킬기이고,
    a1 및 a2는 서로 같거나 다른 것으로, 각각 독립적으로 0 내지 4의 정수이고, 단, a1 + a2는 1 이상의 정수이고,
    b는 1 내지 4의 정수이고,
    c는 0 내지 4의 정수이고,
    d는 1 내지 5의 정수이고,
    e 및 f는 서로 같거나 다른 것으로, 각각 독립적으로 1 내지 4의 정수임.
  2. 제1항에 있어서,
    상기 화학식 1로 표시되는 유기 광전 소자용 화합물에서 L은 치환 또는 비치환된 탄소수 6 내지 30의 아릴렌기이고,
    상기 아릴렌기는 치환 또는 비치환된 페닐렌기, 치환 또는 비치환된 나프틸렌기, 치환 또는 비치환된 안트라세닐렌기, 치환 또는 비치환된 페난트레닐렌기, 치환 또는 비치환된 테트라세닐렌기, 치환 또는 비치환된 피레닐렌기, 치환 또는 비치환된 플루오레닐렌기 또는 이들의 조합인 것인 유기 광전 소자용 화합물.
  3. 제1항에 있어서,
    상기 화학식 1로 표시되는 유기 광전 소자용 화합물에서 a1 및 a2는 서로 같거나 다른 것으로, 각각 독립적으로 0 내지 3의 정수이고, 단, a1 + a2는 1 내지 3의 정수인 것인 유기 광전 소자용 화합물.
  4. 제1항에 있어서,
    상기 유기 광전 소자용 화합물은 하기 화학식 2로 표시되는 것인 유기 광전 소자용 화합물:
    [화학식 2]
    Figure PCTKR2009007912-appb-I000041
    상기 화학식 2에서
    R1 및 R2는 서로 같거나 다른 것으로, 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 30의 아릴기이고,
    R3 내지 R5는 서로 같거나 다른 것으로, 각각 독립적으로 수소 또는 탄소수 1 내지 10의 저급 알킬기이고,
    a1 및 a2는 서로 같거나 다른 것으로, 각각 독립적으로 0 내지 3의 정수이고, 단, a1 + a2는 1 내지 3의 정수이고,
    b는 1 내지 4의 정수이고,
    c는 0 내지 4의 정수이고,
    d는 1 내지 5의 정수이고,
    e 및 f는 서로 같거나 다른 것으로, 각각 독립적으로 1 내지 4의 정수이고,
    g는 1 내지 4의 정수임.
  5. 제1항에 있어서,
    상기 유기 광전 소자용 화합물은 하기 화학식 3으로 표시되는 것인 유기 광전 소자용 화합물:
    [화학식 3]
    Figure PCTKR2009007912-appb-I000042
    상기 화학식 3에서
    R3 내지 R5, 및 R5´은 서로 같거나 다른 것으로, 각각 독립적으로 수소 또는 탄소수 1 내지 10의 저급 알킬기이고,
    a1 및 a2는 서로 같거나 다른 것으로, 각각 독립적으로 0 내지 3의 정수이고, 단, a1 + a2는 1 내지 3의 정수이고,
    b는 1 내지 4의 정수이고,
    c는 0 내지 4의 정수이고,
    e 및 f는 서로 같거나 다른 것으로, 각각 독립적으로 1 내지 4의 정수이고,
    g 및 h는 서로 같거나 다른 것으로, 각각 독립적으로 1 내지 4의 정수임.
  6. 제1항에 있어서,
    상기 유기 광전 소자용 화합물은 하기 화학식 4 내지 31로 표시되는 것인 유기 광전 소자용 화합물:
    [화학식 4]
    Figure PCTKR2009007912-appb-I000043
    [화학식 5]
    Figure PCTKR2009007912-appb-I000044
    [화학식 6]
    Figure PCTKR2009007912-appb-I000045
    [화학식 7]
    Figure PCTKR2009007912-appb-I000046
    [화학식 8]
    Figure PCTKR2009007912-appb-I000047
    [화학식 9]
    Figure PCTKR2009007912-appb-I000048
    [화학식 10]
    Figure PCTKR2009007912-appb-I000049
    [화학식 11]
    Figure PCTKR2009007912-appb-I000050
    [화학식 12]
    Figure PCTKR2009007912-appb-I000051
    [화학식 13]
    Figure PCTKR2009007912-appb-I000052
    [화학식 14]
    Figure PCTKR2009007912-appb-I000053
    [화학식 15]
    Figure PCTKR2009007912-appb-I000054
    [화학식 16]
    Figure PCTKR2009007912-appb-I000055
    [화학식 17]
    Figure PCTKR2009007912-appb-I000056
    [화학식 18]
    Figure PCTKR2009007912-appb-I000057
    [화학식 19]
    Figure PCTKR2009007912-appb-I000058
    [화학식 20]
    Figure PCTKR2009007912-appb-I000059
    [화학식 21]
    Figure PCTKR2009007912-appb-I000060
    [화학식 22]
    Figure PCTKR2009007912-appb-I000061
    [화학식 23]
    Figure PCTKR2009007912-appb-I000062
    [화학식 24]
    Figure PCTKR2009007912-appb-I000063
    [화학식 25]
    Figure PCTKR2009007912-appb-I000064
    [화학식 26]
    Figure PCTKR2009007912-appb-I000065
    [화학식 27]
    Figure PCTKR2009007912-appb-I000066
    [화학식 28]
    Figure PCTKR2009007912-appb-I000067
    [화학식 29]
    Figure PCTKR2009007912-appb-I000068
    [화학식 30]
    Figure PCTKR2009007912-appb-I000069
    [화학식 31]
    Figure PCTKR2009007912-appb-I000070
  7. 제1항에 있어서,
    상기 유기 광전 소자용 화합물은 전하수송 재료 또는 호스트 재료로 사용될 수 있는 것인 유기 광전 소자용 화합물.
  8. 제1항에 있어서,
    상기 유기 광전 소자용 화합물은 녹색 또는 적색 발광의 호스트 재료로 사용될 수 있는 것인 유기 광전 소자용 화합물.
  9. 제1항에 있어서,
    상기 유기 광전 소자용 화합물은 유리전이온도(Tg)가 110 ℃ 이상이고, 열분해온도(Td)가 400 ℃ 이상인 유기 광전 소자용 화합물.
  10. 양극 음극 및 상기 양극과 음극 사이에 개재되는 유기박막층을 포함하고,
    상기 유기박막층은 제1항 내지 제9항 중 어느 한 항에 따른 유기 광전 소자용 화합물을 포함하는 것인 유기 광전 소자.
  11. 제10항에 있어서,
    상기 유기 박막층은 발광층, 정공수송층, 정공주입층, 정공저지층, 전자수송층, 전자주입층, 전자저지층 또는 이들의 조합인 것인 유기 광전 소자.
  12. 제10항에 있어서,
    상기 유기박막층은 도펀트를 더 포함하는 것인 유기 광전 소자.
  13. 제10항에 있어서,
    상기 도펀트는 적색, 녹색 또는 청색의 인광도펀트인 것인 유기 광전 소자.
  14. 제10항에 따른 유기 광전 소자를 포함하는 것인 표시장치.
PCT/KR2009/007912 2009-05-08 2009-12-29 유기 광전 소자용 화합물 및 이를 포함하는 유기 광전 소자 WO2010128745A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0040341 2009-05-08
KR1020090040341A KR101233378B1 (ko) 2009-05-08 2009-05-08 유기광전소자용 화합물 및 이를 포함하는 유기광전소자

Publications (1)

Publication Number Publication Date
WO2010128745A1 true WO2010128745A1 (ko) 2010-11-11

Family

ID=43050225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/007912 WO2010128745A1 (ko) 2009-05-08 2009-12-29 유기 광전 소자용 화합물 및 이를 포함하는 유기 광전 소자

Country Status (2)

Country Link
KR (1) KR101233378B1 (ko)
WO (1) WO2010128745A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015520125A (ja) * 2012-04-13 2015-07-16 エルジー・ケム・リミテッド 新しい含窒素複素環式化合物およびこれを用いた有機電子素子
CN108912105A (zh) * 2018-08-03 2018-11-30 瑞声科技(南京)有限公司 一种对称取代的双咔唑化合物及其应用
CN111004226A (zh) * 2019-12-20 2020-04-14 陕西莱特光电材料股份有限公司 有机电致发光材料及其中间体、电子器件、电子装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101944860B1 (ko) * 2011-07-04 2019-02-01 엘지디스플레이 주식회사 청색 인광 화합물 및 이를 사용한 유기전계발광소자
KR102253439B1 (ko) * 2013-07-30 2021-05-20 삼성디스플레이 주식회사 헤테로고리 화합물 및 이를 포함한 유기 발광 소자
KR101783650B1 (ko) * 2014-06-24 2017-10-23 제일모직주식회사 화합물, 이를 포함하는 유기광전자소자 및 표시장치
KR102335767B1 (ko) 2014-10-31 2021-12-08 삼성전자주식회사 카바졸계 화합물 및 이를 포함한 유기 발광 소자

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996040114A1 (en) * 1995-06-07 1996-12-19 The University Of North Carolina At Chapel Hill Methods of inhibiting pneumocystis carinii pneumonia and compounds useful therefor
US6812497B2 (en) * 2002-03-08 2004-11-02 Canon Kabushiki Kaisha Organic light emitting device
JP2005170809A (ja) * 2003-12-09 2005-06-30 Mitsubishi Chemicals Corp 化合物、電荷輸送材料、有機電界発光素子材料および有機電界発光素子
KR20060084498A (ko) * 2005-01-19 2006-07-24 삼성에스디아이 주식회사 비페닐 유도체 및 이를 채용한 유기 전계 발광 소자
JP2006269836A (ja) * 2005-03-24 2006-10-05 Fuji Photo Film Co Ltd 有機電界発光素子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996040114A1 (en) * 1995-06-07 1996-12-19 The University Of North Carolina At Chapel Hill Methods of inhibiting pneumocystis carinii pneumonia and compounds useful therefor
US6812497B2 (en) * 2002-03-08 2004-11-02 Canon Kabushiki Kaisha Organic light emitting device
JP2005170809A (ja) * 2003-12-09 2005-06-30 Mitsubishi Chemicals Corp 化合物、電荷輸送材料、有機電界発光素子材料および有機電界発光素子
KR20060084498A (ko) * 2005-01-19 2006-07-24 삼성에스디아이 주식회사 비페닐 유도체 및 이를 채용한 유기 전계 발광 소자
JP2006269836A (ja) * 2005-03-24 2006-10-05 Fuji Photo Film Co Ltd 有機電界発光素子

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015520125A (ja) * 2012-04-13 2015-07-16 エルジー・ケム・リミテッド 新しい含窒素複素環式化合物およびこれを用いた有機電子素子
US9666812B2 (en) 2012-04-13 2017-05-30 Lg Chem, Ltd. Nitrogen-containing heterocyclic compound and organic electronic device using same
CN108912105A (zh) * 2018-08-03 2018-11-30 瑞声科技(南京)有限公司 一种对称取代的双咔唑化合物及其应用
CN111004226A (zh) * 2019-12-20 2020-04-14 陕西莱特光电材料股份有限公司 有机电致发光材料及其中间体、电子器件、电子装置
CN111004226B (zh) * 2019-12-20 2020-11-10 陕西莱特光电材料股份有限公司 有机电致发光材料及其中间体、电子器件、电子装置

Also Published As

Publication number Publication date
KR20100121267A (ko) 2010-11-17
KR101233378B1 (ko) 2013-02-15

Similar Documents

Publication Publication Date Title
WO2010131930A2 (ko) 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
WO2010074422A1 (en) Novel compound for organic photoelectric device and organic photoelectric device including the same
WO2011055933A2 (ko) 유기광전소자용 조성물, 이를 이용한 유기광전소자 및 이를 포함하는 표시장치
WO2011074770A2 (ko) 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
WO2010151083A2 (ko) 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
WO2012091225A1 (ko) 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2012074210A9 (ko) 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2016108596A2 (ko) 신규한 화합물 및 이를 포함하는 유기발광소자
WO2015152650A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2012074195A9 (ko) 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2013191429A1 (ko) 함질소 헤테로환 화합물 및 이를 포함한 유기 전자소자
WO2013022145A9 (ko) 유기광전자소자용 화합물 및 이를 포함하는 유기발광소자
WO2010076991A2 (ko) 신규한 유기 광전 소자용 화합물 및 이를 포함하는 유기 광전 소자
WO2019146946A1 (ko) 유기발광소자
WO2013027906A9 (ko) 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2021049840A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2010128745A1 (ko) 유기 광전 소자용 화합물 및 이를 포함하는 유기 광전 소자
WO2013027902A1 (ko) 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2020009492A1 (ko) 다환 화합물 및 이를 포함하는 유기 발광 소자
WO2018030786A1 (ko) 화합물 및 이를 포함하는 유기발광소자
WO2022050592A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2019164301A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2011081449A2 (ko) 트리페닐렌계 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2022154283A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2020022811A1 (ko) 유기발광소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09844412

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09844412

Country of ref document: EP

Kind code of ref document: A1