WO2013054877A1 - 組成物及びそれからなる膜 - Google Patents

組成物及びそれからなる膜 Download PDF

Info

Publication number
WO2013054877A1
WO2013054877A1 PCT/JP2012/076425 JP2012076425W WO2013054877A1 WO 2013054877 A1 WO2013054877 A1 WO 2013054877A1 JP 2012076425 W JP2012076425 W JP 2012076425W WO 2013054877 A1 WO2013054877 A1 WO 2013054877A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polymer
film
sulfonic acid
compound
Prior art date
Application number
PCT/JP2012/076425
Other languages
English (en)
French (fr)
Inventor
岡崎 光樹
川崎 登
藤井 謙一
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to US14/350,768 priority Critical patent/US9273222B2/en
Priority to KR1020147012660A priority patent/KR101588988B1/ko
Priority to MX2014004400A priority patent/MX340998B/es
Priority to CN201280048438.6A priority patent/CN103842401B/zh
Priority to BR112014008851A priority patent/BR112014008851A2/pt
Priority to JP2013538584A priority patent/JP5788014B2/ja
Priority to EP12839796.5A priority patent/EP2767552A4/en
Publication of WO2013054877A1 publication Critical patent/WO2013054877A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/24Homopolymers or copolymers of amides or imides
    • C09D133/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins

Definitions

  • the present invention relates to a hydrophilic film having antifogging properties, antifouling properties, and antistatic properties, excellent in abrasion resistance and weather resistance, a polymerizable composition for obtaining the same, and a use thereof.
  • Non-Patent Document 1 As a method for solving this fogging problem, an antifogging paint in which a reactive surfactant is added to an acrylic oligomer has been proposed, and a cured film obtained from this antifogging paint has improved hydrophilicity and water absorption.
  • Non-Patent Document 1 Also, for example, as a method of solving the problem of dirt, self-cleaning that improves the hydrophilicity of the surface and efficiently removes dirt (hydrophobic substances etc.) adhering to the outer wall, etc. by floating or spraying water.
  • An antifouling material having a property has attracted attention (Non-Patent Documents 2 and 3).
  • the present inventors have proposed a monolayer film in which anionic hydrophilic groups are inclined (concentrated) on the surface as a proposal for completely overcoming the problems of “cloudiness” and “dirt” (Patent Document 1). .
  • the hydrophilic film obtained by this invention is transparent and extremely hydrophilic, and has excellent antifogging properties, antifouling properties, antistatic properties, quick drying properties (fast drying speed of attached water), and chemical resistance, Moreover, it is hard and has excellent scratch resistance. However, according to the study by the present inventors, it has been found that the wear resistance and weather resistance are insufficient.
  • a method of coating an inorganic compound is known as a method of improving weather resistance with excellent weather resistance.
  • a silica compound by a sol-gel reaction is used as a hard coat of a spectacle lens (Non-patent Document 4).
  • Silica coat is very hard due to its dense structure, and its wear resistance reaches the same level as glass, but on the other hand, there are problems such as being easily broken, not being dyed, and being easily adhered to dirt.
  • Various proposals have been made for solving these problems. For example, as a method for imparting dyeability and toughness, a method of blending a melamine polyhydric alcohol condensate and a silane compound having an epoxy group into silica (Patent Document 2), a method of blending an epoxy compound and an aluminum complex into silica (patent) Document 3) and a method of blending an acrylic polymer having a hydroxyl group with silica (Patent Document 4) have been proposed.
  • Patent Document 5 As a method for imparting antifogging properties by hydrophilization, a method of blending a styrene-based sulfonic acid polymer with silica (Patent Document 5) has been proposed.
  • Patent Document 5 The proposal described in Patent Document 5 is a preferable proposal that tends to increase the hydrophilicity, but the polymer tends to be detached from the film, and the hydrophilicity tends to decrease due to water. It has been found by the present inventors that the present inventors have a problem that it is difficult to withstand use in a scene where antifogging properties and antifouling properties (self-cleaning with rainwater or the like) are actually required.
  • An object of the present invention is to provide a hydrophilic film that has an excellent balance between hydrophilicity and wear resistance, has little decrease in hydrophilicity due to water, and has excellent weather resistance.
  • the present inventors reacted a polymer having an epoxy group having reactivity with silanol and a hydrophilic sulfonic acid group with a silane compound by a sol-gel reaction.
  • the present inventors have found that a cured film can provide a hydrophilic film that is excellent in the balance between hydrophilicity and wear resistance, has little decrease in hydrophilicity due to water, and has excellent weather resistance, and has reached the present invention.
  • the present invention relates to the following [1] to [14].
  • a polymer having a —SO 3 M group and an epoxy group, wherein M represents a hydrogen atom, an alkali metal, an alkaline earth metal, or an ammonium ion; Silane compound having a total of two or more groups or atoms selected from the group consisting of a hydroxyl group bonded to a silane atom, an alkoxy group bonded to the silane atom, and a halogen atom bonded to the silane atom (ii)
  • a composition comprising
  • composition according to claim 1 wherein the polymer (i) is a polymer having a structural unit represented by the following general formula (1) and a structural unit represented by the following general formula (2):
  • R 1 and R 2 independently represent a hydrogen atom or a methyl group
  • a 1 is represented by (Q1) f (P1), Q1 is selected from -COO-, -CONH-, an optionally substituted phenylene group, P1 is selected from the group consisting of a single bond or a divalent or higher valent hydrocarbon group having an ether structure and having 1 to 15 carbon atoms, f is 0 or 1, h is 1 to 5,
  • a 2 is represented by (Q2) g (P2), Q2 is selected from -COO-, a divalent or higher divalent hydrocarbon group having 1 to 5 carbon atoms, a phenylene group which may have a substituent, and -O-.
  • P2 is selected from the group consisting of a single bond, -X-P3-, -P4-Y-, -P5- P3 to P5 each independently represents a divalent or higher hydrocarbon group having an ether structure and having 1 to 15 carbon atoms, X represents oxygen, sulfur or -COO- Y represents oxygen or sulfur, g is 0 or 1, k is 1 to 5, When g is 1 and Q2 is —O— or —COO—, P2 is not —X—P3-. ).
  • a 1 is a single bond, —CH 2 —, —C 6 H 4 —, —COOCH 2 —, —COOCH 2 CH 2 —, —COOCH 2 CH 2 CH 2 —.
  • a 2 is a single bond, -CH 2 -, - C 6 H 4 -, - O -, - CH 2 -O -, - CH 2 -O-CH 2 -, - C 6 H 4 -O-, -C 6 H 4 -O-CH 2- , -COO-, -COOCH 2- , -C 6 H 4 -COO-, or -C 6 H 4 -COO-CH 2-
  • composition according to [4] The composition according to [1], wherein the polymer (i) has a weight average molecular weight measured by GPC of 300 to 3,000,000.
  • X 1 and X 2 each independently represents a hydroxyl group, an alkoxy group having 1 to 4 carbon atoms, or a halogen atom
  • R 3 to R 6 each independently represents a hydroxyl group, a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a vinyl group, a phenyl group, an alkoxy group having 1 to 4 carbon atoms, or a halogen atom
  • m represents an integer of 0 to 10,000.
  • the ratio (Sa / Da) of the sulfonic acid concentration (Sa) on the outer surface to the sulfonic acid concentration (Da) at an intermediate point between the interface contacting the substrate and the outer surface is 2 to 1000 [ 8] The film according to the above.
  • a —SO 3 M group (M represents a hydrogen atom, an alkali metal, an alkaline earth metal, or an ammonium ion) formed on a substrate, and a Si—O—Si structure or Si—O—C.
  • hydrophilic films and laminates can be used as antifogging materials, antifouling materials, quick-drying materials, antistatic materials, undercoat materials, and the like.
  • the film of the present invention has an excellent balance between hydrophilicity and abrasion resistance, has little decrease in hydrophilicity due to water, and is excellent in weather resistance. Therefore, various laminates obtained by laminating the film of the present invention on a substrate or the like can also be provided.
  • a compound having a typical functional group having a carbon-carbon double bond and a sulfonic acid group which gives the structural unit represented by the general formula (1) constituting the polymer (i) used in the present invention.
  • the thermal stability comparison data (DSC chart) of FIG. The figure showing the cutting method of a sample at the time of measuring the inclination in the sample obtained in the Example, and a sulfonic acid concentration measurement site
  • FIG. The figure showing the measurement result about the reflectance in the base material used for the hydrophilic coating film obtained in Example 23, and hydrophilic coating.
  • the film of the present invention is usually selected from the group consisting of a polymer (i) having a sulfonic acid group and an epoxy group, a hydroxyl group bonded to a silane atom, an alkoxy group bonded to the silane atom, and a halogen atom bonded to the silane atom.
  • the polymerizable composition containing a silane compound (ii) having two or more groups or atoms is cured by, for example, a method such as heating.
  • Such a film of the present invention can function as a hydrophilic film.
  • Polymer (i) having sulfonic acid group and epoxy group in the present invention, a group represented by —SO 3 M (in the present invention, sometimes simply referred to as “—SO 3 M group”) and an epoxy are used.
  • a polymer (i) having a group and wherein M represents a hydrogen atom, an alkali metal, an alkaline earth metal, or an ammonium ion is used.
  • such a polymer (i) may be referred to as “polymer (i) having a sulfonic acid group and an epoxy group”.
  • the term “sulfonic acid group” is sometimes used to indicate a “—SO 3 M group” unless otherwise specified.
  • the polymer (i) having a sulfonic acid group and an epoxy group used in the present invention is produced by various condensation or polymerization reactions such as polymer formation by urethane reaction, polymer formation by Michael addition reaction, polymer formation by esterification reaction, and the like.
  • the polymer (i) may be obtained by polymerizing a monomer containing a polymerizable functional group having a carbon-carbon double bond in terms of the purity and yield of the polymer. preferable.
  • Examples of the polymerizable functional group having a carbon-carbon double bond include: A polymerizable functional group having a carbon-carbon double bond in which a polymerizable functional group such as a vinyl group, an allyl group, an isopropenyl group, a styryl group, or an ⁇ -methylstyryl group is composed of only a carbon atom and a hydrogen atom (described below) Polymerizable functional group having ether structure and carbon-carbon double bond, Polymerizable functional group having carbonate structure and carbon-carbon double bond, Polymerizable functional group having ester structure and carbon-carbon double bond, Amide structure And a polymerizable functional group having a carbon-carbon double bond), A polymerizable functional group having an ether structure such as a vinyl ether group, an allyl ether group or an allyl thioether group and a carbon-carbon double bond; A polymerizable functional group having a carbonate structure such as a vinyl carbonate group, an allyl carbonate group
  • vinyl group, allyl group, styryl group, vinyl ether group, allyl ether group, (meth) acrylate group, and (meth) acrylamide group are preferable.
  • a side chain thereof has a sulfonic acid group and an epoxy group, more precisely, —SO 3.
  • M represents a hydrogen atom, an alkali metal, an alkaline earth metal, or an ammonium ion
  • an epoxy group on average in each molecule of at least one polymer (i).
  • side chains of any structure may be included.
  • two side chains having a hydroxyl group in addition to a sulfonic acid group or an epoxy group, two side chains having a hydroxyl group, a side chain having a carboxyl group, a side chain having an alkyl group, a side chain having an aryl group, and a hydroxy group having an epoxy group opened with water Side chains having an epoxy group opened with an alcohol and side chains having a hydroxy group may be bonded to the polymer (i).
  • a preferred form of the polymer (i) having a sulfonic acid group and an epoxy group is a polymer having a structural unit represented by the following general formula (1) and a structural unit represented by the following general formula (2). Can be mentioned.
  • R 1 and R 2 independently represent a hydrogen atom or a methyl group
  • M represents a hydrogen atom, an alkali metal, an alkaline earth metal, or an ammonium ion
  • the structural unit (unit) ratio a / b 1000/1 to 1/1000
  • a 1 is represented by (Q1) f (P1)
  • Q1 is selected from —COO—, —CONH—, and an optionally substituted phenylene group
  • P1 is selected from the group consisting of a divalent or higher valent hydrocarbon group which may have a single bond or an ether structure and has 1 to 15 carbon atoms
  • f is 0 or 1
  • h is 1 to 5
  • a 2 is represented by (Q2) g (P2)
  • Q2 is selected from -COO-, a divalent or higher divalent hydrocarbon group having 1 to 5 carbon atoms, a phenylene group which may have a substituent, and -O-.
  • P2 is selected from the group consisting of a single bond, -X-P3-, -P4-Y-, -P5- P3 to P5 each independently represents a divalent or higher valent hydrocarbon group which may have an ether structure and has 1 to 15 carbon atoms, X represents oxygen, sulfur or -COO- Y represents oxygen or sulfur, g is 0 or 1, k is 1 to 5, When g is 1 and Q2 is —O— or —COO—, P2 is not —X—P3-.
  • the “divalent or higher hydrocarbon group having an ether structure and having 1 to 15 carbon atoms” in P1 means an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an aromatic hydrocarbon Any of groups may be sufficient, and also linear or branched may be sufficient. Further, it may be a hydrocarbon group having an ether structure such as a polyoxyethylene chain. The number of carbon atoms is 1-15, but more preferably 1-12. When it does not contain an ether structure, it preferably has 1-10 carbon atoms.
  • the valence of the hydrocarbon may be 2 or more, but it is usually 2-6, preferably 2-4, more preferably 2-3.
  • the hydrocarbon group may have a substituent.
  • the substituent is not particularly limited, and a hydroxyl group, a halogen group (fluoro group, chloro group, or the like) can be used.
  • P3, P4 and P5 in P2 are each independently a divalent or higher valent hydrocarbon group having an ether structure and having 1 to 15 carbon atoms.
  • the hydrocarbon group is specifically the same as P1, and may be an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, or an aromatic hydrocarbon group, and may be linear or branched. . Further, it may be a hydrocarbon group having an ether structure such as a polyoxyethylene chain. The number of carbon atoms is 1-15, but 1-12 is more preferable. When it does not contain an ether structure, it preferably has 1-10 carbon atoms.
  • the valence of the hydrocarbon may be 2 or more, but is usually 2-6, preferably 2-4, more preferably 2-3.
  • the hydrocarbon group may have a substituent.
  • the substituent is not particularly limited, and a hydroxyl group, a halogen group (fluoro group, chloro group, or the like) can be used.
  • Q2 is selected from —COO—, a divalent or higher valent hydrocarbon group having 1 to 5 carbon atoms, a phenylene group which may have a substituent, and —O—.
  • Examples of the divalent or higher hydrocarbon group having 1 to 5 carbon atoms include an alkylene group, and specific examples include a methylene group, an ethylene group, and a propylene group.
  • each substituent may be a hydrocarbon group having 1 to 10, preferably 1 to 6 carbon atoms, and the substituents are bonded to form a ring. May be.
  • the substituent may be a hydroxyl group, a halogen group (fluoro group, chloro group, etc.), an alkoxy group having 1-10 carbon atoms, a thioalkoxy group, or the like.
  • R 1 is hydrogen or methyl
  • Q 1 is an optionally substituted phenylene group
  • f 1, derived from a sulfonic acid having a styryl group or an ⁇ -methyl styryl group Construction;
  • h is 1 to 5, preferably 1 to 3, more preferably 1 to 2. Of course, it may be 1.
  • a 1 is in particular a direct bond without a structure (ie, a single bond), —CH 2 —, —C 6 H 4 —, —COOCH 2 —, -COOCH 2 CH 2 -, - COOCH 2 CH 2 CH 2 -, - CONH-C (CH 3) 2 -CH 2 -, - CONH-CH (CH 3) -CH 2 -, - CONH-CH 2 -, -CONH-CH 2 CH 2 - or -CONH-CH 2 CH 2 CH 2 , - is preferably.
  • P2 has a structure represented by —X—P3, and X is oxygen. preferable.
  • k is 1 to 5, preferably 1 to 3, and more preferably 1 to 2. Of course, it may be 1.
  • a 2 is in particular a direct connection without a structure (ie, a single bond), —CH 2 —, —C 6 H 4 —, —O—, — CH 2 -O-, -CH 2 -O-CH 2- , -C 6 H 4 -O-, -C 6 H 4 -O-CH 2 -,-COO-, -COOCH 2- , -C 6 H 4 -COO-, or -C 6 H 4 -COO-CH 2 - is preferably.
  • M represents a hydrogen atom; an alkali metal such as lithium, sodium, potassium or rubidium; an alkaline earth metal such as calcium or magnesium; and a tetrahydroammonium ion, a tetramethylammonium ion, a tetraethylammonium ion, a methyltrihydroammonium ion, an ethyl It is preferably one selected from ammonium ions such as trihydroammonium ion, cyclohexyl trihydroammonium ion, phenyltrihydroammonium ion, and dimethyl-phenyl-hydro-ammonium ion.
  • the group represented by SO 3 M is not in a free acid form, but in a form neutralized with a counter cation such as an alkali metal, alkaline earth metal, or ammonium ion. preferable.
  • the polymer having the structural unit represented by the general formula (1) and the structural unit represented by the general formula (2) is, for example, a compound having a polymerizable functional group having a carbon-carbon double bond and a sulfonic acid group.
  • a radical polymerization initiator such as a reaction solvent and a peroxide is added to a compound having a polymerizable functional group having a carbon-carbon double bond and an epoxy group, and the mixture is heated and stirred.
  • the polymer having the structural unit represented by the general formula (1) and the structural unit represented by the general formula (2) is used as the polymer (i) constituting the composition according to the present invention. Can be used as
  • the structural unit (unit) ratio a / b (mol / mol) between the structural unit (unit) number a represented by the general formula (1) and the structural unit (unit) number b represented by the general formula (2) is:
  • the ratio of the compound having a polymerizable functional group having a carbon-carbon double bond and a sulfonic acid group to the compound having a polymerizable functional group having a carbon-carbon double bond and an epoxy group is controlled.
  • the structural unit (unit) ratio a / b (mol / mol) of the polymer (i) is a carbon-carbon double bond corresponding to the structural unit represented by the general formula (1) in the polymerization reaction.
  • the structural unit (unit) ratio a / b (mol / mol) of the polymer (i) is not particularly limited, but is usually 1000/1 to 1/1000. That is, it is in the range of 99.9 / 0.1 to 0.1 / 99.9, preferably in the range of 99/1 to 1/99, more preferably in the range of 98/2 to 2/98.
  • the number of structural units (units) represented by the general formula (1) is relatively large, for example, 99.9 / 0.1 to 40/60, more preferably 99. / 1 to 50/50, particularly preferably in the range of 98/2 to 60/40.
  • the number of structural units (units) b represented by the general formula (2) is preferably relatively larger than when importance is attached to hydrophilicity.
  • the range is 95/5 to 5/95, more preferably 90/10 to 10/90, and particularly preferably 80/20 to 20/80.
  • a compound having a polymerizable functional group having a carbon-carbon double bond group and a sulfonic acid group which is used for constituting the structural unit represented by the general formula (1), that is, represented by the general formula (1)
  • Examples of the compound having a polymerizable functional group having a carbon-carbon double bond corresponding to the structural unit and a sulfonic acid group include a compound having a structure represented by the following general formula (1 ′):
  • R 1, M, A 1, h are respectively the same as R 1, M, A 1, h in the general formula (1).
  • a sulfonic acid compound having a vinyl group, a sulfonic acid compound having a styryl group, and a (meth) acrylate group A sulfonic acid compound, a sulfonic acid compound having a (meth) acrylamide group, and the like are relatively preferable.
  • the sulfonic acid compound having a vinyl group for example, vinyl sulfonic acid, lithium vinyl sulfonate, sodium vinyl sulfonate, potassium vinyl sulfonate, ammonium vinyl sulfonate and the like are preferably used.
  • sulfonic acid compound having a styryl group for example, styrene sulfonic acid, lithium styrene sulfonate, sodium styrene sulfonate, potassium styrene sulfonate, calcium styrene sulfonate, magnesium styrene sulfonate, ammonium styrene sulfonate and the like are preferably used. .
  • Examples of the sulfonic acid compound having a (meth) acrylate group include sulfomethyl (meth) acrylate sodium salt, 2-sulfoethyl (meth) acrylate, 2-sulfoethyl (meth) acrylate sodium salt, and 2-sulfoethyl (meth) acrylate potassium salt.
  • Examples of the sulfonic acid compound having a (meth) acrylamide group include 1- (meth) acrylamide-methanesulfonic acid, 1- (meth) acrylamide-potassium methanesulfonate, 2- (meth) acrylamide-ethanesulfonic acid, 2- ( (Meth) acrylamide-sodium ethanesulfonate, 2- (meth) acrylamide-propanesulfonic acid, 2- (meth) acrylamide-potassium propanesulfonate, 2- (meth) acrylamide-2-methyl-propanesulfonic acid ((meth)) Acrylamide-t-butylsulfonic acid), 2- (meth) acrylamide-2-methyl-propanesulfonic acid sodium salt, 2- (meth) acrylamide-2-methyl-propanesulfonic acid potassium salt, 2- (meth) acrylamide- 2-methyl-propanes Calcium phonate, 2- (meth) acrylamide-2-methyl-
  • a sulfonic acid compound having a (meth) acrylamide group is most preferred, and among these, 2- (meth) acrylamide- 2-methyl-propylsulfonic acid ((meth) acrylamide-t-butylsulfonic acid) and its counter cation salt are preferred, and 2- (meth) acrylamide-2-methyl-propylsulfonic acid ((meth) acrylamide-t-butyl) Sulfonic acid) alkali metal salts are most preferred.
  • the form of the sulfonic acid group of the compound having a polymerizable functional group having a carbon-carbon double bond and a sulfonic acid group is more than the state of free sulfonic acid in which M constituting the general formula (1 ′) is hydrogen.
  • An alkali metal salt, an alkaline earth metal circle, or an ammonium salt in which a sulfonic acid is neutralized with a counter cation is preferable. The reason is that when the sulfonic acid is neutralized by the counter cation, the reaction between the epoxy group and the sulfonic acid group is suppressed during the polymerization reaction, and the high-purity polymer (i) is efficiently obtained. .
  • the contents will be described below.
  • the sulfonic acid When the sulfonic acid is not neutralized (M is a hydrogen atom), it may react with an epoxy group of a compound having an epoxy group, which is another raw material, and the polymer may gel during the copolymerization reaction.
  • M is a hydrogen atom
  • a typical reaction formula for the reaction between the epoxy group and the sulfonic acid group is described below.
  • alkali metals that tend to have high reaction inhibition power and stability tend to be preferable.
  • alkali metals sodium or potassium is preferable, and potassium is mentioned as the most preferable canter cation.
  • potassium may be more thermally stable than sodium.
  • DSC chart thermal stability comparison data
  • the method of smoothly obtaining the polymer of the present invention in which M is a hydrogen atom is not particularly limited as long as the polymerization reaction can be carried out under the condition that the epoxy group is not ring-opened by the hydrogen atom as described above.
  • M is a hydrogen atom
  • Examples thereof include a method in which a polymer (i) having a group is treated (reacted) with an acid such as hydrochloric acid or sulfuric acid to convert it into a free sulfonic acid group.
  • a carbon-carbon double bond corresponding to the structural unit represented by the general formula (2) As the compound having a polymerizable functional group having an epoxy group and an epoxy group, a compound having a polymerizable functional group having a carbon-carbon double bond group represented by the following general formula (2 ′) and an epoxy group is preferably used:
  • R 2, A 2, k is the same, respectively and R 2, A 2, k in the general formula (2).
  • an epoxy compound having a vinyl group, an epoxy compound having a vinyl ether group, and an allyl ether an epoxy compound having a group, an epoxy compound having a styryl group, and an epoxy compound having a (meth) acrylate group are relatively preferable.
  • examples of the epoxy compound having a vinyl group include butadiene-monooxide, pentadiene-monooxide, hexadiene-monooxide, and the like.
  • Examples of the epoxy compound having a vinyl ether group include vinyl glycidyl ether, butanediol-divinyl ether monooxide, cyclohexanedimethanol-divinyl ether monooxide, 4-glycidyloxymethyl-1-vinyloxymethyl-cyclohexane, diethylene glycol-divinyl ether. Examples thereof include monooxide, tripropylene glycol-divinyl ether monooxide, 4-vinyloxy-1-glycidyloxy-butane and the like.
  • Examples of the epoxy compound having an allyl ether group include allyl-glycidyl ether, allyl-epoxy ether, butanediol-diallyl ether monooxide, cyclohexanedimethanol-diallyl ether monooxide, 4-glycidyloxymethyl-1-allyloxymethyl. -Cyclohexane, diethylene glycol-diallyl ether monooxide, tripropylene glycol-diallyl ether monooxide, 4-allyloxy-1-glycidyloxy-butane and the like.
  • Examples of the epoxy compound having a styryl group include divinylbenzene-monooxide, 4-glycidyloxy-styrene, 3-glycidyloxy-styrene, 2-glycidyloxy-styrene, 4-epoxyoxy-styrene, and styrylcarboxylic acid epoxy ester. And styryl carboxylic acid glycidyl ester.
  • Examples of the epoxy compound having a (meth) acrylate group include glycidyl- (meth) acrylate, epoxy- (meth) acrylate, 2-glycidyloxy-ethyl- (meth) acrylate, and 5-glycidyloxy-3-oxapentyl- (Meth) acrylate, 3-glycidyloxy-2-hydroxy-propyl- (meth) acrylate, 2,3-bis (glycidyloxy) -propyl- (meth) acrylate, trimethylolpropane-diglycidyl ether- (meth) acrylate ⁇ 4-glycidyloxyphenyl ⁇ - ⁇ (4- (meth) acryloyloxy-3-hydroxy-1-oxabutyl) phenyl ⁇ -2,2-propane, 7-glycidyloxy-6,6-dimethyl-2-hydroxy -4-oxaheptyl- (meth) Acrylate, and the
  • an epoxy compound having a (meth) acrylate group an epoxy compound having an allyl ether group
  • Epoxy compounds having a styryl group are preferred.
  • glycidyl (meth) acrylate, allyl glycidyl ether, 4-glycidyloxystyrene and the like can be mentioned.
  • third structural unit (unit) that is neither the structural unit (unit) or the structural unit (unit) represented by the general formula (2). May be.
  • Examples of such a third structural unit include a compound having a polymerizable functional group having a carbon-carbon double bond and a sulfonic acid group, or a polymerizable functional group having an carbon-carbon double bond and an epoxy group.
  • a structural unit (unit) derived from (meth) acrylic acid a structural unit (unit) derived from methyl (meth) acrylate, a structural unit (unit) derived from butyl (meth) acrylate, or isobornyl (meth) acrylate
  • Structural unit derived from (unit) structural unit derived from tetrahydrofurfuryl (meth) acrylate (unit), unit derived from phenyl (meth) acrylate, structural unit derived from tribromophenyl (meth) acrylate, Structural units (units) derived from hydroxyethyl (meth) acrylate, structural units (units) derived from ethyl phosphate (meth) acrylate, structural units (units) derived from tetramethylpiperidyl (meth) acrylate, perfluorooctyl ethyl( T)
  • a compound having a polymerizable functional group having a carbon-carbon double bond having a structure represented by the general formula (1 ′) and a sulfonic acid group As a compound that gives such a third structural unit (unit), a compound having a polymerizable functional group having a carbon-carbon double bond having a structure represented by the general formula (1 ′) and a sulfonic acid group, In addition, a polymerizable functional group having a carbon-carbon double bond having a structure represented by the general formula (2 ′) and a polymerizable functional group having a carbon-carbon double bond which is not any of the compounds having an epoxy group (Hereinafter, referred to as “third structural unit precursor compound”).
  • the third structural unit (unit) number c is:
  • (a + b) / c ratio (mol / mol) is in the range of 99.9 / 0.1 to 10/90, more preferably in the range of 99/1 to 50/50, and 95 / A range of 5 to 60/40 is more preferable.
  • the (a + b) / c ratio (mol / mol) may be 70/30 or more, or 80/20 or more.
  • the number of repeating structural units (a + b) of the polymer (i) of the present invention is controlled mainly by the type of solvent, the concentration of the substrate (monomer), the amount of polymerization initiator, the reaction temperature, and the like, and usually 1 to 10,000.
  • the range is preferably 3 to 3,000, more preferably 30 to 1,500.
  • the molecular weight of the polymer (i) having a sulfonic acid group and an epoxy group is also controlled by the same method.
  • the weight average molecular weight MW by GPC of this polymer (i) is usually in the range of 300 to 3,000,000, but from the viewpoint of durability and solubility, it is preferably 1,000 to 1,000,000. It is preferably 10,000 to 500,000.
  • the Mw / Mn of the polymer (i) of the present invention is usually 1 to 10, preferably 1 to 6, and more preferably 1 to 4. In this case, the solubility or dispersibility in the composition and the transparency or smoothness of the cured film tend to be excellent.
  • a polymerizable functional group having a carbon-carbon double bond having a structure and a compound having a sulfonic acid group, and a polymerizable function having a carbon-carbon double bond having a structure represented by the general formula (2 ′) It is obtained by adding a reaction solvent and a polymerization initiator to a compound having a group and an epoxy group and copolymerizing the mixture with heating and stirring. At this time, if necessary, the above-mentioned “third constitutional unit precursor compound” is converted into a polymerizable functional group having a carbon-carbon double bond having a structure represented by the general formula (1 ′) and a sulfonic acid group. And a compound having a polymerizable functional group having a carbon-carbon double bond having a structure represented by the above general formula (2 ′) and an epoxy group.
  • a known radical initiator is preferably used, for example, Nitriles such as azobisisobutyronitrile; Ketone peroxides such as methyl isobutyl ketone peroxide and cyclohexanone peroxide; Diacyl peroxides such as isobutyryl peroxide, o-chlorobenzoyl peroxide, benzoyl peroxide; Dialkyl peroxides such as tris (t-butylperoxy) triazine, t-nutylcumyl peroxide; Peroxyketals such as 2,2-bis (4,4-di-t-butylperoxycyclohexyl) propane and 2,2-di (t-butylperoxy) butane; ⁇ -cumylperoxyneodecanoate, t-butylperoxypivalate, 2,4,4-trimethylpentylperoxy-2-ethylhexanoate, t-
  • the addition amount of these polymerization initiators is represented by the compound having a polymerizable functional group having a carbon-carbon double bond represented by the general formula (1 ′) and a sulfonic acid group, and the general formula (2 ′).
  • the compound having a polymerizable functional group having a carbon-carbon double bond represented by the general formula (1 ′) and a sulfonic acid group
  • the general formula (2 ′) is represented by the compound having a polymerizable functional group having a carbon-carbon double bond represented by the general formula (1 ′) and a sulfonic acid group, and the general formula (2 ′).
  • % Preferably 0.1 to 5 wt%, more preferably 0.2 to 3 wt%.
  • a compound having a polymerizable functional group having a carbon-carbon double bond represented by the general formula (1 ′) and a sulfonic acid group, and a polymerization having a carbon-carbon double bond represented by the general formula (2 ′) is a solvent that does not cause problems such as inhibiting the polymerization reaction. If there is no particular limitation.
  • a compound having a polymerizable functional group having a carbon-carbon double bond represented by the general formula (1 ′) and a sulfonic acid group, and a carbon represented by the general formula (2 ′) are used as monomers.
  • a compound having a polymerizable functional group having a carbon double bond and an epoxy group, and a highly polar solvent that increases the solubility of the “third structural unit precursor compound” used as needed tends to be good.
  • IPA isopropanol
  • 1-propanol 1-butanol
  • cyclohexanol benzyl alcohol
  • alcohols
  • the reaction temperature in the case of copolymerizing the compound having a functional functional group and an epoxy group with the “third structural unit precursor compound” used as required is mainly set at the 10-hour half-life temperature of the polymerization initiator. However, it is in the range of about room temperature to 200 ° C, preferably in the range of 30 to 120 ° C, more preferably in the range of 40 to 100 ° C.
  • the polymer (i) of the present invention thus produced is usually a high molecular weight product having a large number of sulfonic acid groups, and often has a property that it is soluble only in water. Therefore, in this case, if a large amount of water is not used as a reaction solvent, it precipitates out of the reaction system with the progress of the reaction. Therefore, after completion of the reaction, the desired polymer can be obtained simply by filtering and drying.
  • a method of depositing in a poor solvent or distilling off the solvent with an evaporator or the like, then slugging with the poor solvent, filtering and drying Is relatively preferred.
  • Silane compound (ii) As a second component constituting the composition according to the present invention, a total of 2 groups or atoms selected from the group consisting of a hydroxyl group bonded to a silane atom, an alkoxy group bonded to the silane atom, and a halogen atom bonded to the silane atom are combined.
  • One or more silane compounds (ii) are used.
  • the hydroxy group bonded to the silane atom is usually obtained by hydrolyzing an alkoxy group bonded to the silane atom or a halogen atom bonded to the silane atom, and the alkoxy group bonded to the silane atom is generally bonded to the silane atom.
  • the silane compound (ii) of the present invention has at least two groups or atoms selected from the group consisting of at least a hydroxyl group bonded to a silicon atom, an alkoxy group bonded to a silicon atom, and a halogen atom bonded to a silicon atom. Any structure may be used, for example, it may have two or more hydroxyl groups, alkoxy groups, or halogen atoms bonded to a silane atom. Among these, the following general formula (3) is mentioned as a preferred structure.
  • X 1 and X 2 each independently represents a hydroxyl group, an alkoxy group having 1 to 4 carbon atoms, or a halogen atom
  • R 3 to R 6 each independently represents a hydroxyl group, a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a vinyl group, a phenyl group, an alkoxy group having 1 to 4 carbon atoms, or a halogen atom
  • m represents an integer of 0 to 10,000.
  • m is usually in the range of 0 to 10,000, preferably in the range of 0 to 100, and more preferably in the range of 0 to 10.
  • the phenyl group of R 3 to R 6 may or may not have a substituent.
  • the hydroxyl group bonded to the silane atoms X 1 , X 2 , and R 3 to R 6 is highly reactive, and in some cases, it is easily dehydrated and condensed at room temperature to form a siloxane bond (Si—O—Si). Harden.
  • the alkoxy group or halogen atom of X 1 , X 2 , and R 3 to R 6 is easily hydrolyzed to become a hydroxyl group, polymerization hardening usually proceeds via the hydroxyl group.
  • the alkoxy group is less reactive than the hydroxyl group, it can be condensed directly by heating at a relatively high temperature (approximately 100 ° C. or more) to form a siloxane bond and polymerize and cure. That is, the hydroxyl group, alkoxy group, and halogen atom bonded to the silane atom are involved in the crosslinking curing reaction in the composition of the present invention.
  • R 3 to R 6 hydrogen atoms, alkyl groups having 1 to 4 carbon atoms, vinyl groups, and phenyl groups are usually stable, do not participate in the crosslinking reaction, and have good effects such as crack prevention and imparting toughness. It produces the opposite effect, such as reduced hardness. That is, the hardness of the cured film obtained can be controlled within a certain range by the kind and ratio of these substituents directly bonded to the silane atom.
  • a substituent that does not participate in the crosslinking reaction (hydrogen atom, alkyl group having 1 to 4 carbon atoms, vinyl,
  • the number of groups and phenyl groups) is preferably 2 or less, and more preferably 1 or less.
  • alkoxy groups having 1 to 4 carbon atoms, halogen atoms, and siloxane bonds that have already reacted 2 to 4 are preferable for one silane atom.
  • the number of 3 to 4 tends to be more preferable.
  • the number of substituents (hydrogen atom, alkyl group having 1 to 4 carbon atoms, vinyl group, and phenyl group) not involved in the crosslinking reaction Is usually 0 or more and 2 or less, preferably 0 or more and 1 or less, and 0 is also one of preferred embodiments.
  • the number of substituents not participating in the crosslinking reaction is usually 0 or more, 2 ⁇ (m + 1) Or less, preferably 0 or more and (m + 1) or less.
  • the silane compound (ii) of the present invention can be easily polymerized and cured by adding water to a polyalkoxysilane or polyhalogenated silane, hydrolyzing and heating, taking advantage of the above characteristics.
  • a polyalkoxysilane or polyhalogenated silane Used as an essential component of the composition according to the present invention.
  • the polyalkoxysilane or polyhalogenated silane preferably used in the present invention are as follows.
  • an acid catalyst and a base catalyst are often used.
  • the acid catalyst include hydrochloric acid, sulfuric acid, nitric acid, trifluoroacetic acid, acetic acid, phosphoric acid, boric acid, boron trifluoride, tin oxide, and tetraalkoxytitanium.
  • the base catalyst for example, sodium hydroxide, sodium alkoxide, potassium hydroxide, ammonia and the like are used.
  • condensation polymerization catalysts is preferably in the range of 0.1 to 10 wt%, more preferably in the range of 0.2 to 5 wt%, with respect to the polymer (i) and the silane compound (ii) of the present invention.
  • a range of 0.3 to 3 wt% is more preferable.
  • the converted weight ratio of the polymer (i) to the silane compound (ii) is approximately 99.1 / 0.1 to 0.1 / 99.9, preferably 99 in terms of hydrophilicity, hardness, and wear resistance. / 1 to 1/99, more preferably 90/10 to 10/90. Furthermore, when importance is attached to hardness, it is 60/40 to 10/90, more preferably 50/50 to 10/90. In the case where importance is attached to hydrophilicity, it is 90/10 to 20/80, more preferably 70/30 to 20/80.
  • the converted weight ratio of the polymer (i) and the silane compound (ii) is the ratio of the weight of the polymer (i) and the weight converted to the silica corresponding to the silane compound (ii) or an analog thereof.
  • the “weight converted to silica corresponding to the silane compound (ii) or an analog thereof” is calculated by the following calculation formula in the case of the general formula (3), for example.
  • X 1 and X 2 each independently represent a hydroxyl group, an alkoxy group having 1 to 4 carbon atoms, or a halogen atom
  • R 3 to R 6 each independently represents a hydroxyl group.
  • m represents an integer of 0 to 10,000.
  • R 3 is the total number of ⁇ R 6 R 3 + R 4 + mR 5 + mR 6, if it is substituted by w pieces by R 10 (R 10 is a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a vinyl group Or a phenyl group, and w represents a number of 0 or more.) “Weight converted to silica corresponding to silane compound (ii) or an analog thereof after condensation polymerization”
  • the highly hydrophilic polymer (i) when the highly hydrophilic polymer (i) is firmly fixed to the cured film, outflow of the highly hydrophilic polymer (i) is suppressed, and high hydrophilicity is maintained over a long period of time. Produce the effect. Further, by incorporating the highly hydrophilic polymer (i) into the siloxane network of the silane compound, toughness is imparted and wear resistance is improved. Further, the network structure has advantages such that crystallization and layer separation structure can be easily suppressed and the transparency of the film is excellent. Further, since it has an inorganic substance called Si and has a network structure, the film has high stability and excellent weather resistance.
  • the method of reacting and curing the polymer (i) having a sulfonic acid group and an epoxy group and the silane compound (ii) of the present invention is extremely useful. It is.
  • the compound having an epoxy group tends to have a relatively low molecular weight and lower polarity than the polymer (i) of the present invention, the compound having a hydrophobic epoxy group is likely to move to the surface, and thus has a high hydrophilicity. It becomes difficult to obtain sex.
  • the cured film is soft and may be easily damaged, which is not practical.
  • the hydrophilic cured film of the present invention is obtained by reacting a polymer (i) highly hydrophilic with a sulfonic acid group with an epoxy group of the polymer (i) and a silanol group of a silane compound (ii). It is formed by bonding to a siloxane network formed with high density.
  • a curing catalyst or a curing material that accelerates the reaction between the epoxy group and the silanol group may be added to the composition of the present invention.
  • generally used curing catalysts or curing materials include hydrochloric acid, sulfuric acid, trifluoroacetic acid, acetic acid, phosphoric acid, boric acid, alumina, trialkoxyaluminum, acetylacetone aluminum salt, triethylenediamine, 2-methylimidazole, 2, 4-diamino-6- [2′-methylimidazole- (1 ′)]-ethyl-s-triazine and the like.
  • the addition amount of these curing catalyst or curing material is preferably in the range of 0.01 to 30 wt%, based on the total weight of the charged polymer (i) and the charged silane compound (ii), preferably 0.1 to 10 wt%. % Is more preferable, and a range of 0.2 to 5 wt% is more preferable.
  • the inventors of the present invention used a polymer (i) in a cured film obtained by reacting a highly hydrophilic polymer (i) having a sulfonic acid group and an epoxy group with a silane compound (ii). It was found that the concentration of sulfonic acid groups derived from) may be concentrated (inclined) in such a manner that the concentration gradually increases from the inside of the cured film toward the outer surface. It is presumed that the hydrophilicity is increased according to the degree of this inclination.
  • the main principle for forming this inclined structure is “when the previously added polar solvent is evaporated, the hydrophilic polymer (i) having a sulfonic acid group is accompanied by evaporation of the polar solvent and concentrated on the surface. And harden ".
  • the sulfonic acid group concentration on the outer surface in the direction opposite to the substrate is Sa
  • the sulfonic acid group concentration at an intermediate point between the interface contacting the substrate and the outer surface is Da
  • the weight of the present invention having a sulfonic acid group is The gradient of the combined (i) is represented by a sulfonic acid group concentration ratio (Sa / Da).
  • a large concentration ratio (Sa / Da) of sulfonic acid groups indicates that many sulfonic acid groups are concentrated on the outer surface of the cured film. This means that the greater the sulfonic acid group concentration ratio (Sa / Da), the higher the hydrophilicity of the cured film, and the more advantageous the use of the film of the present invention as a hydrophilic film.
  • the “intermediate point between the interface in contact with the substrate and the outer surface” is usually a point where the depth from the outer surface is 1 ⁇ 2 of the film thickness toward the interface in contact with the substrate ( In this specification, this point is also referred to as “a point at which the film thickness is 1 ⁇ 2”.)
  • the phrase "sulfonic acid group” and “sulfonic acid group concentration”, respectively, - means "concentration of the -SO 3 M group""SO 3 M group” and.
  • the gradient ⁇ concentration ratio of sulfonic acid (Sa / Da) ⁇ of the membrane of the present invention is usually in the range of 2 to 1000, preferably in the range of 3 to 100, more preferably in the range of 4 to 60. More preferably, it is in the range of 5 to 50. In any case, the lower limit value is more preferably 10 or more.
  • the inclination is less than 2
  • the water contact angle exceeds 30 ° and the hydrophilicity tends to decrease.
  • the reaction (networking) between the silanol group of the silane compound (ii) and the highly hydrophilic polymer (i) tends to be incomplete, and the toughness, transparency, and durability ( (Hydrophilic sustainability) tends to decrease.
  • the inclined cured film exhibits higher hydrophilicity.
  • more hydrophilic polymer (i) is required, and as a result
  • the crosslink density is lowered, and the hardness, scratch resistance, abrasion resistance, durability (hydrophilicity retention) and the like tend to be lowered, which is less preferable than the case of being inclined.
  • the composition according to the present invention is a polymerizable composition comprising, as essential components, a polymer (i) highly hydrophilicized by a sulfonic acid group, and a silane compound (ii) that reacts with the polymer (i).
  • the solvent used in the present invention may be any solvent as long as the components constituting the composition can be homogenized or dispersed, and these may be used alone or in admixture of two or more.
  • a highly polar solvent having a high SP value (solubility parameter ⁇ )
  • the solvent is used in combination with a solvent having an SP value of 9.4 or more and has a lower boiling point (evaporation rate) Is preferred).
  • the SP value (solubility parameter ⁇ ) (cal / cm 3 ) 1/2 is It is calculated by the following formulas (1) to (5).
  • (1) latent heat of vaporization per mol Hb 21 ⁇ (273 + Tb) [unit: cal / mol], Tb: boiling point of solvent (° C.)
  • the solubility parameter ⁇ (cal / cm 3 ) 1/2 is less than 9.4, the above-described interaction is weakened, and thus the above-described inclined structure is not sufficiently formed.
  • the solubility parameter ⁇ (cal / cm 3 ) 1/2 is preferably 9.4 or more, more preferably 10 or more, and 11 or more. Further preferred.
  • the gradient structure since the present invention is mainly cured by heating, the gradient structure must be formed and fixed (cured) by evaporating the solvent according to the heating conditions (temperature, time, catalyst, curing material, air volume, etc.). . Therefore, in the point of proceeding curing while forming the above-described inclined structure, the solvent tends to be selected using the boiling point (evaporation rate) as a guide in accordance with the curing temperature. Specifically, a solvent having a boiling point of 30 to 300 ° C., a solvent having a boiling point of 40 to 250 ° C. is more preferable, and a solvent having a boiling point of 50 to 210 ° C. is more preferable. In the case of a mixed solvent containing two or more of the above solvents, the maximum boiling point of these mixed solvents may be in the above range.
  • Examples of the compound having a solubility parameter ⁇ (cal / cm 3 ) 1/2 of 9.4 or more and a boiling point of 50 to 210 ° C. that can be used as the solvent include: Methanol, ethanol, 1-propanol, IPA (isopropanol), 1-butanol, isobutanol, 2-butanol, 1-pentanol, cyclohexanol, 2-methoxyethanol, 2-ethoxyethanol, 1-methoxy-2-propanol, Alcohols such as tetrahydrofurfuryl alcohol, ethylene glycol monoacetate, benzyl alcohol, ethylene glycol, 1.2-propylene glycol; Ketones such as cyclohexanone, 2-methylcyclohexanone, acetone; Carboxylic acids such as formic acid, acetic acid, propionic acid; Carboxylic acid esters such as methyl acetate and ethylene glycol diacetate; Ethers such as dioxane
  • ⁇ 21.4 (cal / cm 3 ) 1/2 ⁇ water or alcohol having the highest solubility parameter ⁇ is preferable.
  • these alcohols methanol, ethanol, 1-propanol, 2-methoxyethanol (EGM), 2-ethoxyethanol, 2-methoxypropanol (PGM), 1-butanol, 1-pentanol, 2-methyl-1- Primary alcohols such as butanol and 1-pentanol tend to be preferable, and these alcohols are used alone, but are preferably used by mixing with water.
  • the above compounds having a solubility parameter ⁇ (cal / cm 3 ) 1/2 of 9.4 or more contained in the solvent may be used singly or in combination of two or more.
  • the solvent is a mixed solvent containing two or more compounds
  • at least one of the solvents only needs to satisfy the conditions of the solubility parameter.
  • the solubility parameter of the one solvent contained in the mixed solvent satisfies the above conditions
  • the hydrophilic sulfonic acid group derived from the polymer (i) and the one solvent have a certain interaction. Therefore, when the mixture is applied to the substrate and the solvent is removed from the mixture, the surface of the applied mixture that comes into contact with the outside air is accompanied with the one solvent and has a hydrophilic sulfonic acid group. This is because the union (i) does not change, and as a result, hydrophilic sulfonic acid groups are concentrated on the surface.
  • the solubility parameter ⁇ (cal / cm 3 ) 1/2 of the solvent having the highest boiling point contained in the mixed solvent is 9.4 or more. Even if it is a mixed solvent having a solubility parameter of 9.4 or more, it is better to use a solvent having a solubility parameter as high as possible (high polarity). Further, it is preferable that the solubility parameter ⁇ (cal / cm 3 ) 1/2 of the high-boiling side solvent is higher than that of the low-boiling side solvent because it is easy to be inclined.
  • the weight ratio of the solvent having the highest solubility parameter / other solvent is preferably 99.9 / 0.1 to 1/99, more preferably 99/1. It is in the range of ⁇ 10 / 90, more preferably 98/2 to 30/70.
  • a mixed solvent with water it is a low-polarity solvent in which a solvent other than water is separated from water, the amount of water added is large, and the evaporation rate is faster than necessary (low boiling point).
  • the applied composition of the present invention tends to form water droplets, and a transparent and smooth film may not be obtained due to a decrease in leveling properties.
  • the weight mixing ratio of the solvent other than water / water is relatively preferably in the range of 80/20 to 1/99, and 70/20 to 5 / The range of 95 is more preferable, and the range of 60/40 to 10/90 is more preferable.
  • Examples of the method for selecting the type of solvent other than water to be mixed with water include a method for selecting a highly polar solvent having a solubility parameter ⁇ (cal / cm 3 ) 1/2 of 9.4 or more.
  • a solvent having an evaporation rate ratio R in the range of 0.3 to 1.5 is more preferable.
  • the evaporation rate ratio R is calculated by the following simple calculation formulas (A) to (B).
  • (A) Evaporation rate saturated vapor pressure at drying temperature (mmHg) ⁇ ⁇ (molecular weight)
  • Evaporation rate ratio with respect to water R evaporation rate of solvent other than water / water evaporation rate
  • the evaporation rate of water at 50 ° C. is calculated to be 92.6, which is typical when solvent drying is performed at 50 ° C.
  • the solvent evaporation rate ratio R is calculated as follows.
  • a —SO 3 M group M represents a hydrogen atom, an alkali metal, an alkaline earth metal, or an ammonium ion formed on a substrate and Si—O—Si is formed.
  • Si-O-Si structure is detected at 1090 ⁇ 1010 cm -1 by IR
  • Si-O-C structure similarly may be detected at approximately 1100 ⁇ 1200 cm -1 and near 800 ⁇ 810 cm -1 .
  • the gradient ⁇ the sulfonic acid concentration ratio (Sa / Da) ⁇ of the membrane of the present invention is usually in the range of 2 to 1000, preferably in the range of 3 to 100, more preferably in the range of 4 to 60. Yes, more preferably in the range of 5 to 50, and in any case, the lower limit value is more preferably 10 or more.
  • the film of the present invention has hydrophilicity and has a Si—O—Si structure or a Si—O—C structure, and thus has excellent hardness, wear resistance, weather resistance, and the like.
  • various known compounds such as known additives and known modifiers may be added to the composition of the present invention.
  • ultraviolet absorbers and HALS for further improving weather resistance
  • antioxidants for improving heat resistance or preventing deterioration and radical scavengers
  • silica particles for improving wear or imparting toughness
  • Color correction agents such as acrylic resin, polyester resin, polyurethane resin, phenolic resin, polyolefin resin, organic and inorganic fillers (fillers) such as glass fiber, pigments and dyes for coloring, and bluing agents for complementary colors
  • high Metal oxides such as titanium oxide for refractive index and sulfur compounds such as thioepoxy compounds, fragrances for improving odors, leveling agents and anti-sagging materials for improving coatability, and modification of cured films
  • a hydrophilic cured film can be obtained by curing the composition of the present invention thus obtained. Furthermore, the laminated body by which the hydrophilic cured film was laminated
  • Examples of the substrate used in the present invention include PMMA, polycarbonate (PC), PET, ABS, triacetylcellulose (TAC), polyvinyl chloride (vinyl chloride), polyethylene (PE), polypropylene (PP), and polylactic acid (PLA).
  • PC polycarbonate
  • PET PET
  • ABS triacetylcellulose
  • TAC triacetylcellulose
  • PVC polyvinyl chloride
  • PE polyethylene
  • PP polypropylene
  • PLA polylactic acid
  • Poly (thio) urethane resin, poly (thio) urea resin, and (thio) epoxy resin organic substrates glass, iron, stainless steel, aluminum, nickel, zinc, gold, silver, copper, metal oxidation Materials, ceramics, cement, slate, various inorganic base materials made of marble, granite, mortar, etc., SMC (sheet molding compound) that combines inorganic materials such as glass fiber and calcium carbonate and unsaturated polyester resin Composite base materials such as the above, organic base materials, inorganic base materials, And a laminate substrate in which composite substrates are laminated, a substrate obtained by metal plating the above-mentioned various substrate surfaces, a substrate treated with a chemical such as a zinc phosphate aqueous solution, a corona-treated substrate, a plasma-treated substrate, Examples include surface-treated substrates such as glow-discharge treated substrates, frame-treated substrates, and ittro-treated substrates, and coated substrates obtained by coating the above-mentioned various substrates.
  • an optical article used for optical articles and optical devices represented by glasses, cameras, lenses, display devices (displays), projection devices, etc. for example, on the surface of a transparent material, it is transparent and has hardness
  • a substrate coated or laminated with an acrylic or silica-based material with a high refractive index, a substrate having an antireflection layer coated or laminated with a low refractive index material to achieve high transparency, or a low refractive index material examples thereof include a base material having a multilayer antireflection layer in which high refractive index materials are alternately coated or laminated, or a glazing base material imparted with antireflection properties by forming fine irregularities on the surface.
  • the polymer composition is a unit ratio a / b between the structural unit represented by the general formula (1) and the structural unit represented by the general formula (2).
  • unit ratio (1) / (2) is preferably 99/1 to 55/45.
  • the converted weight ratio of the polymer (i) to the silicon compound (ii) is preferably 99/1 to 30/70 in (i) / (ii).
  • a treated base material that has been subjected to primer treatment, undercoat treatment, or anchor coat treatment may be used.
  • Examples of the coating agent used in the primer treatment, undercoat treatment, and anchor coat treatment include, for example, polyester resins, polyamide resins, polyurethane resins, epoxy resins, phenol resins, (meth) acrylic resins, and polyvinyl acetate resins.
  • a coating agent containing a resin, a polyolefin resin such as polyethylene and polypropylene, or a copolymer or modified resin thereof, a resin such as a cellulose resin as a main component of the vehicle can be used.
  • the coating agent may be either a solvent type coating agent or an aqueous type coating agent.
  • modified polyolefin coating agent ethyl vinyl alcohol coating agent, polyethyleneimine coating agent, polybutadiene coating agent, polyurethane coating agent; polyester polyurethane emulsion coating agent, polyvinyl chloride emulsion coating agent, urethane Acrylic emulsion coating agent, silicone acrylic emulsion coating agent, vinyl acetate acrylic emulsion coating agent, acrylic emulsion coating agent; Styrene-butadiene copolymer latex coating agent, acrylonitrile-butadiene copolymer latex coating agent, methyl methacrylate-butadiene copolymer latex coating agent, chloroprene latex coating agent, polybutadiene rubber rubber latex coating agent, poly An acrylic ester latex coating agent, a polyvinylidene chloride latex coating agent, a polybutadiene latex coating agent, or a coating agent comprising a carboxylic acid-modified latex or dispersion of a resin
  • These coating agents can be applied by, for example, a gravure coating method, a reverse roll coating method, a knife coating method, a kiss coating method, etc. 0.005 g / m 2 to 5 g / m 2 .
  • polyurethane-based coating agents represented by trade names “Takelac TM ” and “Takenate TM ” (both manufactured by Mitsui Chemicals) are more preferable.
  • the polyurethane-based coating agent has a urethane bond in the main chain or side chain of the resin contained in the coating agent.
  • a polyurethane-type coating agent is a coating agent containing the polyurethane obtained by making polyol and isocyanate compounds, such as polyester polyol, polyether polyol, or acrylic polyol, react, for example.
  • polyester polyols such as condensation polyester polyols and lactone polyester polyols are mixed with isocyanate compounds such as tolylene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, norbornane diisocyanate methyl, and xylene diisocyanate.
  • isocyanate compounds such as tolylene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, norbornane diisocyanate methyl, and xylene diisocyanate.
  • the method of mixing the polyol compound and the isocyanate compound is not particularly limited.
  • the mixing ratio is not particularly limited, but if the isocyanate compound is too small, it may cause curing failure, so that the OH group of the polyol compound and the NCO group of the isocyanate compound are in the range of 2/1 to 1/40 in terms of equivalents. Is preferred.
  • silane coupling material may be added to the above polyol compound and the above isocyanate compound.
  • the base material in this invention you may include the base material surface by which the said surface activation process was carried out.
  • methods for applying the composition of the present invention to a substrate include, for example, a brush coating method, a spray coating method, a wire bar method, a bar coater method, a blade method, a roll coating method, a spin coating method, a dipping method, and other known methods.
  • a coating method is mentioned.
  • the coating amount can be appropriately set depending on the application, but the thickness of the hydrophilic film obtained after curing is usually in the range of 0.0001 to 100 ⁇ m, preferably 0.001 to 50 ⁇ m, more preferably 0.1 to 30 ⁇ m.
  • the thickness of the cured film tends to be relatively thick, and is generally in the range of 0.1 to 100 ⁇ m, preferably in the range of 0.5 to 50 ⁇ m, and more preferably 1 to 30 ⁇ m. It is applied in the range of
  • the material for the optical base material used is highly transparent and has no internal loss (scattering or the like) of transmitted light.
  • the AR (antireflection) layer or the like reduces reflection of light on the surface to achieve higher transparency.
  • a film of micron order or more is laminated on the antireflection layer as in general applications, reflection occurs on the surface of the laminated film and transparency is lowered. Therefore, the thickness of the cured film is extremely thin. In the direction.
  • a preferable film thickness range on an optical base material on which an antireflection film is laminated is, for example, in the range of 0.0001 to 0.5 ⁇ m (0.1 to 500 nm), and more.
  • the range is preferably 0.0005 to 0.2 ⁇ m (0.5 to 200 nm), and more preferably 0.001 to 0.1 ⁇ m (1 to 100 nm).
  • membrane which concerns on this invention is normally obtained by hardening
  • curing by heating is preferably exemplified.
  • the temperature for curing the composition of the present invention is approximately in the range of 0 to 300 ° C, preferably in the range of room temperature to 200 ° C, and more preferably in the range of 40 to 180 ° C.
  • the heat-curing time is usually in the range of 0.02 to 200 hours, preferably 0.1 to 8.0 hours, more preferably 0.3 to 4.0 hours.
  • the composition of the present invention can be cured by methods other than heating.
  • energy rays having a wavelength region of 0.0001 to 800 nm can be used as radiation.
  • the radiation is classified into ⁇ -rays, ⁇ -rays, ⁇ -rays, X-rays, electron beams, ultraviolet rays, visible light, and the like, and can be appropriately selected and used according to the composition of the mixture.
  • ultraviolet rays are preferable, and the output peak of ultraviolet rays is preferably in the range of 200 to 450 nm, more preferably in the range of 210 to 445 nm, still more preferably in the range of 220 to 430 nm, and particularly preferably in the range of 230 to 400 nm.
  • an ultraviolet lamp As the type of the ultraviolet lamp, an electrodeless UV (ultraviolet) lamp with less infrared and high illuminance is preferable to a normal electroded UV (ultraviolet) lamp. Further, when the above composition contains an ultraviolet absorber or a hindered amine stabilizer, it is preferable to use an ultraviolet lamp having a peak intensity at 240 to 270 nm in terms of output characteristics.
  • the atmosphere when the composition of the present invention is cured by heating or radiation may be an inert gas atmosphere such as nitrogen, but is preferably an air atmosphere.
  • the humidity of the atmosphere is preferably as low as possible because the surface of the cured film tends to be non-uniform under high humidity, but is preferably in the range of 20 to 70% RH, and in the range of 30 to 60% RH. More preferably, it is more preferably in the range of 40 to 60% RH.
  • the substrate is a film
  • a pressure-sensitive adhesive layer described later can be provided on the surface on which the film of the present invention is not formed, and a release film can be provided on the surface of the pressure-sensitive adhesive layer.
  • the adhesive layer is laminated on the other side of the base film
  • the laminated film having the film of the present invention is used as an antifogging film and an antifouling film, and glass, a mirror such as a bathroom, a display material surface of a display, a television, etc. It can be easily attached to signboards, advertisements, information boards such as information boards, signs for railways, roads, etc., outer walls of buildings, window glass and the like.
  • a well-known adhesive can be used.
  • the adhesive include acrylic adhesives, rubber adhesives, vinyl ether polymer adhesives, and silicone adhesives.
  • the thickness of the adhesive layer is usually in the range of 2 to 50 ⁇ m, preferably in the range of 5 to 30 ⁇ m.
  • the surface in contact with the outside air of the film may be covered with a coating material.
  • the film covered with the covering material and the laminate having the film can prevent the film from being damaged or soiled during transportation, storage, display, or the like.
  • the coating material examples include the above-mentioned “polymer (i) having a sulfonic acid group and an epoxy group of the present invention and a silane compound (ii), a known polyfunctional (meth) acrylate, a known polyfunctional epoxy compound, Purpose of avoiding polymerization inhibition due to oxygen in the case of adding a known polyfunctional vinyl compound, a known UV radical polymerization initiator, a known UV cationic polymerization initiator, etc., and curing by UV irradiation or EB irradiation.
  • the coating material is cured by irradiating with UV or EB radiation while the coating material is kept in close contact with the coating film, and the film of the present invention and the coating material are laminated on the base material. Therefore, it can also be used as the covering material for preventing scratches and dirt.
  • Examples of the material of the film preferably used as the coating material include, for example, polyvinyl alcohol (PVA), vinyl alcohol polymers such as ethylene / vinyl alcohol copolymer, polyacrylamide, polyisopropylacrylamide, polyacrylonitrile, and polycarbonate (PC). , Polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), polystyrene (PS), and biaxially oriented polypropylene (OPP).
  • PVA polyvinyl alcohol
  • vinyl alcohol polymers such as ethylene / vinyl alcohol copolymer
  • polyacrylamide polyacrylamide
  • polyisopropylacrylamide polyacrylonitrile
  • PC polycarbonate
  • PMMA Polymethyl methacrylate
  • PET polyethylene terephthalate
  • PS polystyrene
  • OPP biaxially oriented polypropylene
  • the laminate of the present invention can be made into laminates of various forms by devising the shape of the substrate.
  • the hydrophilic film and laminate obtained by the present invention can be used in the form of films, sheets, tapes and the like.
  • membrane can also be used as a primer layer.
  • a monomer composition containing an organic and inorganic compound added as necessary is polymerized in a mold having various shapes to obtain a cured product having various shapes, such as a film or a molded body. Etc. can also be obtained.
  • the film of the present invention is excellent in hydrophilicity, durability, abrasion resistance, and weather resistance, and has high antifogging properties, antifouling properties, antistatic properties, and quick drying properties (water evaporation).
  • the water contact angle of the membrane obtained by the present invention is usually 30 ° or less, preferably 20 ° or less, more preferably 10 ° or less.
  • a film having a water contact angle of not more than the above upper limit has high hydrophilicity and is easy to blend (wet) with water and is excellent as a hydrophilic material.
  • antifogging materials for example, antifogging materials, antifogging coatings (hereinafter also referred to as antifogging coatings), antifouling materials, antifouling coatings or self-cleaning coatings, antistatic materials, quick drying materials or quick drying coatings, and antistatic coatings or dust.
  • antifogging materials antifogging coatings
  • antifouling coatings or self-cleaning coatings antistatic materials
  • quick drying materials or quick drying coatings for example, antistatic coatings or dust.
  • the film of the present invention when used as an antifogging coat, water droplets spread on the film surface and a water film can be formed, so that the antifogging effect is excellent. It is excellent in antifouling effect because it can be removed by floating the dirt.
  • the film of the present invention is excellent in antistatic properties, and is also useful for antistatic materials, antistatic coatings, and dust adhesion preventing coatings.
  • the laminate obtained by the present invention is also excellent in hydrophilicity and durability, and is useful as an antifogging material, an antifouling material, an antistatic material and the like.
  • the laminate obtained by laminating the film of the present invention on a substrate made of a transparent material such as transparent resin and glass has transparency, hydrophilicity, antifogging property, antifouling property, and antistatic property. It can be used as a laminate having excellent properties, quick drying properties, anti-condensation properties, weather resistance, and abrasion resistance.
  • the membrane and laminate obtained by the present invention are materials for transportation equipment represented by automobiles, ships, aircrafts such as bodies, wheels, exterior materials, and interior materials; outer wall materials, inner wall materials, floor materials, furniture materials, Construction materials such as bathroom materials, bathroom materials, kitchen materials such as sinks, ventilation fans, range peripherals, toilet materials, piping materials, etc .; construction materials such as sound insulation boards installed on expressways; Clothing materials such as clothes, cloth and textiles; transparent materials such as window materials, mirrors, optical films, optical disks, contact lenses, goggles, reflective films and reflectors; glasses, sunglasses, cameras, lenses, antireflection films, display devices (Display devices such as touch panels, flat panels and electronic paper) Materials, projection device materials, optical materials such as shields; lamp materials and Lighting materials such as lighting materials; Industrial materials such as fins for cooling and heat exchange; Electrical and electronic materials such as electrical appliance materials and wiring materials; Printing materials such as inkjet recording plates and printing and printing primers; Cosmetic containers, etc. It can be used for many purposes such as daily necessities.
  • the structure of the polymer (i) was evaluated as follows.
  • the sample formed by forming the coating layer 20 on the base material 10 is cut obliquely, and using a time-of-flight secondary ion mass spectrometer (TOF-SIMS), Sulfonic acid concentration (Sa) on the outer surface;
  • TOF-SIMS time-of-flight secondary ion mass spectrometer
  • Da Sulfonic acid concentration
  • the gradient (Sa / Da) represented by the concentration ratio was determined.
  • the film according to the present invention constitutes the coat layer 20.
  • the sulfonic acid concentration was measured using a time-of-flight secondary ion mass spectrometer (TOF-SIMS) at a point of thickness 1 ⁇ 2, the inner surface of the coat layer in contact with the substrate 10.
  • TOF-SIMS time-of-flight secondary ion mass spectrometer
  • ATBS acrylamide-t-butylsulfonic acid
  • PH neutralized
  • ATBS-K A potassium salt
  • the neutralized mass was heated to reflux (internal temperature 63 ° C.), 3.43 g (0.024 mol) of glycidyl methacrylate (hereinafter abbreviated as GMA) and t-butylperoxy-2-ethylhexanoate ( (Hereinafter abbreviated as perbutyl-O.) 0.09 g of a mixed solution was charged, and polymerization was carried out by mixing and stirring for 4 hours while heating under reflux.
  • GMA glycidyl methacrylate
  • perbutyl-O. t-butylperoxy-2-ethylhexanoate
  • Example 1 4.11 g of water was added to 1.00 g of the polymer “CH110831” of Production Example 1 and mixed and dissolved, then 4.01 g of 2-methoxyethanol (hereinafter abbreviated as EGM), tetraethoxysilane (hereinafter abbreviated as TEOS) 3 0.02 g, 0.5 wt g of 5 wt% -sulfuric acid was added and mixed and stirred for 1 hour. Finally, a colorless and transparent coating composition was obtained through a filter having an average pore size of 0.5 ⁇ m. In this coating composition, the weight ratio of polymer / TEOS (as SiO 2 ) is 1 / 0.9 (53/47).
  • “as SiO 2 ” is the weight of TEOS in terms of (weight of TEOS ⁇ molecular weight of SiO 2 / molecular weight of TEOS) converted to SiO 2.
  • the above coating composition was applied to the surface of a well-cleaned glass plate (surface water contact angle ⁇ 8 °) with a bar coater # 30, pre-dried at 50 ° C. for 5 minutes, and then at 150 ° C. for 1 hour. Heat-cured to form a coating film of about 5 ⁇ m on the glass surface. After cooling to room temperature, the coating surface was washed with water and dried to evaluate the coating film.
  • the film thickness was measured by cutting the sample in the film thickness direction and observing the cross section with an electron microscope.
  • Example 2 75.0 g of water was added to 1.0 g of the polymer “CH110831” of Production Example 1 and mixed and dissolved, and then 58.0 g of ethanol, 17.4 g of TEOS, and 0.9 g of 2N-hydrochloric acid (7.3 wt%) were added. The mixture was stirred for an hour, and finally a colorless and transparent coating composition was obtained through a filter having an average pore size of 0.5 ⁇ m. In this coating composition, the weight ratio of polymer / TEOS (as SiO 2 ) is 1/5 (17/83).
  • a coating film was formed in the same manner as in Example 1 except that the above coating solution was applied with a bar coater # 30.
  • Table 2 shows the evaluation of the coating film in which the coating surface was washed with water after cooling to room temperature and dried to form a film of about 2 ⁇ m on the glass plate surface.
  • Example 2-2 The coating composition of Example 2 was tested in the same manner as in Example 2 except that it was applied with a bar coater # 60 (film thickness of about 4 ⁇ m as dry). The results of the scratch test and the Taber abrasion test are listed in Table 3.
  • Comparative Example 2-2 The coating composition of Comparative Example 2 was tested in the same manner as Comparative Example 2 except that it was applied with a bar coater # 60 (film thickness of about 4 ⁇ m as dry). The results of the scratch test and the Taber abrasion test are listed in Table 3.
  • the obtained coating solution having a solid content NV of 50 wt% was applied to a substrate (made by Takiron Co., Ltd., polycarbonate plate, 100 mm long ⁇ 100 mm wide ⁇ 2 mm thick) with a bar coater # 06, and immediately heated to 40-50 ° C. Charge in a wind dryer for 2-3 minutes to evaporate the solvent. Finally, UV conveyor (Fusion UV Systems Japan Co., Ltd., electrodeless discharge lamp H bulb, conveyor speed 6m / min, integrated light quantity 900mJ / cm 2 ) was passed, and a transparent film having a film thickness of about 4 ⁇ m was formed on the surface of the substrate. Finally, the surface was washed with running water, dried with an air gun, and then subjected to a haze measurement after an abrasion resistance test and a Taber abrasion test.
  • Example 3 Using the F1021 polymer obtained in Production Example 2, coating was performed with a bar coater # 60, and the test was performed in the same manner as in Example 1. A xenon weather resistance test was performed on the coating plate on which a hydrophilic film of about 4 ⁇ m was formed on the surface of the glass plate.
  • Measuring device Toyo Seiki Seisakusho "Ci40000" Xenon weathering test conditions
  • Light source xenon lamp, radiation intensity: 60 W / m 2 (300 to 400 nm)
  • BPT 63 ° C
  • Rain 18/120 minutes
  • SEMA-Na 2-sulfoethyl methacrylate sodium salt
  • this neutralized mass was heated to reflux (internal temperature 63 ° C.), 38.8 g (0.273 mol) of GMA, 0.13 g of perbutyl-O as a polymerization initiator, and methanol 77 degassed under reduced pressure.
  • the mixed solution consisting of .8 g was charged in 3 portions over 2 hours, and then mixed and stirred for 4 hours under heating and refluxing for polymerization.
  • this neutralized mass was heated to reflux (internal temperature 63 ° C.), 16.2 g (0.114 mol) of GMA, 0.11 g of perbutyl-O as a polymerization initiator, and methanol 32. degassed under reduced pressure. The mixed solution of 5 g was charged in 3 portions over 2 hours, and then mixed and stirred for 4 hours under heating and refluxing to carry out polymerization.
  • this neutralized mass was heated to reflux (internal temperature 63 ° C.), and a mixed solution of 5.14 g (0.036 mol) of GMA and 0.13 g of perbutyl-O as a polymerization initiator was charged. The mixture was stirred for 4.5 hours for polymerization.
  • No unit with an epoxy group opened was not detected.
  • this neutralized mass was heated to reflux (internal temperature 63 ° C.), and a mixed solution of 3.43 g (0.024 mol) of GMA and 0.24 g of perbutyl-O as a polymerization initiator and 4.4 g of methanol was used for 2 hours. Then, the mixture was divided into 3 portions, and then mixed and stirred for 4 hours under reflux with heating to carry out polymerization.
  • this neutralized mass was heated to reflux (internal temperature 63 ° C.), and a mixture of 1.14 g (0.008 mol) of GMA, 0.08 g of perbutyl-O as a polymerization initiator and 0.8 g of methanol was added for 2 hours. Then, the mixture was divided into 3 portions, and then mixed and stirred for 4 hours under reflux with heating to carry out polymerization.
  • this neutralized mass was heated to reflux (internal temperature 63 ° C.), and a mixed solution of 0.43 g (0.0029 mol) of GMA and 0.08 g of perbutyl-O as a polymerization initiator was charged. The mixture was stirred and polymerized for 6 hours.
  • this neutralized mass was heated to reflux (internal temperature 63 ° C.), and a mixture of 75.0 g (0.657 mol) of allyl glycidyl ether (hereinafter abbreviated as AGE) and 0.34 g of perbutyl-O as a polymerization initiator. was mixed and stirred for 5 hours under reflux with heating to carry out polymerization.
  • AGE allyl glycidyl ether
  • this neutralized mass was heated to reflux (internal temperature 63 ° C.), and a mixed solution of AGE 25.0 g (0.219 mol) and perbutyl-O 0.15 g as a polymerization initiator was charged and heated under reflux. The mixture was stirred and polymerized for 5 hours.
  • this neutralized mass was heated to reflux (internal temperature 63 ° C.), and a mixed solution of AGE 13.8 g (0.219 mol) and perbutyl-O 0.11 g as a polymerization initiator was charged and heated under reflux. The mixture was stirred and polymerized for 5.5 hours.
  • this neutralized mass was heated to reflux (internal temperature 63 ° C.), and a mixed solution of 2.75 g (0.024 mol) of AGE and 0.09 g of perbutyl-O as a polymerization initiator was charged and heated under reflux. The mixture was stirred for 4 hours to conduct polymerization.
  • the polymer / TEOS (as SiO 2 ) weight ratio in this composition is 1 / 1.5 (40/60).
  • the above coating composition was applied with a bar coater # 24, pre-dried at 50 ° C. for 5 minutes, and then 170 ° C. ⁇ 1 hour. And a coating film of about 3 ⁇ m was formed on the glass surface. After cooling to room temperature, the coating surface was washed with water to evaluate the film.
  • Examples 5 to 18 Production of cured films using sulfonic acid epoxy polymers produced in Production Examples 1 to 14] 36.3 g of water was added to 6.3 g of the polymers obtained in Production Examples 1 to 14 and mixed and dissolved, and then 31.3 g of EGM (2-methoxyethanol), 21.7 g of TEOS (tetraethoxysilane), and 5 wt% 5.6 g of sulfuric acid was added, mixed for 30 minutes, and passed through a filter having an average pore diameter of 0.5 ⁇ m to obtain a colorless and transparent coating composition having a solid content (polymer + SiO 2 ) of 12.6 wt%.
  • EGM 2-methoxyethanol
  • TEOS tetraethoxysilane
  • sulfuric acid was added, mixed for 30 minutes, and passed through a filter having an average pore diameter of 0.5 ⁇ m to obtain a colorless and transparent coating composition having a solid content (polymer + SiO 2 ) of 12.6 wt%.
  • the polymer / TEOS (as SiO 2 ) weight ratio in this composition is 1/1 (50/50).
  • the above coating composition was applied to the surface of a well-washed blue plate glass plate (surface water contact angle ⁇ 8 °) with a bar coater # 16, pre-dried at 50 ° C. for 3 minutes, and then 150 ° C. ⁇ 1 By heating for a time, a coating film of about 2 ⁇ m was formed on the glass surface. After cooling to room temperature, the coated surface was washed with water, dried with an air gun, and the film was evaluated.
  • Examples 19 to 21 mixing ratio of silica
  • the test was conducted in the same manner as in the above (Examples 5 to 18) by changing the compounding ratio of the CH110901 polymer obtained in Production Example 6 and TEOS (as SiO 2 ).
  • Example 22 Coating 1 on optical base material having antireflection layer
  • 5.0 g of water was added to 1.0 g of the CH110901 polymer obtained in Production Example 6 and mixed and dissolved, then 47.3 g of EGM (2-methoxyethanol), 2.6 g of TEOS (tetraethoxysilane), and 5 wt% sulfuric acid.
  • 2.5 g was added, mixed for 30 minutes, and passed through a filter having an average pore size of 0.5 ⁇ m to obtain a colorless and transparent coating composition having a solid content of 3.0 wt% (polymer + TEOS (as SiO 2 )).
  • the polymer / TEOS (as SiO 2 ) weight ratio in this composition is 4/3 (57/43).
  • Example 22 uses a highly transparent material (glass) that has almost no internal loss (scattering, etc.) of transmitted light.
  • the AR (antireflection) layer reflects the surface light. Has a reduced structure. When a film of micron order or more is laminated on this antireflection layer as in general applications, it is expected that the transparency is greatly lowered due to reflection on the surface of the laminated film.
  • Example 22 in order to suppress the reflection of the newly laminated hydrophilic film, the hydrophilic film was cured and laminated with an extremely thin film of 20 to 80 nm. As a result, reflection on the surface of the hydrophilic film was suppressed, and a laminate having high transparency (which does not impair antireflection properties) and high hydrophilicity that can be sufficiently used as an optical application could be obtained.
  • Example 23 Coating 2 on optical system substrate having antireflection layer
  • Preparation Mitsui Chemicals MR-8A TM 50.6 g of optics substrate, MR-8B1 TM 23.9g, MR -8B2 TM 25.5g, dibutyl tin dichloride 0.035 g, UV absorber (Kyodo Chemical Co., Ltd., trade 1.5 g of name biosorb 583) and 0.1 g of an internal mold release agent (trade name MR internal mold release agent, manufactured by Mitsui Chemicals) were mixed and dissolved to obtain a uniform solution.
  • an internal mold release agent trade name MR internal mold release agent, manufactured by Mitsui Chemicals
  • this uniform solution After defoaming this uniform solution under reduced pressure of 400 Pa for 1 hour, it was filtered through a 1 ⁇ m PTFE filter, and the filtrate was poured into a mold comprising a glass mold and a tape.
  • the mold mold into which the liquid was injected was put into a polymerization oven, and gradually heated from 25 ° C. to 120 ° C. over 21 hours to be cured.
  • the MR-8 TM plastic lens thus obtained has a refractive index (ne) of 1.60, an Abbe number ( ⁇ e) of 40, a specific gravity of 1.29, and a heat resistance of 90 ° C. or more. It had excellent physical properties.
  • a hard multi-coat having a sandwich structure of a layer mainly composed of SiO 2 / a layer mainly composed of ZrO 2 and the surface layer being a layer mainly composed of SiO 2 (Antireflection hard coat) was laminated to obtain an MR-8 TM plastic lens having an antireflection layer on the surface.
  • composition To 0.63 g of CH110831 polymer obtained in Production Example 1, 3.52 g of water was added and mixed and dissolved, then 218.0 g of EGM (2-methoxyethanol), 1.63 g of TEOS (tetraethoxysilane), Then, 0.43 g of 5 wt% sulfuric acid was added and mixed for 30 minutes, passed through a filter having an average pore diameter of 0.5 ⁇ m, and a colorless transparent coating composition having a solid content of 0.5 wt% (polymer + TEOS (as SiO 2 )) was obtained. Obtained. The polymer / TEOS (as SiO 2 ) weight ratio in this composition is 4/3 (57/43).
  • the coating composition obtained above was applied on the surface (AR layer) of an MR-8 TM spectacle lens having an AR layer (antireflection layer) with a spin coater (rotation speed 4000 rpm). And cured by heating in an oven at 80 ° C. for 3 hours. After cooling to room temperature, the coating surface was washed with water, dried with a 40 ° C. hot air dryer, and the film was evaluated at room temperature. From observation with an electron microscope (SEM), a hydrophilic coating film of about 40 to 50 nm was formed on the AR layer.
  • SEM electron microscope
  • the obtained hydrophilic coated MR-8 TM spectacle lens was immersed in pure water and irradiated with ultrasonic waves (output 240 W, frequency 40 Hz) to evaluate the durability of the hydrophilic film (pure pure under test).
  • the water temperature was controlled at 25 ° C).
  • the above primer composition was applied by spray onto the surface of a Takiron polycarbonate plate and held in an oven at 120 ° C. for 10 minutes to cure the primer layer.
  • the above coating composition is applied to the surface of the primer layer with a bar coater # 50, pre-dried at 50 ° C. for 5 minutes, and then kept in an oven at 120 ° C. for 1 hour to form a coating film of about 6 ⁇ m on the primer layer. Formed. After cooling to room temperature, the coating surface was washed with water, and the film was evaluated.
  • the obtained hydrophilic film was transparent, had a water contact angle of 6 °, adhesion (cross-cut peeling) of 100/100, and was excellent in breath antifogging property and antifouling property.
  • the above coating composition was applied with a bar coater # 12 on a glass plate surface (water contact angle ⁇ 8 °) that had been washed well on the substrate, and pre-dried at 50 ° C. for 5 minutes, and then 150 ° C. Holding in an oven for 1 hour, a coating film of about 1.5 ⁇ m was formed on the surface of the glass plate. After cooling to room temperature, the coating surface was washed with water, and the film was evaluated.
  • the above coating composition was applied with a bar coater # 24 on a glass plate surface (water contact angle ⁇ 8 °) that had been washed well on a substrate, and pre-dried at 50 ° C. for 5 minutes, and then 150 ° C. Holding in an oven for 1 hour, a coating film of about 1.5 ⁇ m was formed on the surface of the glass plate. After cooling to room temperature, the coating surface was washed with water, and the film was evaluated.
  • the above primer composition was applied with a bar coater # 2 on a glass plate surface (water contact angle ⁇ 8 °) that had been washed well on the substrate, and held in an oven at 150 ° C. for 10 minutes. An approximately 0.06 ⁇ m primer layer was formed thereon.
  • the above coating composition was applied in the same manner as in Example 26, and the film was evaluated.
  • the above coating composition was applied with a bar coater # 12 on a glass plate surface (water contact angle ⁇ 8 °) that had been well coated on the substrate, pre-dried at 50 ° C. for 5 minutes, and then irradiated with UV. and (electrodeless discharge lamp H bulb, illuminance 800 mW / cm 2, accumulated light quantity 390mJ / cm 2), then held for 1 hour to 0.99 ° C. oven to form a coating film of about 1.5 ⁇ m on a glass plate surface. After cooling to room temperature, the coating surface was washed with water, and the film was evaluated.
  • the obtained hydrophilic film was transparent, had a water contact angle of 5 °, adhesion (cross-cut peeling) of 100/100, and was excellent in breath antifogging property and antifouling property.
  • Base material 20 Coat layer 30: Cutting direction 40: Coat layer surface 50: Inside of coat layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Paints Or Removers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Laminated Bodies (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 本発明は、-SO3M基とエポキシ基を有し、該Mが水素原子、アルカリ金属、アルカリ土類金属、またはアンモニウムイオンを表される重合体(i)とシラン原子に結合した水酸基、アルコキシ基、またはハロゲン原子を2個以上有するシラン化合物(ii)を含む組成物、および、これを硬化して得られた親水性膜を提供する。本発明の親水性膜は、親水性、耐久性、および耐摩耗性・耐候性に優れ、高い防曇性、防汚性、帯電防止性、速乾性(水の蒸発)を有する。従って、本発明の親水性膜を基材に積層してなる各種積層体も提供することができる。

Description

組成物及びそれからなる膜
 本発明は、防曇性、防汚性、帯電防止性を備えた耐摩耗性・耐候性に優れた親水性膜とそれを得るための重合性組成物およびその用途に関する。
 近年、プラスチック表面、ガラス表面などの基材表面に発生する曇り、さらには汚れに対する改善要求が強まっている。
 この曇りの問題を解決する方法として、アクリル系オリゴマーに反応性界面活性剤を加えた防曇塗料が提案されており、この防曇塗料から得られる硬化膜は親水性と吸水性が向上するとされている(非特許文献1)。また、例えば汚れの問題を解決する方法として、表面の親水性を向上させて、外壁等に付着した汚れ(外気疎水性物質等)を降雨または散水等によって浮き上がらせて効率的に除去するセルフクリーニング性(防汚染性)を有する防汚染材料が注目されている(非特許文献2、3)。
 本発明者らは、これらの「曇り」および「汚れ」の課題を完全に克服するための提案としてアニオン性親水基を表面に傾斜(集中化)させる単層膜を提案した(特許文献1)。この発明によって得られる親水性膜は、透明で親水性が極めて高く、防曇性、防汚性、帯電防止性、速乾性(付着水の乾燥速度が速さ)、並びに耐薬品性に優れ、なおかつ硬くて擦傷性も優れるものである。しかし、本発明者らの検討によれば耐磨耗性および耐候性において不十分であることがわかった。
 一般的に、耐候性に優れ表面の耐摩耗性向上させる方法として無機化合物をコートする方法が知られる。代表的例としては、ゾルゲル反応によるシリカ化合物を眼鏡レンズのハードコートとして使用した例が挙げられる(非特許文献4)。
 シリカコートは構造が密のため非常に硬く磨耗性はガラス並みに達するが、反面、割れ易かったり、染色できなかったり、汚れが付着されやすく固着し易いといった課題等がある。これらを解決する方法として従来より様々な提案が行われている。例えば、染色性および靭性を付与する方法として、シリカにメラミン多価アルコール縮合物とエポキシ基を有するシラン化合物を配合する方法(特許文献2)、シリカにエポキシ化合物とアルミニウム錯体を配合する方法(特許文献3)、シリカに水酸基を有するアクリル系ポリマーを配合する方法(特許文献4)が提案されている。
 親水化して防曇性を付与する方法として、シリカにスチレン系スルホン酸ポリマーを配合する方法(特許文献5)が提案されている。
国際公開第2007/064003号 特開昭56-22365号公報 特開昭61-166824号公報 特開平06-166847号公報 特開平11-021512号公報
東亜合成研究年報、TREND1999年 2月号、39~44頁 高分子,44(5),307頁、1995年 未来材料,2(1),36-41頁、2002年 プラスチックレンズの技術と応用,165-166頁,シーエムシー出版,2003年6月30日発行
 前記特許文献5に記載された提案は親水性が高くなりやすく好ましい提案であるが、ポリマーが膜から離脱し易く、水によって親水性が低下する傾向にあり、特に膜厚が厚くなるほど顕著になり、実際に防曇性および防汚性(雨水等によるセルフクリーニング)を要求される場面に於いて使用に耐え難いといった課題を抱えていることが、本発明者らの検討でわかってきた。本発明の目的は、親水性、耐摩耗性のバランスに優れ、水による親水性の低下が少なく、さらに耐候性にも優れた親水性膜を提供することにある。
 本発明者らは、上記の課題を解決すべく検討を重ねた結果、シラノールとの反応性を有するエポキシ基と親水性のスルホン酸基とを有するポリマーとシラン化合物とをゾルゲル反応によって反応させた硬化膜が、親水性、耐摩耗性のバランスに優れ、水による親水性の低下が少なく、さらに耐候性にも優れた親水性膜を提供できることを見出し、本発明に到達した。
 即ち、本発明は、次の[1]~[14]に関する。
 [1] -SO3M基とエポキシ基を有し、該Mが水素原子、アルカリ金属、アルカリ土類金属、またはアンモニウムイオンを表される重合体(i)と、
 シラン原子に結合した水酸基、シラン原子に結合したアルコキシ基、およびシラン原子に結合したハロゲン原子からなる群より選ばれる基または原子を合計2個以上有するシラン化合物(ii)
を含む組成物。
 [2] 前記重合体(i)が、下記一般式(1)で表される構成単位と下記一般式(2)で表される構成単位を有する重合体である請求項1記載の組成物:
Figure JPOXMLDOC01-appb-C000003
 (一般式(1)および(2)中、
 R1およびR2は独立して水素原子またはメチル基を表し、
 Mは水素原子、アルカリ金属、アルカリ土類金属、またはアンモニウムイオンを表し、
 ユニット比a/b=1000/1~1/1000であり、
 A1は、(Q1)f(P1)で表され、
  Q1は-COO-、-CONH-、置換基を有していても良いフェニレン基から選ばれ、
  P1は単結合または、エーテル構造を有し且つ炭素数1~15である2価以上の、炭化水素基からなる群より選ばれ、
  fは0又は1であり、hは1~5であり、
 A2は、(Q2)g(P2)で表され、
  Q2は-COO-、炭素数1~5の2価以上の炭化水素基、置換基を有していても良いフェニレン基、-O-から選ばれ、
  P2は、単結合、-X-P3-、-P4-Y-、-P5-からなる群より選ばれ、
   P3~P5は、それぞれ独立して、エーテル構造を有し且つ炭素数1~15である2価以上の、炭化水素基を表し、
   Xは酸素、硫黄または-COO-を表し、
   Yは酸素又は硫黄を表し、
  gは0または1であり、kは1~5であり、
  gが1でQ2が-O-または-COO-のとき、P2は-X-P3-ではない。)。
 [3] 前記一般式(1)において、A1が、単結合,-CH2-,-C6H4-,-COOCH2-,-COOCH2CH2-,-COOCH2CH2CH2-,-CONH-C(CH3)2-CH2-,-CONH-CH(CH3)-CH2-,-CONH-CH2-,-CONH-CH2CH2-,または-CONH-CH2CH2CH2-で表され、且つ、
 前記一般式(2)において、A2が、単結合,-CH2-,-C6H4-,-O-,-CH2-O-,-CH2-O-CH2-,-C6H4-O-,-C6H4-O-CH2-,-COO-,-COOCH2-,-C6H4-COO-,または-C6H4-COO-CH2-で表される
前記[2]記載の組成物。
 [4] 前記重合体(i)の、GPCにより測定した重量平均分子量が300~3,000,000である前記[1]記載の組成物。
 [5] 前記シラン化合物(ii)が下記一般式(3)で表される化合物である前記[1]記載の組成物:
Figure JPOXMLDOC01-appb-C000004
 (一般式(3)中、
 X1およびX2は、それぞれ独立して、水酸基、炭素数1~4のアルコキシ基、またはハロゲン原子を表し、
 R3~R6は、それぞれ独立して、水酸基、水素原子、炭素数1~4のアルキル基、ビニル基、フェニル基、炭素数1~4のアルコキシ基、またはハロゲン原子を表し、
 mは0~10000の整数を表す。)。
 [6] 前記重合体(i)と前記シラン化合物(ii)との換算重量比が99.1/0.1~0.1/99.9の範囲にある前記[1]記載の組成物。
 [7] 前記[1]~[6]のいずれかに記載の組成物を加熱硬化させて得られた膜。
 [8] 基材上に形成されたものである前記[7]記載の膜。
 [9] 外表面におけるスルホン酸濃度(Sa)と、前記基材に接する界面と外表面との中間地点におけるスルホン酸濃度(Da)との比(Sa/Da)が2~1000である前記[8]記載の膜。
 [10] 表面の水接触角が30°以下である前記[7]~[9]のいずれかに記載の膜。
 [11] 基材上に形成され、-SO3M基(Mは水素原子、アルカリ金属、アルカリ土類金属、またはアンモニウムイオンを表す。)と、Si-O-Si構造またはSi-O-C構造とを有する膜であって、当該膜の外表面のSO3M基濃度(Sa)と、該基材に接する界面と前記外表面との中間地点におけるSO3M基濃度(Da)の比(Sa/Da)が、2~1000である膜。
 [12] 前記比(Sa/Da)が、10~1000である前記[11]記載の膜。
 [13] 表面の水接触角が30°以下である前記[11]または[12]に記載の膜。
 [14] 前記[7]~[13]のいずれかに記載の膜を基材に積層してなる積層体。
 上記組成物を硬化させて親水性の膜が得られ、この膜が積層されて積層体が得られる。これらの親水性膜および積層体は、防曇材料、防汚材料、速乾性材料、帯電防止材料、およびアンダーコート材料等として用いることができる。
 本発明の膜は、親水性、耐摩耗性のバランスに優れ、水による親水性の低下が少なく、さらに耐候性にも優れている。従って、本発明の膜を基材等に積層してなる各種積層体も提供することができる。
本発明で用いられる重合体(i)を構成する一般式(1)で表される構造単位を与える、代表的な炭素-炭素二重結合を有する重合性官能基及びスルホン酸基を有する化合物での熱安定性比較データ(DSCチャート)を表す図。 実施例で得られたサンプルにおける傾斜度を測定する際の、サンプルの切断方法およびスルホン酸濃度測定部位を表す図。 実施例22で得られたARコートにおける反射率を表す図。 実施例22で得られたARコートにおける透過率を表す図。 実施例23で得られた親水性コーティング膜、および親水性コーティングに用いた基材における、反射率についての測定結果を表す図。
 本発明の膜は、通常、スルホン酸基とエポキシ基を有する重合体(i)とシラン原子に結合した水酸基、シラン原子に結合したアルコキシ基、およびシラン原子に結合したハロゲン原子からなる群より選ばれる基または原子を2個以上有するシラン化合物(ii)を含む重合性の組成物を、例えば加熱などの方法により硬化することによって得られる。このような本発明の膜は、親水性膜として機能しうる。
 スルホン酸基とエポキシ基を有する重合体(i)
 本発明では、本発明に係る組成物を構成する第1の成分として、-SO3Mで表される基(本発明において、単に「-SO3M基」と称する場合がある。)とエポキシ基を有し、該Mが水素原子、アルカリ金属、アルカリ土類金属、またはアンモニウムイオンを表される重合体(i)が用いられる。ただ、本明細書において、説明の都合上、このような重合体(i)を「スルホン酸基とエポキシ基を有する重合体(i)」と呼ぶこともある。また、本明細書において「スルホン酸基」という語は、別途の記載がない限り「-SO3M基」を指すものとして用いられることがある。
 本発明で用いられるスルホン酸基とエポキシ基を有する重合体(i)は、ウレタン反応による重合体形成、マイケル付加反応よる重合体形成、エステル化反応による重合体形成等さまざまな縮合または重合反応により形成してもよいが、重合体の純度および収率等の面から炭素-炭素二重結合を有する重合性官能基を含む単量体を重合反応させて、重合体(i)を得ることが好ましい。
 炭素-炭素二重結合を有する重合性官能基としては、例えば、
 ビニル基、アリル基、イソプロペニル基、スチリル基、α-メチルスチリル基などの重合性官能基が炭素原子と水素原子のみで構成される炭素-炭素二重結合を有する重合性官能基(下記のエーテル構造と炭素-炭素二重結合を有する重合性官能基、カーボネート構造と炭素-炭素二重結合を有する重合性官能基、エステル構造と炭素-炭素二重結合を有する重合性官能基、アミド構造と炭素-炭素二重結合を有する重合性官能基を除く)、
ビニルエーテル基、アリルエーテル基、アリルチオエーテル基などのエーテル構造と炭素-炭素二重結合を有する重合性官能基、
 ビニルカーボネート基、アリルカーボネート基、アリルチオカーボネート基などのカーボネート構造と炭素-炭素二重結合を有する重合性官能基、
 (メタ)アクリレート基、チオ(メタ)アクリレート基などのエステル構造と炭素-炭素二重結合を有する重合性官能基、
 (メタ)アクリルアミド基などのアミド構造と炭素-炭素二重結合を有する重合性官能基
が挙げられる。
 これらの中では、ビニル基、アリル基、スチリル基、ビニルエーテル基、アリルエーテル基、(メタ)アクリレート基、(メタ)アクリルアミド基が好ましい。

 一方、炭素-炭素二重結合を有する重合性官能基を重合反応させることにより重合体(i)を形成する場合、その側鎖にはスルホン酸基とエポキシ基、より正確には、-SO3Mで表される基(Mは、水素原子、アルカリ金属、アルカリ土類金属、またはアンモニウムイオンを表す。)とエポキシ基を少なくとも重合体(i)の1分子中に平均して1個ずつ含むのが通常であるが、その他に如何なる構造の側鎖が含まれても良い。例えば、スルホン酸基またはエポキシ基以外に水酸基を有する側鎖、カルボキシル基を有する側鎖、アルキル基を有する側鎖、アリール基を有する側鎖、エポキシ基が水で開環したヒドロキシ基を2固有する側鎖、エポキシ基がアルコールで開環したアルコキシ基とヒドロキシ基有する側鎖等が重合体(i)に結合されていても良い。
 スルホン酸基とエポキシ基を有する重合体(i)の好ましい形態としては、下記一般式(1)で表される構成単位と、下記一般式(2)であらわされる構成単位とを有する重合体を挙げることができる。
Figure JPOXMLDOC01-appb-C000005
 (一般式(1)および(2)中、
 R1およびR2は独立して水素原子またはメチル基を表し、
 Mは水素原子、アルカリ金属、アルカリ土類金属、またはアンモニウムイオンを表し、
 構成単位(ユニット)比a/b=1000/1~1/1000であり、
 A1は、(Q1)f(P1)で表され、
  Q1は-COO-、-CONH-、置換基を有しても良いフェニレン基から選ばれ、
  P1は単結合または、エーテル構造を有していても良く且つ炭素数1~15である2価以上の、炭化水素基からなる群より選ばれ、
  fは0又は1であり、hは1~5であり、
 A2は、(Q2)g(P2)で表され、
  Q2は-COO-、炭素数1~5の2価以上の炭化水素基、置換基を有していても良いフェニレン基、-O-から選ばれ、
  P2は、単結合、-X-P3-、-P4-Y-、-P5-からなる群より選ばれ、
   P3~P5は、それぞれ独立して、エーテル構造を有していても良く且つ炭素数1~15である2価以上の炭化水素基をあらわし、
   Xは酸素、硫黄または-COO-を表し、
   Yは酸素又は硫黄を表し、
  gは0または1であり、kは1~5であり、
  gが1でQ2が-O-または-COO-のとき、P2は-X-P3-ではない。)
 P1における、「エーテル構造を有していても良く且つ炭素数1~15である2価以上の、炭化水素基」とは、脂肪族炭化水素基、脂環族炭化水素基、芳香族炭化水素基のいずれでも良く、さらに直鎖状でも分岐状であってもよい。また例えばポリオキシエチレン鎖のように、エーテル構造を有する炭化水素基であっても良い。炭素数は1-15であるが、1-12であることがより好ましい。エーテル構造を含まない場合は炭素数1-10であることが好ましい。
 また炭化水素の価数は2以上であればよいが、通常2-6価、好ましくは2-4価、さらに好ましくは2-3価である。さらにP1においては、炭化水素基は置換基を有していても良い。特に置換基に制限はなく、水酸基、ハロゲン基(フルオロ基、クロロ基等)など用いることができる。
 P2における、P3,P4,P5はそれぞれ独立して、エーテル構造を有していても良く且つ炭素数1~15である2価以上の、炭化水素基である。当該炭化水素基は具体的にはP1と同じであり、脂肪族炭化水素基、脂環族炭化水素基、芳香族炭化水素基のいずれでも良く、さらに直鎖状でも分岐状であってもよい。また例えばポリオキシエチレン鎖のように、エーテル構造を有する炭化水素基であっても良い。炭素数は1-15であるが、1-12がより好ましい。エーテル構造を含まない場合は炭素数1-10が好ましい。
また炭化水素の価数は2以上であればよいが、通常2-6価、好ましくは2-4価、さらに好ましくは2-3価である。さらにP1においては、炭化水素基は置換基を有していても良い。特に置換基に制限はなく、水酸基、ハロゲン基(フルオロ基、クロロ基等)など用いることができる。
 Q2は-COO-、炭素数1~5の2価以上の炭化水素基、置換基を有していても良いフェニレン基、-O-から選ばれる。ここで炭素数1-5の2価以上の炭化水素基としては、例えばアルキレン基があげられ、具体的にはメチレン基、エチレン基、プロピレン基などが挙げられる。置換基を有しても良いフェニレン基においては、置換基はそれぞれ炭素数1~10、好ましくは1~6の炭化水素基であってもよく、また置換基同士が結合して環を形成しても良い。
 また、上記置換基は、水酸基、ハロゲン基(フルオロ基、クロロ基等)などや、炭素数1-10のアルコキシ基、チオアルコキシ基などであっても良い。
 ここで、上記一般式(1)として好ましい構造として、例えば、以下の態様が挙げられる:
 (1-1)R1が水素またはメチルであり、Q1が-COO-であり、f=1である(メタ)アクリレート構造を有するスルホン酸由来の構造;
 (1-2)R1が水素またはメチルであり、Q1が-CONH-であり、f=1である(メタ)アクリルアミド構造を有するスルホン酸由来の構造;
 (1-3)R1が水素またはメチルであり、Q1が置換基を有していても良いフェニレン基であり、f=1である、スチリル基またはα-メチルスチリル基を有するスルホン酸由来の構造;
 (1-4)R1が水素であり、f=0であるビニル基を有するスルホン酸由来の構造。
 なお、上記(1-1)~(1-4)に挙げられる構造を含め、上記一般式(1)においては、hは1~5、好ましくは1~3、より好ましくは1~2であり、もちろん1であっても良い。
 前記一般式(1)についての、より具体的な態様において、A1は、特に、構造なしで直結(すなわち、単結合),-CH2-,-C6H4-,-COOCH2-,-COOCH2CH2-,-COOCH2CH2CH2-,-CONH-C(CH3)2-CH2-,-CONH-CH(CH3)-CH2-,-CONH-CH2-,-CONH-CH2CH2-,または-CONH-CH2CH2CH2-であることが好ましい。
 また、上記一般式(2)として好ましい構造として、例えば、以下の態様が挙げられる:
 (2-1)R2が水素またはメチルであり、Q2が-COO-であり、g=1である(メタ)アクリレーを有するエポキシ化合物由来の構造;
 (2-2)R2が水素またはメチルであり、Q2が置換基を有していても良いフェニレン基であり、g=1である、スチリル基またはα-メチルスチリル基を有するエポキシ化合物由来の構造;
 (2-3)R2が水素であり、Q2が-O-であり、g=1であるビニルエーテル基を有するエポキシ化合物由来の構造;
 (2-4)R2が水素であり、g=0であるビニル基を有するエポキシ化合物由来の構造;
 (2-5)R2が水素であり、Q2がメチレン基であり、g=1である、アリル基を有するエポキシ化合物由来の構造。
 ここで、上記一般式(2)の構造が上記(2-5)に挙げられる構造である場合、P2が-X-P3で表される構造を有し、且つ、Xが酸素であることが好ましい。
 なお、上記(2-1)~(2-5)に挙げられる構造を含め、上記一般式(2)においては、kは1~5、好ましくは1~3、より好ましくは1~2であり、もちろん1であっても良い。
 前記一般式(2)についての、より具体的な態様において、A2は、特に、構造なしで直結(すなわち、単結合),-CH2-,-C6H4-,-O-,-CH2-O-,-CH2-O-CH2-,-C6H4-O-,-C6H4-O-CH2-,-COO-,-COOCH2-,-C6H4-COO-,または-C6H4-COO-CH2-であることが好ましい。
 Mは、水素原子;リチウム、ナトリウム、カリウム、ルビジウム等のアルカリ金属;カルシウム、マグネシウム等のアルカリ土類金属;並びに、テトラヒドロアンモニウムイオン、テトラメチルアンモニウムイオン、テトラエチルアンモニウムイオン、メチルトリヒドロアンモニウムイオン、エチルトリヒドロアンモニウムイオン、シクロヘキシルトリヒドロアンモニウムイオン、フェニルトリヒドロアンモニウムイオン、ジメチル-フェニル-ヒドロ-アンモニウムイオン等のアンモニウムイオンから選ばれるものであることが好ましい。これらの中では、上記SO3Mで表される基が、遊離酸型の形態ではなくて、アルカリ金属、アルカリ土類金属、またはアンモニウムイオン等のカウンターカチオンで中和された形態であることが好ましい。
 一般式(1)で表される構成単位と一般式(2)で表される構成単位を有する重合体は、例えば、炭素-炭素二重結合を有する重合性官能基及びスルホン酸基を有する化合物と、炭素-炭素二重結合を有する重合性官能基及びエポキシ基を有する化合物に、反応溶剤および過酸化物等のラジカル重合開始剤を加えて加熱攪拌することによって得られる。本発明では、このような一般式(1)で表される構成単位と一般式(2)で表される構成単位を有する重合体を、本発明に係る組成物を構成する重合体(i)として用いることができる。
 一般式(1)で表される構成単位(ユニット)数aと一般式(2)で表される構成単位(ユニット)数bとの構成単位(ユニット)比a/b(モル/モル)は、炭素-炭素二重結合を有する重合性官能基及びスルホン酸基を有する化合物と炭素-炭素二重結合を有する重合性官能基及びエポキシ基を有する化合物との仕込み比などで制御される。
 この重合体(i)の構成単位(ユニット)比a/b(モル/モル)は、重合反応の際の、一般式(1)で表される構成単位に対応する炭素-炭素二重結合を有する重合性官能基及びスルホン酸基を有する化合物と、一般式(2)で表される構成単位に対応する炭素-炭素二重結合を有する重合性官能基及びエポキシ基を有する化合物の仕込み割合で制御可能である。親水性および性能維持性(耐久性)の点などから、重合体(i)の構成単位(ユニット)比a/b(モル/モル)は、特に限定されないものの、通常1000/1~1/1000、すなわち、99.9/0.1~0.1/99.9の範囲であり、好ましくは99/1~1/99の範囲、更に好ましくは98/2~2/98の範囲である。
 親水性を重視する場合には一般式(1)で表される構成単位(ユニット)数aが比較的に多い方が好ましく、例えば99.9/0.1~40/60、より好ましくは99/1~50/50、特に好ましくは98/2~60/40の範囲である。
 耐摩耗性、および耐久性等を重視する場合には、一般式(2)で表される構成単位(ユニット)数bが、親水性を重視する場合よりも比較的に多い方が好ましく、例えば95/5~5/95、より好ましくは90/10~10/90、特に好ましくは80/20~20/80の範囲である。
 一般式(1)で表される構成単位を構成するために用いられる炭素-炭素二重結合基を有する重合性官能基とスルホン酸基を有する化合物、すなわち、一般式(1)で表される構成単位に対応する炭素-炭素二重結合を有する重合性官能基及びスルホン酸基を有する化合物として、下記一般式(1')で表される構造を有する化合物が挙げられる:
Figure JPOXMLDOC01-appb-C000006
 (一般式(1')において、R1,M,A1、hは、上記一般式(1)におけるR1,M,A1、hとそれぞれ同じである。)。
 このような炭素-炭素二重結合基を有する重合性官能基とスルホン酸基を有する化合物の中では、ビニル基を有するスルホン酸化合物、スチリル基を有するスルホン酸化合物、(メタ)アクリレート基を有するスルホン酸化合物、および(メタ)アクリルアミド基を有するスルホン酸化合物等が比較的に好ましい。
 ここで、ビニル基を有するスルホン酸化合物としては、例えば、ビニルスルホン酸、ビニルスルホン酸リチウム、ビニルスルホン酸ナトリウム、ビニルスルホン酸カリウム、ビニルスルホン酸アンモニウム等が好ましく用いられる。
 スチリル基を有するスルホン酸化合物としては、例えば、スチレンスルホン酸、スチレンスルホン酸リチウム、スチレンスルホン酸ナトリウム、スチレンスルホン酸カリウム、スチレンスルホン酸カルシウム、スチレンスルホン酸マグネシウム、スチレンスルホン酸アンモニウム等が好ましく用いられる。
 (メタ)アクリレート基を有するスルホン酸化合物としては、例えば、スルホメチル(メタ)アクリレートナトリウム塩、2-スルホエチル(メタ)アクリレート、2-スルホエチル(メタ)アクリレートナトリウム塩、2-スルホエチル(メタ)アクリレートカリウム塩、3-スルホプロピル(メタ)アクリレート、3-スルホプロピル(メタ)アクリレートナトリウム塩、3-スルホプロピル(メタ)アクリレートカリウム塩、3-スルホプロピル(メタ)アクリレートカルシウム塩、3-スルホプロピル(メタ)アクリレートマグネウム塩、3-スルホプロピル(メタ)アクリレートアンモニウム塩、6-スルホヘキシル(メタ)アクリレートカリウム塩、10-スルホデシル(メタ)アクリレートカリウム塩、5-スルホ-3-オキサペンチル(メタ)アクリレートカリウム塩、8-スルホ-3,6-ジオキサオクチル(メタ)アクリレートカリウム塩等が好ましく用いられる。
 (メタ)アクリルアミド基を有するスルホン酸化合物としては、1-(メタ)アクリルアミド-メタンスルホン酸、1-(メタ)アクリルアミド-メタンスルホン酸カリウム、2-(メタ)アクリルアミド-エタンスルホン酸、2-(メタ)アクリルアミド-エタンスルホン酸ナトリウム、2-(メタ)アクリルアミド-プロパンスルホン酸、2-(メタ)アクリルアミド-プロパンスルホン酸カリウム、2-(メタ)アクリルアミド-2-メチル-プロパンスルホン酸((メタ)アクリルアミド-t-ブチルスルホン酸)、2-(メタ)アクリルアミド-2-メチル-プロパンスルホン酸ナトリウム塩、2-(メタ)アクリルアミド-2-メチル-プロパンスルホン酸カリウム塩、2-(メタ)アクリルアミド-2-メチル-プロパンスルホン酸カルシウム塩、2-(メタ)アクリルアミド-2-メチル-プロパンスルホン酸マグネシウム塩、2-(メタ)アクリルアミド-2-メチル-プロピルスルホン酸アンモニウム、3-(メタ)アクリルアミド-プロパンスルホン酸カリウム塩等の(メタ)アクリロイルアミド基を有するスルホン酸化合物等が好ましく用いられる。
 上記の炭素-炭素二重結合基を有する重合性官能基とスルホン酸基を有する化合物の中では、(メタ)アクリルアミド基を有するスルホン酸化合物が最も好ましく、それらの中でも2-(メタ)アクリルアミド-2-メチル-プロピルスルホン酸((メタ)アクリルアミド-t-ブチルスルホン酸)およびそのカウンターカチオン塩が好ましく、2-(メタ)アクリルアミド-2-メチル-プロピルスルホン酸((メタ)アクリルアミド-t-ブチルスルホン酸)アルカリ金属塩が最も好ましい。
 また炭素-炭素二重結合を有する重合性官能基及びスルホン酸基を有する化合物のスルホン酸基の形態について、一般式(1')を構成するMが水素であるフリーのスルホン酸の状態よりも、スルホン酸がカウンターカチオンで中和されたアルカリ金属塩、アルカリ土類金属円、アンモニウム塩の形態の方が好ましい。理由は、カウンターカチオンによってスルホン酸が中和されていると、重合反応時にエポキシ基とスルホン酸基との反応等が抑制されて、高純度の重合体(i)が効率よく得られためである。以下にその内容を説明する。
 スルホン酸が中和されていない場合(Mが水素原子)、もう一方の原料であるエポキシ基を有する化合物のエポキシ基と反応し、共重合反応中に重合体がゲル化する場合がある。このエポキシ基とスルホン酸基の反応について模式的な反応式を以下に記載する。
Figure JPOXMLDOC01-appb-C000007
 上記の反応を抑制して高純度の重合体(i)を得る方法として、カウンターカチオンによってスルホン酸基を中和し、もってエポキシ基との反応を抑制する方法が有効であることを見出した。同様に模式的な反応式を以下に記載する。
Figure JPOXMLDOC01-appb-C000008
 さらに、カウンターカチオンであるアルカリ金属、アルカリ土類金属、またはアンモニウムイオンの中では、反応抑制力と安定性が高い傾向にあるアルカリ金属が好ましい傾向にある。アルカリ金属の中では、ナトリウムまたはカリウムが好ましく、最も好ましいカンターカチオンとしてはカリウムが挙げられる。理由は不明だが、カリウムはナトリウムよりも、熱安定性が高い場合がある。参考までに、上記炭素-炭素二重結合を有する重合性官能基及びスルホン酸基を有する化合物のうちの代表的な化合物での熱安定性比較データ(DSCチャート)を図1に掲載する。

 Mが水素原子である本発明のポリマーをスムーズに得る方法としては、上記のような水素原子によるエポキシ基の開環が生じないような条件で重合反応を行うことができる限り特に限定はされないものの、例えば、上記炭素-炭素二重結合を有する重合性官能基及びスルホン酸基を有する化合物を構成するスルホン基をカウンターカチオンで中和して対応するスルホン酸塩とした後、このスルホン酸塩を、後述する一般式(2)で表される構成単位に対応する炭素-炭素二重結合を有する重合性官能基及びエポキシ基を有する化合物とともに共重合し、得られたスルホン酸カウンターカチオン塩基とエポキシ基を有する重合体(i)を、塩酸、硫酸等の酸で処理して(反応させて)フリーのスルホン酸基に変換する方法が挙げられる。
 本発明の重合体(i)の構成単位である一般式(2)で表される構成単位を形成するために、一般式(2)で表される構成単位に対応する炭素-炭素二重結合を有する重合性官能基及びエポキシ基を有する化合物として、下記一般式(2')で表される炭素-炭素二重結合基を有する重合性官能基とエポキシ基を有する化合物が好ましく用いられる:
Figure JPOXMLDOC01-appb-C000009
 (一般式(2')において、R2,A2,kは、上記一般式(2)におけるR2,A2,kとそれぞれ同じである。)。
 上記一般式(2')で表される炭素-炭素二重結合基を有する重合性官能基とエポキシ基を有する化合物の中では、ビニル基を有するエポキシ化合物、ビニルエーテル基を有するエポキシ化合物、アリルエーテル基を有するエポキシ化合物、スチリル基を有するエポキシ化合物、(メタ)アクリレート基を有するエポキシ化合物が比較的に好ましい。
 ここで、ビニル基を有するエポキシ化合物としては、例えば、ブタジエン-モノオキシド、ペンタジエン-モノオキシド、ヘキサジエン-モノオキシド等が挙げられる。
 ビニルエーテル基を有するエポキシ化合物としては、例えば、ビニルグリシジルエーテル、ブタンジオール-ジビニルエーテルモノオキシド、シクロヘキサンジメタノール-ジビニルエーテルモノオキシド、4-グリシジルオキシメチル-1-ビニルオキシメチル-シクロヘキサン、ジエチレングリコール-ジビニルエーテルモノオキシド、トリプロピレングリコール-ジビニルエーテルモノオキシド、4-ビニルオキシ-1-グリシジルオキシ-ブタン等が挙げられる。
 アリルエーテル基を有するエポキシ化合物としては、例えば、アリル-グリシジルエーテル、アリル-エポキシエーテル、ブタンジオール-ジアリルエーテルモノオキシド、シクロヘキサンジメタノール-ジアリルエーテルモノオキシド、4-グリシジルオキシメチル-1-アリルオキシメチル-シクロヘキサン、ジエチレングリコール-ジアリルエーテルモノオキシド、トリプロピレングリコール-ジアリルエーテルモノオキシド、4-アリルオキシ-1-グリシジルオキシ-ブタン等が挙げられる。
 スチリル基を有するエポキシ化合物としては、例えば、ジビニルベンゼン-モノオキシド、4-グリシジルオキシ-スチレン、3-グリシジルオキシ-スチレン、2-グリシジルオキシ-スチレン、4-エポキシオキシ-スチレン、スチリルカルボン酸エポキシエステル、スチリルカルボン酸グリシジルエステル等が挙げられる。
 (メタ)アクリレート基を有するエポキシ化合物としては、例えば、グリシジル-(メタ)アクリレート、エポキシ-(メタ)アクリレート、2-グリシジルオキシ-エチル-(メタ)アクリレート、5-グリシジルオキシ-3-オキサペンチル-(メタ)アクリレート、3-グリシジルオキシ-2-ヒドロキシ-プロピル-(メタ)アクリレート、2,3-ビス(グリシジルオキシ)-プロピル-(メタ)アクリレート、トリメチロールプロパン-ジグリシジルエーテル-(メタ)アクリレート、{4-グリシジルオキシフェニル}-{(4-(メタ)アクリロイルオキシ-3-ヒドロキシ-1-オキサブチル)フェニル}-2,2-プロパン、7-グリシジルオキシ-6,6-ジメチル-2-ヒドロキシ-4-オキサヘプチル-(メタ)アクリレート等が挙げられる。
 重合体(i)の製造に用いられる炭素-炭素二重結合を有する重合性官能基及びエポキシ基を有する化合物の中では、(メタ)アクリレート基を有するエポキシ化合物、アリルエーテル基を有するエポキシ化合物、スチリル基を有するエポキシ化合物が好ましい。例えば、グリシジル(メタ)アクリレート、アリルグリシジルエーテル、4-グリシジルオキシスチレンなどが挙げられる。
 本発明の重合体(i)において、一般式(1)で表される構成単位(ユニット)と一般式(2)で表される構成単位(ユニット)のほかに、一般式(1)で表される構成単位(ユニット)および一般式(2)で表される構成単位(ユニット)のいずれでもない第3の構成単位(ユニット)(以下、「第3の構成単位(ユニット)」)があっても良い。
 このような第3の構成単位(ユニット)としては、炭素-炭素二重結合を有する重合性官能基とスルホン酸基を有する化合物、または炭素-炭素二重結合を有する重合性官能基とエポキシ基を有する化合物以外の炭素-炭素二重結合を有する重合性官能基をもつ化合物を共重合した場合に生じる構成単位(ユニット)が挙げられる。
 例えば、(メタ)アクリル酸に由来する構成単位(ユニット)、メチル(メタ)アクリレートに由来する構成単位(ユニット)、ブチル(メタ)アクリレートに由来する構成単位(ユニット)、イソボルニル(メタ)アクリレートに由来する構成単位(ユニット)、テトラヒドロフルフリル(メタ)アクリレートに由来する構成単位(ユニット)、フェニル(メタ)アクリレートに由来するユニット、トリブロモフェニル(メタ)アクリレートに由来する構成単位(ユニット)、ヒドロキシエチル(メタ)アクリレートに由来する構成単位(ユニット)、リン酸エチル(メタ)アクリレートに由来する構成単位(ユニット)、テトラメチルピペリジル(メタ)アクリレートに由来する構成単位(ユニット)、パーフルオロオクチルエチル(メタ)アクリレートに由来する構成単位(ユニット)、チオグリシジル(メタ)アクリレートに由来する構成単位(ユニット)、スチレンに由来する構成単位(ユニット)、アクリロニトリルに由来する構成単位(ユニット)、ゲル化しない程度に少量のジビニルベンゼンに由来する構成単位(ユニット)、同様にゲル化しない程度に少量のアリル(メタ)アクリレートに由来する構成単位(ユニット)等が挙げられる。
 このような第3の構成単位(ユニット)を与える化合物として、上記一般式(1')で表される構造を有する炭素-炭素二重結合を有する重合性官能基及びスルホン酸基を有する化合物、並びに、上記一般式(2')で表される構造を有する炭素-炭素二重結合を有する重合性官能基及びエポキシ基を有する化合物のいずれでもない炭素-炭素二重結合を有する重合性官能基を有する化合物(以下、「第3の構成単位前駆化合物」)が挙げられる。例えば、上記列挙した構成単位(ユニット)に対応する化合物として、(メタ)アクリル酸、メチル(メタ)アクリレート、ブチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、フェニル(メタ)アクリレート、トリブロモフェニル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、リン酸エチル(メタ)アクリレート、テトラメチルピペリジル(メタ)アクリレート、パーフルオロオクチルエチル(メタ)アクリレート、チオグリシジル(メタ)アクリレート、スチレン、アクリロニトリル、ゲル化しない程度に少量のジビニルベンゼン、ゲル化しない程度に少量のアリル(メタ)アクリレート等が挙げられる。
 本発明の重合体(i)において、このような第3の構成単位(ユニット)を導入する場合、凡そ以下の配合比で行われる。
 例えば、一般式(1)で表される構成単位(ユニット)数aと一般式(2)で表される構成単位(ユニット)数bに対する、上記第3の構成単位(ユニット)数cは、(a+b)/c比(モル/モル)で表した場合、例えば99.9/0.1~10/90の範囲であり、より好ましくは99/1~50/50の範囲であり、95/5~60/40の範囲であればより好ましい。また(a+b)/c比(モル/モル)は、70/30以上でもよく、80/20以上でも良い。
 本発明の重合体(i)の繰り返し構造単位数(a+b)は、主に、溶剤の種別、基質(モノマー)濃度、重合開始剤量、および反応温度などで制御され、通常1~10,000の範囲であり、好ましくは3~3,000の範囲、さらに好ましくは30~1,500の範囲である。また、スルホン酸基とエポキシ基を有する重合体(i)の分子量も同様の方法で制御される。この重合体(i)のGPCによる重量平均分子量MWは、通常300~3,000,000の範囲であるが、耐久性および溶解性の点から、好ましくは1000~1,000,000、更にこの好ましくは10,000~500,000である。
 また、本発明の重合体(i)のMw/Mnは通常1~10、好ましくは1~6、より好ましくは1~4である。この場合、組成物での溶解性または分散性、硬化膜の透明性または平滑性等に優れる傾向にある。
 本発明の重合体(i)の一般式(1)で表される構成単位と一般式(2)で表される構成単位の結合形式は特に制限はないが、後述するようにラジカル共重合で製造したものが好ましく、その場合、いわゆるランダム共重合体となっていると考えられる。
 上述したように、一般式(1)で表される構成単位と一般式(2)で表される構成単位を有する本発明の重合体(i)は、上記一般式(1')で表される構造を有する炭素-炭素二重結合を有する重合性官能基及びスルホン酸基を有する化合物と、上記一般式(2')で表される構造を有する炭素-炭素二重結合を有する重合性官能基及びエポキシ基を有する化合物に、反応溶剤および重合開始剤を加えて加熱攪拌下で共重合させることによって得られる。このとき、必要により、上述の「第3の構成単位前駆化合物」を、上記一般式(1')で表される構造を有する炭素-炭素二重結合を有する重合性官能基及びスルホン酸基を有する化合物、並びに、上記一般式(2')で表される構造を有する炭素-炭素二重結合を有する重合性官能基及びエポキシ基を有する化合物とともに共重合させることができる。
 用いられる重合開始剤としては、公知のラジカル開始剤が好ましく用いられ、例えば、
 アゾビスイソブチロニトリル等のニトリル類;
 メチルイソブチルケトンパーオキサイド、シクロヘキサノンパーオキサイド等のケトンパーオキサイド類;
イソブチリルパーオキサイド、o-クロロベンゾイルパーオキサイド、ベンゾイルパーオキサイド等のジアシルパーオキサイド類;
 トリス(t-ブチルパーオキシ)トリアジン、t-ヌチルクミルパーオキサイド等のジアルキルパーオキサイド類;
 2,2-ビス(4,4-ジ-t-ブチルパーオキシシクロヘキシル)プロパン、2,2-ジ(t-ブチルパーオキシ)ブタン等のパーオキシケタール類;
 α-クミルパーオキシネオデカノエート、t-ブチルパーオキシピバレート、2,4,4-トリメチルペンニルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート等のアルキルパーエステル類;
 ジ-3-メトキシブチルパーオキシジカーボネート、ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、t-ブチルパーオキシイソプロピルカーボネート、ジエチレングリコールビス(t-ブチルパーオキシカーボネート)等のパーカボネート類
等が挙げられる。
 これら重合開始剤の添加量は、上記一般式(1')で表される炭素-炭素二重結合を有する重合性官能基及びスルホン酸基を有する化合物と、上記一般式(2')で表される炭素-炭素二重結合を有する重合性官能基及びエポキシ基を有する化合物と、所要により用いられる上記「第3の構成単位前駆化合物」の、合計重量に対して、凡そ0.01~10wt%の範囲であり、好ましくは0.1~5wt%の範囲、さらに好ましくは0.2~3wt%の範囲である。
 一般式(1')で表される炭素-炭素二重結合を有する重合性官能基及びスルホン酸基を有する化合物と、一般式(2')で表される炭素-炭素二重結合を有する重合性官能基及びエポキシ基を有する化合物と、所要により用いられる上記「第3の構成単位前駆化合物」を、共重合させる際に用いられる溶剤は、重合反応を阻害する等の不具合を起こさない溶剤であれば特に限定されない。好ましくは、モノマーとして用いられる、一般式(1')で表される炭素-炭素二重結合を有する重合性官能基及びスルホン酸基を有する化合物、一般式(2')で表される炭素-炭素二重結合を有する重合性官能基及びエポキシ基を有する化合物、並びに、所要により用いられる上記「第3の構成単位前駆化合物」の溶解性が高くなる高極性溶剤が良い傾向にあり、具体的には、例えば、メタノール、エタノール、イソプロパノール(IPA)、1-プロパノール、1-ブタノール、シクロヘキサノール、ベンジルアルコール、エチレングリコール、プロピレングリコール、プロピレングリコールモノメチルエーテル等のアルコール類、アセトニトリル、スルホラン、ジメチルスルホキシド、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)、N,N-ジメチルホイミダゾリジノン(DMI)等の比プロトン性極性溶剤、および水、さらにはそれらの混合溶剤等が挙げられる。
 一般式(1')で表される炭素-炭素二重結合を有する重合性官能基及びスルホン酸基を有する化合物と、一般式(2')で表される炭素-炭素二重結合を有する重合性官能基及びエポキシ基を有する化合物と、所要により用いられる上記「第3の構成単位前駆化合物」を、共重合させる場合の反応温度は、主に重合開始剤の10時間半減期温度で設定されるが、凡そ室温~200℃の範囲、好ましくは30~120℃の範囲、さらに好ましくは40~100℃の範囲である。
 こうして生成した本発明の重合体(i)は、通常、スルホン酸基を多数有する高分子量体であり、水にしか溶解しないような性質を有することも多い。従って、この場合反応溶剤として、水を大量に用いなければ、反応の進行とともに反応系外へ析出してくるため、反応終了後、濾過して乾燥するだけで目的の重合体が得られる。一方、スルホン酸基の数が少なく析出しにくい重合体の場合は、貧溶剤に入れて析出させるか、エバポレーター等で溶剤を留去した後、貧溶剤でスラッジングし、濾過して乾燥する方法が比較的に好ましい。
 シラン化合物(ii)
 本発明に係る組成物を構成する第2の成分として、シラン原子に結合した水酸基、シラン原子に結合したアルコキシ基、およびシラン原子に結合したハロゲン原子からなる群より選ばれる基または原子を合計2個以上有するシラン化合物(ii)が用いられる。シラン原子に結合したヒドロキシ基は、通常、シラン原子に結合したアルコキシ基またはシラン原子に結合したハロゲン原子を加水分解して得られ、シラン原子に結合したアルコキシ基は、一般的に、シラン原子に結合したハロゲン原子にアルコールを反応させることによって得られる。本発明のシラン化合物(ii)は、少なくともケイ素原子に結合した水酸基、ケイ素原子に結合したアルコキシ基、およびケイ素原子に結合したハロゲン原子からなる群より選ばれる基または原子を合計2個以上有すれば如何なる構造であってもよく、例えばシラン原子に結合した水酸基、アルコキシ基、またはハロゲン原子を2個以上有していても良い。それらの中で好ましい構造として下記一般式(3)が挙げられる。
Figure JPOXMLDOC01-appb-C000010
 (一般式(3)中、
 X1およびX2は、それぞれ独立して、水酸基、炭素数1~4のアルコキシ基、またはハロゲン原子を表し、
 R3~R6は、それぞれ独立して、水酸基、水素原子、炭素数1~4のアルキル基、ビニル基、フェニル基、炭素数1~4のアルコキシ基、またはハロゲン原子を表し、
 mは0~10000の整数を表す。)
 mは、通常、0~10000の範囲であるが、好ましくは0~100の範囲、さらに好ましくは0~10の範囲である。
 ここでR3~R6のフェニル基は置換基を有していても良く、有していなくても良い。
 X1、X2、およびR3~R6のシラン原子に結合した水酸基は反応性が高く、場合によっては室温でも容易に脱水縮合してシロキサン結合(Si-O-Si)を形成して重合硬化する。
 一方、X1、X2、およびR3~R6のアルコキシ基またはハロゲン原子は、加水分解されて水酸基になり易いため、通常、水酸基を経由して重合硬化が進行する。ただし、アルコキシ基は、水酸基よりも反応性は低いものの、比較的高温での加熱(凡そ100℃以上)などにより直接的に縮合してシロキサン結合を形成し重合硬化し得る。即ち、シラン原子に結合した水酸基、アルコキシ基、およびハロゲン原子は、本発明の組成物における架橋硬化反応に関与する。一方、R3~R6の中で水素原子、炭素数1~4のアルキル基、ビニル基、およびフェニル基は通常安定で、架橋反応に関与せず、割れ防止並びに靭性付与などの良い効果を生むが、硬度低下などの逆の効果も生む。即ち、シラン原子に直結するこれら置換基の種類と割合によって得られる硬化膜の硬さをある範囲で制御できる。本発明において、シラン原子1個に対して結合可能な4個の結合手に結合される置換基の中で、架橋反応に関与しない置換基(水素原子、炭素数1~4のアルキル基、ビニル基、およびフェニル基)の数は2個以下が好ましく、1個以下であればさらに好ましい傾向にある。架橋反応に関与する水酸基、炭素数1~4のアルコキシ基、およびハロゲン原子、並びに既に反応してしまったシロキサン結合の合計数で表すならば、シラン原子1個に対して2~4個が好ましく、3~4個であればさらに好ましい傾向にある。
 一般式(3)で表される化合物において、例えばm=0の場合には、架橋反応に関与しない置換基(水素原子、炭素数1~4のアルキル基、ビニル基、およびフェニル基)の数は、通常0個以上2個以下であり、0個以上1個以下であることが望ましく、0個であることも好ましい態様の1つである。またm=1以上の場合は、架橋反応に関与しない置換基(水素原子、炭素数1~4のアルキル基、ビニル基、およびフェニル基)の数は、通常0個以上、2×(m+1)個以下、好ましくは0個以上、(m+1)個以下である。
 このように本発明のシラン化合物(ii)は、上記の特性を活かして、通常、ポリアルコキシシランまたはポリハロゲン化シランに水加えて加水分解し、加熱することによって、容易に重合硬化できるため、本発明に係る組成物の必須成分として用いられる。本発明において、好ましく用いられるポリアルコキシシランまたはポリハロゲン化シランを挙げるならば、例えば以下の通りである。
 (A)テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン等のテトラアルコキシシラン類
 (B)ヒドロトリメトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリエトキシシラン、プロピルトリエトキシシラン、ブチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン等のトリアルコキシシラン類
 (C)ジメチルジメトキシシラン、ジヒドロジメトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジプロポキシシラン、ジメチルジブトキシシラン、ジフェニルジメトキシシラン、ジビニルジメトキシシラン、ヒドロフェニルジメトキシシラン、メチルフェニルジメトキシシラン、ヒドロビニルジメトキシシラン、メチルビニルジメトキシシラン、フェニルビニルジメトキシシラン等のジアルコキシシラン類
 (D)テトラクロロシラン、テトラブロモシラン、テトラヨードシランなどのテトラハロゲン化シラン類
 (E)ヒドロトリブロモシラン、メチルトリクロロシラン、エチルトリクロロシラン、プロピルトリクロロシラン、ブチルトリクロロシラン、フェニルトリクロロシラン、ビニルトリクロロシラン、ビニルトリブロモシラン、ビニルトリヨードシラン等のトリハロゲン化シラン類
 (F)ジヒドロジブロモシラン、ジメチルジクロロシラン、ジメチルジクロロシラン、ジメチルジブロモシラン、ジメチルジヨードシラン、ジフェニルジクロロシラン、ジビニルジクロロシラン、ヒドロフェニルジクロロシラン、メチルフェニルジクロロシラン、ヒドロビニルジクロロシラン、メチルビニルジクロロシラン、フェニルビニルジクロロシラン等のジハロゲン化シラン類
 上記(A)~(F)の加水分解反応の速度を向上させる目的等で、通常、酸性物質または塩基性物質が縮重合触媒として添加される。
 一般的に用いられるシラン化合物(ii)の縮重合触媒としては、酸触媒と塩基触媒が良く用いられる。酸触媒としては、例えば、塩酸、硫酸、硝酸、トリフロロ酢酸、酢酸、リン酸、ホウ酸、三フッ化ホウ素、酸化錫、テトラアルコキシチタンなどが用いられる。塩基触媒としては、例えば、水酸化ナトリウム、ナトリウムアルコキシド、水酸化カリウム、アンモニアなどが用いられる。
 これらの縮重合触媒の添加量は、本発明の重合体(i)とシラン化合物(ii)に対して、0.1~10wt%の範囲が好ましく、0.2~5wt%の範囲がより好ましく、0.3~3wt%の範囲がより好ましい。
 重合体(i)とシラン化合物(ii)との換算重量比は親水性、硬度、および耐摩耗性の点で、凡そ99.1/0.1~0.1/99.9、好ましくは99/1~1/99、更に好ましくは90/10~10/90である。さらに硬度を重視する場合には、60/40~10/90、より好ましくは50/50~10/90である。また、親水性を重視する場合には、90/10~20/80、より好ましくは70/30~20/80である。
 ここで、重合体(i)とシラン化合物(ii)との換算重量比は、重合体(i)の重量と、シラン化合物(ii)に対応するシリカまたはその類似体に換算した重量との比として求めることができる。ここで、「シラン化合物(ii)に対応するシリカまたはその類似体に換算した重量」は、例えば、一般式(3)の場合は、以下の計算式によって算出される。
Figure JPOXMLDOC01-appb-C000011
 (一般式(3)中、 X1およびX2は、それぞれ独立して、水酸基、炭素数1~4のアルコキシ基、またはハロゲン原子を表し、R3~R6は、それぞれ独立して、水酸基、水素原子、炭素数1~4のアルキル基、ビニル基、フェニル基、炭素数1~4のアルコキシ基、またはハロゲン原子を表し、mは0~10000の整数を表す。)
 R3~R6の総数であるR3+R4+mR5+mR6のうちで、w個だけR10で置換された場合(R10は、水素原子、炭素数1~4のアルキル基、ビニル基、またはフェニル基を表し、wは、0以上の数を表す。)、縮重合後の「シラン化合物(ii)に対応するシリカまたはその類似体に換算した重量」は、「シラン化合物(ii)に対応するシリカまたはその類似体」が以下の式(100)で表されるとして計算される。
  R10 w-Si(1+m)((4+4×m-W)/2)    (100)
 重合体(i)のスルホン酸基は硬化膜に高い親水性を付与し、シラン化合物(ii)は縮合重合し架橋することによって強固な硬化膜を与えるとともに、無機物の特徴である優れた耐候性も付与する。重合体(i)のエポキシ基はこのシラン化合物(ii)のシラノール基と反応する(反応式を一般式(4)で掲載)ことにより、重合体(i)をシラン化合物(ii)のネットワークに組み込ませる効果を生む。
Figure JPOXMLDOC01-appb-C000012
 そのため、高親水性の重合体(i)が硬化膜に強固に固定化されることにより、高親水の重合体(i)の系外流出が抑制され、長期間に亘って高い親水性が維持される効果を生む。また高親水性の重合体(i)がシラン化合物のシロキサンネットワークに組み込まれることにより靭性が付与され、耐摩耗性が向上する。さらにネットワーク構造により結晶化および層分離構造化等が抑制易く、膜の透明性にも優れているなどの利点がある。さらにSiという無機物を有しておりかつネットワーク構造をしているので膜の安定性が高く、耐候性にも優れる。即ち、高親水性が長期間維持される強固な硬化膜を生み出す発明として、本発明のスルホン酸基とエポキシ基を有する重合体(i)とシラン化合物(ii)を反応硬化させる方法は極めて有用である。
 一方、本発明の方法以外で実施した場合、例えば、以下の(a)~(e)のような不具合が起こり易く、好ましい方法とは言えない場合がある。
 (a) 本発明の重合体(i)の代わりに、エポキシ基がなくスルホン酸基を有する重合体を用いた場合、親水性は同様に高いが、水洗等によりポリマーが流出し親水性の低下が起こり易い。さらに、ポリマーがシリカネットワークに取り込まれていないため強度および靭性が低くなりやすく耐磨耗性に劣る傾向にあり、ポリマーとシリカの層分離等により透明性が低下する場合もある。
 (b) 本発明の重合体(i)の代わりに、スルホン酸基がないエポキシ化合物を用いた場合、親水化されにくい。
 (c) 本発明の重合体(i)の代わりに、スルホン酸基とエポキシ基を有する単量体を用いる場合、エポキシ基を有する単量体に数多くのスルホン酸基を導入することが困難なため、スルホン酸基の数が少なくなり本発明よりも親水性が低くなり易い。また、単量体(低分子量)のため移動しやすく、未反応の単量体が系外にブリードアウトまたは流出し易いため、成膜後の性能低下と安全性の面からも好ましくない。
 (d) 本発明の重合体(i)の代わりに、スルホン酸基を有する化合物とエポキシ基を有する化合物を混合使用した場合、
  ・ スルホン酸基を有する化合物とエポキシ基を有する化合物が反応しない
  ・ スルホン酸基を有する化合物がシラン化合物(ii)と反応しない
ことにより、ネットワーク化されにくく、ネットワークに欠陥も生成しやすいため、本発明の重合体(i)を使用した場合と比較して、硬度および靭性の低下により耐磨耗性が低下し易い。また、
  ・エポキシ基を有する化合物は、本発明の重合体(i)よりも比較的低分子で極性が低い傾向にある
ため、疎水性のエポキシ基を有する化合物が表面へ移動し易くなるため、高い親水性が得られにくくなる。
 (e) 本発明のシラン化合物(ii)を使用しない場合、硬化膜が柔らかく、簡単に傷ついたりする場合もあり、実用的ではない。
 即ち、本発明の親水性硬化膜は、スルホン酸基により高親水化された重合体(i)を、その重合体(i)のエポキシ基とシラン化合物(ii)のシラノール基と反応させることにより、高密度に形成されるシロキサンネットワークに結合させて成るものである。
 従って、エポキシ基とシラノール基との反応を促進する硬化触媒或いは硬化材を本発明の組成物に添加してもよい。一般的に用いられる硬化触媒或いは硬化材としては、例えば、塩酸、硫酸、トリフロロ酢酸、酢酸、リン酸、ホウ酸、アルミナ、トリアルコキシアルミニウム、アセチルアセトンアルミニウム塩、トリエチレンジアミン、2-メチルイミダゾール、2,4-ジアミノ-6-[2'-メチルイミダゾール-(1')]-エチル-s-トリアジンなどが挙げられる。
 これらの硬化触媒或いは硬化材の添加量は、仕込みの重合体(i)と仕込みのシラン化合物(ii)の合計重量に対して、0.01~30wt%の範囲が好ましく、0.1~10wt%の範囲がより好ましく、0.2~5wt%の範囲がより好ましい。
 ここで驚くべきことに、本発明者らは、スルホン酸基とエポキシ基を有する高親水性の重合体(i)をシラン化合物(ii)と反応させた硬化膜に於いて、重合体(i)に由来するスルホン酸基の濃度が、その硬化膜内部から外表面方向に向かって次第に高くなる態様で集中化(傾斜)している場合があることを見出した。この傾斜の度合いに応じて、親水性が高くなっているのではないかと推測している。
 この傾斜構造を形成させる主な原理は、「予め添加された極性溶剤を蒸発させる際に、スルホン酸基を有する親水性の重合体(i)を極性溶剤の蒸発に同伴させて、表面に集中化させ硬化する」ものである。
 基材と反対方向にある外表面におけるスルホン酸基濃度をSaとし、基材に接する界面と外表面との中間地点におけるスルホン酸基濃度をDaとした場合、スルホン酸基を有する本発明の重合体(i)の傾斜度は、スルホン酸基の濃度比(Sa/Da)で表される。すなわち、スルホン酸基の濃度比(Sa/Da)が大きいことは、多くのスルホン酸基が硬化膜の外表面に集中していることを示している。このことは、スルホン酸基の濃度比(Sa/Da)が大きいほど硬化膜の親水性が高く、本発明の膜を親水性膜として用いる上でより有利であることを意味する。ここで、上記Daについて、「基材に接する界面と外表面との中間地点」は、通常、基材に接する界面に向かって、外表面からの深さが膜厚の1/2の地点(本明細書においては、この地点を「膜厚1/2の地点」とも呼ぶ。)である。なお、SaおよびDaの説明において、「スルホン酸基」および「スルホン酸基濃度」なる語句は、それぞれ、「-SO3M基」および「-SO3M基の濃度」を意味する。
 本発明の膜の傾斜度{スルホン酸の濃度比(Sa/Da)}は、通常2~1000の範囲であり、好ましくは3~100の範囲であり、より好ましくは4~60の範囲であり、さらに好ましくは5~50の範囲であり、いずれの場合にも、下限の値が10以上であるとより好ましい。傾斜度が2未満の場合には、水接触角が30°を超えて親水性が低下する傾向にある。傾斜度が1000を超える場合には、シラン化合物(ii)のシラノール基と高親水性の重合体(i)の反応(ネットワーク化)が不完全になり易く、靭性、透明性、および耐久性(親水持続性)が低下する傾向にある。
 本発明に於いて、傾斜化された硬化膜は、さらに高い親水性を示す。傾斜化されていない膜(例えば傾斜度Sa/Da=1)も高い親水性を示すが、傾斜化された場合よりも低くなる。さらに、非傾斜の硬化膜(例えば傾斜度Sa/Da=1)で傾斜化された場合と同等の親水性を得るには、より多くの親水性重合体(i)が必要であり、結果として架橋密度の低下を招き、硬度、擦傷性、耐摩耗性、および耐久性(親水維持性)等が低下する傾向にあり、傾斜化された場合よりも好ましくない。本発明の系は、その-SO3M基の濃度に傾斜がある場合、組成物から得られた膜が親水性(水接触角など)と硬度とのバランスがより優れているのではないかと考えられる。
 本発明に係る組成物は、スルホン酸基により高親水化された重合体(i)、および、重合体(i)と反応するシラン化合物(ii)を必須成分として含む重合性組成物であり、通常、スルホン酸基により高親水化された重合体(i)、重合体(i)と反応するシラン化合物(ii)、触媒、硬化材、およびそれらを均一または分散化させる溶剤からなる。
 本発明で用いられる溶剤は、上記の組成物を構成する成分を均一化または分散化させられれば如何なる溶剤でもよく、それらは単独でも、2種以上を混合して用いても良い。
 本発明の硬化膜に於いて、親水性の重合体(i)を膜厚方向に傾斜化(表面集中化)させたい場合は、SP値(溶解パラメーターσ)が高い高極性の溶剤、より具体的にはSP値(溶解パラメーターσ)が少なくとも9.4以上の溶剤を1種以上用いた方が好ましい。
 SP値が9.4未満の溶剤を使用して傾斜膜を形成したい場合、SP値が9.4以上の溶剤と併用し、且つSP値が9.4以上の溶剤よりも低沸点(蒸発速度が速い)の溶剤を選択する方法が好ましい。
 尚、SP値(溶解パラメーターσ)(cal/cm31/2は、 以下の(1)~(5)の計算式によって計算される。
 (1)1mol当たりの蒸発潜熱 Hb=21×(273+Tb)〔単位:cal/mol〕,Tb:溶剤の沸点(℃)
 (2)25℃での1mol当たりの蒸発潜熱 H25=Hb×{1+0.175×(Tb-25)/100}〔単位:cal/mol〕,Tb:溶剤の沸点(℃)
 (3)分子間結合エネルギー E=H25-596〔単位:cal/mol〕
 (4)溶剤1ml(cm3)当たりの分子間結合エネルギー E1=E×D/Mw〔単位:cal/cm3〕,D:密度(g/cm3),Mw:溶剤の分子量
 (5)SP値: 溶解パラメーター σ=(E1)1/2 〔単位:(cal/cm3 )1/2
 このようなSP値(溶解パラメーターσ)(cal/cm31/2 が9.4以上の溶剤を用いることにより、重合体(i)に由来する親水性のスルホン酸基と一定の相互作用を有するため、この混合物を基材に塗布して、その混合物から溶剤を除去する際に、塗布された混合物の外気に接する表面に溶剤と同伴して親水性のスルホン酸基を有する重合体(i)が移動して、その表面に親水性のスルホン酸基が濃縮されることになり、本発明で得られる硬化膜外表面に親水基のスルホン酸基が集中した傾斜構造が形成される。
 一方、溶解パラメーターσ(cal/cm31/2が9.4未満であると、上述のような相互作用が弱くなるため、上述の傾斜構造が十分には形成されない。この傾斜構造をより形成しやすくする観点からは、上記溶解パラメーターσ(cal/cm31/2は9.4以上であることが好ましく、10以上であればより好ましく、11以上であればさらに好ましい。
 また本発明は、主に加熱により硬化させるため、加熱条件(温度、時間、触媒、硬化材、風量など)に合わせて溶剤を蒸発させて傾斜構造を形成・固定化(硬化)させなければならない。従って、上述の傾斜構造を形成させつつ硬化を進めるという点では、上記溶剤の中でも硬化温度に合わせて沸点(蒸発速度)を目安として選択される傾向にある。具体的には、沸点が30~300℃の溶剤、沸点が40~250℃の溶剤がより好ましく、沸点が50~210℃の溶剤がさらに好ましい。なお、上記溶剤を2種以上含む混合溶剤の場合には、これら混合溶剤の最高沸点が上記範囲にあればよい。
 上記溶剤として用い得る、溶解パラメーターσ(cal/cm31/2が9.4以上かつ沸点が50~210℃の化合物としては、例えば、
 メタノール、エタノール、1-プロパノール、IPA(イソプロパノール)、1-ブタノール、イソブタノール、2-ブタノール、1-ペンタノール、シクロヘキサノール、2-メトキシエタノール、2-エトキシエタノール、1-メトキシ-2-プロパノール、テトラヒドロフルフリルアルコール、エチレングリコールモノアセテート、ベンジルアルコール、エチレングリコール、1.2-プロピレングリコールなどのアルコール;
 シクロヘキサノン、2-メチルシクロヘキサノン、アセトンなどのケトン;
 蟻酸、酢酸、プロピオン酸などのカルボン酸;
 酢酸メチル、エチレングリコールジアセテートなどのカルボン酸エステル;
 ジオキサン、アニソール、THF(テトラヒドロフラン)などのエーテル;
 DMF(N,N’-ジメチルホルムアミド)、DMAC(N,N’-ジメチルアセトアミド)などのアミド;
 アセトニトリルなどのニトリル;及び
 水
等が挙げられる。
 これら化合物の中でも、溶解パラメーターσが最も高い{21.4(cal/cm31/2}水、またはアルコールが好ましい。これらアルコールの中では、メタノール、エタノール、1-プロパノール、2-メトキシエタノール(EGM)、2-エトキシエタノール、2-メトキシプロパノール(PGM)、1-ブタノール、1-ペンタノール、2-メチル-1-ブタノール、1-ペンタノールなどの1級アルコールが好ましい傾向にあり、それらのアルコールは単独でも使用されるが、水と混合して好ましく用いられる。
 溶剤に含まれる溶解パラメーターσ(cal/cm31/2が9.4以上の上記化合物は、1種単独で用いてもよく、あるいは2種以上を混合して用いてもよい。
 また、上記溶剤が2以上の化合物を含む混合溶剤である場合には、少なくともその1つが、上記溶解パラメーターの条件を満たしていればよい。混合溶剤中に含まれるその1つの溶剤の溶解パラメーターが上記条件を満たしている場合には、重合体(i)に由来する親水性のスルホン酸基とその1つの溶剤とが一定の相互作用を有するため、この混合物を基材に塗布して、その混合物から溶剤を除去する際に、塗布された混合物の外気に接する表面にその1つの溶剤と同伴して親水性のスルホン酸基を有する重合体(i)が移動することには変わりはなく、その結果として、表面に親水性のスルホン酸基が濃縮されることになるからである。
 2以上の溶剤を含む混合溶剤である場合、沸点が最も高い化合物が傾斜構造の形成に影響を与えやすい傾向にある。そのため、混合溶剤に含まれる沸点が最も高い溶剤の溶解パラメーターσ(cal/cm31/2 が9.4以上であることが好ましい。
 溶解パラメーターが9.4以上同士の混合溶剤であっても、できるだけ溶解パラメーターの高い(高極性)の溶剤を用いた方が良い。さらに高沸点側の溶剤の溶解パラメーターσ(cal/cm31/2 が、低沸点側の溶剤よりも高い方が傾斜化され易く、好ましい。
 2種以上の溶剤を含む混合溶剤の混合比は、溶解パラメーターが最も高い溶剤/それ以外の溶剤の重量比が、好ましくは99.9/0.1~1/99、より好ましくは99/1~10/90、さらに好ましくは98/2~30/70の範囲である。
 但し、水との混合溶剤の場合、水以外の溶剤が水と分離するような低極性溶剤であったり、水の添加量が多かったり、水よりも蒸発速度が必要以上に速い(低沸点)溶剤を混合すると、溶剤乾燥工程において、塗布された本発明の組成物が水滴状になりやすく、レベリング性の低下等により透明で平滑な膜が得られなくなる場合がある。従って、水との混合溶剤を選択する場合は、先ず、水と馴染みやすい高極性の溶剤を用いることにより本発明の組成物が均一溶液または均一分散液になるようにすることが肝要であるが、それ以外に、平滑性で透明な硬化膜を得るには、水/水以外の溶剤の重量混合比が、80/20~1/99に範囲が比較的に好ましく、70/20~5/95の範囲がより好ましく、60/40~10/90の範囲であればさらに好ましい。
 水と混合する、水以外の溶剤の種類の選択方法としては、溶解パラメーターσ(cal/cm31/2 が9.4以上の高極性溶剤を選択する方法が挙げられるが、その他に、溶剤乾燥工程における実測内温度での蒸発速度比(対水の蒸発速度)Rによる選択方法が挙げられる。具体的には、乾燥工程内部温度における、水に対する蒸発速度比R=0.1~2.0の範囲の溶剤が好ましく、蒸発速度比R=0.2~1.8の範囲の溶剤がより好ましく、蒸発速度比Rが=0.3~1.5の範囲の溶剤であればさらに好ましい。
尚、本発明において、蒸発速度比Rは以下の簡易計算式(A)~(B)によって計算される。
 (A) 蒸発速度=乾燥温度での飽和蒸気圧(mmHg)×√(分子量) 
 (B) 水に対する蒸発速度比R=水以外の溶剤の蒸発速度/水の蒸発速度
 例えば、50℃における水の蒸発速度は92.6と計算され、50℃で溶剤乾燥を行う場合の代表的な溶剤の蒸発速度比Rは、およそ以下の通り計算される。例えば、
 メタノール=4.3、
 エタノール=2.4、
 IPA(2-プロパノール)=1.8、
 1-プロパノール=1.0、
 1-ブタノール=0.4、
 EGM(メトキシエタノール)=0.4、
 EGE(エトキシエタノール)=0.3
である。
 一方、本発明の別の態様として、基材上に形成され、-SO3M基(Mは水素原子、アルカリ金属、アルカリ土類金属、またはアンモニウムイオンを表す。)と、Si-O-Si構造またはSi-O-C構造を有する膜であって、当該膜の外表面におけるSO3M基濃度(Sa)と、基材に接する界面と前記外表面との中間地点におけるSO3M基濃度(Da)の比(Sa/Da)が、2~1000である膜を挙げることができる。因みに、Si-O-Si構造は、IRによって1090~1010 cm-1で検出され、同様にSi-O-C構造は凡そ1100~1200cm-1および800~810cm-1付近で検出することができる。
 本発明の上記膜の傾斜度{スルホン酸の濃度比(Sa/Da)}は、通常2~1000の範囲であり、好ましくは3~100の範囲であり、より好ましくは4~60の範囲であり、さらに好ましくは5~50の範囲であり、いずれの場合にも下限の値が10以上であるとより好ましい。
 また本発明の上記膜は、親水性を有すると共に、Si-O-Si構造またはSi-O-C構造を有するがため、硬度、耐摩耗性、耐候性などにも優れる。
 硬化後に得られる親水性膜の物性を改良する目的で、本発明の組成物に公知の添加剤および公知の改質材等の様々な公知化合物を添加してもよい。例えば、さらなる耐候性向上のための紫外線吸収剤およびHALS(光安定剤)、耐熱性向上または劣化防止のための酸化防止剤並びにラジカル補足剤、磨耗性向上または靭性付与などのためのシリカ粒子、アクリル樹脂、ポリエステル樹脂、ポリウレタン樹脂、フェノール樹脂、ポリオレフィン樹脂、ガラス繊維等の有機および無機フィラー(充填材)、着色のための顔料および染料、補色のためのブルーイング剤等の色補正剤、高屈折率化のための酸化チタン等の金属酸化物およびチオエポキシ化合物などの硫黄化合物、臭気改善等のための香料、塗工性向上のためのレベリング剤およぶタレ防止材、硬化膜の改質を目的とした多価アミン、メラミン樹脂、尿素樹脂、ポリオール、ポリチオール、酸無水物、ポリ(メタ)アクリレート化合物、重合体(i)以外のエポキシ化合物、およびシランシランカップリング剤などの官能基を有する有機・無機材料などが挙げられる。
 こうして得られる本発明の組成物を硬化することによって親水性の硬化膜が得られる。さらに本発明の組成物を基材に塗布して硬化することによって、基材表面に親水性の硬化膜が積層された積層体が得られる。
 本発明に用いられる基材として、例えば、PMMA、ポリカーボネート(PC)、PET、ABS、トリアセチルセルロース(TAC)、ポリ塩化ビニル(塩ビ)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリ乳酸(PLA)、ポリ(チオ)ウレタン樹脂、ポリ(チオ)ウレア樹脂、および(チオ)エポキシ樹脂などからなる有機基材、ガラス、鉄、ステンレススチール、アルミニウム、ニッケル、亜鉛、金、銀、銅、金属酸化物、セラミックス、セメント、スレート、大理石や御影石、モルタルなどからなる各種無機基材、ガラス繊維および炭酸カルシウムの無機材料と不飽和ポリエステル樹脂などの有機材料を複合化したSMC(シート・モールディング・コンパウンド)等のコンポジット基材、上記の有機基材、無機基材、およびコンポジット基材を積層したラミネート基材、上記の各種基材表面を金属メッキした基材、リン酸亜鉛水溶液等の化学薬品で処理した基材、コロナ処理した基材、プラズマ処理した基材、グロー放電処理された基材、フレーム処理した基材、イトロ処理した基材等の表面処理基材、さらに上記の各種基材に塗料が塗られた塗装基材等が挙げられる。
 さらに、眼鏡、カメラ、レンズ、表示装置(ディスプレイ)、投影装置等に代表される光学物品および光学装置に用いられる光学系基材として、例えば、透明性を有する材料の表面上に、透明で硬度が高くなるアクリル系またはシリカ系材料がコートまたは積層された基材、高い透明性を実現するために低屈折率材料がコートまたは積層された反射防止層を有する基材、または低屈折率材料と高屈折率材料が交互にコートまたは積層された多層型反射防止層を有する基材、或いは表面に微細な凹凸を形成することによって反射防止性を付与したグレージング基材などが挙げられる。因みに、これら光学系基材の表面上に何らかの材料をコートまたは積層する場合、一般的な基材とは異なり、高い透明性を維持するために極めて薄い膜となる傾向にある。上記のようなコートまたは積層が施された基材を製造する場合、例えば公知の方法を用いても良い。またこの場合、本発明の組成物を塗布などして硬化させるにあたり、本発明の組成物が直接接触する層が、SiO2を主成分となる構成となるように、上記コートまたは積層を行うことが好ましい態様の1つである。この場合、より接着性に優れる傾向にある。
 特に光学系基材に積層される膜の場合、ポリマーの構成は、上記一般式(1)で表される構成単位と上記一般式(2)で表される構成単位とのユニット比a/b(本明細書において、単に「ユニット比(1)/(2)」と称する場合がある。)が99/1~55/45であることが好ましい。またポリマー(i)とケイ素化合物(ii)との換算重量比は(i)/(ii)が99/1~30/70であることが好ましい。
 これらの基材と本発明の膜との密着性が低い場合、予め基材表面をコロナ処理、プラズマ処理、グロー放電処理、フレーム処理、およびイトロ処理等の公知の表面処理方法で処理した、表面処理基材としてもよい。
 またこれら処理に替えてあるいはこれら処理に加えてプライマー処理、アンダーコート処理、アンカーコート処理を施した、処理基材としてもよい。
 上記プライマー処理、アンダーコート処理、アンカーコート処理に用いるコート剤としては、例えば、ポリエステル系樹脂、ポリアミド系樹脂、ポリウレタン系樹脂、エポキシ樹脂、フェノール系樹脂、(メタ)アクリル系樹脂、ポリ酢酸ビニル系樹脂、ポリエチレンおよびポリプロピレン等のポリオレフィン系樹脂またはその共重合体ないし変性樹脂、セルロース系樹脂等の樹脂をビヒクルの主成分とするコート剤を用いることができる。上記コート剤としては、溶剤型コート剤、水性型コート剤のいずれであってもよい。
 これらコート剤の中でも、変性ポリオレフィン系コート剤、エチルビニルアルコール系コート剤、ポリエチレンイミン系コート剤、ポリブタジエン系コート剤、ポリウレタン系コート剤; ポリエステル系ポリウレタンエマルジョンコート剤、ポリ塩化ビニルエマルジョンコート剤、ウレタンアクリルエマルジョンコート剤、シリコンアクリルエマルジョンコート剤、酢酸ビニルアクリルエマルジョンコート剤、アクリルエマルジョンコート剤;
 スチレン-ブタジエン共重合体ラテックスコート剤、アクリルニトリル-ブタジエン共重合体ラテックスコート剤、メチルメタアクリレート-ブタジエン共重合体ラテックスコート剤、クロロプレンラテックスコート剤、ポリブタジェンラテックスのゴム系ラテックスコート剤、ポリアクリル酸エステルラテックスコート剤、ポリ塩化ビニリデンラテックスコート剤、ポリブタジエンラテックスコート剤、あるいはこれらラテックスコート剤に含まれる樹脂のカルボン酸変性物ラテックスもしくはディスパージョンからなるコート剤が好ましい。
 これらコ-ト剤は、例えば、グラビアコ-ト法、リバースロールコート法、ナイフコ-ト法、キスコ-ト法などにより塗布することができ、基材への塗布量は、乾燥状態で、通常0.005g/m2~5g/m2である。
 これらコート剤の中では、商品名「タケラックTM」および「タケネートTM」(何れも三井化学製)に代表されるポリウレタン系コート剤がより好ましい。ポリウレタン系のコート剤は、そのコート剤に含まれる樹脂の主鎖あるいは側鎖にウレタン結合を有するものである。ポリウレタン系コート剤は、例えば、ポリエステルポリオール、ポリエーテルポリオール、またはアクリルポリオールなどのポリオールとイソシアネート化合物とを反応させて得られるポリウレタンを含むコート剤である。
 これらポリウレタン系コート剤の中でも、縮合系ポリエステルポリオール、ラクトン系ポリエステルポリオールなどのポリエステルポリオールとトリレンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアナート、ノルボルナンジイソシアナートメチル、キシレンジイソシアネート等のイソシアネート化合物とを混合して得られるポリウレタン系コート剤が、密着性に優れているため好ましい。
 ポリオール化合物とイソシアネート化合物とを混合する方法は、特に限定されない。また配合比も特に制限されないが、イソシアネート化合物が少なすぎると硬化不良を引き起こす場合があるためポリオール化合物のOH基とイソシアネート化合物のNCO基が当量換算で2/1~1/40の範囲であることが好適である。
 さらに上記のポリオール化合物と上記のイソシアネート化合物に公知のシランカップリング材を添加しても良い。
 本発明における基材では、上記表面活性化処理された基材面を含んでもよい。

 本発明の組成物を基材に塗布する方法としては、例えば、刷毛塗り法、スプレーコーティング法、ワイヤーバー法、バーコーター法、ブレード法、ロールコーティング法、スピンコート法、ディッピング法、その他公知のコーティング方法が挙げられる。
 塗布量は用途により適宜設定できるが、硬化後に得られる親水性膜の膜厚として、通常0.0001~100μm、好ましくは0.001~50μm、より好ましくは0.1~30μmの範囲である。
 例えば、屋外の塗装用途であれば、硬化膜の膜厚は比較的に厚くなる傾向にあり、凡そ0.1~100μmの範囲、好ましくは0.5~50μmの範囲、さらに好ましくは1~30μmの範囲で塗布される。
 例えば、高い透明性が要求される光学用途等では、先ず、使用される光学系基材用の材料自身の透明性が高く透過光の内部損失(散乱等)が無いことが大前提である。加えて、AR(反射防止)層等により表面の光の反射を低減してさらに高い透明性を実現している場合が多い。ところが、この反射防止層の上に、一般用途と同様にミクロンオーダー以上の膜を積層すると、積層された膜表面で反射が起こるため透明性が低下するため、硬化膜の膜厚は極めて薄くする方向にある。具体的に、反射防止膜が積層されたような光学系基材上での好適な膜厚範囲を挙げるならば、例えば、0.0001~0.5μm(0.1~500nm)の範囲、より好ましくは0.0005~0.2μm(0.5~200nm)の範囲、さらに好ましくは0.001~0.1μm(1~100nm)の範囲である。
 本発明に係る膜は、通常、スルホン酸基とエポキシ基を有する重合体(i)とシラン化合物(ii)を必須成分として含む本発明の組成物を硬化することによって得られる。このときの硬化方法として、加熱による硬化が好適に挙げられる。
 本発明の組成物を硬化させる温度は、凡そ0~300℃の範囲であるが、室温~200℃の範囲が好ましく、40~180℃の範囲であればさらに好ましい。加熱硬化時間は、通常0.02~200時間の範囲であるが、0.1~8.0時間が好ましく、0.3~4.0時間であればさらに好ましい。
 一方、本発明の組成物は加熱以外の方法でも硬化可能である。例えば、本発明のスルホン酸基とエポキシ基を有する重合体(i)とシラン化合物(ii)に、公知の多官能(メタ)アクリレート、公知の多官能エポキシ化合物、公知の多官能ビニル化合物、公知のUVラジカル重合開始剤、および公知のUVカチオン重合開始剤等を添加して、放射線を照射することによって硬化させることが可能であり、それらの放射線照射と加熱を組み合わせて硬化させてもよい。
 放射線を用いて重合する場合、放射線としては波長領域が0.0001~800nm範囲のエネルギー線を用いることができる。上記放射線は、α線、β線、γ線、X線、電子線、紫外線、可視光等に分類されおり、上記混合物の組成に応じて適宜選択して使用できる。これら放射線の中でも紫外線が好ましく、紫外線の出力ピークは、好ましくは200~450nmの範囲、より好ましくは210~445nmの範囲、さらに好ましくは220~430nm範囲、特に好ましくは230~400nmの範囲である。上記出力ピークの範囲の紫外線を用いた場合には、重合時の黄変及び熱変形等の不具合が少なく、且つ紫外線吸収剤を添加した場合も比較的に短時間で重合を完結できる。また紫外線ランプの種類としては、通常の有電極UV(紫外線)ランプよりも、赤外線が少なく照度が高い無電極UV(紫外線)ランプの方が好ましい。さらに、上記の組成物中に紫外線吸収剤、ヒンダードアミン系安定剤が含まれる場合には、出力特性で240~270nmにピーク強度を持つ紫外線ランプを用いたほうが好ましい傾向にある。
 本発明の組成物を加熱または放射線等で硬化する場合の雰囲気は、窒素等の不活性ガス雰囲気でもよいが、大気雰囲気が好ましい。また、雰囲気の湿度については、高湿度下では硬化膜表面が不均一になり易いためできるだけ低湿度の方が好ましいが、凡そ20~70%RHの範囲が好ましく、30~60%RHの範囲であればより好ましく、40~60%RHの範囲であればさらに好ましい。
 こうして得られる本発明の硬化膜は、その構造から、親水性が高く耐候性に優れる特徴を有する。さらに、それらの硬化膜の中でも、溶剤の選択等によって形成されるスルホン酸基が外表面に集中化した傾斜膜は、傾斜化されていない膜(例えば傾斜度Sa/Da=1)よりも一層高い親水性を示し、なおかつ高い架橋密度が維持されるため、硬度、擦傷性、耐摩耗性、および耐久性(親水維持性)も優れる特別の硬化膜も含まれる。
 基材表面に、上記の親水性硬化物を膜形成したものは、基材と膜とを含む積層体として用いることができる。例えば、上記膜が防曇被膜、防汚被膜、または帯電防止被膜である場合には、防曇被膜、防汚被膜または帯電防止被膜で基材が被覆された積層体が得られる。
 例えば、基材がフィルムの場合には、本発明の膜を形成しない面に、後述の粘着層を設けることもできるし、さらに粘着層の表面に剥離フィルムを設けることもできる。基材フィルムの他の片面に粘着層を積層しておくと、本発明の膜を有する積層フィルムを防曇フィルムおよび防汚フィルムとして、ガラス、浴室等の鏡、ディスプレイ、テレビ等の表示材料表面、看板、広告、案内板等の案内板、鉄道、道路等の標識、建物の外壁、窓ガラス等に容易に貼付できる。
 積層体等の粘着層に用いる粘着剤は特に制限はなく、公知の粘着剤を用いることができる。粘着剤としては、例えば、アクリル系粘着剤、ゴム系粘着剤、ビニルエーテルポリマー系粘着剤、およびシリコーン粘着剤等が挙げられる。粘着層の厚さは通常2~50μmの範囲、好ましくは5~30μmの範囲である。
 また、本発明の膜および該膜を積層した積層体では、膜の外気に接する表面を被覆材で被覆しておいてもよい。被覆材により被覆された膜および該膜を有する積層体では、輸送、保管、陳列等する際に、膜が傷ついたり、汚れたりするのを防ぐことができる。
 上記被覆材は、例えば、前記の「本発明のスルホン酸基とエポキシ基を有する重合体(i)とシラン化合物(ii)に、公知の多官能(メタ)アクリレート、公知の多官能エポキシ化合物、公知の多官能ビニル化合物、公知のUVラジカル重合開始剤 および公知のUVカチオン重合開始剤等を添加して、UV照射またはEB照射によって硬化させる」場合に於いて、酸素による重合阻害を回避する目的で、上記被覆材を塗膜に密着させておいたままUVおよびEB等の放射線を照射して硬化させ、基材等の上に本発明の膜と被覆材を積層させたまま製品化することにより、傷や汚れを防止する上記被覆材として用いることもできる。
 上記被覆材として好ましく用いられるフィルムの材質としては、例えば、ポリビニルアルコール(PVA)、エチレン・ビニルアルコール共重合体等のビニルアルコール系重合体、ポリアクリルアミド、ポリイソプロピルアクリルアミド、ポリアクリロニトリル、ポリカーボネート(PC)、ポリメチルメタクリレート(PMMA)、ポリエチレンテレフタレート(PET)、ポリスチレン(PS)、二軸延伸ポリプロピレン(OPP)が挙げられる。
 本発明の積層体は、基材の形状を工夫するなどすることにより、種々の形態の積層体とすることができる。本発明により得られる親水性膜及び積層体は、フィルム、シート、テープなどの形態で使用できる。なお、上記親水性膜は、プライマー層として用いることもできる。
 さらに、本発明のスルホン酸基とエポキシ基を有する重合体(i)とシラン化合物(ii)を含む単量体組成物、または上記重合体(i)、シラン化合物(ii)、および(i)(ii)以外に必要に応じて添加された有機および無機化合物を含む単量体組成物は、種々の形状の鋳型内で重合させることにより、種々の形状を有する硬化物、例えば膜、成形体などを得ることもできる。
 本発明の膜は、親水性、耐久性、耐摩耗性、および耐候性に優れ、高い防曇性、防汚性、帯電防止性、速乾性(水の蒸発)を有する。
 本発明により得られる膜の水接触角は、通常30°以下、好ましくは20°以下、より好ましくは10°以下である。水接触角が上記上限値以下である膜は、親水性が高く、水となじみ(濡れ)やすく親水性材料として優れている。したがって、例えば防曇材料、防曇被膜(以下、防曇コートとも言う)、防汚材料、防汚被膜又はセルフクリーニングコート、帯電防止材、速乾性材料又は速乾性コート、及び帯電防止被膜又はほこり付着防止コートなどに有用である。
 例えば、本発明の膜を防曇コートとして用いると膜表面に水滴が広がり水膜を形成させることができるため防曇効果に優れ、またセルフクリーニングコートとして用いると水が汚れとコーティング面の間に入り込み汚れを浮かせて除去することができるため防汚効果に優れている。また、本発明の膜は、帯電防止性に優れており、帯電防止材、及び帯電防止被膜又はほこり付着防止コートなどにも有用である。
 本発明により得られる積層体も親水性および耐久性に優れ、防曇材料、防汚材料、帯電防止材料などとして有用である。例えば、透明樹脂、ガラスなどの透明材料からなる基材に上記本発明の膜を積層することにより得られる積層体は、透明性、親水性、防曇性、防汚性、さらには、帯電防止性、速乾性、結露防止性、耐候性、耐磨耗性に優れた積層体として用いることができる。
 そのため、本発明により得られる膜及び積層体は、ボディー、ホイール、外装材、及び内装材などの自動車、船舶、航空機に代表される輸送機器用材;外壁材、内壁材、床材、家具材、浴室用材、洗面化粧室用材、シンク、換気扇、レンジ周辺部材などのキッチン用資材、トイレ用資材、配管用材、などの建築材及び住宅資材;高速道路などに設置される遮音板などの建設用材;衣服、布及び繊維などの衣料用材;窓材、鏡、光学フィルム、光ディスク、コンタクトレンズ、ゴーグル、反射フィルム、及び反射板などの透明材;眼鏡、サングラス、カメラ、レンズ、反射防止フィルム、表示装置(タッチパネル、フラットパネル、電子ペーパーなどのディスプレイ装置)材料、投影装置材料、及びシールドなどの光学系材;ランプ用材及びライト用材などの照明用材;冷却および熱交換用のフィンなどの産業資材;電化製品用材、配線用材などの電気・電子材料;インクジェット記録版、印刷・印字用プライマーなどの印刷材料;化粧品容器などの日用品用材などの多くの用途に用いることができる。
 以下、実施例等により本発明をさらに詳細に説明するが、本発明がこれら実施例のみに限定されるものではない。
 本発明において、重合体(i)の構造の評価は下記のようにして行った。
 <コポリマーの組成比>
 スルホン酸基を有するユニット(1)とエポキシ基を有するユニット(2)のユニット比(1)/(2)は13C-NMRにより分析した。
 測定条件を以下に記載する。
 測定条件
* 装置: ブルカー・バイオスピン製 AVANCE III cryo-500型核磁気共鳴装置
* 測定核: 13C(125MHz)
* 測定モード: シングルパルスプロトンブロードバンドデカップリング
* パルス幅: 45°(5.0μ秒)
* ポイント数: 64K
* 測定範囲: -25~225ppm
* 積算回数: 1000回
* 測定溶剤: D2
* 測定温度: 室温
* 試料濃度: 40mg/0.6ml-D2
 ユニット比(1)/(2)の解析
 下記式(200)のf炭素のピーク(57~59ppm付近)と下記式(300)のk炭素のピーク(51~52ppm付近)の積分強度比で算出した。
即ち、
  ユニット比(1)/(2)=f炭素ピークの積分強度/k炭素ピークの積分強度
とした。
Figure JPOXMLDOC01-appb-C000013
 <重量平均分子量(Mw)、分散(Mw/Mn)>
 Mw(重量平均分子量)、および分散Mw(重量平均分子量)/Mn(数平均分子量)はGPCにより分析した。
 測定条件を以下に記載する。
 測定条件
* 装置: 日本分光(株) GPC-900
* カラム: 昭和電工(株) Shodex Asahipac「GF-7M HQ」,Φ7.5mm×300mm
* 測定温度: 40℃
* 溶離液: 水/メタノール/NaHPO4/NaHPO4・2H2O=850.0/150.0/2.7/7.3(重量比)
* 流速: 0.5ml/min.
 なお、本発明において被膜の物性評価は、下記のようにして行った。
 <水接触角の測定>
 協和界面科学社製の水接触角測定装置CA-V型を用いて、1サンプルについて3箇所測定し、これら値の平均値を水接触角の値とした。
 <ヘーズの測定>
 日本電色工業社製のヘーズメーターNDH2000を用いて、1サンプルについて4箇所測定し、これら値の平均値をヘーズの値とした。
 <耐擦傷性試験>
 スチールウール#0000を用いて、ある一定の荷重をかけて10往復擦る。傷が入らなかった場合を〇、1~5本の傷が入った場合を△、6本~無数に傷が入った場合を×とした。
 <テーバー磨耗試験(JIS K 7204)>
 測定機器: ロータリーアブレージョンテスター ,(株)東洋精機製作所
 磨耗輪: C180 OXF
 荷重: 500g(250g+250g)×2
 <密着性の評価(JIS K 7204)>
 碁盤目テープ剥離試験により評価した。
 <防曇性の評価>
 呼気により曇らなかった場合を〇、曇った場合を×とした。
 <防汚性の評価>
 ゼブラ(株)製の油性マーカー「マッキー極細」(黒,品番MO-120-MC-BK)でマークし、その上に水滴を垂らして30秒間放置し、テッシュペーパーでふき取る。マークがふき取れた場合を〇、ふき取れずに残った場合を×とした。
 <傾斜度の測定>
 図2に示す試料調製の通り、基材10の上にコート層20を形成してなるサンプルを斜めに切断し、飛行時間型2次イオン質量分析装置(TOF-SIMS)を用いて、
 外表面におけるスルホン酸濃度(Sa)と、
 基材10に接する界面と前記外表面との中間地点におけるスルホン酸濃度(Da)と
を測定し、その値から外気に接する膜の外表面と膜の内表面と外表面との中間地点のスルホン濃度比で表される傾斜度(Sa/Da)を求めた。
 ここで、本発明に係る積層体において、本発明に係る膜はコート層20を構成する。
 分析装置と測定条件
 TOF-SIMS; ION・TOF社製 TOF-SIMS 5
 1次イオン; Bi 2+ (加速電圧25kV)
 測定面積; 300~340μm角
 測定には帯電補正用電子銃を使用
 試料調製等
 図2に示す通りに、基材10の表面にコート層20が設けられたサンプルを切削方向30に向かって、精密斜め切削を行った後、10×10mm2程度の大きさに切り出し、測定面にメッシュを当て、サンプルホルダーに固定し、外気と接するコート層表面40および膜の内部であるコート層内部50(膜厚1/2の地点、基材10に接するコート層の内表面)で飛行時間型2次イオン質量分析装置(TOF-SIMS)を用いてスルホン酸濃度を測定した。
 評価
 評価は以下の計算式で行った。尚、各測定点のイオン濃度は、相対強度(トータル検出イオンに対する)を用いた。
 傾斜度Sa/Da(スルホン酸濃度比,傾斜度)=コート層表面40でのスルホン酸濃度/コート層20の膜厚1/2の地点でのスルホン酸濃度
 (ATBS-K/GMA系ポリマーの製造)
 [製造例1:CH110831ポリマーの製造]
 減圧下で脱ガスされたメタノール434.08gを反応フラスコに装入し、攪拌しながら純度85wt%のKOHフレーク15.57g(0.236モル)を徐々に加えて完溶させた。次にアクリルアミド-t-ブチルスルホン酸(以下ATBSと略す。)50.00g(0.241モル)を分割装入して中和(PH=7.8)を行い、アクリルアミド-t-ブチルスルホン酸カリウム塩(以下ATBS-Kと略す。)を生成させた。
 次に、この中和マスを加熱還流(内温63℃)し、グリシジルメタクリレート(以下GMAと略す。)3.43g(0.024モル)とt-ブチルパーオキシ-2-エチルヘキサノエート(以下パーブチル-Oと略す。)0.09gの混合液を装入し、加熱還流下で4時間混合攪拌し重合を行った。
 室温まで冷却後、晶析したポリマーを濾別し、得られた濾塊をメタノールで洗浄後、減圧下(100mmHg)50℃の条件で秤量に達するまで乾燥し、白色の共重合ポリマー「CH110831」46.22g(収率74%)を得た。
 得られたポリマーのGPCによる重量平均分子量MW=117,000、Mw/Mn=2.4、共重合ポリマーのNMRによる共重合比率はATBS-Kユニット/GMAユニット=4.4/1(81.4/18.6)であった。尚、エポキシ基が開環したユニットは不検出だった。
 (SPA-K/GMA系ポリマーの製造)
 [製造例2:F1021ポリマーの製造]
 反応フラスコに、減圧下で脱ガスされたメタノール98.6gと3-スルホプロピルアクリレートカリウム塩(以下SPA-Kと略す。)23.23g(0.10モル)を装入して加熱還流(内温64℃)下で混合溶解した後、GMA 2.84g(0.02モル)とアゾビスイソブチロニトリル(AIBNと略す。)0.02gを装入し、加熱還流下(内温64~65℃)で4時間混合攪拌し重合を行った。
 室温まで冷却後、晶析したポリマーを濾別し、得られた濾塊をメタノールで洗浄後、減圧下(100mmHg)50℃の条件で秤量に達するまで乾燥し、白色の共重合ポリマー「F1021」21.72g(収率83%)を得た。
 得られたF1021ポリマーのGPCによる重量平均分子量MW=233000、Mw/Mn=4.7、NMRによる共重合ポリマーの共重合比率はSPA-Kユニット/GMAユニット=90.1/9.9であった。
 [実施例1]
 製造例1のポリマー「CH110831」1.00gに水4.11gを加えて混合溶解し、次いで2-メトキシエタノール(以下EGMと略す。)4.01g、テトラエトキシシラン(以下TEOSと略す。)3.02g、5wt%-硫酸0.50gを加えて1時間混合攪拌し、最後に平均孔径0.5μmのフィルターを通して無色透明なコーティング用組成物を得た。このコーティング用組成物中の、ポリマー/TEOS(as SiO2)重量比は1/0.9 (53/47)である。ここで、実施例1を含む各実施例において、TEOSの重量について「as SiO2」とあるのは、(TEOSの重量×SiO2の分子量/TEOSの分子量)としてSiO2に換算した重量であることを意味する。
 よく洗浄されたガラス板(表面の水接触角 <8°)の表面に、上記のコーティング用組成物をバーコーター#30で塗布し、50℃で5分間予備乾燥した後、150℃で1時間加熱硬化し、ガラス表面に約5μmのコーティング膜を形成した。室温まで冷却後、コーティング面を水洗し、乾燥してコーティング膜の評価を行った。
 結果を表1に掲載する。
 なお膜厚は、サンプルを膜厚方向に切断し、断面を電子顕微鏡で観察することにより測定した。
 [比較例1] (TEOSのみの評価)
 製造例1のポリマーおよび水を使用せず、実施例1と同様にガラス表面に約5μmのコーティング膜を形成した。結果を表1に掲載する。
Figure JPOXMLDOC01-appb-T000014
 [実施例2]
 製造例1のポリマー「CH110831」1.0gに水75.0gを加えて混合溶解し、次いでエタノール58.0g、TEOS 17.4g、2N-塩酸(7.3wt%)0.9gを加えて1時間混合攪拌し、最後に平均孔径0.5μmのフィルターを通して無色透明なコーティング用組成物を得た。このコーティング用組成物中の、ポリマー/TEOS(as SiO2)重量比は1/5 (17/83)である。
 上記のコーティング溶液をバーコーター#30で塗布した以外は実施例1と同様にコーティング膜を形成した。室温まで冷却後、コーティング面を水洗し、乾燥してガラス板表面上に約2μmの膜が形成されたコーティング膜の評価を表2に掲載する。
 [比較例2] (参考: 特開平11-021512)
 製造例1のポリマーの代わりに分子量MW=40~60万のポリスチレンスルホン酸ナトリウム塩(以下PSS-Naと略す。)の21wt%水溶液を4.8g、水量を75.0gから71.2gに変更した以外は実施例2と同様に試験した。結果を表2に掲載する。
 [比較例3] (参考: 特開昭61-166824)
 メチルトリメトキシシラン51.7gに0.036wt%塩酸20.5gを加えて30分間激しく攪拌した。攪拌終了後、2-クロロエタノール8.3g、イソプロパノール16.5g、および酢酸3.0gを加えて混合溶解し、メチルトリメトキシシランの加水分解液100g(25.5g as シリカ)を得た。ここで、メチルトリメトキシシランの重量について「as シリカ」とあるのは、メチルトリメトキシシランに対応するシリカ類似体、すなわち、Me-Si(O)1.5に換算した重量を表す。
 次にこのメチルトリメトキシシラン加水分解液100gにエポキシ化合物としてグリセリントリグリシジルエーテル(ナガセケムテック(株),デナコール EX-314)100g、および硬化材としてアセチルアセトンアルミニウム塩10gを加えて混合溶解し、固形分NV65wt%のコーティング溶液を得た。
 この溶液をバーコーター#04で塗布した以外は実施例2と同様に試験した(エポキシ化合物/Me-Si(O)1.5重量比=80/20)。結果を表2に掲載する。
Figure JPOXMLDOC01-appb-T000015
 [実施例2-2]
 実施例2のコーティング用組成物をバーコーター#60(膜厚約4μm as dry)で塗布した以外は実施例2と同様に試験した。擦傷性試験およびテーバー磨耗試験の結果を表3に掲載する。
 [比較例2-2]
 比較例2のコーティング用組成物をバーコーター#60(膜厚約4μm as dry)で塗布した以外は比較例2と同様に試験した。擦傷性試験およびテーバー磨耗試験の結果を表3に掲載する。
 [参考例1] (参考: WO 2007/064003)
 <コーティング溶液の調製>
 イルガキュアー127(チバ・ジャパン(株))0.3gにメタノール2.0gを加えて混合溶解し、次にナイロスタッブS-EED(クラリアント・ジャパン(株))0.01g、3-スルホプロピルアクリレート0.12g、および2-メトキシエタノール6.0gを加えて混合溶解した。
 引き続き、この溶液にエトキシ化グリセリントリアクリレート(新中村化学,A-GLY-9E)1.57g、ジペンタエリルトールペンタ(またはヘキサ)アクリレート(新中村化学,A-9530)6.3gを加えて混合溶解し、固形分NV50wt%のコーティング用溶液を得た。
 <基材へのコート>
 得られた固形分NV50wt%のコーティング溶液を、バーコーター#06で基材(タキロン(株)製,ポリカーボネート板,縦100mm×横100mm×厚さ2mm)に塗布し、直ちに40~50℃の温風乾燥機に2~3分間装入して溶剤を蒸発させ、最後にUVコンベアー(フュージョンUVシステムズ・ジャパン(株)製,無電極放電ランプ Hバルブ,コンベアー速度6m/分,積算光量900mJ/cm2)を通過させて、基材表面に膜厚約4μmの透明な膜を形成した。最後に表面を流水で洗浄しエアガンで乾燥した後、耐擦傷性試験およびテーバー磨耗試験後のヘーズ測定を行った。
 結果を表3に掲載する。ここで、下記表3において、参考例1における組成(重量)比の欄に「アクリル樹脂 100」とあるのは、参考例1ではコーティング溶液を構成するポリマー成分におけるアクリル樹脂の割合が100%であることを意味する。
Figure JPOXMLDOC01-appb-T000016
 [実施例3]
 製造例2で得られたF1021ポリマーを用いて、バーコーター#60で塗布を行い、実施例1と同様に試験を行った。ガラス板の表面に約4μmの親水性膜が形成されたコーティング板について、キセノン耐候性試験を行った。
 比較のため、参考例1で得られたコーティング板についても試験を行った。
 結果を併せて表4に掲載する。ここで、表4中、「b*」で表される値は、L*a*b*表色系におけるb*成分の値を示す。
Figure JPOXMLDOC01-appb-T000017
測定装置:(株)東洋精機製作所「Ci40000」
キセノン耐候試験条件
 光源:キセノンランプ,放射強度:60W/m2(300~400nm)
 BPT:63℃
 降雨:18/120分
 フィルター:内/外= ボロシリゲートS/ボロシリゲートS
 (SEMA-Na/GMA系ポリマーの製造)
 [製造例3:F1022ポリマーの製造]
 SPA-K23.23g(0.10モル)の代わりに2-スルホエチルメタクリレートナトリウム塩(以下SEMA-Naと略す。)21.62g(0.10モル)を用いたことを除いては、製造例2と同様に合成を行った。
 結果、白色の共重合ポリマー「F1022」 19.7g(収率81%)が得られた。
得られたF1022ポリマーのGPCによる重量平均分子量MW=182,000、Mw/Mn=3.6、NMRによる共重合ポリマーの共重合比率はSEMA-Naユニット/GMAユニット=83.0/17.0であった。
 (以下ATBS-K/GMA系ポリマーの製造)
 [製造例4:CH120924ポリマーの製造]
 減圧下で脱ガスされたメタノール559.0gを反応フラスコに装入し、攪拌しながら純度85wt%のKOHフレーク9.0g(0.136モル)を徐々に加えて完溶させた。次に純度97.8wt%のATBS 28.9g(0.136モル)を分割装入して中和(pH=7.6)を行い、ATBS-Kを生成させた。
 次に、この中和マスを加熱還流(内温63℃)し、GMA 38.8g(0.273モル)、重合開始剤としてパーブチル-O 0.13g、および減圧下で脱ガスされたメタノール77.8gからなる混合液を2時間かけて3分割して装入し、その後加熱還流下で4時間混合攪拌し重合を行った。
 室温まで冷却後、濾過して、濾液をエバポレーターで濃縮した。得られた濃縮残渣をエタノール400mlでスラッジングした後、濾過し、濾塊を減圧下(<100mmHg)50℃の条件で秤量に達するまで乾燥し、白色の共重合ポリマー「CH120924] 27.9g(収率38%)を得た。
 得られたポリマーのGPCによる重量平均分子量MW=11,040、Mw/Mn=1.2、共重合ポリマーのNMRによる共重合比率はATBS-Kユニット/GMAユニット=24.6/75.4であった。尚、製造例1と同様にエポキシ基が開環したユニットは不検出だった。
 [製造例5:CH120918ポリマーの製造]
 減圧下で脱ガスされたメタノール606.0gを反応フラスコに装入し、攪拌しながら純度85wt%のKOHフレーク15.0g(0.227モル)を徐々に加えて完溶させた。次に純度97.8wt%のATBS 48.2g(0.227モル)を分割装入して中和(PH=7.5)を行い、ATBS-Kを生成させた。
 次に、この中和マスを加熱還流(内温63℃)し、GMA16.2g(0.114モル)、重合開始剤としてパーブチル-O 0.11g、および減圧下で脱ガスされたメタノール32.5gからなる混合液を2時間かけて3分割して装入し、その後加熱還流下で4時間混合攪拌し重合を行った。
 室温まで冷却後、濾過して、濾液をエバポレーターで濃縮した。得られた濃縮残渣をエタノール400mlでスラッジングした後、濾過し、濾塊を減圧下(<100mmHg)50℃の条件で秤量に達するまで乾燥し、白色の共重合ポリマー「CH120918」 23.1g(収率32%)を得た。
 得られたポリマーのGPCによる重量平均分子量MW=10,200、Mw/Mn=1.2、共重合ポリマーのNMRによる共重合比率はATBS-Kユニット/GMAユニット=58.6/41.4であった。尚、製造例1と同様にエポキシ基が開環したユニットは不検出だった。
 [製造例6:CH110901ポリマーの製造]
 減圧下で脱ガスされたメタノール535.5gを反応フラスコに装入し、攪拌しながら純度85wt%のKOHフレーク23.6g(0.357モル)を徐々に加えて完溶させた。次にATBS 75.7g(0.357モル)を分割装入して中和(PH=7.5)を行い、ATBS-Kを生成させた。
 次に、この中和マスを加熱還流(内温63℃)し、GMA 5.14g(0.036モル)と重合開始剤としてパーブチル-O 0.13gの混合液を装入し、加熱還流下で4.5時間混合攪拌し重合を行った。
 室温まで冷却後、晶析したポリマーを濾別し、得られた濾塊をメタノールで洗浄後、減圧下(<100mmHg)50℃の条件で秤量に達するまで乾燥し、白色の共重合ポリマー「CH110901」 88.8g(収率94%)を得た。
 得られたポリマーのGPCによる重量平均分子量MW=163,000、Mw/Mn=3.4、共重合ポリマーのNMRによる共重合比率はATBS-Kユニット/GMAユニット=86.9/13.1であった。尚、製造例1と同様にエポキシ基が開環したユニットは不検出だった。
 [製造例7:CH111130ポリマーの製造]
 減圧下で脱ガスされたメタノール411.7gを反応フラスコに装入し、攪拌しながら純度85wt%のKOHフレーク15.7g(0.238モル)を徐々に加えて完溶させた。次に純度97.8wt%のATBS 50.0g(0.236モル)を分割装入して中和(PH=7.5)を行い、ATBS-Kを生成させた。
次に、この中和マスを加熱還流(内温63℃)し、GMA 2.86g(0.020モル)と重合開始剤としてパーブチル-O 0.08gの混合液を2時間かけて3分割して装入し、その後加熱還流下で4時間混合攪拌し重合を行った。
 室温まで冷却後、晶析したポリマーを濾別し、得られた濾塊をメタノールで洗浄後、減圧下(<100mmHg)50℃の条件で秤量に達するまで乾燥し、白色の共重合ポリマー「CH111130」 53.2g(収率86%)を得た。
 得られたポリマーのGPCによる重量平均分子量MW=85,000、Mw/Mn=2.4、共重合ポリマーのNMRによる共重合比率はATBS-Kユニット/GMAユニット=88/12であった。尚、製造例1と同様にエポキシ基が開環したユニットは不検出だった。
 [製造例8:CH120217ポリマーの製造]
 減圧下で脱ガスされたメタノール797.9gを反応フラスコに装入し、攪拌しながら純度85wt%のKOHフレーク46.3g(0.701モル)を徐々に加えて完溶させた。次に純度97.8wt%のATBS 150.0g(0.708モル)を分割装入して中和(PH=7.7)を行い、ATBS-Kを生成させた。
 次に、この中和マスを加熱還流(内温63℃)し、GMA 3.43g(0.024モル)と重合開始剤としてパーブチル-O 0.24gおよびメタノール 4.4gの混合液を2時間かけて3分割して装入し、その後加熱還流下で4時間混合攪拌し重合を行った。
 室温まで冷却後、晶析したポリマーを濾別し、得られた濾塊をメタノールで洗浄後、減圧下(<100mmHg)50℃の条件で秤量に達するまで乾燥し、白色の共重合ポリマー「CH120217」 175.4g(収率97%)を得た。
 得られたポリマーのGPCによる重量平均分子量MW=107,000、Mw/Mn=3.0、共重合ポリマーのNMRによる共重合比率はATBS-Kユニット/GMAユニット=95.4/4.6であった。尚、製造例1と同様にエポキシ基が開環したユニットは不検出だった。
 [製造例9:CH120206ポリマーの製造]
 減圧下で脱ガスされたメタノール415.8gを反応フラスコに装入し、攪拌しながら純度85wt%のKOHフレーク15.6g(0.237モル)を徐々に加えて完溶させた。次に純度97.8wt%のATBS 50.0g(0.236モル)を分割装入して中和(PH=7.3)を行い、ATBS-Kを生成させた。
 次に、この中和マスを加熱還流(内温63℃)し、GMA 1.14g(0.008モル)と重合開始剤としてパーブチル-O 0.08gおよびメタノール 0.8gの混合液を2時間かけて3分割して装入し、その後加熱還流下で4時間混合攪拌し重合を行った。
 室温まで冷却後、晶析したポリマーを濾別し、得られた濾塊をメタノールで洗浄後、減圧下(<100mmHg)50℃の条件で秤量に達するまで乾燥し、白色の共重合ポリマー「CH120206」 60.5g(収率92%)を得た。
 得られたポリマーのGPCによる重量平均分子量MW=71,000、Mw/Mn=2.3、共重合ポリマーのNMRによる共重合比率はATBS-Kユニット/GMAユニット=95.1/4.9であった。尚、製造例1と同様にエポキシ基が開環したユニットは不検出だった。
 [製造例10:CH120216ポリマーの製造]
 減圧下で脱ガスされたメタノール412.8gを反応フラスコに装入し、攪拌しながら純度85wt%のKOHフレーク15.6g(0.236モル)を徐々に加えて完溶させた。次に純度97.8wt%のATBS 50.0g(0.236モル)を分割装入して中和(PH=7.3)を行い、ATBS-Kを生成させた。
 次に、この中和マスを加熱還流(内温63℃)し、GMA 0.43g(0.0029モル)と重合開始剤としてパーブチル-O 0.08gの混合液を装入し、加熱還流下で6時間混合攪拌し重合を行った。
 室温まで冷却後、晶析したポリマーを濾別し、得られた濾塊をメタノールで洗浄後、減圧下(<100mmHg)50℃の条件で秤量に達するまで乾燥し、白色の共重合ポリマー「CH120216」 59.4g(収率99%)を得た。
 得られたポリマーのGPCによる重量平均分子量MW=64,000、Mw/Mn=2.4、共重合ポリマーのNMRによる共重合比率はATBS-Kユニット/GMAユニット=98.8/1.2であった。尚、製造例1と同様にエポキシ基が開環したユニットは不検出だった。
 (以下ATBS-K/AGE系ポリマーの製造)
 [製造例11:CH120125ポリマーの製造]
 減圧下で脱ガスされたメタノール410gを反応フラスコに装入し、攪拌しながら純度85wt%のKOHフレーク15.7g(0.237モル)を徐々に加えて完溶させた。次に純度97.8wt%のATBS 50.0g(0.236モル)を分割装入して中和(PH=7.5)を行い、ATBS-Kを生成させた。
 次に、この中和マスを加熱還流(内温63℃)し、アリルグリシジルエーテル(以下AGEと略す) 75.0g(0.657モル)と重合開始剤としてパーブチル-O 0.34gの混合液を装入し、加熱還流下で5時間混合攪拌し重合を行った。
 室温まで冷却後、晶析したポリマーを濾別し、得られた濾塊をメタノールで洗浄後、減圧下(<100mmHg)50℃の条件で秤量に達するまで乾燥し、白色の共重合ポリマー「CH120125」 29.6g(収率22%)を得た。
 得られたポリマーのGPCによる重量平均分子量MW=25,000、Mw/Mn=1.4、共重合ポリマーのNMRによる共重合比率はATBS-Kユニット/AGEユニット=84.4/15.6であった。尚、製造例1と同様にエポキシ基が開環したユニットは不検出だった。
 [製造例12:CH111008ポリマーの製造]
 減圧下で脱ガスされたメタノール409.3gを反応フラスコに装入し、攪拌しながら純度85wt%のKOHフレーク15.7g(0.237モル)を徐々に加えて完溶させた。次に純度97.8wt%のATBS 50.0g(0.236モル)を分割装入して中和(PH=7.5)を行い、ATBS-Kを生成させた。
 次に、この中和マスを加熱還流(内温63℃)し、AGE 25.0g(0.219モル)と重合開始剤としてパーブチル-O 0.15gの混合液を装入し、加熱還流下で5時間混合攪拌し重合を行った。
 室温まで冷却後、晶析したポリマーを濾別し、得られた濾塊をメタノールで洗浄後、減圧下(<100mmHg)50℃の条件で秤量に達するまで乾燥し、白色の共重合ポリマー「CH111008」36.1g(収率43%)を得た。
 得られたポリマーのGPCによる重量平均分子量MW=55,000、Mw/Mn=1.7、共重合ポリマーのNMRによる共重合比率はATBS-Kユニット/AGEユニット=93.1/6.9であった。尚、製造例1と同様にエポキシ基が開環したユニットは不検出だった。
 [製造例13:CH120124ポリマーの製造]
 減圧下で脱ガスされたメタノール406.2gを反応フラスコに装入し、攪拌しながら純度85wt%のKOHフレーク15.6g(0.236モル)を徐々に加えて完溶させた。次に純度97.8wt%のATBS 50.0g(0.236モル)を分割装入して中和(PH=7.5)を行い、ATBS-Kを生成させた。
 次に、この中和マスを加熱還流(内温63℃)し、AGE 13.8g(0.219モル)と重合開始剤としてパーブチル-O 0.11gの混合液を装入し、加熱還流下で5.5時間混合攪拌し重合を行った。
 室温まで冷却後、晶析したポリマーを濾別し、得られた濾塊をメタノールで洗浄後、減圧下(<100mmHg)50℃の条件で秤量に達するまで乾燥し、白色の共重合ポリマー「CH120124」 26.5g(収率36%)を得た。
 得られたポリマーのGPCによる重量平均分子量MW=66,000、Mw/Mn=1.8、共重合ポリマーのNMRによる共重合比率はATBS-Kユニット/AGEユニット=94.7/5.3であった。尚、製造例1と同様にエポキシ基が開環したユニットは不検出だった。
 [製造例14:CH111007ポリマーの製造]
 減圧下で脱ガスされたメタノール415.7gを反応フラスコに装入し、攪拌しながら純度85wt%のKOHフレーク15.8g(0.239モル)を徐々に加えて完溶させた。次に純度97.8wt%のATBS 50.5g(0.238モル)を分割装入して中和(pH=7.6)を行い、ATBS-Kを生成させた。
 次に、この中和マスを加熱還流(内温63℃)し、AGE 2.75g(0.024モル)と重合開始剤としてパーブチル-O 0.09gの混合液を装入し、加熱還流下で4時間混合攪拌し重合を行った。
 室温まで冷却後、晶析したポリマーを濾別し、得られた濾塊をメタノールで洗浄後、減圧下(<100mmHg)50℃の条件で秤量に達するまで乾燥し、白色の共重合ポリマー「CH111007」 47.5g(収率76%)を得た。
 得られたポリマーのGPCによる重量平均分子量MW=68,000、Mw/Mn=2.0、共重合ポリマーのNMRによる共重合比率はATBS-Kユニット/AGEユニット=98.3/1.7であった。尚、製造例1と同様にエポキシ基が開環したユニットは不検出だった。
 (以下コーティング試験)
 [実施例4]
 製造例6で得られたCH110901ポリマー(ユニット比(スルホン酸/エポキシ)=87/13,MW=163,000,Mw/Mn=3.4)5gに水28gを加えて混合溶解し、次いでEGM(2-メトキシエタノール)35g、TEOS(テトラエトキシシラン)26g、および5wt%硫酸6gを加えて30分混合攪拌し、平均孔径0.5μmのフィルターを通して無色透明なコーティング用組成物を得た。この組成物中のポリマー/TEOS(as SiO2)重量比は1/1.5 (40/60)である。
 よく洗浄されたガラス板(表面の水接触角 <8°)の表面に、上記のコーティング用組成物をバーコーター#24で塗布し、50℃で5分間予備乾燥した後、170℃×1時間で加熱し、ガラス表面に約3μmのコーティング膜を形成した。室温まで冷却後、コーティング面を水で洗浄し膜の評価を行った。
 結果を表5に掲載する。
 [比較例4]
 CH110901ポリマー(ユニット比(スルホン酸/エポキシ)=87/13,MW=163,000,Mw/Mn=3.4)の代わりに分子量40~60万のPSS-Na(ポリスチレンスルホン酸ナトリウム塩,21wt%水溶液)24gを用い、水を28gから9gに変更した以外は実施例4と同様に試験した。
 結果を表5に掲載する。
 [比較例5]
 CH110901ポリマー(ユニット比(スルホン酸/エポキシ)=87/13,MW=163,000,Mw/Mn=3.4)の代わりにエポキシ化合物であるグリセリントリグリシジルエーテル(ナガセケムテック(株),デナコールEX-314)24gを用いた以外は実施例4と同様に試験した。
 結果を表5に掲載する。
 [比較例6]
 CH110901ポリマー(ユニット比(スルホン酸/エポキシ)=87/13,MW=163,000,Mw/Mn=3.4)の代わりに、分子量40~60万のポリスチレンスルホン酸ナトリウム塩(21wt%水溶液)20.7gおよびグリセリントリグリシジルエーテル(ナガセケムテック(株),デナコールEX-314)0.2gを用い、水を28gから12.1gに変更した以外は実施例4と同様に試験した。
 結果を表5に掲載する。
 [比較例7]
 CH110901ポリマーを使用せずに、実施例4と同様に試験した。
 結果を表5に掲載する。
Figure JPOXMLDOC01-appb-T000018
 [実施例5~18:製造例1~14で製造したスルホン酸エポキシポリマーを用いた硬化膜の作製]
 製造例1~14で得られたポリマー6.3gに水35.2gを加えて混合溶解し、次いでEGM(2-メトキシエタノール)31.3g、TEOS(テトラエトキシシラン)21.7g、および5wt%硫酸5.6gを加えて30分混合し、平均孔径0.5μmのフィルターを通過させて固形分(ポリマー+SiO2)12.6wt%の無色透明なコーティング用組成物を得た。
 この組成物中のポリマー/TEOS(as SiO2)重量比は1/1(50/50)である。
 よく洗浄された青板ガラス板(表面の水接触角 <8°)の表面に、上記のコーティング用組成物をバーコーター#16で塗布し、50℃で3分間予備乾燥した後、150℃×1時間で加熱し、ガラス表面に約2μmのコーティング膜を形成した。室温まで冷却後、コーティング面を水で洗浄し、エアガンで乾燥後、膜の評価を行った。
 結果を表6に掲載する。
Figure JPOXMLDOC01-appb-T000019
 [実施例19~21:シリカの配合比]
 製造例6で得られたCH110901ポリマーとTEOS(as SiO2)の配合比を変更して上記(実施例5~18)と同様に試験を行った。
 実施例4および実施例10も合わせて結果を表7に掲載する。
Figure JPOXMLDOC01-appb-T000020
 [実施例22:反射防止層を有する光学系基材へのコーティング1]
 製造例6で得られたCH110901ポリマー1.0gに水5.0gを加えて混合溶解し、次いでEGM(2-メトキシエタノール)47.3g、TEOS(テトラエトキシシラン)2.6g、および5wt%硫酸2.5gを加えて30分混合し、平均孔径0.5μmのフィルターを通過させて固形分3.0wt%(ポリマー+TEOS(as SiO2))の無色透明なコーティング用組成物を得た。
 この組成物中のポリマー/TEOS(as SiO2)重量比は4/3(57/43)である。
 ガラス板に両面にAR(反射防止)層が積層された厚さ2mmの光学系基材表面に、上記の組成物を含ませたティシュで両面に塗布し、50℃で3分間予備乾燥した後、170℃×1時間で加熱し、室温まで冷却後、コーティング面を水で洗浄し、エアガンで乾燥した後、膜の評価を行った。
 電子顕微鏡(SEM)による観察から、ARコート上に約20~80nmのコーティング膜が形成されていた。
 この膜の評価結果を表8に掲載する。
Figure JPOXMLDOC01-appb-T000021
* 呼気により曇った場合を×、曇らなかった場合を○とした。
** 目視により、像の映り込みが弱く透視視界性が良好な場合を○、像の映り込みが強く透視視界性が良くない場合を×とした。
 (反射率および透過率の測定)
 測定機種: 日立製作所製,紫外可視近赤外分光光度計「U-4100」
 測定方法: 透過法、正反射法(入射角5°,絶対反射率)
 測定波長領域: 400~800nm
 スキャンスピード: 300nm/分
 サンプリング間隔: 1nm
 スプリット幅: 6nm
 上記実施例22で使用した基材は、透過光の内部損失(散乱等)が殆ど無い高透明の材料(ガラス)を使用し、加えて、AR(反射防止)層により表面の光の反射を低減した構造を有している。この反射防止層の上に、一般用途と同様にミクロンオーダー以上の膜を積層すると、積層された膜表面での反射により透明性が大幅に低下することが予想される。
 本実施例22では、この新たに積層する親水性膜の反射を抑えるために、親水性膜を極めて薄膜20~80nmで硬化・積層した。結果、親水性膜表面の反射が抑えられ、光学用途として充分に使用できる高い透明性(反射防止特性を損なわない)と高い親水性を有する積層体を得る事ができた。
 [実施例23:反射防止層を有する光学系基材へのコーティング2]
 光学系基材の作製
 三井化学製MR-8ATM 50.6g、MR-8B1TM 23.9g、MR-8B2TM 25.5g、ジブチルチンジクロリド0.035g、紫外線吸収剤(共同薬品社製、商品名バイオソーブ583)1.5g、内部離型剤(三井化学社製、商品名MR用内部離型剤)0.1gを混合溶解し、均一溶液とした。
 この均一溶液を400Paの減圧下で1時間かけて脱泡を行った後、1μmPTFE製フィルターで濾過し、濾液をガラスモールドとテープからなるモールド型へ注入した。液が注入されたモールド型を重合オーブンへ投入し、25℃~120℃まで21時間かけて徐々に昇温して硬化させた。
 室温まで冷却後、モールド型からテープとガラスモールドを剥離し、内部のプラスチックレンズを取り出し、さらに歪を取る目的で、再度120℃で2時間の加熱を行い室温まで徐冷した。こうして得られたMR-8TMプラスチックレンズの屈折率(ne)は1.60、アッベ数(νe)は40、比重は1.29、耐熱性は90℃以上であり、眼鏡用プラスチックレンズとして好適な物性を有していた。
 次に、このMR-8TMプラスチックレンズ表面に、SiO2を主成分とする層/ZrO2を主成分とする層のサンドイッチ構造で表面層がSiO2を主成分とする層であるハードマルチコート(反射防止ハードコート)を積層し、表面に反射防止層を有するMR-8TMプラスチックレンズを得た。
 組成物の調製
 製造例1で得られたCH110831ポリマー 0.63gに水3.52gを加えて混合溶解し、次いでEGM(2-メトキシエタノール)218.0g、TEOS(テトラエトキシシラン)1.63g、および5wt%硫酸0.43gを加えて30分混合し、平均孔径0.5μmのフィルターを通過させて固形分0.5wt%(ポリマー+TEOS(as SiO2))の無色透明なコーティング用組成物を得た。この組成物中のポリマー/TEOS(as SiO2)重量比は4/3(57/43)である。
 基材への塗工
 AR層(反射防止層)を有するMR-8TM眼鏡レンズの表面(AR層)上に、上記で得られたコーティング用組成物をスピンコーター(回転数4000rpm)で塗布し、80℃のオーブンで3時間加熱して硬化させた。室温まで冷却後、コーティング面を水で洗浄し、40℃温風乾燥機で乾燥した後、室温で膜の評価を行った。電子顕微鏡(SEM)による観察から、AR層上に約40~50nmの親水性コーティング膜が形成されていた。
 得られた親水コーティングされたMR-8TM眼鏡レンズを純水に浸漬し、超音波(出力240W,周波数40Hz)を照射することによって親水性膜の耐久性の評価を行った(試験中の純水温度は25℃にコントロールした)。
 結果を表9に掲載する。さらに、反射率の測定結果を図5に掲載する。
 [比較例8~11]
 比較のため、現在市販されている防曇眼鏡メガネ(定期的にメーカー指定販売の界面活性剤を塗布して使用する眼鏡レンズ)について、メーカー指定の界面活性剤を塗布した後、実施例23と同様に評価を行った。
 結果を表9に掲載する。
 [比較例12]
 比較のため、製造例1で得られた表面に反射防止層を有するMR-8TMプラスチックレンズについて、コーティング用組成物によるコーティング膜の形成を行わない以外は実施例23と同様に評価を行った。
 結果を表9に掲載する。
Figure JPOXMLDOC01-appb-T000022
* 目視により、像の映り込みが弱く透視視界性が良好な場合を○、像の映り込みが強く透視視界性が良くない場合を×とした。
 [実施例24:有機基材へのコーティング試験]
 プライマー組成物の調製
 三井化学社製 タケラックA315 20.0g、溶剤 2-ペンタノン 175.0g、および三井化学製 タケネートA10 2.5gを混合溶解し、NV=11wt%のプライマー溶液197.5gを調製した。
 コーティング用組成物の調製
 製造例6で得られたCH110901ポリマー{ユニット比(ATBS-Kユニット/GMAユニット)a/b=86.9/13.1,MW=163,000,Mw/Mn=3.4} 6.7gに水40gを加えて混合溶解し、次いでEGM(2-メトキシエタノール)50g、TEOS(テトラエトキシシラン)46.7g、および5wt%塩酸9gを加えて、室温で30分混合攪拌し、平均孔径0.5μmのフィルターを通過させて、固形分NV=13wt%の無色透明なコーティング用組成物150gを得た。この組成物中のポリマー/TEOS(as SiO2)重量比は1/2 (33/67)である。
 基材への塗工
 タキロン社製ポリカーボネート板表面に、上記のプライマー組成物をスプレーで塗布し、120℃のオーブンに10分間保持し、プライマー層を硬化させた。
 そのプライマー層表面に、上記のコーティング用組成物をバーコーター#50で塗布し、50℃で5分間予備乾燥した後、120℃オーブンに1時間保持してプライマー層上に約6μmのコーティング膜を形成した。室温まで冷却後、コーティング面を水で洗浄し、膜の評価を行った。
 得られた親水性膜は透明で、水接触角6°、密着性(碁盤目剥離)100/100であり、呼気防曇性、並びに防汚性に優れていた。
 [実施例25:傾斜度の測定-1]
 コーティング用組成物の調製
 製造例6で得られたCH110901ポリマー 6.0gに水29.0gを加えて混合溶解し、次いでEGM(2-メトキシエタノール)37.0g、TEOS(テトラエトキシシラン)22.0g、および5wt%硫酸6.0gを加えて、室温で30分混合攪拌し、平均孔径0.5μmのフィルターを通過させて、NV=13wt%の無色透明なコーティング用組成物99gを得た。この組成物中のポリマー/TEOS(as SiO2)重量比は1/1 (50/50)である。
 基材への塗工
 良く洗浄されたガラス板表面(水接触角 <8°)に、上記のコーティング用組成物をバーコーター#12で塗布し、50℃で5分間予備乾燥した後、150℃オーブンに1時間保持してガラス板表面上に約1.5μmのコーティング膜を形成した。室温まで冷却後、コーティング面を水で洗浄し、膜の評価を行った。
 結果を表10に掲載する
 [実施例26:傾斜度の測定-2]
 コーティング用組成物の調製
 製造例6で得られたCH110901ポリマー 3.0gに水14.5gを加えて混合溶解し、次いでEGM(2-メトキシエタノール)68.5g、TEOS(テトラエトキシシラン)11.0g、および5wt%硫酸3.0gを加えて、室温で30分混合攪拌し、平均孔径0.5μmのフィルターを通過させて、NV=6wt%の無色透明なコーティング用組成物99gを得た。この組成物中のポリマー/TEOS(as SiO2)重量比は1/1 (50/50)である。
 基材への塗工
 良く洗浄されたガラス板表面(水接触角 <8°)に、上記のコーティング用組成物をバーコーター#24で塗布し、50℃で5分間予備乾燥した後、150℃オーブンに1時間保持してガラス板表面上に約1.5μmのコーティング膜を形成した。室温まで冷却後、コーティング面を水で洗浄し、膜の評価を行った。
 結果を表10に掲載する
 [実施例27:傾斜度の測定-3,プライマー上]
 プライマー組成物の調製
 実施例24と同様に、三井化学社製 タケラックA315 2.5g、溶剤 2-ペンタノン 97.2g、および三井化学製 タケネートA10 0.3gを混合溶解し、NV=2.8wt%のプライマー溶液100.0gを調製した。
 コーティング用組成物の調製
 実施例26で得られたコーティング用組成物を用いた。
 基材への塗工
 良く洗浄されたガラス板表面(水接触角 <8°)に、上記のプライマー組成物をバーコーター#2で塗布し、150℃のオーブンに10分間保持し、ガラス板表面上に約0.06μmプライマー層を形成させた。
 そのプライマー層表面上に、上記のコーティング用組成物を実施例26と同様に塗工し、膜の評価を行った。
 結果を表10に掲載する。
Figure JPOXMLDOC01-appb-T000023
* TOF-SIMS分析による、親水性膜表面におけるスルホン酸(SO3-)強度
** TOF-SIMS分析による、親水性膜の膜厚1/2の地点内部におけるスルホン酸(SO3-)強度
 因みに、実施例25~27において、親水性膜のIR分析を行ったところ、Si-O-Si構造またはSi-O-Cに由来する1040~1060cm-1のピークが検出された。
 [実施例28:UV+熱 硬化]
 コーティング用組成物の調製
 製造例6で得られたCH110901ポリマー 6.0gに水29.0gを加えて混合溶解し、次いでEGM(2-メトキシエタノール)37.0g、TEOS(テトラエトキシシラン)22.0g、および5wt%硫酸6.0gを加えて、室温で30分混合攪拌した。次いで、多官能アクリレートであるデナコールアクリレートDX-314(ナガセケムテック(株)) 1.2g{10wt%/(CH110901ポリマー+TEOS as SiO2)}とUV重合開始剤であるダロキュアー1173(BASF Japan Ltd.)0.06gを加えてに5分間混合した後、平均孔径0.5μmのフィルターを通過させて、NV=13wt%の無色透明なコーティング用組成物100.0gを得た。この組成物中のポリマー/TEOS(as SiO2)重量比は1/1 (50/50)である。
 基材への塗工
 良く洗浄されたガラス板表面(水接触角 <8°)に、上記のコーティング用組成物をバーコーター#12で塗布し、50℃で5分間予備乾燥した後、UV照射し(無電極放電ランプ Hバルブ,照度800mW/cm2,積算光量390mJ/cm2)、次いで150℃オーブンに1時間保持してガラス板表面上に約1.5μmのコーティング膜を形成した。室温まで冷却後、コーティング面を水で洗浄し、膜の評価を行った。
 得られた親水性膜は透明で、水接触角5°、密着性(碁盤目剥離)100/100であり、呼気防曇性、並びに防汚性に優れていた。
 10:   基材
 20:   コート層
 30:   切削方向
 40:   コート層表面
 50:   コート層内部

Claims (14)

  1.  -SO3M基とエポキシ基を有し、該Mが水素原子、アルカリ金属、アルカリ土類金属、またはアンモニウムイオンを表される重合体(i)と、
     シラン原子に結合した水酸基、シラン原子に結合したアルコキシ基、およびシラン原子に結合したハロゲン原子からなる群より選ばれる基または原子を合計2個以上有するシラン化合物(ii)
    を含む組成物。
  2.  前記重合体(i)が、下記一般式(1)で表される構成単位と下記一般式(2)で表される構成単位を有する重合体である請求項1記載の組成物:
    Figure JPOXMLDOC01-appb-C000001
     (一般式(1)および(2)中、
     R1およびR2は独立して水素原子またはメチル基を表し、
     Mは水素原子、アルカリ金属、アルカリ土類金属、またはアンモニウムイオンを表し、
     ユニット比a/b=1000/1~1/1000であり、
     A1は、(Q1)f(P1)で表され、
      Q1は-COO-、-CONH-、置換基を有していても良いフェニレン基から選ばれ、
      P1は単結合または、エーテル構造を有していても良く且つ炭素数1~15である2価以上の、炭化水素基からなる群より選ばれ、
      fは0又は1であり、hは1~5であり、
     A2は、(Q2)g(P2)で表され、
      Q2は-COO-、炭素数1~5の2価以上の炭化水素基、置換基を有していても良いフェニレン基、-O-から選ばれ、
      P2は、単結合、-X-P3-、-P4-Y-、-P5-からなる群より選ばれ、
       P3~P5は、それぞれ独立して、エーテル構造を有していても良く且つ炭素数1~15である2価以上の、炭化水素基を表し、
       Xは酸素、硫黄または-COO-を表し、
       Yは酸素又は硫黄を表し、
      gは0または1であり、kは1~5であり、
      gが1でQ2が-O-または-COO-のとき、P2は-X-P3-ではない。)。
  3.  前記一般式(1)において、A1が、単結合,-CH2-,-C6H4-,-COOCH2-,-COOCH2CH2-,-COOCH2CH2CH2-,-CONH-C(CH3)2-CH2-,-CONH-CH(CH3)-CH2-,-CONH-CH2-,-CONH-CH2CH2-,または-CONH-CH2CH2CH2-で表され、且つ、
     前記一般式(2)において、A2が、単結合,-CH2-,-C6H4-,-O-,-CH2-O-,-CH2-O-CH2-,-C6H4-O-,-C6H4-O-CH2-,-COO-,-COOCH2-,-C6H4-COO-,または-C6H4-COO-CH2-で表される
    請求項2記載の組成物。
  4.  前記重合体(i)の、GPCにより測定した重量平均分子量が300~3,000,000である請求項1記載の組成物。
  5.  前記シラン化合物(ii)が下記一般式(3)で表される化合物である請求項1記載の組成物:
    Figure JPOXMLDOC01-appb-C000002
     (一般式(3)中、
     X1およびX2は、それぞれ独立して、水酸基、炭素数1~4のアルコキシ基、またはハロゲン原子を表し、
     R3~R6は、それぞれ独立して、水酸基、水素原子、炭素数1~4のアルキル基、ビニル基、フェニル基、炭素数1~4のアルコキシ基、またはハロゲン原子を表し、
     mは0~10000の整数を表す。)。
  6.  前記重合体(i)と前記シラン化合物(ii)との換算重量比が99.1/0.1~0.1/99.9の範囲にある請求項1記載の組成物。
  7.  請求項1~6のいずれか1項に記載の組成物を硬化させて得られた膜。
  8.  基材上に形成されたものである請求項7記載の膜。
  9.  外表面におけるスルホン酸濃度(Sa)と、前記基材に接する界面と前記外表面との中間地点におけるスルホン酸濃度(Da)との比(Sa/Da)が2~1000である請求項8記載の膜。
  10.  表面の水接触角が30°以下である請求項7~9のいずれかに記載の膜。
  11.  基材上に形成され、-SO3M基(Mは水素原子、アルカリ金属、アルカリ土類金属、またはアンモニウムイオンを表す。)と、Si-O-Si構造またはSi-O-C構造とを有する膜であって、当該膜の外表面におけるSO3M基濃度(Sa)と、該基材に接する界面と前記外表面との中間地点におけるSO3M基濃度(Da)の比(Sa/Da)が、2~1000である膜。
  12.  前記比(Sa/Da)が、10~1000である請求項11記載の膜。
  13.  表面の水接触角が30°以下である請求項11または12に記載の膜。
  14.  請求項7~13のいずれかに記載の膜を基材に積層してなる積層体。
PCT/JP2012/076425 2011-10-14 2012-10-12 組成物及びそれからなる膜 WO2013054877A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US14/350,768 US9273222B2 (en) 2011-10-14 2012-10-12 Composition and film comprising same
KR1020147012660A KR101588988B1 (ko) 2011-10-14 2012-10-12 조성물 및 그것으로 이루어지는 막
MX2014004400A MX340998B (es) 2011-10-14 2012-10-12 Composicion y pelicula que comprende la misma.
CN201280048438.6A CN103842401B (zh) 2011-10-14 2012-10-12 组合物及由其形成的膜
BR112014008851A BR112014008851A2 (pt) 2011-10-14 2012-10-12 composição e filme compreendendo a mesma
JP2013538584A JP5788014B2 (ja) 2011-10-14 2012-10-12 組成物及びそれからなる膜
EP12839796.5A EP2767552A4 (en) 2011-10-14 2012-10-12 COMPOSITION AND FILM CONTAINING IT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011226450 2011-10-14
JP2011-226450 2011-10-14

Publications (1)

Publication Number Publication Date
WO2013054877A1 true WO2013054877A1 (ja) 2013-04-18

Family

ID=48081923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076425 WO2013054877A1 (ja) 2011-10-14 2012-10-12 組成物及びそれからなる膜

Country Status (9)

Country Link
US (1) US9273222B2 (ja)
EP (1) EP2767552A4 (ja)
JP (1) JP5788014B2 (ja)
KR (1) KR101588988B1 (ja)
CN (1) CN103842401B (ja)
BR (1) BR112014008851A2 (ja)
MX (1) MX340998B (ja)
TW (1) TWI542626B (ja)
WO (1) WO2013054877A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2985301A4 (en) * 2013-04-12 2016-09-21 Mitsui Chemicals Inc COPOLYMER AND HYDROPHILIC MATERIALS THEREFOR
KR20170023140A (ko) 2014-07-31 2017-03-02 미쯔이가가꾸가부시끼가이샤 술폰산계 공중합체와 아미노 수지로 이루어지는 친수성 재료
KR20190038867A (ko) 2016-08-26 2019-04-09 미쯔이가가꾸가부시끼가이샤 반사 방지성 적층체
KR20190038868A (ko) 2016-08-26 2019-04-09 미쯔이가가꾸가부시끼가이샤 방담성 적층체

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106660308B (zh) * 2014-06-25 2020-05-15 富士胶片株式会社 层叠体及其制造方法、红外线吸收滤波器、带通滤波器、滤波器形成用套组及图像显示装置
US10428194B2 (en) 2015-02-25 2019-10-01 Mitsui Chemicals, Inc. Modified acrylic resin cured product, and laminate thereof, and production methods therefor
CN108025542B (zh) * 2015-09-14 2021-04-13 Agc株式会社 防雾性物品和汽车用玻璃
CN109438708B (zh) * 2018-10-10 2020-11-03 大连理工大学 一种脂肪族聚硫代酯的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5622365A (en) 1979-08-02 1981-03-02 Nippon Sheet Glass Co Ltd Coating composition
JPS61166824A (ja) 1986-01-24 1986-07-28 Toray Ind Inc 硬化性樹脂組成物
JPH03134002A (ja) * 1989-10-20 1991-06-07 Nippon Oil & Fats Co Ltd エポキシ基含有水溶性高分子化合物の製造法
JPH06166847A (ja) 1992-11-30 1994-06-14 Mitsubishi Kasei Corp ハードコート
JPH083281A (ja) * 1994-06-20 1996-01-09 Shinto Paint Co Ltd アニオン性水分散型樹脂組成物及びその製造方法
JPH1121512A (ja) 1997-07-01 1999-01-26 Asahi Denka Kogyo Kk 親水性コーティング用樹脂組成物
JP2006089589A (ja) * 2004-09-24 2006-04-06 Daicel Chem Ind Ltd 金属表面用水分散性樹脂処理剤及び表面処理金属板
JP2006342221A (ja) * 2005-06-08 2006-12-21 Daicel Chem Ind Ltd 水分散性樹脂組成物
WO2007064003A1 (ja) 2005-12-02 2007-06-07 Mitsui Chemicals, Inc. 単層膜およびこれからなる親水性材料

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3872047A (en) * 1972-12-04 1975-03-18 Hana Jandourek Composition and method for improving adherence of polymeric materials to substrates
JPS5590516A (en) * 1978-12-28 1980-07-09 Mitsubishi Rayon Co Ltd Coating composition with excellent functionality
US4600521A (en) * 1984-10-09 1986-07-15 Nippon Zeon Co., Ltd. Electron-beam reactive magnetic coating composition for magnetic recording media
US5273812A (en) * 1990-02-27 1993-12-28 Dai Nippon Insatsu Kabushiki Kaisha Non-fogging sheet and its production
JP3005832B2 (ja) * 1992-02-17 2000-02-07 コニカ株式会社 ハロゲン化銀写真感光材料
WO2004058900A1 (ja) * 2002-12-26 2004-07-15 Mitsui Chemicals, Inc. 水酸基含有アクリルアミド誘導体を用いる防汚材料およびその用途
DE602004009846T2 (de) * 2003-03-20 2008-08-28 Fujifilm Corp. Flachdruckplattenvorläufer
CN100478371C (zh) * 2005-09-02 2009-04-15 安徽省农业科学院原子能农业应用研究所 有机硅改性高吸水性树脂及其制备方法
JP5337394B2 (ja) * 2007-05-15 2013-11-06 富士フイルム株式会社 親水性コーティング組成物及びこれを用いた親水性部材
KR20130059453A (ko) * 2008-03-21 2013-06-05 미쓰이 가가쿠 가부시키가이샤 친수막
KR100989150B1 (ko) * 2008-08-18 2010-10-22 한양대학교 산학협력단 광산발생기를 포함하는 레지스트용 공중합체 및 그 제조 방법
DE102009008143A1 (de) * 2009-02-09 2010-08-19 Celanese Emulsions Gmbh Vinylacetat-Ethylen-Copolymerdispersionen und damit behandelte textile Flächengebilde
DE102009012455A1 (de) * 2009-03-12 2010-09-23 Follmann & Co. Gesellschaft Für Chemie-Werkstoffe Und -Verfahrenstechnik Mbh & Co. Kg Verbesserte Mikrokapseln und ihre Herstellung
JP5607337B2 (ja) * 2009-10-27 2014-10-15 リンテック株式会社 水分散型アクリル系粘着剤組成物、粘着シート及びその製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5622365A (en) 1979-08-02 1981-03-02 Nippon Sheet Glass Co Ltd Coating composition
JPS61166824A (ja) 1986-01-24 1986-07-28 Toray Ind Inc 硬化性樹脂組成物
JPH03134002A (ja) * 1989-10-20 1991-06-07 Nippon Oil & Fats Co Ltd エポキシ基含有水溶性高分子化合物の製造法
JPH06166847A (ja) 1992-11-30 1994-06-14 Mitsubishi Kasei Corp ハードコート
JPH083281A (ja) * 1994-06-20 1996-01-09 Shinto Paint Co Ltd アニオン性水分散型樹脂組成物及びその製造方法
JPH1121512A (ja) 1997-07-01 1999-01-26 Asahi Denka Kogyo Kk 親水性コーティング用樹脂組成物
JP2006089589A (ja) * 2004-09-24 2006-04-06 Daicel Chem Ind Ltd 金属表面用水分散性樹脂処理剤及び表面処理金属板
JP2006342221A (ja) * 2005-06-08 2006-12-21 Daicel Chem Ind Ltd 水分散性樹脂組成物
WO2007064003A1 (ja) 2005-12-02 2007-06-07 Mitsui Chemicals, Inc. 単層膜およびこれからなる親水性材料

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Technology and Application of Plastic Lens System", 30 June 2003, CMC PUBLISHING CO., LTD., pages: 165 - 166
"Toagosei Annual Research Report", TREND, February 1999 (1999-02-01), pages 39 - 44
EXPECTED MATERIALS FOR THE FUTURE, vol. 2, no. 1, 2002, pages 36 - 41
POLYMER, vol. 44, no. 5, 1995, pages 307
See also references of EP2767552A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2985301A4 (en) * 2013-04-12 2016-09-21 Mitsui Chemicals Inc COPOLYMER AND HYDROPHILIC MATERIALS THEREFOR
KR101757096B1 (ko) 2013-04-12 2017-07-11 미쯔이가가꾸가부시끼가이샤 공중합체 및 그것을 포함하는 친수성 재료
KR20170023140A (ko) 2014-07-31 2017-03-02 미쯔이가가꾸가부시끼가이샤 술폰산계 공중합체와 아미노 수지로 이루어지는 친수성 재료
US9976050B2 (en) 2014-07-31 2018-05-22 Mitsui Chemicals, Inc. Hydrophilic materials including sulfonate copolymer and amino resin
KR101910753B1 (ko) * 2014-07-31 2018-10-22 미쯔이가가꾸가부시끼가이샤 술폰산계 공중합체와 아미노 수지로 이루어지는 친수성 재료
KR20190038867A (ko) 2016-08-26 2019-04-09 미쯔이가가꾸가부시끼가이샤 반사 방지성 적층체
KR20190038868A (ko) 2016-08-26 2019-04-09 미쯔이가가꾸가부시끼가이샤 방담성 적층체
US11338562B2 (en) 2016-08-26 2022-05-24 Mitsui Chemicals, Inc. Antifogging laminate

Also Published As

Publication number Publication date
US9273222B2 (en) 2016-03-01
TWI542626B (zh) 2016-07-21
JPWO2013054877A1 (ja) 2015-03-30
KR101588988B1 (ko) 2016-01-26
EP2767552A1 (en) 2014-08-20
JP5788014B2 (ja) 2015-09-30
TW201329151A (zh) 2013-07-16
KR20140091549A (ko) 2014-07-21
CN103842401B (zh) 2016-12-21
EP2767552A4 (en) 2015-05-27
MX340998B (es) 2016-08-03
CN103842401A (zh) 2014-06-04
MX2014004400A (es) 2014-09-08
BR112014008851A2 (pt) 2017-04-25
US20140256870A1 (en) 2014-09-11

Similar Documents

Publication Publication Date Title
JP6283718B2 (ja) 共重合体及びそれからなる親水性材料
JP5788014B2 (ja) 組成物及びそれからなる膜
JP6239086B2 (ja) 共重合体または組成物からなる膜
JP6434519B2 (ja) スルホン酸系共重合体とアミノ樹脂からなる親水性材料
KR101432455B1 (ko) 단층막 및 이것으로 이루어지는 친수성 재료
JP2019131763A (ja) イオン性基を有するポリマーの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12839796

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013538584

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14350768

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/004400

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012839796

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147012660

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014008851

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014008851

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140411