WO2013054418A1 - 空気電池、当該空気電池を備える移動体、及び空気電池の使用方法 - Google Patents
空気電池、当該空気電池を備える移動体、及び空気電池の使用方法 Download PDFInfo
- Publication number
- WO2013054418A1 WO2013054418A1 PCT/JP2011/073571 JP2011073571W WO2013054418A1 WO 2013054418 A1 WO2013054418 A1 WO 2013054418A1 JP 2011073571 W JP2011073571 W JP 2011073571W WO 2013054418 A1 WO2013054418 A1 WO 2013054418A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- negative electrode
- air
- air battery
- current collector
- active material
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M12/00—Hybrid cells; Manufacture thereof
- H01M12/08—Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/381—Alkaline or alkaline earth metals elements
- H01M4/382—Lithium
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to an air battery that can avoid corrosion of a negative electrode and can be used for a long period of time and can be stored for a long period of time, a moving body including the air battery, and a method of using the air battery.
- An air battery is a chargeable / dischargeable battery using a single metal or a metal compound as a negative electrode active material and oxygen as a positive electrode active material. Since oxygen, which is a positive electrode active material, is obtained from air, it is not necessary to enclose the positive electrode active material in the battery. Therefore, in theory, an air battery has a larger capacity than a secondary battery using a solid positive electrode active material. realizable.
- Patent Document 1 discloses a technique related to a non-aqueous electrolyte air battery in which a power generation element composed of a positive electrode, a negative electrode, and an electrolyte layer is housed in a laminate film outer package (paragraph [in the specification of Patent Document 1 [ FIG. 1).
- the present inventor further examined the air battery including the laminate film exterior body described in Patent Document 1, and the liquid derived from the electrolyte layer in the air battery permeates between other members in the air battery. It became clear that there was a possibility of doing.
- the present invention has been accomplished in view of the above circumstances, and an air battery that can avoid corrosion of the negative electrode and that can be used and stored for a long period of time, a moving body including the air battery, and a method of using the air battery The purpose is to provide.
- the first air battery of the present invention includes an air electrode, a negative electrode, an electrolyte layer interposed between the air electrode and the negative electrode, and a laminate including the air electrode, the negative electrode, and the electrolyte layer.
- the negative electrode comprises at least a negative electrode active material layer and a negative electrode current collector in order from the side facing the electrolyte layer, and the negative electrode active material Both the layer and the negative electrode current collector are located above the electrolyte layer in the vertical direction.
- the air electrode is disposed on the lower side in the vertical direction in the stacked body, and the negative electrode is disposed on the upper side in the vertical direction in the stacked body. It is preferable to provide a mark indicating at least one of these.
- the first air battery of the present invention further includes a housing in which one or more of the exterior bodies are stacked and housed, and the mark is provided on a side surface of the housing parallel to the stacking direction of the exterior bodies. It may be done.
- the negative electrode active material layer may contain lithium metal.
- the negative electrode current collector may contain a metal or an alloy.
- the electrolyte layer may contain an ionic liquid.
- the outer package may be made of a laminate film.
- the moving body of the present invention includes the air battery.
- both the negative electrode active material layer and the negative electrode current collector are always positioned above the electrolyte layer in the vertical direction.
- a second air battery includes an air electrode, a negative electrode, an electrolyte layer interposed between the air electrode and the negative electrode, and a laminate including the air electrode, the negative electrode, and the electrolyte layer.
- the negative electrode comprises at least a negative electrode active material layer and a negative electrode current collector in order from the side facing the electrolyte layer, and the negative electrode active material
- the electrolyte layer is formed on the side surface and / or the interface of the negative electrode active material layer and the negative electrode current collector by both the layer and the negative electrode current collector being positioned vertically above the electrolyte layer. It is characterized by the absence of the derived liquid.
- the method of using the air battery of the present invention includes an air electrode, a negative electrode, and an electrolyte layer interposed between the air electrode and the negative electrode, and a laminate including the air electrode, the negative electrode, and the electrolyte layer.
- the negative electrode comprises at least a negative electrode active material layer and a negative electrode current collector in order from the side facing the electrolyte layer.
- the vertical direction of the air battery is determined so that the negative electrode active material layer and the negative electrode current collector are both arranged above the electrolyte layer in the vertical direction.
- the air electrode is disposed on the lower side in the vertical direction in the stacked body, and the negative electrode is disposed on the upper side in the vertical direction in the stacked body.
- the vertical direction of the air battery may be determined based on a mark indicating at least one of the above.
- the air battery further includes a housing in which one or more of the exterior bodies are stacked and housed, and the mark is provided on a side surface of the housing parallel to the stacking direction of the exterior bodies. It may be done.
- the negative electrode active material layer may contain lithium metal.
- the negative electrode current collector may contain a metal or an alloy.
- the electrolyte layer may contain an ionic liquid.
- the outer package may be made of a laminate film.
- the negative electrode active material layer and the negative electrode current collector are both positioned on the upper side in the vertical direction from the electrolytic solution layer, the negative electrode active material layer and the negative electrode current collector are derived from the electrolytic solution layer on the side surfaces. As a result, the formation of the negative electrode active material layer, the negative electrode current collector, and the internal battery composed of the liquid can be prevented, and the generation of a corrosion current that corrodes the negative electrode can be prevented. .
- the first air battery of the present invention includes an air electrode, a negative electrode, an electrolyte layer interposed between the air electrode and the negative electrode, and the air electrode, the negative electrode, And an air battery including an exterior body that houses one or more laminates including the electrolyte layer, wherein the negative electrode is at least in order from the side facing the electrolyte layer, the negative electrode active material layer and the negative electrode collector.
- the negative electrode active material layer and the negative electrode current collector are both located above the electrolyte layer in the vertical direction.
- a second air battery includes an air electrode, a negative electrode, an electrolyte layer interposed between the air electrode and the negative electrode, and a laminate including the air electrode, the negative electrode, and the electrolyte layer.
- the negative electrode comprises at least a negative electrode active material layer and a negative electrode current collector in order from the side facing the electrolyte layer, and the negative electrode active material
- the electrolyte layer is formed on the side surface and / or the interface of the negative electrode active material layer and the negative electrode current collector by both the layer and the negative electrode current collector being positioned vertically above the electrolyte layer. It is characterized by the absence of the derived liquid.
- the method of using the air battery of the present invention includes an air electrode, a negative electrode, and an electrolyte layer interposed between the air electrode and the negative electrode, and a laminate including the air electrode, the negative electrode, and the electrolyte layer.
- the negative electrode comprises at least a negative electrode active material layer and a negative electrode current collector in order from the side facing the electrolyte layer.
- the vertical direction of the air battery is determined so that the negative electrode active material layer and the negative electrode current collector are both arranged above the electrolyte layer in the vertical direction.
- the first air battery, the second air battery, and the method of using the air battery according to the present invention are characterized in that the air battery includes an air electrode, a negative electrode, an electrolyte layer, and an exterior body, and the negative electrode is at least an electrolyzer.
- the point provided with the negative electrode active material layer and the negative electrode current collector in this order from the side facing the liquid layer, and the negative electrode active material layer and the negative electrode current collector are both positioned or arranged above the electrolyte layer in the vertical direction.
- the first air battery will be mainly described, and the second air battery and a method of using the air battery will be described as necessary.
- the negative electrode active material layer and the negative electrode current collector are both positioned on the upper side in the vertical direction from the electrolyte layer.
- the following positions of the negative electrode active material layer, the negative electrode current collector, and the electrolyte layer Show the relationship.
- the positional relationship means that when a thread is hung from the lower part in the vertical direction from any part of the negative electrode active material layer and the negative electrode current collector, the thread may touch the electrolyte layer.
- the yarn When a yarn is hung from an arbitrary part of the layer downward in the vertical direction, the yarn cannot touch the negative electrode active material layer or the negative electrode current collector.
- the present inventor has prepared an air battery in which an air electrode current collector, an air electrode layer, an electrolyte layer, a lithium metal, and a negative electrode current collector are stacked in this order from the upper side in the vertical direction. Left for a week. As a result, while the initial voltage of the air battery was 2.7 V, the voltage in the open circuit state after being left for one week is 2.2 V, and the voltage after being left is 0.5 V lower than the initial voltage. I found out that
- FIG. 7A is a diagram showing an example of a layer configuration of a conventional air battery, and is a diagram schematically showing a cross section cut in the stacking direction.
- the arrow 20 indicates the vertical direction.
- a conventional air battery 700 is sandwiched between an air electrode 6 including an air electrode layer 2 and an air electrode current collector 4, a negative electrode 7 including a negative electrode active material layer 3 and a negative electrode current collector 5, an air electrode 6 and a negative electrode 7.
- the exterior body 9 which accommodates the electrolyte solution layer 1 and the laminated body 8 provided with the air electrode 6, the negative electrode 7, and the electrolyte solution layer 1 is provided.
- the air electrode current collector 4 the air electrode layer 2
- the electrolyte layer 1 the negative electrode active material layer 3
- the negative electrode current collector 5 They are stacked in order.
- the exterior body 9 includes an oxygen intake hole 9 a on the side facing the air electrode 6.
- FIG. 7B is a schematic cross-sectional view showing a part of a conventional air battery 700 left for a long time.
- FIG. 7B shows a part of the electrolyte solution layer 1, the negative electrode active material layer 3, and the negative electrode current collector 5.
- FIG. 7B in the air battery that has been left for a long period of time, the liquid 1a derived from the electrolyte in the electrolyte layer 1 is subjected to gravity by the negative electrode active material layer 3 and the negative electrode current collector 5. The side surfaces of the negative electrode active material layer 3 and the negative electrode current collector 5 become wet with the liquid 1a. As a result, an internal battery is formed by the liquid 1a, the negative electrode active material layer 3, and the negative electrode current collector 5, a corrosion current flows, and corrosion of the negative electrode proceeds.
- FIG. 7C is a schematic cross-sectional view showing a part of a conventional air battery 700 that has been left for a long time, as in FIG. 7B.
- a method for preventing corrosion of the negative electrode (1) a method using a material that is not easily corroded, for example, tantalum or nickel, for the negative electrode current collector, and (2) a battery structure without an interface between the negative electrode active material and the negative electrode current collector.
- the method (1) is adopted, there is a risk of hindering cost reduction.
- the formation of the interface between the negative electrode active material and the negative electrode current collector is inevitable particularly during long-term storage and / or long-term use of the air battery. The method is not considered effective.
- the solidified electrolyte generally has low ionic conductivity, it is considered that the method (3) is poor in practicality.
- the present inventor has arranged the negative electrode active material layer and the negative electrode current collector on the upper side in the vertical direction with respect to the electrolyte layer, so that the side surfaces of the negative electrode active material layer and the negative electrode current collector and It has been found that the liquid derived from the electrolyte layer can be prevented from coming into contact with the interface.
- the present inventor prevents the formation of an internal battery composed of a negative electrode active material layer, a negative electrode current collector, and the liquid, and generates a corrosion current that corrodes the negative electrode. It was found that the long-term storage characteristics and long-term use characteristics of the air battery were improved, and the present invention was completed.
- the negative electrode active material layer and the negative electrode current collector are both positioned vertically above the electrolyte layer.
- the liquid derived from the electrolyte layer does not exist on the side surface and / or interface of the negative electrode active material layer and the negative electrode current collector.
- the liquid derived from an electrolyte solution layer includes a liquid generated by a reaction between the electrolyte solution and another member in addition to the electrolyte solution itself. Usually, it is rare that the inside of the air battery can be visually recognized from the outside of the exterior body.
- the exterior body itself, or a member located on the outside of the exterior body is given some mark, when designing an air battery, mounting an air battery, etc.
- the vertical direction of the air battery may be determined based on the mark.
- the size, shape, and color of the mark are not particularly limited.
- the mark is not limited to a mark representing a character, a symbol, or the like, and may be a mark (for example, a notch) using the whole or a part of the member.
- a mark that allows the orientation of the air battery, in particular, the vertical direction of the air battery, to be seen at a glance is preferable. Only one mark may be attached to each air battery, or two or more marks may be attached. Marks may be attached to different members of the air battery.
- FIG. 1 is a view showing a first typical example of the air battery of the present invention, and schematically showing a cross section cut in the stacking direction.
- the arrow 20 indicates the vertical direction.
- the first typical example 100 of the air battery of the present invention includes an air electrode 6 including an air electrode layer 2 and an air electrode current collector 4, a negative electrode 7 including a negative electrode active material layer 3 and a negative electrode current collector 5, and an air electrode 6.
- an exterior body 9 that houses the electrolyte layer 1 sandwiched between the anode 7 and the laminated body 8 that includes the air electrode 6, the anode 7, and the electrolyte layer 1. As shown in FIG.
- the exterior body 9 includes an oxygen intake hole 9 a on the side facing the air electrode 6.
- the first typical example 100 further includes an air electrode current collecting tab 10 connected to the air electrode current collector 4 and a negative electrode current collecting tab 11 connected to the negative electrode current collector 5. There is a notch 11 a at the tip of the negative electrode current collecting tab 11, and the notch 11 a distinguishes the air electrode current collecting tab 10 from the negative electrode current collecting tab 11.
- the first typical example 100 provided with the notch 11a in the negative electrode current collecting tab 11 has the upper and lower sides (ie, installed) of the air battery when the air battery is installed and / or when the air battery is used.
- Air batteries can be installed and / or used.
- the mark may be a mark indicating that the air electrode is arranged on the lower side in the vertical direction in the laminated body and / or that the negative electrode is arranged on the upper side in the vertical direction in the laminated body.
- Fig.2 (a) is a figure which shows the 2nd typical example of the air battery of this invention, Comprising: It is the figure which showed typically the cross section cut
- the arrow 20 indicates the vertical direction.
- the second typical example 200 of the air battery of the present invention includes an exterior body 9 that houses the stacked body 8, as in the first typical example 100 described above.
- the negative electrode current collector 5, the negative electrode active material layer 3, the electrolyte solution layer 1, the air electrode layer 2, and the air electrode current collector 4 are laminated in this order from the upper side in the vertical direction.
- the exterior body 9 includes an oxygen intake hole 9 a on the side facing the air electrode 6.
- the second typical example 200 includes an arrow mark on the side surface of the exterior body.
- the direction indicated by the arrow indicates the position occupied by the negative electrode in the exterior body.
- This arrow mark distinguishes the upper and lower sides of the exterior body.
- the second typical example 200 having the arrow mark on the side surface of the exterior body 9 when the air battery is installed and / or when the air battery is used, the upper and lower sides of the air battery are clearly seen from the outside. Since it can visually recognize, an air battery can be installed and / or used reliably so that the negative electrode active material layer 3 and the negative electrode current collector 5 are both vertically above the electrolyte layer 1.
- the laminate including the air electrode, the negative electrode, and the electrolyte layer may be a structure in which two or more layers are further laminated.
- FIG. 3A is a diagram showing a third typical example of the air battery of the present invention, and is a diagram schematically showing a cross section cut in the stacking direction. The arrow 20 indicates the vertical direction.
- the laminate 8 includes an air electrode including the air electrode layer 2 and the air electrode current collector 4 (or current collector 12), the negative electrode active material layer 3, and the negative electrode current collector 5. (Or current collector 12) and the air electrode and the electrolyte layer 1 sandwiched between the air electrode and the air electrode and the negative electrode of the laminated body 8 adjacent to each other. Share.
- the third typical example 300 of the air battery of the present invention is an air battery in which a bipolar battery in which two or more stacked bodies 8 are further stacked is housed in an exterior body 9. Note that a negative electrode current collector 5 and an air electrode current collector 4 are provided at both ends of the bipolar structure.
- the exterior body 9 includes an oxygen intake hole 9 a on the side facing the air electrode current collector 4. As shown in FIG.
- the inside of the outer package 9 is from the upper side in the vertical direction, negative electrode current collector 5-negative electrode active material layer 3-electrolyte layer 1-air electrode layer 2-current collector 12-negative electrode active
- the material layer 3 -electrolyte layer 1 -air electrode layer 2 -current collector 12 -negative electrode active material layer 3 -electrolyte layer 1 -air electrode layer 2 -air electrode current collector 4 are laminated in this order.
- the negative electrode active material layer 3 and the negative electrode current collector 5 belonging to a certain laminated body 8 may be positioned below the electrolyte layer 1 belonging to a different laminated body 8 in the vertical direction.
- the laminated body 8 to which the negative electrode active material layer 3 and the negative electrode current collector 5 belong is positioned lower than the different laminated body 8 to which the electrolyte solution layer 1 belongs.
- the liquid derived from the electrolyte layer 1 usually does not have such a liquid amount as to ooze up to the members of different laminated bodies. Therefore, also in this typical example 300, the liquid derived from the electrolyte layer does not ooze out to the side surfaces and / or interfaces of the negative electrode active material layer and the negative electrode current collector, and the negative electrode active material layer, the negative electrode current collector, and Formation of the internal battery composed of the liquid derived from the electrolyte layer can be prevented in advance.
- FIG. 3 (b) the upper surface of the exterior body 9, i.e., a diagram showing the surface of the exterior body 9 as seen from the viewpoint A 2 in FIG. 3 (a).
- the 3rd typical example 300 equips the upper surface of an exterior body with the mark of Li.
- This Li mark indicates that a negative electrode (for example, a negative electrode containing lithium metal in the negative electrode active material layer) is located on the surface.
- This Li mark distinguishes the upper and lower sides of the outer package.
- the third typical example 300 having the Li mark on the upper surface of the exterior body 9 is a stacked body (air battery) in which a plurality of stacks are stacked when an air battery is installed and / or when an air battery is used. Since the negative electrode active material layer 3 and the negative electrode current collector 5 are both vertically above the electrolyte layer 1 belonging to the same laminate 8, the air battery can be surely seen from above. Can be installed and / or used.
- FIG. 4A is a diagram showing a fourth typical example of the air battery of the present invention, and is a diagram schematically showing a cross section cut in the stacking direction.
- the arrow 20 indicates the vertical direction.
- the structure inside the exterior body 9 is the same as that of the third typical example.
- FIG. 4 (b) the side surface of the exterior body 9, i.e., a diagram showing the exterior body 9 as seen from the viewpoint A 3 in FIG. 4 (a).
- the 4th typical example 400 equips the side surface of an exterior body with the mark of the arrow. This arrow mark distinguishes the upper and lower sides of the exterior body.
- the fourth typical example 400 having the arrow mark on the side surface of the exterior body 9 is such that when the air battery is installed and / or when the air battery is used, the upper and lower sides of the stacked body are stacked. Since the negative electrode active material layer 3 and the negative electrode current collector 5 are both vertically above the electrolyte layer 1 belonging to the same laminate 8, the air battery can be surely seen from the outside of the body. Can be installed and / or used.
- FIG. 5A is a view showing a fifth typical example of the air battery of the present invention, and is a view schematically showing a cross section cut in the stacking direction.
- the arrow 20 indicates the vertical direction.
- the structure inside the exterior body 9 is the same as that of the second typical example.
- the fifth typical example 500 further includes a housing 13 in which two or more exterior bodies 9 are stacked and stored.
- the housing 13 includes an oxygen intake hole 13a on the side of the exterior body 9 facing the oxygen intake hole 9a.
- the negative electrode active material layer 3 and the negative electrode current collector 5 in a certain exterior body 9 may be positioned below the electrolyte layer 1 in a different exterior body 9 in the vertical direction.
- the liquid derived from the electrolyte layer 1 usually does not leak so much as to leak from the oxygen uptake holes 9a and soak into the members in different exterior bodies. Therefore, also in this typical example 500, the liquid derived from the electrolyte layer does not ooze out to the side surface and / or the interface of the negative electrode active material layer and the negative electrode current collector, and the negative electrode active material layer, the negative electrode current collector, and Formation of the internal battery composed of the liquid derived from the electrolyte layer can be prevented in advance.
- the upper surface of the housing 13 i.e., a diagram showing the surface of the casing 13 as viewed from viewpoint A 4 in FIG. 5 (a).
- the fifth typical example 500 includes a Li mark on the upper surface of the housing 13.
- the upper and lower sides of the housing 13 can be distinguished by this Li mark.
- the fifth typical example 500 having the Li mark on the upper surface of the housing 13 is configured such that when the air battery is installed and / or when the air battery is used, the upper and lower sides of the outer package stacked in a plurality are stacked.
- a battery can be installed and / or used.
- FIG. 6A is a diagram showing a sixth typical example of the air battery of the present invention, and is a diagram schematically showing a cross section cut in the stacking direction.
- the arrow 20 indicates the vertical direction.
- the structure inside the housing 13 is the same as that of the fifth typical example.
- the housing 13 includes an oxygen intake hole 13a on the side of the exterior body 9 facing the oxygen intake hole 9a.
- 6 (b) is parallel to the direction in which pile the exterior body 9, the side surface of the casing 13, i.e., a diagram showing the surface of the casing 13 as viewed from viewpoint A 5 in FIG. 6 (a).
- the double wavy lines are omitted in the figure.
- the sixth typical example 600 includes an arrow mark on the side surface of the housing 13.
- This arrow mark makes it possible to distinguish the upper and lower sides of the housing 13.
- the sixth typical example 600 having the arrow mark on the side surface of the housing 13 is such that when the air battery is installed and / or when the air battery is used, the upper and lower sides of the stacked body are stacked. Therefore, the air battery is surely installed so that the negative electrode active material layer 3 and the negative electrode current collector 5 are both vertically above the electrolyte layer 1 accommodated in the same exterior body 9. And / or can be used.
- the air electrode, the negative electrode, the electrolyte layer, the outer package, and the separator suitably used for the air battery of the present invention, which constitute the air battery of the present invention, will be described in detail.
- the air electrode used in the present invention preferably comprises an air electrode layer.
- an air electrode current collector and an air electrode lead connected to the air electrode current collector and / or An air electrode tab is provided.
- the air electrode layer used in the present invention contains at least a conductive material. Furthermore, you may contain at least one of a catalyst and a binder as needed.
- the conductive material used for the air electrode layer is not particularly limited as long as it has conductivity.
- a carbon material, a perovskite-type conductive material, a porous conductive polymer, a metal porous body, etc. Can be mentioned.
- the carbon material may have a porous structure or may not have a porous structure, but in the present invention, the carbon material preferably has a porous structure. This is because the specific surface area is large and many reaction fields can be provided.
- Specific examples of the carbon material having a porous structure include mesoporous carbon.
- specific examples of the carbon material having no porous structure include graphite, acetylene black, carbon black, carbon nanotube, and carbon fiber.
- the content of the conductive material in the air electrode layer is, for example, preferably 10 to 99% by mass, and more preferably 50 to 95% by mass, when the mass of the entire air electrode layer is 100% by mass. If the content of the conductive material is too small, the reaction field may decrease and the battery capacity may be reduced. If the content of the conductive material is too large, the content of the catalyst is relatively reduced and sufficient. This is because it may not be possible to exert a proper catalytic function.
- Examples of the catalyst used for the air electrode layer include an oxygen active catalyst.
- oxygen active catalysts include, for example, platinum groups such as nickel, palladium and platinum; perovskite oxides containing transition metals such as cobalt, manganese or iron; inorganic compounds containing noble metal oxides such as ruthenium, iridium or palladium A metal coordination organic compound having a porphyrin skeleton or a phthalocyanine skeleton; manganese oxide and the like.
- the content ratio of the catalyst in the air electrode layer is not particularly limited. For example, when the mass of the entire air electrode layer is 100% by mass, it is 0 to 90% by mass, especially 1 to 90% by mass. It is preferable. From the viewpoint that the electrode reaction is performed more smoothly, a catalyst may be supported on the conductive material described above.
- the air electrode layer may contain at least a conductive material, but preferably further contains a binder for fixing the conductive material.
- the binder include rubber resins such as polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), and styrene / butadiene rubber (SBR rubber).
- PVdF polyvinylidene fluoride
- PTFE polytetrafluoroethylene
- SBR rubber styrene / butadiene rubber
- the content ratio of the binder in the air electrode layer is not particularly limited. For example, when the mass of the entire air electrode layer is 100% by mass, 1 to 40% by mass, especially 1 to 10% by mass. It is preferable that
- a method for producing the air electrode layer for example, a method of mixing and rolling the air electrode layer raw material containing the conductive material, or preparing a slurry by adding a solvent to the raw material, and an air electrode assembly described later.
- a method for applying the slurry to the air electrode current collector include known methods such as a spray method, a screen printing method, a doctor blade method, a gravure printing method, and a die coating method.
- the thickness of the air electrode layer varies depending on the use of the air battery, but is preferably 2 to 500 ⁇ m, and more preferably 5 to 300 ⁇ m.
- the air electrode current collector in the air battery of the present invention collects current in the air electrode layer.
- the material for the air electrode current collector is not particularly limited as long as it has conductivity, and examples thereof include stainless steel, nickel, aluminum, iron, titanium, and carbon.
- Examples of the shape of the air electrode current collector include a foil shape, a plate shape, and a mesh (grid) shape.
- the air electrode current collector is preferably mesh-shaped from the viewpoint of excellent current collection efficiency. In this case, usually, a mesh-shaped air electrode current collector is disposed inside the air electrode layer.
- the air battery of the present invention may include another air electrode current collector (for example, a foil-shaped current collector) that collects electric charges collected by the mesh-shaped air electrode current collector.
- the exterior body mentioned later may have the function of an air electrode electrical power collector.
- the thickness of the air electrode current collector is, for example, preferably 10 to 1000 ⁇ m, more preferably 20 to 400 ⁇ m.
- the negative electrode in the air battery of the present invention preferably includes a negative electrode layer containing a negative electrode active material, and usually further includes a negative electrode current collector, and a negative electrode lead and / or a negative electrode tab connected to the negative electrode current collector. .
- the negative electrode layer in the air battery of the present invention contains a negative electrode active material containing a metal material, an alloy material, and / or a carbon material.
- the metal and alloy material that can be used for the negative electrode active material include lithium metal and alloy materials or compounds containing lithium element.
- the alloy containing lithium element include a lithium aluminum alloy, a lithium tin alloy, a lithium lead alloy, and a lithium silicon alloy.
- the compound containing lithium element include lithium oxide, lithium sulfide, and lithium nitride.
- the lithium oxide include lithium titanium oxide.
- the lithium nitride include lithium cobalt nitride, lithium iron nitride, and lithium manganese nitride.
- lithium coated with a solid electrolyte can also be used.
- the negative electrode layer may contain only a negative electrode active material, or may contain at least one of a conductive material and a binder in addition to the negative electrode active material.
- a negative electrode layer containing only the negative electrode active material can be obtained.
- a negative electrode layer having a negative electrode active material and a binder can be obtained.
- the binder and the conductive material are the same as the contents described in the above-mentioned “Air electrode layer” section, and thus the description thereof is omitted here.
- the material of the negative electrode current collector in the air battery of the present invention is not particularly limited as long as it has conductivity, but may contain a metal or an alloy, for example, copper, stainless steel, carbon , Nickel, tantalum and the like. Of these, stainless steel and carbon are preferably used for the negative electrode current collector.
- the shape of the negative electrode current collector include a foil shape, a plate shape, and a mesh (grid) shape.
- an exterior body described later may have the function of a negative electrode current collector. In the present invention, in particular, when lithium metal is used for the negative electrode active material layer and metal is used for the negative electrode current collector, the effect of preventing corrosion current can be more fully enjoyed.
- the electrolyte layer in the air battery of the present invention is held between the air electrode layer and the negative electrode layer, and has a function of exchanging metal ions between the air electrode layer and the negative electrode layer.
- An aqueous electrolyte solution and a non-aqueous electrolyte solution can be used for the electrolyte layer. These may be used alone or in combination of two or more.
- the type of non-aqueous electrolyte is preferably selected as appropriate according to the type of conductive metal ion.
- a non-aqueous electrolyte used for a lithium-air battery a solution containing a lithium salt and a non-aqueous solvent is usually used.
- the lithium salt include inorganic lithium salts such as LiPF 6 , LiBF 4 , LiClO 4, and LiAsF 6 ; LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 (Li-TFSI), LiN (SO 2 C 2 F 5 )
- Organic lithium salts such as 2 and LiC (SO 2 CF 3 ) 3 can be mentioned.
- non-aqueous solvent examples include ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), ethyl carbonate, butylene carbonate, ⁇ -butyrolactone, sulfolane.
- the concentration of the lithium salt in the nonaqueous electrolytic solution is, for example, 0.1 to 1.5 mol / kg.
- non-aqueous electrolyte or non-aqueous solvent for example, N-methyl-N-propylpiperidinium bis (trifluoromethanesulfonyl) imide (PP13TFSI), N-methyl-N-propylpyrrolidinium bis ( Trifluoromethanesulfonyl) imide (P13TFSI), N-butyl-N-methylpyrrolidinium bis (trifluoromethanesulfonyl) imide (P14TFSI), N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium bis
- Low volatile liquids such as ionic liquids such as (trifluoromethanesulfonyl) imide (DEMETFSI), N, N, N-trimethyl-N-propylammonium bis (trifluoromethanesulfonyl) imide (TMPATFSI) are used.
- non-aqueous solvents in order to advance the oxygen reduction reaction represented by the formula (II) or (III), it is more preferable to use an electrolyte solution that is stable to oxygen radicals.
- non-aqueous solvents include acetonitrile (AcN), 1,2-dimethoxyethane (DME), dimethyl sulfoxide (DMSO), N-methyl-N-propylpiperidinium bis (trifluoromethanesulfonyl) imide ( PP13TFSI), N-methyl-N-propylpyrrolidinium bis (trifluoromethanesulfonyl) imide (P13TFSI), N-butyl-N-methylpyrrolidinium bis (trifluoromethanesulfonyl) imide (P14TFSI), and the like.
- AcN acetonitrile
- DME 1,2-dimethoxyethane
- DMSO dimethyl sulfoxide
- PP13TFSI
- the type of the aqueous electrolyte is appropriately selected according to the type of the conductive metal ion.
- a solution containing a lithium salt and water is usually used as an aqueous electrolyte used for a lithium air battery.
- the lithium salt include lithium salts such as LiOH, LiCl, LiNO 3 , and CH 3 CO 2 Li.
- the air battery of the present invention may include a separator between the air electrode and the negative electrode.
- the separator include porous membranes such as polyethylene and polypropylene; and nonwoven fabrics made of resin such as polypropylene and nonwoven fabrics such as glass fiber nonwoven fabric. These materials that can be used for the separator can also be used as a support material for the electrolytic solution by impregnating the above-described electrolytic solution.
- the air battery of the present invention includes an exterior body that houses an air electrode, a negative electrode, an electrolyte layer, and the like.
- Specific examples of the shape of the exterior body include a coin type, a flat plate type, a cylindrical type, and a laminate type.
- a laminate film can also be used as the outer package.
- the exterior body may be a battery case that is open to the atmosphere or may be a sealed battery case.
- An open-air battery case is a battery case having a structure in which at least the air electrode layer can sufficiently come into contact with the atmosphere.
- a gas (air) introduction pipe and an exhaust pipe are provided in the sealed battery case.
- the gas to be introduced / exhausted preferably has a high oxygen concentration, more preferably dry air or pure oxygen.
- An oxygen permeable film or a water repellent film may be provided in the exterior body according to the structure of the exterior body.
- the air battery of the present invention may include a housing that houses one or more of the exterior bodies.
- the shape of the housing may be the same as that of the exterior body.
- Mobile body The mobile body of this invention is equipped with the said air battery, It is characterized by the above-mentioned.
- the air battery When the air battery is installed in the moving body of the present invention, the air battery is installed so that the negative electrode active material layer and the negative electrode current collector are always located above the electrolyte layer in the vertical direction.
- the positions of the active material layer, the negative electrode current collector, and the electrolyte solution layer may be fixed.
- a part or the whole of the air battery is movable, and each time the air battery is used or stopped, the negative electrode active material layer and the negative electrode current collector are both electrolyte solutions. You may adjust the inclination of one part or the whole of an air battery so that it may be located in the perpendicular direction upper side from a layer.
- An inclination control device or the like for controlling the inclination of the air battery can be provided in the moving body of the present invention.
- the tilt control device for example, the tilt of the air battery is automatically controlled in conjunction with a device that controls the tilt of the air cell by placing a weight such as a ballast or a device that can check the tilt, such as a level. And the like.
- various devices can be added to the mobile body according to the present invention depending on the application.
- devices such as an internal combustion engine, an output member for outputting power to drive wheels of the vehicle, and a speed reduction mechanism for reducing the rotation of the electric motor are further provided.
- a speed reduction mechanism for reducing the rotation of the electric motor
- SUS mesh manufactured by Niraco, 100 mesh made of SUS304
- N-methyl-N-propylpiperidinium bis (trifluoromethanesulfonyl) imide manufactured by Kanto Chemical Co., PP13TFSI
- lithium bis (trifluoromethanesulfonyl) imide manufactured by Kishida Chemical Co.
- a solution was prepared so as to have a concentration and stirred and mixed overnight under an argon atmosphere.
- the nonwoven fabric made from a polypropylene was prepared as a separator.
- a SUS foil (manufactured by Niraco, SUS304) was prepared as a negative electrode current collector, and metal lithium (manufactured by Honjo Metal) was bonded to one side of the SUS foil to prepare a negative electrode.
- As the exterior body an exterior body having an oxygen uptake hole on the air electrode side and a Li mark printed on the negative electrode side as shown in FIG. 3 was prepared.
- the exterior body is laminated in the following order: from the bottom, the cathode current collector—the cathode electrode layer—the separator impregnated with the electrolyte—the lithium metal—the anode current collector.
- Each member was accommodated in the body to obtain an air battery of Example 1. That is, in the air battery of Example 1, the negative electrode current collector, the metallic lithium, the separator impregnated with the electrolytic solution, the air electrode layer, and the air electrode current collector were laminated in this order from the upper side in the vertical direction. All the above steps were performed in a glove box under a nitrogen atmosphere.
- Example 1 For the air battery of Comparative Example 1, the same members as in Example 1 were used except for the outer package. As the exterior body of the air battery of Comparative Example 1, an exterior body having only oxygen uptake holes on the air electrode side was used. The outer package with the oxygen uptake hole facing up is laminated from the bottom in the following order: negative electrode current collector-metal lithium-impregnated separator-air electrode layer-air electrode current collector Each member was housed in the body to obtain an air battery of Comparative Example 1. That is, in the air battery of Comparative Example 1, the air electrode current collector, the air electrode layer, the separator impregnated with the electrolyte, the metal lithium, and the negative electrode current collector were laminated in this order from the upper side in the vertical direction.
- the air battery of Comparative Example 1 has a cell voltage of 2.2 V after being left for one week. This is because the liquid derived from the electrolytic solution oozes out from the separator impregnated with the electrolytic solution and penetrates into the side surface and / or the interface of the metallic lithium and the negative electrode current collector, so that the metallic lithium, the negative electrode current collector, and the electrolytic solution This is considered to be due to the formation of the internal battery made of the liquid derived from the origin.
- the air battery of Example 1 has a cell voltage of 2.7 V after being left for one week.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Hybrid Cells (AREA)
- Sealing Battery Cases Or Jackets (AREA)
Abstract
Description
2Li→2Li++2e- (I)
式(I)で生じる電子は、外部回路を経由し、外部の負荷で仕事をした後、空気極に到達する。そして、式(I)で生じたリチウムイオン(Li+)は、負極と空気極に挟持された電解質内を、負極側から空気極側に電気浸透により移動する。
2Li++O2+2e-→Li2O2 (II)
2Li++1/2O2+2e-→Li2O (III)
生じた過酸化リチウム(Li2O2)及び酸化リチウム(Li2O)は、固体として空気極に蓄積される。
充電時においては、負極において上記式(I)の逆反応、空気極において上記式(II)及び(III)の逆反応がそれぞれ進行し、負極において金属リチウムが再生するため、再放電が可能となる。
本発明は、上記実状を鑑みて成し遂げられたものであり、負極の腐食を回避でき、且つ、長期使用及び長期保存が可能な空気電池、当該空気電池を備える移動体、及び空気電池の使用方法を提供することを目的とする。
本発明の第1の空気電池は、空気極、負極、及び、当該空気極及び当該負極の間に介在する電解液層、並びに、当該空気極、当該負極、及び当該電解液層を備える積層体を1又は2以上収納する外装体を備える空気電池であって、前記負極は、少なくとも、前記電解液層に面する側から順に、負極活物質層及び負極集電体を備え、前記負極活物質層及び前記負極集電体は、いずれも、前記電解液層よりも鉛直方向上側に位置することを特徴とする。
以下、本明細書においては、第1の空気電池について主に説明し、必要に応じて、第2の空気電池、及び空気電池の使用方法について説明する。
図7(a)は、従来の空気電池の層構成の一例を示す図であって、積層方向に切断した断面を模式的に示した図である。なお、矢印20は鉛直方向を示す。
従来の空気電池700は、空気極層2及び空気極集電体4を備える空気極6、負極活物質層3及び負極集電体5を備える負極7、空気極6及び負極7に挟持される電解液層1、並びに、空気極6、負極7、及び電解液層1を備える積層体8を収納する外装体9を備える。図7(a)に示すように、積層体8においては、鉛直方向上側から、空気極集電体4-空気極層2-電解液層1-負極活物質層3-負極集電体5の順に積層している。外装体9は、空気極6に面する側に、酸素取り込み孔9aを備える。
図7(b)は、長期間放置された従来の空気電池700の一部を示す断面模式図である。図7(b)には、電解液層1、負極活物質層3及び負極集電体5の一部が示されている。なお、二重波線は図の省略を意味する。図7(b)に示すように、長期間放置された空気電池内においては、電解液層1中の電解液に由来する液体1aが、重力により、負極活物質層3及び負極集電体5の側面に浸み出し、負極活物質層3及び負極集電体5の側面が液体1aに濡れた状態となる。その結果、当該液体1a、負極活物質層3、及び負極集電体5により内部電池が形成されて腐食電流が流れ、負極の腐食が進行する。
図7(c)は、図7(b)同様に、長期間放置された従来の空気電池700の一部を示す断面模式図である。図7(c)に示すように、長期間放置された空気電池内においては、電解液層1中の電解液に由来する液体1bが、重力により電解液層1から垂れ、負極活物質層3及び負極集電体5の界面に浸み出し、当該界面が濡れた状態となる場合も考えられる。その結果、当該液体1b、負極活物質層3、及び負極集電体5により内部電池が形成されて腐食電流が流れ、負極の腐食が進行する。
図7(b)及び(c)に示した現象は、空気電池の停止時のみならず、運転時にも生じると考えられる。
しかし、上記(1)の方法を採用すると、コスト低下に支障をきたすおそれがある。また、上記(2)の方法を採用したとしても、特に空気電池の長期保存時及び/又は長期使用時には、負極活物質と負極集電体の界面形成は避けられないため、上記(2)の方法は有効ではないと考えられる。さらに、固化した電解液は一般的にイオン伝導度が低いため、上記(3)の方法は実用性に乏しいと考えられる。
通常、外装体の外側から空気電池内部を視認できることは少ない。仮に、外装体の外側から空気電池内部を視認できたとしても、空気電池の設置時や使用時において、各空気電池の内部構造を外部から正確に確認するのは困難である。そこで、外装体自体、又は外装体の外側に位置する部材(例えば、後述する集電タブや筐体等)に、何らかの目印を施し、空気電池の設計時や、空気電池の搭載時等に、その目印を基準に空気電池の鉛直方向の向きを決めてもよい。
目印の大きさ、形状、及び色彩は、特に限定されない。また、目印は文字や記号等を表したマークに限定されず、部材の全体又は一部の形状を利用した目印(例えば、切り欠き等)であってもよい。ただし、空気電池の向き、特に、空気電池の鉛直方向が一見して視認できる目印が好ましい。空気電池1つにつき目印は1つのみ付されていてもよく、2つ以上付されていてもよい。空気電池の異なる部材に目印が付されていてもよい。
図1は、本発明の空気電池の第1の典型例を示す図であって、積層方向に切断した断面を模式的に示した図である。なお、矢印20は鉛直方向を示す。
本発明の空気電池の第1の典型例100は、空気極層2及び空気極集電体4を備える空気極6、負極活物質層3及び負極集電体5を備える負極7、空気極6及び負極7に挟持される電解液層1、並びに、空気極6、負極7、及び電解液層1を備える積層体8を収納する外装体9を備える。図1に示すように、積層体8においては、鉛直方向上側から、負極集電体5-負極活物質層3-電解液層1-空気極層2-空気極集電体4の順に積層している。外装体9は、空気極6に面する側に、酸素取り込み孔9aを備える。
第1の典型例100は、さらに、空気極集電体4に接続した空気極集電タブ10、及び、負極集電体5に接続した負極集電タブ11を備える。負極集電タブ11の先端には、切り欠き11aがあり、この切り欠き11aによって、空気極集電タブ10と負極集電タブ11との区別がつく。
このように、負極集電タブ11に切り欠き11aを備える第1の典型例100は、空気電池の設置の際、及び/又は空気電池の使用の際に、空気電池の上下(すなわち、設置されるべき空気電池の鉛直方向の向き)が外部から明確に視認できることから、負極活物質層3及び負極集電体5が、いずれも電解液層1よりも鉛直方向上側となるように、確実に空気電池を設置及び/又は使用できる。
図2(a)に示すように、本発明の空気電池の第2の典型例200は、上述した第1の典型例100と同様に、積層体8を収納する外装体9を備える。積層体8においては、鉛直方向上側から、負極集電体5-負極活物質層3-電解液層1-空気極層2-空気極集電体4の順に積層している。外装体9は、空気極6に面する側に、酸素取り込み孔9aを備える。
図2(b)は、外装体9の側面、すなわち、図2(a)において視点A1から見た外装体9の面を示した図である。図2(b)に示すように、第2の典型例200は、外装体の側面に矢印のマークを備える。当該矢印の指す向きは、外装体内において負極の占める位置を示す。この矢印のマークにより、外装体の上下の区別がつく。
このように、外装体9の側面に矢印のマークを備える第2の典型例200は、空気電池の設置の際、及び/又は空気電池の使用の際に、空気電池の上下が外部から明確に視認できることから、負極活物質層3及び負極集電体5が、いずれも電解液層1よりも鉛直方向上側となるように、確実に空気電池を設置及び/又は使用できる。
図3(a)は、本発明の空気電池の第3の典型例を示す図であって、積層方向に切断した断面を模式的に示した図である。なお、矢印20は鉛直方向を示す。
図3(a)に示すように、積層体8は、空気極層2及び空気極集電体4(又は集電体12)を備える空気極と、負極活物質層3及び負極集電体5(又は集電体12)を備える負極と、当該空気極及び当該負極に挟持される電解液層1とを備え、さらに、互いに隣り合う積層体8の空気極と負極は、集電体12を共有する。本発明の空気電池の第3の典型例300は、2以上の積層体8がさらに積層したバイポーラ型電池を、外装体9に収納した空気電池である。なお、バイポーラ構造の両端には、負極集電体5及び空気極集電体4が設けられている。外装体9は、空気極集電体4に面する側に、酸素取り込み孔9aを備える。
図3(a)に示すように、外装体9内は、鉛直方向上側から、負極集電体5-負極活物質層3-電解液層1-空気極層2-集電体12-負極活物質層3-電解液層1-空気極層2-集電体12-負極活物質層3-電解液層1-空気極層2-空気極集電体4の順に積層している。本典型例300においては、ある積層体8に属する負極活物質層3及び負極集電体5が、異なる積層体8に属する電解液層1よりも鉛直方向下側に位置する場合がある。例えば、負極活物質層3及び負極集電体5の属する積層体8が、電解液層1の属する異なる積層体8よりも鉛直方向下側に位置する場合等である。しかし、電解液層1由来の液体は、通常、異なる積層体の部材にまで浸み出す程の液量はない。したがって、本典型例300においても、電解液層由来の液体が負極活物質層及び負極集電体の側面及び/又は界面に浸み出すことはなく、負極活物質層、負極集電体、及び電解液層由来の液体により構成される内部電池の形成を未然に防止できる。
このように、外装体9の上面にLiのマークを備える第3の典型例300は、空気電池の設置の際、及び/又は空気電池の使用の際に、複数積み重なった積層体(空気電池)の上下が外部から明確に視認できることから、負極活物質層3及び負極集電体5が、いずれも同じ積層体8に属する電解液層1よりも鉛直方向上側となるように、確実に空気電池を設置及び/又は使用することができる。
図4(b)は、外装体9の側面、すなわち、図4(a)において視点A3から見た外装体9を示した図である。図4(b)に示すように、第4の典型例400は、外装体の側面に矢印のマークを備える。この矢印のマークにより、外装体の上下の区別がつく。
このように、外装体9の側面に矢印のマークを備える第4の典型例400は、空気電池の設置の際、及び/又は空気電池の使用の際に、複数積み重なった積層体の上下が外装体の外部から明確に視認できることから、負極活物質層3及び負極集電体5が、いずれも同じ積層体8に属する電解液層1よりも鉛直方向上側となるように、確実に空気電池を設置及び/又は使用できる。
図5(a)は、本発明の空気電池の第5の典型例を示す図であって、積層方向に切断した断面を模式的に示した図である。なお、矢印20は鉛直方向を示す。外装体9内部の構造は、上記第2の典型例と同様である。
第5の典型例500は、2以上の外装体9が積み重なり収納される筐体13をさらに備える。筐体13は、外装体9の酸素取り込み孔9aに面する側に、酸素取り込み孔13aを備える。
本典型例500においては、ある外装体9中の負極活物質層3及び負極集電体5が、異なる外装体9中の電解液層1よりも鉛直方向下側に位置する場合がある。しかし、電解液層1由来の液体は、通常、酸素取り込み孔9aから漏れ、異なる外装体中の部材にまで浸み出す程の液量はない。したがって、本典型例500においても、電解液層由来の液体が負極活物質層及び負極集電体の側面及び/又は界面に浸み出すことはなく、負極活物質層、負極集電体、及び電解液層由来の液体により構成される内部電池の形成を未然に防止できる。
図5(b)は、筐体13の上面、すなわち、図5(a)において視点A4から見た筐体13の面を示した図である。図5(b)に示すように、第5の典型例500は、筐体13の上面にLiのマークを備える。このLiのマークにより、筐体13の上下の区別がつく。
このように、筐体13の上面にLiのマークを備える第5の典型例500は、空気電池の設置の際、及び/又は空気電池の使用の際に、複数積み重なった外装体の上下が筐体の外部から明確に視認できることから、負極活物質層3及び負極集電体5が、いずれも同じ外装体9に収納される電解液層1よりも鉛直方向上側となるように、確実に空気電池を設置及び/又は使用できる。
図6(b)は、外装体9の積み重なる方向に平行な、筐体13の側面、すなわち、図6(a)において視点A5から見た筐体13の面を示した図である。なお、二重波線は図の省略を示す。図6(b)に示すように、第6の典型例600は、筐体13の側面に矢印のマークを備える。この矢印のマークにより、筐体13の上下の区別がつく。
このように、筐体13の側面に矢印のマークを備える第6の典型例600は、空気電池の設置の際、及び/又は空気電池の使用の際に、複数積み重なった積層体の上下が外部から明確に視認できることから、負極活物質層3及び負極集電体5が、いずれも同じ外装体9に収納される電解液層1よりも鉛直方向上側となるように、確実に空気電池を設置及び/又は使用できる。
本発明に用いられる空気極は、好ましくは空気極層を備えるものであり、通常、これに加えて、空気極集電体、及び当該空気極集電体に接続された空気極リード及び/又は空気極タブを備えるものである。
本発明に用いられる空気極層は、少なくとも導電性材料を含有する。さらに、必要に応じて、触媒及び結着剤の少なくとも一方を含有していても良い。
電極反応がよりスムーズに行われるという観点から、上述した導電性材料に触媒が担持されていてもよい。
上記空気極層の厚さは、空気電池の用途等により異なるものであるが、例えば2~500μm、中でも5~300μmであることが好ましい。
本発明の空気電池中の空気極集電体は、空気極層の集電を行うものである。空気極集電体の材料としては、導電性を有するものであれば特に限定されるものではないが、例えばステンレス、ニッケル、アルミニウム、鉄、チタン、カーボン等を挙げることができる。空気極集電体の形状としては、例えば箔状、板状およびメッシュ(グリッド)状等を挙げることができる。中でも、本発明においては、集電効率に優れるという観点から、空気極集電体の形状がメッシュ状であることが好ましい。この場合、通常、空気極層の内部にメッシュ状の空気極集電体が配置される。さらに、本発明の空気電池は、メッシュ状の空気極集電体により集電された電荷を集電する別の空気極集電体(例えば箔状の集電体)を備えていても良い。また、本発明においては、後述する外装体が空気極集電体の機能を兼ね備えていても良い。
空気極集電体の厚さは、例えば10~1000μm、中でも20~400μmであることが好ましい。
本発明の空気電池中の負極は、好ましくは負極活物質を含有する負極層を備え、通常、負極集電体、及び当該負極集電体に接続された負極リード及び/又は負極タブをさらに備える。
本発明の空気電池中の負極層は、金属材料、合金材料、及び/又は炭素材料を含む負極活物質を含有する。負極活物質に用いることができる金属及び合金材料としては、具体的には、リチウム金属、リチウム元素を含有する合金材料又は化合物を例示することができる。
リチウム元素を含有する合金としては、例えばリチウムアルミニウム合金、リチウムスズ合金、リチウム鉛合金、リチウムケイ素合金等を挙げることができる。
リチウム元素を含有する化合物としては、リチウム酸化物、リチウム硫化物、及びリチウム窒化物が例示できる。リチウム酸化物としては、例えばリチウムチタン酸化物等を挙げることができる。リチウム窒化物としては、例えばリチウムコバルト窒化物、リチウム鉄窒化物、リチウムマンガン窒化物等を挙げることができる。なお、負極層には、固体電解質をコートしたリチウムを用いることもできる。
本発明の空気電池中の負極集電体の材料としては、導電性を有するものであれば特に限定されるものではないが、金属又は合金を含んでいてもよく、例えば、銅、ステンレス、カーボン、ニッケル、タンタル等を挙げることができる。負極集電体は、これらの内、ステンレス及びカーボンを用いることが好ましい。上記負極集電体の形状としては、例えば箔状、板状およびメッシュ(グリッド)状等を挙げることができる。本発明においては、後述する外装体が負極集電体の機能を兼ね備えていても良い。
本発明においては、特に、負極活物質層にリチウム金属を、負極集電体に金属を、それぞれ用いた場合において、腐食電流防止の効果がより十分に享受できる。
本発明の空気電池中の電解液層は、空気極層及び負極層の間に保持され、空気極層及び負極層との間で金属イオンを交換する働きを有する。
電解液層には、水系電解液及び非水系電解液を用いることができる。これらは、1種類のみを単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
有機溶媒を用いた電解液の場合には、負極活物質層表面(例えば、リチウム金属表面)に被膜が生じるため、上述したような腐食電流は流れにくい。しかし、イオン液体を用いた電解液の場合には、そもそも負極活物質層表面(例えば、リチウム金属表面)に被膜が生じないか、生じてもごく薄い。したがって、イオン液体を用いた電解液は、有機溶媒を用いた電解液よりも、負極活物質層と負極集電体の界面で電位差が生じた場合に腐食電流が流れる可能性が著しく高い。
上記非水溶媒のうち、上記式(II)又は(III)で表される酸素還元反応を進行させるために、酸素ラジカルに安定な電解液溶媒を用いることがより好ましい。このような非水溶媒の例としては、アセトニトリル(AcN)、1,2-ジメトキシエタン(DME)、ジメチルスルホキシド(DMSO)、N-メチル-N-プロピルピペリジニウム ビス(トリフルオロメタンスルホニル)イミド(PP13TFSI)、N-メチル-N-プロピルピロリジニウム ビス(トリフルオロメタンスルホニル)イミド(P13TFSI)、N-ブチル-N-メチルピロリジニウム ビス(トリフルオロメタンスルホニル)イミド(P14TFSI)等が挙げられる。
本発明の空気電池は、空気極及び負極の間に、セパレータを備えていてもよい。上記セパレータとしては、例えばポリエチレン、ポリプロピレン等の多孔膜;及びポリプロピレン等の樹脂製の不織布、ガラス繊維不織布等の不織布等を挙げることができる。
セパレータに使用できるこれらの材料は、上述した電解液を含浸させることにより、電解液の支持材として使用することもできる。
本発明の空気電池は、空気極、負極、電解液層等を収納する外装体を備える。外装体の形状としては、具体的にはコイン型、平板型、円筒型、ラミネート型等を挙げることができる。本発明には、外装体としてラミネートフィルムを用いることもできる。
外装体は、大気開放型の電池ケースであっても良く、密閉型の電池ケースであっても良い。大気開放型の電池ケースは、少なくとも空気極層が十分に大気と接触可能な構造を有する電池ケースである。一方、外装体が密閉型電池ケースである場合は、密閉型電池ケースに、気体(空気)の導入管及び排気管が設けられることが好ましい。この場合、導入・排気する気体は、酸素濃度が高いことが好ましく、乾燥空気や純酸素であることがより好ましい。また、放電時には酸素濃度を高くし、充電時には酸素濃度を低くすることが好ましい。
外装体内には、外装体の構造に応じて、酸素透過膜や、撥水膜を設けてもよい。
本発明の空気電池は、上記外装体を1又は2以上収納する筐体を備えていてもよい。筐体の形状は、外装体と同様であってもよい。
本発明の移動体は、上記空気電池を備えることを特徴とする。
本発明の移動体内に、空気電池の傾きを制御する傾き制御装置等を設けることができる。傾き制御装置の例としては、例えば、バラスト等の重りを配置することにより空気電池の傾きを制御する装置や、水準器等の傾斜を確認できる機器と連動して自動で空気電池の傾きを制御する装置等を挙げることができる。
[実施例1]
まず、カーボンブラック(ケッチェンブラックインターナショナル製、ECP600JD)、及びPTFEバインダー(ダイキン製)を、カーボンブラック:PTFE=90質量%:10質量%の割合で混合した。次に、当該混合物をロールプレスにより圧延し、適宜切断し、空気極層を作製した。続いて、空気極集電体として、SUSメッシュ(ニラコ製、SUS304製100メッシュ)を、当該空気極層の片面に貼付け、空気極を得た。
電解液として、N-メチル-N-プロピルピペリジニウム ビス(トリフルオロメタンスルホニル)イミド(関東化学製、PP13TFSI)に、リチウムビス(トリフルオロメタンスルホニル)イミド(キシダ化学製)を0.32mol/kgの濃度となるように溶解させ、アルゴン雰囲気下で一晩攪拌混合したものを用意した。また、セパレータとしてポリプロピレン製不織布を用意した。
負極集電体としてSUS箔(ニラコ製、SUS304)を用意し、当該SUS箔の一面側に金属リチウム(本城金属製)を貼り合わせて、負極を作製した。
外装体として、図3に示したような、空気極側に酸素取り込み孔を有し、且つ、負極側にLiのマークが印字された外装体を用意した。
以上の工程は、全て窒素雰囲気下のグローブボックス内で行った。
比較例1の空気電池には、外装体の他は、実施例1と同様の部材を用いた。比較例1の空気電池の外装体としては、空気極側に酸素取り込み孔を有するのみの外装体を用いた。
酸素取り込み孔を有する外装体の面を上にして、底から、負極集電体-金属リチウム-電解液を含浸させたセパレータ-空気極層-空気極集電体の順に積層するように、外装体内に各部材を収納し、比較例1の空気電池を得た。すなわち、比較例1の空気電池においては、鉛直方向上側から、空気極集電体-空気極層-電解液を含浸させたセパレータ-金属リチウム-負極集電体の順に積層させた。
実施例1及び比較例1の空気電池について、不活性雰囲気下で1週間放置した後に、電圧計でセル電圧を測定した。下記表1は、実施例1及び比較例1の空気電池について、1週間放置後の電圧を比較した表である。
一方、表1に示すように、実施例1の空気電池は、1週間放置後のセル電圧が2.7Vである。これは、負極集電体及び金属リチウムが、いずれも、電解液を含浸させたセパレータよりも鉛直方向上側に位置することにより、電解液由来の液体が負極集電体の側面及び/又は界面に浸入することなく、負極の腐食が防止されたことによるものと考えられる。
1a,1b 電解液層由来の液体
2 空気極層
3 負極活物質層
4 空気極集電体
5 負極集電体
6 空気極
7 負極
8 積層体
9 外装体
9a 酸素取り込み孔
10 空気極集電タブ
11 負極集電タブ
11a 負極集電タブの切り欠き
12 集電体
13 筐体
13a 酸素取り込み孔
20 鉛直方向
100 本発明の空気電池の第1の典型例
200 本発明の空気電池の第2の典型例
300 本発明の空気電池の第3の典型例
400 本発明の空気電池の第4の典型例
500 本発明の空気電池の第5の典型例
600 本発明の空気電池の第6の典型例
700 従来の空気電池
A1,A2,A3,A4,A5 視点
Claims (17)
- 空気極、負極、及び、当該空気極及び当該負極の間に介在する電解液層、並びに、当該空気極、当該負極、及び当該電解液層を備える積層体を1又は2以上収納する外装体を備える空気電池であって、
前記負極は、少なくとも、前記電解液層に面する側から順に、負極活物質層及び負極集電体を備え、
前記負極活物質層及び前記負極集電体は、いずれも、前記電解液層よりも鉛直方向上側に位置することを特徴とする、空気電池。 - 前記空気極が前記積層体中の鉛直方向下側に配置されていること、及び、前記負極が前記積層体中の鉛直方向上側に配置されていること、の少なくともいずれか一方を示す目印を備える、請求の範囲第1項に記載の空気電池。
- 前記外装体が1又は2以上積み重なり収納される筐体をさらに備え、
前記目印は、前記外装体の積み重なる方向に平行な、前記筐体の側面に設けられている、請求の範囲第2項に記載の空気電池。 - 前記負極活物質層はリチウム金属を含有する、請求の範囲第1項乃至第3項のいずれか一項に記載の空気電池。
- 前記負極集電体は金属又は合金を含有する、請求の範囲第1項乃至第4項のいずれか一項に記載の空気電池。
- 前記電解液層はイオン液体を含有する、請求の範囲第1項乃至第5項のいずれか一項に記載の空気電池。
- 前記外装体はラミネートフィルム製である、請求の範囲第1項乃至第6項のいずれか一項に記載の空気電池。
- 前記請求の範囲第1項乃至第7項のいずれか一項に記載の空気電池を備えることを特徴とする、移動体。
- 前記負極活物質層及び前記負極集電体は、いずれも、常に前記電解液層よりも鉛直方向上側に位置する、請求の範囲第8項に記載の移動体。
- 空気極、負極、及び、当該空気極及び当該負極の間に介在する電解液層、並びに、当該空気極、当該負極、及び当該電解液層を備える積層体を1又は2以上収納する外装体を備える空気電池であって、
前記負極は、少なくとも、前記電解液層に面する側から順に、負極活物質層及び負極集電体を備え、
前記負極活物質層及び前記負極集電体が、いずれも、前記電解液層よりも鉛直方向上側に位置することにより、前記負極活物質層及び前記負極集電体の側面及び/又は界面に、前記電解液層由来の液体が存在しないことを特徴とする、空気電池。 - 空気極、負極、及び、当該空気極及び当該負極の間に介在する電解液層、並びに、当該空気極、当該負極、及び当該電解液層を備える積層体を1又は2以上収納する外装体を備える空気電池の使用方法であって、
前記負極は、少なくとも、前記電解液層に面する側から順に、負極活物質層及び負極集電体を備え、
少なくとも使用時に、前記負極活物質層及び前記負極集電体が、いずれも、前記電解液層よりも鉛直方向上側に配置されるように、空気電池の鉛直方向の向きを決めることを特徴とする、空気電池の使用方法。 - 前記空気極が前記積層体中の鉛直方向下側に配置されていること、及び、前記負極が前記積層体中の鉛直方向上側に配置されていること、の少なくともいずれか一方を示す目印に基づき、空気電池の鉛直方向の向きを決める、請求の範囲第11項に記載の空気電池の使用方法。
- 前記外装体が1又は2以上積み重なり収納される筐体をさらに備え、
前記目印は、前記外装体の積み重なる方向に平行な、前記筐体の側面に設けられている、請求の範囲第12項に記載の空気電池の使用方法。 - 前記負極活物質層はリチウム金属を含有する、請求の範囲第11項乃至第13項のいずれか一項に記載の空気電池の使用方法。
- 前記負極集電体は金属又は合金を含有する、請求の範囲第11項乃至第14項のいずれか一項に記載の空気電池の使用方法。
- 前記電解液層はイオン液体を含有する、請求の範囲第11項乃至第15項のいずれか一項に記載の空気電池の使用方法。
- 前記外装体はラミネートフィルム製である、請求の範囲第11項乃至第16項のいずれか一項に記載の空気電池の使用方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/073571 WO2013054418A1 (ja) | 2011-10-13 | 2011-10-13 | 空気電池、当該空気電池を備える移動体、及び空気電池の使用方法 |
JP2013538373A JP5884828B2 (ja) | 2011-10-13 | 2011-10-13 | 空気電池、当該空気電池を備える移動体、及び空気電池の使用方法 |
US14/345,737 US20140220461A1 (en) | 2011-10-13 | 2011-10-13 | Air battery, mobile object comprising the air battery and method for using an air battery |
CN201180073553.4A CN103843192A (zh) | 2011-10-13 | 2011-10-13 | 空气电池、具备该空气电池的移动体和空气电池的使用方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/073571 WO2013054418A1 (ja) | 2011-10-13 | 2011-10-13 | 空気電池、当該空気電池を備える移動体、及び空気電池の使用方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013054418A1 true WO2013054418A1 (ja) | 2013-04-18 |
Family
ID=48081495
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/073571 WO2013054418A1 (ja) | 2011-10-13 | 2011-10-13 | 空気電池、当該空気電池を備える移動体、及び空気電池の使用方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20140220461A1 (ja) |
JP (1) | JP5884828B2 (ja) |
CN (1) | CN103843192A (ja) |
WO (1) | WO2013054418A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015079592A (ja) * | 2013-10-15 | 2015-04-23 | 日産自動車株式会社 | 電極構造体及びその製造方法 |
JP2015138581A (ja) * | 2014-01-20 | 2015-07-30 | 株式会社豊田中央研究所 | 非水電解液空気二次電池 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010062074A (ja) * | 2008-09-05 | 2010-03-18 | Kankyo Kagaku Kenkyusho:Kk | 酸性電解質を用いた電池 |
WO2010134161A1 (ja) * | 2009-05-19 | 2010-11-25 | トヨタ自動車株式会社 | 空気電池 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04366547A (ja) * | 1991-06-12 | 1992-12-18 | Matsushita Electric Ind Co Ltd | ガス減極式構成電池 |
BR9206939A (pt) * | 1991-12-16 | 1995-11-28 | Matsi Inc | Célula de metal-ar e processo para acomodar uma variação na dimensão de um elétrodo |
JPH09134734A (ja) * | 1995-11-10 | 1997-05-20 | Tanaka Kikinzoku Kogyo Kk | 燃料電池の組立方法 |
JP3049037U (ja) * | 1997-11-19 | 1998-05-29 | 正儀 阪田 | レーザ付き水平器 |
US6461763B1 (en) * | 2000-01-13 | 2002-10-08 | The Gillette Company | Battery cartridge |
US20020164441A1 (en) * | 2001-03-01 | 2002-11-07 | The University Of Chicago | Packaging for primary and secondary batteries |
JP4296114B2 (ja) * | 2003-03-28 | 2009-07-15 | 株式会社東芝 | 空気電池 |
JP4575212B2 (ja) * | 2005-03-31 | 2010-11-04 | 株式会社東芝 | 非水電解質空気電池 |
US8895197B2 (en) * | 2009-05-11 | 2014-11-25 | Arizona Board Of Regents For And On Behalf Of Arizona State University | Metal-air low temperature ionic liquid cell |
US20110003213A1 (en) * | 2009-06-30 | 2011-01-06 | Revolt Technology Ltd. | Metal-air battery with siloxane material |
JP2011086502A (ja) * | 2009-10-15 | 2011-04-28 | Toyota Motor Corp | リチウム二次電池 |
-
2011
- 2011-10-13 JP JP2013538373A patent/JP5884828B2/ja active Active
- 2011-10-13 US US14/345,737 patent/US20140220461A1/en not_active Abandoned
- 2011-10-13 WO PCT/JP2011/073571 patent/WO2013054418A1/ja active Application Filing
- 2011-10-13 CN CN201180073553.4A patent/CN103843192A/zh active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010062074A (ja) * | 2008-09-05 | 2010-03-18 | Kankyo Kagaku Kenkyusho:Kk | 酸性電解質を用いた電池 |
WO2010134161A1 (ja) * | 2009-05-19 | 2010-11-25 | トヨタ自動車株式会社 | 空気電池 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015079592A (ja) * | 2013-10-15 | 2015-04-23 | 日産自動車株式会社 | 電極構造体及びその製造方法 |
JP2015138581A (ja) * | 2014-01-20 | 2015-07-30 | 株式会社豊田中央研究所 | 非水電解液空気二次電池 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2013054418A1 (ja) | 2015-03-30 |
US20140220461A1 (en) | 2014-08-07 |
JP5884828B2 (ja) | 2016-03-15 |
CN103843192A (zh) | 2014-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9225018B2 (en) | Air cathode for air batteries and air battery | |
JP5729481B2 (ja) | リチウム空気電池用の電解液 | |
JP5163709B2 (ja) | 金属空気電池用液状空気極、及び当該液状空気極を備える金属空気電池 | |
JP5742865B2 (ja) | リチウム金属電池用の電解液 | |
JP2013037999A (ja) | 金属空気電池 | |
CN105576325A (zh) | 用于金属-空气蓄电池的两相电解质 | |
JP2012084379A (ja) | 金属空気電池システム、及び金属空気電池の充電方法 | |
JP2014072079A (ja) | 金属空気電池用の空気極 | |
JP5621745B2 (ja) | 空気電池用電解液 | |
JP2011134595A (ja) | 金属空気電池 | |
JP2013161608A (ja) | 電解液および当該電解液を用いた金属空気電池 | |
JP5298610B2 (ja) | 空気電池 | |
JP2014075269A (ja) | 金属空気電池 | |
JP5884828B2 (ja) | 空気電池、当該空気電池を備える移動体、及び空気電池の使用方法 | |
JP5716782B2 (ja) | リチウム空気電池用の電解液 | |
JP2014093227A (ja) | 空気電池用空気極、及び当該空気極を備える空気電池 | |
JP5987792B2 (ja) | 空気電池及びその製造方法 | |
JP2011134594A (ja) | 金属空気電池 | |
JP5601289B2 (ja) | 空気電池 | |
US10629970B2 (en) | Lithium air battery including negative electrode, positive electrode, nonaqueous lithium ion conductor, and copper ion | |
JP2012174349A (ja) | 空気一次電池 | |
JP5669405B2 (ja) | リチウム空気電池 | |
JP5783150B2 (ja) | 金属空気電池 | |
JP5223461B2 (ja) | 空気電池 | |
Manshadi et al. | Aqueous Na‐Air Batteries |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11874040 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013538373 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14345737 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11874040 Country of ref document: EP Kind code of ref document: A1 |