WO2013047648A1 - 静電チャック - Google Patents

静電チャック Download PDF

Info

Publication number
WO2013047648A1
WO2013047648A1 PCT/JP2012/074867 JP2012074867W WO2013047648A1 WO 2013047648 A1 WO2013047648 A1 WO 2013047648A1 JP 2012074867 W JP2012074867 W JP 2012074867W WO 2013047648 A1 WO2013047648 A1 WO 2013047648A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
main surface
electrostatic chuck
connection portion
dielectric substrate
Prior art date
Application number
PCT/JP2012/074867
Other languages
English (en)
French (fr)
Inventor
琢真 和田
和輝 穴田
Original Assignee
Toto株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto株式会社 filed Critical Toto株式会社
Priority to CN201280046774.7A priority Critical patent/CN103907181B/zh
Priority to US14/345,279 priority patent/US9042078B2/en
Priority to KR1020147003976A priority patent/KR101416152B1/ko
Publication of WO2013047648A1 publication Critical patent/WO2013047648A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/15Devices for holding work using magnetic or electric force acting directly on the work
    • B23Q3/154Stationary devices
    • B23Q3/1543Stationary devices using electromagnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/6875Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a plurality of individual support members, e.g. support posts or protrusions

Definitions

  • An aspect of the present invention relates to an electrostatic chuck, and more particularly to an electrostatic chuck that can ensure a structure for taking out an electrode of a ceramic dielectric substrate to the outside.
  • a ceramic electrostatic chuck made by sandwiching and firing an electrode between ceramic substrates such as alumina, applies electrostatic adsorption power to the built-in electrode, and electrostatically forces a substrate such as a silicon wafer. Adsorb.
  • a part of the conductor conducting to the electrode is exposed from the surface opposite to the electrostatic attraction surface of the ceramic substrate.
  • an electrode having a power supply connector joined to an electrode has been put into practical use.
  • Patent Document 1 discloses a structure in which a connection portion (via) that is electrically connected to an internal electrode is formed in an electrostatic chuck.
  • a connection portion (via) that is electrically connected to an internal electrode is formed in an electrostatic chuck.
  • a conductive layer and an insulating film are sequentially stacked on a ceramic green sheet to form a stacked body, and the stacked body is fired to conduct with the conductive layer (electrode). Make up vias.
  • connection portion (via) if the outer diameter of the connection portion (via) is reduced, it becomes more susceptible to firing shrinkage when firing the ceramic, and between the electrode inside the ceramic substrate and the connection portion (via), The metal material is easily peeled off.
  • the ceramic when the ceramic is fired due to the surface tension of the metal material, the metal that is the material of the connecting member moves in the ceramic substrate to form a cavity, or the electrode breaks due to the difference in thermal expansion between the ceramic and the metal.
  • the outer diameter of the connecting member is made fine, such a problem becomes conspicuous, causing a problem that the reliability of the electrostatic chuck is lowered.
  • the present invention has been made based on recognition of such a problem, and an object of the present invention is to provide an electrostatic chuck capable of obtaining high reliability by reliable conduction between an internal electrode and a connection portion.
  • a ceramic dielectric substrate having a first main surface on which an object to be adsorbed is placed and a second main surface opposite to the first main surface, and the ceramic dielectric
  • An electrode interposed between the first main surface and the second main surface of the substrate; and a connecting portion connected to the electrode on the second main surface side of the electrode of the ceramic dielectric substrate.
  • a connecting portion having a first region in contact with the electrode, wherein a direction from the first main surface toward the second main surface is a first direction, and a direction orthogonal to the first direction is a second direction.
  • the first region has an extension line along the outer shape of the electrode on the second main surface side and an outer shape of the connection portion in a cross section viewed in the second direction of the electrode and the connection portion. Of the angles formed by the tangent, the angle on the side of the connecting portion gradually increases in the first direction.
  • An electrostatic chuck wherein bets are provided.
  • FIG. 1 is a schematic cross-sectional view illustrating the configuration of an electrostatic chuck according to this embodiment.
  • FIG. 2 is a schematic enlarged cross-sectional view of a part A shown in FIG.
  • FIG. 3 is a schematic cross-sectional view illustrating a reference example.
  • FIG. 4 is a schematic diagram for explaining an example of the definition of the angle ⁇ .
  • FIG. 5 is a schematic cross-sectional view illustrating another connection configuration of the connection portion.
  • FIG. 6 is a schematic cross-sectional view illustrating another connection configuration.
  • FIG. 7A and FIG. 7B are schematic views illustrating other connection configurations.
  • FIG. 8A and FIG. 8B are diagrams showing experimental results of the connection state and the conduction state between the connection portion and the electrode.
  • FIG. 9B are schematic cross-sectional views illustrating other connection configurations.
  • FIG. 10A and FIG. 10B are schematic cross-sectional views illustrating other connection configurations.
  • FIG. 11A and FIG. 11B are schematic cross-sectional views illustrating other connection configurations.
  • FIG. 12A to FIG. 12C are schematic cross-sectional views illustrating a method for manufacturing an electrostatic chuck.
  • FIG. 13 is a diagram illustrating an example of a connection unit.
  • FIG. 14A and FIG. 14B are diagrams illustrating the relationship between the aspect ratio of the connection portion and the conduction characteristics.
  • a ceramic dielectric substrate having a first main surface on which an object to be adsorbed is placed and a second main surface opposite to the first main surface, and the ceramic dielectric substrate.
  • An electrode interposed between the first main surface and the second main surface, and a connecting portion connected to the electrode on the second main surface side of the electrode of the ceramic dielectric substrate, A connecting portion having a first region in contact with the electrode, wherein a direction from the first main surface to the second main surface is a first direction, and a direction orthogonal to the first direction is a second direction.
  • the first region includes an extension line along the outer shape of the electrode on the second main surface side and a tangent line of the outer shape of the connection portion in a cross section viewed in the second direction of the electrode and the connection portion; Of the angles formed by the angle, the angle on the side of the connecting portion gradually increases in the first direction.
  • the angle on the connection portion side of the extension line along the outer shape of the electrode on the second main surface side and the tangent line of the outer shape of the connection portion is (2) Since the diameter gradually increases in the first direction toward the main surface, the contact area between the electrode and the connection portion is widened to ensure reliable conduction compared to the case where the diameter of the connection portion is constant in the first direction. Meanwhile, the adhesion between the connection portion and the ceramic dielectric substrate can be improved. In addition, since the outer shape of the connection portion is curved in the cross section viewed in the second direction, the occurrence of corner portions that are likely to be the starting point of discharge during voltage application is suppressed.
  • the outer shape of the electrode on the second main surface side is aligned.
  • the angle on the connection portion side is an acute angle.
  • the contact between the electrode and the connecting portion can be improved. Thereby, peeling with an electrode and a connection part can be suppressed.
  • the ceramic dielectric substrate protrudes in the first direction at a position that is connected to the electrode and overlaps the connection portion when viewed in the first direction.
  • An electrostatic chuck having a shape portion.
  • the convex portion is provided on the ceramic dielectric substrate on the side connected to the electrode, and the metal material of the connecting portion and the electrode moves following the convex shape of this portion. This improves the connection reliability between the electrode and the connection portion.
  • the thickness of the ceramic dielectric substrate on the connection portion can be increased, bending of the ceramic dielectric substrate on the connection portion is suppressed when the surface of the ceramic dielectric substrate is polished. Thereby, the flatness by grinding
  • the connecting portion is a second region provided between the first region and the second main surface, and is arranged in the first direction.
  • An electrostatic chuck having a second region with a gradually increasing diameter.
  • connection portion is provided with the second region whose diameter gradually increases in the first direction from the first main surface to the second main surface, so that the electrode of the connection portion and
  • the connectivity with a conductive member such as a pad electrode connected to the opposite side is improved.
  • the fifth invention is the invention according to any one of the first to fourth inventions, wherein the ceramic dielectric substrate has a recess that reaches the connection portion from the second main surface, and is exposed to a bottom surface of the recess.
  • An electrostatic chuck further comprising a conductive member electrically connected to the connecting portion.
  • the connectivity between the connecting portion and the conductive member such as the pad electrode is improved, and a reliable electrical connection with the external electrode terminal can be performed.
  • the sixth invention is the electrostatic chuck according to the fifth invention, wherein the bottom surface has a curved surface.
  • the connectivity between the connecting portion and the conductive member such as the pad electrode is improved, and it is possible to perform reliable electrical connection with an external electrode terminal (probe or the like).
  • a seventh invention is the electrostatic chuck according to the first invention, wherein the material of the connecting portion contains the same kind of metal as the material contained in the material of the electrode.
  • the diffusibility of the electrode material is improved, and the integrated sintering including the electrode to the connection portion can be performed.
  • an eighth invention is the electrostatic chuck according to the seventh invention, wherein the material of the connecting portion includes a material of the same type as that of the ceramic dielectric substrate.
  • the area of the bottom surface viewed in the direction opposite to the first direction is larger than the area of the connection portion exposed on the bottom surface viewed in the direction opposite to the first direction. It is an electrostatic chuck characterized by being wide.
  • the electrostatic chuck includes the plurality of connection portions, and the plurality of connection portions are provided for one of the recesses. .
  • the electrical continuity between the electrode and the connecting portion can be more reliably performed.
  • FIG. 1 is a schematic cross-sectional view illustrating the configuration of an electrostatic chuck according to this embodiment.
  • FIG. 2 is a schematic enlarged cross-sectional view of a part A shown in FIG.
  • the electrostatic chuck 110 according to the present embodiment includes a ceramic dielectric substrate 11, an electrode 12, and a connection unit 20.
  • the ceramic dielectric substrate 11 is a flat base material made of, for example, sintered ceramic, and has a first main surface 11a on which an object to be adsorbed W such as a semiconductor substrate is placed, and a side opposite to the first main surface 11a. 2nd main surface 11b.
  • the electrode 12 is interposed between the first main surface 11 a and the second main surface 11 b of the ceramic dielectric substrate 11. That is, the electrode 12 is formed so as to be inserted into the ceramic dielectric substrate 11.
  • the electrostatic chuck 110 generates a charge on the first main surface 11a side of the electrode 12 by applying an adsorption holding voltage 80 to the electrode 12, and adsorbs and holds the object W by electrostatic force.
  • the direction (first direction) from the first main surface 11a to the second main surface 11b is the Z direction
  • one of the directions orthogonal to the Z direction (second direction) is Y
  • the direction (third direction) orthogonal to the direction, the Z direction, and the Y direction is referred to as the X direction.
  • the electrode 12 is provided in a thin film shape along the first main surface 11 a and the second main surface 11 b of the ceramic dielectric substrate 11.
  • the electrode 12 is an adsorption electrode for adsorbing and holding the object to be adsorbed W.
  • the electrode 12 may be monopolar or bipolar.
  • the electrode 12 shown in FIG. 1 is a bipolar type, and a bipolar electrode 12 is provided on the same surface.
  • the electrode 12 is not limited to being built in the ceramic dielectric 11, but may be one in which the dielectric is fixed to the base plate by an adhesive or brazing.
  • the electrode 12 is provided with a connecting portion 20 extending to the second main surface 11b side of the ceramic dielectric substrate 11.
  • the connection portion 20 is a via (solid type) or a via hole (hollow type) that is electrically connected to the electrode 12.
  • connection unit 20 includes a first region 21 connected to the electrode 12.
  • the outer diameter d of the shape (for example, substantially circular shape) seen in the Z direction of the first region 21 gradually decreases in the Z direction.
  • the first region 21 is provided in at least a part of the connection portion 20. In the example shown in FIG. 2, the entire connection portion 20 is the first region 21.
  • the outer diameter d of the first region 21 provided in the connection portion 20 is gradually reduced in the Z direction, and therefore the electrode 12 is smaller than the case where the outer diameter d of the connection portion 20 is constant in the Z direction. And the contact area between the connecting portion 20 can be widened. Thereby, the adhesiveness of the connection part 20 and the ceramic dielectric substrate 11 can be improved, ensuring reliable conduction
  • the electrostatic chuck 110 is mounted on the base plate 50.
  • the base plate 50 becomes an attachment reference for the electrostatic chuck 110.
  • a heat-resistant resin such as silicone, indium bonding, brazing, and the like are appropriately selected from the viewpoint of the operating temperature range, cost, and the like.
  • the base plate 50 is divided into, for example, an upper part 50a and a lower part 50b made of aluminum, and a communication path 55 is provided between the upper part 50a and the lower part 50b.
  • the communication path 55 has one end connected to the input path 51 and the other end connected to the output path 52.
  • the base plate 50 also serves to adjust the temperature of the electrostatic chuck 110.
  • a cooling medium flows in from the input path 51, passes through the communication path 55, and flows out from the output path 52. Thereby, the heat of the base plate 50 can be absorbed by the cooling medium, and the electrostatic chuck 110 mounted thereon can be cooled.
  • a heat retaining medium can be put into the communication path 55.
  • a heating element can be built in the electrostatic chuck 110 or the base plate 50. As described above, when the temperature of the electrostatic chuck 110 is adjusted via the base plate 50, the temperature of the object W to be attracted and held by the electrostatic chuck 110 can be adjusted.
  • dots 13 are provided on the first principal surface 11 a side of the ceramic dielectric substrate 11 as necessary, and grooves 14 are provided between the dots 13.
  • the groove 14 is in communication, and a space is formed between the back surface of the attracted object W mounted on the electrostatic chuck 110 and the groove 14.
  • An introduction path 53 that penetrates the base plate 50 and the ceramic dielectric substrate 11 is connected to the groove 14.
  • a transfer gas such as helium (He) is introduced from the introduction path 53 in a state where the object to be adsorbed W is adsorbed and held, the transfer gas flows into a space provided between the object to be adsorbed W and the groove 14, and the object to be adsorbed. W can be directly cooled by the transfer gas.
  • the temperature of the object to be adsorbed W and the particles adhering to the object to be adsorbed W are changed. It can be controlled to a preferable state.
  • the conductive member 30 may be provided on the second main surface 11 b of the ceramic dielectric substrate 11.
  • the conductive member 30 is a pad that is electrically connected to the connection portion 20.
  • a contact electrode 61 is provided on the upper portion 50 a of the base plate 50 corresponding to the position of the conductive member 30.
  • a hole 57 is provided in the upper part 50 a of the base plate 50, and a contact electrode 61 held by an insulating material 62 is attached to the hole 57. Therefore, when the electrostatic chuck 110 is attached to the upper portion 50 a of the base plate 50, the contact electrode 61 comes into contact with the conductive member 30, whereby the contact electrode 61 and the electrode 12 are electrically connected via the connection portion 20. In other words, even when the position of the contact electrode 61 is shifted, the area where conduction is possible increases, and as a result, stable conduction can be obtained.
  • a movable probe is used for the contact electrode 61.
  • the contact electrode 61 is not limited to the above, and may have any configuration such as a configuration in which the contact electrode 61 is simply in contact with the conductive member 30 or a connection with the conductive member 30 by fitting or screwing. Also good. Further, when the conductive member 30 is not provided, the contact electrode 61 is in direct contact with the exposed surface of the connecting portion 20 on the second main surface 11b side.
  • connection unit 20 is provided through the ceramic dielectric substrate 11 on the second main surface 11b side of the electrode 12 in the Z direction.
  • the connection part 20 has a shape close to a truncated cone extending in the Z direction.
  • connection portion 20 and the electrode 12 With such a shape, the contact area between the connection portion 20 and the electrode 12 can be widened, and reliable bonding and electrical conduction at the interface between the connection portion 20 and the electrode 12 can be ensured.
  • FIG. 3 is a schematic cross-sectional view illustrating a reference example.
  • the connecting portion 20 ′ shown in FIG. 3 has a constant outer diameter in the Z direction.
  • the outer diameter da is larger than the outer diameter db of the surface where the connecting portion 20 ′ and the electrode 12 are in contact with each other. That is, the contact area between the connection portion 20 and the electrode 12 is larger than the contact area between the connection portion 20 ′ and the electrode 12.
  • the connectivity between the connection portion 20 and the electrode 12 is higher than the connectivity between the connection portion 20 ′ and the electrode 12.
  • connection part 20 in the cross section of the electrode 12 and the connection part 20 seen in the Y direction orthogonal to the Z direction, for example, the extension line L1 along the outer shape on the second main surface side of the electrode 12 and the first region 21 Of the angles formed by the tangent L2 of the outer shape of the connecting portion 20, the angle ⁇ on the connecting portion 20 side is an acute angle.
  • the angle ⁇ is greater than 0 ° and less than 90 °.
  • the capillarity and surface tension of the electrode 12 assist the contact between the electrode material of the connection portion 20 and the electrode 12, so that the contact property between the electrode 12 and the connection portion 20 is dramatically improved. Can do. Thereby, when the ceramic dielectric substrate 11 is fired, peeling between the electrode 12 and the connection portion 20 can be suppressed.
  • the inclination of the tangent line L2 is the same at any position on the outer shape of the connecting portion 20 in the sectional view of the first region 21.
  • the inclination of the tangent line L ⁇ b> 2 varies depending on the position of the external shape of the connecting portion 20 in the cross-sectional view of the first region 21.
  • FIG. 4 is a schematic diagram for explaining an example of the definition of the angle ⁇ .
  • FIG. 4 shows an example of the definition of the angle ⁇ in the case where the outer shape of the connection portion 20 is curved in the cross-sectional view of the first region 21.
  • the cross-sectional view refers to a cross section when a cross section in the XZ plane passing through the center of the connecting portion 20 is viewed in the Y direction.
  • An example of the definition of the angle ⁇ is as follows.
  • an intersection point between the outer shape line S1 on the second main surface 11b side of the electrode 12 and the outer shape line S2 of the connection portion 20 is defined as an intersection point p0.
  • the outer diameter (length in the X direction) at the contact surface of the connecting portion 20 with the electrode 12 is defined as an outer diameter d1.
  • a circle CR having a radius r centered on the intersection point p0 is drawn, and an intersection point between the circle CR and the extension line L1 is defined as an intersection point p1, and an intersection point between the circle CR and the outline S2 is defined as an intersection point p2.
  • An angle (narrower angle) formed by a line connecting the intersection point p1 and the intersection point p0 and a line connecting the intersection point p2 and the intersection point p0 is defined as an angle ⁇ .
  • the radius r of the circle CR is, for example, 1/8 of the outer diameter d1.
  • the angle ⁇ can be measured by observing the cross section of the connecting portion 20.
  • a cross section on the XZ plane passing through the center of the connecting portion 20 is polished, and the polished surface is measured according to the above definition.
  • polishing that has little influence on the electrode 12 and the connecting portion 20 for example, polishing using an ion beam or the like (cross section polisher (JEOL Ltd .: registered trademark)) is desirable.
  • cross section polisher cross section polisher (JEOL Ltd .: registered trademark)
  • connection portion 20 when the outer shape of the connection portion 20 is curved in the cross-sectional view of the first region 21, the outer peripheral distance of the connection portion 20 becomes longer than when the connection portion 20 is linear (tapered). The current density at the time of voltage application can be reduced.
  • connection portion 20 when the outer shape of the connection portion 20 is curved in the cross-sectional view of the first region 21, it is possible to suppress the occurrence of corners in the outer shape of the connection portion 20.
  • the angle ⁇ is gradually increased in the Z direction (the increasing rate of the outer diameter of the connection portion 20 is gradually increased toward the electrode 12) (substantially horn shape)
  • the outer shape of the connection portion 20 It is difficult to form a corner (for example, a pointed portion). If the connecting part 20 has a corner, the corner tends to be a starting point of discharge when a voltage is applied. If it becomes the starting point of discharge, there is a possibility of causing a conduction failure in the connecting portion 20 and the electrode 12. Since the connecting portion 20 is smoothly connected to the electrode 12, the occurrence of corner portions is suppressed, and the reliability of conduction is improved.
  • FIG. 5 is a schematic cross-sectional view illustrating another connection configuration of the connection portion.
  • FIG. 5 shows a schematic enlarged cross-sectional view of a portion A shown in FIG.
  • the connecting portion 20 ⁇ / b> A illustrated in FIG. 5 includes a first region 21 and a second region 22.
  • the outer diameter of the first region 21 as viewed in the Z direction gradually decreases in the Z direction.
  • the outer diameter of the first region 21 is the largest on the electrode 12 side (outer diameter d1), and gradually decreases from the electrode 12 in the Z direction.
  • the smallest outer diameter is the outer diameter d2.
  • the second region 22 is provided between the first region 21 and the second main surface 11b.
  • the outer diameter of the shape seen in the Z direction of the second region 22 gradually increases in the Z direction.
  • the outer diameter of the second region 22 is the smallest on the first region 21 side (outer diameter d2), and gradually increases in the Z direction.
  • the largest outer diameter is the outer diameter d3 on the second main surface 11b side.
  • a conductive member 30 connected to the second region 22 is provided on the second main surface 11 b of the ceramic dielectric substrate 11.
  • a contact electrode 61 provided on the upper portion 50 a of the base plate 50 is in contact with the conductive member 30.
  • the contact area with the electrode 12 can be increased by the first region 21, and the contact area with the conductive member 30 can also be increased by the second region 21.
  • the average outer diameter in the Z direction of the connecting portion 20 ′ is the same as the average outer diameter in the Z direction of the connecting portion 20A shown in FIG.
  • the contact area between the connection portion 20A and the electrode 12 is larger than the contact area between the connection portion 20 ′ and the electrode 12.
  • the contact area between the connecting portion 20 ⁇ / b> A and the conductive member 30 is larger than the contact area between the connecting portion 20 ′ and the conductive member 30.
  • the connectivity of the connecting portion 20A with the electrode 12 is higher than the connectivity between the connecting portion 20 ′ and the electrode 12.
  • the contact property between the connecting portion 20 ⁇ / b> A and the conductive member 30 is higher than the connectability between the connecting portion 20 ′ and the conductive member 30. Therefore, in the connecting portion 20A, connectivity with both the electrode 12 and the conductive member 30 is improved.
  • the first region 21 and the second region 22 are adjacent to each other, but another region (for example, an outer diameter) is interposed between the first region 21 and the second region 22. May be present in the same direction in the Z direction).
  • FIG. 6 is a schematic cross-sectional view illustrating another connection configuration.
  • FIG. 6 is a schematic enlarged cross-sectional view of a part A shown in FIG.
  • the ceramic dielectric substrate 11 has a portion 21 a that is convex in the Z direction.
  • the portion 21a is a contact surface with the electrode 12 of the ceramic dielectric substrate 11, and has a convex shape in the Z direction at a position overlapping the connecting portion 20B as viewed in the Z direction.
  • the portion 21a is provided, for example, in a convex shape in the Z direction at a position corresponding to the central region of the connecting portion 20B viewed in the Z direction.
  • the thickness t1 of the ceramic dielectric substrate 11 in the Z direction is thicker than the thickness t2 of the portion other than the portion 21a.
  • the thickness t1 of the ceramic dielectric substrate 11 in the portion 21a is the thickest at the central portion (the portion corresponding to the center of the connecting portion 20B), and gradually decreases from the central portion toward the periphery.
  • connection portion 20B the metal material of the connection portion 20B and the electrode 12 can easily move following the convex portion 21a, and the connection reliability between the electrode 12 and the connection portion 20B is improved. That is, when the ceramic dielectric substrate 11 is fired, the metal material of the connecting portion 20B and the electrode 12 moves following the convex shape of the portion 21a, and peeling at the joint portion between the electrode 12 and the connecting portion 20B is suppressed.
  • the thickness t1 of the ceramic dielectric substrate 11 on the connecting portion 20B can be made thicker than the thickness t2 of the ceramic dielectric substrate 11 in the portion where the connecting portion 20B is not provided. Thereby, when the surface of the ceramic dielectric substrate 11 is polished, the bending of the ceramic dielectric substrate 11 on the connecting portion 20B is suppressed.
  • the ceramic dielectric substrate 11 when the surface of the ceramic dielectric substrate 11 is polished, the ceramic dielectric substrate 11 is likely to be bent at a portion where the connecting portion 20B is provided. As shown in FIG. 6, when the portion 21a is provided on the ceramic dielectric substrate 11, the thickness t1 of the portion 21a becomes thicker than the thickness t2, and the rigidity of the ceramic dielectric substrate 11 is increased. Therefore, even when a pressure is applied when polishing the surface of the ceramic dielectric substrate 11, it is difficult to bend on the connecting portion 20B, and the flatness of the ceramic dielectric substrate 11 is improved.
  • the polishing rate on the connecting portion 20B is reduced and the ceramic dielectric substrate is polished after polishing.
  • bulges protrusions
  • the object to be adsorbed W such as a wafer may come into contact with the bulge, which may cause a temperature abnormality of the contact electrode 61.
  • connection part 20B shown in FIG. 6 has the 2nd area
  • FIGS. 7A and 7B are schematic views illustrating other connection configurations.
  • Fig.7 (a) has shown the typical expanded sectional view of the A section shown in FIG.
  • FIG. 7B shows a schematic plan view of the connecting portion viewed in the direction opposite to the Z direction.
  • the ceramic dielectric substrate 11 has a concave portion 15 that reaches the connecting portion 20A from the second main surface 11b.
  • the area of the outer shape of the bottom surface 15a of the recess 15 seen in the direction opposite to the Z direction is larger than the area of the outer shape of the connecting portion 20A exposed to the bottom surface 15a seen in the direction opposite to the Z direction. wide.
  • the conductive member 30 electrically connected to the connecting portion 20 ⁇ / b> A exposed from the bottom surface 15 a can be reliably provided on the bottom surface 15 a of the recess 15.
  • the conductive member 30 may be provided on the entire bottom surface 15 a of the recess 15.
  • the conductive member 30 may be formed so as to be embedded in the recess 15. After the recess 15 is formed in the ceramic dielectric substrate 11, if the material of the conductive member 30 (for example, a metal paste material) is embedded in the recess 15, the conductive material does not protrude from the recess 15 and is conductive at a specified position.
  • the member 30 can be formed.
  • connection portion 20A shows the connection portion 20A, the connection portion 20 shown in FIG. 2 and the connection portion 20B shown in FIG. 6 are also applicable.
  • FIGS. 8A to 8B are diagrams showing experimental results of the connection state and the conduction state between the connection portion and the electrode.
  • FIG. 8A shows the peeling (peeling) and conduction state between the connection portion 20 and the electrode 12 with respect to d1 / d2.
  • d1 / d2 the presence or absence of peeling (peeling) for 1.0, 1.1, 1.3, 1.8, 2.3, 2.8 and 4.0
  • the presence or absence of conduction was examined.
  • d1 / d2 was 1.0, 1.1, 1.3, 1.8, 2.3, and 2.8, peeling (peeling) between the connection portion 20 and the electrode 12 did not occur.
  • FIG. 8B shows the peeling (peeling) and conduction state between the connecting portion 20 and the electrode 12 with respect to the outer diameter d2.
  • outer diameter d2 about 0.2 millimeter (mm), 0.5 mm, 1 mm, 1.5 mm, 2 mm, 2.5 mm, 3 mm, and 3.5 mm, each of peeling (peeling) The presence or absence and the presence or absence of conduction were examined. No peeling (peeling) between the connecting portion 20 and the electrode 12 occurred at any outer diameter d2.
  • the electrical connection between the connecting portion 20 and the electrode 12 was good.
  • the outer diameter d2 is 3.5 mm, the connection between the connecting portion 20 and the electrode 12 is poor.
  • d1 / d2 was more than 1 and less than 4, and a preferable outer diameter d2 was 0.1 mm or more and less than 3.5 mm.
  • the material of the connection part 20 may contain the same kind of material as the material contained in the material of the electrode 12.
  • the material of the electrode 12 includes a noble metal such as palladium (Pd) or platinum (Pt).
  • the material of the connection part 20 includes, for example, Pt.
  • the material of the connection part 20 may contain Pd contained in the material of the electrode 12 in addition to Pt.
  • the material of the connection part 20 may include the same kind of material as that included in the ceramic dielectric substrate 11.
  • alumina is used as the material of the ceramic dielectric substrate 11.
  • the amount of impurities contained in alumina is preferably small, and the alumina purity is 99.9% or more, more preferably 99.99% or more.
  • the material of the connecting part 20 includes, for example, alumina contained in the ceramic dielectric substrate 11.
  • the proportion of alumina added as a co-material to the connecting portion 20 is, for example, 50 volume% or more and 70 volume% or less.
  • the material of the electrode 12 may be the same as the material of the connection portion 20.
  • the electrostatic chuck 110 is formed, for example, by forming a green sheet obtained by adding a binder or the like to alumina powder, forming a laminated body in which a plurality of green sheets are laminated, and firing the laminated body.
  • the green sheet includes one formed with a metallized paste to be the electrode 12 and one formed with a metallized paste to be the connection portion 20.
  • a laminated body is formed through the baking process including HIP processing, for example. Thereby, the electrostatic chuck 110 is completed.
  • the manufacturing method of the electrostatic chuck 110 is not limited to this.
  • the electrostatic chuck 110 when the ceramic dielectric substrate 11 is fired, the adhesion between the connection portion 20 and the ceramic dielectric substrate 11 is improved, and integrated sintering including the electrode 12 to the connection portion 20 is performed. Will be able to do.
  • FIGS. 9A to 11B are schematic cross-sectional views illustrating other connection configurations.
  • the connecting portion 20C shown in FIG. 9A is an example having a hollow structure.
  • the ceramic dielectric substrate 11 is provided with a hole 20 h on the second main surface 11 b side than the electrode 12.
  • a connection portion material film 25 is formed on the inner wall of the hole 20h.
  • a hollow structure connecting portion 20C is formed in which the central portion of the hole 20h remains as a cavity.
  • the connection portion 20C also has a first region 21 in which the outer diameter d of the shape seen in the Z direction gradually decreases in the Z direction.
  • the angle ⁇ is an acute angle also in the connecting portion 20C.
  • the conductive member 40 is inserted into the hollow of the connection portion 20C having the hollow structure shown in FIG. After the connection portion 20C having a hollow structure is formed, the conduction member 40 is inserted into the hollow to obtain electrical conduction between the conduction member 40, the connection portion material film 25, and the electrode 12. Good.
  • the contact portion 17 is provided on the ceramic dielectric substrate 11.
  • the contact portion 17 includes a hole 17h (concave portion) reaching the connecting portion 20A from the second main surface 11b of the ceramic dielectric substrate 11, and a conductive film 17a provided on the inner wall of the hole 17h.
  • the tip of the hole 17h (the bottom surface of the recess) has a curved surface.
  • the tip of the hole 17h is spherical.
  • the connecting portion 20 is exposed from the spherical tip, and the exposed portion is in contact with the conductive film 17a.
  • the holes 17h are provided by a drill or the like from the second main surface 11b side after the ceramic dielectric substrate 11 is fired. For example, using a rotary cutting tool provided with a spherical bit at the tip, the hole 17h reaching the connection portion 20 from the second main surface 11b is formed. Thereby, a hole 17h having a spherical tip is formed. Since the outer diameter of the connecting portion 20 changes along the Z direction, the depth of the hole 17h can be grasped by the outer diameter of the connecting portion 20 exposed from the tip of the hole 17h.
  • a conductive film 17a is formed on the inner wall of the hole 17h.
  • the conductive film 17a may be plating, CVD (Chemical Vapor Deposition), organic resin containing conductive particles, or the like in addition to the platinum paste.
  • CVD Chemical Vapor Deposition
  • organic resin containing conductive particles or the like in addition to the platinum paste.
  • the external contact electrode 61 comes into contact with the conductive film 17 a to obtain electrical connection between the outside and the electrode 12.
  • the conductive material 18 is embedded in the contact portion 17 shown in FIG. 10B.
  • the conductive material 18 for example, conductive resin, brazing, or solder is used.
  • a conductive member 30 is provided on the second main surface 11 b of the ceramic dielectric substrate 11 via a conductive material 18.
  • An external contact electrode 61 comes into contact with the conductive member 30 to obtain electrical connection between the outside and the electrode 12.
  • connection portion 20 and the conductive member 30 are provided.
  • a plurality of connecting portions 20 are connected to one conductive member 30.
  • the plurality of connection portions 20 are disposed so as to surround the center of the conductive member 30.
  • connection configuration shown in FIG. 11B, a plurality of connection portions 20, a recess 15 reaching the plurality of connection portions 20 from the second main surface 11 b of the ceramic dielectric substrate 11, and a bottom surface 15 a of the recess 15 are provided. And a conductive member 30 provided. Also in this connection configuration, for example, when the second main surface 11b is viewed in the direction opposite to the Z direction, the plurality of connection portions 20 are disposed so as to surround the center of the conductive member 30. By providing the recess 15, the conductive member 30 can be reliably provided on the bottom surface 15 a. As a result, the electrical continuity between the electrode 12 and the connecting portion 20 can be more reliably performed.
  • FIGS. 12A to 12C are schematic cross-sectional views illustrating a method for manufacturing an electrostatic chuck.
  • FIGS. 12A to 12C mainly illustrate the procedure for forming the connection portion 20.
  • an alumina green sheet is produced. That is, a binder, a solvent, and the like are added to alumina powder, mixed and pulverized by a ball mill, and then defoamed to form a green sheet.
  • the alumina powder preferably has few impurities, and a purity of 99.9% by weight or more, more preferably 99.99% by weight or more is used.
  • the binder was selected from the group consisting of vinyl resins such as polyvinyl alcohol, polyvinyl butyral, polyvinyl chloride, cellulose resins such as methyl cellulose, ethyl cellulose hydroxyethyl cellulose, and acrylic resins such as polyacryl ester and polymethyl methacrylate, At least one type of resin can be selected.
  • a water-soluble binder resin or other conventional binders that can be used in the process of ceramic sheet products may be used.
  • a single solvent such as methyl ethyl ketone, ethyl alcohol, isopropyl alcohol, toluene, diethyl ether, ethylene trichloride, methanol, or a mixed solvent can be selected.
  • any solvent can be used as long as it can dissolve the binder, and the solvent is not limited.
  • a metallized paste 210 for forming the electrode 12 on the alumina green sheet is produced.
  • the metallized paste 210 is produced as follows. A binder or the like is added to a mixture of alumina powder and Pd powder, and mixed with three rolls to obtain metallized paste 210.
  • an internal electrode pattern to be the electrode 12 is printed on the alumina green sheet by the screen printing method using the metallized paste 210.
  • the formation of the electrodes is not limited to the screen printing method, and a vapor deposition method (PVD (Physical Vapor Deposition), CVD, etc.) may be applied.
  • PVD Physical Vapor Deposition
  • connection portion 20B a through hole or a via hole for forming the connection portion 20B is provided.
  • a metallized paste 200 is embedded in the through hole or via hole.
  • the laminate is fired at 1250 ° C. or higher and 1700 ° C. or lower, more preferably 1300 ° C. or higher and 1450 ° C. or lower, and is fired simultaneously with the internal electrode pattern. Firing does not limit the firing atmosphere such as an air atmosphere or a reducing atmosphere.
  • the temperature and pressure are further set to perform HIP (Hot Isostatic Pressing) treatment.
  • the conditions for the HIP treatment are preferably a pressure gas (eg, Ar) of about 1000 atm or higher and a temperature of 1200 ° C. or higher and 1600 ° C. or lower depending on the firing temperature.
  • FIG. 12B illustrates, for example, the state of the stacked body after performing the HIP process.
  • the metallized paste 200 receives pressure from the surroundings. Therefore, in the connection part 20 formed after baking, each center part of an upper surface, a side surface, and a lower surface will be in the state curved inside. Further, the ceramic dielectric substrate 11 on the connecting portion 20 is provided with a portion 21a that is convex in the Z direction.
  • external electrodes are formed. That is, as shown in FIG. 12C, counterboring is performed with a drill or the like from the second main surface 11 b side of the ceramic dielectric substrate 11 to expose the internal connection portion 20. Along with the formation of the counterbore, a part of the lower side of the connecting portion 20 is removed. The electrode terminals are joined to the counterbored portion by brazing, soldering, conductive adhesive or the like.
  • the front and back surfaces of the ceramic dielectric substrate 11 are ground to a desired thickness.
  • FIG. 13 is a diagram illustrating an example of a connection unit.
  • FIG. 13 shows a cross-sectional view of the connection portion 20 after manufacturing.
  • the connection unit 20 shown in FIG. 13 is manufactured by the method using the HIP process.
  • the outer shape of the connecting portion 20 in a cross-sectional view is curved.
  • the connection portion 20 has a shape (substantially horn shape) in which the increasing rate of the outer diameter gradually increases toward the electrode 12.
  • the outer shape of the connection portion 20 in a cross-sectional view may not be a beautiful curved shape depending on the material, manufacturing conditions, and the like.
  • the increasing rate of the outer diameter of the connecting portion 20 may be increased stepwise in addition to the case where it continuously increases toward the electrode 12.
  • FIGS. 14A and 14B are diagrams illustrating the relationship between the aspect ratio of the connecting portion and the conduction characteristics.
  • FIG. 14A shows the definition of the dimensions of the connecting portion 20. That is, the outer diameter of the contact surface of the connecting portion 20 with the electrode 12 is d1.
  • the height t of the connecting portion 20 is the height when a line is drawn from both ends of the outer diameter d1 so as to form a convex curve in the inner diameter direction, and the distance between the two lines is the same distance as d1.
  • the smallest outer diameter d2 of the connecting portion 20 is the shortest distance between the two lines drawn from both ends of the outer diameter d1 so as to form a convex curve in the inner diameter direction.
  • FIG. 14B shows various aspect ratios (t / d2) of the connection part 20, the conduction state between the connection part 20 and the electrode 12, and the determination result of pass / fail.
  • the aspect ratio (t / d2) of the connecting portion 20 is 1.4, 1.5, 2, 5, 10, 15, 20, and 30. It can be seen that good conduction cannot be obtained when the aspect ratio (t / d2) is 1.4 or less and 30 or more.
  • connection portion 20 When the aspect ratio (t / d2) of the connection portion 20 is 1.4 or less, the deflection (deformation) toward the inside of the central portion of the contact surface of the connection portion 20 with the electrode 12 becomes large, and good contact with the electrode 12 is achieved. No continuity can be obtained. When the aspect ratio (t / d2) of the connection portion 20 is 30 or more, the conduction contact area at the outer diameter d2 portion becomes small, so that good conduction cannot be obtained.
  • the aspect ratio (t / d2) of the connecting portion 20 is 1.5 or more and 20 or less, preferably 2 or more and 15 or less, and more preferably 2 or more and 10 or less. If the connection part 20 has such an aspect ratio, even when an electrostatic chuck is formed by HIP processing, good connection between the connection part 20 and the electrode 12 can be obtained.
  • the reliable electrostatic chuck 110 can be provided by the reliable conduction between the electrode 12 inside the ceramic dielectric substrate 11 and the connection portion 20. become.
  • an electrostatic chuck capable of obtaining high reliability by reliable conduction between an internal electrode and a connection portion.
  • Insulating material 80 Adsorption holding voltage 110 ... Electrostatic chuck CR ... Circle L1 ... Extension line L2 ... Tangential line S1 ... Outline line S2 ... Outline line W ... Adsorbed object d, d1, d2, d3, da, db ... Outer diameter p0, p1, p2 ... Intersection r ... Radius t1, t2 ... Thickness ⁇ ... Angle

Abstract

 本発明による静電チャックは、被吸着物を載置する第1主面と、前記第1主面とは反対側の第2主面と、を有するセラミック誘電体基板と、前記セラミック誘電体基板の前記第1主面と前記第2主面とのあいだに介設された電極と、前記セラミック誘電体基板の前記電極よりも前記第2主面側において前記電極と接続され、前記電極と接する第1領域を有する接続部と、を備え、前記第1主面から前記第2主面に向かう方向を第1方向、前記第1方向と直交する方向を第2方向としたとき、前記第1領域は、前記電極及び前記接続部の前記第2方向にみた断面において、前記電極の前記第2主面側の外形に沿った延長線と、前記接続部の外形の接線と、のなす角度のうち前記接続部側の角度が前記第1方向に徐々に大きくなることを特徴とする静電チャックが提供される。

Description

静電チャック
 本発明の態様は、静電チャックに関し、セラミック誘電体基板の電極の外部への取り出し構造を確実に確保することができる静電チャックに関する。
 アルミナ等のセラミック基材のあいだに電極を挟み込み、焼成することで作製されるセラミック製の静電チャックは、内蔵する電極に静電吸着用電力を印加し、シリコンウェーハ等の基板を静電力によって吸着するものである。このような静電チャックにおいては、内部の電極に静電吸着用電力を供給するため、電極と導通する導体の一部がセラミック基材の静電吸着面とは反対側の面から露出するものや、電極に電力供給用のコネクタを接合しているものなどが実用化されている。
 特許文献1では、静電チャックにおいて内部の電極と導通する接続部(ビア)を形成した構造が開示されている。特許文献1に記載される静電チャックでは、セラミックのグリーンシート上に導電層と絶縁膜とを順次積層して積層体を形成し、積層体を焼成することによって導電層(電極)と導通するビアを構成している。
 しかしながら、接続部(ビア)の外径を小さくすると、セラミックを焼成する際に、焼成収縮の影響を受けやすくなり、セラミック基材の内部の電極と、接続部(ビア)と、の間で、金属材料の剥離が発生しやすくなる。また、金属材料の表面張力によりセラミックの焼成の際に接続部材の材料である金属がセラミック基材内で移動して空洞が形成されたり、セラミックと金属との間の熱膨張差により電極が破断したりすることもある。特に、接続部材の外径を微細にするとこのような問題は顕著になり、静電チャックの信頼性の低下を招くという問題が生じる。
特開昭62-264638号公報
 本発明は、かかる課題の認識に基づいてなされたものであり、内部の電極と接続部との確実な導通によって高い信頼性を得ることができる静電チャックを提供することを目的とする。
 本発明の一態様によれば、被吸着物を載置する第1主面と、前記第1主面とは反対側の第2主面と、を有するセラミック誘電体基板と、前記セラミック誘電体基板の前記第1主面と前記第2主面とのあいだに介設された電極と、前記セラミック誘電体基板の前記電極よりも前記第2主面側において前記電極と接続された接続部であって、前記電極と接する第1領域を有する接続部と、を備え、前記第1主面から前記第2主面に向かう方向を第1方向、前記第1方向と直交する方向を第2方向としたとき、前記第1領域は、前記電極及び前記接続部の前記第2方向にみた断面において、前記電極の前記第2主面側の外形に沿った延長線と、前記接続部の外形の接線と、のなす角度のうち前記接続部側の角度が前記第1方向に徐々に大きくなることを特徴とする静電チャックが提供される。
図1は、本実施形態に係る静電チャックの構成を例示する模式的断面図である。 図2は、図1に示すA部の模式的拡大断面図である。 図3は、参考例を説明する模式的断面図である。 図4は、角度θの定義の一例を説明する模式図である。 図5は、接続部の他の接続構成を例示する模式的断面図である。 図6は、他の接続構成を例示する模式的断面図である。 図7(a)及び図7(b)は、他の接続構成を例示する模式図である。 図8(a)及び図8(b)は、接続部と電極との接合状態及び導通状態の実験結果を示す図である。 図9(a)及び図9(b)は、他の接続構成を例示する模式的断面図である。 図10(a)及び図10(b)は、他の接続構成を例示する模式的断面図である。 図11(a)及び図11(b)は、他の接続構成を例示する模式的断面図である。 図12(a)~図12(c)は、静電チャックの製造方法を例示する模式的断面図である。 図13は、接続部の一例を示す図である。 図14(a)及び図14(b)は、接続部のアスペクト比と導通特性との関係を示す図である。
 第1の発明は、被吸着物を載置する第1主面と、前記第1主面とは反対側の第2主面と、を有するセラミック誘電体基板と、前記セラミック誘電体基板の前記第1主面と前記第2主面とのあいだに介設された電極と、前記セラミック誘電体基板の前記電極よりも前記第2主面側において前記電極と接続された接続部であって、前記電極と接する第1領域を有する接続部と、を備え、前記第1主面から前記第2主面に向かう方向を第1方向、前記第1方向と直交する方向を第2方向としたとき、前記第1領域は、前記電極及び前記接続部の前記第2方向にみた断面において、前記電極の前記第2主面側の外形に沿った延長線と、前記接続部の外形の接線と、のなす角度のうち前記接続部側の角度が前記第1方向に徐々に大きくなることを特徴とする静電チャックである。
 この静電チャックによれば、電極の第2主面側の外形に沿った延長線と、接続部の外形の接線と、のなす角度のうち接続部側の角度が、第1主面から第2主面に向かう第1方向に徐々に大きくなるため、接続部の径が第1方向に一定の場合に比べて、電極と接続部との接触面積を広くして、確実な導通を確保しつつ、接続部とセラミック誘電体基板との密着性を向上させることができる。また、第2方向にみた断面において接続部の外形が曲線状になるため、電圧印加時に放電の起点になりやすい角部の発生が抑制される。
 また、第2の発明は、第1の発明において、前記第1方向と直交する第2方向にみた前記電極及び前記接続部の断面において、前記電極の前記第2主面側の外形に沿った延長線と、前記第1領域における前記接続部の外形の接線と、のなす角度のうち前記接続部側の角度が鋭角になることを特徴とする静電チャックである。
 この静電チャックによれば、電極と接続部との接触性を向上させることができる。これにより、電極と接続部との剥離を抑制することができる。
 また、第3の発明は、第2の発明において、セラミック誘電体基板は、前記電極と接続される側であって前記第1方向にみて前記接続部と重なる位置に、前記第1方向に凸形状となる部分を有することを特徴とする静電チャックである。
 この静電チャックによれば、セラミック誘電体基板における電極と接続される側に凸形状となる部分が設けられているため、この部分の凸形状に倣って接続部及び電極の金属材料が移動しやすくなり、電極と接続部との接続信頼性が向上する。また、接続部の上のセラミック誘電体基板の厚さを厚くできるため、セラミック誘電体基板の表面を研磨する際に接続部の上でのセラミック誘電体基板の撓みが抑制される。これにより、研磨による平坦性が向上し、接続部上の異常突起の発生が抑制される。
 また、第4の発明は、第2の発明において、前記接続部は、前記第1領域と、前記第2主面と、のあいだに設けられた第2領域であって、前記第1方向に徐々に径が大きくなる第2領域を有することを特徴とする静電チャックである。
 この静電チャックによれば、接続部に、第1主面から第2主面に向かう第1方向に徐々に径が大きくなる第2領域が設けられていることで、接続部の、電極とは反対側に接続されるパッド電極等の導電性部材との接続性が向上する。
 また、第5の発明は、第1~第4のいずれか1つの発明において、前記セラミック誘電体基板は、前記第2主面から前記接続部に達する凹部を有し、前記凹部の底面に露出する前記接続部と導通する導電性部材をさらに備えたことを特徴とする静電チャックである。
 この静電チャックによれば、接続部とパッド電極等の導電性部材との接続性が向上し、外部の電極端子と確実な電気的接続を行うことができるようになる。
 また、第6の発明は、第5の発明において、前記底面は曲面を有することを特徴とする静電チャックである。
 この静電チャックによれば、接続部とパッド電極等の導電性部材との接続性が向上し、外部の電極端子(プローブ等)と確実な電気的接続を行うことができるようになる。
 また、第7の発明は、第1の発明において、前記接続部の材料には、前記電極の材料に含まれる材料と同種の金属が含まれることを特徴とする静電チャックである。
 この静電チャックによれば、セラミック誘電体基板を焼成する際に電極材料の拡散性を向上させて、電極から接続部まで含めた一体焼結を行うことができるようになる。
 また、第8の発明は、第7の発明において、前記接続部の材料には、前記セラミック誘電体基板に含まれる材料と同種の材料が含まれることを特徴とする静電チャックである。
 この静電チャックによれば、セラミック誘電体基板を焼成する際に接続部とセラミック誘電体基板との密着性を向上させて、電極から接続部まで含めた一体焼結を行うことができるようになる。
 また、第9の発明は、第5の発明において、前記第1方向と反対方向にみた前記底面の面積は、前記第1方向と反対方向にみた前記底面に露出する前記接続部の面積よりも広いことを特徴とする静電チャックである。
 この静電チャックによれば、底面に露出する接続部の面積よりも凹部の底面の面積のほうが広いため、外部の電極端子(プローブ等)との電気的な導通を確保することが容易である。これにより、接続部には外部の電極端子を直接接触させる必要がなく、接続部の損傷を抑制することができる。
 また、第10の発明は、第5の発明において、複数の前記接続部を有し、前記凹部の1つに対して前記複数の接続部が設けられたことを特徴とする静電チャックである。
 この静電チャックによれば、電極と接続部との電気的な導通を、より確実に行うことができるようになる。
 以下、本発明の実施の形態について図面を参照しつつ説明する。なお、各図面中、同様の構成要素には同一の符号を付して詳細な説明は適宜省略する。
 図1は、本実施形態に係る静電チャックの構成を例示する模式的断面図である。
 図2は、図1に示すA部の模式的拡大断面図である。
 図1に表したように、本実施形態に係る静電チャック110は、セラミック誘電体基板11と、電極12と、接続部20と、を備える。
 セラミック誘電体基板11は、例えば焼結セラミックによる平板状の基材であり、半導体基板等の被吸着物Wを載置する第1主面11aと、この第1主面11aとは反対側の第2主面11bと、を有する。電極12は、セラミック誘電体基板11の第1主面11aと、第2主面11bと、のあいだに介設されている。すなわち、電極12は、セラミック誘電体基板11の中に挿入されるように形成されている。静電チャック110は、この電極12に吸着保持用電圧80を印加することによって、電極12の第1主面11a側に電荷を発生させ、静電力によって被吸着物Wを吸着保持する。
 ここで、本実施形態の説明においては、第1主面11aから第2主面11bに向かう方向(第1方向)をZ方向、Z方向と直交する方向の1つ(第2方向)をY方向、Z方向及びY方向に直交する方向(第3方向)をX方向ということにする。
 電極12は、セラミック誘電体基板11の第1主面11a及び第2主面11bに沿って薄膜状に設けられている。電極12は、被吸着物Wを吸着保持するための吸着電極である。電極12は、単極型でも双極型でもよい。図1に表した電極12は双極型であり、同一面上に2極の電極12が設けられている。電極12はセラミック誘電体11に内蔵されている場合だけではなく、誘電体が接着剤やロウ付けなどでベースプレートと固定されたものでもよい。
 電極12には、セラミック誘電体基板11の第2主面11b側に延びる接続部20が設けられている。接続部20は、電極12と導通するビア(中実型)やビアホール(中空型)である。
 図2に表したように、接続部20は、電極12と接続される第1領域21を有する。第1領域21のZ方向にみた形状(例えば、略円形)の外径dは、Z方向に徐々に小さくなる。第1領域21は、接続部20の少なくとも一部に設けられている。図2に表した例では、接続部20の全体が第1領域21である。
 このように、接続部20に設けられた第1領域21の外径dが、Z方向に徐々に小さくなるため、接続部20の外径dがZ方向に一定の場合に比べて、電極12と接続部20との接触面積を広くすることができる。これにより、電極12と接続部20との確実な導通を確保しつつ、接続部20とセラミック誘電体基板11との密着性を向上させることができる。
 ここで、静電チャック110の具体的な構成例について説明する。
 図1に表したように、静電チャック110は、ベースプレート50の上に取り付けられている。ベースプレート50は、静電チャック110の取り付け基準になる。静電チャック110をベースプレート50に取り付けるには、シリコーン等の耐熱性樹脂、インジウム接合及びろう付など、使用温度帯やコスト等の観点から適宜選択される。
 ベースプレート50は、例えば、アルミニウム製の上部50aと下部50bとに分けられており、上部50aと下部50bとのあいだに連通路55が設けられている。連通路55は、一端側が入力路51に接続され、他端側が出力路52に接続される。
 ベースプレート50は、静電チャック110の温度調整を行う役目も果たす。例えば、静電チャック110を冷却する場合には、入力路51から冷却媒体を流入し、連通路55を通過させ、出力路52から流出させる。これにより、冷却媒体によってベースプレート50の熱を吸収し、その上に取り付けられた静電チャック110を冷却することができる。一方、静電チャック110を保温する場合には、連通路55内に保温媒体を入れることも可能である。または、静電チャック110やベースプレート50に発熱体を内蔵させることも可能である。このように、ベースプレート50を介して静電チャック110の温度が調整されると、静電チャック110で吸着保持される被吸着物Wの温度を調整することができる。
 また、セラミック誘電体基板11の第1主面11a側には、必要に応じてドット13が設けられており、ドット13の間に溝14が設けられている。この溝14は連通していて、静電チャック110に搭載された被吸着物Wの裏面と溝14とのあいだに空間が形成される。溝14には、ベースプレート50及びセラミック誘電体基板11を貫通する導入路53が接続されている。被吸着物Wを吸着保持した状態で導入路53からヘリウム(He)等の伝達ガスを導入すると、被吸着物Wと溝14との間に設けられた空間に伝達ガスが流れ、被吸着物Wを伝達ガスによって直接冷却することができるようになる。
 ここで、ドット13の高さ(溝14の深さ)、ドット13及び溝14の面積比率、形状等を適宜選択することで、被吸着物Wの温度や被吸着物Wに付着するパーティクルを好ましい状態にコントロールすることができる。
 図2に表したように、セラミック誘電体基板11の第2主面11bには導電性部材30が設けられていてもよい。導電性部材30は、接続部20と導通するパッドである。導電性部材30の位置と対応するベースプレート50の上部50aにはコンタクト電極61が設けられている。ベースプレート50の上部50aには穴57が設けられ、この穴57に、絶縁材62で保持されたコンタクト電極61が取り付けられている。したがって、静電チャック110をベースプレート50の上部50aに取り付けると、コンタクト電極61が導電性部材30と接触し、これによりコンタクト電極61と電極12とが、接続部20を介して電気的に導通することになり、コンタクト電極61の位置がずれた場合でも導通可能な領域が増え、結果として安定した導通を得ることができる。
 コンタクト電極61には、例えば可動式プローブが用いられている。これにより、コンタクト電極61と導電性部材30との確実な接触と、コンタクト電極61が接触することによる導電性部材30へのダメージを最小限に抑制している。なお、コンタクト電極61は、上記に限定されず、導電性部材30と単に接触するだけの構成や、導電性部材30と嵌合または螺合によって接続されるものなど、どのような形態であってもよい。
 また、導電性部材30が設けられていない場合には、コンタクト電極61が接続部20の第2主面11b側の露出面と直接接触することになる。
 次に、接続部20について詳細に説明する。図2に表した接続部20は、電極12よりも第2主面11b側のセラミック誘電体基板11をZ方向に貫通して設けられる。接続部20は、Z方向に延びる円錐台に近い形状を有する。
 このような形状によって、接続部20と電極12との接触面積を広くして、接続部20と電極12との界面での確実な接合及び電気的な導通を確保することができる。
 図3は、参考例を説明する模式的断面図である。
 図3に表した接続部20’は、Z方向に一定の外径を有する。例えば、接続部20’のZ方向における平均の外径が、図2に表した接続部20のZ方向における平均の外径と同じであった場合、接続部20と電極12とが接触する面の外径daは、接続部20’と電極12とが接触する面の外径dbよりも大きくなる。つまり、接続部20と電極12との接触面積は、接続部20’と電極12との接触面積よりも広くなる。これにより、接続部20の電極12との接続性は、接続部20’と電極12との接続性よりも高くなる。
 また、接続部20では、Z方向と直交する例えばY方向にみた電極12及び接続部20の断面において、電極12の第2主面側の外形に沿った延長線L1と、第1領域21における接続部20の外形の接線L2と、のなす角度のうち接続部20側の角度θが鋭角になる。角度θは、0°を超え90°未満である。
 角度θが鋭角になると、電極12の毛細管現象や表面張力が接続部20の電極材料と電極12との接触を補助するため、電極12と接続部20との接触性を飛躍的に向上させることができる。これにより、セラミック誘電体基板11を焼成する際、電極12と接続部20との剥離を抑制することができる。
 ここで、接続部20の形状が円錐台であれば、第1領域21の断面視において接続部20の外形のどの位置であっても接線L2の傾きは同じになる。一方、第1領域21の断面視において接続部20の外形が曲線状になっている場合、第1領域21の断面視において接続部20の外形の位置によって接線L2の傾きが変わる。
 図4は、角度θの定義の一例を説明する模式図である。
 図4では、第1領域21の断面視において接続部20の外形が曲線状になっている場合の角度θの定義の一例を示している。
 ここで、断面視とは、接続部20の中心を通るXZ平面での断面をY方向にみたときの断面のことをいう。角度θの定義の一例は次のようになる。
 断面視において、電極12の第2主面11b側の外形線S1と、接続部20の外形線S2との交点を交点p0とする。
 接続部20の電極12との接触面における外径(X方向の長さ)を外径d1とする。
 交点p0を中心にした半径rの円CRを描き、円CRと延長線L1との交点を交点p1、円CRと外形線S2との交点を交点p2とする。
 交点p1と交点p0とを結ぶ線と、交点p2と交点p0とを結ぶ線と、のなす角度(狭い方の角度)を角度θとする。
 ここで、円CRの半径rは、例えば外径d1の1/8である。
 角度θは、接続部20の断面観察によって測定することができる。例えば、接続部20の中心を通るXZ平面での断面を研磨し、研磨面を上記の定義に従って測定する。断面を研磨するには、電極12や接続部20に与える影響の少ない研磨(例えば、イオンビーム等を用いた研磨(クロスセクションポリッシャ(日本電子株式会社:登録商標))が望ましい。このような研磨によって、電極12の延性変形を除いて測定すれば、角度θを的確に測定することができる。
 このように、第1領域21の断面視において接続部20の外形が曲線状になっていると、直線状(テーパ状)になっている場合に比べて接続部20の外周の距離が長くなり、電圧印加時の電流密度を低下させることができる。
 また、第1領域21の断面視において接続部20の外形が曲線状になっていると、接続部20の外形に角部が発生することを抑制できる。例えば、角度θがZ方向に徐々に大きくなる(接続部20の外径の増加率が電極12に向けて徐々に大きくなる)形状(略ホーン形状)になっていると、接続部20の外形に角部(例えば、尖った部分)が形成されにくい。接続部20に角部があると、この角部が電圧印加時に放電の起点になりやすい。放電の起点になると、接続部20及び電極12において導通不良を招く恐れがある。接続部20が電極12に滑らかに接続されていることで角部の発生を抑制し、導通の信頼性が向上する。
 図5は、接続部の他の接続構成を例示する模式的断面図である。
 図5は、図1に示すA部の模式的拡大断面図を示している。図5に表した接続部20Aは、第1領域21と、第2領域22と、を有する。第1領域21のZ方向にみた形状の外径は、Z方向に徐々に小さくなる。例えば、第1領域21の外径は、電極12側で最も大きく(外径d1)、電極12からZ方向に向かって徐々に小さくなる。最も小さな外径は外径d2である。
 第2領域22は、第1領域21と、第2主面11bと、のあいだに設けられる。第2領域22のZ方向にみた形状の外径は、Z方向に徐々に大きくなる。例えば、第2領域22の外径は、第1領域21側で最も小さく(外径d2)、Z方向に向かって徐々に大きくなる。最も大きな外径は第2主面11b側の外径d3である。第1領域21と第2領域22とによって、接続部20Aは電極12側及び第2主面11b側で広く、中央部で狭い湾曲した形状になる。
 セラミック誘電体基板11の第2主面11bには、第2領域22と接続された導電性部材30が設けられている。導電性部材30には、ベースプレート50の上部50aに設けられたコンタクト電極61が接触する。
 このような接続部20Aでは、第1領域21によって電極12との接触面積を広くすることができ、第2領域21によって導電性部材30との接触面積も広くすることができる。
 例えば、図3に表した接続部20’と比較すると、接続部20’のZ方向における平均の外径が、図5に表した接続部20AのZ方向における平均の外径と同じであった場合、接続部20Aと電極12との接触面積は、接続部20’と電極12との接触面積よりも広くなる。また、接続部20Aと導電性部材30との接触面積は、接続部20’と導電性部材30との接触面積よりも広くなる。
 このような接続部20Aによれば、接続部20Aの電極12との接続性は、接続部20’と電極12との接続性よりも高くなる。また、接続部20Aの導電性部材30との接触性は、接続部20’と導電性部材30との接続性よりも高くなる。
 したがって、接続部20Aでは、電極12及び導電性部材30の両方との接続性が向上する。
 なお、図5に表した接続部20Aでは、第1領域21と第2領域22とが隣接しているが、第1領域21と第2領域22とのあいだに他の領域(例えば、外径がZ方向に同じ領域)が介在していてもよい。
 図6は、他の接続構成を例示する模式的断面図である。
 図6は、図1に示すA部の模式的拡大断面図を示している。図6に表した接続部20Bように、セラミック誘電体基板11は、Z方向に凸形状となる部分21aを有する。部分21aは、セラミック誘電体基板11の電極12との接触面であってZ方向にみて接続部20Bと重なる位置に、Z方向に凸形状になっている。部分21aは、例えば、Z方向にみた接続部20Bの中央領域に対応する位置に、Z方向に凸形状となるよう設けられている。
 部分21aにおいて、セラミック誘電体基板11のZ方向の厚さt1は、部分21a以外の部分の厚さt2よりも厚い。部分21aにおけるセラミック誘電体基板11の厚さt1は、中央部分(接続部20Bの中心に対応した部分)で最も厚く、中央部分から周辺に向かうに従い徐々に薄くなる。
 このような接続部20Bでは、凸形状の部分21aに倣って接続部20B及び電極12の金属材料が移動しやすくなり、電極12と接続部20Bとの接続信頼性が向上する。すなわち、セラミック誘電体基板11を焼成する際、接続部20B及び電極12の金属材料が、部分21aの凸形状に倣って移動し、電極12と接続部20Bとの接合部分での剥離が抑制される。
 また、接続部20Bの上のセラミック誘電体基板11の厚さt1を、接続部20Bのない部分でのセラミック誘電体基板11の厚さt2よりも厚くできる。これにより、セラミック誘電体基板11の表面を研磨する際に接続部20Bの上でのセラミック誘電体基板11の撓みが抑制される。
 すなわち、セラミック誘電体基板11の表面を研磨する際、接続部20Bが設けられた部分でセラミック誘電体基板11の撓みが発生しやすい。図6に表したように、セラミック誘電体基板11に部分21aが設けられていると、この部分21aの厚さt1が、厚さt2よりも厚くなり、セラミック誘電体基板11の剛性が高まる。したがって、セラミック誘電体基板11の表面を研磨する際に圧力が加わっても、接続部20Bの上で撓み難くなり、セラミック誘電体基板11の平坦性が高まる。
 ここで、セラミック誘電体基板11の表面を研磨する際、接続部20Bの上でセラミック誘電体基板11に撓みが発生すると、接続部20B上での研磨レートが低下して研磨後にセラミック誘電体基板11の表面に膨らみ(突出部)が発生する可能性がある。このような膨らみがあると、ウェーハ等の被吸着物Wと膨らみとが接触し、コンタクト電極61の温度異常を招く可能性がある。接続部20Bの上に凸形状の部分21aが設けられていることで、研磨時の平坦性が高まり、コンタクト電極61部分の温度異常の発生を防止することができる。
 なお、図6に表した接続部20Bでは第2領域22を有しているが、必ずしも設けられている必要はない。
 図7(a)~(b)は、他の接続構成を例示する模式図である。
 図7(a)は、図1に示すA部の模式的拡大断面図を示している。図7(b)は、接続部をZ方向と反対方向にみた模式的平面図を示している。
 図7(a)に表したように、セラミック誘電体基板11は、第2主面11bから接続部20Aに達する凹部15を有する。
 図7(b)に表したように、凹部15の底面15aにおけるZ方向と反対方向にみた外形の面積は、底面15aに露出する接続部20AのZ方向と反対方向にみた外形の面積よりも広い。
 このような凹部15が設けられていることにより、凹部15の底面15aには、底面15aから露出する接続部20Aと導通した導電性部材30を確実に設けることができる。例えば、導電性部材30を凹部15の底面15aの全面に設けるようにしてもよい。また、導電性部材30を凹部15内に埋め込むように形成してもよい。セラミック誘電体基板11に凹部15を形成した後、導電性部材30の材料(例えば、金属ペースト材)を凹部15内に埋め込むようにすれば、凹部15からはみ出すことなく、規定の位置に導電性部材30を形成することができる。
 また、底面15aに露出する接続部20Aの面積よりも凹部15の底面15aの面積のほうが広いため、外部のコンタクト電極61との電気的な導通を凹部15の導電性部材30を介して行うことができる。これにより、接続部20Aにはコンタクト電極61を直接接触させる必要がなく、接続部20Aの損傷を抑制することができる。
 なお、図7(a)及び(b)には接続部20Aを示したが、図2に表した接続部20、図6に表した接続部20Bであっても適用可能である。
 図8(a)~(b)は、接続部と電極との接合状態及び導通状態の実験結果を示す図である。
 図8(a)は、d1/d2に対する接続部20と電極12との剥離(剥がれ)及び導通状態を示している。図8(a)では、d1/d2として、1.0、1.1、1.3、1.8、2.3、2.8及び4.0のそれぞれについて、剥離(剥がれ)の有無、導通の有無を調べた。d1/d2が1.0、1.1、1.3、1.8、2.3及び2.8の場合、接続部20と電極12との剥離(剥がれ)は発生しなかった。d1/d2が4.0の場合、接続部20と電極12との剥離(剥がれ)が発生した。また、d1/d2が1.1、1.3、1.8、2.3及び2.8の場合、接続部20と電極12との導通は良好であった。d1/d2が1.0及び4.0の場合、接続部20と電極12との導通は不良であった。
 図8(b)は、外径d2に対する接続部20と電極12との剥離(剥がれ)及び導通状態を示している。図8(b)では、外径d2として、0.2ミリメートル(mm)、0.5mm、1mm、1.5mm、2mm、2.5mm、3mm及び3.5mmのそれぞれについて、剥離(剥がれ)の有無、導通の有無を調べた。前記いずれの外径d2でも、接続部20と電極12との剥離(剥がれ)は発生しなかった。
 また、外径d2が0.2mm、0.5mm、1mm、1.5mm、2mm、2.5mm及び3mmの場合、接続部20と電極12との導通は良好であった。一方、外径d2が3.5mmについて、接続部20と電極12との導通は不良であった。
 これらの実験結果より、d1/d2は1を超え4未満であり、好ましい外径d2は0.1mm以上3.5mm未満であることが分かった。
 接続部20の材料は、電極12の材料に含まれる材料と同種の材料を含んでいてもよい。電極12の材料には、パラジウム(Pd)や白金(Pt)等の貴金属が含まれる。接続部20の材料には、例えばPtが含まれる。接続部20の材料には、Ptのほかに、電極12の材料に含まれるPdが含まれていてもよい。
 これにより、セラミック誘電体基板11を焼成する際に電極12の材料の接続部20への拡散性を向上させて、電極12から接続部20まで含めた一体焼結を行うことができるようになる。
 また、接続部20の材料は、セラミック誘電体基板11に含まれる材料と同種の材料を含んでいてもよい。セラミック誘電体基板11の材料には、例えばアルミナが用いられる。アルミナに含まれる不純物は少ないほうが好ましく、アルミナ純度99.9%以上、より好ましくは99.99%以上である。
 接続部20の材料には、セラミック誘電体基板11に含まれる例えばアルミナが含まれる。接続部20に共材として添加されるアルミナの占める割合は、例えば50体積%以上70体積%以下である。なお、電極12の材料も、接続部20の材料と同じにしてもよい。
 静電チャック110は、例えばアルミナ粉末にバインダーなどを加えたグリーンシートを形成し、複数のグリーンシートを積層した積層体を形成し、この積層体を焼成することで形成される。
 グリーンシートには、電極12になるメタライズペーストが形成されたもの、及び接続部20になるメタライズペーストが形成されたものが含まれる。
 積層体は、例えばHIP処理を含む焼成工程を経て形成される。これにより、静電チャック110が完成する。なお、静電チャック110の製造方法はこれに限定されるものではない。
 この静電チャック110によれば、セラミック誘電体基板11を焼成する際に接続部20とセラミック誘電体基板11との密着性を向上させて、電極12から接続部20まで含めた一体焼結を行うことができるようになる。
 図9(a)~図11(b)は、他の接続構成を例示する模式的断面図である。
 図9(a)に表した接続部20Cは、中空構造になっている例である。セラミック誘電体基板11には、電極12よりも第2主面11b側に孔20hが設けられている。この孔20hの内壁に、接続部用材料膜25が形成されている。これにより、孔20hの中央部分は空洞として残った中空構造の接続部20Cが構成される。
 この接続部20Cについても、Z方向にみた形状の外径dがZ方向に向かって徐々に小さくなる第1領域21を有している。また、接続部20Cにおいても、角度θは鋭角になる。
 図9(b)に表した接続構成の例では、図9(a)に表した中空構造の接続部20Cの中空内に導通部材40が挿入された構造である。中空構造の接続部20Cを形成したのちに、中空内に導通部材40を挿入して、導通部材40と、接続部用材料膜25及び電極12と、の電気的な導通を得るようにしてもよい。
 図10(a)に表した接続構成の例では、セラミック誘電体基板11に、コンタクト部17が設けられている。コンタクト部17は、セラミック誘電体基板11の第2主面11bから接続部20Aに達する孔17h(凹部)と、孔17hの内壁に設けられた導電膜17aと、を含む。孔17hの先端(凹部の底面)は曲面を有する。例えば、孔17hの先端は、球面状になっている。球面状の先端からは接続部20が露出し、この露出部分で導電膜17aと接触している。
 孔17hは、セラミック誘電体基板11を焼成した後、第2主面11b側からドリル等によって設けられる。例えば、先端に球状のビットが設けられた回転式の切削ツールを用い、第2主面11bから接続部20に達する孔17hを形成する。これにより、先端が球面状になった孔17hが形成される。
 接続部20の外径がZ方向に沿って変化しているため、孔17hの先端から露出する接続部20の外径によって孔17hの深さを把握することができる。
 そして、孔17hの内壁には、導電膜17aが形成される。導電膜17aは、白金ペーストのほか、めっき、CVD(Chemical Vapor Deposition)、導電性粒子入りの有機系樹脂等でもよい。
 このコンタクト部17では、導電膜17aに外部のコンタクト電極61が接触して、外部と電極12との導通を得る。
 図10(b)に表した接続構成の例では、図10(a)に表したコンタクト部17に、導電性材料18が埋め込まれている。導電性材料18には、例えば導電性樹脂、ろう付け、はんだが用いられる。セラミック誘電体基板11の第2主面11bには、導電性材料18を介して導電性部材30が設けられている。この導電性部材30に外部のコンタクト電極61が接触して、外部と電極12との導通を得る。
 図11(a)に表した接続構成の例では、複数の接続部20と、導電性部材30と、を有する。1つの導電性部材30に対しては、複数の接続部20が接続されている。例えば、Z方向とは反対方向に第2主面11bをみたとき、導電性部材30の中心を囲むように複数の接続部20が配置されている。
 図11(b)に表した接続構成の例では、複数の接続部20と、セラミック誘電体基板11の第2主面11bから複数の接続部20に達する凹部15と、凹部15の底面15aに設けられた導電性部材30と、を有する。
 この接続構成においても、例えば、Z方向とは反対方向に第2主面11bをみたとき、導電性部材30の中心を囲むように複数の接続部20が配置されている。
 凹部15が設けられていることにより、底面15aに導電性部材30を確実に設けることができる。これによって、電極12と接続部20との電気的な導通を、より確実に行うことができるようになる。
 次に、静電チャック110の製造方法の一例を説明する。
 図12(a)~(c)は、静電チャックの製造方法を例示する模式的断面図である。
 図12(a)~(c)では、主として接続部20の形成手順が例示されている。
(アルミナグリーンシートの作製)
 先ず、アルミナグリーンシートを作製する。すなわち、アルミナ粉末にバインダー及び溶媒等を加え、ボールミルで混合粉砕後、脱泡を経て、グリーンシートを成形する。アルミナ粉末は不純物が少ないものが好ましく、純度99.9重量%以上、より好ましくは99.99重量%以上のものが用いられる。バインダーは、ポリビニルアルコール、ポリビニルブチラール、ポリビニルクロライドなどのビニル系樹脂、メチルセルロース、エチルセルロースハイドロキシエチルセルロースなどのセルロース系樹脂及びポリアクリルエステル、ポリメチルメタクリレートなどのアクリル系樹脂で構成されたグループから選択された、少なくとも1種類の樹脂を選択することができる。他には、水溶性バインダー樹脂、あるいはその他のセラミックシート製品のプロセスに使用可能な常用バインダー、を使用してもよい。次に溶媒は、メチルエチルケトン、エチルアルコール、イソプロピルアルコール、トルエン、ジエチルエーテル、三塩化エチレン、メタノールなどの単一溶媒あるいは複数の混合溶媒を選択することができる。しかし、バインダーを溶解させることのできる溶媒であればよく、溶媒を限定するものではない。
(メタライズペーストの作製、電極形成)
 次に、図12(a)に表したように、アルミナグリーンシートに電極12を形成するためのメタライズペースト210を作製する。メタライズペースト210は、次のようにして作製される。アルミナ粉末と、Pd粉末とを混ぜたものに、バインダー等を加え、3本ロールにより混合してメタライズペースト210とする。
 次に、アルミナグリーンシート上に、前記メタライズペースト210を用いて、スクリーン印刷法により、電極12になる内部電極パターンを印刷する。電極の形成は、スクリーン印刷法に限らず、蒸着法(PVD(Physical Vapor Deposition)、CVDなど)などを適用してもよい。
 また、例えば接続部20Bを形成するためのスルーホールまたはビアホールを設けておく。スルーホールまたはビアホール内にはメタライズペースト200を埋め込んでおく。
(アルミナグリーンシートの積層)
 次に、アルミナグリーンシートを互いに位置合わせしつつ、積層、熱圧着し、全体の厚さを所定の厚さにした積層体を作製する。
(積層したアルミナグリーンシートの焼成、HIP処理)
 次に、積層体を1250℃以上、1700℃以下、より好ましくは1300℃以上、1450℃以下で焼成し、内部電極パターンと同時に焼成する。焼成は、大気雰囲気、還元雰囲気など焼成雰囲気を限定しない。焼成後、さらに温度と圧力を設定しHIP(Hot Isostatic Pressing)処理を行う。HIP処理の条件は加圧用ガス(例えば、Ar)を約1000気圧以上とし、温度は焼成温度に応じて1200℃以上、1600℃以下にすることが好ましい。
 図12(b)は、例えばHIP処理を行った後の積層体の状態を例示している。HIP処理を行うと、メタライズペースト200は周囲から圧力を受ける。したがって、焼成後に形成される接続部20においては、上面、側面及び下面のそれぞれの中央部が内側に湾曲した状態になる。また、接続部20の上のセラミック誘電体基板11には、Z方向に凸形状になる部分21aが設けられる。
(外部端子の形成)
 次に、外部電極を形成する。すなわち、図12(c)に表したように、セラミック誘電体基板11の第2主面11b側からドリル等でザグリ加工を行い、内部の接続部20を露出させる。このザグリの形成とともに、接続部20の下側の一部が除去される。このザグリ加工部分にロー付け、半田付け、導電性接着剤等により電極端子を接合する。
 (セラミック誘電体基板の加工)
 セラミック誘電体基板11の表裏両面を研削加工して、所望の厚さにする。
(接合)
 電極12が形成されたセラミック誘電体基板11と、ベースプレート50と、を接合する。
(表面パターン作製)
 ベースプレート50に接合したセラミック誘電体基板11が所定の厚さになるように研削加工した後、サンドブラスト法により表面に所定の大きさ、高さのドット13を形成する。
 以上のようにして、静電チャック110を得ることができる。
 図13は、接続部の一例を示す図である。
 図13には接続部20の製造後の断面図が表されている。図13に表した接続部20は、上記HIP処理を用いた方法によって製造されたものである。
 断面視における接続部20の外形は曲線状になっている。この接続部20では、外径の増加率が電極12に向けて徐々に大きくなる形状(略ホーン形状)になっている。なお、実際には、材料や製造条件などによって、接続部20の断面視における外形が綺麗な曲線状にならない場合もある。また、接続部20の外径の増加率は、電極12に向けて連続的に大きくなる場合のほか、段階的に大きくなってもよい。
 次に、接続部20のアスペクト比について説明する。
 図14(a)及び(b)は、接続部のアスペクト比と導通特性との関係を示す図である。
 図14(a)には、接続部20の寸法の定義が表されている。すなわち、接続部20の電極12との接触面における外径をd1とする。接続部20の高さtは、外径d1の両端部から内径方向に凸曲線となるように線を引き、その2線間がd1と同じ距離になったときの高さである。接続部20の最も小さな外径d2は、外径d1の両端部から内径方向に凸曲線となるように線を引き、その2線間の最短距離である。
 図14(b)には、接続部20の各種のアスペクト比(t/d2)と、接続部20と電極12との導通状態及び合否の判定結果が表されている。
 接続部20のアスペクト比(t/d2)は、1.4、1.5、2、5、10、15、20及び30である。アスペクト比(t/d2)が1.4以下及び30以上では、良好な導通を得られないことが分かる。
 接続部20のアスペクト比(t/d2)が1.4以下になると、接続部20の電極12との接触面における中央部分の内側への撓み(変形)が大きくなり、電極12との良好な導通が得られなくなる。接続部20のアスペクト比(t/d2)が30以上になると、外径d2部分での導通接触面積が小さくなるため、良好な導通が得られなくなる。
 以上の結果から、接続部20のアスペクト比(t/d2)は、1.5以上20以下であること、好ましくは2以上15以下、さらに好ましくは2以上10以下である。接続部20がこのようなアスペクト比になっていれば、HIP処理によって静電チャックを形成した場合でも、接続部20と電極12との良好な導通が得られる。
 以上説明したように、本実施形態によれば、セラミック誘電体基板11の内部の電極12と、接続部20との確実な導通によって、信頼性の高い静電チャック110を提供することができるようになる。
 以上、本発明の実施の形態について説明した。しかし、本発明はこれらの記述に限定されるものではない。前述の実施の形態に関して、当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。また、前述した各実施の形態が備える各要素は、技術的に可能な限りにおいて組み合わせることができ、これらを組み合わせたものも本発明の特徴を含む限り本発明の範囲に包含される。
 本発明の態様によれば、内部の電極と接続部との確実な導通によって高い信頼性を得ることができる静電チャックが提供される。
 11…セラミック誘電体基板
 11a…第1主面
 11b…第2主面
 12…電極
 13…ドット
 14…溝
 15…凹部
 15a…底面
 17…コンタクト部
 17a…導電膜
 17h…孔
 18…導電性材料
 20,20A,20B,20C…接続部
 20h…孔
 21…第1領域
 21a…部分
 22…第2領域
 25…接続部用材料膜
 30…導電性部材
 40…導通部材
 50…ベースプレート
 50a…上部
 50b…下部
 51…入力路
 52…出力路
 53…導入路
 55…連通路
 57…穴
 61…コンタクト電極
 62…絶縁材
 80…吸着保持用電圧
 110…静電チャック
 CR…円
 L1…延長線
 L2…接線
 S1…外形線
 S2…外形線
 W…被吸着物
 d,d1,d2,d3,da,db…外径
 p0,p1,p2…交点
 r…半径
 t1,t2…厚さ
 θ…角度

Claims (10)

  1.  被吸着物を載置する第1主面と、前記第1主面とは反対側の第2主面と、を有するセラミック誘電体基板と、
     前記セラミック誘電体基板の前記第1主面と前記第2主面とのあいだに介設された電極と、
     前記セラミック誘電体基板の前記電極よりも前記第2主面側において前記電極と接続された接続部であって、前記電極と接する第1領域を有する接続部と、
     を備え、
     前記第1主面から前記第2主面に向かう方向を第1方向、前記第1方向と直交する方向を第2方向としたとき、前記第1領域は、前記電極及び前記接続部の前記第2方向にみた断面において、前記電極の前記第2主面側の外形に沿った延長線と、前記接続部の外形の接線と、のなす角度のうち前記接続部側の角度が前記第1方向に徐々に大きくなることを特徴とする静電チャック。
  2.  前記角度は、鋭角であることを特徴とする請求項1記載の静電チャック。
  3.  前記セラミック誘電体基板は、前記電極と接続される側であって前記第1方向にみて前記接続部と重なる位置に、前記第1方向に凸形状となる部分を有することを特徴とする請求項2記載の静電チャック。
  4.  前記接続部は、前記第1領域と、前記第2主面と、のあいだに設けられた第2領域であって、前記第1方向に徐々に径が大きくなる第2領域を有することを特徴とする請求項2記載の静電チャック。
  5.  前記セラミック誘電体基板は、前記第2主面から前記接続部に達する凹部を有し、
     前記凹部の底面に露出する前記接続部と導通する導電性部材をさらに備えたことを特徴とする請求項1記載の静電チャック。
  6.  前記底面は、曲面を有することを特徴とする請求項5記載の静電チャック。
  7.  前記接続部の材料には、前記電極の材料に含まれる材料と同種の金属が含まれることを特徴とする請求項1記載の静電チャック。
  8.  前記接続部の材料には、前記セラミック誘電体基板に含まれる材料と同種の材料が含まれることを特徴とする請求項7記載の静電チャック。
  9.  前記第1方向と反対方向にみた前記底面の面積は、前記第1方向と反対方向にみた前記底面に露出する前記接続部の面積よりも大きいことを特徴とする請求項5記載の静電チャック。
  10.  複数の前記接続部を有し、
     前記凹部の1つに対して前記複数の接続部が設けられたことを特徴とする請求項5記載の静電チャック。
PCT/JP2012/074867 2011-09-30 2012-09-27 静電チャック WO2013047648A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280046774.7A CN103907181B (zh) 2011-09-30 2012-09-27 静电吸盘
US14/345,279 US9042078B2 (en) 2011-09-30 2012-09-27 Electrostatic chuck
KR1020147003976A KR101416152B1 (ko) 2011-09-30 2012-09-27 정전 척

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011217488 2011-09-30
JP2011-217488 2011-09-30
JP2012-208984 2012-09-21
JP2012208984A JP5348439B2 (ja) 2011-09-30 2012-09-21 静電チャック

Publications (1)

Publication Number Publication Date
WO2013047648A1 true WO2013047648A1 (ja) 2013-04-04

Family

ID=47995676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074867 WO2013047648A1 (ja) 2011-09-30 2012-09-27 静電チャック

Country Status (6)

Country Link
US (1) US9042078B2 (ja)
JP (1) JP5348439B2 (ja)
KR (1) KR101416152B1 (ja)
CN (1) CN103907181B (ja)
TW (1) TWI424519B (ja)
WO (1) WO2013047648A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104051495A (zh) * 2014-05-28 2014-09-17 京东方科技集团股份有限公司 封装装置和封装设备
JP2021504970A (ja) * 2017-11-21 2021-02-15 ワトロー エレクトリック マニュファクチュアリング カンパニー セラミックペデスタルで使用するための二重目的のビア

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6483533B2 (ja) * 2015-06-03 2019-03-13 京セラ株式会社 試料保持具およびこれを用いたプラズマエッチング装置
JP6497248B2 (ja) * 2015-07-13 2019-04-10 住友電気工業株式会社 ウェハ保持体
CN107710399B (zh) * 2016-05-09 2021-04-16 株式会社爱发科 静电吸盘及等离子处理装置
JP6693832B2 (ja) * 2016-07-29 2020-05-13 日本特殊陶業株式会社 セラミックス部材
US10410900B2 (en) * 2016-08-05 2019-09-10 Applied Materials, Inc. Precision screen printing with sub-micron uniformity of metallization materials on green sheet ceramic
CN107856041B (zh) * 2016-09-22 2021-04-20 欣兴电子股份有限公司 吸盘装置以及元件转移方法
JP7012454B2 (ja) * 2017-04-27 2022-01-28 株式会社岡本工作機械製作所 静電吸着チャックの製造方法並びに半導体装置の製造方法
KR102441256B1 (ko) * 2018-01-29 2022-09-07 교세라 가부시키가이샤 시료 유지구
US10768534B2 (en) 2018-08-14 2020-09-08 Taiwan Semiconductor Manufacturing Co., Ltd. Photolithography apparatus and method and method for handling wafer
WO2020110850A1 (ja) * 2018-11-30 2020-06-04 京セラ株式会社 セラミック構造体及びセラミック構造体の製造方法
WO2020163060A1 (en) * 2019-02-05 2020-08-13 Applied Materials, Inc. Substrate support for chucking of mask for deposition processes
KR102659040B1 (ko) * 2019-03-28 2024-04-19 교세라 가부시키가이샤 기체 구조체 및 웨이퍼 적재 장치
JP2021145114A (ja) * 2020-03-13 2021-09-24 住友大阪セメント株式会社 サセプタ、静電チャック装置
WO2023145839A1 (ja) * 2022-01-28 2023-08-03 京セラ株式会社 吸着基板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09162272A (ja) * 1995-12-04 1997-06-20 Sony Corp 静電チャック、薄板保持装置及び半導体製造装置並びに搬送方法
JP2002329567A (ja) * 2001-05-02 2002-11-15 Ibiden Co Ltd セラミック基板および接合体の製造方法
JP2003060018A (ja) * 2001-08-13 2003-02-28 Nissin Electric Co Ltd 基板吸着方法およびその装置
JP2003151869A (ja) * 1999-06-09 2003-05-23 Ibiden Co Ltd 半導体製造・検査装置用セラミック基板
JP2006332204A (ja) * 2005-05-24 2006-12-07 Toto Ltd 静電チャック
JP2011091361A (ja) * 2009-06-30 2011-05-06 Intevac Inc 静電チャック

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0697677B2 (ja) * 1987-04-21 1994-11-30 東陶機器株式会社 静電チャック基盤の製造方法
JP3813654B2 (ja) * 1995-02-09 2006-08-23 日本碍子株式会社 セラミックスの接合構造およびその製造方法
US6303879B1 (en) * 1997-04-01 2001-10-16 Applied Materials, Inc. Laminated ceramic with multilayer electrodes and method of fabrication
US6151203A (en) * 1998-12-14 2000-11-21 Applied Materials, Inc. Connectors for an electrostatic chuck and combination thereof
US6490144B1 (en) * 1999-11-29 2002-12-03 Applied Materials, Inc. Support for supporting a substrate in a process chamber
JP4493251B2 (ja) * 2001-12-04 2010-06-30 Toto株式会社 静電チャックモジュールおよび基板処理装置
JP4272373B2 (ja) 2001-12-11 2009-06-03 太平洋セメント株式会社 静電チャック
WO2008035395A1 (fr) * 2006-09-19 2008-03-27 Creative Technology Corporation Structure d'alimentation d'un mandrin électrostatique, procédé de fabrication et procédé de regénération de la structure d'alimentation du mandrin électrostatique
US7633738B2 (en) * 2006-11-01 2009-12-15 Ngk Insulators, Ltd. Electrostatic chuck and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09162272A (ja) * 1995-12-04 1997-06-20 Sony Corp 静電チャック、薄板保持装置及び半導体製造装置並びに搬送方法
JP2003151869A (ja) * 1999-06-09 2003-05-23 Ibiden Co Ltd 半導体製造・検査装置用セラミック基板
JP2002329567A (ja) * 2001-05-02 2002-11-15 Ibiden Co Ltd セラミック基板および接合体の製造方法
JP2003060018A (ja) * 2001-08-13 2003-02-28 Nissin Electric Co Ltd 基板吸着方法およびその装置
JP2006332204A (ja) * 2005-05-24 2006-12-07 Toto Ltd 静電チャック
JP2011091361A (ja) * 2009-06-30 2011-05-06 Intevac Inc 静電チャック

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104051495A (zh) * 2014-05-28 2014-09-17 京东方科技集团股份有限公司 封装装置和封装设备
WO2015180408A1 (zh) * 2014-05-28 2015-12-03 京东方科技集团股份有限公司 封装装置和封装设备
US10026635B2 (en) 2014-05-28 2018-07-17 Boe Technology Group Co., Ltd. Packaging apparatus and packaging device
JP2021504970A (ja) * 2017-11-21 2021-02-15 ワトロー エレクトリック マニュファクチュアリング カンパニー セラミックペデスタルで使用するための二重目的のビア

Also Published As

Publication number Publication date
JP5348439B2 (ja) 2013-11-20
KR20140024481A (ko) 2014-02-28
TW201347069A (zh) 2013-11-16
US20140355170A1 (en) 2014-12-04
JP2013084938A (ja) 2013-05-09
KR101416152B1 (ko) 2014-07-09
US9042078B2 (en) 2015-05-26
TWI424519B (zh) 2014-01-21
CN103907181B (zh) 2016-11-16
CN103907181A (zh) 2014-07-02

Similar Documents

Publication Publication Date Title
JP5348439B2 (ja) 静電チャック
TWI581364B (zh) 靜電夾頭
JP5554525B2 (ja) 静電チャック
KR101994006B1 (ko) 정전 척
JP5441020B1 (ja) 静電チャック
JP5339162B2 (ja) 静電チャック
JP6325424B2 (ja) 静電チャック
JP6228031B2 (ja) 試料保持具およびこれを用いたプラズマエッチング装置
TW201838089A (zh) 靜電吸盤
JP6461300B1 (ja) セラミック装置
JP6317183B2 (ja) 半導体製造装置用部品
JP2011003633A (ja) 積層配線基板
JP2010114351A (ja) 静電チャック装置
JP2018006559A (ja) 静電チャック、および、静電チャックの製造方法
JP2019161134A (ja) 保持装置の製造方法および保持装置
JP2005032842A (ja) 電極構造およびセラミック接合体
JP2003249329A (ja) 面状セラミックスヒーター及び製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12837586

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147003976

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14345279

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12837586

Country of ref document: EP

Kind code of ref document: A1