WO2013047239A1 - 空油冷内燃機関のオイル通路構造 - Google Patents
空油冷内燃機関のオイル通路構造 Download PDFInfo
- Publication number
- WO2013047239A1 WO2013047239A1 PCT/JP2012/073649 JP2012073649W WO2013047239A1 WO 2013047239 A1 WO2013047239 A1 WO 2013047239A1 JP 2012073649 W JP2012073649 W JP 2012073649W WO 2013047239 A1 WO2013047239 A1 WO 2013047239A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- oil
- passage
- cylinder
- cooling
- oil passage
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01M—LUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
- F01M11/00—Component parts, details or accessories, not provided for in, or of interest apart from, groups F01M1/00 - F01M9/00
- F01M11/02—Arrangements of lubricant conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B61/00—Adaptations of engines for driving vehicles or for driving propellers; Combinations of engines with gearing
- F02B61/02—Adaptations of engines for driving vehicles or for driving propellers; Combinations of engines with gearing for driving cycles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B75/00—Other engines
- F02B75/16—Engines characterised by number of cylinders, e.g. single-cylinder engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02F—CYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
- F02F1/00—Cylinders; Cylinder heads
- F02F1/24—Cylinder heads
- F02F1/26—Cylinder heads having cooling means
- F02F1/36—Cylinder heads having cooling means for liquid cooling
- F02F1/40—Cylinder heads having cooling means for liquid cooling cylinder heads with means for directing, guiding, or distributing liquid stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P3/00—Liquid cooling
- F01P2003/006—Liquid cooling the liquid being oil
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02F—CYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
- F02F1/00—Cylinders; Cylinder heads
- F02F1/24—Cylinder heads
- F02F1/242—Arrangement of spark plugs or injectors
Definitions
- the present invention relates to an oil passage structure of an oil-free cold internal combustion engine capable of reducing the manufacturing cost and suppressing the temperature rise of oil for cylinder head cooling.
- an oil passage for cooling is provided in a cylinder head, and the oil passage is provided so as to surround a spark plug hole, and a cooling structure passing between two forks of an exhaust port is
- a cooling structure passing between two forks of an exhaust port is shown in the following patent document 1.
- the cooling structure shown in Patent Document 1 within the cylinder head, around the bearing surface of the spark plug hole and between the two parts of the exhaust port, which become hot compared to the surrounding, effectively with a small amount of oil. It is possible to cool and uniformize the wall temperature of the combustion chamber.
- the oil return passage is disposed adjacent to the combustion chamber and the cylinder bore, the head side cooling oil passage can be connected to the oil return passage with a simple structure.
- the oil for cooling is cooled as much as possible after cooling the part where it is desired to cool the oil return passage so as not to raise the temperature. It is preferable to flow it.
- the head side oil cooling passage becomes longer, and after passing through the long head side oil cooling passage, the portion after cooling down the place which needs to be cooled most. The temperature of oil tends to be high.
- the structure of the head side cooling oil passage connected thereto may be complicated and the manufacturing cost may be increased.
- the cooling oil passage on the head side is formed by the sand core at the time of casting the cylinder head, but in the oil passage, the sand core is made to stand by itself.
- the protrusion is formed by the boss provided on the side wall, and depending on the shape of the protrusion, the oil may be easily retained in the protrusion. Further, depending on the specifications of the internal combustion engine, the temperature of the retained oil may be too high, which may affect the oil performance.
- the present invention in view of the above-mentioned prior art, in an oil-free cold internal combustion engine, the manufacturing cost of the head side cooling oil passage is not complicated even when the oil return passage is disposed apart from the combustion chamber. It is an object of the present invention to provide a cheap oil passage structure, and to return the oil for cooling after cooling the place to be cooled most in the cylinder head as much as possible without raising its temperature. It is an object of the present invention to provide an oil passage structure which can flow in a passage. Further, the present invention provides an oil passage structure capable of preventing the stagnation of cooling oil and suppressing the temperature increase of the oil locally even when the projecting portion is provided in the cooling oil passage of the cylinder head.
- the present invention provides a dry oil cold internal combustion engine comprising: a cylinder block fastened to a crankcase; and a cylinder head fastened to the cylinder block and attached and housed with a valve mechanism.
- An oil passage structure of an engine wherein a lubricating oil passage for feeding lubricating oil to the valve operating mechanism is provided in the cylinder head, and a head side cooling oil passage is provided branched from the lubricating oil passage.
- the head side cooling oil passage is provided with an ignition of the cylinder head.
- the present invention provides an oil passage structure of an oil-cooled internal combustion engine characterized in that
- the cylinder block side oil passage is a groove formed in the mating surface on the cylinder block side.
- the upstream end of the cylinder block side oil passage is provided with an oil receiving portion having a shape that matches the communication portion.
- the communication portion is formed to extend parallel to the cylinder axis of the cylinder block to reach the mating surface.
- a stud bolt for fastening the cylinder head and the cylinder block is disposed so as to surround a combustion chamber of the cylinder head, and the communication portion is between the combustion chamber peripheral wall and the stud bolt. Will be distributed.
- a cam chain chamber for accommodating a cam chain for driving the valve operating mechanism is provided on the outer side of the cylinder block adjacent to the cylinder bore of the cylinder block, and the oil return passage is the same as the cam
- the cylinder block side oil passage is provided outside the chain chamber and communicates with the oil return passage so as to pass through the cam chain chamber.
- a protrusion which branches from the head-side cooling oil passage is provided at an intermediate portion of the head-side cooling oil passage, and for the head-side cooling from the end of the protrusion
- a bypass passage communicating with the downstream side of the oil passage and having a passage cross-sectional area smaller than the head side cooling oil passage is provided.
- the bypass passage may be a groove on the mating surface.
- the upstream end of the bypass passage has a shape that overlaps the end of the protrusion when viewed in the cylinder axial direction.
- the oil for cooling after flowing near the high temperature portion in the cylinder head such as the spark plug or the exhaust port vicinity is from the communication portion on the cylinder head side. Since the oil after being communicated with the cylinder block side is made to flow through the cylinder block side oil passage provided on the cylinder block side to the oil return passage separated from the communicating part, the mold production becomes complicated. Instead, it becomes possible to form a path leading to the oil return passage, which results in an oil passage structure that is inexpensive to manufacture. Also, generally, since the temperature is lower at the cylinder block side where expansion by combustion gas is performed than at the cylinder head side where the combustion chamber is located, it is possible to suppress the temperature rise of the oil after cooling the place to be cooled most. be able to.
- the cylinder block side oil passage As a groove formed on the mating surface on the cylinder block side, the cylinder block side oil passage can be easily formed by casting or the like at the time of cylinder block production.
- An oil receiving portion having a shape corresponding to the communication portion is provided at the upstream end of the cylinder block side oil passage, so that the oil receiving portion of the cylinder block side oil passage is connected to the communication portion of the cylinder head side cooling oil passage. Since the shapes match, the oil flow is smooth.
- the communicating portion By forming the communicating portion so as to extend in parallel with the cylinder axis of the cylinder block to reach the mating surface, the communicating portion can be made into a simple structure.
- a stud bolt that fastens the cylinder head and the cylinder block is disposed to surround a combustion chamber of the cylinder head, and the communication portion is disposed between a circumferential wall of the combustion chamber and the stud bolt.
- the head side cooling oil passage can be compactly provided in the area of the narrow metal portion of the cylinder head.
- a cam chain chamber is provided on the outer side of the cylinder block adjacent to the cylinder bore of the cylinder block, in which a cam chain for driving the valve operating mechanism is accommodated, and the oil return passage is closer than the cam chain chamber.
- the cam chain chamber becomes a space in the cylinder by being provided on the outside and communicating with the oil return passage such that the cylinder block side oil passage runs around the same cam chain chamber, and the cam chain chamber is disposed outward Since the same space is interposed between the combustion chamber and the cylinder bore, the temperature is the lowest in the cylinder. Then, by utilizing the characteristic of such temperature distribution, by arranging the oil return passage on the outside of the cam chain chamber, it becomes possible to efficiently cool the cooling oil whose temperature has risen.
- the main cooling head-side cooling oil is provided by communicating with the downstream side of the head-side cooling oil passage from the end of the projecting portion and providing a bypass passage having a passage cross-sectional area smaller than the head-side cooling oil passage. Since the oil can be allowed to flow through the bypass passage while suppressing the influence of the oil flow in the passage, the projection becomes an oil retention portion, and it becomes possible to suppress the temperature rise of the oil. Further, by forming the bypass passage by the groove, the bypass passage can be formed at low cost with a simple configuration. Furthermore, by temporarily storing oil in the space formed at the upstream end of the bypass passage having a shape overlapping the end of the projecting portion, oil can be smoothly flowed from the projecting portion to the downstream bypass passage. The retention of oil and the rise of oil temperature can be effectively suppressed.
- FIG. 1 is a left side view of a motorcycle equipped with an oil-free cold internal combustion engine provided with an embodiment of an oil passage structure of a dry oil-cold internal combustion engine according to the present invention.
- FIG. 2 is a cross-sectional development view of the oil-free cold internal combustion engine taken along line II-II in FIG.
- FIG. 3 is a plan view showing only the cylinder head taken along the line III-III in FIG. 2 and showing a state in which a valve mechanism and the like attached and accommodated inside the upper side is removed.
- FIG. 4 is a left side view showing only a cylinder head taken along a line IV-IV in FIG. 2 and FIG. 3; FIG.
- FIG. 4 is a plan view of an oil passage core for forming a head side cooling oil passage indicated by a broken line in FIG. 3 and by a two-dot chain line in FIG. 9.
- FIG. 6 is a rear side view of the oil passage core taken along the line VI-VI in FIG. 5;
- FIG. 7 is a left side view of the oil passage core taken along line VII-VII in FIG. 5;
- FIG. 8 is a top perspective view of the oil passage core taken along arrow VIII in FIG. 5
- FIG. 3 is a plan view showing only a cylinder, taken along the line IX-IX in FIG. It is explanatory drawing of the modification of the X section in FIG.
- FIG. 3 is a top perspective view showing only a cylinder, taken along line IX-IX in FIG. It is explanatory drawing of another modification at the time of applying the bypass passage in this embodiment to a multi-cylinder internal combustion engine.
- an embodiment of an oil passage structure of a dry oil cold internal combustion engine of the present invention will be described based on the drawings.
- the direction such as front, rear, left, right, upper, lower, etc. is the state where the oil-cooled internal combustion engine provided with the oil passage structure of the oil-cooled internal combustion engine according to the present embodiment is mounted on a small vehicle.
- the small vehicle is a motorcycle.
- an arrow FR indicates the front of the vehicle
- LH indicates the left of the vehicle
- RH indicates the right of the vehicle
- UP indicates the upper side of the vehicle.
- the small black arrows attached in the figures schematically show the flow of the cooling oil according to the present invention in the present embodiment, and in FIGS. 5 to 8, the oil passage core is taken as the oil passage. The flow of oil is shown schematically.
- FIGS. 1 to 12 relate to an embodiment of the present invention
- FIG. 1 shows an oil-cooled internal combustion engine (hereinafter simply referred to as “internal combustion engine”) provided with an embodiment of an oil passage structure of an oil-cooled internal combustion engine 1) is shown mounted on a motorcycle 2.
- the internal combustion engine 1 according to the present embodiment integrally includes a transmission 4 (see FIG. 2) at the rear in the crankcase 10 to constitute a so-called power unit.
- This is a dry, oil-cooled, single-cylinder, four-stroke cycle internal combustion engine mounted on a motorcycle 2 oriented in the vehicle width direction, that is, in the lateral direction.
- a vehicle body frame 20 of a motorcycle 2 equipped with an internal combustion engine 1 has a pair of left and right main frames 22 extending slightly backward from the head pipe 21, Further, it is bent downward to form a steep slope 22a and reach the lower end. Further, a pair of left and right down frames 23 extend downward from the head pipe 21 at a diagonally steep angle and extend substantially parallel to the steeply inclined portion 22 a of the main frame 22 in a side view.
- a seat rail 25 extends rearward from the upper portion of the steeply inclined portion 22a of the main frame 22 via the gusset 24, and a back stay 26 connecting the central portion of the seat rail 25 and the lower portion of the steeply inclined portion 22a The rail 25 is supported.
- the front fork 27 is pivotally supported by the head pipe 21 and the front wheel 28 is pivotally supported by the lower end thereof.
- a rear fork 29 supported at the lower end of the steep slope 22a of the main frame 22 extends rearward, a rear wheel 30 is pivotally supported at the rear end, and between the rear fork 29 and the gusset 24 of the vehicle body frame 20
- the rear cushion 31 is interposed.
- a fuel tank 32 is installed at the front of the main frame 22, and a seat 33 is supported by the seat rail 25 behind the fuel tank 32.
- the internal combustion engine 1 suspended on the main frame 22 and the down frame 23 is integrally formed with the transmission 4 (see FIG. 2) as described above, and the cylinder axis C is slightly inclined forward on the crankcase 10
- the cylinder block 12, the cylinder head 13, and the cylinder head cover 14 are suspended in an upright position.
- An intake pipe 35 extends rearward from the cylinder head 13 of the internal combustion engine 1 and is connected to the intake port 15 and extends to the air cleaner 37 through the throttle body 36.
- An exhaust pipe 38 extends forward from the cylinder head 13 and is connected to the exhaust port 16 and bends downward to extend rearward under the internal combustion engine 1 and reaches the right muffler 39 of the rear wheel 30.
- crankcase 10 of the internal combustion engine 1 rotatably supports the crankshaft 11 and a transmission chamber 40 for accommodating the transmission 4 behind the crankcase 17 in which the crankshaft 11 is disposed.
- a transmission chamber 40 for accommodating the transmission 4 behind the crankcase 17 in which the crankshaft 11 is disposed.
- a cylinder block 12 having one cylinder bore 12a and a cylinder head 13 are overlaid on the cylinder block 12 via a gasket 18 (see FIG. 9) above the crank chamber 17 on the front side of the crankcase 10, stud
- the cylinder head 13 and the cylinder block 12 are integrally fastened to the crankcase 10 by bolts 19, and the cylinder head cover 14 covers the upper side of the cylinder head 13.
- the cylinder block 12, the cylinder head 13 and the cylinder head cover 14 stacked on the front side portion of the crankcase 10 extend upward with a slight forward inclination from the crankcase 10 (see FIG. 1).
- a piston 50 is slidably fitted in a cylinder bore 12a of the cylinder block 12 so as to reciprocate (see FIG. 2), and the piston 50 and the crankshaft 11 are connected by a connecting rod 51 to constitute a crank mechanism.
- a combustion chamber peripheral wall 52a corresponding to the cylinder bore 52a is defined opposite to the piston 50 in the cylinder bore 12a, and a combustion chamber 52 covered by the combustion chamber upper wall 53 is formed.
- an intake port 15 (see FIGS. 1 and 4) opened in the combustion chamber 52 and opened and closed by an intake valve (not shown) extends rearward, and an exhaust port opened and closed by an exhaust valve
- a spark plug 55 is mounted which extends forward (see FIGS. 1 and 4) and faces the combustion chamber 52.
- the cylinder head 13 is composed of a valve operating system component such as a valve operating camshaft 61 (not shown) for opening and closing the suction and exhaust valves, a driven cam chain sprocket 62, an intake rocker arm 65, an exhaust rocker arm 66 etc. and their supporting members 67 etc.
- the valve mechanism 60 is attached and accommodated.
- cam chain chambers 12b and 13b in which a cam chain 64 for driving the valve operating mechanism 60 is accommodated are provided in the left side portion (outside portion) of the cylinder block 12 and the cylinder head 13.
- the cam chain 64 passes between the cam chain chambers 12b and 13b between the driven cam chain sprocket 62 fitted to the valve camshaft 61 of the valve mechanism 60 and the drive cam chain sprocket 63 fitted to the crankshaft 11.
- the valve camshaft 61 is rotated at a half rotation speed of the crankshaft 11, and the intake rocker arm 65 and the exhaust rocker arm 66 are swung to perform intake and exhaust valves at required timings, respectively (see FIG. 2). Drive open and close.
- An AC generator 56 in addition to the drive chain sprocket 63 is attached to a portion of the crankcase 10 of the crank shaft 11 projecting leftward from the left bearing wall 10L, and is covered with a left case cover 57L.
- the primary drive gear 58 is fitted to a portion of the crank case 11 of the crank shaft 11 which protrudes to the right from the right bearing wall 10R, and the right case is covered with a right case cover 57R.
- the main shaft 41 and the counter shaft 42 of the transmission 4 are directed in the left and right direction to the rear of the crankshaft 11 and parallel to each other, bearing between the left and right bearing walls 10L and 10R.
- the transmission 4 is configured to be rotatably mounted via 41a and 42a, and the main gear group 41g supported by the main shaft 41 and the counter gear group 42g supported by the counter shaft 42 constantly mesh with each other. .
- a multi-plate friction type shift clutch 43 is provided on the right side portion of the crankcase 10 of the main shaft 41 that protrudes to the right from the right bearing wall 10R.
- the clutch outer 43a of the transmission clutch 43 is supported by a primary driven gear 44 rotatably supported on the main shaft 41 via a buffer member, and is integrally engaged with the main shaft 41 with the clutch inner 43b.
- a plurality of clutch plates are interposed therebetween, and disconnection is performed by driving the compression member 43c.
- the primary driven gear 44 meshes with the primary drive gear 58 fitted to the crankshaft 11, and the rotational power of the crankshaft 11 is the primary driven gear 58 on the crankshaft 11 side and the primary driven on the transmission clutch 43 side.
- the transmission clutch 43 transmits the rotational power of the crankshaft 11 to the transmission 4 during the gear change of the transmission 4 but does not transmit the transmission power to the transmission 4 during the gear change of the transmission 4. At the same time, the rotational power of the crankshaft 11 is transmitted to the main shaft 41 of the transmission 4.
- the counter shaft 42 penetrates the left bearing wall 10L of the crankcase 10 leftward and protrudes to the outside to become the final output shaft 42 of the internal combustion engine 1, and the output sprocket 45 is spline fitted to the protruding portion There is.
- a drive chain 46 wound around the output sprocket 45 is bridged by a driven sprocket 47 on the rear wheel 30 side to constitute a chain transmission mechanism, and power is transmitted to the rear wheel 30 (see FIG. 1).
- cooling of the cylinder block 12 and the cylinder head 13 is basically performed by air cooling by the cooling fins 12c and 13c formed thereon.
- the periphery of the mounting portion of the ignition plug 55 on the combustion chamber upper wall 53 covering the combustion chamber 52 of the cylinder head 12 and the periphery of the combustion chamber side opening 16 a (FIG. 3) of the exhaust port 16 are recessed combustion chamber upper wall 53 Because of this, it is difficult to directly provide the cooling fins 13c, and depending on the specifications such as the compression ratio of the internal combustion engine 1, cooling may be insufficient in heat radiation of the cooling fins.
- a head side cooling oil passage (hereinafter simply referred to as "cooling oil passage") 7 (FIG. 2) is provided in the combustion chamber upper wall 53 to use lubricating oil A portion of the oil is circulated as oil for cooling, and sufficient cooling of the high temperature portion of the cylinder head 13 is performed.
- the stud bolt 19 shown in FIG. 2 is a stud bolt hole 68 formed in each of the support member 67 of the valve mechanism 60, the cylinder head 13 and the cylinder block 12 so as to surround the cylinder bore 12a and the combustion chamber 52 (FIG. 3). Reference is inserted from the upper side to the lower side and fastened to the crankcase, and the support member 67, the cylinder head 13 and the cylinder block 12 are fastened together.
- one stud bolt hole 68A (see FIG. 3) of the four stud bolt holes 68 is between the inner surface and the outer surface of stud bolt 19.
- the bolt hole gap portion is an oil supply passage, and the oil supply passage communicates with the discharge port of an oil pump (not shown) in the crankcase 10 via an oil supply passage (not shown). Therefore, a part of the oil from the oil pump uses the stud bolt hole 68A as a lubricating oil passage to the valve operating mechanism 60, and the valve operating camshaft 61 and the driven cam chain sprocket 62 housed in the upper part of the cylinder head 13.
- the air is supplied to the intake rocker arm 65, the exhaust rocker arm 66 and the like and their supporting members 67 and the like.
- the combustion chamber upper wall 53 of the combustion chamber 52 is formed in the lower portion of the cylinder head 53, and the cooling oil passage 7 provided in the combustion chamber upper wall 53 has stud bolt holes which are lubricating oil passages. Communication is made to branch off from 68A. Therefore, the stud bolt hole 68A as a lubricating oil passage forms an oil supply passage to the cooling oil passage 7
- FIG. 3 shows the upper wall 13 d of the cylinder head 13 to which the valve operating mechanism 60 is attached, with the valve operating mechanism 60 removed.
- the combustion chamber upper wall 53 is located below the upper wall portion 13d, and the cooling oil passage 7 is provided in the combustion chamber upper wall 53 as shown by a broken line in FIG. 3 (see FIG. 2).
- an ignition plug mounting hole 55a for mounting the ignition plug 55 is formed to open to the combustion chamber upper wall 53 as shown by a broken line in FIG. 3, and the combustion chamber side opening 15a of the intake port 15 and the exhaust port 16 is formed. 16a are opened in the combustion chamber upper wall 53 so as to be inscribed in the combustion chamber peripheral wall 52a (see FIG. 3).
- the cooling oil passage 7 is an oil inflow passage 71 where the oil is branched from the stud bolt hole 68A as a lubricating oil passage, and an oil which makes the oil flow out to the cylinder block 12 side.
- a communication portion 72 which forms an outflow path communicates with the oil inflow path 71 and the communication portion 72, and includes a plurality of cooling passages 73 which flow around the spark plug 55 and around the exhaust port 16.
- the cooling passage 73 is continuous with the oil inflow passage 71, and constitutes the right side in the flow direction of the upper flow passage 73a toward the spark plug mounting hole 55a and the flow passage around the spark plug mounting hole 55a and the exhaust port 16 continuous thereto.
- a first passage 73 b and a second passage 73 c constituting the left side in the flow direction are formed, and the first passage 73 b and the second passage 73 c merge and are connected to the communication portion 72.
- the communicating portion 72 extends downward with its axis R parallel to the cylinder axis C, reaches the joint surface 70 between the cylinder head 13 and the cylinder block 12 and opens, and is directed to the cylinder block 12 side. Allow the oil to drain.
- FIGS. 3 and 4 hatching surrounded by a broken line is a cooling oil passage 7 provided inside the combustion chamber upper wall 53 of the cylinder head 13, and the shape thereof is a cylinder other than the oil inflow passage 71.
- This is the same as the oil passage core 8 which is a sand core for forming the cooling oil passage 7 when the head 13 is cast.
- FIG. 5 is a plan view of the oil passage core 8 showing the oil passage core 8 in the same direction as the cooling oil passage 7 shown in FIG. 6 is a rear side view of the oil passage core 8 taken along the arrow VI-VI in FIG. 5, and FIG. 7 is a left side view of the oil passage core 8 taken along the arrow VII-VII in FIG. Fig. 8 is a top perspective view of an oil passage core 8 as viewed in the direction of arrow VIII in Fig. 5.
- the reference numerals of the corresponding cooling oil passages 7 are attached in square brackets, and the formed cooling oil passages 7 are formed. Add a small black arrow to the oil flow.
- the oil passage core 8 has a first boss 81 forming an oil inflow passage 71, a second boss 82 forming a communication portion 72 as an oil outflow passage, the periphery of the spark plug 55 and the periphery of the exhaust port 16 And a cooling passage portion 83 forming a cooling passage 73 communicating the oil inflow passage 71 with the communication portion 72.
- the lower part of the first boss 81 is provided with a leg 81a which determines the posture when setting it in the mold (see FIGS. 6 and 8), but the stud bolt hole 68A as an oil supply passage to which the oil inflow passage 71 is connected And the portion of the leg 81a after casting becomes a part of the stud bolt hole 68A (see FIG. 4).
- a side projection 84 is provided which protrudes sideward from the cooling passage 83, and the side projection 84 is provided with a third boss 85 which protrudes downward.
- the center of gravity CG is at a position offset to one side (here, to the right in the flow direction) with respect to the straight line L1
- the third boss 85 is on the side of the center of gravity CG with respect to the straight line L1. It is placed at an offset position.
- the oil passage core 8 has the cylinder head 13 at the time of casting.
- Stable and self-supporting in the mold of The third boss 85 serves as a leg that determines the posture when setting it in the mold, but after casting of the cylinder head 13, forms a protrusion 75 in the cooling passage 73. Further, the protrusions 75 extend to their mating surfaces 70 when the cylinder head 13 is fastened to the cylinder block 12.
- the oil passage core 8 used in such an embodiment includes the third boss 85 even if the surface area of the second boss 82 forming the communication portion 72 is reduced to reduce the width thereof. Therefore, the first to third bosses 81, 82, 85 can stand on their own in the mold of the cylinder head 13 at the time of casting. Therefore, the surface area can be reduced in the communication portion 72 of the formed cooling oil passage 7, and the oil can flow out to the cylinder block 12 without lowering the flow velocity of the oil after cooling in the cooling passage 73. Since the transmission rate can be increased, cooling can be performed efficiently.
- the third boss 85 is provided on a side projection 84 which protrudes to the side of the cooling passage 83, and the projection 75 of the formed cooling oil passage 7 also protrudes to the side of the cooling passage 73.
- the influence on the flow of oil flowing through the cooling passage 73 can be suppressed. Therefore, the structure of the oil passage core 8 used in the present embodiment is excellent in manufacturability, and the formed cooling oil passage 7 provides good cooling performance.
- the cooling passage portion 83 surrounds the periphery of the spark plug mounting hole 55a of the spark plug 55 and the exhaust port 16, respectively, and a central portion 55c of the spark plug mounting hole 55a of the spark plug 55 and a central portion 16c of the exhaust port 16
- the first passage portion 83b located on the third boss 85 side with respect to the second straight line L2 connecting the two, the second passage portion 83c located on the other side, the first passage portion 83b and the second passage portion 83c Is connected to the first boss 81, and the second boss 82 is provided on the second straight line L2.
- the exhaust port 16 of the cooling passage 73 of the formed cooling oil passage 7 is formed.
- the first passage 73b and the second passage 73c on both sides surrounding the periphery of the spark plug 55 can be made approximately equal in length, and uniformly cool the high temperature portions of the combustion chamber upper wall 53 and the combustion chamber peripheral wall 52a. Can.
- the first passage portion 83b is provided with a third boss 85 for making the oil passage core 8 stand by itself at the time of casting in the side projection portion 84 that protrudes laterally around the exhaust port 16 but the formed cooling As described above, the influence on the flow of oil in the first passage 73b of the oil passage 7 is suppressed.
- the stud bolt holes 68 of the plurality of stud bolts 19 for fastening the cylinder head 13 and the cylinder block 12 surround the combustion chamber peripheral wall 52 a of the cylinder head 13. Since the second boss 82 and the third boss 85 of the oil passage core 8 are disposed in the cylinder head 13 and are arranged between the combustion chamber peripheral wall 52 a and the stud bolt hole 68, The second boss 82 and the third boss 85 can be compactly arranged in the area of the narrow metal portion of the cylinder head 13.
- the stud bolt 19 is disposed in the cylinder head 13 so as to surround the combustion chamber peripheral wall 52 a of the cylinder head 13, and the communication portion 72 of the cooling oil passage 7 is disposed between the combustion chamber peripheral wall 52 a and the stud bolt 19
- the cooling oil passage 7 can be compactly disposed in the area of the narrow metal portion of the cylinder head 13.
- a cylinder block 12 is fastened by a stud bolt 19 below the cylinder head 13 in which the cooling oil passage 7 as described above is provided. As shown in FIG. 9, the cylinder block 12 is provided with an oil return passage 9 for guiding the oil from the cooling oil passage 7 into the crankcase 10.
- the cooling oil passage 7 in the cylinder head 13 in a state of being fastened to the cylinder block 12 is shown by a two-dot chain line.
- the oil inflow passage 71 of the cooling oil passage 7 is connected to the stud bolt hole 68A serving as the oil supply passage, and the communication portion 72 coincides with the communication portion 72 at the joint surface 70 between the cylinder block 12 and the cylinder head 13 It communicates with an oil receiving portion 90 which is recessed in the shape of the cylinder block 12.
- the oil return hole 9 bored in the cylinder block 12 is opened in the mating surface 70, but the oil return hole 9 is formed in the cam chain chamber 12b adjacent to the cylinder bore 12a. It is provided in the left side part of the cylinder block 12 on the opposite side to the cylinder bore 12 a across the space.
- a groove 91 provided on the mating surface 70 on the side of the cylinder block 12 is provided between the oil receiving portion 90 and the oil return hole 9 so as to be connected to the cam chain chamber 12b so as to surround the cam chain chamber 12b.
- the oil receiving portion 90 and the groove 91 are provided with oil received from the communicating portion 72 of the cooling oil passage 7 at a position separated from the communicating portion 72 It becomes a cylinder side oil passage 92 that flows to the return hole 9.
- the communication portion 72 extends parallel to the cylinder axis C and reaches the mating surface 70, in addition to the manufacturing advantage that the structure of the communication portion 72 is simplified, the cooling action of the cylinder head 13 is completed. Oil is promptly fed to the cylinder block 12 side. Then, the oil flows through the cylinder block side oil passage 92 whose temperature is lower than that of the cylinder head 13, and the combustion chamber 52 and the cylinder bore 12a sandwich the space portion of the cam chain chamber 12b. Since the oil flows from the cam chain chamber 12b to the oil return hole 9 provided apart from the communication portion 72, the oil is prevented from receiving unnecessary heating and can be relatively cooled. Therefore, the temperature rise of the oil can be suppressed.
- the groove-shaped cylinder side oil passage 92 formed in the mating surface 70 can connect the two. Therefore, the flow path to the oil return passage 9 can be obtained without complicating the mold manufacture of the cylinder head 13 and the cylinder block 12, and the manufacturing cost can be reduced.
- the recessed oil receiving portion 90 and the groove 91 can be formed by casting at the time of casting the cylinder block 12, formation is easy and cost can be reduced.
- the oil receiving portion 90 is formed in the same shape as the communication portion 72, and forms an integral flow path with the communication portion 72, so that the flow of oil communication becomes smooth.
- the cylinder block side oil passage 92 ' may be formed so that the groove 91' is wound around the cam chain chamber 12b on the rear side of the cylinder block 12 as shown by a two-dot chain line in FIG.
- the cylinder block side oil passage 92 ' can be set longer than the aforementioned cylinder block side oil passage 92 in which the cam chain chamber 12b is indented on the front side of the cylinder block 12, and the relatively low temperature intake port 15 side Since it passes through (see FIG. 3), it is possible to obtain an oil heating prevention or cooling advantage.
- the oil return hole 9 ' may be a vertical hole having a wavy side surface instead of a circular cross section hole, in which case the outer surface of the cam chain chamber 12b or the cylinder block 12
- the heat transfer to the cooling fins 12c can be enhanced to enhance the cooling of the oil.
- the gasket 18 of the mating surface 70 is shown on the mating surface 70 in FIGS. 9 and 10 by a two-dot chain line other than the cooling oil passage 7.
- the side surfaces of the cooling passage portion 83 can be made so that they can stand in the mold when the cylinder head 13 is cast.
- a third boss 85 provided on a side projection 84 which protrudes to the right. Therefore, as shown in FIGS. 5, 6, and 8, the formed cooling oil passage 7 branches downward from the middle portion of the first passage 73b of the cooling passage 73 by the third boss 85.
- the protrusion 75 is provided. The protrusions 75 extend to their mating surfaces 70 when the cylinder head 13 is fastened to the cylinder block 12.
- the projecting portion 75 is branched from the first passage 73b of the cooling passage 73 and protrudes downward. Therefore, the influence of the oil flow in the cooling oil passage is suppressed, but the oil tends to stagnate, and stagnation. The temperature of the oil may increase.
- bypass groove 96 connecting the bypass oil receiving portion 95 and the oil receiving portion 90 is formed on the cylinder block 12 side in the mating surface 70, and the bypass oil receiving portion 95 and the bypass groove 96 are bypass oil receiving portions.
- a bypass passage 97 having an upstream end 95 is formed.
- the flow passage cross-sectional area of the bypass groove 96 forming the bypass passage 97 is set smaller than the flow passage cross-sectional area of the cooling oil passage 7.
- the bypass groove 96 may be formed on the cylinder head 13 side of the mating surface 70.
- the oil in the projecting portion 75 of the cooling oil passage 7 flows into the bypass passage 97 from the end thereof, and forms an integral flow passage with the communication portion 72 on the downstream side of the cooling oil passage 7 Since it is fed up to 90, the retention of the oil at the projecting portion 75 is prevented, and the temperature rise of the oil is suppressed.
- bypass passage 97 is set so that the flow passage cross-sectional area is smaller than the flow passage cross-sectional area of the cooling oil passage 7, so that bypass flow prevents the oil for cooling the cooling oil passage 7 from blocking.
- the bypass passage 97 is formed as a bypass oil receiving portion 95 whose upstream end is shaped to match the lower end of the projecting portion 75, the projecting portion 75 and the bypass oil receiving portion 95 form an integral flow passage. The flow of bypass oil in the bypass oil receiving portion 95 is smooth.
- bypass flow channel 97 has a simple structure on the mating surface 70 and can be formed by casting or the like, so that the manufacturing cost is reduced.
- FIG. 12 shows a modification in which the bypass passage 97 in the present embodiment is applied to an air-oil cold multi-cylinder internal combustion engine (hereinafter simply referred to as "multi-cylinder internal combustion engine") 1 '.
- the multi-cylinder internal combustion engine 1 ' has four cylinders in which the first cylinder C1 to the fourth cylinder C4 are arranged in series sequentially from the right side in the cylinder row direction.
- Each combustion chamber is formed, and a spark plug mounting hole 55a for mounting the spark plug 55 on the top of the combustion chamber upper wall 53 'is provided.
- First cooling oil passages 77A, 77B are provided to pass through the side, that is, between the exhaust port combustion chamber side openings 16a '.
- the first cooling oil passages 77A and 77B of the second cylinder C2 and the third cylinder C3 are connected to the oil supply passages 76A and 76B on the cylinder rear side, respectively, and the oil supply passages 76A and 76B merge on the upstream side thereof. Not connected to the outlet of the oil pump.
- the third cooling oil passages 79A and 79B are provided so as to get out of the way.
- the third cooling oil passages 79A and 79B of the first cylinder C1 and the fourth cylinder C4 are connected to the oil return passages 9A and 9B on the right and left cylinder sides respectively, and the oil return passages 9A and 9B are downstream thereof It joins at the same time, and is connected to the oil return system in the crankcase (not shown).
- downstream end 77Aa of the first cooling oil passage 77A of the second cylinder C2 and the upstream end 79Aa of the third cooling oil passage 79A of the first cylinder C1 are second-cooled. It is connected by an oil passage 78A.
- the downstream end 77Ba of the first cooling oil passage 77B of the third cylinder C3 and the upstream end 79Ba of the third cooling oil passage 79B of the fourth cylinder C4 are the second cooling oil passage. Connected by 78B.
- the first cooling oil passage 77A, the second cooling oil passage 78A, and the third cooling oil passage 79A of the first cylinder C1 in the second cylinder C2 are a series of cylinder heads.
- the head side cooling oil passage (hereinafter simply referred to as "cooling oil passage") 7A is formed.
- the first cooling oil passage 77B, the second cooling oil passage 78B of the third cylinder C3, and the third cooling oil passage 79B of the fourth cylinder C4 form a series of cooling oil passages 7B in the cylinder head.
- Both of the cooling oil passage 7A and the cooling oil passage 7B are formed by an oil passage core (not shown) made of sand core, but the oil passage core is shown in FIG.
- a boss is provided at the upstream end, the downstream end and the middle of the passage which is formed in the same manner as described in 5 to 8.
- the boss in the middle portion branches from the cooling oil passage 7A for each cylinder to the middle portion of the cooling oil passage 7A and the cooling oil passage 7B as in the case of the oil passage core 8 described above. Since the protrusions 75A1 and 75A2 and the protrusions 75B3 and 75B4 branched from the cooling oil passage 7B are formed, there is a possibility that oil will stagnate and the temperature of the oil will rise in each protrusion.
- the lower end portion of the projecting portion 75A1 of the first cylinder C1 is in communication with the downstream portion 7Aa of the cooling oil passage 7A, and the lower end portion of the projecting portion 75A1 of the first cylinder C1
- a bypass passage 97A is provided which has a protrusion communication passage 98A communicating with the lower end of the protrusion 75A2 of the second cylinder C2.
- bypass passage 97B is provided which has a protrusion communication passage 98B communicating with the lower end.
- the flow passage cross-sectional area of each bypass passage 97A, 97B is set smaller than the flow passage cross-sectional area of each of the cooling oil passages 7A, 7B, and the flow of bypass oil is the flow of oil in the cooling oil passages 7A, 7B. It is prevented to inhibit.
- the oil of the projecting portion 75A2 flows to the projecting portion 75A1 via the projecting portion communicating passage 98A by the bypass passage 97A and further flows to the downstream portion 7Aa of the cooling oil passage 7A. Therefore, the rise of the oil temperature due to the retention of the oil in each of the protrusions 75A1 and 75A2 is suppressed. Further, it is not necessary to provide a bypass passage communicating with the downstream portion 7Aa of the cooling oil passage 7A for each of the projecting portions 75A1 and 75A2 by the projecting portion communicating path 98A, and the structure can be simplified and the cost can be reduced. The same applies to the third cylinder C3 and the fourth cylinder C4.
- An oil passage of an oil-cooled internal combustion engine 1 provided with a cooling oil passage 7 branched from 68A and provided with an oil return passage 9 for guiding oil from the cooling oil passage 7 to the crankcase 10 in the cylinder block 12
- the communication portion 72 communicated with the mating surface 70 of the cylinder head 13 and the cylinder block 12.
- the oil return passage 9 is provided separately from the communication portion 72, and oil is transmitted from the communication portion 72 to the oil return passage 9 on the cylinder block 12 side.
- To the cylinder block-side oil passage 92 is provided.
- the oil for cooling after flowing around the high temperature portion in the cylinder head 13 such as around the spark plug 55 and the exhaust port 16 is communicated from the communicating portion 72 on the cylinder head 13 side to the cylinder block 12 side Since the oil after being discharged flows through the cylinder block side oil passage 92 provided on the cylinder block 12 side to the oil return passage 9 separated from the communication portion 72, the oil is returned without complicating the mold production. It is possible to form a path leading to the passage 9 and to provide an oil passage structure which is inexpensive to manufacture. In general, the temperature is lower at the cylinder block 12 side where expansion by combustion gas is performed than at the cylinder head 13 side where the combustion chamber 52 is located, so the temperature rise of the oil after cooling the place to be cooled the most Can be suppressed.
- the cylinder block side oil passage 92 is provided as the groove 91 in the mating surface 70 on the cylinder block 12 side, the cylinder block side oil passage 92 can be easily formed by casting or the like when the cylinder block is manufactured.
- the oil receiving portion 90 having a shape matching the communication portion 72 is provided at the upstream end of the cylinder block side oil passage 92, the flow of oil from the cylinder head 13 to the cylinder block 12 is smooth in oil communication. become.
- the communication portion 72 is formed to extend parallel to the axis C of the cylinder block 12 and reach the mating surface 70, so the communication portion 72 can be provided with a simple structure.
- a stud bolt 19 for fastening the cylinder head 13 and the cylinder block 12 is disposed so as to surround the combustion chamber 52 of the cylinder head 13, and the communication portion 72 is between the combustion chamber peripheral wall 52 a and the stud bolt 19.
- the cooling oil passage 7 can be compactly provided in the area of the narrow metal portion of the cylinder head 13.
- a cam chain chamber 12b is provided at the outside of the cylinder block 12 adjacent to the cylinder bore 12a of the cylinder block 12 for accommodating the cam chain 64 for driving the valve operating mechanism 60, and the oil return passage 9 is a cam
- the cylinder block side oil passage 12 is configured to communicate with the oil return passage 9 so as to extend around the cam chain chamber 12 b while being provided outside the chain chamber 12 b.
- the cam chain chamber 12b is a space in the cylinder block 12, and the temperature of the outside of the cam chain chamber 12b is the lowest in the cylinder block 12 because the space is between the combustion chamber 52 and the cylinder bore 12a. .
- a protrusion 75, 75A1, 75A2, 75B3, 75B4 branching from the cooling oil passage 7, 7A, 7B is provided in the middle of the cooling oil passage 7, and the end of the protrusion 75, 75A1, 75A2, 75B3, 75B4 is provided.
- the bypass passages 97, 97A, 97B having a passage cross-sectional area smaller than that of the cooling oil passages 7, 7A, 7B are provided in communication with the downstream side of the cooling oil passages 7, 7A, 7B from the Thus, the oil can be allowed to flow through the bypass passages 97, 97A, 97B while suppressing the influence on the oil flow of the main cooling oil passages 7, 7A, 7B for cooling. Therefore, the protrusions 75, 75A1, 75A2, 75B3 and 75B4 become the oil retention parts, and it becomes possible to suppress the temperature rise of the oil.
- the bypass passage 97 can be configured simply. Can be formed at low cost.
- bypass oil receiving portion 95 at the upstream end of the bypass passage 97 has a shape that overlaps the end of the projecting portion 75 when viewed in the cylinder axial direction, in the space formed in the bypass oil receiving portion 95, By temporarily storing the oil, it is possible to smoothly flow the oil from the projecting portion 75 to the downstream bypass passage 97, and it is possible to suppress the retention of oil and the rise of the oil temperature more effectively.
- At least one or more of the protruding portions 75A1, 75A2, 75B3, 75B4 of the cooling oil passages 7A, 7B are provided for each adjacent cylinder.
- 97B are provided with projecting portion communicating passages 98A, 98B for communicating the adjacent projecting portions 75A1, 75A2, 75B3, 75B4 with each other so that the oil of the projecting portions 75A1, 75A2, 75B3, 75B4 is reduced by the small bypass passage 97A, 97B. Residence can be effectively suppressed.
- the oil passage core 8 has a first boss 81 forming an oil inflow passage 71, a second boss 82 forming a communication portion 72 serving as an oil outflow passage, a periphery of the spark plug 55 and a periphery of the exhaust port 16 , And a cooling passage portion 83 forming a cooling passage 73 for communicating the oil inflow passage 71 with the communication portion 72.
- the first boss 81 and the second boss 82 A lateral projection 84 further projecting laterally from the cooling passage 83 at a position offset laterally with respect to the center CG of the oil passage core 8 with respect to a first straight line L1 connecting
- the side bosses 84 are provided with the third bosses 85.
- the oil passage core 8 is provided with the third boss 85 even if the surface area of the second boss 82 forming the communication portion 72 is reduced and the width thereof is reduced.
- the first boss 81, the second boss 82, and the third boss 85 are disposed so as to surround the center of gravity CG of the cylinder head 13. Therefore, the cylinder head 13 can stand on its own in a stable manner. Therefore, in the communication part 72 of the formed cooling oil passage 7, the oil can be made to flow out to the cylinder side without lowering the flow velocity of the oil after cooling in the cooling passage 73, so the heat transfer coefficient can be increased. , Can be efficiently cooled.
- the third boss 85 is provided on the side projection 84 that protrudes to the side from the cooling passage portion 83 of the oil passage core 8, the flow of oil flowing through the cooling passage 73 of the cooling oil passage 7 is It is possible to suppress the impact. Therefore, this oil passage core structure is excellent in manufacturability, and the formed cooling oil passage 7 provides good cooling performance.
- the cooling passage portion 83 surrounds the spark plug 55 and the exhaust port 16 respectively, and the third boss 85 with respect to a second straight line L2 connecting the spark plug 55 and the center portions 55 c and 16 c of the exhaust port 16. Since the second boss 82 is provided on the second straight line L2, the first passage portion 83b located on the side and the second passage portion 83c located on the other side are provided. Since the first passage portion 83b and the second passage portion 83c of the cooling passage portion 83 have substantially equal lengths, the cooling passage 73 of the formed cooling oil passage 7 surrounds the periphery of the exhaust port 16 and the spark plug 55. Both sides can be made substantially equal in length, and the high temperature portions of the combustion chamber peripheral wall 52a and the combustion chamber upper wall 53 can be uniformly cooled.
- stud bolt holes 68 of a plurality of stud bolts 19 for fastening the cylinder head 13 and the cylinder 12 are disposed in the cylinder head 13 so as to surround the combustion chamber peripheral wall 52 a of the cylinder head 13.
- the third boss 85 are disposed between the combustion chamber peripheral wall 52a and the stud bolt hole 68, so the second boss 82 and the third boss 85 are compacted in the region of the narrow metal portion of the cylinder head 13. Can be arranged.
- the oil passage structure of the hollow oil-cooled internal combustion engine according to one embodiment of the present invention has been described above, it goes without saying that the present invention includes aspects different from the above embodiments within the scope of the claims. And can be changed as appropriate.
- the small vehicle equipped with the air-oil cold internal combustion engine is not limited to a motorcycle, and the degree to which the cylinder is inclined forward from the vertical and the number of cylinders are not limited to those shown either. Even when using a dry oil cold internal combustion engine, it can be applied as an oil passage structure of the dry oil cold internal combustion engine and the same effect can be obtained.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Cylinder Crankcases Of Internal Combustion Engines (AREA)
- Lubrication Of Internal Combustion Engines (AREA)
Abstract
空油冷内燃機関のシリンダヘッド13内に、潤滑用オイル通路68Aが設けられ、同通路68Aからヘッド側冷却用オイル通路7が分岐する。シリンダブロック12に、冷却用オイル通路7からのオイルをクランクケース10に導くオイル戻し通路9が設けられる。オイル通路7には、点火プラグ55と排気ポート16の周辺を流されたオイルを、シリンダヘッドとシリンダブロックとの合わせ面70に送る連通部72が設けられる。シリンダブロック12には、オイル戻し通路9が、連通部72と離間して設けられ、シリンダブロック12の側に、連通部72からオイル戻し通路9へと、オイルを流すシリンダ側オイル通路92が設けられる。かかる構造で、オイル通路7の構造が簡単化され、冷却用オイル温度の上昇が抑えられる。
Description
本発明は、製造コストが低減し、シリンダヘッド冷却用のオイルの温度上昇を抑制できる空油冷内燃機関のオイル通路構造に関する。
空油冷内燃機関において、シリンダヘッド内に冷却用のオイル通路が設けられ、オイル通路は、点火プラグ孔を囲うように設けられるとともに、排気ポートの二又部の間に通した冷却構造が、例えば下記特許文献1に示されている。
特許文献1に示される冷却構造によれば、シリンダヘッド内で、周囲と比較して高温となる点火プラグ孔の座面周りや排気ポートの二又部の間を、少ないオイル量で効果的に冷やすことができ、燃焼室の壁温の均一化を図ることができる。
また、オイル戻し通路が、燃焼室とシリンダボアに隣接して配されているため、ヘッド側冷却用オイル通路を、簡単な構造でオイル戻し通路に接続させることができる。
特許文献1に示される冷却構造によれば、シリンダヘッド内で、周囲と比較して高温となる点火プラグ孔の座面周りや排気ポートの二又部の間を、少ないオイル量で効果的に冷やすことができ、燃焼室の壁温の均一化を図ることができる。
また、オイル戻し通路が、燃焼室とシリンダボアに隣接して配されているため、ヘッド側冷却用オイル通路を、簡単な構造でオイル戻し通路に接続させることができる。
ところが、特許文献1に示される冷却構造においては、排気ポートの二又部を通った後のオイルは、点火プラグ孔の座面周りや排気ポートの間を冷却したため温度が高まっているが、シリンダヘッド内を通り抜けて、燃焼室とシリンダボアに隣接したオイル戻し通路に流され、さらに熱伝達を受け易い。
オイルは、その温度が一定値よりも高くなると性能に影響が出るため、冷却用のオイルは、最も冷やしたい箇所を冷やした後は、なるべく熱を受けず温度を上げないようにしてオイル戻し通路へ流すことが好ましい。
しかしながら、オイル戻し通路が、冷却される燃焼室から離れて配される場合、ヘッド側オイル冷却通路が長くなり、長いヘッド側オイル冷却通路を通過する間に、最も冷やしたい箇所を冷やした後のオイルの温度が高くなりやすい。また、燃焼室やシリンダボアからオイル戻し通路を離して配置した場合、それに接続するヘッド側冷却用オイル通路の構造が複雑化して、製造コストが高まるおそれがある。
しかしながら、オイル戻し通路が、冷却される燃焼室から離れて配される場合、ヘッド側オイル冷却通路が長くなり、長いヘッド側オイル冷却通路を通過する間に、最も冷やしたい箇所を冷やした後のオイルの温度が高くなりやすい。また、燃焼室やシリンダボアからオイル戻し通路を離して配置した場合、それに接続するヘッド側冷却用オイル通路の構造が複雑化して、製造コストが高まるおそれがある。
一方、特許文献2に示されるように、ヘッド側の冷却用のオイル通路は、シリンダヘッドの鋳造時に砂中子によって形成されるが、オイル通路には、砂中子を自立させるため砂中子に設けたボス部により突出部が形成されており、突出部の形状によってはオイルが突出部に滞留し易い場合がある。
また、内燃機関の仕様によっては、滞留したオイルの温度が高くなり過ぎ、オイル性能に影響が出る場合がある。
また、内燃機関の仕様によっては、滞留したオイルの温度が高くなり過ぎ、オイル性能に影響が出る場合がある。
本発明は、上記従来技術に鑑み、空油冷内燃機関において、燃焼室からオイル戻し通路が離れて配される場合にも、ヘッド側冷却用オイル通路の構造を複雑化させることなく、製造コストの安いオイル通路構造を提供することを課題とするものであり、また、シリンダヘッド内で最も冷やしたい箇所を冷やした後の冷却用のオイルを、その温度をなるべく上げないようにして、オイル戻し通路に流すことができるオイル通路構造を提供することを課題とする。
また、本発明は、シリンダヘッドの冷却用のオイル通路に突出部がある場合も、冷却用のオイルの滞留を防ぎ、局所的にオイルの温度が高まることを抑制できるオイル通路構造を提供する。
また、本発明は、シリンダヘッドの冷却用のオイル通路に突出部がある場合も、冷却用のオイルの滞留を防ぎ、局所的にオイルの温度が高まることを抑制できるオイル通路構造を提供する。
上記の課題を解決するために、本発明は、クランクケースに締結されたシリンダブロックと、同シリンダブロックに締結されるとともに、動弁機構が取り付けられ収容されるシリンダヘッドとを備える空油冷内燃機関のオイル通路構造であって、前記シリンダヘッド内に、前記動弁機構へ潤滑用オイルを送る潤滑用オイル通路が設けられ、該潤滑用オイル通路から分岐してヘッド側冷却用オイル通路が設けられ、前記シリンダブロックに、前記ヘッド側冷却用オイル通路からのオイルを前記クランクケースに導くオイル戻し通路が設けられたオイル通路構造において、前記ヘッド側冷却用オイル通路には、前記シリンダヘッドの点火プラグおよび排気ポートの周辺を流されたオイルを、同シリンダヘッドと前記シリンダブロックとの合わせ面に送る連通部が設けられ、前記オイル戻し通路が、前記連通部と離間して設けられるとともに、前記シリンダブロック側に、前記連通部から前記オイル戻し通路へと、オイルを流すシリンダブロック側オイル通路が設けられたことを特徴とする空油冷内燃機関のオイル通路構造を提供する。
本発明の好適な実施形態では、前記シリンダブロック側オイル通路は、前記シリンダブロック側の前記合わせ面に形成された溝である。
本発明の好適な実施形態では、前記シリンダブロック側オイル通路の上流端には、前記連通部と一致する形状のオイル受け部が設けられる。
好適には、前記連通部は、前記シリンダブロックのシリンダ軸線に平行に延出して前記合わせ面に達するように形成される。
好適には、前記シリンダヘッドと前記シリンダブロックとを締結するスタッドボルトが、前記シリンダヘッドの燃焼室を囲うように配置されるとともに、前記連通部は、燃焼室周壁と前記スタッドボルトとの間に配される。
好適には、前記シリンダブロックの外側部に、同シリンダブロックのシリンダボアに隣接して、前記動弁機構を駆動するカムチェーンが収容されるカムチェーンチャンバが設けられ、前記オイル戻し通路が、同カムチェーンチャンバよりも外方に設けられるとともに、前記シリンダブロック側オイル通路が同カムチェーンチャンバを廻り込むようにして、前記オイル戻し通路に連通する。
本発明の好適な実施形態では、前記ヘッド側冷却用オイル通路の中間部に、同ヘッド側冷却用オイル通路から分岐する突出部が設けられ、前記突出部の端部から、前記ヘッド側冷却用オイル通路の下流側に連通され、且つ、前記ヘッド側冷却用オイル通路よりも小さな通路断面積のバイパス通路が設けられる。
前記バイパス通路は、前記合わせ面上の溝とすることができる。また、好適には、前記バイパス通路の上流端部は、シリンダ軸線方向に見て、前記突出部の端部と重なる形状を有する。
前記バイパス通路は、前記合わせ面上の溝とすることができる。また、好適には、前記バイパス通路の上流端部は、シリンダ軸線方向に見て、前記突出部の端部と重なる形状を有する。
本発明の空油冷内燃機関のオイル通路構造によれば、点火プラグまたは排気ポート周辺等のシリンダヘッド内の高温部近傍を流された後の冷却用のオイルは、シリンダヘッド側の連通部からシリンダブロック側に連通され、連通された後のオイルはシリンダブロック側に設けられたシリンダブロック側オイル通路を通って、連通部と離間したオイル戻し通路に流されるため、鋳型製造を複雑にすることなく、オイル戻し通路に至る経路を形成することが可能となり、製造コストの安いオイル通路構造となる。
また、一般的に、燃焼室のあるシリンダヘッド側よりも、燃焼ガスによる膨張が行われるシリンダブロック側の方が温度が低いため、最も冷やしたい箇所を冷やした後のオイルの温度上昇を抑制することができる。
また、一般的に、燃焼室のあるシリンダヘッド側よりも、燃焼ガスによる膨張が行われるシリンダブロック側の方が温度が低いため、最も冷やしたい箇所を冷やした後のオイルの温度上昇を抑制することができる。
シリンダブロック側オイル通路を、前記シリンダブロック側の前記合わせ面に形成された溝とすることにより、シリンダブロック側オイル通路を、シリンダブロック製造時に鋳抜き等で容易に形成可能となる。
前記シリンダブロック側オイル通路の上流端に、前記連通部と一致する形状のオイル受け部が設けられることにより、シリンダブロック側オイル通路のオイル受け部が、シリンダヘッド側冷却用オイル通路の連通部と形状が一致しているので、オイルの流れがスムーズになる。
前記連通部を、前記シリンダブロックのシリンダ軸線に平行に延出して前記合わせ面に達するように形成することにより、連通部を簡素な構造にすることができる。
前記シリンダヘッドと前記シリンダブロックとを締結するスタッドボルトが、前記シリンダヘッドの燃焼室を囲うように配置されるとともに、前記連通部は、燃焼室周壁と前記スタッドボルトとの間に配されることにより、シリンダヘッドの狭い金属部の領域に、コンパクトにヘッド側冷却用オイル通路を設けることができる。
前記シリンダブロックの外側部に、同シリンダブロックのシリンダボアに隣接して、前記動弁機構を駆動するカムチェーンが収容されるカムチェーンチャンバが設けられ、前記オイル戻し通路が、同カムチェーンチャンバよりも外方に設けられるとともに、前記シリンダブロック側オイル通路が同カムチェーンチャンバを廻り込むようにして、前記オイル戻し通路に連通することにより、カムチェーンチャンバはシリンダ内における空間部となり、カムチェーンチャンバの外方は、燃焼室やシリンダボアとの間に同空間部を介在するのでシリンダ内で最も温度が低くなる。そして、かかる温度分布の特性を活かして、カムチェーンチャンバの外方にオイル戻し通路を配置することで、温度の高まった冷却用のオイルを効率よく冷却することが可能となる。
突出部の端部からヘッド側冷却用オイル通路の下流側に連通し、ヘッド側冷却用オイル通路よりも小さな通路断面積のバイパス通路が設けられたことで、主たる冷却用のヘッド側冷却用オイル通路のオイル流れに影響を与えることを抑制しつつ、バイパス通路にオイルを流すことができるので、突出部がオイルの滞留部となってオイルの温度が高まることを抑制することが可能となる。そして、バイパス通路を溝で形成することで、バイパス通路を簡易な構成により低コストで形成できる。さらに、突出部の端部と重なる形状のバイパス通路の上流端部に形成される空間に、オイルを一旦溜めることで、オイルを突出部から下流側のバイパス通路へスムーズに流すことができ、より効果的にオイルの滞留とオイル温度の上昇を抑制できる。
図面に基づき、本発明の空油冷内燃機関のオイル通路構造の一実施形態につき説明する。
なお、本明細書の説明および請求の範囲における前後左右上下等の向きは、本実施形態に係る空油冷内燃機関のオイル通路構造を備えた空油冷内燃機関を、小型車両に搭載した状態での車両の向きに従うものとする。本実施形態において小型車両は自動二輪車である。
また、図中矢印FRは車両前方を、LHは車両左方を、RHは車両右方を、UPは車両上方を、それぞれ示す。
また、図中に添記した黒小矢印は、本実施形態における本発明に係る冷却用のオイルの流れを模式的に示すものであり、図5から図8では、オイル通路中子をオイル通路と看做して、オイルの流れを模式的に示した。
なお、本明細書の説明および請求の範囲における前後左右上下等の向きは、本実施形態に係る空油冷内燃機関のオイル通路構造を備えた空油冷内燃機関を、小型車両に搭載した状態での車両の向きに従うものとする。本実施形態において小型車両は自動二輪車である。
また、図中矢印FRは車両前方を、LHは車両左方を、RHは車両右方を、UPは車両上方を、それぞれ示す。
また、図中に添記した黒小矢印は、本実施形態における本発明に係る冷却用のオイルの流れを模式的に示すものであり、図5から図8では、オイル通路中子をオイル通路と看做して、オイルの流れを模式的に示した。
図1から図12は、本発明の一実施形態に係るものであり、図1に、空油冷内燃機関のオイル通路構造の実施形態を備えた空油冷内燃機関(以下単に「内燃機関」という)1を、自動二輪車2に搭載された状態で示す。
本実施形態に係る内燃機関1は、そのクランクケース10内の後部に変速機4(図2参照)を一体に備えて、いわゆるパワーユニットを構成しており、そのクランク軸11を、自動二輪車2の車幅方向、すなわち左右方向に配向させて自動二輪車2に搭載された、空油冷単気筒の4ストロークサイクル内燃機関である。
本実施形態に係る内燃機関1は、そのクランクケース10内の後部に変速機4(図2参照)を一体に備えて、いわゆるパワーユニットを構成しており、そのクランク軸11を、自動二輪車2の車幅方向、すなわち左右方向に配向させて自動二輪車2に搭載された、空油冷単気筒の4ストロークサイクル内燃機関である。
図1に示されるように、本実施形態に係る内燃機関1を搭載した自動二輪車2の車体フレーム20は、ヘッドパイプ21から後方へ左右一対のメインフレーム22が、若干下向きに延出した後に、さらに下方に屈曲して急傾斜部22aを形成して下端部に至っている。
また、ヘッドパイプ21から斜め急角度に下方へ左右一対のダウンフレーム23が、側面視でメインフレーム22の急傾斜部22aに略平行に延出している。
また、ヘッドパイプ21から斜め急角度に下方へ左右一対のダウンフレーム23が、側面視でメインフレーム22の急傾斜部22aに略平行に延出している。
メインフレーム22の急傾斜部22aの上部からは、ガセット24を介してシートレール25が後方に延出し、シートレール25の中央部と急傾斜部22aの下部とを連結したバックステー26が、シートレール25を支持している。
以上のような車体フレーム20において、ヘッドパイプ21にはフロントフォーク27が枢支され、その下端に前輪28が軸支されている。
メインフレーム22の急傾斜部22aの下部に前端を支持されたリヤフォーク29が、後方へ延出し、その後端に後輪30が軸支され、リヤフォーク29と車体フレーム20のガセット24との間に、リヤクッション31が介装されている。
メインフレーム22の前部には、燃料タンク32が架設され、燃料タンク32の後方にシート33がシートレール25に支持されて設けられている。
メインフレーム22の急傾斜部22aの下部に前端を支持されたリヤフォーク29が、後方へ延出し、その後端に後輪30が軸支され、リヤフォーク29と車体フレーム20のガセット24との間に、リヤクッション31が介装されている。
メインフレーム22の前部には、燃料タンク32が架設され、燃料タンク32の後方にシート33がシートレール25に支持されて設けられている。
メインフレーム22とダウンフレーム23に懸架される内燃機関1は、上述のように変速機4(図2参照)を一体に構成したもので、クランクケース10上にシリンダ軸線Cを若干前傾させて、シリンダブロック12、シリンダヘッド13、シリンダヘッドカバー14が起立した姿勢で懸架される。
内燃機関1のシリンダヘッド13からは後方に、その吸気ポート15に接続して吸気管35が延出し、スロットルボディ36を介してエアクリーナ37に至っている。
シリンダヘッド13から前方には、その排気ポート16に接続して排気管38が延出し、下方に屈曲して内燃機関1の下方を後方に延び、後輪30の右側のマフラー39に至っている。
シリンダヘッド13から前方には、その排気ポート16に接続して排気管38が延出し、下方に屈曲して内燃機関1の下方を後方に延び、後輪30の右側のマフラー39に至っている。
図2に示されるように、内燃機関1のクランクケース10は、クランク軸11を回転可能に支持するとともにクランク軸11が配置されるクランク室17の後方に、変速機4を収容するミッション室40を構成している。
クランクケース10の前側のクランク室17の上には、1本のシリンダボア12aを有するシリンダブロック12と、シリンダブロック12の上にガスケット18(図9参照)を介してシリンダヘッド13が重ねられ、スタッドボルト19によりシリンダヘッド13,シリンダブロック12がクランクケース10に一体に締結され、シリンダヘッド13の上方をシリンダヘッドカバー14が覆っている。
クランクケース10の前側部分の上に重ねられるシリンダブロック12,シリンダヘッド13およびシリンダヘッドカバー14は、クランクケース10から若干前傾した姿勢で上方に延出している(図1参照)。
クランクケース10の前側部分の上に重ねられるシリンダブロック12,シリンダヘッド13およびシリンダヘッドカバー14は、クランクケース10から若干前傾した姿勢で上方に延出している(図1参照)。
シリンダブロック12のシリンダボア12a内にピストン50が往復摺動自在に嵌合され(図2参照)、ピストン50とクランク軸11がコンロッド51により連接されてクランク機構が構成されている。
シリンダヘッド13の下部には、シリンダボア12a中のピストン50に対向して、シリンダボア52aと一致する燃焼室周壁52aを画成して、燃焼室上壁53に覆われる燃焼室52が形成される。
燃焼室上壁53には、燃焼室52に開口して図示しない吸気弁により開閉される吸気ポート15(図1、図4参照)が後方へ延出し、図示しない排気弁により開閉される排気ポート16(図1、図4参照)が前方に延出し、さらに燃焼室52内に臨む点火プラグ55が装着される。
シリンダヘッド13の下部には、シリンダボア12a中のピストン50に対向して、シリンダボア52aと一致する燃焼室周壁52aを画成して、燃焼室上壁53に覆われる燃焼室52が形成される。
燃焼室上壁53には、燃焼室52に開口して図示しない吸気弁により開閉される吸気ポート15(図1、図4参照)が後方へ延出し、図示しない排気弁により開閉される排気ポート16(図1、図4参照)が前方に延出し、さらに燃焼室52内に臨む点火プラグ55が装着される。
シリンダヘッド13には、図示されない吸、排気弁を開閉駆動する動弁カム軸61、被動カムチェーンスプロケット62、吸気ロッカアーム65、排気ロッカアーム66等およびそれらの支持部材67等の動弁系部品からなる動弁機構60が取り付けられ収容されている。
シリンダブロック12およびシリンダヘッド13の左側部(外側部)には、動弁機構60を駆動するカムチェーン64が収容されるカムチェーンチャンバ12b、13bが設けられている。
シリンダブロック12およびシリンダヘッド13の左側部(外側部)には、動弁機構60を駆動するカムチェーン64が収容されるカムチェーンチャンバ12b、13bが設けられている。
動弁機構60の動弁カム軸61に嵌着された被動カムチェーンスプロケット62とクランク軸11に嵌着された駆動カムチェーンスプロケット63との間に、カムチェーンチャンバ12b、13bを通してカムチェーン64が架渡され(図2参照)、クランク軸11の1/2の回転数で動弁カム軸61が回転され、吸気ロッカアーム65と排気ロッカアーム66を揺動して吸、排気弁をそれぞれ所要のタイミングで開閉駆動する。
クランク軸11のクランクケース10の左軸受壁10Lより左方に突出した部分には、駆動チェーンスプロケット63のほかACジェネレータ56が取り付けられ、左ケースカバー57Lで覆われる。
他方、クランク軸11のクランクケース10の右軸受壁10Rより右方に突出した部分には、プライマリ駆動ギヤ58が嵌合され、その右方を右ケースカバー57Rで覆われる。
他方、クランク軸11のクランクケース10の右軸受壁10Rより右方に突出した部分には、プライマリ駆動ギヤ58が嵌合され、その右方を右ケースカバー57Rで覆われる。
クランクケース10のミッション室40には、変速機4のメイン軸41とカウンタ軸42とが、クランク軸11の後方に左右方向に指向して互いに平行に左、右軸受壁10L、10R間にベアリング41a、42aを介して回転自在に架設されており、メイン軸41に軸支されたメインギヤ群41gとカウンタ軸42に軸支されたカウンタギヤ群42gが常時噛み合って変速機4を構成している。
メイン軸41のクランクケース10の右軸受壁10Rより右方に突出した右側部には、多板摩擦式の変速クラッチ43が設けられている。
変速クラッチ43のクラッチアウタ43aは、メイン軸41に回転自在に軸支されたプライマリ被動ギヤ44に緩衝部材を介して支持されており、メイン軸41に一体に嵌合されたクラッチインナ43bとの間に複数のクラッチ板が介装され、圧縮部材43cの駆動により断接を行う。
変速クラッチ43のクラッチアウタ43aは、メイン軸41に回転自在に軸支されたプライマリ被動ギヤ44に緩衝部材を介して支持されており、メイン軸41に一体に嵌合されたクラッチインナ43bとの間に複数のクラッチ板が介装され、圧縮部材43cの駆動により断接を行う。
プライマリ被動ギヤ44は、クランク軸11に嵌着された前記プライマリ駆動ギヤ58と噛合しており、クランク軸11の回転動力は、クランク軸11側のプライマリ駆動ギヤ58、変速クラッチ43側のプライマリ被動ギヤ44を介して変速クラッチ43に伝達されるが、変速クラッチ43は、変速機4のギヤ切換え中にはクランク軸11の回転動力を変速機4に伝達せずにニュートラル状態とし、変速機4のギヤ切換えが終了するとともにクランク軸11の回転動力を変速機4のメイン軸41に伝達するように構成されている。
カウンタ軸42はクランクケース10の左軸受壁10Lを左方に貫通して外部に突出して、内燃機関1の最終の出力軸42となっており、突出部位に出力スプロケット45がスプライン嵌合されている。
出力スプロケット45に巻き掛けられる駆動チェーン46が、後輪30側の被動スプロケット47に架渡されてチェーン伝達機構が構成され後輪30(図1参照)に動力が伝達される。
出力スプロケット45に巻き掛けられる駆動チェーン46が、後輪30側の被動スプロケット47に架渡されてチェーン伝達機構が構成され後輪30(図1参照)に動力が伝達される。
上述のような本実施形態に係る内燃機関1においては、シリンダブロック12、及びシリンダヘッド13の冷却は、基本的にはそれぞれに形成された冷却フィン12c、13cによる空冷が行われる。
しかし、シリンダヘッド12の燃焼室52を覆う燃焼室上壁53の点火プラグ55の装着部の周辺、排気ポート16の燃焼室側開口16a(図3)の周辺は、奥まった燃焼室上壁53にあることから、冷却フィン13cを直接設けることが困難であり、内燃機関1の圧縮比等の仕様によっては、冷却フィンの放熱では冷却が不十分な場合がある。
しかし、シリンダヘッド12の燃焼室52を覆う燃焼室上壁53の点火プラグ55の装着部の周辺、排気ポート16の燃焼室側開口16a(図3)の周辺は、奥まった燃焼室上壁53にあることから、冷却フィン13cを直接設けることが困難であり、内燃機関1の圧縮比等の仕様によっては、冷却フィンの放熱では冷却が不十分な場合がある。
そこで、本実施形態に係る内燃機関1では、燃焼室上壁53内にヘッド側冷却用オイル通路(以下、単に「冷却用オイル通路」という)7(図2)を設け、潤滑用のオイルの一部を冷却用のオイルとして流通させて、シリンダヘッド13の高温部の十分な冷却が行われるように構成されている。
図2に示されるスタッドボルト19は、シリンダボア12a、燃焼室52を囲むように、動弁機構60の支持部材67、シリンダヘッド13、シリンダブロック12のそれぞれに穿孔されたスタッドボルト孔68(図3参照)を、上方から下方へ挿通して、クランクケースに締結され、支持部材67、シリンダヘッド13、シリンダブロック12を共締めしている。
本実施形態においてスタッドボルト19は4本であるが、その4本のスタッドボルト孔68のうちの1本のスタッドボルト孔68A(図3参照)は、その内面とスタッドボルト19の外面との間のボルト孔間隙部をオイル供給通路としており、このオイル供給通路は、図示しないオイル供給路を介してクランクケース10内の図示しないオイルポンプの吐出口まで連通している。
したがって、オイルポンプからのオイルの一部は、スタッドボルト孔68Aを動弁機構60への潤滑用オイル通路として、シリンダヘッド13の上部に収容された動弁カム軸61、被動カムチェーンスプロケット62、吸気ロッカアーム65、排気ロッカアーム66等およびそれらの支持部材67等へ供給される。
したがって、オイルポンプからのオイルの一部は、スタッドボルト孔68Aを動弁機構60への潤滑用オイル通路として、シリンダヘッド13の上部に収容された動弁カム軸61、被動カムチェーンスプロケット62、吸気ロッカアーム65、排気ロッカアーム66等およびそれらの支持部材67等へ供給される。
一方、燃焼室52の燃焼室上壁53は、シリンダヘッド53の下部に形成されており、燃焼室上壁53内部に設けられた冷却用オイル通路7は、潤滑用オイル通路であるスタッドボルト孔68Aから分岐するように連通している。
したがって、潤滑用オイル通路としてのスタッドボルト孔68Aは、冷却用オイル通路7へのオイル供給通路を形成する
したがって、潤滑用オイル通路としてのスタッドボルト孔68Aは、冷却用オイル通路7へのオイル供給通路を形成する
図3は、シリンダヘッド13の、動弁機構60を取り付ける上壁部13dを、動弁機構60を除いた状態で示している。燃焼室上壁53は上壁部13dの下方に位置し、冷却用オイル通路7は図3中に破線で示されるように、燃焼室上壁53内に設けられる(図2参照)。
また、点火プラグ55を取りつける点火プラグ装着孔55aは、図3中に破線で示されるように燃焼室上壁53に開口するように形成され、吸気ポート15、排気ポート16の燃焼室側開口15a、16aは燃焼室周壁52aに内接するように、燃焼室上壁53に開口している(図3参照)。
また、点火プラグ55を取りつける点火プラグ装着孔55aは、図3中に破線で示されるように燃焼室上壁53に開口するように形成され、吸気ポート15、排気ポート16の燃焼室側開口15a、16aは燃焼室周壁52aに内接するように、燃焼室上壁53に開口している(図3参照)。
図3および図4に示されるように、冷却用オイル通路7は、潤滑用オイル通路としてのスタッドボルト孔68Aからオイルが分流されるオイル流入路71と、シリンダブロック12側へオイルを流出させるオイル流出路をなす連通部72と、オイル流入路71と連通部72との間を連通し、点火プラグ55の周辺と排気ポート16の周辺を流れる複数の冷却通路73からなる。
冷却通路73は、オイル流入路71に連なり、点火プラグ装着孔55aに向かう上流路73aと、それに連なり点火プラグ装着孔55aと排気ポート16の周囲を巡る流路のうち、流れ方向右側を構成する第1通路73bと、流れ方向左側を構成する第2通路73cとからなり、第1通路73bと第2通路73cは合流して、連通部72に連なっている。
図4に示されるように、連通部72はその軸線Rをシリンダ軸線Cに平行に下方に延出し、シリンダヘッド13とシリンダブロック12との合わせ面70に達して開口し、シリンダブロック12側にオイルを流出させる。
図4に示されるように、連通部72はその軸線Rをシリンダ軸線Cに平行に下方に延出し、シリンダヘッド13とシリンダブロック12との合わせ面70に達して開口し、シリンダブロック12側にオイルを流出させる。
図3、図4において、破線で囲んだハッチングで示すのは、シリンダヘッド13の燃焼室上壁53内部に設けられた冷却用オイル通路7であり、その形状は、オイル流入通路71以外、シリンダヘッド13の鋳造時において冷却用オイル通路7を形成するための砂中子であるオイル通路中子8と同じである。
図5は、オイル通路中子8を、図3に示される冷却用オイル通路7と同じ方向で示す、オイル通路中子8の平面図である。図6は、図5中VI-VI矢視による、オイル通路中子8の後側面図、図7は、図5中VII-VII矢視による、オイル通路中子8の左側面図、図8は、図5中VIII矢視による、オイル通路中子8の上面斜視図である。
図5から図8においては参照のため、オイル通路中子8の各部符号に加え、それに対応する冷却用オイル通路7の各部符号を、カギカッコ内に添記し、形成された冷却用オイル通路7におけるオイルの流れを黒小矢印で添記する。
図5から図8においては参照のため、オイル通路中子8の各部符号に加え、それに対応する冷却用オイル通路7の各部符号を、カギカッコ内に添記し、形成された冷却用オイル通路7におけるオイルの流れを黒小矢印で添記する。
オイル通路中子8は、オイル流入路71を形成する第1のボス81と、オイル流出路としての連通部72を形成する第2のボス82と、点火プラグ55の周辺と排気ポート16の周辺を流れてオイル流入路71と連通部72とを連通する冷却通路73を形成する冷却通路部83とを有している。
第1のボス81の下部には、鋳型内に設定時に姿勢を決める脚部81aが設けられるが(図6、図8参照)、オイル流入路71が接続するオイル供給通路としてのスタッドボルト孔68Aとオーバーラップする位置にあり、鋳造後の脚部81aの部分はスタッドボルト孔68Aの一部となる(図4参照)。
第1のボス81の下部には、鋳型内に設定時に姿勢を決める脚部81aが設けられるが(図6、図8参照)、オイル流入路71が接続するオイル供給通路としてのスタッドボルト孔68Aとオーバーラップする位置にあり、鋳造後の脚部81aの部分はスタッドボルト孔68Aの一部となる(図4参照)。
冷却通路部83の中間部分において、第1のボス81と第2のボス82とを結ぶ第1の直線L1に対してオイル通路中子(8)の重心(CG)を挟んで側方にオフセットした位置に(図5参照)、冷却通路部83からさらに側方に突出する側方突出部84が設けられ、側方突出部84には下方に向け突出する第3のボス85が設けられている。
すなわち、重心CGは、直線L1に対して一方側(ここでは流れ方向右側)にオフセットした位置にあり、第3のボス85は、直線L1に対して重心CG側であって、重心よりもさらにオフセットした位置に配される。そのため、オイル通路中子8の重心CGを囲むように第1のボス81、第2のボス82、第3のボス85が配されるので、オイル通路中子8は、鋳造時においてシリンダヘッド13の鋳型内で安定して自立可能である。
第3のボス85は、鋳型内に設定時に姿勢を決める脚部となるものだが、シリンダヘッド13の鋳造後において、冷却用通路73における突出部75を形成する。
また、突出部75は、シリンダヘッド13がシリンダブロック12に締結されたとき、それらの合わせ面70まで延在する。
すなわち、重心CGは、直線L1に対して一方側(ここでは流れ方向右側)にオフセットした位置にあり、第3のボス85は、直線L1に対して重心CG側であって、重心よりもさらにオフセットした位置に配される。そのため、オイル通路中子8の重心CGを囲むように第1のボス81、第2のボス82、第3のボス85が配されるので、オイル通路中子8は、鋳造時においてシリンダヘッド13の鋳型内で安定して自立可能である。
第3のボス85は、鋳型内に設定時に姿勢を決める脚部となるものだが、シリンダヘッド13の鋳造後において、冷却用通路73における突出部75を形成する。
また、突出部75は、シリンダヘッド13がシリンダブロック12に締結されたとき、それらの合わせ面70まで延在する。
そのような本実施形態に用いられるオイル通路中子8は、連通部72を形成する第2のボス82の表面積を小さくしてその横幅が小さくなっても、第3のボス85を備えているので、鋳造時にシリンダヘッド13の鋳型内で、第1~第3のボス81、82、85によって自立可能である。
したがって、形成された冷却用オイル通路7の連通部72では表面積を小さくでき、冷却通路73で冷却を行った後のオイルの流速を落とすことなくシリンダブロック12側に流出させることができるので、熱伝達率を高くできるため、効率的に冷却を行うことができる。
したがって、形成された冷却用オイル通路7の連通部72では表面積を小さくでき、冷却通路73で冷却を行った後のオイルの流速を落とすことなくシリンダブロック12側に流出させることができるので、熱伝達率を高くできるため、効率的に冷却を行うことができる。
また、第3のボス85は、冷却通路部83のより側方に突出した側方突出部84に設けられ、形成された冷却用オイル通路7の突出部75も冷却通路73の側方に突出して位置するので、冷却通路73を流れるオイルの流れに与える影響を抑えることができる。
よって、本実施形態に用いられるオイル通路中子8の構造は、製造性に優れ、形成された冷却用オイル通路7が良好な冷却性能をもたらすものとなる。
よって、本実施形態に用いられるオイル通路中子8の構造は、製造性に優れ、形成された冷却用オイル通路7が良好な冷却性能をもたらすものとなる。
また、冷却通路部83は、点火プラグ55の点火プラグ装着孔55aと排気ポート16の周囲をそれぞれ囲み、点火プラグ55の点火プラグ装着孔55aの中心部55cと、排気ポート16の中心部16cとを結ぶ第2の直線L2に対して、第3のボス85側に位置する第1通路部83bと、他側に位置する第2通路部83cと、第1通路部83bと第2通路部83cを、第1のボス81に連結する上流路部83aを有し、第2のボス部82が第2の直線L2上に設けられている。
そのため、オイル通路中子8の冷却通路部83の第1通路部83bと第2通路部83cが概ね均等な長さとなるので、形成された冷却用オイル通路7の冷却通路73の、排気ポート16と点火プラグ55の周辺を囲む両側の、第1通路73bと第2通路73cを概ね均等な長さとすることができ、燃焼室上部壁53や燃焼室周壁52aの高温部分を均一に冷却することができる。
なお、第1通路部83bには、排気ポート16周辺で側方に突出する側方突出部84にオイル通路中子8を鋳造時に自立させる第3のボス85が設けられるが、形成された冷却用オイル通路7の第1通路73bのオイルの流れへの影響が抑制されることは、上述の通りである。
また、図3に示されるように、本実施形態では、シリンダヘッド13とシリンダブロック12とを締結する複数のスタッドボルト19のスタッドボルト孔68が、シリンダヘッド13の燃焼室周壁52aを囲うようにシリンダヘッド13において配され、オイル通路中子8の第2のボス82と第3のボス85は、燃焼室周壁52aとスタッドボルト孔68との間に配置されるように構成されているので、シリンダヘッド13の狭い金属部の領域に、第2のボス82と第3のボス85をコンパクトに配することができる。
すなわち、スタッドボルト19が、シリンダヘッド13の燃焼室周壁52aを囲うようにシリンダヘッド13において配され、冷却用オイル通路7の連通部72は、燃焼室周壁52aとスタッドボルト19との間に配置されるので、シリンダヘッド13の狭い金属部の領域に、冷却用オイル通路7をコンパクトに配することができる。
上記のような冷却用オイル通路7が設けられたシリンダヘッド13の下方には、シリンダブロック12がスタッドボルト19によって締結されている。
図9に示されるように、シリンダブロック12には、冷却用オイル通路7からのオイルをクランクケース10内に導くオイル戻し通路9が設けられている。
図9に示されるように、シリンダブロック12には、冷却用オイル通路7からのオイルをクランクケース10内に導くオイル戻し通路9が設けられている。
図9には、シリンダブロック12に締結された状態のシリンダヘッド13における冷却用オイル通路7が2点鎖線で示されている。
冷却用オイル通路7のオイル流入路71は、オイル供給通路となるスタッドボルト孔68Aに接続するとともに、連通部72は、シリンダブロック12とシリンダヘッド13との接合面70において連通部72と一致する形状でシリンダブロック12側に凹設されたオイル受け部90と連通している。
冷却用オイル通路7のオイル流入路71は、オイル供給通路となるスタッドボルト孔68Aに接続するとともに、連通部72は、シリンダブロック12とシリンダヘッド13との接合面70において連通部72と一致する形状でシリンダブロック12側に凹設されたオイル受け部90と連通している。
一方、図9、図11に示されるように、合わせ面70にはシリンダブロック12に穿孔されたオイル戻し孔9が開口するが、オイル戻し孔9は、シリンダボア12aと隣接するカムチェーンチャンバ12bの空間部を挟んで、シリンダボア12aと反対側のシリンダブロック12の左側部に設けられている。
そして、オイル受け部90とオイル戻し孔9との間には、シリンダブロック12側の合わせ面70に設けられた溝91が、カムチェーンチャンバ12bを廻り込むように接続して設けられている。
シリンダブロック12とシリンダヘッド13が締結された状態で、オイル受け部90と溝91は、冷却用オイル通路7の連通部72から受けたオイルを、連通部72と離間した位置に設けられたオイル戻し孔9へと流すシリンダ側オイル通路92となる。
そして、オイル受け部90とオイル戻し孔9との間には、シリンダブロック12側の合わせ面70に設けられた溝91が、カムチェーンチャンバ12bを廻り込むように接続して設けられている。
シリンダブロック12とシリンダヘッド13が締結された状態で、オイル受け部90と溝91は、冷却用オイル通路7の連通部72から受けたオイルを、連通部72と離間した位置に設けられたオイル戻し孔9へと流すシリンダ側オイル通路92となる。
前述のように連通部72はシリンダ軸線Cに平行に延出して合わせ面70に達するので、連通部72の構造が簡素になるという製造上の利点に加え、シリンダヘッド13での冷却作用を済ませたオイルは、速やかにシリンダブロック12側に送り込まれる。
そして、オイルは、シリンダヘッド13より温度が低いシリンダブロック側オイル通路92を流れ、燃焼室52やシリンダボア12aとはカムチェーンチャンバ12bの空間部を挟んで、シリンダブロック12のなかでも最も温度の低いカムチェーンチャンバ12bの外方に、連通部72と離間して設けられたオイル戻し孔9へと流されるので、オイルは不要な加熱を受けることが抑制され、相対的に冷却をうけることができるため、オイルの温度上昇を抑制できる。
そして、オイルは、シリンダヘッド13より温度が低いシリンダブロック側オイル通路92を流れ、燃焼室52やシリンダボア12aとはカムチェーンチャンバ12bの空間部を挟んで、シリンダブロック12のなかでも最も温度の低いカムチェーンチャンバ12bの外方に、連通部72と離間して設けられたオイル戻し孔9へと流されるので、オイルは不要な加熱を受けることが抑制され、相対的に冷却をうけることができるため、オイルの温度上昇を抑制できる。
また、そのようにオイル戻し孔9を、冷却用オイル通路7の連通部72と離間して設けていても、合わせ面70に形成された溝状のシリンダ側オイル通路92でその間を接続できたので、シリンダヘッド13やシリンダブロック12の鋳型製造を複雑にすることなく、オイル戻し通路9に至る流路が得られ、製造コストの低減が可能となる。
特に、凹部状のオイル受け部90と溝91は、シリンダブロック12の鋳造時、鋳抜きでも形成できるので、形成が容易であり、コスト低減が可能である。
また、オイル受け部90は、連通部72と同じ形状に形成され、連通部72と一体の流路を形成するので、オイルの連通する流れがスムーズになる。
特に、凹部状のオイル受け部90と溝91は、シリンダブロック12の鋳造時、鋳抜きでも形成できるので、形成が容易であり、コスト低減が可能である。
また、オイル受け部90は、連通部72と同じ形状に形成され、連通部72と一体の流路を形成するので、オイルの連通する流れがスムーズになる。
なお、図11に2点差線で示すように溝91′を、シリンダブロック12の後方側でカムチェーンチャンバ12bを廻りこむようにしてシリンダブロック側オイル通路92′を形成してもよい。
その場合、シリンダブロック12の前方側でカムチェーンチャンバ12bを廻りこむようにした前述のシリンダブロック側オイル通路92と比べ、シリンダブロック側オイル通路92′を長く設定でき、比較的低温の吸気ポート15側(図3参照)を通ることとなるので、オイルの加熱防止ないし冷却上の利点が得られる。
その場合、シリンダブロック12の前方側でカムチェーンチャンバ12bを廻りこむようにした前述のシリンダブロック側オイル通路92と比べ、シリンダブロック側オイル通路92′を長く設定でき、比較的低温の吸気ポート15側(図3参照)を通ることとなるので、オイルの加熱防止ないし冷却上の利点が得られる。
また、図10に変形例を示すように、オイル戻し孔9′を、円形断面孔ではなく、波状側面を有する縦孔としてもよく、その場合、カムチェーンチャンバ12bやシリンダブロック12の外側面の冷却フィン12cへの熱伝達が高まり、オイルの冷却を強化することができる。
なお、図9、図10において合わせ面70上に、冷却用オイル通路7以外に2点差線で示したものは、合わせ面70のガスケット18である。
なお、図9、図10において合わせ面70上に、冷却用オイル通路7以外に2点差線で示したものは、合わせ面70のガスケット18である。
上述のように、冷却用オイル通路7を形成するための砂中子であるオイル通路中子8には、シリンダヘッド13の鋳造時に鋳型内で自立できるように、冷却通路部83のより側方に突出した側方突出部84に設けられた第3のボス85を備える。
そのため、図5、図6、図8に示されるように、形成された冷却用オイル通路7は、第3のボス85によって、その冷却通路73の第1通路73bの中間部から下方に分岐する突出部75を有するものとなる。突出部75は、シリンダヘッド13がシリンダブロック12に締結されたとき、それらの合わせ面70まで延在する。
そのため、図5、図6、図8に示されるように、形成された冷却用オイル通路7は、第3のボス85によって、その冷却通路73の第1通路73bの中間部から下方に分岐する突出部75を有するものとなる。突出部75は、シリンダヘッド13がシリンダブロック12に締結されたとき、それらの合わせ面70まで延在する。
突出部75は、冷却通路73の第1通路73bから分岐して下方に突出しているので、冷却用オイル通路のオイル流れに影響を与えることは抑制されるが、オイルの滞留が起き易く、滞留したオイルの温度が高まるおそれがある。
そこで、本実施形態においては、図9、図11に示されるように、シリンダヘッド13とシリンダブロック12との合わせ面70におけるシリンダブロック12側に、シリンダヘッド13とシリンダブロック12が締結されたときに突出部75の下端部と一致する形状のバイパスオイル受け部95が凹設されている。
また、合わせ面70におけるシリンダブロック12側には、バイパスオイル受け部95とオイル受け部90とを接続するバイパス溝96が形成されており、バイパスオイル受け部95とバイパス溝96はバイパスオイル受け部95を上流端とするバイパス通路97を形成する。
バイパス通路97を形成するバイパス溝96による流路断面積は、冷却用オイル通路7の流路断面積より小さく設定されている。
なお、バイパス溝96は、合わせ面70のシリンダヘッド13側に形成されてもよい。
バイパス通路97を形成するバイパス溝96による流路断面積は、冷却用オイル通路7の流路断面積より小さく設定されている。
なお、バイパス溝96は、合わせ面70のシリンダヘッド13側に形成されてもよい。
したがって、冷却用オイル通路7の突出部75内のオイルは、その端部からバイパス通路97に流入し、冷却用オイル通路7の下流側の連通部72と一体の流路を形成するオイル受け部90まで送られるので、突出部75でのオイルの滞留が防止され、オイルの温度の上昇が抑制される。
また、バイパス通路97は流路断面積が冷却用オイル通路7の流路断面積より小さく設定されるので、バイパス流れが冷却用オイル通路7の冷却用のオイルの流れを阻害することを避けることができる。
そして、バイパス通路97はその上流端部が、突出部75の下端部と一致する形状のバイパスオイル受け部95として形成されているので、突出部75とバイパスオイル受け部95が一体の流路を形成し、バイパスオイル受け部95のバイパスオイルの流れがスムーズである。
そして、バイパス通路97はその上流端部が、突出部75の下端部と一致する形状のバイパスオイル受け部95として形成されているので、突出部75とバイパスオイル受け部95が一体の流路を形成し、バイパスオイル受け部95のバイパスオイルの流れがスムーズである。
また、バイパス流路97は、合わせ面70における簡易な構成であり、鋳抜き等で形成できるので、製造コストが低減されたものとなる。
図12には、本実施形態におけるバイパス通路97を、空油冷多気筒内燃機関(以下、単に「多気筒内燃機関」という)1′に適用した場合の変形例が示される。
図12に示されるように、多気筒内燃機関1′は、気筒列方向に右側から順に第一気筒C1~第四気筒C4が直列に並ぶ4気筒を有しており、シリンダヘッドにおいて、各気筒毎に燃焼室が形成され、その燃焼室上壁53′の頂部に点火プラグ55を装着させるための点火プラグ装着孔55aが設けられる。
また、各気筒の燃焼室上壁53′には、一対の吸気ポート燃焼室側開口15a′と、一対の排気ポート燃焼室側開口16a′が設けられる。
図12に示されるように、多気筒内燃機関1′は、気筒列方向に右側から順に第一気筒C1~第四気筒C4が直列に並ぶ4気筒を有しており、シリンダヘッドにおいて、各気筒毎に燃焼室が形成され、その燃焼室上壁53′の頂部に点火プラグ55を装着させるための点火プラグ装着孔55aが設けられる。
また、各気筒の燃焼室上壁53′には、一対の吸気ポート燃焼室側開口15a′と、一対の排気ポート燃焼室側開口16a′が設けられる。
第二気筒C2と第三気筒C3の燃焼室上壁53′内部には、気筒後方側から、すなわち吸気ポート燃焼室側開口15a′の間から、点火プラグ装着孔55aの周囲を通り、気筒前方側、すなわち排気ポート燃焼室側開口16a′の間を抜けるように、それぞれ第1冷却オイル通路77A、77Bが設けられている。
第二気筒C2と第三気筒C3の第1冷却オイル通路77A、77Bは、それぞれ気筒後方側でオイル供給通路76A、76Bに接続され、オイル供給通路76A、76Bはその上流側で合流し、図示しないオイルポンプの吐出口に接続している。
第一気筒C1と第四気筒C4の燃焼室上壁53′内部には、気筒前方側から、すなわち排気ポート燃焼室側開口16a′の間から、点火プラグ装着孔55aの周囲を通り、気筒外側方へ抜けるように、それぞれ第3冷却オイル通路79A、79Bが設けられている。
第一気筒C1と第四気筒C4の第3冷却オイル通路79A、79Bは、それぞれ右、左の気筒側方側でオイル戻し通路9A、9Bに接続され、オイル戻し通路9A、9Bはその下流側で合流し、図示しないクランクケース内のオイル戻し系統に接続している。
また、第二気筒C2の第1冷却オイル通路77Aの気筒前方側の下流端部77Aaと、第一気筒C1の第3冷却オイル通路79Aの気筒前方側の上流端部79Aaとは、第2冷却オイル通路78Aによって接続されている。
第三気筒C3の第1冷却オイル通路77Bの気筒前方側の下流端部77Baと、第四気筒C4の第3冷却オイル通路79Bの気筒前方側の上流端部79Baとは、第2冷却オイル通路78Bによって接続されている。
第三気筒C3の第1冷却オイル通路77Bの気筒前方側の下流端部77Baと、第四気筒C4の第3冷却オイル通路79Bの気筒前方側の上流端部79Baとは、第2冷却オイル通路78Bによって接続されている。
したがって、図12の多気筒内燃機関1′において、第2気筒C2の第1冷却オイル通路77A、第2冷却オイル通路78A、第1気筒C1の第3冷却オイル通路79Aは、シリンダヘッドにおいて、一連のヘッド側冷却用オイル通路(以下、単に「冷却用オイル通路」という)7Aを形成する。
また、第三気筒C3の第1冷却オイル通路77B、第2冷却オイル通路78B、第四気筒C4の第3冷却オイル通路79Bは、シリンダヘッドにおいて、一連の冷却用オイル通路7Bを形成する。
また、第三気筒C3の第1冷却オイル通路77B、第2冷却オイル通路78B、第四気筒C4の第3冷却オイル通路79Bは、シリンダヘッドにおいて、一連の冷却用オイル通路7Bを形成する。
冷却用オイル通路7A、冷却用オイル通路7Bはともに、砂中子による図示しないオイル通路中子によって形成されるが、シリンダヘッドの鋳造時に鋳型内に自立するために、オイル通路中子は、図5から図8において説明したと同様に形成する通路の上流端部、下流端部および中間部にボスを備える。
特に、中間部のボスは、前述のオイル通路中子8の場合と同様に、冷却用オイル通路7Aおよび冷却用オイル通路7Bの中間部に、各気筒毎に、冷却用オイル通路7Aから分岐する突出部75A1、75A2、および冷却用オイル通路7Bから分岐する突出部75B3、75B4を形成するので、各突出部において、オイルの滞留、オイルの温度上昇のおそれを生じる。
特に、中間部のボスは、前述のオイル通路中子8の場合と同様に、冷却用オイル通路7Aおよび冷却用オイル通路7Bの中間部に、各気筒毎に、冷却用オイル通路7Aから分岐する突出部75A1、75A2、および冷却用オイル通路7Bから分岐する突出部75B3、75B4を形成するので、各突出部において、オイルの滞留、オイルの温度上昇のおそれを生じる。
そこで、本実施形態の変形例においては、第一気筒C1の突出部75A1の下端部から冷却用オイル通路7Aの下流部7Aaに連通され、且つ、第一気筒C1の突出部75A1の下端部と第二気筒C2の突出部75A2の下端部とを連通する突出部連通路98Aを備えたバイパス通路97Aが備えられている。
また、第四気筒C4の突出部75B4の下端部から冷却用オイル通路7Bの下流部7Baに連通され、且つ、第四気筒C4の突出部75B4の下端部と第三気筒C3の突出部75B3の下端部とを連通する突出部連通路98Bを備えたバイパス通路97Bが備えられている。
各バイパス通路97A、97Bの流路断面積は、それぞれ冷却用オイル通路7A、7Bの流路断面積より小さく設定されており、バイパスオイルの流れが、冷却用オイル通路7A、7Bのオイルの流れを阻害することが防止されている。
また、第四気筒C4の突出部75B4の下端部から冷却用オイル通路7Bの下流部7Baに連通され、且つ、第四気筒C4の突出部75B4の下端部と第三気筒C3の突出部75B3の下端部とを連通する突出部連通路98Bを備えたバイパス通路97Bが備えられている。
各バイパス通路97A、97Bの流路断面積は、それぞれ冷却用オイル通路7A、7Bの流路断面積より小さく設定されており、バイパスオイルの流れが、冷却用オイル通路7A、7Bのオイルの流れを阻害することが防止されている。
したがって、第一気筒C1、第二気筒C2において、バイパス通路97Aにより、突出部75A2のオイルは突出部連通路98A経由、突出部75A1に流れ、さらに冷却用オイル通路7Aの下流部7Aaに流されるので、各突出部75A1、75A2でのオイルの滞留によるオイル温度の上昇が抑制される。
また、突出部連通路98Aによって、各突出部75A1、75A2毎に冷却用オイル通路7Aの下流部7Aaに連通するバイパス通路を設ける必要がなく、構造の簡素化とコスト低減が図られる。
そのことは、第三気筒C3、第四気筒C4において、同様である。
また、突出部連通路98Aによって、各突出部75A1、75A2毎に冷却用オイル通路7Aの下流部7Aaに連通するバイパス通路を設ける必要がなく、構造の簡素化とコスト低減が図られる。
そのことは、第三気筒C3、第四気筒C4において、同様である。
以下に、本発明に係る上述の本実施形態の空油冷内燃機関のオイル通路構造の特徴を纏めて説明する。
すなわち、クランクケース10に、シリンダブロック12と、動弁機構60が取り付けられ収容されるシリンダヘッド13とが締結され、シリンダヘッド13内に、動弁機構60の潤滑用オイル通路となるスタッドボルト孔68Aと分岐して冷却用オイル通路7が設けられ、シリンダブロック12に、冷却用オイル通路7からのオイルをクランクケース10に導くオイル戻し通路9が設けられた空油冷内燃機関1のオイル通路構造において、冷却用オイル通路7には、オイルがシリンダヘッド13の点火プラグ55と排気ポート16周辺を流された後、シリンダヘッド13とシリンダブロック12との合わせ面70に連通される連通部72が設けられ、オイル戻し通路9が、連通部72と離間して設けられるとともに、シリンダブロック12側に、連通部72からオイル戻し通路9へと、オイルを流すシリンダブロック側オイル通路92が設けられている。
すなわち、クランクケース10に、シリンダブロック12と、動弁機構60が取り付けられ収容されるシリンダヘッド13とが締結され、シリンダヘッド13内に、動弁機構60の潤滑用オイル通路となるスタッドボルト孔68Aと分岐して冷却用オイル通路7が設けられ、シリンダブロック12に、冷却用オイル通路7からのオイルをクランクケース10に導くオイル戻し通路9が設けられた空油冷内燃機関1のオイル通路構造において、冷却用オイル通路7には、オイルがシリンダヘッド13の点火プラグ55と排気ポート16周辺を流された後、シリンダヘッド13とシリンダブロック12との合わせ面70に連通される連通部72が設けられ、オイル戻し通路9が、連通部72と離間して設けられるとともに、シリンダブロック12側に、連通部72からオイル戻し通路9へと、オイルを流すシリンダブロック側オイル通路92が設けられている。
そのため、点火プラグ55と排気ポート16周辺等のシリンダヘッド13内の高温部近傍を流された後の冷却用のオイルは、シリンダヘッド13側の連通部72からシリンダブロック12側に連通され、連通された後のオイルはシリンダブロック12側に設けられたシリンダブロック側オイル通路92を通って、連通部72と離間したオイル戻し通路9に流されるため、鋳型製造を複雑にすることなく、オイル戻し通路9に至る経路を形成することが可能となり、製造コストの安いオイル通路構造となる。
また、一般的に、燃焼室52のあるシリンダヘッド13側よりも、燃焼ガスによる膨張が行われるシリンダブロック12側の方が温度が低いため、最も冷やしたい箇所を冷やした後のオイルの温度上昇を抑制することができる。
また、一般的に、燃焼室52のあるシリンダヘッド13側よりも、燃焼ガスによる膨張が行われるシリンダブロック12側の方が温度が低いため、最も冷やしたい箇所を冷やした後のオイルの温度上昇を抑制することができる。
また、シリンダブロック側オイル通路92は、シリンダブロック12側の合わせ面70に溝91として設けられたので、シリンダブロック側オイル通路92を、シリンダブロック製造時に鋳抜き等で容易に形成可能となる。
また、シリンダブロック側オイル通路92の上流端には、連通部72と一致する形状のオイル受け部90が設けられたので、オイルの連通においてシリンダヘッド13からシリンダブロック12へのオイルの流れがスムーズになる。
また、連通部72は、シリンダブロック12の軸線Cに平行に延出して合わせ面70に達するように形成されたので、連通部72を簡素な構造で設けることができる。
また、シリンダヘッド13とシリンダブロック12とを締結するスタッドボルト19が、シリンダヘッド13の燃焼室52を囲うように配置されるとともに、連通部72は、燃焼室周壁52aとスタッドボルト19との間に配されたので、シリンダヘッド13の狭い金属部の領域に、コンパクトに冷却用オイル通路7を設けることができる。
そして、シリンダブロック12の外側部に、シリンダブロック12のシリンダボア12aに隣接して、動弁機構60を駆動するカムチェーン64が収容されるカムチェーンチャンバ12bが設けられ、オイル戻し通路9が、カムチェーンチャンバ12bよりも外方に設けられるとともに、シリンダブロック側オイル通路12がカムチェーンチャンバ12bを廻り込むようにして、オイル戻し通路9に連通するように構成されている。
カムチェーンチャンバ12bはシリンダブロック12内における空間部となり、カムチェーンチャンバ12bの外方は、燃焼室52やシリンダボア12aとの間に同空間部が介在するのでシリンダブロック12内で最も温度が低くなる。
かかる温度分布の特性を活かして、カムチェーンチャンバ12bの外方にオイル戻し通路9を配置することで、温度の高まった冷却用のオイルを効率よく冷却することが可能となる。
かかる温度分布の特性を活かして、カムチェーンチャンバ12bの外方にオイル戻し通路9を配置することで、温度の高まった冷却用のオイルを効率よく冷却することが可能となる。
冷却用オイル通路7の中間部に、冷却用オイル通路7,7A,7Bから分岐する突出部75,75A1,75A2,75B3,75B4を設け、同突出部75,75A1,75A2,75B3,75B4の端部から、冷却用オイル通路7,7A,7Bの下流側に連通され、且つ、冷却用オイル通路7,7A,7Bよりも小さな通路断面積のバイパス通路97,97A,97Bが設けられるが、これにより、主たる冷却用の冷却用オイル通路7,7A,7Bのオイル流れに影響を与えることを抑制しつつ、バイパス通路97,97A,97Bにオイルを流すことができる。よって、突出部75,75A1,75A2,75B3,75B4がオイルの滞留部となってオイルの温度が高まることを抑制することが可能となる。
また、突出部75が、シリンダヘッド13とシリンダ12との合わせ面70まで延在するとともに、バイパス通路97は、合わせ面70上のバイパス溝96として設けられたので、バイパス通路97を簡易な構成によって低コストで形成できる。
また、バイパス通路97の上流端部のバイパスオイル受け部95は、シリンダ軸方向に見て、突出部75の端部と重なる形状とされたので、バイパスオイル受け部95に形成された空間に、オイルを一旦溜めることで、オイルを突出部75から下流側のバイパス通路97へスムーズに流すことができ、より効果的にオイルの滞留とオイル温度の上昇を抑制できる。
多気筒内燃機関である空油冷内燃機関1′の場合、冷却用オイル通路7A,7Bの突出部75A1,75A2,75B3,75B4が隣接する気筒ごとに少なくとも1つ以上設けられるとともに、バイパス通路97A,97Bは、隣り合う突出部75A1,75A2,75B3,75B4同士を連通する突出部連通路98A,98Bを備えることで、少ないバイパス通路97A,97Bで突出部75A1,75A2,75B3,75B4のオイルの滞留を効果的に抑制できる。
以下に、シリンダヘッドの前記オイル通路中子構造の特徴を説明する。
すなわち、点火プラグ55、吸気ポート15および排気ポート16が形成されるシリンダヘッド13内に、シリンダヘッド13の鋳造時において冷却用オイル通路7を形成するためのシリンダヘッドのオイル通路中子構造において、オイル通路中子8は、オイル流入路71を形成する第1のボス81と、オイル流出路となる連通部72を形成する第2のボス82と、点火プラグ55の周辺および排気ポート16の周辺を流れてオイル流入路71と連通部72とを連通する冷却通路73を形成する冷却通路部83とを有し、冷却通路部83の中間部分において、第1のボス81と第2のボス82とを結ぶ第1の直線L1に対してオイル通路中子8の重心CGを挟んで側方にオフセットした位置に、冷却通路部83からさらに側方に突出する側方突出部84が設けられ、側方突出部84に第3のボス85が設けられている。
すなわち、点火プラグ55、吸気ポート15および排気ポート16が形成されるシリンダヘッド13内に、シリンダヘッド13の鋳造時において冷却用オイル通路7を形成するためのシリンダヘッドのオイル通路中子構造において、オイル通路中子8は、オイル流入路71を形成する第1のボス81と、オイル流出路となる連通部72を形成する第2のボス82と、点火プラグ55の周辺および排気ポート16の周辺を流れてオイル流入路71と連通部72とを連通する冷却通路73を形成する冷却通路部83とを有し、冷却通路部83の中間部分において、第1のボス81と第2のボス82とを結ぶ第1の直線L1に対してオイル通路中子8の重心CGを挟んで側方にオフセットした位置に、冷却通路部83からさらに側方に突出する側方突出部84が設けられ、側方突出部84に第3のボス85が設けられている。
そのため、オイル通路中子8は、連通部72を形成する第2のボス82の表面積を小さくしてその横幅が小さくなっても、第3のボス85を備えているので、オイル通路中子8の重心CGを囲むように第1のボス81、第2のボス82、第3のボス85が配されるため、シリンダヘッド13の鋳型内で安定して自立可能である。
したがって、形成された冷却用オイル通路7の連通部72では、冷却通路73で冷却を行った後のオイルの流速を落とすことなくシリンダ側に流出させることができるので、熱伝達率を高くできるため、効率的に冷却を行うことができる。
また、第3のボス85は、オイル通路中子8の冷却通路部83より側方に突出した側方突出部84に設けられるので、冷却用オイル通路7の冷却通路73を流れるオイルの流れに与える影響を抑えることができる。
よって、このオイル通路中子構造は、製造性に優れ、形成された冷却用オイル通路7が良好な冷却性能をもたらすものとなる。
したがって、形成された冷却用オイル通路7の連通部72では、冷却通路73で冷却を行った後のオイルの流速を落とすことなくシリンダ側に流出させることができるので、熱伝達率を高くできるため、効率的に冷却を行うことができる。
また、第3のボス85は、オイル通路中子8の冷却通路部83より側方に突出した側方突出部84に設けられるので、冷却用オイル通路7の冷却通路73を流れるオイルの流れに与える影響を抑えることができる。
よって、このオイル通路中子構造は、製造性に優れ、形成された冷却用オイル通路7が良好な冷却性能をもたらすものとなる。
また、冷却通路部83は、点火プラグ55と排気ポート16の周囲をそれぞれ囲み、点火プラグ55と排気ポート16の中心部55c、16c間を結ぶ第2の直線L2に対して第3のボス85側に位置する第1通路部83bと、他側に位置する第2通路部83cとを有し、第2のボス82が第2の直線L2上に設けられたので、オイル通路中子8の冷却通路部83の第1通路部83bと第2通路部83cが概ね均等な長さとなるため、形成された冷却用オイル通路7の冷却通路73の、排気ポート16と点火プラグ55の周辺を囲む両側を概ね均等な長さとすることができ、燃焼室周壁52a、燃焼室上壁53の高温部分を均一に冷却することができる。
また、シリンダヘッド13とシリンダ12とを締結する複数のスタッドボルト19のスタッドボルト孔68が、シリンダヘッド13の燃焼室周壁52aを囲うようにシリンダヘッド13において配されるとともに、第2のボス82と第3のボス85は、燃焼室周壁52aとスタッドボルト孔68との間に配置されたので、シリンダヘッド13の狭い金属部の領域に、第2のボス82と第3のボス85をコンパクトに配することができる。
以上、本発明の一実施形態の空油冷内燃機関のオイル通路構造につき述べたが、本発明は、各請求項の要旨の範囲内で、上記実施形態と異なる態様を含むことは勿論であり、適宜変更可能である。
空油冷内燃機関を搭載する小型車両は、自動二輪車に限定されず、シリンダが垂直より前傾する度合い、気筒数も図示のものに限定するものではなく、種々の態様の小型車両において同様の空油冷内燃機関を使用した場合にも、空油冷内燃機関のオイル通路構造として適用し、同様の効果を得ることができる。
空油冷内燃機関を搭載する小型車両は、自動二輪車に限定されず、シリンダが垂直より前傾する度合い、気筒数も図示のものに限定するものではなく、種々の態様の小型車両において同様の空油冷内燃機関を使用した場合にも、空油冷内燃機関のオイル通路構造として適用し、同様の効果を得ることができる。
1…空油冷内燃機関(内燃機関)、7、7A、7B…冷却用オイル通路(ヘッド側冷却用オイル通路)、9…オイル戻し通路、10…クランクケース、12…シリンダブロック、12a…シリンダボア、12b…カムチェーンチャンバ、13…シリンダヘッド、13b…カムチェーンチャンバ、15…吸気ポート、15a…燃焼室側開口、16…排気ポート、16a…燃焼室側開口、16c…中心部、19…スタッドボルト、52…燃焼室、52a…燃焼室周壁、53…燃焼室上壁、55…点火プラグ、55a…点火プラグ装着孔、55c…中心部、60…動弁機構、61…動弁カム軸、62…被動カムチェーンスプロケット、65…吸気ロッカアーム、66…排気ロッカアーム、67…支持部材、68…スタッドボルト孔、68A…(潤滑用オイル通路であり、オイル供給通路となる)スタッドボルト孔、70…合わせ面、72…連通部、73…冷却通路、75、75A1、75A2、75B3、75B4…突出部、77A、77B…第1冷却オイル通路、78A、78B…第2冷却オイル通路、79A、79B…第3冷却オイル通路、81…第1のボス、82…第2のボス、83…冷却通路部、83b…第1通路部、83c…第2通路部、84…側方突出部、85…第3のボス、90…オイル受け部、91…溝、92…シリンダ側オイル通路、96…バイパス溝、97、97A、97B…バイパス通路、98A、98B…突出部連通路、C…シリンダ軸線、CG…重心、L1…第1の直線、L2…第2の直線、R…(連通部の)軸線
Claims (12)
- クランクケース(10)に締結されたシリンダブロック(12)と、同シリンダブロック(12)に締結されるとともに、動弁機構(60)が取り付けられ収容されるシリンダヘッド(13)とを備える空油冷内燃機関(1)のオイル通路構造であって、
前記シリンダヘッド(13)内に、前記動弁機構(60)へ潤滑用オイルを送る潤滑用オイル通路(68A)が設けられ、該潤滑用オイル通路(68A)から分岐してヘッド側冷却用オイル通路(7,7A,7B)が設けられ、
前記シリンダブロック(12)に、前記ヘッド側冷却用オイル通路(7,7A,7B)からのオイルを前記クランクケース(10)に導くオイル戻し通路(9,9A,9B)が設けられたオイル通路構造において、
前記ヘッド側冷却用オイル通路(7,7A,7B)には、前記シリンダヘッド(13)の点火プラグ(55)および排気ポート(16)の周辺を流されたオイルを、同シリンダヘッド(13)と前記シリンダブロック(12)との合わせ面(70)に送る連通部(72)が設けられ、
前記オイル戻し通路(9,9A,9B)が、前記連通部(72)と離間して設けられるとともに、
前記シリンダブロック(12)側に、前記連通部(72)から前記オイル戻し通路(9,9A,9B)へと、オイルを流すシリンダブロック側オイル通路(92)が設けられた
ことを特徴とする空油冷内燃機関のオイル通路構造。 - 前記シリンダブロック側オイル通路(92)は、前記シリンダブロック側の前記合わせ面(70)に形成された溝(91)であることを特徴とする請求項1記載の空油冷内燃機関のオイル通路構造。
- 前記シリンダブロック側オイル通路(92)の上流端には、前記連通部(72)と一致する形状のオイル受け部(90)が設けられたことを特徴とする請求項2記載の空油冷内燃機関のオイル通路構造。
- 前記連通部(72)は、前記シリンダブロックのシリンダ軸線(C)に平行に延出して前記合わせ面(70)に達するように形成されたことを特徴とする請求項1記載の空油冷内燃機関のオイル通路構造。
- 前記シリンダヘッド(13)と前記シリンダブロック(12)とを締結するスタッドボルト(19)が、前記シリンダヘッド(13)の燃焼室(52)を囲うように配置されるとともに、
前記連通部(72)は、燃焼室周壁(52a)と前記スタッドボルト(19)との間に配されたことを特徴とする請求項4記載の空油冷内燃機関のオイル通路構造。 - 前記シリンダブロック(12)の外側部に、同シリンダブロック(12)のシリンダボア(12a)に隣接して、前記動弁機構(60)を駆動するカムチェーン(64)が収容されるカムチェーンチャンバ(12b)が設けられ、
前記オイル戻し通路(9,9A,9B)が、同カムチェーンチャンバ(12b)よりも外方に設けられるとともに、
前記シリンダブロック側オイル通路(92)が同カムチェーンチャンバ(12b)を廻り込むようにして、前記オイル戻し通路(9,9A,9B)に連通することを特徴とする請求項1記載の空油冷内燃機関のオイル通路構造。 - 前記ヘッド側冷却用オイル通路(7,7A,7B)の中間部に、同ヘッド側冷却用オイル通路(7,7A,7B)から分岐する突出部(75,75A1,75A2,75B3,75B4)が設けられ、前記突出部(75,75A1,75A2,75B3,75B4)の端部から、前記ヘッド側冷却用オイル通路(7,7A,7B)の下流側に連通され、且つ、前記ヘッド側冷却用オイル通路(7,7A,7B)よりも小さな通路断面積のバイパス通路(97,97A,97B)が設けられたことを特徴とする請求項1記載の空油冷内燃機関のオイル通路構造。
- 前記突出部(75)が、前記シリンダヘッド(13)と前記シリンダブロック(12)との合わせ面(70)まで延在するとともに、前記バイパス通路(97,97A,97B)は、前記合わせ面(70)上の溝(96)であることを特徴とする請求項1記載の空油冷内燃機関のオイル通路構造。
- 前記バイパス通路(97)の上流端部は、シリンダ軸線(C)方向に見て、前記突出部(75)の端部と重なる形状を有することを特徴とする請求項8記載の空油冷内燃機関のオイル通路構造。
- 点火プラグ(55)、吸気ポート(15)および排気ポート(16)が形成されるシリンダヘッド(13)内に、同シリンダヘッド(13)の鋳造時に、ヘッド側冷却用オイル通路(7)を形成するために用いられるシリンダヘッド(13)のオイル通路中子構造において、
前記オイル通路中子(8)は、オイル流入路(71)を形成する第1のボス(81)と、オイル流出路(72)を形成する第2のボス(82)と、前記点火プラグ(55)の周辺または前記排気ポート(16)の周辺を流れて前記オイル流入路(71)とオイル流出路(72)とを連通する冷却通路(73)を形成する冷却通路部(83)とを有し、
前記冷却通路部(83)の中間部分において、前記第1のボス(81)と第2のボス(82)とを結ぶ第1の直線(L1)に対してオイル通路中子(8)の重心(CG)を挟んで側方にオフセットした位置に、同冷却通路部(83)からさらに側方に突出する側方突出部(84)が設けられ、
同側方突出部(84)に第3のボス(85)が設けられたことを特徴とするシリンダヘッドのオイル通路中子構造。 - 前記冷却通路部(83)は、前記点火プラグ(55)と前記排気ポート(16)の周囲をそれぞれ囲み、前記点火プラグ(55)と前記排気ポート(16)の中心部(55c,16c)間を結ぶ第2の直線(L2)に対して前記第3のボス(85)側に位置する第1通路部(83b)と、他側に位置する第2通路部(83c)とを有し、
前記第2のボス(82)が前記第2の直線(L2)上に設けられたことを特徴とする請求項10記載のシリンダヘッドのオイル通路中子構造。 - 前記シリンダヘッド(13)とシリンダ(12)とを締結する複数のスタッドボルト(19)のスタッドボルト孔(68)が、前記シリンダヘッド(13)の燃焼室周壁(52a)を囲うように同シリンダヘッド(13)において配されるとともに、
前記第2のボス(82)と第3のボス(85)は、前記燃焼室周壁(52a)と前記スタッドボルト孔(68)との間に配置されたことを特徴とする請求項10記載のシリンダヘッドのオイル通路中子構造。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IN2221CHN2014 IN2014CN02221A (ja) | 2011-09-28 | 2012-09-14 |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-211892 | 2011-09-28 | ||
JP2011211892A JP5750016B2 (ja) | 2011-09-28 | 2011-09-28 | 空油冷内燃機関のオイル通路構造 |
JP2011-211894 | 2011-09-28 | ||
JP2011211894A JP2013072354A (ja) | 2011-09-28 | 2011-09-28 | シリンダヘッドのオイル通路中子構造 |
JP2011-211893 | 2011-09-28 | ||
JP2011211893A JP5798427B2 (ja) | 2011-09-28 | 2011-09-28 | 空油冷内燃機関のオイル通路構造 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013047239A1 true WO2013047239A1 (ja) | 2013-04-04 |
Family
ID=47995272
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/073649 WO2013047239A1 (ja) | 2011-09-28 | 2012-09-14 | 空油冷内燃機関のオイル通路構造 |
Country Status (2)
Country | Link |
---|---|
IN (1) | IN2014CN02221A (ja) |
WO (1) | WO2013047239A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018003612A (ja) * | 2016-06-28 | 2018-01-11 | スズキ株式会社 | エンジンのオイル通路構造 |
JP2018031362A (ja) * | 2016-08-26 | 2018-03-01 | ダイハツ工業株式会社 | 内燃機関 |
DE102016216360A1 (de) | 2016-08-30 | 2018-03-01 | Bayerische Motoren Werke Aktiengesellschaft | Zylinderkopf für einen Verbrennungsmotor |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5416040A (en) * | 1977-06-13 | 1979-02-06 | Sutebirimentei Mekanichi Buiem | Internal combustion engine cooled by lubricating oil |
JPH02188623A (ja) * | 1989-01-18 | 1990-07-24 | Suzuki Motor Co Ltd | 油冷エンジン |
JP2003120289A (ja) * | 2001-10-10 | 2003-04-23 | Toyota Motor Corp | 内燃機関の冷却水通路構造 |
JP2010196565A (ja) * | 2009-02-25 | 2010-09-09 | Honda Motor Co Ltd | 多気筒エンジンのシリンダヘッド冷却用油路 |
-
2012
- 2012-09-14 WO PCT/JP2012/073649 patent/WO2013047239A1/ja active Application Filing
- 2012-09-14 IN IN2221CHN2014 patent/IN2014CN02221A/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5416040A (en) * | 1977-06-13 | 1979-02-06 | Sutebirimentei Mekanichi Buiem | Internal combustion engine cooled by lubricating oil |
JPH02188623A (ja) * | 1989-01-18 | 1990-07-24 | Suzuki Motor Co Ltd | 油冷エンジン |
JP2003120289A (ja) * | 2001-10-10 | 2003-04-23 | Toyota Motor Corp | 内燃機関の冷却水通路構造 |
JP2010196565A (ja) * | 2009-02-25 | 2010-09-09 | Honda Motor Co Ltd | 多気筒エンジンのシリンダヘッド冷却用油路 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018003612A (ja) * | 2016-06-28 | 2018-01-11 | スズキ株式会社 | エンジンのオイル通路構造 |
JP2018031362A (ja) * | 2016-08-26 | 2018-03-01 | ダイハツ工業株式会社 | 内燃機関 |
DE102016216360A1 (de) | 2016-08-30 | 2018-03-01 | Bayerische Motoren Werke Aktiengesellschaft | Zylinderkopf für einen Verbrennungsmotor |
US11542887B2 (en) | 2016-08-30 | 2023-01-03 | Bayerische Motoren Werke Aktiengesellschaft | Cylinder head for an internal combustion engine |
DE102016216360B4 (de) | 2016-08-30 | 2023-01-26 | Bayerische Motoren Werke Aktiengesellschaft | Zylinderkopf für einen Verbrennungsmotor |
Also Published As
Publication number | Publication date |
---|---|
IN2014CN02221A (ja) | 2015-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6071990B2 (ja) | 内燃機関の冷却構造 | |
JP5798427B2 (ja) | 空油冷内燃機関のオイル通路構造 | |
JP5932574B2 (ja) | 車両用水冷式内燃機関 | |
JP4657134B2 (ja) | 4サイクル空油冷エンジンにおけるオイル通路構造 | |
US9938881B2 (en) | Cooling water passage structure of internal combustion engine | |
JP5162501B2 (ja) | 内燃機関 | |
JP3605521B2 (ja) | 多気筒エンジンのシリンダヘッド構造 | |
WO2013047239A1 (ja) | 空油冷内燃機関のオイル通路構造 | |
JP5048618B2 (ja) | 4サイクル空油冷エンジン | |
US8171897B2 (en) | Cooling structure of internal combustion engine | |
JP6347150B2 (ja) | 自動二輪車のエンジン冷却装置 | |
JP2005344559A (ja) | エンジンの冷却構造 | |
JP4953901B2 (ja) | 水冷式内燃機関のオイル冷却装置 | |
JP2013072354A (ja) | シリンダヘッドのオイル通路中子構造 | |
JP6769537B2 (ja) | 内燃機関の冷却構造 | |
JP6044076B2 (ja) | 油冷エンジン | |
US8960684B2 (en) | Internal combustion engine having positioning pins disposed within fluid communication ports | |
JP5750016B2 (ja) | 空油冷内燃機関のオイル通路構造 | |
US6945211B2 (en) | Cylinder head of an internal combustion engine | |
JP6631264B2 (ja) | 内燃機関の冷却構造 | |
JP5351588B2 (ja) | 内燃機関の吸気通路構造 | |
JP5189529B2 (ja) | 車両用内燃機関におけるプラグ挿入孔からの水抜き構造 | |
JP4914877B2 (ja) | エンジンの冷却用オイル通路構造 | |
JP4892531B2 (ja) | 車両用エンジンにおける冷却用オイル通路構造 | |
JP2019157823A (ja) | エンジンの冷却構造 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12836588 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12836588 Country of ref document: EP Kind code of ref document: A1 |