WO2013046720A1 - 給湯空調システム - Google Patents

給湯空調システム Download PDF

Info

Publication number
WO2013046720A1
WO2013046720A1 PCT/JP2012/006252 JP2012006252W WO2013046720A1 WO 2013046720 A1 WO2013046720 A1 WO 2013046720A1 JP 2012006252 W JP2012006252 W JP 2012006252W WO 2013046720 A1 WO2013046720 A1 WO 2013046720A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot water
heat
water supply
refrigerant
heat exchanger
Prior art date
Application number
PCT/JP2012/006252
Other languages
English (en)
French (fr)
Inventor
秀治 古井
松井 伸樹
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to US14/348,394 priority Critical patent/US20140230477A1/en
Priority to EP12836201.9A priority patent/EP2767773A4/en
Priority to CN201280047396.4A priority patent/CN103842733A/zh
Publication of WO2013046720A1 publication Critical patent/WO2013046720A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/0017Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using cold storage bodies, e.g. ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/02Central heating systems using heat accumulated in storage masses using heat pumps
    • F24D11/0214Central heating systems using heat accumulated in storage masses using heat pumps water heating system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/02Central heating systems using heat accumulated in storage masses using heat pumps
    • F24D11/0257Central heating systems using heat accumulated in storage masses using heat pumps air heating system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1066Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water
    • F24D19/1072Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water the system uses a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/08Hot-water central heating systems in combination with systems for domestic hot-water supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/08Hot-water central heating systems in combination with systems for domestic hot-water supply
    • F24D3/082Hot water storage tanks specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D5/00Hot-air central heating systems; Exhaust gas central heating systems
    • F24D5/02Hot-air central heating systems; Exhaust gas central heating systems operating with discharge of hot air into the space or area to be heated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D5/00Hot-air central heating systems; Exhaust gas central heating systems
    • F24D5/12Hot-air central heating systems; Exhaust gas central heating systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • F24F11/47Responding to energy costs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0096Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater combined with domestic apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/08Storage tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/02System or Device comprising a heat pump as a subsystem, e.g. combined with humidification/dehumidification, heating, natural energy or with hybrid system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/003Indoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/004Outdoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/009Compression machines, plants or systems with reversible cycle not otherwise provided for indoor unit in circulation with outdoor unit in first operation mode, indoor unit in circulation with an other heat exchanger in second operation mode or outdoor unit in circulation with an other heat exchanger in third operation mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0232Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with bypasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0252Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units with bypasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/24Storage receiver heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2507Flow-diverting valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/13Hot air central heating systems using heat pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to a hot water supply air-conditioning system that includes a hot water supply device, a heat storage device, and a refrigerant circuit, and performs hot water supply by the hot water supply device and a cooling operation using cold energy stored in the heat storage device.
  • Patent Document 1 discloses this hot water supply air conditioning system.
  • the hot water supply air-conditioning system disclosed in Patent Document 1 will be described.
  • the refrigerant circuit of Patent Document 1 includes a first heat exchanger that serves as a radiator and a second heat exchanger that serves as an evaporator.
  • a 1st heat exchanger is connected to the hot water storage tank of a hot water supply apparatus, and heats the water in a hot water storage tank with a refrigerant
  • a 2nd heat exchanger is connected to the thermal storage tank of a thermal storage apparatus, and cools the thermal storage medium in a thermal storage tank with a refrigerant.
  • the refrigerant circulating in the refrigerant circuit heats water in the hot water storage tank using heat absorbed from the heat storage medium in the heat storage tank. Therefore, in the hot water supply air-conditioning system of Patent Document 1, the cold energy obtained by the water heating operation for heating the water in the hot water storage tank is stored in the heat storage tank.
  • the hot water supply air-conditioning system is operated at midnight when the electricity charge is low.
  • an air conditioner is connected to the heat storage tank.
  • the air conditioner cools the room during the day by using the cold stored in the heat storage tank at midnight. For this reason, the electric power required to cool the room during the day is reduced as compared with the case where the cold energy of the heat storage tank is not used.
  • the hot water supply air conditioning system of Patent Document 1 reduces the cost required for indoor cooling by performing such an operation.
  • the amount of cold energy obtained by a night-time water heater operation is smaller than the amount of cold energy required for daytime cooling operation.
  • the amount of cooling required for the cooling operation reaches several times the amount of cooling obtained by the water heating operation.
  • the cold energy stored in the heat storage tank in the hot water supply air-conditioning system of Patent Document 1 is only the cold energy obtained by the late-night kettle operation. For this reason, only a part of the cooling load during the day can be treated only by the cold stored in the heat storage tank at midnight. Therefore, the conventional hot water supply air conditioning system that stores only the cold heat obtained by the water heater operation cannot sufficiently reduce the amount of power required to cool the room during the day, and the running cost of the hot water supply air conditioning system can be sufficiently reduced. There wasn't.
  • the present invention has been made in view of such a point, and an object thereof is to reduce the running cost of a hot water supply air conditioning system including a hot water supply device, a heat storage device, and a refrigerant circuit.
  • the first invention is directed to a hot water supply air conditioning system.
  • a hot water supply device (70) provided with a hot water storage tank (71) for storing hot water for hot water supply, a heat storage device (90) provided with a heat storage tank (91) for storing a heat storage medium, and the hot water supply device (70 ) Connected to the hot water supply side heat exchanger (26), the heat storage side heat exchanger (31) to which the heat storage device (90) is connected, the heat source side heat exchanger (21) for exchanging heat between the refrigerant and the outdoor air, And a refrigerant circuit (15) having a use side heat exchanger (36) for air conditioning the room, wherein the refrigerant circuit (15) is a refrigeration cycle in which the heat storage side heat exchanger (31) is an evaporator.
  • the heat storage device (90) cools the heat storage medium in the heat storage tank (91) by the refrigerant flowing through the heat storage side heat exchanger (31), and the refrigerant circuit (15) Circulate so that it flows from the heat storage side heat exchanger (31) to the use side heat exchanger (36), and the heat storage device (90)
  • the refrigerant flowing through the heat storage side heat exchanger (31) is used for cooling with the heat storage medium in the heat storage tank (91), and the hot water supply side heat exchanger (26) is operated during the cold storage operation.
  • the second operation as a container can be executed.
  • the hot water supply air conditioning system (10) performs the cold storage operation and the use cooling operation.
  • the heat storage medium in the heat storage tank (91) is cooled by the refrigerant in the refrigerant circuit (15), and cold heat is stored in the heat storage tank (91).
  • the hot water supply air conditioning system (10) during the cold storage operation selectively performs the first operation and the second operation.
  • the hot water supply air-conditioning system (10) during the use cooling operation cools the room using the cold energy stored in the heat storage tank (91).
  • the refrigerant circulating in the refrigerant circuit (15) is cooled in the heat storage side heat exchanger (31), then flows into the use side heat exchanger (36), and is used for indoor cooling.
  • the hot water supply air conditioning system (10) of the first invention performs the first operation during the cold storage operation.
  • the refrigerant circulating in the refrigerant circuit (15) dissipates heat in the hot water supply side heat exchanger (26) and absorbs heat in the heat storage side heat exchanger (31).
  • the hot water supply device (70) heats the water in the hot water storage tank (71) using the heat obtained in the hot water supply side heat exchanger (26), and the heat storage device (90) is the heat storage side heat exchanger.
  • the heat storage medium in the heat storage tank (91) is cooled using the cold energy obtained in (31). That is, during the first operation, cold energy is obtained by the refrigeration cycle performed by the refrigerant circuit (15) to heat the water in the hot water tank (71), and the obtained cold energy is stored in the heat storage tank of the heat storage device (90). Stored in (91).
  • the hot water supply air conditioning system (10) of the first invention performs the second operation during the cold storage operation.
  • the refrigerant circulating in the refrigerant circuit (15) dissipates heat in the heat source side heat exchanger (21) and absorbs heat in the heat storage side heat exchanger (31).
  • a thermal storage apparatus (90) cools the thermal storage medium in a thermal storage tank (91) using the cold energy obtained in the thermal storage side heat exchanger (31). That is, during the second operation, the refrigerant circulating in the refrigerant circuit (15) releases the heat absorbed from the heat storage device (90) to the outdoor air, and cold energy is stored in the heat storage tank (91) of the heat storage device (90). It is done. Therefore, during the second operation, cold heat is stored in the heat storage tank (91) of the heat storage device (90) even if the hot water supply device (70) is not operating to heat the water in the hot water storage tank (71). Go.
  • the refrigerant circuit (15) includes a hot water supply side passage (25) provided with the hot water supply side heat exchanger (26), and the heat source side heat exchanger (21 ) Provided to the heat source side passage (20), both ends of the hot water supply side passage (25) and both ends of the heat source side passage (20), and the refrigerant flows through the hot water supply side passage (25) and A first state in which the heat source side passage (20) is bypassed; a second state in which the refrigerant bypasses the hot water supply side passage (25) and flows through the heat source side passage (20); and a refrigerant is in the hot water supply side passage (25) A bypass passage (41) that switches to a third state that bypasses both of the heat source side passages (20).
  • the refrigerant circuit (15) is provided with a hot water supply side passage (25), a heat source side passage (20), and a bypass passage (41).
  • the bypass passage (41) switches between the first state, the second state, and the third state.
  • the bypass passage (41) is set to the first state, the refrigerant flows only through the hot water supply side passage (25) out of the hot water supply side passage (25) and the heat source side passage (20).
  • the bypass passage (41) is set to the first state, and the refrigerant dissipates heat in the hot water supply side heat exchanger (26).
  • bypass passage (41) When the bypass passage (41) is set to the second state, the refrigerant flows only through the heat source side passage (20) of the hot water supply side passage (25) and the heat source side passage (20). During the second operation of the cold storage operation, the bypass passage (41) is set to the second state, and the refrigerant dissipates heat in the heat source side heat exchanger (21). When the bypass passage (41) is set to the third state, the refrigerant bypasses both the hot water supply side passage (25) and the heat source side passage (20).
  • the refrigerant circulating in the refrigerant circuit (15) absorbs heat in the use side heat exchanger (36), and then the heat source side heat exchanger ( 21) Cools by flowing into the heat storage side heat exchanger (31) without passing through. Therefore, in the use cooling operation in this case, the room is cooled only using the cold heat stored in the heat storage tank (91) of the heat storage device (90).
  • the hot water supply side passage (25) includes a hot water supply side expansion valve (29) disposed on the liquid side of the hot water supply side heat exchanger (26), and the heat source
  • the side passage (20) includes a heat source side expansion valve (22) disposed on the liquid side of the heat source side heat exchanger (21).
  • the hot water supply side expansion valve (29) is provided in the hot water supply side passage (25), and the heat source side expansion valve (22) is provided in the heat source side passage (20).
  • the refrigerant circulating in the refrigerant circuit (15) during the first operation of the cold storage operation is radiated in the hot water supply side heat exchanger (26), depressurized when passing through the hot water supply side expansion valve (29), and then the heat storage side. It flows into the heat exchanger (31) and absorbs heat.
  • the refrigerant circulating in the refrigerant circuit (15) during the second operation of the cold storage operation radiates heat in the heat source side heat exchanger (21) and is depressurized when passing through the heat source side expansion valve (22). It flows into the heat storage side heat exchanger (31) and absorbs heat.
  • the hot water supply air conditioning system (10) of the present invention can execute the first operation and the second operation during the cold storage operation.
  • a refrigeration cycle is performed in the refrigerant circuit (15), and the hot water supply device (70) uses the heat released from the refrigerant in the hot water supply side heat exchanger (26) so that the hot water supply tank (71) Then, the cold water obtained in the heat storage side heat exchanger (31) is stored in the heat storage tank (91) of the heat storage device (90).
  • a refrigeration cycle was performed in the refrigerant circuit (15), the refrigerant radiated heat to the outdoor air in the heat source side heat exchanger (21), and was obtained in the heat storage side heat exchanger (31). Cold energy is stored in the heat storage tank (91) of the heat storage device (90).
  • the hot water supply air-conditioning system (10) of the present invention can further store cold energy in the heat storage tank (91) of the heat storage device (90) by performing the second operation even after the first operation is stopped. For this reason, according to the present invention, not only the cold energy obtained when heating the water in the hot water storage tank (71) but also the cold energy obtained when the refrigerant in the refrigerant circuit (15) dissipates heat to the outdoor air. It can be stored in the heat storage tank (91) of the device (90).
  • a cold storage operation is performed at midnight when the power rate is low, and a first operation and a second operation are performed during the cold storage operation, thereby providing a sufficient amount of cold heat necessary for daytime use cooling operation.
  • the amount of power consumed to cool the room during the day can be sufficiently reduced, and the running cost of the hot water supply air conditioning system (10) can be sufficiently reduced.
  • FIG. 1 is a piping system diagram showing the configuration of the hot water supply air conditioning system of the first embodiment.
  • FIG. 2 is a piping system diagram illustrating the operation of the hot water supply air-conditioning system according to the first embodiment during the first cold storage operation and the boiling water operation.
  • FIG. 3 is a piping diagram illustrating the operation during the second cold storage operation of the hot water supply air-conditioning system according to the first embodiment.
  • FIG. 4 is a piping diagram illustrating an operation during the first use cooling operation of the hot water supply air-conditioning system according to the first embodiment.
  • FIG. 5 is a piping diagram illustrating an operation during the second use cooling operation of the hot water supply air-conditioning system according to the first embodiment.
  • FIG. 6 is a piping diagram illustrating an operation during the simple cooling operation of the hot water supply air-conditioning system according to the first embodiment.
  • FIG. 7 is a piping diagram illustrating an operation during the heat storage and heating operation of the hot water supply air-conditioning system according to the first embodiment.
  • FIG. 8 is a piping system diagram showing an operation during the use heating operation of the hot water supply air conditioning system of the first embodiment.
  • FIG. 9 is a piping diagram illustrating an operation during the simple heating operation of the hot water supply air conditioning system of the first embodiment.
  • FIG. 10 is a piping system diagram showing the configuration of the hot water supply air conditioning system of the second embodiment.
  • FIG. 11 is a piping diagram illustrating the configuration of the hot water supply air conditioning system according to the third embodiment.
  • FIG. 12 is a piping system diagram showing the configuration of the hot water supply air conditioning system of the fourth embodiment.
  • FIG. 13 is a piping diagram illustrating the operation during the first cold storage operation of the hot water supply air conditioning system of the fourth embodiment.
  • FIG. 14 is a piping diagram illustrating operations during the second cold storage operation and the utilization defrosting operation of the hot water supply air conditioning system of the fourth embodiment.
  • FIG. 15 is a piping diagram illustrating an operation during the third cold storage operation of the hot water supply air-conditioning system according to the fourth embodiment.
  • FIG. 16 is a piping diagram illustrating an operation during the first use cooling operation of the hot water supply air-conditioning system according to the fourth embodiment.
  • FIG. 17 is a piping diagram illustrating an operation during the second use cooling operation of the hot water supply air-conditioning system according to the fourth embodiment.
  • FIG. 18 is a piping system diagram illustrating an operation during a cooling operation using a water heater of the hot water supply air-conditioning system according to the fourth embodiment.
  • FIG. 19 is a piping diagram illustrating an operation during the simple cooling operation of the hot water supply air-conditioning system according to the fourth embodiment.
  • FIG. 20 is a piping system diagram illustrating an operation during a water-cooling operation of the hot water supply air-conditioning system according to the fourth embodiment.
  • FIG. 21 is a piping diagram illustrating an operation during a simple hot water operation of the hot water supply air conditioning system of the fourth embodiment.
  • FIG. 22 is a piping diagram illustrating an operation during a hot water storage operation of the hot water supply air conditioning system of the fourth embodiment.
  • FIG. 23 is a piping diagram illustrating an operation during the simple heat storage operation of the hot water supply air-conditioning system according to the fourth embodiment.
  • FIG. 24 is a piping diagram illustrating an operation during a heating operation of the hot water supply air-conditioning system according to the fourth embodiment.
  • FIG. 25 is a piping diagram illustrating an operation during the simple heating operation of the hot water supply air-conditioning system according to the fourth embodiment.
  • FIG. 26 is a piping diagram illustrating an operation during a water heater / heating operation of the hot water supply air-conditioning system according to the fourth embodiment.
  • the hot water supply air conditioning system (10) of this embodiment includes a refrigerant circuit (15), a hot water supply device (70), and a heat storage device (90).
  • the hot water supply air conditioning system (10) includes an outdoor fan (11) and an indoor fan (12).
  • the refrigerant circuit (15) is a closed circuit filled with a refrigerant.
  • the refrigerant circuit (15) includes a compressor (16), a four-way switching valve (17), a heat source side pipe (20) that forms a heat source side passage, and a hot water supply side pipe (25) that forms a hot water supply side passage.
  • the heat storage side pipe (30) that forms the heat storage side passage, the use side pipe (35) that forms the use side passage, and the connection pipe (18) are provided.
  • the refrigerant circuit (15) includes six bypass pipes (51 to 56) and eight three-way valves (61 to 68).
  • a heat source side heat exchanger (21) and a heat source side expansion valve (22) are arranged in order from one end to the other end. That is, in the heat source side pipe (20), the heat source side expansion valve (22) is disposed on the liquid side of the heat source side heat exchanger (21).
  • a hot water supply side heat exchanger (26) and a hot water supply side expansion valve (29) are arranged in this order from one end to the other end. That is, in the hot water supply side pipe (25), the hot water supply side expansion valve (29) is arranged on the liquid side of the hot water supply side heat exchanger (26).
  • the heat storage side heat exchanger (31) is arranged in the heat storage side pipe (30).
  • a use side heat exchanger (36) and a use side expansion valve (37) are arranged in order from one end to the other end. That is, in the usage side pipe (35), the usage side expansion valve (37) is arranged on the liquid side of the usage side heat exchanger (36).
  • the compressor (16) has a discharge side connected to a first port of the four-way switching valve (17) and a suction side connected to a second port of the four-way switching valve (17).
  • the heat storage side piping (30) and the utilization side piping (35) are arrange
  • the first three-way valve (61) is connected between the one end of the heat source side pipe (20) and the four-way switching valve (17), and the other end of the heat source side pipe (20) is connected to the hot water supply side pipe (
  • the third three-way valve (64) is connected between one end of 25) and the third three-way valve (63) is connected between the other end of the hot water supply side pipe (25) and one end of the connecting pipe (18)
  • the seventh three-way valve (67) is between the other end of 18) and one end of the heat storage side pipe (30), and the eighth three way is between the other end of the heat storage side pipe (30) and one end of the use side pipe (35).
  • a fifth three-way valve (65) is disposed between the other end of the use side pipe (35) and the four-way switching valve (17).
  • the first bypass pipe (51) has one end connected to the first three-way valve (61) and the other end connected to the second three-way valve (62).
  • the second bypass pipe (52) has one end connected to the second three-way valve (62) and the other end connected to the third three-way valve (63).
  • the third bypass pipe (53) has one end connected to the second three-way valve (62) and the other end connected to the fourth three-way valve (64).
  • the first bypass passage (41) switches between the first state, the second state, and the third state.
  • the refrigerant circulating in the refrigerant circuit (15) flows through the hot water supply side pipe (25) and bypasses the heat source side pipe (20).
  • the first bypass passage (41) is in the second state, the refrigerant circulating in the refrigerant circuit (15) bypasses the hot water supply side pipe (25) and flows through the heat source side pipe (20).
  • the first bypass passage (41) is in the third state, the refrigerant circulating in the refrigerant circuit (15) bypasses both the hot water supply side pipe (25) and the heat source side pipe (20). Switching between these three states is performed by operating the three-way valve (61, 62, 63, 64). The state of the three-way valve (61, 62, 63, 64) in each state will be described later.
  • the fourth bypass pipe (54) has one end connected to the fifth three-way valve (65) and the other end connected to the sixth three-way valve (66).
  • the fifth bypass pipe (55) has one end connected to the sixth three-way valve (66) and the other end connected to the seventh three-way valve (67).
  • the sixth bypass pipe (56) has one end connected to the sixth three-way valve (66) and the other end connected to the eighth three-way valve (68).
  • the second bypass passage (42) switches between the first state, the second state, and the third state.
  • the refrigerant circulating in the refrigerant circuit (15) flows through the heat storage side pipe (30) and bypasses the use side pipe (35).
  • the second bypass passage (42) is in the second state, the refrigerant circulating in the refrigerant circuit (15) bypasses the heat storage side pipe (30) and flows through the use side pipe (35).
  • the second bypass passage (42) is in the third state, the refrigerant circulating in the refrigerant circuit (15) passes through the bypass pipe (54, 55, 56) constituting the second bypass passage (42). Without flowing in, it flows through both the heat storage side pipe (30) and the use side pipe (35). Switching between these three states is performed by operating the three-way valve (65, 66, 67, 68). The state of the three-way valve (65, 66, 67, 68) in each state will be described later.
  • the compressor (16) is a hermetic compressor in which a compression mechanism and an electric motor are accommodated in one casing.
  • the compression mechanism of the compressor (16) is a rolling piston type or oscillating piston type rotary fluid machine.
  • the compression mechanism of the compressor (16) may be a scroll type fluid machine.
  • the four-way switching valve (17) includes a first state (state indicated by a solid line in FIG. 1) in which the first port communicates with the third port and the second port communicates with the fourth port; The port is switched to a second state (state indicated by a broken line in FIG. 1) in which the port communicates with the fourth port and the second port communicates with the third port.
  • the heat source side heat exchanger (21) is a so-called cross fin type heat exchanger.
  • the heat source side heat exchanger (21) exchanges heat between the refrigerant and the outdoor air supplied by the outdoor fan (11).
  • the hot water supply side heat exchanger (26) is a plate type heat exchanger in which a plurality of primary side flow paths (27) and secondary side flow paths (28) are formed, and flows through the primary side flow path (27). Heat exchange is performed between the fluid and the fluid flowing through the secondary side flow path (28).
  • the hot water supply side pipe (25) of the refrigerant circuit (15) is connected to the primary flow path (27) of the hot water supply side heat exchanger (26).
  • a hot water supply refrigerant circuit (80) of a hot water supply device (70) to be described later is connected to the secondary side flow path (28) of the hot water supply side heat exchanger (26).
  • the heat storage side heat exchanger (31) is a plate heat exchanger in which a plurality of primary side flow paths (32) and secondary side flow paths (33) are formed, and flows through the primary flow path (32). Heat exchange is performed between the fluid and the fluid flowing through the secondary channel (33).
  • a heat storage side pipe (30) of the refrigerant circuit (15) is connected to the primary side flow path (27) of the heat storage side heat exchanger (31).
  • a heat storage medium circuit (92) of a heat storage device (90) to be described later is connected to the secondary flow path (28) of the heat storage side heat exchanger (31).
  • the use side heat exchanger (36) is a so-called cross fin type heat exchanger.
  • the use side heat exchanger (36) exchanges heat between the refrigerant and the indoor air supplied by the indoor fan (12).
  • Each of the heat source side expansion valve (22), the hot water supply side expansion valve (29), and the use side expansion valve (37) is a variable electric opening valve.
  • the hot water supply device (70) includes a hot water storage tank (71), a water circuit (74), and a hot water supply refrigerant circuit (80).
  • the hot water tank (71) is a cylindrical tank and is installed in a standing state.
  • the hot water storage tank (71) has a water supply pipe (72) connected to the bottom and a hot water supply pipe (73) connected to the top.
  • This hot water tank (71) stores hot water for hot water supply.
  • Hot water in the hot water storage tank (71) is supplied to a hot water tap, a bathtub, etc. through a hot water supply pipe (73).
  • the hot water tank (71) is replenished from the water supply pipe (72) with the same amount of water as the hot water flowing out from the hot water supply pipe (73).
  • the water circuit (74) has an inlet end connected to the bottom of the hot water tank (71) and an outlet end connected to the top of the hot water tank (71).
  • the water circuit (74) is provided with a pump (75).
  • the heat exchanger (83) for a heating mentioned later is arrange
  • the hot water supply refrigerant circuit (80) is a closed circuit filled with refrigerant.
  • the hot water supply refrigerant circuit (80) includes a hot water supply compressor (81), a heating heat exchanger (83), and a hot water supply expansion valve (82), and includes a hot water supply side heat exchanger (26). Connected to the secondary channel (28).
  • a vessel (26) is arranged in the hot water supply refrigerant circuit (80.
  • the hot water supply compressor (81) is a hermetic compressor in which a compression mechanism and an electric motor are housed in one casing.
  • the compression mechanism of the hot water supply compressor (81) is a rolling piston type or oscillating piston type rotary fluid machine.
  • the heating heat exchanger (83) is a plate heat exchanger in which a plurality of primary side flow paths (84) and secondary side flow paths (85) are formed, and flows through the primary side flow path (84). Heat exchange is performed between the fluid and the fluid flowing through the secondary flow path (85).
  • a hot water supply refrigerant circuit (80) is connected to the primary flow path (84) of the heating heat exchanger (83).
  • a water circuit (74) is connected to the secondary flow path (85) of the heating heat exchanger (83).
  • the heat storage device (90) includes a heat storage tank (91) and a heat storage medium circuit (92).
  • the heat storage tank (91) is a rectangular parallelepiped tank.
  • the heat storage tank (91) stores a heat storage medium (so-called latent heat storage medium) that stores cold or warm heat as latent heat.
  • the latent heat storage medium include an aqueous solution of TBAB (tetra-n-butylammonium bromide), an aqueous solution of TME (trimethylolethane), and paraffinic slurry.
  • the heat storage medium circuit (92) has its inlet end connected to the bottom of the heat storage tank (91) and its outlet end connected to the top of the hot water tank (71).
  • the heat storage medium circuit (92) is provided with a pump (93) and a control valve (94).
  • the control valve (94) and the secondary flow path (33) of the heat storage side heat exchanger (31) are disposed on the discharge side of the pump (93).
  • the hot water supply air conditioning system (10) includes a first cold storage operation, a second cold storage operation, a first use cooling operation, a second use cooling operation, a simple cooling operation, a heat storage heating operation, a water heater operation, and a use heating. Operation and simple heating operation are performed.
  • the hot water supply air conditioning system (10) performs the first operation. That is, in the hot water supply air conditioning system (10), the hot water supply device (70) performs an operation of heating the water in the hot water storage tank (71), and the cold energy obtained by the operation of the hot water supply device (70) is stored in the heat storage device (90) Is stored in the heat storage tank (91). In the first cold storage operation, the outdoor fan (11) and the indoor fan (12) are stopped.
  • the refrigerant circuit (15) performs a refrigeration cycle in which the hot water supply side heat exchanger (26) serves as a condenser (that is, a radiator) and the heat storage side heat exchanger (31) serves as an evaporator.
  • the compressor (16) is operated, and the four-way switching valve (17) is set to the first state.
  • the opening degree of the hot water supply side expansion valve (29) is adjusted so that the degree of superheat of the refrigerant at the outlet of the primary side flow path (32) of the heat storage side heat exchanger (31) becomes a predetermined target value.
  • the first bypass passage (41) is set to the first state.
  • the three-way valves (61, 62, 63, 64) are in the following state.
  • the first three-way valve (61) blocks the third port of the four-way switching valve (17) from the heat source side pipe (20) by communicating with the first bypass pipe (51).
  • the second three-way valve (62) connects the first bypass pipe (51) with the third bypass pipe (53) and shuts off the second bypass pipe (52).
  • the third three-way valve (63) communicates the hot water supply side pipe (25) with the connection pipe (18) and shuts off the second bypass pipe (52).
  • the fourth three-way valve (64) connects the third bypass pipe (53) with the hot water supply side pipe (25) and shuts off the heat source side pipe (20).
  • the second bypass passage (42) is set to the first state.
  • the three-way valves (65, 66, 67, 68) are in the following state.
  • the fifth three-way valve (65) communicates the fourth bypass pipe (54) with the fourth port of the four-way switching valve (17) and shuts it off from the use side pipe (35).
  • the sixth three-way valve (66) connects the sixth bypass pipe (56) with the fourth bypass pipe (54) and shuts it off from the fifth bypass pipe (55).
  • the seventh three-way valve (67) communicates the connecting pipe (18) with the heat storage side pipe (30) and cuts off the fifth bypass pipe (55).
  • the eighth three-way valve (68) connects the heat storage side pipe (30) with the sixth bypass pipe (56) and shuts it off from the use side pipe (35).
  • the flow of the refrigerant in the refrigerant circuit (15) will be described.
  • the refrigerant discharged from the compressor (16) sequentially passes through the four-way switching valve (17), the first bypass pipe (51), and the third bypass pipe (53), and the hot water supply side pipe (25). Flow into.
  • the refrigerant flowing into the hot water supply side pipe (25) dissipates heat and condenses while passing through the primary flow path (27) of the hot water supply side heat exchanger (26), and then passes through the hot water supply side expansion valve (29).
  • the pressure is reduced, the pressure is reduced and then flows into the heat storage side pipe (30) through the connection pipe (18).
  • the refrigerant flowing into the heat storage side pipe (30) absorbs heat and evaporates while passing through the primary flow path (32) of the heat storage side heat exchanger (31). Thereafter, the refrigerant sequentially passes through the sixth bypass pipe (56), the fourth bypass pipe (54), and the four-way switching valve (17) and is sucked into the compressor (16).
  • the compressor (16) compresses the sucked refrigerant and discharges it.
  • the hot water supply compressor (81) of the hot water supply device (70) is operated, and the hot water supply refrigerant circuit (80) performs the refrigeration cycle.
  • the opening degree of the hot water supply expansion valve (82) is adjusted so that the degree of superheat of the refrigerant at the outlet of the secondary side flow path (28) of the hot water supply side heat exchanger (26) becomes a predetermined target value. Adjusted.
  • the pump (75) of the water circuit (74) is operated, and water is circulated between the hot water storage tank (71) and the heat exchanger (83) for heating.
  • the flow of the refrigerant in the hot water supply refrigerant circuit (80) will be described.
  • the refrigerant discharged from the hot water supply compressor (81) dissipates heat and condenses when it passes through the primary flow path (84) of the heating heat exchanger (83).
  • the refrigerant flowing out of the heating heat exchanger (83) is depressurized when passing through the hot water supply expansion valve (82), and then flows into the secondary flow path (28) of the hot water supply side heat exchanger (26). To do.
  • the refrigerant flowing through the secondary channel (28) of the hot water supply side heat exchanger (26) absorbs heat from the refrigerant flowing through the secondary channel (28) and evaporates. Thereafter, the refrigerant is sucked into the hot water supply compressor (81).
  • the hot water supply compressor (81) compresses the sucked refrigerant and discharges it.
  • the flow of water in the water circuit (74) will be described.
  • the low-temperature water present at the bottom of the heat storage tank (91) is sent to the secondary flow path (85) of the heating heat exchanger (83) by the pump (75), and the primary flow path (84) is Heated by flowing refrigerant. And the water heated to high temperature is sent back to the top of the hot water tank (71).
  • the pump (93) of the heat storage medium circuit (92) operates, and the heat storage medium circulates between the heat storage tank (91) and the heat storage side heat exchanger (31).
  • the heat storage medium in the heat storage tank (91) is sent to the secondary flow path (33) of the heat storage side heat exchanger (31) by the pump (93) and cooled by the refrigerant flowing through the primary flow path (32). Is done.
  • the heat storage medium cooled in the heat storage side heat exchanger (31) is sent back to the heat storage tank (91).
  • the cold energy given to the heat storage medium in the heat storage side heat exchanger (31) is stored in the heat storage tank (91).
  • the second cold storage operation will be described with reference to FIG.
  • the hot water supply air conditioning system (10) performs the second operation. That is, in the hot water supply air conditioning system (10), the hot water supply device (70) is stopped, and the heat storage device (90) stores cold energy in the heat storage tank (91).
  • the outdoor fan (11) is activated and the indoor fan (12) is stopped.
  • the refrigerant circuit (15) performs a refrigeration cycle in which the heat source side heat exchanger (21) serves as a condenser (that is, a radiator) and the heat storage side heat exchanger (31) serves as an evaporator. Specifically, in the refrigerant circuit (15), the compressor (16) is operated, and the four-way switching valve (17) is set to the first state. The opening degree of the heat source side expansion valve (22) is adjusted so that the degree of superheat of the refrigerant at the outlet of the primary side flow path (32) of the heat storage side heat exchanger (31) becomes a predetermined target value.
  • the opening degree of the heat source side expansion valve (22) is adjusted so that the degree of superheat of the refrigerant at the outlet of the primary side flow path (32) of the heat storage side heat exchanger (31) becomes a predetermined target value.
  • the first bypass passage (41) is set to the second state.
  • the three-way valves (61, 62, 63, 64) are in the following state.
  • the first three-way valve (61) blocks the third port of the four-way switching valve (17) from the first bypass pipe (51) by communicating with the heat source side pipe (20).
  • the second three-way valve (62) connects the third bypass pipe (53) with the second bypass pipe (52) and shuts off the first bypass pipe (51).
  • the third three-way valve (63) communicates the second bypass pipe (52) with the connection pipe (18) and shuts off the hot water supply side pipe (25).
  • the fourth three-way valve (64) connects the heat source side pipe (20) with the third bypass distribution and cuts off the hot water supply side pipe (25).
  • the second bypass passage (42) is set to the first state.
  • the three-way valves (65, 66, 67, 68) are in the state described in the description of the first cold storage operation.
  • the flow of the refrigerant in the refrigerant circuit (15) will be described.
  • the refrigerant discharged from the compressor (16) flows into the heat source side pipe (20) after passing through the four-way switching valve (17).
  • the refrigerant flowing into the heat source side pipe (20) dissipates heat and condenses to the outdoor air while passing through the heat source side heat exchanger (21), and is then reduced in pressure when passing through the heat source side expansion valve (22).
  • the refrigerant sequentially passes through the third bypass pipe (53), the second bypass pipe (52), and the connection pipe (18) and flows into the heat storage side pipe (30).
  • the refrigerant flowing into the heat storage side pipe (30) absorbs heat and evaporates while passing through the primary flow path (32) of the heat storage side heat exchanger (31). Thereafter, the refrigerant sequentially passes through the sixth bypass pipe (56), the fourth bypass pipe (54), and the four-way switching valve (17) and is sucked into the compressor (16).
  • the compressor (16) compresses the sucked refrigerant and discharges it.
  • the pump (93) of the heat storage medium circuit (92) operates, and the heat storage medium circulates between the heat storage tank (91) and the heat storage side heat exchanger (31). And the cold energy obtained when the refrigerant circuit (15) performs the refrigerating cycle is stored in the heat storage tank (91) of the heat storage device (90).
  • the first use cooling operation will be described with reference to FIG.
  • indoor cooling is performed using only the cold energy stored in the heat storage tank (91).
  • the pump (93) of the heat storage medium circuit (92) is operated, and the heat storage medium circulates between the heat storage tank (91) and the heat storage side heat exchanger (31).
  • the hot water supply device (70) is stopped.
  • the outdoor fan (11) is stopped and the indoor fan (12) is operated.
  • the compressor (16) In the refrigerant circuit (15), the compressor (16) is operated, and the four-way switching valve (17) is set to the first state. Further, the use side expansion valve (37) is held in a fully opened state. In the refrigerant circuit (15) during the first use cooling operation, the compressor (16) operates as a gas pump, and the refrigerant circulates between the heat storage side heat exchanger (31) and the use side heat exchanger (36).
  • the first bypass passage (41) is set to the third state.
  • the three-way valves (61, 62, 63, 64) are in the following state.
  • the first three-way valve (61) blocks the third port of the four-way switching valve (17) from the heat source side pipe (20) by communicating with the first bypass pipe (51).
  • the second three-way valve (62) connects the first bypass pipe (51) with the second bypass pipe (52) and shuts off the third bypass pipe (53).
  • the third three-way valve (63) communicates the second bypass pipe (52) with the connection pipe (18) and shuts off the hot water supply side pipe (25).
  • the fourth three-way valve (64) may be in any state.
  • the second bypass passage (42) is set to the third state.
  • the three-way valves (65, 66, 67, 68) are in the following state.
  • the fifth three-way valve (65) communicates the use side pipe (35) with the fourth port of the four-way switching valve (17) and blocks it from the fourth bypass pipe (54).
  • the sixth three-way valve (66) may be in any state.
  • the seventh three-way valve (67) communicates the connecting pipe (18) with the heat storage side pipe (30) and cuts off the fifth bypass pipe (55).
  • the eighth three-way valve (68) connects the heat storage side pipe (30) with the use side pipe (35) and shuts off the sixth bypass pipe (56).
  • the flow of the refrigerant in the refrigerant circuit (15) will be described.
  • the refrigerant discharged from the compressor (16) sequentially passes through the four-way switching valve (17), the first bypass pipe (51), the second bypass pipe (52), and the connection pipe (18). And flows into the heat storage side pipe (30). Thereafter, the refrigerant flows into the primary side flow path (32) of the heat storage side heat exchanger (31), dissipates heat to the heat storage medium flowing through the secondary side flow path (33), and condenses.
  • the refrigerant that has flowed out of the heat storage side heat exchanger (31) flows into the use side pipe (35), passes through the use side expansion valve (37), and then flows into the use side heat exchanger (36).
  • the refrigerant absorbs heat from the indoor air and evaporates.
  • the room air cooled in the use side heat exchanger (36) is supplied into the room.
  • the refrigerant that has passed through the use side heat exchanger (36) passes through the four-way switching valve (17) and is then sucked into the compressor (16).
  • the compressor (16) operating as a gas pump boosts the suctioned refrigerant and discharges it.
  • the pump (93) of the heat storage medium circuit (92) is operated, and the heat storage medium circulates between the heat storage tank (91) and the heat storage side heat exchanger (31).
  • the heat storage medium in the heat storage tank (91) is sent to the secondary flow path (33) of the heat storage side heat exchanger (31) by the pump (93), and absorbs heat from the refrigerant flowing through the primary flow path (32).
  • the heat storage side heat exchanger (31) cold heat is applied from the heat storage medium in the secondary side flow path (33) to the refrigerant in the primary side flow path (32).
  • the heat storage medium that has passed through the secondary flow path (33) of the heat storage side heat exchanger (31) is sent back to the heat storage tank (91).
  • the second usage cooling operation will be described with reference to FIG.
  • indoor cooling is performed using the cold energy stored in the heat storage tank (91) and the cold energy obtained by the refrigeration cycle performed by the refrigerant circuit (15).
  • the pump (93) of the heat storage medium circuit (92) is operated, and the heat storage medium circulates between the heat storage tank (91) and the heat storage side heat exchanger (31).
  • the hot water supply device (70) is stopped.
  • the outdoor fan (11) and the indoor fan (12) are operated.
  • the heat source side heat exchanger (21) serves as a condenser (that is, a radiator), and the heat storage side heat exchanger (31) serves as a subcooler (that is, a radiator), and uses side heat exchange.
  • a refrigeration cycle is performed in which the vessel (36) becomes an evaporator.
  • the compressor (16) is operated, and the four-way switching valve (17) is set to the first state.
  • the heat source side expansion valve (22) is kept fully open. Further, the opening degree of the use side expansion valve (37) is adjusted so that the degree of superheat of the refrigerant at the outlet of the use side heat exchanger (36) becomes a predetermined target value.
  • the first bypass passage (41) is set to the second state.
  • the three-way valves (61, 62, 63, 64) are in the state described in the description of the second cold storage operation.
  • the second bypass passage (42) is set to the third state.
  • the three-way valves (65, 66, 67, 68) are in the state described in the description of the first use cooling operation.
  • the flow of the refrigerant in the refrigerant circuit (15) will be described.
  • the refrigerant discharged from the compressor (16) flows into the heat source side pipe (20) after passing through the four-way switching valve (17).
  • the refrigerant flowing into the heat source side pipe (20) dissipates heat to the outdoor air and condenses while passing through the heat source side heat exchanger (21).
  • the refrigerant sequentially passes through the heat source side expansion valve (22), the third bypass pipe (53), the second bypass pipe (52), and the connection pipe (18), and the heat storage side pipe ( 30). Subsequently, the refrigerant flows into the primary flow path (32) of the heat storage side heat exchanger (31).
  • the refrigerant flowing through the primary channel (32) is cooled by the heat storage medium flowing through the secondary channel (33).
  • the refrigerant that has passed through the heat storage side heat exchanger (31) is depressurized when passing through the use side expansion valve (37), and then flows into the use side heat exchanger (36) to absorb heat from the indoor air and evaporate. To do.
  • the room air cooled in the use side heat exchanger (36) is supplied into the room.
  • the refrigerant that has passed through the use side heat exchanger (36) passes through the four-way switching valve (17) and is then sucked into the compressor (16).
  • the compressor (16) compresses the sucked refrigerant and discharges it.
  • the simple cooling operation will be described with reference to FIG.
  • the room is cooled using only the cold heat obtained by the refrigeration cycle performed by the refrigerant circuit (15).
  • the hot water supply device (70) and the heat storage device (90) are stopped.
  • the outdoor fan (11) and the indoor fan (12) operate.
  • the refrigerant circuit (15) performs a refrigeration cycle in which the heat source side heat exchanger (21) serves as a condenser (that is, a radiator) and the use side heat exchanger (36) serves as an evaporator. Specifically, in the refrigerant circuit (15), the compressor (16) is operated, and the four-way switching valve (17) is set to the first state. The heat source side expansion valve (22) is kept fully open. Further, the opening degree of the use side expansion valve (37) is adjusted so that the degree of superheat of the refrigerant at the outlet of the use side heat exchanger (36) becomes a predetermined target value.
  • the first bypass passage (41) is set to the second state.
  • the three-way valves (61, 62, 63, 64) are in the state described in the description of the second cold storage operation.
  • the second bypass passage (42) is set to the second state.
  • the three-way valves (65, 66, 67, 68) are in the following state.
  • the fifth three-way valve (65) communicates the use side pipe (35) with the fourth port of the four-way switching valve (17) and blocks it from the fourth bypass pipe (54).
  • the sixth three-way valve (66) communicates the fifth bypass pipe (55) with the sixth bypass pipe (56) and blocks it from the fourth bypass pipe (54).
  • the seventh three-way valve (67) communicates the connecting pipe (18) with the fifth bypass pipe (55) and cuts off the heat storage side pipe (30).
  • the eighth three-way valve (68) connects the sixth bypass pipe (56) with the use side pipe (35) and shuts off the heat storage side pipe (30).
  • the flow of the refrigerant in the refrigerant circuit (15) will be described.
  • the refrigerant discharged from the compressor (16) flows into the heat source side pipe (20) after passing through the four-way switching valve (17).
  • the refrigerant flowing into the heat source side pipe (20) dissipates heat to the outdoor air and condenses while passing through the heat source side heat exchanger (21).
  • the refrigerant comprises a heat source side expansion valve (22), a third bypass pipe (53), a second bypass pipe (52), a connection pipe (18), and a fifth bypass pipe (55).
  • the sixth bypass pipe (56) in order, and flows into the use side pipe (35).
  • the refrigerant flowing into the use side pipe (35) is depressurized when passing through the use side expansion valve (37), and then flows into the use side heat exchanger (36) and absorbs heat from the indoor air and evaporates.
  • the room air cooled in the use side heat exchanger (36) is supplied into the room.
  • the refrigerant that has passed through the use side heat exchanger (36) passes through the four-way switching valve (17) and is then sucked into the compressor (16).
  • the compressor (16) compresses the sucked refrigerant and discharges it.
  • the heat storage heating operation will be described with reference to FIG.
  • heat is obtained by the refrigeration cycle performed by the refrigerant circuit (15), a part of the obtained heat is used for indoor heating, and the rest is stored in the heat storage tank (91).
  • the pump (93) of the heat storage medium circuit (92) is operated, and the heat storage medium circulates between the heat storage tank (91) and the heat storage side heat exchanger (31). Further, in the heat storage and heating operation, the hot water supply device (70) is stopped.
  • the outdoor fan (11) and the indoor fan (12) are operated.
  • the use side heat exchanger (36) serves as a condenser (that is, a radiator), and the heat storage side heat exchanger (31) serves as a subcooler (ie, a radiator), and heat source side heat exchange.
  • a refrigeration cycle is performed in which the vessel (21) becomes an evaporator.
  • the compressor (16) is operated, and the four-way switching valve (17) is set to the second state.
  • the use side expansion valve (37) is held in a fully opened state.
  • the opening degree of the heat source side expansion valve (22) is adjusted such that the degree of superheat of the refrigerant at the outlet of the heat source side heat exchanger (21) becomes a predetermined target value.
  • the first bypass passage (41) is set to the second state.
  • the three-way valves (61, 62, 63, 64) are in the state described in the description of the second cold storage operation.
  • the second bypass passage (42) is set to the third state.
  • the three-way valves (65, 66, 67, 68) are in the state described in the description of the first use cooling operation.
  • the flow of the refrigerant in the refrigerant circuit (15) will be described.
  • the refrigerant discharged from the compressor (16) flows into the use side pipe (35) after passing through the four-way switching valve (17).
  • the refrigerant flowing into the use side pipe (35) dissipates heat to the room air and condenses while passing through the use side heat exchanger (36).
  • the room air heated in the use side heat exchanger (36) is supplied into the room.
  • the refrigerant that has passed through the use side heat exchanger (36) flows into the heat storage side pipe (30) after passing through the use side expansion valve (37). Thereafter, the refrigerant flows into the primary flow path (32) of the heat storage side heat exchanger (31).
  • the refrigerant flowing through the primary channel (32) radiates heat to the heat storage medium flowing through the secondary channel (33).
  • the refrigerant flowing out of the heat storage side heat exchanger (31) sequentially passes through the connection pipe (18), the second bypass pipe (52), and the third bypass pipe (53), and then the heat source side. It flows into the pipe (20).
  • the refrigerant flowing into the heat source side pipe (20) is depressurized when passing through the heat source side expansion valve (22), and then flows into the heat source side heat exchanger (21) to absorb heat from the outdoor air and evaporate.
  • the refrigerant that has passed through the heat source side heat exchanger (21) is sucked into the compressor (16) after passing through the four-way switching valve (17).
  • the compressor (16) compresses the sucked refrigerant and discharges it.
  • the pump (93) of the heat storage medium circuit (92) is operated, and the heat storage medium circulates between the heat storage tank (91) and the heat storage side heat exchanger (31).
  • the heat storage medium in the heat storage tank (91) is sent by the pump (93) to the secondary side flow path (33) of the heat storage side heat exchanger (31) and heated by the refrigerant flowing through the primary side flow path (32). Is done.
  • the heat storage medium heated in the heat storage side heat exchanger (31) is sent back to the heat storage tank (91). Therefore, the heat storage tank (91) stores the heat remaining in the refrigerant flowing out of the use side heat exchanger (36).
  • the water heater operation will be described.
  • the hot water supply air conditioning system (10) performs the same operation as the first cold storage operation shown in FIG.
  • the hot water supply device (70) heats the water in the hot water storage tank (71) using the heat stored in the heat storage tank (91).
  • the heat stored in the heat storage medium in the heat storage tank (91) is given to the refrigerant in the refrigerant circuit (15) in the heat storage side heat exchanger (31).
  • the refrigerant in the refrigerant circuit (15) conveys the warm heat given in the heat storage side heat exchanger (31) to the hot water supply side heat exchanger (26) and gives it to the refrigerant in the hot water supply refrigerant circuit (80).
  • the hot water supply refrigerant circuit (80) performs the refrigeration cycle, and the water in the hot water storage tank (71) is heated in the heating heat exchanger (83).
  • the utilization heating operation will be described with reference to FIG.
  • the use heating operation the room is heated using only the heat stored in the heat storage tank (91).
  • the pump (93) of the heat storage medium circuit (92) is operated, and the heat storage medium circulates between the heat storage tank (91) and the heat storage side heat exchanger (31).
  • the hot water supply device (70) is stopped.
  • the outdoor fan (11) is stopped and the indoor fan (12) is activated.
  • the refrigerant circuit (15) performs a refrigeration cycle in which the use side heat exchanger (36) serves as a condenser (that is, a radiator) and the heat storage side heat exchanger (31) serves as an evaporator. Specifically, in the refrigerant circuit (15), the compressor (16) is operated, and the four-way switching valve (17) is set to the second state. The opening degree of the use side expansion valve (37) is adjusted so that the degree of superheat of the refrigerant at the outlet of the heat storage side heat exchanger (31) becomes a predetermined target value.
  • the first bypass passage (41) is set to the third state.
  • the three-way valves (61, 62, 63, 64) are in the state described in the description of the first use cooling operation.
  • the second bypass passage (42) is set to the third state.
  • the three-way valves (65, 66, 67, 68) are in the state described in the description of the first use cooling operation.
  • the flow of the refrigerant in the refrigerant circuit (15) will be described.
  • the refrigerant discharged from the compressor (16) flows into the use side pipe (35) after passing through the four-way switching valve (17). Thereafter, the refrigerant flows into the use side heat exchanger (36), dissipates heat to the indoor air, and condenses.
  • the room air heated in the use side heat exchanger (36) is supplied into the room.
  • the refrigerant that has flowed out of the use side heat exchanger (36) flows into the heat storage side pipe (30) after passing through the use side expansion valve (37).
  • the refrigerant flows into the primary flow path (32) of the heat storage side heat exchanger (31), absorbs heat from the heat storage medium flowing through the secondary flow path (33), and evaporates.
  • the refrigerant that has flowed out of the heat storage side heat exchanger (31) passes through the connecting pipe (18), the second bypass pipe (52), the first bypass pipe (51), and the four-way switching valve (17). It passes through in order and is then sucked into the compressor (16).
  • the compressor (16) compresses the sucked refrigerant and discharges it.
  • the pump (93) of the heat storage medium circuit (92) operates, and the heat storage medium circulates between the heat storage tank (91) and the heat storage side heat exchanger (31).
  • the heat storage medium in the heat storage tank (91) is sent to the secondary side flow path (33) of the heat storage side heat exchanger (31) by the pump (93) and radiates heat to the refrigerant flowing through the primary side flow path (32). To do.
  • the heat storage medium that has passed through the secondary flow path (33) of the heat storage side heat exchanger (31) is sent back to the heat storage tank (91).
  • the simple heating operation will be described with reference to FIG.
  • room heating is performed using only the heat obtained by the refrigeration cycle performed by the refrigerant circuit (15).
  • the hot water supply device (70) and the heat storage device (90) are stopped.
  • the outdoor fan (11) and the indoor fan (12) operate.
  • the refrigerant circuit (15) performs a refrigeration cycle in which the use side heat exchanger (36) serves as a condenser (that is, a radiator) and the heat source side heat exchanger (21) serves as an evaporator.
  • the compressor (16) is operated, and the four-way switching valve (17) is set to the second state.
  • the use side expansion valve (37) is held in a fully opened state.
  • the opening degree of the heat source side expansion valve (22) is adjusted such that the degree of superheat of the refrigerant at the outlet of the heat source side heat exchanger (21) becomes a predetermined target value.
  • the first bypass passage (41) is set to the second state.
  • the three-way valves (61, 62, 63, 64) are in the state described in the description of the second cold storage operation.
  • the second bypass passage (42) is set to the second state.
  • the three-way valves (65, 66, 67, 68) are in the state described in the description of the simple cooling operation.
  • the flow of the refrigerant in the refrigerant circuit (15) will be described.
  • the refrigerant discharged from the compressor (16) flows into the use side pipe (35) after passing through the four-way switching valve (17).
  • the refrigerant flowing into the use side pipe (35) dissipates heat to the room air and condenses while passing through the use side heat exchanger (36).
  • the room air heated in the use side heat exchanger (36) is supplied into the room.
  • the refrigerant that has passed through the use side heat exchanger (36) passes through the use side expansion valve (37), the sixth bypass pipe (56), the fifth bypass pipe (55), and the connection pipe (18).
  • the second bypass pipe (52) and the third bypass pipe (53) are sequentially passed through and flow into the heat source side pipe (20).
  • the refrigerant flowing into the heat source side pipe (20) is depressurized when passing through the heat source side expansion valve (22), and then flows into the heat source side heat exchanger (21) to absorb heat from the outdoor air and evaporate.
  • the refrigerant that has passed through the heat source side heat exchanger (21) is sucked into the compressor (16) after passing through the four-way switching valve (17).
  • the compressor (16) compresses the sucked refrigerant and discharges it.
  • the hot water supply air conditioning system (10) performs a first cold storage operation, a second cold storage operation, a first use cooling operation, a second use cooling operation, and a simple cooling operation.
  • the first cold storage operation and the second cold storage operation are performed at midnight when the electricity rate is low.
  • the first use cooling operation, the second use cooling operation, and the simple cooling operation are performed mainly from daytime to evening.
  • the hot water supply air conditioning system (10) must perform the first cold storage operation.
  • the refrigerant circuit (15) performs the refrigeration cycle
  • the hot water supply device (70) heats the water in the hot water storage tank (71)
  • the refrigerant circuit Cold energy obtained by the refrigeration cycle performed by (15) is stored in the heat storage tank (91) of the heat storage device (90).
  • the hot water supply air conditioning system (10) performs the second cold storage operation after the end of the first cold storage operation.
  • the hot water supply air-conditioning system (10) of the present embodiment sufficiently secures the amount of cold heat stored in the heat storage tank (91) by performing the first cold storage operation and the second cold storage operation at midnight.
  • the first use cooling operation and the second use cooling operation are operations for cooling the room using the cold energy stored in the heat storage tank (91) by the first cold storage operation and the second cold storage operation.
  • the power consumption of the hot water supply air-conditioning system (10) in the first use cooling operation and the second use cooling operation is during the simple cooling operation in which the cooling is performed using only the cooling heat obtained by the refrigeration cycle performed by the refrigerant circuit (15). Compared to the power consumption of the hot water supply air conditioning system (10). For this reason, the power consumption of the hot water supply air conditioning system (10) from the daytime to the evening when the power rate is high is reduced, and the running cost of the hot water supply air conditioning system (10) is reduced.
  • the hot water supply air conditioning system (10) performs simple cooling operation.
  • the hot water supply air conditioning system (10) performs a heat storage heating operation, a water heater operation, a use heating operation, and a simple heating operation.
  • the hot water supply air-conditioning system (10) during the heat storage and heating operation heat is stored in the heat storage tank (91) of the heat storage device (90).
  • the hot water supply air-conditioning system (10) during the water heater operation or the use heating operation performs the above-described operation using the heat stored in the heat storage tank (91) during the heat storage heating operation.
  • the hot water supply air conditioning system (10) performs simple heating operation.
  • the hot water supply air conditioning system (10) of the present embodiment selectively performs the first cold storage operation and the second cold storage operation.
  • a refrigeration cycle is performed in the refrigerant circuit (15), and the hot water supply device (70) uses the heat released from the refrigerant in the hot water supply side heat exchanger (26) so that the hot water storage device (70) The water inside is heated, and the cold energy obtained in the heat storage side heat exchanger (31) is stored in the heat storage tank (91) of the heat storage device (90).
  • the hot water supply air-conditioning system (10) of this embodiment can further store cold energy in the heat storage tank (91) of the heat storage device (90) by performing the second cold storage operation even after the first cold storage operation is stopped. Can do.
  • the hot water supply air-conditioning system (10) of this embodiment can further store cold energy in the heat storage tank (91) of the heat storage device (90) by performing the second cold storage operation even after the first cold storage operation is stopped. Can do.
  • the hot water supply air-conditioning system (10) of this embodiment can further store cold energy in the heat storage tank (91) of the heat storage device (90) by performing the second cold storage operation even after the first cold storage operation is stopped. Can do.
  • the cold energy obtained when heating the water in the hot water storage tank (71) but also the cold energy obtained by radiating the refrigerant in the refrigerant circuit (15) to the outdoor air, It can be stored in the heat storage tank (91) of the heat storage device (90).
  • the present embodiment by performing the first cold storage operation and the second cold storage operation at midnight when the power rate is low, a sufficient amount of cold energy necessary for daytime use cooling operation is supplied to the heat storage tank (91). Can be stored. As a result, the amount of power consumed to cool the room during the day can be sufficiently reduced, and the running cost of the hot water supply air conditioning system (10) can be sufficiently reduced.
  • Embodiment 2 of the Invention A second embodiment of the present invention will be described.
  • the hot water supply air conditioning system (10) of the present embodiment is obtained by changing the configuration and arrangement of the heat storage side heat exchanger (31) in the hot water supply air conditioning system (10) of the first embodiment.
  • a different point from the hot water supply air-conditioning system (10) of Embodiment 1 is demonstrated.
  • the heat storage side heat exchanger (31) of the present embodiment is configured by a heat transfer tube meandering up and down. Moreover, this heat storage side heat exchanger (31) is arrange
  • the heat storage device (90) of the present embodiment stores cold energy by freezing water stored as a heat storage medium in the heat storage tank (91). That is, in the first cold storage operation and the second cold storage operation in which the heat storage side heat exchanger (31) is an evaporator, the water in the heat storage tank (91) is cooled by the refrigerant flowing through the heat storage side heat exchanger (31), The water around the heat storage side heat exchanger (31) freezes into ice. In the first use cooling operation and the second use cooling operation, the refrigerant flowing through the heat storage side heat exchanger (31) is cooled by the ice in the heat storage tank (91), and as a result, the ice melts.
  • Embodiment 3 of the Invention ⁇ Embodiment 3 of the Invention >> Embodiment 3 of the present invention will be described.
  • the hot water supply air conditioning system (10) of the present embodiment is obtained by changing the configuration of the hot water supply device (70) in the hot water supply air conditioning system (10) of the first embodiment.
  • a different point from the hot water supply air-conditioning system (10) of Embodiment 1 is demonstrated.
  • the hot water supply refrigerant circuit (80) is omitted, and the water circuit (74) is connected to the secondary side flow path ( 28) is connected.
  • the water flowing into the water circuit (74) from the hot water storage tank (71) flows into the secondary flow path (28) of the hot water supply side heat exchanger (26), and flows through the primary flow path (27). Heated by the refrigerant in the flowing refrigerant circuit (15).
  • the water flowing out from the secondary flow path (28) of the hot water supply side heat exchanger (26) is sent back to the top of the hot water storage tank (71).
  • Embodiment 4 of the Invention ⁇ Embodiment 4 of the Invention >> Embodiment 4 of the present invention will be described.
  • the hot water supply air conditioning system (10) of the present embodiment is obtained by changing the configuration of the refrigerant circuit (15) and the configuration and arrangement of the heat storage side heat exchanger (31) in the hot water supply air conditioning system (10) of the first embodiment. It is.
  • a different point from the hot water supply air-conditioning system (10) of Embodiment 1 is demonstrated.
  • the refrigerant circuit (15) of this embodiment includes three connection pipes (46 to 48) and eight pipes instead of the bypass pipes (51 to 56) and the three-way valves (61 to 68). And two solenoid valves (101 to 108).
  • the refrigerant circuit (15) of the present embodiment is provided with three use side pipes (35a to 35c).
  • the three usage side pipes (35a to 35c) are connected in parallel to each other.
  • the refrigerant circuit (15) of the present embodiment is provided with a heat storage side expansion valve (34).
  • the compressor (16) has a discharge side connected to the first port of the four-way switching valve (17) and a suction side connected to the second port of the four-way switching valve (17). Has been. This is the same as in the first embodiment.
  • the first solenoid valve (101), the heat source side heat exchanger (21), and the heat source side are sequentially arranged from the third port to the fourth port of the four-way switching valve (17).
  • An expansion valve (22), a second electromagnetic valve (102), a use side pipe (35a to 35c), and a third electromagnetic valve (103) are arranged.
  • each use side pipe (35a to 35c) a use side heat exchanger (36a to 36c) and a use side expansion valve (37a to 37c) are arranged in order from one end to the other end. That is, in each usage side pipe (35a to 35c), usage side expansion valves (37a to 37c) are arranged on the liquid side of the usage side heat exchangers (36a to 36c).
  • Each use side pipe (35a to 35c) has one end on the use side heat exchanger (36a to 36c) side connected to the third solenoid valve (103) and the other end on the use side expansion valve (37a to 37c) side. It is connected to the second solenoid valve (102).
  • one indoor fan is provided for each use side heat exchanger (36a to 36c). Each indoor fan supplies room air to the corresponding use side heat exchanger (36a to 36c).
  • a fourth solenoid valve (104), a hot water supply side heat exchanger (26), and a hot water supply side expansion valve (29) are arranged in this order from one end to the other end.
  • the hot water supply side pipe (25) has one end on the fourth solenoid valve (104) side connected to a pipe connecting the compressor (16) and the first port of the four-way switching valve (17), and the hot water supply side expansion valve (29 ) Side other end is connected to a pipe (19) connecting the heat source side expansion valve (22) and the second electromagnetic valve (102).
  • the portion from the third port of the four-way switching valve (17) to the connection position of the hot water supply side pipe (25) to the pipe (19) is the heat source side pipe (20). Is configured.
  • a fifth solenoid valve (105), a heat storage side heat exchanger (31), and a heat storage side expansion valve (34) are arranged in order from one end to the other end. Yes.
  • the heat storage side pipe (30) is connected to a pipe connecting one end of the fifth solenoid valve (105) side to the third port of the third solenoid valve (103) and the fourth port of the four-way switching valve (17).
  • the other end on the (34) side is connected to a pipe connecting the second solenoid valve (102) and the use side pipe (35a to 35c).
  • the heat storage side expansion valve (34) is an electric expansion valve with a variable opening.
  • the heat storage side heat exchanger (31) of the present embodiment is configured by a heat transfer tube meandering up and down. Moreover, this heat storage side heat exchanger (31) is arrange
  • One end of the first connection pipe (46) is connected between one end of the hot water supply side pipe (25) and the fourth solenoid valve (104), and the other end is connected to the heat source side expansion valve (22) and the second solenoid valve. It is connected to the pipe (19) connecting (102).
  • the connection position of the first connection pipe (46) to the pipe (19) is closer to the second solenoid valve (102) than the connection position of the heat storage side pipe (30) to the pipe (19).
  • the first connection pipe (46) is provided with a sixth solenoid valve (106).
  • One end of the second connection pipe (47) is connected between the fifth solenoid valve (105) and the heat storage side heat exchanger (31) in the heat storage side pipe (30), and the other end is the compressor (16). And a pipe connecting the second port of the four-way selector valve (17).
  • the second connection pipe (47) is provided with a seventh electromagnetic valve (107).
  • connection pipe (48) One end of the third connection pipe (48) is connected between the fifth solenoid valve (105) and the heat storage side heat exchanger (31) in the heat storage side pipe (30), and the other end is connected to the heat source side expansion valve ( 22) and a pipe (19) connecting the second solenoid valve (102).
  • the connection position of the third connection pipe (48) to the pipe (19) is closer to the second solenoid valve (102) than the connection position of the first connection pipe (46) to the pipe (19).
  • the third connecting pipe (48) is provided with an eighth electromagnetic valve (108).
  • the hot water supply air conditioning system (10) performs various operations described later.
  • the hot water supply air conditioning system (10) performs the first operation. That is, the hot water supply device (70) operates to heat the water in the hot water storage tank (71), and the heat storage device (90) transfers the cold energy obtained by the operation of the hot water supply device (70) to the heat storage tank (91). Do accumulating operation. In the first cold storage operation, the outdoor fan (11) and each indoor fan are stopped.
  • the refrigerant circuit (15) performs a refrigeration cycle in which the hot water supply side heat exchanger (26) serves as a condenser (that is, a radiator) and the heat storage side heat exchanger (31) serves as an evaporator.
  • the compressor (16) is operated, and the four-way selector valve (17) is set to the first state.
  • the hot water supply side expansion valve (29) is held in a fully opened state, and the heat source side expansion valve (22) and the respective use side expansion valves (37a to 37c) are held in a fully closed state.
  • the opening degree of the heat storage side expansion valve (34) is adjusted so that the degree of superheat of the refrigerant at the outlet of the heat storage side heat exchanger (31) becomes a predetermined target value.
  • the second solenoid valve (102), the third solenoid valve (103), the fourth solenoid valve (104), and the fifth solenoid valve (105) are opened, and the first solenoid valve (101), the sixth solenoid valve ( 106), the seventh solenoid valve (107), and the eighth solenoid valve (108) are closed.
  • the flow of the refrigerant in the refrigerant circuit (15) will be described.
  • the refrigerant discharged from the compressor (16) flows into the hot water supply side pipe (25).
  • the refrigerant flowing into the hot water supply side pipe (25) dissipates heat and condenses while passing through the primary flow path (27) of the hot water supply side heat exchanger (26), and then flows into the heat storage side pipe (30). .
  • the refrigerant flowing into the heat storage side pipe (30) is depressurized when passing through the heat storage side expansion valve (34), and then flows into the heat storage side heat exchanger (31).
  • the refrigerant flowing through the heat storage side heat exchanger (31) absorbs heat from the water in the heat storage tank (91) and evaporates.
  • the refrigerant flowing out of the heat storage side heat exchanger (31) passes through the four-way switching valve (17) and is sucked into the compressor (16).
  • the compressor (16) compresses the sucked refrigerant and discharges it.
  • the hot water supply compressor (81) of the hot water supply device (70) is operated, and the hot water supply refrigerant circuit (80) performs the refrigeration cycle.
  • the opening degree of the hot water supply expansion valve (82) is adjusted so that the degree of superheat of the refrigerant at the outlet of the secondary side flow path (28) of the hot water supply side heat exchanger (26) becomes a predetermined target value. Adjusted.
  • the pump (75) of the water circuit (74) is operated, and water is circulated between the hot water storage tank (71) and the heat exchanger (83) for heating.
  • the flow of the refrigerant in the hot water supply refrigerant circuit (80) will be described.
  • the refrigerant discharged from the hot water supply compressor (81) dissipates heat and condenses when it passes through the primary flow path (84) of the heating heat exchanger (83).
  • the refrigerant flowing out of the heating heat exchanger (83) is depressurized when passing through the hot water supply expansion valve (82), and then flows into the secondary flow path (28) of the hot water supply side heat exchanger (26). To do.
  • the refrigerant flowing through the secondary channel (28) of the hot water supply side heat exchanger (26) absorbs heat from the refrigerant flowing through the secondary channel (28) and evaporates. Thereafter, the refrigerant is sucked into the hot water supply compressor (81).
  • the hot water supply compressor (81) compresses the sucked refrigerant and discharges it.
  • the flow of water in the water circuit (74) will be described.
  • the low-temperature water present at the bottom of the heat storage tank (91) is sent to the secondary flow path (85) of the heating heat exchanger (83) by the pump (75), and the primary flow path (84) is Heated by flowing refrigerant. And the water heated to high temperature is sent back to the top of the hot water tank (71).
  • the water in the heat storage tank (91) is cooled by the refrigerant flowing through the heat storage side heat exchanger (31), and the water around the heat storage side heat exchanger (31) is frozen to become ice. .
  • cold heat is stored in the heat storage tank (91).
  • the hot water supply air conditioning system (10) performs the second operation. That is, in the hot water supply air conditioning system (10), the hot water supply device (70) is stopped, and the heat storage device (90) performs an operation of storing cold energy in the heat storage tank (91). In the second cold storage operation, the outdoor fan (11) is operated, and each indoor fan is stopped.
  • the refrigerant circuit (15) performs a refrigeration cycle in which the heat source side heat exchanger (21) serves as a condenser (that is, a radiator) and the heat storage side heat exchanger (31) serves as an evaporator.
  • the compressor (16) is operated, and the four-way selector valve (17) is set to the first state.
  • the heat source side expansion valve (22) is held in a fully open state, and the hot water supply side expansion valve (29) and the respective use side expansion valves (37a to 37c) are held in a fully closed state.
  • the opening degree of the heat storage side expansion valve (34) is adjusted so that the degree of superheat of the refrigerant at the outlet of the heat storage side heat exchanger (31) becomes a predetermined target value.
  • the first solenoid valve (101), the second solenoid valve (102), the third solenoid valve (103), and the fifth solenoid valve (105) are opened, and the fourth solenoid valve (104), the sixth solenoid valve ( 106), the seventh solenoid valve (107), and the eighth solenoid valve (108) are closed.
  • the flow of the refrigerant in the refrigerant circuit (15) will be described.
  • the refrigerant discharged from the compressor (16) flows into the heat source side pipe (20) after passing through the four-way switching valve (17).
  • the refrigerant flowing into the heat source side pipe (20) dissipates heat and condenses to the outdoor air while passing through the heat source side heat exchanger (21), and then flows into the heat storage side pipe (30).
  • the refrigerant flowing into the heat storage side pipe (30) is depressurized when passing through the heat storage side expansion valve (34), and then flows into the heat storage side heat exchanger (31).
  • the refrigerant flowing through the heat storage side heat exchanger (31) absorbs heat from the water in the heat storage tank (91) and evaporates.
  • the refrigerant flowing out of the heat storage side heat exchanger (31) passes through the four-way switching valve (17) and is sucked into the compressor (16).
  • the compressor (16) compresses the sucked refrigerant and discharges it.
  • the heat storage device (90) performs an operation of storing cold energy in the heat storage tank (91). This operation is the same as the operation performed by the heat storage device (90) during the first cold storage operation.
  • the hot water supply device (70) operates to heat the water in the hot water storage tank (71), and the heat storage device (90) stores the cold energy obtained by the operation of the hot water supply device (70). Store in tank (91).
  • the outdoor fan (11) is activated and each indoor fan is stopped.
  • both the heat source side heat exchanger (21) and the hot water supply side heat exchanger (26) are condensers (that is, radiators), and the heat storage side heat exchanger (31) is an evaporator. Perform a refrigeration cycle.
  • the compressor (16) is operated, and the four-way selector valve (17) is set to the first state.
  • the heat source side expansion valve (22) and the hot water supply side expansion valve (29) are held in a fully opened state, and the use side expansion valves (37a to 37c) are held in a fully closed state.
  • the opening degree of the heat storage side expansion valve (34) is adjusted so that the degree of superheat of the refrigerant at the outlet of the heat storage side heat exchanger (31) becomes a predetermined target value.
  • the first solenoid valve (101), the second solenoid valve (102), the third solenoid valve (103), the fourth solenoid valve (104), and the fifth solenoid valve (105) are opened, and the sixth solenoid valve ( 106), the seventh solenoid valve (107), and the eighth solenoid valve (108) are closed.
  • the flow of the refrigerant in the refrigerant circuit (15) will be described.
  • a part of the refrigerant discharged from the compressor (16) flows into the hot water supply side pipe (25), and the rest flows into the heat source side pipe (20) after passing through the four-way switching valve (17).
  • the refrigerant flowing into the hot water supply side pipe (25) dissipates heat and condenses while passing through the primary flow path (27) of the hot water supply side heat exchanger (26).
  • the refrigerant flowing into the heat source side pipe (20) dissipates heat to the outdoor air and condenses while passing through the heat source side heat exchanger (21).
  • the refrigerant that has passed through the hot water supply side pipe (25) and the refrigerant that has passed through the heat source side pipe (20) flow into the heat storage side pipe (30) after merging.
  • the refrigerant flowing into the heat storage side pipe (30) is depressurized when passing through the heat storage side expansion valve (34), and then flows into the heat storage side heat exchanger (31).
  • the refrigerant flowing through the heat storage side heat exchanger (31) absorbs heat from the water in the heat storage tank (91) and evaporates.
  • the refrigerant flowing out of the heat storage side heat exchanger (31) passes through the four-way switching valve (17) and is sucked into the compressor (16).
  • the compressor (16) compresses the sucked refrigerant and discharges it.
  • the hot water supply device (70) performs an operation of heating the water in the hot water storage tank (71).
  • the operation performed by the hot water supply device (70) during the third cold storage operation is the same as the operation performed by the hot water supply device (70) during the first cold storage operation.
  • the heat storage device (90) performs an operation of storing cold energy in the heat storage tank (91). This operation is the same as the operation performed by the heat storage device (90) during the first cold storage operation.
  • the first use cooling operation will be described with reference to FIG.
  • the room is cooled only by using the cold energy stored in the heat storage tank (91).
  • the hot water supply device (70) is stopped.
  • the outdoor fan (11) is stopped and each indoor fan is operated.
  • the compressor (16) operates as a gas pump, and refrigerant flows between the heat storage side heat exchanger (31) and each use side heat exchanger (36a to 36c). Circulate.
  • the compressor (16) is operated, and the four-way selector valve (17) is set to the first state.
  • the heat storage side expansion valve (34) is held in a fully opened state, and the heat source side expansion valve (22) and the hot water supply side expansion valve (29) are held in a fully closed state.
  • each use side expansion valve (37a to 37c) is adjusted so that the degree of superheat of the refrigerant at the outlet of the corresponding use side heat exchanger (36a to 36c) becomes a predetermined target value.
  • the third solenoid valve (103), the sixth solenoid valve (106), and the eighth solenoid valve (108) are opened, and the first solenoid valve (101), the second solenoid valve (102), and the fourth solenoid valve ( 104), the fifth solenoid valve (105), and the seventh solenoid valve (107) are closed.
  • the flow of the refrigerant in the refrigerant circuit (15) will be described.
  • the refrigerant discharged from the compressor (16) sequentially passes through the first connection pipe (46) and the third connection pipe (48) and flows into the heat storage side pipe (30). Thereafter, the refrigerant flows into the heat storage side heat exchanger (31), dissipates heat to the water in the heat storage tank (91), and condenses.
  • the refrigerant flowing out of the heat storage side heat exchanger (31) is divided into three use side pipes (35a to 35c).
  • each use side pipe (35a to 35c) the refrigerant is depressurized when passing through the use side expansion valve (37a to 37c), and then flows into the use side heat exchanger (36a to 36c) from the room air. It absorbs heat and evaporates.
  • the room air cooled in each use side heat exchanger (36a to 36c) is supplied into the room.
  • the refrigerant that has flowed out from the respective use side pipes (35a to 35c) passes through the four-way switching valve (17) and is sucked into the compressor (16) after joining.
  • the compressor (16) operating as a gas pump boosts the suctioned refrigerant and discharges it.
  • the heat storage device (90) performs an operation of imparting cold heat stored in the heat storage tank (91) to the refrigerant in the refrigerant circuit (15). Specifically, during the first use cooling operation, the refrigerant flowing through the heat storage side heat exchanger (31) is cooled by the water in the heat storage tank (91). In the heat storage tank (91), the ice around the heat storage side heat exchanger (31) is heated and melted by the refrigerant. That is, the cold energy stored as latent heat of water in the heat storage tank (91) is given to the refrigerant flowing through the heat storage side heat exchanger (31).
  • the heat source side heat exchanger (21) serves as a condenser (ie, a radiator), and the heat storage side heat exchanger (31) serves as a subcooler (ie, a radiator).
  • a refrigeration cycle is performed in which the exchangers (36a to 36c) serve as evaporators.
  • the compressor (16) is operated, and the four-way selector valve (17) is set to the first state.
  • the heat source side expansion valve (22) and the heat storage side expansion valve (34) are held in a fully opened state, and the hot water supply side expansion valve (29) is held in a fully closed state.
  • each use side expansion valve (37a to 37c) is adjusted so that the degree of superheat of the refrigerant at the outlet of the corresponding use side heat exchanger (36a to 36c) becomes a predetermined target value.
  • the first solenoid valve (101), the third solenoid valve (103), and the eighth solenoid valve (108) are opened, and the second solenoid valve (102), the fourth solenoid valve (104), and the fifth solenoid valve ( 105), the sixth solenoid valve (106), and the seventh solenoid valve (107) are closed.
  • the flow of the refrigerant in the refrigerant circuit (15) will be described.
  • the refrigerant discharged from the compressor (16) flows into the heat source side pipe (20) after passing through the four-way switching valve (17).
  • the refrigerant flowing into the heat source side pipe (20) dissipates heat and condenses to the outdoor air while passing through the heat source side heat exchanger (21), and then passes through the third connection pipe (48) to store the heat storage side pipe.
  • the refrigerant flows into the heat storage side heat exchanger (31), dissipates heat to the water in the heat storage tank (91), and enters a supercooled state.
  • the refrigerant flowing out of the heat storage side heat exchanger (31) is divided into three use side pipes (35a to 35c).
  • each use side pipe (35a to 35c) the refrigerant is depressurized when passing through the use side expansion valve (37a to 37c), and then flows into the use side heat exchanger (36a to 36c) from the room air. It absorbs heat and evaporates.
  • the room air cooled in each use side heat exchanger (36a to 36c) is supplied into the room.
  • the refrigerant that has passed through each use side pipe (35a to 35c) passes through the four-way switching valve (17) after joining, and is then sucked into the compressor (16).
  • the compressor (16) compresses the sucked refrigerant and discharges it.
  • the heat storage device (90) performs an operation of applying the cold energy stored in the heat storage tank (91) to the refrigerant of the refrigerant circuit (15). This operation is the same as the operation performed by the heat storage device (90) during the first use cooling operation.
  • the water heater utilizing cooling operation will be described with reference to FIG.
  • the room is cooled by using the cold heat stored in the heat storage tank (91) and the cold heat obtained by the refrigeration cycle performed by the refrigerant circuit (15).
  • the hot water supply device (70) performs an operation of heating the water in the hot water storage tank (71).
  • the hot water supply side heat exchanger (26) serves as a condenser (ie, a radiator), and the heat storage side heat exchanger (31) serves as a subcooler (ie, a radiator).
  • a refrigeration cycle is performed in which the exchangers (36a to 36c) serve as evaporators.
  • the compressor (16) is operated, and the four-way selector valve (17) is set to the first state.
  • the hot water supply side expansion valve (29) and the heat storage side expansion valve (34) are kept fully open, and the heat source side expansion valve (22) is kept fully closed.
  • each use side expansion valve (37a to 37c) is adjusted so that the degree of superheat of the refrigerant at the outlet of the corresponding use side heat exchanger (36a to 36c) becomes a predetermined target value.
  • the third solenoid valve (103), the fourth solenoid valve (104), and the eighth solenoid valve (108) are opened, and the first solenoid valve (101), the second solenoid valve (102), and the fifth solenoid valve ( 105), the sixth solenoid valve (106), and the seventh solenoid valve (107) are closed.
  • the refrigerant discharged from the compressor (16) flows into the hot water supply side pipe (25).
  • the refrigerant flowing into the hot water supply side pipe (25) dissipates heat and condenses while passing through the primary flow path (27) of the hot water supply side heat exchanger (26), and then passes through the third connection pipe (48). And flows into the heat storage side pipe (30). Thereafter, the refrigerant flows into the heat storage side heat exchanger (31), dissipates heat to the water in the heat storage tank (91), and condenses.
  • the refrigerant flowing out of the heat storage side heat exchanger (31) is divided into three use side pipes (35a to 35c).
  • each use side pipe (35a to 35c) the refrigerant is depressurized when passing through the use side expansion valve (37a to 37c), and then flows into the use side heat exchanger (36a to 36c) from the room air. It absorbs heat and evaporates.
  • the room air cooled in each use side heat exchanger (36a to 36c) is supplied into the room.
  • the refrigerant that has passed through each use side pipe (35a to 35c) passes through the four-way switching valve (17) after joining, and is then sucked into the compressor (16).
  • the compressor (16) compresses the sucked refrigerant and discharges it.
  • the water heater (70) performs an operation of heating the water in the hot water tank (71).
  • the operation performed by the hot water supply device (70) during the cooling operation using the hot water heater is the same as the operation performed by the hot water supply device (70) during the first cold storage operation.
  • the heat storage device (90) performs an operation of imparting the cold heat stored in the heat storage tank (91) to the refrigerant in the refrigerant circuit (15). This operation is the same as the operation performed by the heat storage device (90) during the first use cooling operation.
  • the simple cooling operation will be described with reference to FIG.
  • the room is cooled using only the cooling heat obtained by the refrigeration cycle performed by the refrigerant circuit (15).
  • the hot water supply device (70) and the heat storage device (90) are stopped.
  • the outdoor fan (11) and the indoor fan (12) operate.
  • the refrigerant circuit (15) performs a refrigeration cycle in which the heat source side heat exchanger (21) serves as a condenser (that is, a radiator) and each use side heat exchanger (36a to 36c) serves as an evaporator.
  • the compressor (16) is operated, and the four-way selector valve (17) is set to the first state.
  • the heat source side expansion valve (22) is held in a fully opened state, and the hot water supply side expansion valve (29) and the heat storage side expansion valve (34) are held in a fully closed state.
  • each use side expansion valve (37a to 37c) is adjusted so that the degree of superheat of the refrigerant at the outlet of the corresponding use side heat exchanger (36a to 36c) becomes a predetermined target value.
  • the first solenoid valve (101), the second solenoid valve (102), the third solenoid valve (103), and the seventh solenoid valve (107) are opened, and the fourth solenoid valve (104) and the fifth solenoid valve ( 105), the sixth solenoid valve (106), and the eighth solenoid valve (108) are closed.
  • the flow of the refrigerant in the refrigerant circuit (15) will be described.
  • the refrigerant discharged from the compressor (16) flows into the heat source side pipe (20) after passing through the four-way switching valve (17).
  • the refrigerant flowing into the heat source side pipe (20) dissipates heat and condenses into the outdoor air while passing through the heat source side heat exchanger (21), and then flows into the three use side pipes (35a to 35c). To do.
  • the refrigerant is depressurized when passing through the use side expansion valve (37a to 37c), and then flows into the use side heat exchanger (36a to 36c) from the room air. It absorbs heat and evaporates.
  • each use side heat exchanger 36a to 36c
  • the room air cooled in each use side heat exchanger (36a to 36c) is supplied into the room.
  • the refrigerant that has passed through each use side pipe (35a to 35c) passes through the four-way switching valve (17) after joining, and is then sucked into the compressor (16).
  • the compressor (16) compresses the sucked refrigerant and discharges it.
  • the hot water supply device (70) operates to heat the water in the hot water storage tank (71), and indoor cooling is performed using the cold energy obtained by the operation of the hot water supply device (70). Is called.
  • the heat storage device (90) stops.
  • the outdoor fan (11) is stopped and each indoor fan is operated.
  • the refrigerant circuit (15) performs a refrigeration cycle in which the hot water supply side heat exchanger (26) serves as a condenser (that is, a radiator) and each use side heat exchanger (36a to 36c) serves as an evaporator.
  • the compressor (16) is operated, and the four-way selector valve (17) is set to the first state.
  • the hot water supply side expansion valve (29) is held in a fully opened state, and the heat source side expansion valve (22) and the heat storage side expansion valve (34) are held in a fully closed state.
  • each use side expansion valve (37a to 37c) is adjusted so that the degree of superheat of the refrigerant at the outlet of the corresponding use side heat exchanger (36a to 36c) becomes a predetermined target value.
  • the second solenoid valve (102), the third solenoid valve (103), the fourth solenoid valve (104), and the seventh solenoid valve (107) are opened, and the first solenoid valve (101), the fifth solenoid valve ( 105), the sixth solenoid valve (106), and the eighth solenoid valve (108) are closed.
  • the flow of the refrigerant in the refrigerant circuit (15) will be described.
  • the refrigerant discharged from the compressor (16) flows into the hot water supply side pipe (25).
  • the refrigerant flowing into the hot water supply side pipe (25) dissipates heat and condenses while passing through the primary flow path (27) of the hot water supply side heat exchanger (26), and then the three use side pipes (35a to 35c) ) And flow in.
  • the refrigerant is depressurized when passing through the use side expansion valve (37a to 37c), and then flows into the use side heat exchanger (36a to 36c) from the room air. It absorbs heat and evaporates.
  • each use side heat exchanger 36a to 36c
  • the room air cooled in each use side heat exchanger (36a to 36c) is supplied into the room.
  • the refrigerant that has passed through each use side pipe (35a to 35c) passes through the four-way switching valve (17) after joining, and is then sucked into the compressor (16).
  • the compressor (16) compresses the sucked refrigerant and discharges it.
  • the hot water supply device (70) performs an operation of heating the water in the hot water storage tank (71).
  • the operation performed by the hot water supply device (70) during the hot water cooling operation is the same as the operation performed by the hot water supply device (70) during the first cold storage operation.
  • the refrigerant circuit (15) performs a refrigeration cycle in which the hot water supply side heat exchanger (26) serves as a condenser (that is, a radiator) and the heat source side heat exchanger (21) serves as an evaporator.
  • the compressor (16) is operated, and the four-way selector valve (17) is set to the second state.
  • the hot water supply side expansion valve (29) is kept fully open.
  • the heat storage side expansion valve (34) and the use side expansion valves (37a to 37c) may be closed or open.
  • the opening degree of the heat source side expansion valve (22) is adjusted so that the degree of superheat of the refrigerant at the outlet of the heat source side heat exchanger (21) becomes a predetermined target value.
  • the first solenoid valve (101), the fourth solenoid valve (104), and the seventh solenoid valve (107) are opened, and the second solenoid valve (102), the third solenoid valve (103), and the fifth solenoid valve ( 105), the sixth solenoid valve (106), and the eighth solenoid valve (108) are closed.
  • the flow of the refrigerant in the refrigerant circuit (15) will be described.
  • the refrigerant discharged from the compressor (16) flows into the hot water supply side pipe (25).
  • the refrigerant flowing into the hot water supply side pipe (25) dissipates heat and condenses while passing through the primary flow path (27) of the hot water supply side heat exchanger (26).
  • the refrigerant flowing out of the hot water supply side pipe (25) is depressurized when passing through the heat source side expansion valve (22), and then flows into the heat source side heat exchanger (21) to absorb heat from the outdoor air and evaporate.
  • the refrigerant that has flowed out of the heat source side heat exchanger (21) passes through the four-way switching valve (17) and is then sucked into the compressor (16).
  • the compressor (16) compresses the sucked refrigerant and discharges it.
  • the hot water supply device (70) operates to heat the water in the hot water tank (71).
  • the operation performed by the hot water supply device (70) during the simple water heating operation is the same as the operation performed by the hot water supply device (70) during the first cold storage operation.
  • the hot water supply device (70) performs an operation for heating the water in the hot water storage tank (71), and the heat storage device (90) performs an operation for storing warm heat. Further, in the hot water supply air conditioning system (10), the outdoor fan (11) is operated and each indoor fan is stopped.
  • both the hot water supply side heat exchanger (26) and the heat storage side heat exchanger (31) are condensers (ie, radiators), and the heat source side heat exchanger (21) is an evaporator. Perform a refrigeration cycle.
  • the compressor (16) is operated, and the four-way selector valve (17) is set to the second state.
  • the hot water supply side expansion valve (29) and the heat storage side expansion valve (34) are held in a fully opened state, and the use side expansion valves (37a to 37c) are held in a fully closed state.
  • the opening degree of the heat source side expansion valve (22) is adjusted so that the degree of superheat of the refrigerant at the outlet of the heat source side heat exchanger (21) becomes a predetermined target value.
  • the first solenoid valve (101), the second solenoid valve (102), the fourth solenoid valve (104), and the fifth solenoid valve (105) are opened, and the third solenoid valve (103), the sixth solenoid valve ( 106), the seventh solenoid valve (107), and the eighth solenoid valve (108) are closed.
  • the flow of the refrigerant in the refrigerant circuit (15) will be described.
  • a part of the refrigerant discharged from the compressor (16) flows into the hot water supply side pipe (25), and the rest passes through the four-way switching valve (17) and flows into the heat storage side pipe (30).
  • the refrigerant flowing into the hot water supply side pipe (25) dissipates heat and condenses while passing through the primary flow path (27) of the hot water supply side heat exchanger (26).
  • the refrigerant flowing into the heat storage side pipe (30) flows into the heat storage side heat exchanger (31), dissipates heat to the water in the heat storage tank (91), and condenses.
  • the refrigerant that has flowed out of the hot water supply side pipe (25) and the refrigerant that has flowed out of the heat storage side pipe (30) pass through the heat source side expansion valve (22) after joining, and are decompressed at that time. Thereafter, the refrigerant flows into the heat source side heat exchanger (21), absorbs heat from the outdoor air, and evaporates.
  • the refrigerant that has flowed out of the heat source side heat exchanger (21) passes through the four-way switching valve (17) and is then sucked into the compressor (16). The compressor (16) compresses the sucked refrigerant and discharges it.
  • the hot water supply device (70) performs an operation of heating the water in the hot water storage tank (71).
  • the operation performed by the hot water supply device (70) during the hot water heat storage operation is the same as the operation performed by the hot water supply device (70) during the first cold storage operation.
  • the water in the heat storage tank (91) is heated by the refrigerant flowing through the heat storage side heat exchanger (31). As a result, heat is stored in the heat storage tank (91).
  • the refrigerant circuit (15) performs a refrigeration cycle in which the heat storage side heat exchanger (31) serves as a condenser (that is, a radiator) and the heat source side heat exchanger (21) serves as an evaporator.
  • the compressor (16) is operated, and the four-way selector valve (17) is set to the second state.
  • the heat storage side expansion valve (34) is held in a fully opened state, and the hot water supply side expansion valve (29) and the respective use side expansion valves (37a to 37c) are held in a fully closed state.
  • the opening degree of the heat source side expansion valve (22) is adjusted so that the degree of superheat of the refrigerant at the outlet of the heat source side heat exchanger (21) becomes a predetermined target value.
  • the first solenoid valve (101), the second solenoid valve (102), and the fifth solenoid valve (105) are opened, and the third solenoid valve (103), the fourth solenoid valve (104), and the sixth solenoid valve ( 106), the seventh solenoid valve (107), and the eighth solenoid valve (108) are closed.
  • the flow of the refrigerant in the refrigerant circuit (15) will be described.
  • the refrigerant discharged from the compressor (16) passes through the four-way switching valve (17) and flows into the heat storage side pipe (30).
  • the refrigerant that has flowed into the heat storage side pipe (30) flows into the heat storage side heat exchanger (31), dissipates heat to the water in the heat storage tank (91), and condenses.
  • the refrigerant flowing out of the heat storage side pipe (30) is depressurized when passing through the heat source side expansion valve (22), and then flows into the heat source side heat exchanger (21) to absorb heat from the outdoor air and evaporate.
  • the refrigerant that has flowed out of the heat source side heat exchanger (21) passes through the four-way switching valve (17) and is then sucked into the compressor (16).
  • the compressor (16) compresses the sucked refrigerant and discharges it.
  • the water in the heat storage tank (91) is heated by the refrigerant flowing through the heat storage side heat exchanger (31). As a result, heat is stored in the heat storage tank (91).
  • ⁇ Use heating operation The utilization heating operation will be described with reference to FIG.
  • the room is heated using only the heat stored in the heat storage tank (91).
  • the hot water supply device (70) stops.
  • the outdoor fan (11) is stopped and each indoor fan is operated.
  • the refrigerant circuit (15) performs a refrigeration cycle in which each use side heat exchanger (36a to 36c) serves as a condenser (that is, a radiator) and the heat storage side heat exchanger (31) serves as an evaporator.
  • the compressor (16) is operated, and the four-way selector valve (17) is set to the second state.
  • the heat source side expansion valve (22) and the hot water supply side expansion valve (29) are kept fully open.
  • the opening degree of each use side expansion valve (37a to 37c) is adjusted so that the degree of supercooling of the refrigerant at the outlet of the corresponding use side heat exchanger (36a to 36c) becomes a predetermined target value.
  • the opening degree of the heat storage side expansion valve (34) is adjusted so that the degree of superheat of the refrigerant at the outlet of the heat storage side heat exchanger (31) becomes a predetermined target value.
  • the first solenoid valve (101), the third solenoid valve (103), and the seventh solenoid valve (107) are opened, and the second solenoid valve (102), the fourth solenoid valve (104), and the fifth solenoid valve ( 105), the sixth solenoid valve (106), and the eighth solenoid valve (108) are closed.
  • the flow of the refrigerant in the refrigerant circuit (15) will be described.
  • the refrigerant discharged from the compressor (16) passes through the four-way switching valve (17) and then flows into the three utilization side pipes (35a to 35c).
  • the refrigerant flows into the use side heat exchangers (36a to 36c), dissipates heat to the indoor air, and condenses.
  • the room air heated in each use side heat exchanger (36a to 36c) is supplied into the room.
  • the refrigerant flowing out from each use side pipe (35a to 35c) passes through the heat storage side expansion valve (34) after joining, and is decompressed at that time.
  • the decompressed refrigerant flows into the heat storage side heat exchanger (31), absorbs heat from the water in the heat storage tank (91), and evaporates.
  • the refrigerant flowing out from the heat storage side heat exchanger (31) is sucked into the compressor (16) through the second connection pipe (47).
  • the compressor (16) compresses the sucked refrigerant and discharges it.
  • the refrigerant flowing through the heat storage side heat exchanger (31) absorbs heat from the water in the heat storage tank (91). That is, the warm heat stored in the heat storage tank (91) is given to the refrigerant flowing through the heat storage side heat exchanger (31).
  • the simple heating operation will be described with reference to FIG.
  • the room is heated using only the heat obtained by the refrigeration cycle performed by the refrigerant circuit (15).
  • the hot water supply device (70) and the heat storage device (90) are stopped.
  • the outdoor fan (11) and each indoor fan operate.
  • the refrigerant circuit (15) performs a refrigeration cycle in which each use-side heat exchanger (36a to 36c) serves as a condenser (that is, a radiator) and the heat source-side heat exchanger (21) serves as an evaporator.
  • the compressor (16) is operated, and the four-way selector valve (17) is set to the second state.
  • the hot water supply side expansion valve (29) and the heat storage side expansion valve (34) are held in a fully closed state.
  • the opening degree of each use side expansion valve (37a to 37c) is adjusted so that the degree of supercooling of the refrigerant at the outlet of the corresponding use side heat exchanger (36a to 36c) becomes a predetermined target value.
  • the opening degree of the heat source side expansion valve (22) is adjusted so that the degree of superheat of the refrigerant at the outlet of the heat source side heat exchanger (21) becomes a predetermined target value.
  • the first solenoid valve (101), the second solenoid valve (102), the third solenoid valve (103), and the seventh solenoid valve (107) are opened, and the fourth solenoid valve (104) and the fifth solenoid valve ( 105), the sixth solenoid valve (106), and the eighth solenoid valve (108) are closed.
  • the flow of the refrigerant in the refrigerant circuit (15) will be described.
  • the refrigerant discharged from the compressor (16) passes through the four-way switching valve (17) and then flows into the three utilization side pipes (35a to 35c).
  • the refrigerant flows into the use side heat exchangers (36a to 36c), dissipates heat to the indoor air, and condenses.
  • the room air heated in each use side heat exchanger (36a to 36c) is supplied into the room.
  • the refrigerant that has flowed out from each use side pipe (35a to 35c) passes through the heat source side expansion valve (22) after joining, and is decompressed at that time.
  • the refrigerant flows into the heat source side heat exchanger (21), absorbs heat from the outdoor air, and evaporates.
  • the refrigerant that has flowed out of the heat source side heat exchanger (21) passes through the four-way switching valve (17) and is then sucked into the compressor (16).
  • the compressor (16) compresses the sucked refrigerant and discharges it.
  • ⁇ Hot water heater operation The water heater / heating operation will be described with reference to FIG.
  • the room is heated using only the heat obtained by the refrigeration cycle performed by the refrigerant circuit (15).
  • the hot water supply device (70) operates to heat the water in the hot water storage tank (71), and the heat storage device (90) stops.
  • the outdoor fan (11) and each indoor fan operate.
  • the hot water supply side heat exchanger (26) and each use side heat exchanger (36a to 36c) serve as a condenser (ie, a radiator), and the heat source side heat exchanger (21) serves as an evaporator. Perform a refrigeration cycle.
  • the compressor (16) is operated, and the four-way selector valve (17) is set to the second state.
  • the heat storage side expansion valve (34) is held in a fully closed state.
  • the opening degree of each use side expansion valve (37a to 37c) is adjusted so that the degree of supercooling of the refrigerant at the outlet of the corresponding use side heat exchanger (36a to 36c) becomes a predetermined target value.
  • the opening degree of the hot water supply side expansion valve (29) is adjusted so that the degree of supercooling of the refrigerant at the outlet of the primary side flow path (27) of the hot water supply side heat exchanger (26) becomes a predetermined target value.
  • the opening degree of the heat source side expansion valve (22) is adjusted so that the degree of superheat of the refrigerant at the outlet of the heat source side heat exchanger (21) becomes a predetermined target value.
  • the first solenoid valve (101), the second solenoid valve (102), the third solenoid valve (103), the fourth solenoid valve (104), and the seventh solenoid valve (107) are opened, and the fifth solenoid valve ( 105), the sixth solenoid valve (106), and the eighth solenoid valve (108) are closed.
  • the flow of the refrigerant in the refrigerant circuit (15) will be described.
  • Part of the refrigerant discharged from the compressor (16) flows into the hot water supply side pipe (25), and the rest passes through the four-way switching valve (17) and is divided into three use side pipes (35a to 35c). Inflow.
  • the refrigerant flowing into the hot water supply side pipe (25) dissipates heat and condenses while passing through the primary flow path (27) of the hot water supply side heat exchanger (26).
  • the refrigerant flowing into each usage side pipe (35a to 35c) flows into the usage side heat exchanger (36a to 36c), dissipates heat to the indoor air, and condenses.
  • each use side heat exchanger (36a to 36c) The room air heated in each use side heat exchanger (36a to 36c) is supplied into the room.
  • the refrigerant flowing out from the hot water supply side pipe (25) and the refrigerant flowing out from each use side pipe (35a to 35c) pass through the heat source side expansion valve (22) after joining and are decompressed at that time.
  • the decompressed refrigerant flows into the heat source side heat exchanger (21), absorbs heat from the outdoor air, and evaporates.
  • the refrigerant that has flowed out of the heat source side heat exchanger (21) passes through the four-way switching valve (17) and is then sucked into the compressor (16).
  • the compressor (16) compresses the sucked refrigerant and discharges it.
  • the water heater (70) performs an operation of heating the water in the hot water storage tank (71).
  • the operation performed by the hot water supply device (70) during the hot water heating operation is the same as the operation performed by the hot water supply device (70) during the first cold storage operation.
  • ⁇ Use defrosting operation The use defrosting operation will be described.
  • the hot water supply air conditioning system (10) performs the same operation as the second cold storage operation shown in FIG.
  • the outdoor fan (11) stops during the use defrosting operation.
  • This defrosting operation uses frost attached to the heat source side heat exchanger (21) during execution of simple water heater operation, simple heating operation, and water heater heating operation, using the heat stored in the heat storage tank (91). It is driving to melt.
  • the refrigerant discharged from the compressor (16) flows into the heat source side heat exchanger (21) and dissipates heat.
  • the frost adhering to the heat source side heat exchanger (21) is melted.
  • the refrigerant condensed in the heat source side heat exchanger (21) is depressurized when passing through the heat storage side expansion valve (34) and then flows into the heat storage side heat exchanger (31), and the water in the heat storage tank (91) It absorbs heat and evaporates.
  • the refrigerant flowing out of the heat storage side heat exchanger (31) is sucked into the compressor (16) and compressed.
  • the hot water supply air conditioning system (10) of the present embodiment includes a first cold storage operation, a second cold storage operation, a third cold storage operation, a first use cooling operation, and a second use cooling operation. Water-cooling operation using a water heater, simple cooling operation, and water-cooling operation are performed.
  • the first cold storage operation, the second cold storage operation, and the third cold storage operation are performed at midnight when the electricity charge is low.
  • the first use cooling operation, the second use cooling operation, the hot water use cooling operation, the simple cooling operation, and the hot water cooling operation are mainly performed from daytime to evening.
  • the hot water supply air conditioning system (10) In the midnight of the cooling season, the hot water supply air conditioning system (10) always performs at least one of the first cold storage operation and the third cold storage operation.
  • the refrigerant circuit (15) performs a refrigeration cycle
  • the hot water supply device (70) is water in the hot water storage tank (71).
  • the cold energy obtained by the refrigeration cycle performed by the refrigerant circuit (15) is stored in the heat storage tank (91) of the heat storage device (90).
  • the first cold storage operation is performed when, for example, demand for hot water supply on the next day is expected to be relatively large.
  • the third cold storage operation is performed, for example, when the demand for hot water supply on the next day is expected to be relatively small.
  • the hot water supply air conditioning system (10) performs the second cold storage operation after the end of the first cold storage operation.
  • the hot water supply air conditioning system (10) in the hot water supply air conditioning system (10) during the second cold storage operation, the refrigerant in the refrigerant circuit (15) releases the heat absorbed from the heat storage medium to the outdoor air.
  • Cold heat can be stored in the heat storage tank (91) regardless of the amount of high-temperature water. Therefore, the hot water supply air conditioning system (10) of the present embodiment sufficiently secures the amount of cold heat stored in the heat storage tank (91) by performing these cold storage operations at midnight.
  • the first use cooling operation and the second use cooling operation are operations for cooling the room using the cold energy stored in the heat storage tank (91) by the first to third cool storage operation operations.
  • the power consumption of the hot water supply air-conditioning system (10) in the first use cooling operation and the second use cooling operation is during the simple cooling operation in which the cooling is performed using only the cooling heat obtained by the refrigeration cycle performed by the refrigerant circuit (15). Compared to the power consumption of the hot water supply air conditioning system (10). For this reason, the power consumption of the hot water supply air conditioning system (10) from the daytime to the evening when the power rate is high is reduced, and the running cost of the hot water supply air conditioning system (10) is reduced.
  • the hot water supply air conditioning system (10) performs a simple cooling operation.
  • the hot water supply air-conditioning system (10) performs a water heater use cooling operation or a water heater cooling operation.
  • the hot water supply air conditioning system (10) includes a simple water heater operation, a water heater heat storage operation, a simple heat storage operation, a use heating operation, a simple heating operation, a water heater heating operation, and a use defrost operation. I do.
  • Simple water heater operation, water heater heat storage operation, and simple heat storage operation are performed at midnight when the electricity rate is low.
  • utilization heating operation, simple heating operation, and water heater heating operation are performed mainly from daytime to evening.
  • the hot water supply air conditioning system (10) In the midnight of the heating season, the hot water supply air conditioning system (10) always performs at least one of a simple water heater operation and a water heater heat storage operation.
  • the hot water supply air conditioning system (10) performs simple heat storage operation as necessary. That is, at midnight, the hot water supply air conditioning system (10) performs an operation for heating the water in the hot water storage tank (71) and an operation for storing heat in the heat storage tank (91).
  • the use heating operation is an operation in which the room is heated by using the heat stored in the heat storage tank (91) by the water heater heat storage operation or the simple heat storage operation.
  • the power consumption of the hot water supply air-conditioning system (10) in the use heating operation is the consumption of the hot water supply air-conditioning system (10) in the simple heating operation in which heating is performed using only the cold heat obtained by the refrigeration cycle performed by the refrigerant circuit (15). Less than electricity. For this reason, the power consumption of the hot water supply air conditioning system (10) from the daytime to the evening when the power rate is high is reduced, and the running cost of the hot water supply air conditioning system (10) is reduced.
  • the hot water supply air conditioning system (10) performs simple heating operation.
  • the hot water supply air conditioning system (10) performs a water heater operation.
  • frost may adhere to the heat source side heat exchanger (21) functioning as an evaporator during execution of simple water heater operation, simple heating operation, and water heater heating operation. At that time, heat may remain in the heat storage tank (91). In such a case, the hot water supply air conditioning system (10) performs a use defrosting operation.
  • the present invention is useful for a hot water supply air conditioning system including a hot water supply device, a heat storage device, and a refrigerant circuit.
  • Hot water supply air conditioning system 15 Refrigerant circuit 20 Heat source side piping (heat source side passage) 21 Heat source side heat exchanger 22 Heat source side expansion valve 25 Hot water supply side piping (hot water supply side passage) 26 Hot water supply side heat exchanger 29 Hot water supply side expansion valve 31 Heat storage side heat exchanger 36 Use side heat exchanger 41 First bypass passage (bypass passage) 70 Hot water supply equipment 71 Hot water storage tank 90 Thermal storage equipment 91 Thermal storage tank

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Water Supply & Treatment (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

 給湯空調システムのランニングコストを低減する。そのために、給湯空調システム(10)は、第1蓄冷運転と、第2蓄冷運転と、利用冷房運転とを行う。第1蓄冷運転中には、給湯側熱交換器(26)が凝縮器となって蓄熱側熱交換器(31)が蒸発器となり、給湯装置(70)が貯湯槽(71)の水を加熱し、蓄熱装置(90)が蓄熱槽(91)に冷熱を蓄える。第2蓄冷運転中には、熱源側熱交換器(21)が凝縮器となって蓄熱側熱交換器(31)が蒸発器となり、蓄熱装置(90)が蓄熱槽(91)に冷熱を蓄える。利用冷房運転中の給湯空調システム(10)は、蓄熱槽(91)に蓄えた冷熱を利用して室内を冷房する。

Description

給湯空調システム
 本発明は、給湯装置と蓄熱装置と冷媒回路とを備え、給湯装置による給湯と、蓄熱装置が蓄える冷熱を利用した冷房運転とを行う給湯空調システムに関するものである。
 従来より、冷凍サイクルを行う冷媒回路と、給湯装置と、蓄熱装置とを備えた給湯空調システムが知られている。特許文献1には、この給湯空調システムが開示されている。ここでは、特許文献1に開示された給湯空調システムについて説明する。
 特許文献1の冷媒回路は、放熱器となる第1の熱交換器と、蒸発器となる第2の熱交換器とを備えている。第1の熱交換器は、給湯装置の貯湯槽に接続され、貯湯槽内の水を冷媒によって加熱する。第2の熱交換器は、蓄熱装置の蓄熱槽に接続され、蓄熱槽内の蓄熱媒体を冷媒によって冷却する。冷媒回路を循環する冷媒は、蓄熱槽内の蓄熱媒体から吸収した熱を利用して、貯湯槽内の水を加熱する。従って、特許文献1の給湯空調システムでは、貯湯槽内の水を加熱する湯沸かし運転によって得られた冷熱が蓄熱槽に蓄えられる。この給湯空調システムの運転は、電力料金の安い深夜に行われる。
 また、特許文献1の給湯空調システムでは、蓄熱槽に冷房機が接続されている。冷房機は、深夜に蓄熱槽に蓄えられた冷熱を利用して、日中に室内の冷房を行う。このため、日中に室内を冷房するのに必要な電力は、蓄熱槽の冷熱を利用しない場合に比べて減少する。特許文献1の給湯空調システムは、このような運転を行うことによって、室内の冷房に要する費用を削減している。
特開2005-257127号公報
 ところで、深夜の湯沸かし運転によって得られる冷熱の量は、日中の冷房運転に必要な冷熱の量に比べて少ないのが通常である。特に、給湯需要が少なくて冷房負荷の高い夏季には、冷房運転に必要な冷熱の量が、湯沸かし運転によって得られる冷熱の量の数倍程度に達する。
 ところが、特許文献1の給湯空調システムにおいて蓄熱槽に蓄えられる冷熱は、深夜の湯沸かし運転によって得られた冷熱だけである。このため、深夜に蓄熱槽に蓄えられた冷熱だけでは、日中の冷房負荷のほんの一部しか処理することができない。従って、湯沸かし運転によって得られた冷熱だけを蓄える従来の給湯空調システムでは、日中に室内を冷房するのに必要な電力量を充分に削減できず、給湯空調システムのランニングコストを充分に削減できなかった。
 本発明は、かかる点に鑑みてなされたものであり、その目的は、給湯装置と蓄熱装置と冷媒回路とを備える給湯空調システムのランニングコストを削減することにある。
 第1の発明は、給湯空調システムを対象とする。そして、給湯用の温水を蓄える貯湯槽(71)が設けられた給湯装置(70)と、蓄熱媒体を貯留する蓄熱槽(91)が設けられた蓄熱装置(90)と、上記給湯装置(70)が接続された給湯側熱交換器(26)、上記蓄熱装置(90)が接続された蓄熱側熱交換器(31)、冷媒を室外空気と熱交換させる熱源側熱交換器(21)、及び室内を空気調和するための利用側熱交換器(36)を有する冷媒回路(15)とを備え、上記冷媒回路(15)は上記蓄熱側熱交換器(31)が蒸発器となる冷凍サイクルを行い、上記蓄熱装置(90)は上記蓄熱側熱交換器(31)を流れる冷媒によって上記蓄熱槽(91)内の蓄熱媒体を冷却する蓄冷運転と、上記冷媒回路(15)は冷媒を上記蓄熱側熱交換器(31)から上記利用側熱交換器(36)へ流れるように循環させ、上記蓄熱装置(90)は上記蓄熱側熱交換器(31)を流れる冷媒を上記蓄熱槽(91)内の蓄熱媒体によって冷却する利用冷房運転とを行う一方、上記蓄冷運転中に、上記給湯側熱交換器(26)が放熱器となって上記給湯装置(70)が冷媒から放出された熱を利用して上記貯湯槽(71)内の水を加熱する第1動作と、上記熱源側熱交換器(21)が放熱器となる第2動作とを実行可能となっているものである。
 第1の発明では、給湯空調システム(10)が蓄冷運転と利用冷房運転とを行う。蓄冷運転中には、蓄熱槽(91)内の蓄熱媒体が冷媒回路(15)の冷媒によって冷却され、蓄熱槽(91)に冷熱が蓄えられてゆく。蓄冷運転中の給湯空調システム(10)は、第1動作と第2動作とを選択的に行う。一方、利用冷房運転中の給湯空調システム(10)は、蓄熱槽(91)に蓄えられた冷熱を利用して室内を冷房する。利用冷房運転中において、冷媒回路(15)を循環する冷媒は、蓄熱側熱交換器(31)において冷却された後に利用側熱交換器(36)へ流入し、室内の冷房に利用される。
 第1の発明の給湯空調システム(10)は、蓄冷運転中に第1動作を行う。この第1動作中には、冷媒回路(15)を循環する冷媒が、給湯側熱交換器(26)において放熱し、蓄熱側熱交換器(31)において吸熱する。そして、給湯装置(70)は、給湯側熱交換器(26)において得られた温熱を利用して貯湯槽(71)内の水を加熱し、蓄熱装置(90)は、蓄熱側熱交換器(31)において得られた冷熱を利用して蓄熱槽(91)内の蓄熱媒体を冷却する。つまり、第1動作中には、貯湯槽(71)内の水を加熱するために冷媒回路(15)が行う冷凍サイクルによって冷熱が得られ、得られた冷熱が蓄熱装置(90)の蓄熱槽(91)に蓄えられる。
 また、第1の発明の給湯空調システム(10)は、蓄冷運転中に第2動作を行う。この第2動作中には、冷媒回路(15)を循環する冷媒が、熱源側熱交換器(21)において放熱し、蓄熱側熱交換器(31)において吸熱する。そして、蓄熱装置(90)は、蓄熱側熱交換器(31)において得られた冷熱を利用して蓄熱槽(91)内の蓄熱媒体を冷却する。つまり、第2動作中には、冷媒回路(15)を循環する冷媒が蓄熱装置(90)から吸収した熱を室外空気へ放出し、蓄熱装置(90)の蓄熱槽(91)に冷熱が蓄えられる。従って、第2動作中には、給湯装置(70)が貯湯槽(71)内の水を加熱する運転を行っていなくても、蓄熱装置(90)の蓄熱槽(91)に冷熱が蓄えられてゆく。
 第2の発明は、上記第1の発明において、上記冷媒回路(15)は、上記給湯側熱交換器(26)が設けられた給湯側通路(25)と、上記熱源側熱交換器(21)が設けられた熱源側通路(20)と、上記給湯側通路(25)の両端と上記熱源側通路(20)の両端とに接続し、冷媒が上記給湯側通路(25)を流れ且つ上記熱源側通路(20)をバイパスする第1状態と、冷媒が上記給湯側通路(25)をバイパスし且つ熱源側通路(20)を流れる第2状態と、冷媒が上記給湯側通路(25)と上記熱源側通路(20)の両方をバイパスする第3状態とに切り換わるバイパス通路(41)とを備えるものである。
 第2の発明では、冷媒回路(15)に給湯側通路(25)と熱源側通路(20)とバイパス通路(41)とが設けられる。バイパス通路(41)は、第1状態と第2状態と第3状態とに切り換わる。バイパス通路(41)が第1状態に設定されると、給湯側通路(25)と熱源側通路(20)のうち給湯側通路(25)だけを冷媒が流れる。蓄冷運転の第1動作中には、バイパス通路(41)が第1状態に設定され、給湯側熱交換器(26)において冷媒が放熱する。バイパス通路(41)が第2状態に設定されると、給湯側通路(25)と熱源側通路(20)のうち熱源側通路(20)だけを冷媒が流れる。蓄冷運転の第2動作中には、バイパス通路(41)が第2状態に設定され、熱源側熱交換器(21)において冷媒が放熱する。バイパス通路(41)が第3状態に設定されると、給湯側通路(25)と熱源側通路(20)の両方を冷媒がバイパスする。利用冷房運転中にバイパス通路(41)が第3状態に設定されると、冷媒回路(15)を循環する冷媒は、利用側熱交換器(36)において吸熱した後に、熱源側熱交換器(21)を通らずに蓄熱側熱交換器(31)へ流入して冷却される。従って、この場合の利用冷房運転では、蓄熱装置(90)の蓄熱槽(91)に蓄えられた冷熱だけを利用して室内の冷房が行われる。
 第3の発明は、上記第2の発明において、上記給湯側通路(25)は、上記給湯側熱交換器(26)の液側に配置された給湯側膨張弁(29)を備え、上記熱源側通路(20)は、上記熱源側熱交換器(21)の液側に配置された熱源側膨張弁(22)を備えるものである。
 第3の発明では、給湯側通路(25)に給湯側膨張弁(29)が設けられ、熱源側通路(20)に熱源側膨張弁(22)が設けられる。蓄冷運転の第1動作中に冷媒回路(15)を循環する冷媒は、給湯側熱交換器(26)において放熱し、給湯側膨張弁(29)を通過する際に減圧され、その後に蓄熱側熱交換器(31)へ流入して吸熱する。一方、蓄冷運転の第2動作中に冷媒回路(15)を循環する冷媒は、熱源側熱交換器(21)において放熱し、熱源側膨張弁(22)を通過する際に減圧され、その後に蓄熱側熱交換器(31)へ流入して吸熱する。
 本発明の給湯空調システム(10)は、蓄冷運転中に第1動作と第2動作を実行可能となっている。第1動作中には、冷媒回路(15)において冷凍サイクルが行われ、給湯側熱交換器(26)において冷媒から放出された熱を利用して給湯装置(70)が貯湯槽(71)内の水を加熱し、蓄熱側熱交換器(31)において得られた冷熱が蓄熱装置(90)の蓄熱槽(91)に蓄えられる。一方、第2動作中には、冷媒回路(15)において冷凍サイクルが行われ、熱源側熱交換器(21)において冷媒が室外空気へ放熱し、蓄熱側熱交換器(31)において得られた冷熱が蓄熱装置(90)の蓄熱槽(91)に蓄えられる。
 蓄冷運転中において、貯湯槽(71)内の温水の量が必要量に達すると、第1動作を停止させなければならない。しかし、本発明の給湯空調システム(10)は、第1動作の停止後においても、第2動作を行うことによって、蓄熱装置(90)の蓄熱槽(91)に更に冷熱を蓄えることができる。このため、本発明によれば、貯湯槽(71)内の水を加熱する際に得られる冷熱だけでなく、冷媒回路(15)の冷媒が室外空気へ放熱することによって得られる冷熱も、蓄熱装置(90)の蓄熱槽(91)に蓄えることができる。従って、本発明によれば、電力料金の安い深夜に蓄冷運転を行い、その蓄冷運転中に第1動作と第2動作を行うことによって、日中の利用冷房運転に必要な充分な量の冷熱を蓄熱槽(91)に蓄えることができる。その結果、日中に室内を冷房するために消費される電力量を充分に削減でき、給湯空調システム(10)のランニングコストを充分に削減することができる。
図1は、実施形態1の給湯空調システムの構成を示す配管系統図である。 図2は、実施形態1の給湯空調システムの第1蓄冷運転中および湯沸かし運転中の動作を示す配管系統図である。 図3は、実施形態1の給湯空調システムの第2蓄冷運転中の動作を示す配管系統図である。 図4は、実施形態1の給湯空調システムの第1利用冷房運転中の動作を示す配管系統図である。 図5は、実施形態1の給湯空調システムの第2利用冷房運転中の動作を示す配管系統図である。 図6は、実施形態1の給湯空調システムの単純冷房運転中の動作を示す配管系統図である。 図7は、実施形態1の給湯空調システムの蓄熱暖房運転中の動作を示す配管系統図である。 図8は、実施形態1の給湯空調システムの利用暖房運転中の動作を示す配管系統図である。 図9は、実施形態1の給湯空調システムの単純暖房運転中の動作を示す配管系統図である。 図10は、実施形態2の給湯空調システムの構成を示す配管系統図である。 図11は、実施形態3の給湯空調システムの構成を示す配管系統図である。 図12は、実施形態4の給湯空調システムの構成を示す配管系統図である。 図13は、実施形態4の給湯空調システムの第1蓄冷運転中の動作を示す配管系統図である。 図14は、実施形態4の給湯空調システムの第2蓄冷運転中及び利用除霜運転中の動作を示す配管系統図である。 図15は、実施形態4の給湯空調システムの第3蓄冷運転中の動作を示す配管系統図である。 図16は、実施形態4の給湯空調システムの第1利用冷房運転中の動作を示す配管系統図である。 図17は、実施形態4の給湯空調システムの第2利用冷房運転中の動作を示す配管系統図である。 図18は、実施形態4の給湯空調システムの湯沸かし利用冷房運転中の動作を示す配管系統図である。 図19は、実施形態4の給湯空調システムの単純冷房運転中の動作を示す配管系統図である。 図20は、実施形態4の給湯空調システムの湯沸かし冷房運転中の動作を示す配管系統図である。 図21は、実施形態4の給湯空調システムの単純湯沸かし運転中の動作を示す配管系統図である。 図22は、実施形態4の給湯空調システムの湯沸かし蓄熱運転中の動作を示す配管系統図である。 図23は、実施形態4の給湯空調システムの単純蓄熱運転中の動作を示す配管系統図である。 図24は、実施形態4の給湯空調システムの利用暖房運転中の動作を示す配管系統図である。 図25は、実施形態4の給湯空調システムの単純暖房運転中の動作を示す配管系統図である。 図26は、実施形態4の給湯空調システムの湯沸かし暖房運転中の動作を示す配管系統図である。
 本発明の実施形態を図面に基づいて詳細に説明する。なお、以下で説明する実施形態および変形例は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
 《発明の実施形態1》
 本発明の実施形態1について、図1を参照しながら説明する。本実施形態の給湯空調システム(10)は、冷媒回路(15)と、給湯装置(70)と、蓄熱装置(90)とを備えている。また、給湯空調システム(10)は、室外ファン(11)と、室内ファン(12)とを備えている。
   〈冷媒回路〉
 冷媒回路(15)は、冷媒が充填された閉回路である。この冷媒回路(15)は、圧縮機(16)と、四方切換弁(17)と、熱源側通路を形成する熱源側配管(20)と、給湯側通路を形成する給湯側配管(25)と、蓄熱側通路を形成する蓄熱側配管(30)と、利用側通路を形成する利用側配管(35)と、接続用配管(18)とを備えている。また、冷媒回路(15)は、六つのバイパス用配管(51~56)と、八つの三方弁(61~68)とを備えている。
 熱源側配管(20)には、その一端から他端へ向かって順に、熱源側熱交換器(21)と熱源側膨張弁(22)とが配置されている。つまり、熱源側配管(20)では、熱源側熱交換器(21)の液側に熱源側膨張弁(22)が配置されている。給湯側配管(25)には、その一端から他端へ向かって順に、給湯側熱交換器(26)と給湯側膨張弁(29)とが配置されている。つまり、給湯側配管(25)では、給湯側熱交換器(26)の液側に給湯側膨張弁(29)が配置されている。蓄熱側配管(30)には、蓄熱側熱交換器(31)が配置されている。利用側配管(35)には、その一端から他端へ向かって順に、利用側熱交換器(36)と利用側膨張弁(37)とが配置されている。つまり、利用側配管(35)では、利用側熱交換器(36)の液側に利用側膨張弁(37)が配置されている。
 圧縮機(16)は、吐出側が四方切換弁(17)の第1のポートに接続され、吸入側が四方切換弁(17)の第2のポートに接続されている。冷媒回路(15)では、四方切換弁(17)の第3のポートから第4のポートへ向かって順に、熱源側配管(20)と、給湯側配管(25)と、接続用配管(18)と、蓄熱側配管(30)と、利用側配管(35)とが配置されている。また、冷媒回路(15)では、熱源側配管(20)の一端と四方切換弁(17)の間に第1三方弁(61)が、熱源側配管(20)の他端と給湯側配管(25)の一端の間に第4三方弁(64)が、給湯側配管(25)の他端と接続用配管(18)の一端の間に第3三方弁(63)が、接続用配管(18)の他端と蓄熱側配管(30)の一端の間に第7三方弁(67)が、蓄熱側配管(30)の他端と利用側配管(35)の一端の間に第8三方弁(68)が、利用側配管(35)の他端と四方切換弁(17)の間に第5三方弁(65)が、それぞれ配置されている。
 第1バイパス用配管(51)は、一端が第1三方弁(61)に接続され、他端が第2三方弁(62)に接続されている。第2バイパス用配管(52)は、一端が第2三方弁(62)に接続され、他端が第3三方弁(63)に接続されている。第3バイパス用配管(53)は、一端が第2三方弁(62)に接続され、他端が第4三方弁(64)に接続されている。これらのバイパス用配管(51,52,53)及び三方弁(61,62,63,64)は、第1バイパス通路(41)を構成している。
 第1バイパス通路(41)は、第1状態と第2状態と第3状態とに切り換わる。第1バイパス通路(41)が第1状態となっている場合、冷媒回路(15)を循環する冷媒は、給湯側配管(25)を流れ、熱源側配管(20)をバイパスする。第1バイパス通路(41)が第2状態となっている場合、冷媒回路(15)を循環する冷媒は、給湯側配管(25)をバイパスし、熱源側配管(20)を流れる。第1バイパス通路(41)が第3状態となっている場合、冷媒回路(15)を循環する冷媒は、給湯側配管(25)と熱源側配管(20)の両方をバイパスする。これら三つの状態の切り換えは、三方弁(61,62,63,64)を操作することによって行われる。各状態における三方弁(61,62,63,64)の状態は後述する。
 第4バイパス用配管(54)は、一端が第5三方弁(65)に接続され、他端が第6三方弁(66)に接続されている。第5バイパス用配管(55)は、一端が第6三方弁(66)に接続され、他端が第7三方弁(67)に接続されている。第6バイパス用配管(56)は、一端が第6三方弁(66)に接続され、他端が第8三方弁(68)に接続されている。これらのバイパス用配管(54,55,56)及び三方弁(65,66,67,68)は、第2バイパス通路(42)を構成している。
 第2バイパス通路(42)は、第1状態と第2状態と第3状態とに切り換わる。第2バイパス通路(42)が第1状態となっている場合、冷媒回路(15)を循環する冷媒は、蓄熱側配管(30)を流れ、利用側配管(35)をバイパスする。第2バイパス通路(42)が第2状態となっている場合、冷媒回路(15)を循環する冷媒は、蓄熱側配管(30)をバイパスし、利用側配管(35)を流れる。第2バイパス通路(42)が第3状態となっている場合、冷媒回路(15)を循環する冷媒は、第2バイパス通路(42)を構成するバイパス用配管(54,55,56)には流入せず、蓄熱側配管(30)と利用側配管(35)の両方を流れる。これら三つの状態の切り換えは、三方弁(65,66,67,68)を操作することによって行われる。各状態における三方弁(65,66,67,68)の状態は後述する。
 圧縮機(16)は、圧縮機構と電動機が一つのケーシングに収容された全密閉型圧縮機である。この圧縮機(16)の圧縮機構は、ローリングピストン型または揺動ピストン型のロータリ式流体機械である。なお、圧縮機(16)の圧縮機構は、スクロール型の流体機械であってもよい。
 四方切換弁(17)は、第1のポートが第3のポートと連通し且つ第2のポートが第4のポートと連通する第1状態(図1に実線で示す状態)と、第1のポートが第4のポートと連通し且つ第2のポートが第3のポートと連通する第2状態(図1に破線で示す状態)とに切り換わる。
 熱源側熱交換器(21)は、いわゆるクロスフィン型の熱交換器である。この熱源側熱交換器(21)は、冷媒を室外ファン(11)によって供給された室外空気と熱交換させる。
 給湯側熱交換器(26)は、一次側流路(27)と二次側流路(28)とが複数ずつ形成されたプレート式熱交換器であり、一次側流路(27)を流れる流体と二次側流路(28)を流れる流体とを熱交換させる。給湯側熱交換器(26)の一次側流路(27)には、冷媒回路(15)の給湯側配管(25)が接続されている。給湯側熱交換器(26)の二次側流路(28)には、後述する給湯装置(70)の給湯用冷媒回路(80)が接続されている。
 蓄熱側熱交換器(31)は、一次側流路(32)と二次側流路(33)とが複数ずつ形成されたプレート式熱交換器であり、一次側流路(32)を流れる流体と二次側流路(33)を流れる流体とを熱交換させる。蓄熱側熱交換器(31)の一次側流路(27)には、冷媒回路(15)の蓄熱側配管(30)が接続されている。蓄熱側熱交換器(31)の二次側流路(28)には、後述する蓄熱装置(90)の蓄熱媒体回路(92)が接続されている。
 利用側熱交換器(36)は、いわゆるクロスフィン型の熱交換器である。この利用側熱交換器(36)は、冷媒を室内ファン(12)によって供給された室内空気と熱交換させる。
 熱源側膨張弁(22)、給湯側膨張弁(29)、及び利用側膨張弁(37)のそれぞれは、開度可変の電動膨張弁である。
   〈給湯装置〉
 給湯装置(70)は、貯湯槽(71)と、水回路(74)と、給湯用冷媒回路(80)とを備えている。
 貯湯槽(71)は、円筒形のタンクであって、起立した状態で設置されている。貯湯槽(71)は、その底部に給水管(72)が接続され、その頂部に給湯管(73)が接続されている。この貯湯槽(71)は、給湯用の温水を蓄える。貯湯槽(71)内の温水は、給湯管(73)を通って給湯栓や浴槽などへ供給される。貯湯槽(71)には、給湯管(73)から流出した温水と同量の水が、給水管(72)から補充される。
 水回路(74)は、その入口端が貯湯槽(71)の底部に接続され、その出口端が貯湯槽(71)の頂部に接続されている。水回路(74)には、ポンプ(75)が設けられている。また、水回路(74)におけるポンプ(75)の吐出側には、後述する加熱用熱交換器(83)が配置されている。
 給湯用冷媒回路(80)は、冷媒が充填された閉回路である。この給湯用冷媒回路(80)は、給湯用圧縮機(81)と、加熱用熱交換器(83)と、給湯用膨張弁(82)とを備え、給湯側熱交換器(26)の二次側流路(28)に接続している。給湯用冷媒回路(80)では、給湯用圧縮機(81)の吐出側から吸入側へ向かって順に、加熱用熱交換器(83)と、給湯用膨張弁(82)と、給湯側熱交換器(26)とが配置されている。
 給湯用圧縮機(81)は、圧縮機構と電動機が一つのケーシングに収容された全密閉型圧縮機である。この給湯用圧縮機(81)の圧縮機構は、ローリングピストン型または揺動ピストン型のロータリ式流体機械である。
 加熱用熱交換器(83)は、一次側流路(84)と二次側流路(85)とが複数ずつ形成されたプレート式熱交換器であり、一次側流路(84)を流れる流体と二次側流路(85)を流れる流体とを熱交換させる。加熱用熱交換器(83)の一次側流路(84)には、給湯用冷媒回路(80)が接続されている。加熱用熱交換器(83)の二次側流路(85)には、水回路(74)が接続されている。
   〈蓄熱装置〉
 蓄熱装置(90)は、蓄熱槽(91)と、蓄熱媒体回路(92)とを備えている。
 蓄熱槽(91)は、直方体状のタンクである。この蓄熱槽(91)は、冷熱や温熱を潜熱として蓄える蓄熱媒体(いわゆる潜熱蓄熱媒体)を貯留している。潜熱蓄熱媒体の一例としては、TBAB(臭化テトラnブチルアンモニウム)の水溶液、TME(トリメチロールエタン)の水溶液、パラフィン系スラリーが挙げられる。
 蓄熱媒体回路(92)は、その入口端が蓄熱槽(91)の底部に接続され、その出口端が貯湯槽(71)の頂部に接続されている。蓄熱媒体回路(92)には、ポンプ(93)と調節弁(94)とが設けられている。蓄熱媒体回路(92)では、ポンプ(93)の吐出側に、調節弁(94)と蓄熱側熱交換器(31)の二次側流路(33)とが配置されている。
  -運転動作-
 給湯空調システム(10)の運転動作を説明する。給湯空調システム(10)は、第1蓄冷運転と、第2蓄冷運転と、第1利用冷房運転と、第2利用冷房運転と、単純冷房運転と、蓄熱暖房運転と、湯沸かし運転と、利用暖房運転と、単純暖房運転とを行う。
   〈第1蓄冷運転〉
 第1蓄冷運転について、図2を参照しながら説明する。第1蓄冷運転では、給湯空調システム(10)が第1動作を行う。つまり、給湯空調システム(10)では、給湯装置(70)が貯湯槽(71)内の水を加熱する運転を行い、この給湯装置(70)の運転によって得られた冷熱を蓄熱装置(90)が蓄熱槽(91)に蓄える。また、この第1蓄冷運転では、室外ファン(11)及び室内ファン(12)が停止する。
 冷媒回路(15)は、給湯側熱交換器(26)が凝縮器(即ち、放熱器)となり、蓄熱側熱交換器(31)が蒸発器となる冷凍サイクルを行う。具体的に、冷媒回路(15)では、圧縮機(16)が作動し、四方切換弁(17)が第1状態に設定される。また、給湯側膨張弁(29)は、蓄熱側熱交換器(31)の一次側流路(32)の出口における冷媒の過熱度が所定の目標値となるように、その開度が調節される。
 冷媒回路(15)では、第1バイパス通路(41)が第1状態に設定される。第1状態に設定された第1バイパス通路(41)では、各三方弁(61,62,63,64)が次のような状態になる。第1三方弁(61)は、四方切換弁(17)の第3のポートを第1バイパス用配管(51)と連通させて熱源側配管(20)から遮断する。第2三方弁(62)は、第1バイパス用配管(51)を第3バイパス用配管(53)と連通させて第2バイパス用配管(52)から遮断する。第3三方弁(63)は、給湯側配管(25)を接続用配管(18)と連通させて第2バイパス用配管(52)から遮断する。第4三方弁(64)は、第3バイパス用配管(53)を給湯側配管(25)と連通させて熱源側配管(20)から遮断する。
 冷媒回路(15)では、第2バイパス通路(42)が第1状態に設定される。第1状態に設定された第2バイパス通路(42)では、各三方弁(65,66,67,68)が次のような状態になる。第5三方弁(65)は、第4バイパス用配管(54)を四方切換弁(17)の第4のポートと連通させて利用側配管(35)から遮断する。第6三方弁(66)は、第6バイパス用配管(56)を第4バイパス用配管(54)と連通させて第5バイパス用配管(55)から遮断する。第7三方弁(67)は、接続用配管(18)を蓄熱側配管(30)と連通させて第5バイパス用配管(55)から遮断する。第8三方弁(68)は、蓄熱側配管(30)を第6バイパス用配管(56)と連通させて利用側配管(35)から遮断する。
 冷媒回路(15)における冷媒の流れを説明する。圧縮機(16)から吐出された冷媒は、四方切換弁(17)と、第1バイパス用配管(51)と、第3バイパス用配管(53)とを順に通過し、給湯側配管(25)へ流入する。給湯側配管(25)へ流入した冷媒は、給湯側熱交換器(26)の一次側流路(27)を通過する間に放熱して凝縮し、続いて給湯側膨張弁(29)を通過する際に減圧され、その後に接続用配管(18)を通って蓄熱側配管(30)へ流入する。蓄熱側配管(30)へ流入した冷媒は、蓄熱側熱交換器(31)の一次側流路(32)を通過する間に吸熱して蒸発する。その後、冷媒は、第6バイパス用配管(56)と、第4バイパス用配管(54)と、四方切換弁(17)とを順に通過して圧縮機(16)へ吸入される。圧縮機(16)は、吸入した冷媒を圧縮してから吐出する。
 第1蓄冷運転では、給湯装置(70)の給湯用圧縮機(81)が作動し、給湯用冷媒回路(80)が冷凍サイクルを行う。その際、給湯用膨張弁(82)は、給湯側熱交換器(26)の二次側流路(28)の出口における冷媒の過熱度が所定の目標値となるように、その開度が調節される。また、第1蓄冷運転では、水回路(74)のポンプ(75)が作動し、貯湯槽(71)と加熱用熱交換器(83)の間を水が循環する。
 給湯用冷媒回路(80)における冷媒の流れを説明する。給湯用圧縮機(81)から吐出された冷媒は、加熱用熱交換器(83)の一次側流路(84)を通過する際に放熱して凝縮する。加熱用熱交換器(83)から流出した冷媒は、給湯用膨張弁(82)を通過する際に減圧され、その後に給湯側熱交換器(26)の二次側流路(28)へ流入する。給湯側熱交換器(26)の二次側流路(28)を流れる冷媒は、その二次側流路(28)を流れる冷媒から吸熱して蒸発する。その後、冷媒は、給湯用圧縮機(81)へ吸入される。給湯用圧縮機(81)は、吸入した冷媒を圧縮してから吐出する。
 水回路(74)における水の流れを説明する。蓄熱槽(91)の底部に存在する低温の水は、ポンプ(75)によって加熱用熱交換器(83)の二次側流路(85)へ送られ、その一次側流路(84)を流れる冷媒によって加熱される。そして、加熱されて高温となった水は、貯湯槽(71)の頂部へ送り返される。
 第1蓄冷運転では、蓄熱媒体回路(92)のポンプ(93)が作動し、蓄熱槽(91)と蓄熱側熱交換器(31)の間を蓄熱媒体が循環する。蓄熱槽(91)内の蓄熱媒体は、ポンプ(93)によって蓄熱側熱交換器(31)の二次側流路(33)へ送られ、その一次側流路(32)を流れる冷媒によって冷却される。蓄熱側熱交換器(31)において冷却された蓄熱媒体は、蓄熱槽(91)へ送り返される。その結果、蓄熱側熱交換器(31)において蓄熱媒体に付与された冷熱が、蓄熱槽(91)内に蓄えられる。
   〈第2蓄冷運転〉
 第2蓄冷運転について、図3を参照しながら説明する。第2蓄冷運転では、給湯空調システム(10)が第2動作を行う。つまり、給湯空調システム(10)では、給湯装置(70)が停止し、蓄熱装置(90)が冷熱を蓄熱槽(91)に蓄える。また、この第2蓄冷運転では、室外ファン(11)が作動し、室内ファン(12)が停止する。
 冷媒回路(15)は、熱源側熱交換器(21)が凝縮器(即ち、放熱器)となり、蓄熱側熱交換器(31)が蒸発器となる冷凍サイクルを行う。具体的に、冷媒回路(15)では、圧縮機(16)が作動し、四方切換弁(17)が第1状態に設定される。また、熱源側膨張弁(22)は、蓄熱側熱交換器(31)の一次側流路(32)の出口における冷媒の過熱度が所定の目標値となるように、その開度が調節される。
 冷媒回路(15)では、第1バイパス通路(41)が第2状態に設定される。第2状態に設定された第1バイパス通路(41)では、各三方弁(61,62,63,64)が次のような状態になる。第1三方弁(61)は、四方切換弁(17)の第3のポートを熱源側配管(20)と連通させて第1バイパス用配管(51)から遮断する。第2三方弁(62)は、第3バイパス用配管(53)を第2バイパス用配管(52)と連通させて第1バイパス用配管(51)から遮断する。第3三方弁(63)は、第2バイパス用配管(52)を接続用配管(18)と連通させて給湯側配管(25)から遮断する。第4三方弁(64)は、熱源側配管(20)を第3バイパス用配と連通させて給湯側配管(25)から遮断する。
 冷媒回路(15)では、第2バイパス通路(42)が第1状態に設定される。第1状態に設定された第2バイパス通路(42)では、各三方弁(65,66,67,68)が第1蓄冷運転の説明で述べた状態になる。
 冷媒回路(15)における冷媒の流れを説明する。圧縮機(16)から吐出された冷媒は、四方切換弁(17)を通過後に熱源側配管(20)へ流入する。熱源側配管(20)へ流入した冷媒は、熱源側熱交換器(21)を通過する間に室外空気へ放熱して凝縮し、続いて熱源側膨張弁(22)を通過する際に減圧される。その後、冷媒は、第3バイパス用配管(53)と、第2バイパス用配管(52)と、接続用配管(18)とを順に通過し、蓄熱側配管(30)へ流入する。蓄熱側配管(30)へ流入した冷媒は、蓄熱側熱交換器(31)の一次側流路(32)を通過する間に吸熱して蒸発する。その後、冷媒は、第6バイパス用配管(56)と、第4バイパス用配管(54)と、四方切換弁(17)とを順に通過して圧縮機(16)へ吸入される。圧縮機(16)は、吸入した冷媒を圧縮してから吐出する。
 第1蓄冷運転では、蓄熱媒体回路(92)のポンプ(93)が作動し、蓄熱槽(91)と蓄熱側熱交換器(31)の間を蓄熱媒体が循環する。そして、冷媒回路(15)が冷凍サイクルを行うことによって得られた冷熱が、蓄熱装置(90)の蓄熱槽(91)に蓄えられる。
   〈第1利用冷房運転〉
 第1利用冷房運転について、図4を参照しながら説明する。第1利用冷房運転では、蓄熱槽(91)に蓄えられた冷熱だけを用いて室内の冷房が行われる。第1利用冷房運転では、蓄熱媒体回路(92)のポンプ(93)が作動し、蓄熱槽(91)と蓄熱側熱交換器(31)の間を蓄熱媒体が循環する。また、第1利用冷房運転では、給湯装置(70)が停止する。また、第1利用冷房運転では、室外ファン(11)が停止し、室内ファン(12)が作動する。
 冷媒回路(15)では、圧縮機(16)が作動し、四方切換弁(17)が第1状態に設定される。また、利用側膨張弁(37)は、全開状態に保持される。第1利用冷房運転中の冷媒回路(15)では、圧縮機(16)がガスポンプとして動作し、蓄熱側熱交換器(31)と利用側熱交換器(36)の間を冷媒が循環する。
 冷媒回路(15)では、第1バイパス通路(41)が第3状態に設定される。第3状態に設定された第1バイパス通路(41)では、各三方弁(61,62,63,64)が次のような状態になる。第1三方弁(61)は、四方切換弁(17)の第3のポートを第1バイパス用配管(51)と連通させて熱源側配管(20)から遮断する。第2三方弁(62)は、第1バイパス用配管(51)を第2バイパス用配管(52)と連通させて第3バイパス用配管(53)から遮断する。第3三方弁(63)は、第2バイパス用配管(52)を接続用配管(18)と連通させて給湯側配管(25)から遮断する。第4三方弁(64)は、どの様な状態になっていてもよい。
 冷媒回路(15)では、第2バイパス通路(42)が第3状態に設定される。第3状態に設定された第2バイパス通路(42)では、各三方弁(65,66,67,68)が次のような状態になる。第5三方弁(65)は、利用側配管(35)を四方切換弁(17)の第4のポートと連通させて第4バイパス用配管(54)から遮断する。第6三方弁(66)は、どの様な状態になっていてもよい。第7三方弁(67)は、接続用配管(18)を蓄熱側配管(30)と連通させて第5バイパス用配管(55)から遮断する。第8三方弁(68)は、蓄熱側配管(30)を利用側配管(35)と連通させて第6バイパス用配管(56)から遮断する。
 冷媒回路(15)における冷媒の流れを説明する。圧縮機(16)から吐出された冷媒は、四方切換弁(17)と、第1バイパス用配管(51)と、第2バイパス用配管(52)と、接続用配管(18)とを順に通過し、蓄熱側配管(30)へ流入する。その後、冷媒は、蓄熱側熱交換器(31)の一次側流路(32)へ流入し、その二次側流路(33)を流れる蓄熱媒体へ放熱して凝縮する。蓄熱側熱交換器(31)から流出した冷媒は、利用側配管(35)へ流入し、利用側膨張弁(37)を通過後に利用側熱交換器(36)へ流入する。利用側熱交換器(36)において、冷媒は、室内空気から吸熱して蒸発する。利用側熱交換器(36)において冷却された室内空気は、室内へ供給される。利用側熱交換器(36)を通過した冷媒は、四方切換弁(17)を通過後に圧縮機(16)へ吸入される。ガスポンプとして動作する圧縮機(16)は、吸入した冷媒を昇圧させてから吐出する。
 上述したように、第1利用冷房運転では、蓄熱媒体回路(92)のポンプ(93)が作動し、蓄熱槽(91)と蓄熱側熱交換器(31)の間を蓄熱媒体が循環する。蓄熱槽(91)内の蓄熱媒体は、ポンプ(93)によって蓄熱側熱交換器(31)の二次側流路(33)へ送られ、その一次側流路(32)を流れる冷媒から吸熱する。つまり、蓄熱側熱交換器(31)では、二次側流路(33)の蓄熱媒体から一次側流路(32)の冷媒へ冷熱が付与される。蓄熱側熱交換器(31)の二次側流路(33)を通過した蓄熱媒体は、蓄熱槽(91)へ送り返される。
   〈第2利用冷房運転〉
 第2利用冷房運転について、図5を参照しながら説明する。第2利用冷房運転では、蓄熱槽(91)に蓄えられた冷熱と、冷媒回路(15)が行う冷凍サイクルによって得られた冷熱とを用いて室内の冷房が行われる。第2利用冷房運転では、蓄熱媒体回路(92)のポンプ(93)が作動し、蓄熱槽(91)と蓄熱側熱交換器(31)の間を蓄熱媒体が循環する。また、第2利用冷房運転では、給湯装置(70)が停止する。また、第2利用冷房運転では、室外ファン(11)及び室内ファン(12)が作動する。
 冷媒回路(15)は、熱源側熱交換器(21)が凝縮器(即ち、放熱器)となり、蓄熱側熱交換器(31)が過冷却器(即ち、放熱器)となり、利用側熱交換器(36)が蒸発器となる冷凍サイクルを行う。具体的に、冷媒回路(15)では、圧縮機(16)が作動し、四方切換弁(17)が第1状態に設定される。熱源側膨張弁(22)は、全開状態に保持される。また、利用側膨張弁(37)は、利用側熱交換器(36)の出口における冷媒の過熱度が所定の目標値となるように、その開度が調節される。
 冷媒回路(15)では、第1バイパス通路(41)が第2状態に設定される。第2状態に設定された第1バイパス通路(41)では、各三方弁(61,62,63,64)が第2蓄冷運転の説明で述べた状態になる。
 冷媒回路(15)では、第2バイパス通路(42)が第3状態に設定される。第3状態に設定された第2バイパス通路(42)では、各三方弁(65,66,67,68)が第1利用冷房運転の説明で述べた状態になる。
 冷媒回路(15)における冷媒の流れを説明する。圧縮機(16)から吐出された冷媒は、四方切換弁(17)を通過後に熱源側配管(20)へ流入する。熱源側配管(20)へ流入した冷媒は、熱源側熱交換器(21)を通過する間に室外空気へ放熱して凝縮する。その後、冷媒は、熱源側膨張弁(22)と、第3バイパス用配管(53)と、第2バイパス用配管(52)と、接続用配管(18)とを順に通過し、蓄熱側配管(30)へ流入する。続いて、冷媒は、蓄熱側熱交換器(31)の一次側流路(32)へ流入する。蓄熱側熱交換器(31)において、一次側流路(32)を流れる冷媒は、二次側流路(33)を流れる蓄熱媒体によって冷却される。蓄熱側熱交換器(31)を通過した冷媒は、利用側膨張弁(37)を通過する際に減圧され、その後に利用側熱交換器(36)へ流入し、室内空気から吸熱して蒸発する。利用側熱交換器(36)において冷却された室内空気は、室内へ供給される。利用側熱交換器(36)を通過した冷媒は、四方切換弁(17)を通過後に圧縮機(16)へ吸入される。圧縮機(16)は、吸入した冷媒を圧縮してから吐出する。
   〈単純冷房運転〉
 単純冷房運転について、図6を参照しながら説明する。単純冷房運転では、冷媒回路(15)が行う冷凍サイクルによって得られた冷熱だけを用いて室内の冷房が行われる。単純冷房運転では、給湯装置(70)及び蓄熱装置(90)が停止する。また、単純冷房運転では、室外ファン(11)及び室内ファン(12)が作動する。
 冷媒回路(15)は、熱源側熱交換器(21)が凝縮器(即ち、放熱器)となり、利用側熱交換器(36)が蒸発器となる冷凍サイクルを行う。具体的に、冷媒回路(15)では、圧縮機(16)が作動し、四方切換弁(17)が第1状態に設定される。熱源側膨張弁(22)は、全開状態に保持される。また、利用側膨張弁(37)は、利用側熱交換器(36)の出口における冷媒の過熱度が所定の目標値となるように、その開度が調節される。
 冷媒回路(15)では、第1バイパス通路(41)が第2状態に設定される。第2状態に設定された第1バイパス通路(41)では、各三方弁(61,62,63,64)が第2蓄冷運転の説明で述べた状態になる。
 冷媒回路(15)では、第2バイパス通路(42)が第2状態に設定される。第2状態に設定された第2バイパス通路(42)では、各三方弁(65,66,67,68)が次のような状態になる。第5三方弁(65)は、利用側配管(35)を四方切換弁(17)の第4のポートと連通させて第4バイパス用配管(54)から遮断する。第6三方弁(66)は、第5バイパス用配管(55)を第6バイパス用配管(56)と連通させて第4バイパス用配管(54)から遮断する。第7三方弁(67)は、接続用配管(18)を第5バイパス用配管(55)と連通させて蓄熱側配管(30)から遮断する。第8三方弁(68)は、第6バイパス用配管(56)を利用側配管(35)と連通させて蓄熱側配管(30)から遮断する。
 冷媒回路(15)における冷媒の流れを説明する。圧縮機(16)から吐出された冷媒は、四方切換弁(17)を通過後に熱源側配管(20)へ流入する。熱源側配管(20)へ流入した冷媒は、熱源側熱交換器(21)を通過する間に室外空気へ放熱して凝縮する。その後、冷媒は、熱源側膨張弁(22)と、第3バイパス用配管(53)と、第2バイパス用配管(52)と、接続用配管(18)と、第5バイパス用配管(55)と、第6バイパス用配管(56)とを順に通過し、利用側配管(35)へ流入する。利用側配管(35)へ流入した冷媒は、利用側膨張弁(37)を通過する際に減圧され、その後に利用側熱交換器(36)へ流入し、室内空気から吸熱して蒸発する。利用側熱交換器(36)において冷却された室内空気は、室内へ供給される。利用側熱交換器(36)を通過した冷媒は、四方切換弁(17)を通過後に圧縮機(16)へ吸入される。圧縮機(16)は、吸入した冷媒を圧縮してから吐出する。
   〈蓄熱暖房運転〉
 蓄熱暖房運転について、図7を参照しながら説明する。蓄熱暖房運転では、冷媒回路(15)が行う冷凍サイクルによって温熱が得られ、得られた温熱の一部が室内の暖房に利用され、残りが蓄熱槽(91)に蓄えられる。蓄熱暖房運転では、蓄熱媒体回路(92)のポンプ(93)が作動し、蓄熱槽(91)と蓄熱側熱交換器(31)の間を蓄熱媒体が循環する。また、蓄熱暖房房運転では、給湯装置(70)が停止する。また、蓄熱暖房運転では、室外ファン(11)及び室内ファン(12)が作動する。
 冷媒回路(15)は、利用側熱交換器(36)が凝縮器(即ち、放熱器)となり、蓄熱側熱交換器(31)が過冷却器(即ち、放熱器)となり、熱源側熱交換器(21)が蒸発器となる冷凍サイクルを行う。具体的に、冷媒回路(15)では、圧縮機(16)が作動し、四方切換弁(17)が第2状態に設定される。利用側膨張弁(37)は、全開状態に保持される。また、熱源側膨張弁(22)は、熱源側熱交換器(21)の出口における冷媒の過熱度が所定の目標値となるように、その開度が調節される。
 冷媒回路(15)では、第1バイパス通路(41)が第2状態に設定される。第2状態に設定された第1バイパス通路(41)では、各三方弁(61,62,63,64)が第2蓄冷運転の説明で述べた状態になる。
 冷媒回路(15)では、第2バイパス通路(42)が第3状態に設定される。第3状態に設定された第2バイパス通路(42)では、各三方弁(65,66,67,68)が第1利用冷房運転の説明で述べた状態になる。
 冷媒回路(15)における冷媒の流れを説明する。圧縮機(16)から吐出された冷媒は、四方切換弁(17)を通過後に利用側配管(35)へ流入する。利用側配管(35)へ流入した冷媒は、利用側熱交換器(36)を通過する間に室内空気へ放熱して凝縮する。利用側熱交換器(36)において加熱された室内空気は、室内へ供給される。利用側熱交換器(36)を通過した冷媒は、利用側膨張弁(37)を通過後に蓄熱側配管(30)へ流入する。その後、冷媒は、蓄熱側熱交換器(31)の一次側流路(32)へ流入する。蓄熱側熱交換器(31)において、一次側流路(32)を流れる冷媒は、二次側流路(33)を流れる蓄熱媒体へ放熱する。蓄熱側熱交換器(31)から流出した冷媒は、接続用配管(18)と、第2バイパス用配管(52)と、第3バイパス用配管(53)とを順に通過し、その後に熱源側配管(20)へ流入する。熱源側配管(20)へ流入した冷媒は、熱源側膨張弁(22)を通過する際に減圧され、その後に熱源側熱交換器(21)へ流入し、室外空気から吸熱して蒸発する。熱源側熱交換器(21)を通過した冷媒は、四方切換弁(17)を通過後に圧縮機(16)へ吸入される。圧縮機(16)は、吸入した冷媒を圧縮してから吐出する。
 蓄熱暖房運転では、蓄熱媒体回路(92)のポンプ(93)が作動し、蓄熱槽(91)と蓄熱側熱交換器(31)の間を蓄熱媒体が循環する。蓄熱槽(91)内の蓄熱媒体は、ポンプ(93)によって蓄熱側熱交換器(31)の二次側流路(33)へ送られ、その一次側流路(32)を流れる冷媒によって加熱される。蓄熱側熱交換器(31)において加熱された蓄熱媒体は、蓄熱槽(91)へ送り返される。従って、蓄熱槽(91)には、利用側熱交換器(36)から流出した冷媒に残存する温熱が蓄えられる。
   〈湯沸かし運転〉
 湯沸かし運転について説明する。湯沸かし運転において、給湯空調システム(10)は、図2に示す第1蓄冷運転と同じ運転を行う。そして、湯沸かし運転中の給湯空調システム(10)では、蓄熱槽(91)に蓄えられた温熱を利用して、給湯装置(70)が貯湯槽(71)内の水を加熱する。
 具体的に、蓄熱槽(91)内の蓄熱媒体が保有する温熱は、蓄熱側熱交換器(31)において冷媒回路(15)の冷媒に付与される。冷媒回路(15)の冷媒は、蓄熱側熱交換器(31)において付与された温熱を給湯側熱交換器(26)へ搬送し、給湯用冷媒回路(80)の冷媒へ付与する。そして、給湯装置(70)では、給湯用冷媒回路(80)が冷凍サイクルを行い、貯湯槽(71)内の水が加熱用熱交換器(83)において加熱される。
   〈利用暖房運転〉
 利用暖房運転について、図8を参照しながら説明する。利用暖房運転では、蓄熱槽(91)に蓄えられた温熱だけを用いて室内の暖房が行われる。利用暖房運転では、蓄熱媒体回路(92)のポンプ(93)が作動し、蓄熱槽(91)と蓄熱側熱交換器(31)の間を蓄熱媒体が循環する。また、利用暖房運転では、給湯装置(70)が停止する。また、利用暖房運転では、室外ファン(11)が停止し、室内ファン(12)が作動する。
 冷媒回路(15)は、利用側熱交換器(36)が凝縮器(即ち、放熱器)となり、蓄熱側熱交換器(31)が蒸発器となる冷凍サイクルを行う。具体的に、冷媒回路(15)では、圧縮機(16)が作動し、四方切換弁(17)が第2状態に設定される。利用側膨張弁(37)は、蓄熱側熱交換器(31)の出口における冷媒の過熱度が所定の目標値となるように、その開度が調節される。
 冷媒回路(15)では、第1バイパス通路(41)が第3状態に設定される。第3状態に設定された第1バイパス通路(41)では、各三方弁(61,62,63,64)が第1利用冷房運転の説明で述べた状態になる。
 冷媒回路(15)では、第2バイパス通路(42)が第3状態に設定される。第3状態に設定された第2バイパス通路(42)では、各三方弁(65,66,67,68)が第1利用冷房運転の説明で述べた状態になる。
 冷媒回路(15)における冷媒の流れを説明する。圧縮機(16)から吐出された冷媒は、四方切換弁(17)を通過後に利用側配管(35)へ流入する。その後、冷媒は、利用側熱交換器(36)へ流入し、室内空気へ放熱して凝縮する。利用側熱交換器(36)において加熱された室内空気は、室内へ供給される。利用側熱交換器(36)から流出した冷媒は、利用側膨張弁(37)を通過後に蓄熱側配管(30)へ流入する。その後、冷媒は、蓄熱側熱交換器(31)の一次側流路(32)へ流入し、その二次側流路(33)を流れる蓄熱媒体から吸熱して蒸発する。蓄熱側熱交換器(31)から流出した冷媒は、接続用配管(18)と、第2バイパス用配管(52)と、第1バイパス用配管(51)と、四方切換弁(17)とを順に通過し、その後に圧縮機(16)へ吸入される。圧縮機(16)は、吸入した冷媒を圧縮してから吐出する。
 上述したように、利用暖房運転では、蓄熱媒体回路(92)のポンプ(93)が作動し、蓄熱槽(91)と蓄熱側熱交換器(31)の間を蓄熱媒体が循環する。蓄熱槽(91)内の蓄熱媒体は、ポンプ(93)によって蓄熱側熱交換器(31)の二次側流路(33)へ送られ、その一次側流路(32)を流れる冷媒へ放熱する。蓄熱側熱交換器(31)の二次側流路(33)を通過した蓄熱媒体は、蓄熱槽(91)へ送り返される。
   〈単純暖房運転〉
 単純暖房運転について、図9を参照しながら説明する。単純暖房運転では、冷媒回路(15)が行う冷凍サイクルによって得られた温熱だけを用いて室内の暖房が行われる。単純暖房運転では、給湯装置(70)及び蓄熱装置(90)が停止する。また、単純暖房運転では、室外ファン(11)及び室内ファン(12)が作動する。
 冷媒回路(15)は、利用側熱交換器(36)が凝縮器(即ち、放熱器)となり、熱源側熱交換器(21)が蒸発器となる冷凍サイクルを行う。具体的に、冷媒回路(15)では、圧縮機(16)が作動し、四方切換弁(17)が第2状態に設定される。利用側膨張弁(37)は、全開状態に保持される。また、熱源側膨張弁(22)は、熱源側熱交換器(21)の出口における冷媒の過熱度が所定の目標値となるように、その開度が調節される。
 冷媒回路(15)では、第1バイパス通路(41)が第2状態に設定される。第2状態に設定された第1バイパス通路(41)では、各三方弁(61,62,63,64)が第2蓄冷運転の説明で述べた状態になる。
 冷媒回路(15)では、第2バイパス通路(42)が第2状態に設定される。第2状態に設定された第2バイパス通路(42)では、各三方弁(65,66,67,68)が単純冷房運転の説明で述べた状態になる。
 冷媒回路(15)における冷媒の流れを説明する。圧縮機(16)から吐出された冷媒は、四方切換弁(17)を通過後に利用側配管(35)へ流入する。利用側配管(35)へ流入した冷媒は、利用側熱交換器(36)を通過する間に室内空気へ放熱して凝縮する。利用側熱交換器(36)において加熱された室内空気は、室内へ供給される。利用側熱交換器(36)を通過した冷媒は、利用側膨張弁(37)と、第6バイパス用配管(56)と、第5バイパス用配管(55)と、接続用配管(18)と、第2バイパス用配管(52)と、第3バイパス用配管(53)とを順に通過し、熱源側配管(20)へ流入する。熱源側配管(20)へ流入した冷媒は、熱源側膨張弁(22)を通過する際に減圧され、その後に熱源側熱交換器(21)へ流入し、室外空気から吸熱して蒸発する。熱源側熱交換器(21)を通過した冷媒は、四方切換弁(17)を通過後に圧縮機(16)へ吸入される。圧縮機(16)は、吸入した冷媒を圧縮してから吐出する。
   〈冷房シーズンにおける運転動作〉
 夏季等の冷房シーズンにおいて、給湯空調システム(10)は、第1蓄冷運転と、第2蓄冷運転と、第1利用冷房運転と、第2利用冷房運転と、単純冷房運転とを行う。
 第1蓄冷運転および第2蓄冷運転は、電力料金が安い深夜に行われる。一方、第1利用冷房運転、第2利用冷房運転、および単純冷房運転は、主に日中から夕方にかけて行われる。
 冷房シーズンの深夜において、給湯空調システム(10)は、第1蓄冷運転を必ず行う。上述したように、第1蓄冷運転中の給湯空調システム(10)では、冷媒回路(15)が冷凍サイクルを行い、給湯装置(70)が貯湯槽(71)内の水を加熱し、冷媒回路(15)が行う冷凍サイクルによって得られた冷熱が蓄熱装置(90)の蓄熱槽(91)に蓄えられる。
 貯湯槽(71)内の水のほぼ全てが80~90℃程度の高温水になるか、貯湯槽(71)内の高温水の量が翌日の給湯需要を賄える量に達すると、第1蓄冷運転は停止する。このため、給湯需要が比較的少なくて冷房負荷の高い夏季には、第1蓄冷運転によって蓄熱槽(91)に蓄えられた冷熱だけでは、日中の冷房負荷を処理しきれない場合が多い。そこで、この場合、給湯空調システム(10)は、第1蓄冷運転の終了後に第2蓄冷運転を行う。
 上述したように、第2蓄冷運転中の給湯空調システム(10)では、冷媒回路(15)の冷媒が蓄熱媒体から吸収した熱を室外空気へ放出しているため、貯湯槽(71)内の高温水の量とは無関係に蓄熱槽(91)に冷熱を蓄えることができる。そこで、本実施形態の給湯空調システム(10)は、深夜に第1蓄冷運転と第2蓄冷運転を行うことによって、蓄熱槽(91)に蓄えられた冷熱量を充分に確保している。
 第1利用冷房運転と第2利用冷房運転は、第1蓄冷運転や第2蓄冷運転によって蓄熱槽(91)に蓄えられた冷熱を利用して、室内を冷房する運転である。第1利用冷房運転や第2利用冷房運転における給湯空調システム(10)の消費電力は、冷媒回路(15)が行う冷凍サイクルによって得られた冷熱だけを利用して冷房を行う単純冷房運転中の給湯空調システム(10)の消費電力に比べて少なくなる。このため、電力料金の高い日中から夕方にかけての給湯空調システム(10)の消費電力が減少し、給湯空調システム(10)のランニングコストが低減される。
 なお、蓄熱槽(91)に蓄えられた冷熱を使い切った後においても、室内の冷房が必要な場合がある。その様な場合、給湯空調システム(10)は、単純冷房運転を行う。
   〈暖房シーズンにおける運転動作〉
 冬季等の暖房シーズンにおいて、給湯空調システム(10)は、蓄熱暖房運転と、湯沸かし運転と、利用暖房運転と、単純暖房運転とを行う。
 上述したように、蓄熱暖房運転中の給湯空調システム(10)では、蓄熱装置(90)の蓄熱槽(91)に温熱が蓄えられる。湯沸かし運転中や利用暖房運転中の給湯空調システム(10)は、蓄熱暖房運転中に蓄熱槽(91)に蓄えられた温熱を利用して、上述した運転を行う。
 なお、蓄熱槽(91)に蓄えられた温熱を使い切った後においても、室内の暖房が必要な場合がある。その様な場合、給湯空調システム(10)は、単純暖房運転を行う。
  -実施形態1の効果-
 本実施形態の給湯空調システム(10)は、第1蓄冷運転と第2蓄冷運転を選択的に行う。第1蓄冷運転中には、冷媒回路(15)において冷凍サイクルが行われ、給湯側熱交換器(26)において冷媒から放出された熱を利用して給湯装置(70)が貯湯槽(71)内の水を加熱し、蓄熱側熱交換器(31)において得られた冷熱が蓄熱装置(90)の蓄熱槽(91)に蓄えられる。一方、第2蓄冷運転中には、冷媒回路(15)において冷凍サイクルが行われ、熱源側熱交換器(21)において冷媒が室外空気へ放熱し、蓄熱側熱交換器(31)において得られた冷熱が蓄熱装置(90)の蓄熱槽(91)に蓄えられる。
 上述したように、貯湯槽(71)内の高温水の量が必要量に達すると、第1蓄冷運転を停止させなければならない。しかし、本実施形態の給湯空調システム(10)は、第1蓄冷運転の停止後においても、第2蓄冷運転を行うことによって、蓄熱装置(90)の蓄熱槽(91)に更に冷熱を蓄えることができる。このため、本実施形態によれば、貯湯槽(71)内の水を加熱する際に得られる冷熱だけでなく、冷媒回路(15)の冷媒が室外空気へ放熱することによって得られる冷熱も、蓄熱装置(90)の蓄熱槽(91)に蓄えることができる。
 従って、本実施形態によれば、電力料金の安い深夜に第1蓄冷運転および第2蓄冷運転を行うことによって、日中の利用冷房運転に必要な充分な量の冷熱を蓄熱槽(91)に蓄えることができる。その結果、日中に室内を冷房するために消費される電力量を充分に削減でき、給湯空調システム(10)のランニングコストを充分に削減することができる。
 《発明の実施形態2》
 本発明の実施形態2について説明する。本実施形態の給湯空調システム(10)は、実施形態1の給湯空調システム(10)において、蓄熱側熱交換器(31)の構成および配置を変更したものである。ここでは、本実施形態の給湯空調システム(10)について、実施形態1の給湯空調システム(10)と異なる点を説明する。
 図10に示すように、本実施形態の蓄熱側熱交換器(31)は、上下に蛇行する伝熱管によって構成されている。また、この蓄熱側熱交換器(31)は、蓄熱装置(90)の蓄熱槽(91)内に配置され、蓄熱媒体に浸かった状態となっている。また、本実施形態の蓄熱槽(91)には、水が蓄熱媒体として貯留されている。
 本実施形態の蓄熱装置(90)は、蓄熱槽(91)に蓄熱媒体として貯留された水を凍結させることによって、冷熱を蓄える。つまり、蓄熱側熱交換器(31)が蒸発器となる第1蓄冷運転や第2蓄冷運転では、蓄熱槽(91)内の水が蓄熱側熱交換器(31)を流れる冷媒によって冷却され、蓄熱側熱交換器(31)の周囲の水が凍って氷となる。また、第1利用冷房運転や第2利用冷房運転では、蓄熱側熱交換器(31)を流れる冷媒が蓄熱槽(91)内の氷によって冷却され、その結果、氷が融解する。
 《発明の実施形態3》
 本発明の実施形態3について説明する。本実施形態の給湯空調システム(10)は、実施形態1の給湯空調システム(10)において、給湯装置(70)の構成を変更したものである。ここでは、本実施形態の給湯空調システム(10)について、実施形態1の給湯空調システム(10)と異なる点を説明する。
 図11に示すように、本実施形態の給湯装置(70)では、給湯用冷媒回路(80)が省略され、水回路(74)が給湯側熱交換器(26)の二次側流路(28)に接続されている。このため、貯湯槽(71)から水回路(74)へ流入した水は、給湯側熱交換器(26)の二次側流路(28)へ流入し、その一次側流路(27)を流れる冷媒回路(15)の冷媒によって加熱される。給湯側熱交換器(26)の二次側流路(28)から流出した水は、貯湯槽(71)の頂部へ送り返される。
 《発明の実施形態4》
 本発明の実施形態4について説明する。本実施形態の給湯空調システム(10)は、実施形態1の給湯空調システム(10)において、冷媒回路(15)の構成と、蓄熱側熱交換器(31)の構成および配置とを変更したものである。ここでは、本実施形態の給湯空調システム(10)について、実施形態1の給湯空調システム(10)と異なる点を説明する。
 図12に示すように、本実施形態の冷媒回路(15)は、バイパス用配管(51~56)及び三方弁(61~68)に代えて、三つの接続用配管(46~48)と八つの電磁弁(101~108)とを備えている。また、本実施形態の冷媒回路(15)には、利用側配管(35a~35c)が三つ設けられている。三つの利用側配管(35a~35c)は、互いに並列に接続されている。また、本実施形態の冷媒回路(15)には、蓄熱側膨張弁(34)が設けられている。
 本実施形態の冷媒回路(15)において、圧縮機(16)は、吐出側が四方切換弁(17)の第1のポートに接続され、吸入側が四方切換弁(17)の第2のポートに接続されている。この点は、実施形態1と同じである。この冷媒回路(15)では、四方切換弁(17)の第3のポートから第4のポートへ向かって順に、第1電磁弁(101)と、熱源側熱交換器(21)と、熱源側膨張弁(22)と、第2電磁弁(102)と、利用側配管(35a~35c)と、第3電磁弁(103)とが配置されている。
 各利用側配管(35a~35c)には、その一端から他端へ向かって順に、利用側熱交換器(36a~36c)と利用側膨張弁(37a~37c)とが配置されている。つまり、各利用側配管(35a~35c)では、利用側熱交換器(36a~36c)の液側に利用側膨張弁(37a~37c)が配置されている。各利用側配管(35a~35c)は、利用側熱交換器(36a~36c)側の一端が第3電磁弁(103)に接続され、利用側膨張弁(37a~37c)側の他端が第2電磁弁(102)に接続されている。なお、図12では図示を省略するが、本実施形態の給湯空調システム(10)では、各利用側熱交換器(36a~36c)に対応して室内ファンが一つずつ設けられている。各室内ファンは、対応する利用側熱交換器(36a~36c)へ室内空気を供給する。
 給湯側配管(25)には、その一端から他端へ向かって順に、第4電磁弁(104)と、給湯側熱交換器(26)と給湯側膨張弁(29)とが配置されている。この給湯側配管(25)は、第4電磁弁(104)側の一端が圧縮機(16)と四方切換弁(17)の第1のポートを繋ぐ配管に接続され、給湯側膨張弁(29)側の他端が熱源側膨張弁(22)と第2電磁弁(102)を繋ぐ配管(19)に接続されている。
 なお、本実施形態の冷媒回路(15)では、四方切換弁(17)の第3のポートから配管(19)に対する給湯側配管(25)の接続位置までの部分が、熱源側配管(20)を構成している。
 蓄熱側配管(30)には、その一端から他端へ向かって順に、第5電磁弁(105)と、蓄熱側熱交換器(31)と、蓄熱側膨張弁(34)とが配置されている。この蓄熱側配管(30)は、第5電磁弁(105)側の一端が第3電磁弁(103)と四方切換弁(17)の第4のポートを繋ぐ配管に接続され、蓄熱側膨張弁(34)側の他端が第2電磁弁(102)と利用側配管(35a~35c)を繋ぐ配管に接続されている。蓄熱側膨張弁(34)は、開度可変の電動膨張弁である。
 本実施形態の蓄熱側熱交換器(31)は、上下に蛇行する伝熱管によって構成されている。また、この蓄熱側熱交換器(31)は、蓄熱装置(90)の蓄熱槽(91)内に配置され、蓄熱媒体に浸かった状態となっている。また、本実施形態の蓄熱槽(91)には、水が蓄熱媒体として貯留されている。
 第1接続用配管(46)は、その一端が給湯側配管(25)の一端と第4電磁弁(104)の間に接続され、その他端が熱源側膨張弁(22)と第2電磁弁(102)を繋ぐ配管(19)に接続されている。この配管(19)に対する第1接続用配管(46)の接続位置は、この配管(19)に対する蓄熱側配管(30)の接続位置よりも第2電磁弁(102)寄りである。また、第1接続用配管(46)には、第6電磁弁(106)が設けられている。
 第2接続用配管(47)は、その一端が蓄熱側配管(30)における第5電磁弁(105)と蓄熱側熱交換器(31)の間に接続され、その他端が圧縮機(16)と四方切換弁(17)の第2のポートを繋ぐ配管に接続されている。また、第2接続用配管(47)には、第7電磁弁(107)が設けられている。
 第3接続用配管(48)は、その一端が蓄熱側配管(30)における第5電磁弁(105)と蓄熱側熱交換器(31)の間に接続され、その他端が熱源側膨張弁(22)と第2電磁弁(102)を繋ぐ配管(19)に接続されている。この配管(19)に対する第3接続用配管(48)の接続位置は、この配管(19)に対する第1接続用配管(46)の接続位置よりも第2電磁弁(102)寄りである。また、第3接続用配管(48)には、第8電磁弁(108)が設けられている。
  -運転動作-
 給湯空調システム(10)の運転動作を説明する。本実施形態の給湯空調システム(10)は、後述する様々な運転を行う。
   〈第1蓄冷運転〉
 第1蓄冷運転について、図13を参照しながら説明する。実施形態1と同様に、第1蓄冷運転では、給湯空調システム(10)が第1動作を行う。つまり、給湯装置(70)は、貯湯槽(71)内の水を加熱する運転を行い、蓄熱装置(90)は、給湯装置(70)の運転によって得られた冷熱を蓄熱槽(91)に蓄える運転を行う。また、この第1蓄冷運転では、室外ファン(11)及び各室内ファンが停止する。
 冷媒回路(15)は、給湯側熱交換器(26)が凝縮器(即ち、放熱器)となり、蓄熱側熱交換器(31)が蒸発器となる冷凍サイクルを行う。冷媒回路(15)では、圧縮機(16)が作動し、四方切換弁(17)が第1状態に設定される。給湯側膨張弁(29)は全開状態に保持され、熱源側膨張弁(22)及び各利用側膨張弁(37a~37c)は全閉状態に保持される。蓄熱側膨張弁(34)は、蓄熱側熱交換器(31)の出口における冷媒の過熱度が所定の目標値となるように、その開度が調節される。第2電磁弁(102)、第3電磁弁(103)、第4電磁弁(104)、及び第5電磁弁(105)は開状態となり、第1電磁弁(101)、第6電磁弁(106)、第7電磁弁(107)、及び第8電磁弁(108)は閉状態となる。
 冷媒回路(15)における冷媒の流れを説明する。圧縮機(16)から吐出された冷媒は、給湯側配管(25)へ流入する。給湯側配管(25)へ流入した冷媒は、給湯側熱交換器(26)の一次側流路(27)を通過する間に放熱して凝縮し、その後に蓄熱側配管(30)へ流入する。蓄熱側配管(30)へ流入した冷媒は、蓄熱側膨張弁(34)を通過する際に減圧され、その後に蓄熱側熱交換器(31)へ流入する。蓄熱側熱交換器(31)を流れる冷媒は、蓄熱槽(91)内の水から吸熱して蒸発する。蓄熱側熱交換器(31)から流出した冷媒は、四方切換弁(17)を通過後に圧縮機(16)へ吸入される。圧縮機(16)は、吸入した冷媒を圧縮してから吐出する。
 第1蓄冷運転では、給湯装置(70)の給湯用圧縮機(81)が作動し、給湯用冷媒回路(80)が冷凍サイクルを行う。その際、給湯用膨張弁(82)は、給湯側熱交換器(26)の二次側流路(28)の出口における冷媒の過熱度が所定の目標値となるように、その開度が調節される。また、第1蓄冷運転では、水回路(74)のポンプ(75)が作動し、貯湯槽(71)と加熱用熱交換器(83)の間を水が循環する。
 給湯用冷媒回路(80)における冷媒の流れを説明する。給湯用圧縮機(81)から吐出された冷媒は、加熱用熱交換器(83)の一次側流路(84)を通過する際に放熱して凝縮する。加熱用熱交換器(83)から流出した冷媒は、給湯用膨張弁(82)を通過する際に減圧され、その後に給湯側熱交換器(26)の二次側流路(28)へ流入する。給湯側熱交換器(26)の二次側流路(28)を流れる冷媒は、その二次側流路(28)を流れる冷媒から吸熱して蒸発する。その後、冷媒は、給湯用圧縮機(81)へ吸入される。給湯用圧縮機(81)は、吸入した冷媒を圧縮してから吐出する。
 水回路(74)における水の流れを説明する。蓄熱槽(91)の底部に存在する低温の水は、ポンプ(75)によって加熱用熱交換器(83)の二次側流路(85)へ送られ、その一次側流路(84)を流れる冷媒によって加熱される。そして、加熱されて高温となった水は、貯湯槽(71)の頂部へ送り返される。
 第1蓄冷運転中には、蓄熱槽(91)内の水が蓄熱側熱交換器(31)を流れる冷媒によって冷却され、蓄熱側熱交換器(31)の周囲の水が凍って氷となる。その結果、蓄熱槽(91)に冷熱が蓄えられてゆく。
   〈第2蓄冷運転〉
 第2蓄冷運転について、図14を参照しながら説明する。実施形態1と同様に、第2蓄冷運転では、給湯空調システム(10)が第2動作を行う。つまり、給湯空調システム(10)では、給湯装置(70)が停止し、蓄熱装置(90)が冷熱を蓄熱槽(91)に蓄える運転を行う。また、この第2蓄冷運転では、室外ファン(11)が作動し、各室内ファンが停止する。
 冷媒回路(15)は、熱源側熱交換器(21)が凝縮器(即ち、放熱器)となり、蓄熱側熱交換器(31)が蒸発器となる冷凍サイクルを行う。冷媒回路(15)では、圧縮機(16)が作動し、四方切換弁(17)が第1状態に設定される。熱源側膨張弁(22)は全開状態に保持され、給湯側膨張弁(29)及び各利用側膨張弁(37a~37c)は全閉状態に保持される。蓄熱側膨張弁(34)は、蓄熱側熱交換器(31)の出口における冷媒の過熱度が所定の目標値となるように、その開度が調節される。第1電磁弁(101)、第2電磁弁(102)、第3電磁弁(103)、及び第5電磁弁(105)は開状態となり、第4電磁弁(104)、第6電磁弁(106)、第7電磁弁(107)、及び第8電磁弁(108)は閉状態となる。
 冷媒回路(15)における冷媒の流れを説明する。圧縮機(16)から吐出された冷媒は、四方切換弁(17)を通過後に熱源側配管(20)へ流入する。熱源側配管(20)へ流入した冷媒は、熱源側熱交換器(21)を通過する間に室外空気へ放熱して凝縮し、その後に蓄熱側配管(30)へ流入する。蓄熱側配管(30)へ流入した冷媒は、蓄熱側膨張弁(34)を通過する際に減圧され、その後に蓄熱側熱交換器(31)へ流入する。蓄熱側熱交換器(31)を流れる冷媒は、蓄熱槽(91)内の水から吸熱して蒸発する。蓄熱側熱交換器(31)から流出した冷媒は、四方切換弁(17)を通過後に圧縮機(16)へ吸入される。圧縮機(16)は、吸入した冷媒を圧縮してから吐出する。
 第2蓄冷運転において、蓄熱装置(90)は、冷熱を蓄熱槽(91)に蓄える運転を行う。この運転は、第1蓄冷運転中に蓄熱装置(90)が行う運転と同じである。
   〈第3蓄冷運転〉
 第3蓄冷運転について、図15を参照しながら説明する。給湯空調システム(10)では、給湯装置(70)が貯湯槽(71)内の水を加熱する運転を行い、この給湯装置(70)の運転によって得られた冷熱を蓄熱装置(90)が蓄熱槽(91)に蓄える。また、この第3蓄冷運転では、室外ファン(11)が作動し、各室内ファンが停止する。
 冷媒回路(15)は、熱源側熱交換器(21)と給湯側熱交換器(26)の両方が凝縮器(即ち、放熱器)となり、蓄熱側熱交換器(31)が蒸発器となる冷凍サイクルを行う。冷媒回路(15)では、圧縮機(16)が作動し、四方切換弁(17)が第1状態に設定される。熱源側膨張弁(22)及び給湯側膨張弁(29)は全開状態に保持され、各利用側膨張弁(37a~37c)は全閉状態に保持される。蓄熱側膨張弁(34)は、蓄熱側熱交換器(31)の出口における冷媒の過熱度が所定の目標値となるように、その開度が調節される。第1電磁弁(101)、第2電磁弁(102)、第3電磁弁(103)、第4電磁弁(104)、及び第5電磁弁(105)は開状態となり、第6電磁弁(106)、第7電磁弁(107)、及び第8電磁弁(108)は閉状態となる。
 冷媒回路(15)における冷媒の流れを説明する。圧縮機(16)から吐出された冷媒は、その一部が給湯側配管(25)へ流入し、残りが四方切換弁(17)を通過後に熱源側配管(20)へ流入する。給湯側配管(25)へ流入した冷媒は、給湯側熱交換器(26)の一次側流路(27)を通過する間に放熱して凝縮する。一方、熱源側配管(20)へ流入した冷媒は、熱源側熱交換器(21)を通過する間に室外空気へ放熱して凝縮する。給湯側配管(25)を通過した冷媒と、熱源側配管(20)を通過した冷媒とは、合流後に蓄熱側配管(30)へ流入する。蓄熱側配管(30)へ流入した冷媒は、蓄熱側膨張弁(34)を通過する際に減圧され、その後に蓄熱側熱交換器(31)へ流入する。蓄熱側熱交換器(31)を流れる冷媒は、蓄熱槽(91)内の水から吸熱して蒸発する。蓄熱側熱交換器(31)から流出した冷媒は、四方切換弁(17)を通過後に圧縮機(16)へ吸入される。圧縮機(16)は、吸入した冷媒を圧縮してから吐出する。
 第3蓄冷運転中において、給湯装置(70)は、貯湯槽(71)内の水を加熱する運転を行う。第3蓄冷運転中に給湯装置(70)が行う運転は、第1蓄冷運転中に給湯装置(70)が行う運転と同じである。
 第3蓄冷運転において、蓄熱装置(90)は、冷熱を蓄熱槽(91)に蓄える運転を行う。この運転は、第1蓄冷運転中に蓄熱装置(90)が行う運転と同じである。
   〈第1利用冷房運転〉
 第1利用冷房運転について、図16を参照しながら説明する。実施形態1と同様に、第1利用冷房運転では、蓄熱槽(91)に蓄えられた冷熱だけを用いて室内の冷房が行われる。第1利用冷房運転では、給湯装置(70)が停止する。また、第1利用冷房運転では、室外ファン(11)が停止し、各室内ファンが作動する。
 第1利用冷房運転中の冷媒回路(15)では、圧縮機(16)がガスポンプとして動作し、蓄熱側熱交換器(31)と各利用側熱交換器(36a~36c)の間を冷媒が循環する。冷媒回路(15)では、圧縮機(16)が作動し、四方切換弁(17)が第1状態に設定される。蓄熱側膨張弁(34)は全開状態に保持され、熱源側膨張弁(22)及び給湯側膨張弁(29)は全閉状態に保持される。各利用側膨張弁(37a~37c)は、対応する利用側熱交換器(36a~36c)の出口における冷媒の過熱度が所定の目標値となるように、その開度が調節される。第3電磁弁(103)、第6電磁弁(106)、及び第8電磁弁(108)は開状態となり、第1電磁弁(101)、第2電磁弁(102)、第4電磁弁(104)、第5電磁弁(105)、及び第7電磁弁(107)は閉状態となる。
 冷媒回路(15)における冷媒の流れを説明する。圧縮機(16)から吐出された冷媒は、第1接続用配管(46)と第3接続用配管(48)とを順に通過し、蓄熱側配管(30)へ流入する。その後、冷媒は、蓄熱側熱交換器(31)へ流入し、蓄熱槽(91)内の水へ放熱して凝縮する。蓄熱側熱交換器(31)から流出した冷媒は、三つの利用側配管(35a~35c)へ分かれて流入する。各利用側配管(35a~35c)において、冷媒は、利用側膨張弁(37a~37c)を通過する際に減圧され、その後に利用側熱交換器(36a~36c)へ流入し、室内空気から吸熱して蒸発する。各利用側熱交換器(36a~36c)において冷却された室内空気は、室内へ供給される。各利用側配管(35a~35c)から流出した冷媒は、合流後に四方切換弁(17)を通過して圧縮機(16)へ吸入される。ガスポンプとして動作する圧縮機(16)は、吸入した冷媒を昇圧させてから吐出する。
 第1利用冷房運転において、蓄熱装置(90)は、蓄熱槽(91)に蓄えた冷熱を冷媒回路(15)の冷媒に付与する運転を行う。具体的に、第1利用冷房運転中には、蓄熱側熱交換器(31)を流れる冷媒が、蓄熱槽(91)内の水によって冷却される。蓄熱槽(91)では、蓄熱側熱交換器(31)の周囲の氷が、冷媒によって加熱されて融解する。つまり、蓄熱槽(91)に水の潜熱として蓄えられていた冷熱が、蓄熱側熱交換器(31)を流れる冷媒に付与される。
   〈第2利用冷房運転〉
 第2利用冷房運転について、図17を参照しながら説明する。実施形態1と同様に、第2利用冷房運転では、蓄熱槽(91)に蓄えられた冷熱と、冷媒回路(15)が行う冷凍サイクルによって得られた冷熱とを用いて室内の冷房が行われる。
 冷媒回路(15)は、熱源側熱交換器(21)が凝縮器(即ち、放熱器)となり、蓄熱側熱交換器(31)が過冷却器(即ち、放熱器)となり、各利用側熱交換器(36a~36c)が蒸発器となる冷凍サイクルを行う。冷媒回路(15)では、圧縮機(16)が作動し、四方切換弁(17)が第1状態に設定される。熱源側膨張弁(22)及び蓄熱側膨張弁(34)は全開状態に保持され、給湯側膨張弁(29)は全閉状態に保持される。各利用側膨張弁(37a~37c)は、対応する利用側熱交換器(36a~36c)の出口における冷媒の過熱度が所定の目標値となるように、その開度が調節される。第1電磁弁(101)、第3電磁弁(103)、及び第8電磁弁(108)は開状態となり、第2電磁弁(102)、第4電磁弁(104)、第5電磁弁(105)、第6電磁弁(106)、及び第7電磁弁(107)は閉状態となる。
 冷媒回路(15)における冷媒の流れを説明する。圧縮機(16)から吐出された冷媒は、四方切換弁(17)を通過後に熱源側配管(20)へ流入する。熱源側配管(20)へ流入した冷媒は、熱源側熱交換器(21)を通過する間に室外空気へ放熱して凝縮し、その後に第3接続用配管(48)を通って蓄熱側配管(30)へ流入する。その後、冷媒は、蓄熱側熱交換器(31)へ流入し、蓄熱槽(91)内の水へ放熱して過冷却状態となる。蓄熱側熱交換器(31)から流出した冷媒は、三つの利用側配管(35a~35c)へ分かれて流入する。各利用側配管(35a~35c)において、冷媒は、利用側膨張弁(37a~37c)を通過する際に減圧され、その後に利用側熱交換器(36a~36c)へ流入し、室内空気から吸熱して蒸発する。各利用側熱交換器(36a~36c)において冷却された室内空気は、室内へ供給される。各利用側配管(35a~35c)を通過した冷媒は、合流後に四方切換弁(17)を通過し、その後に圧縮機(16)へ吸入される。圧縮機(16)は、吸入した冷媒を圧縮してから吐出する。
 第2利用冷房運転において、蓄熱装置(90)は、蓄熱槽(91)に蓄えた冷熱を冷媒回路(15)の冷媒に付与する運転を行う。この運転は、第1利用冷房運転中に蓄熱装置(90)が行う運転と同じである。
   〈湯沸かし利用冷房運転〉
 湯沸かし利用冷房運転について、図18を参照しながら説明する。湯沸かし利用冷房運転では、蓄熱槽(91)に蓄えられた冷熱と、冷媒回路(15)が行う冷凍サイクルによって得られた冷熱とを用いて室内の冷房が行われる。また、給湯装置(70)は、貯湯槽(71)内の水を加熱する運転を行う。
 冷媒回路(15)は、給湯側熱交換器(26)が凝縮器(即ち、放熱器)となり、蓄熱側熱交換器(31)が過冷却器(即ち、放熱器)となり、各利用側熱交換器(36a~36c)が蒸発器となる冷凍サイクルを行う。冷媒回路(15)では、圧縮機(16)が作動し、四方切換弁(17)が第1状態に設定される。給湯側膨張弁(29)及び蓄熱側膨張弁(34)は全開状態に保持され、熱源側膨張弁(22)は全閉状態に保持される。各利用側膨張弁(37a~37c)は、対応する利用側熱交換器(36a~36c)の出口における冷媒の過熱度が所定の目標値となるように、その開度が調節される。第3電磁弁(103)、第4電磁弁(104)、及び第8電磁弁(108)は開状態となり、第1電磁弁(101)、第2電磁弁(102)、第5電磁弁(105)、第6電磁弁(106)、及び第7電磁弁(107)は閉状態となる。
 冷媒回路(15)における冷媒の流れを説明する。圧縮機(16)から吐出された冷媒は、給湯側配管(25)へ流入する。給湯側配管(25)へ流入した冷媒は、給湯側熱交換器(26)の一次側流路(27)を通過する間に放熱して凝縮し、その後に第3接続用配管(48)を通って蓄熱側配管(30)へ流入する。その後、冷媒は、蓄熱側熱交換器(31)へ流入し、蓄熱槽(91)内の水へ放熱して凝縮する。蓄熱側熱交換器(31)から流出した冷媒は、三つの利用側配管(35a~35c)へ分かれて流入する。各利用側配管(35a~35c)において、冷媒は、利用側膨張弁(37a~37c)を通過する際に減圧され、その後に利用側熱交換器(36a~36c)へ流入し、室内空気から吸熱して蒸発する。各利用側熱交換器(36a~36c)において冷却された室内空気は、室内へ供給される。各利用側配管(35a~35c)を通過した冷媒は、合流後に四方切換弁(17)を通過し、その後に圧縮機(16)へ吸入される。圧縮機(16)は、吸入した冷媒を圧縮してから吐出する。
 湯沸かし利用冷房運転中において、給湯装置(70)は、貯湯槽(71)内の水を加熱する運転を行う。湯沸かし利用冷房運転中に給湯装置(70)が行う運転は、第1蓄冷運転中に給湯装置(70)が行う運転と同じである。
 湯沸かし利用冷房運転において、蓄熱装置(90)は、蓄熱槽(91)に蓄えた冷熱を冷媒回路(15)の冷媒に付与する運転を行う。この運転は、第1利用冷房運転中に蓄熱装置(90)が行う運転と同じである。
   〈単純冷房運転〉
 単純冷房運転について、図19を参照しながら説明する。実施形態1と同様に、単純冷房運転では、冷媒回路(15)が行う冷凍サイクルによって得られた冷熱だけを用いて室内の冷房が行われる。単純冷房運転では、給湯装置(70)及び蓄熱装置(90)が停止する。また、単純冷房運転では、室外ファン(11)及び室内ファン(12)が作動する。
 冷媒回路(15)は、熱源側熱交換器(21)が凝縮器(即ち、放熱器)となり、各利用側熱交換器(36a~36c)が蒸発器となる冷凍サイクルを行う。冷媒回路(15)では、圧縮機(16)が作動し、四方切換弁(17)が第1状態に設定される。熱源側膨張弁(22)は全開状態に保持され、給湯側膨張弁(29)及び蓄熱側膨張弁(34)は全閉状態に保持される。各利用側膨張弁(37a~37c)は、対応する利用側熱交換器(36a~36c)の出口における冷媒の過熱度が所定の目標値となるように、その開度が調節される。第1電磁弁(101)、第2電磁弁(102)、第3電磁弁(103)、及び第7電磁弁(107)は開状態となり、第4電磁弁(104)、第5電磁弁(105)、第6電磁弁(106)、及び第8電磁弁(108)は閉状態となる。
 冷媒回路(15)における冷媒の流れを説明する。圧縮機(16)から吐出された冷媒は、四方切換弁(17)を通過後に熱源側配管(20)へ流入する。熱源側配管(20)へ流入した冷媒は、熱源側熱交換器(21)を通過する間に室外空気へ放熱して凝縮し、その後に三つの利用側配管(35a~35c)へ分かれて流入する。各利用側配管(35a~35c)において、冷媒は、利用側膨張弁(37a~37c)を通過する際に減圧され、その後に利用側熱交換器(36a~36c)へ流入し、室内空気から吸熱して蒸発する。各利用側熱交換器(36a~36c)において冷却された室内空気は、室内へ供給される。各利用側配管(35a~35c)を通過した冷媒は、合流後に四方切換弁(17)を通過し、その後に圧縮機(16)へ吸入される。圧縮機(16)は、吸入した冷媒を圧縮してから吐出する。
   〈湯沸かし冷房運転〉
 湯沸かし冷房運転について、図20を参照しながら説明する。給湯空調システム(10)では、給湯装置(70)が貯湯槽(71)内の水を加熱する運転を行い、この給湯装置(70)の運転によって得られた冷熱を用いて室内の冷房が行われる。湯沸かし冷房運転中には、蓄熱装置(90)が停止する。また、湯沸かし冷房運転中には、室外ファン(11)が停止し、各室内ファンが作動する。
 冷媒回路(15)は、給湯側熱交換器(26)が凝縮器(即ち、放熱器)となり、各利用側熱交換器(36a~36c)が蒸発器となる冷凍サイクルを行う。冷媒回路(15)では、圧縮機(16)が作動し、四方切換弁(17)が第1状態に設定される。給湯側膨張弁(29)は全開状態に保持され、熱源側膨張弁(22)及び蓄熱側膨張弁(34)は全閉状態に保持される。各利用側膨張弁(37a~37c)は、対応する利用側熱交換器(36a~36c)の出口における冷媒の過熱度が所定の目標値となるように、その開度が調節される。第2電磁弁(102)、第3電磁弁(103)、第4電磁弁(104)、及び第7電磁弁(107)は開状態となり、第1電磁弁(101)、第5電磁弁(105)、第6電磁弁(106)、及び第8電磁弁(108)は閉状態となる。
 冷媒回路(15)における冷媒の流れを説明する。圧縮機(16)から吐出された冷媒は、給湯側配管(25)へ流入する。給湯側配管(25)へ流入した冷媒は、給湯側熱交換器(26)の一次側流路(27)を通過する間に放熱して凝縮し、その後に三つの利用側配管(35a~35c)へ分かれて流入する。各利用側配管(35a~35c)において、冷媒は、利用側膨張弁(37a~37c)を通過する際に減圧され、その後に利用側熱交換器(36a~36c)へ流入し、室内空気から吸熱して蒸発する。各利用側熱交換器(36a~36c)において冷却された室内空気は、室内へ供給される。各利用側配管(35a~35c)を通過した冷媒は、合流後に四方切換弁(17)を通過し、その後に圧縮機(16)へ吸入される。圧縮機(16)は、吸入した冷媒を圧縮してから吐出する。
 湯沸かし冷房運転中において、給湯装置(70)は、貯湯槽(71)内の水を加熱する運転を行う。湯沸かし冷房運転中に給湯装置(70)が行う運転は、第1蓄冷運転中に給湯装置(70)が行う運転と同じである。
   〈単純湯沸かし運転〉
 単純湯沸かし運転について、図21を参照しながら説明する。給湯空調システム(10)では、給湯装置(70)が貯湯槽(71)内の水を加熱する運転を行い、蓄熱装置(90)が停止する。また、給湯空調システム(10)では、室外ファン(11)が作動し、各室内ファンが停止する。
 冷媒回路(15)は、給湯側熱交換器(26)が凝縮器(即ち、放熱器)となり、熱源側熱交換器(21)が蒸発器となる冷凍サイクルを行う。冷媒回路(15)では、圧縮機(16)が作動し、四方切換弁(17)が第2状態に設定される。給湯側膨張弁(29)は全開状態に保持される。蓄熱側膨張弁(34)及び各利用側膨張弁(37a~37c)は、閉じていてもよいし、開いていてもよい。熱源側膨張弁(22)は、熱源側熱交換器(21)の出口における冷媒の過熱度が所定の目標値となるように、その開度が調節される。第1電磁弁(101)、第4電磁弁(104)、及び第7電磁弁(107)は開状態となり、第2電磁弁(102)、第3電磁弁(103)、第5電磁弁(105)、第6電磁弁(106)、及び第8電磁弁(108)は閉状態となる。
 冷媒回路(15)における冷媒の流れを説明する。圧縮機(16)から吐出された冷媒は、給湯側配管(25)へ流入する。給湯側配管(25)へ流入した冷媒は、給湯側熱交換器(26)の一次側流路(27)を通過する間に放熱して凝縮する。給湯側配管(25)から流出した冷媒は、熱源側膨張弁(22)を通過する際に減圧され、その後に熱源側熱交換器(21)へ流入し、室外空気から吸熱して蒸発する。熱源側熱交換器(21)から流出した冷媒は、四方切換弁(17)を通過し、その後に圧縮機(16)へ吸入される。圧縮機(16)は、吸入した冷媒を圧縮してから吐出する。
 単純湯沸かし運転中において、給湯装置(70)は、貯湯槽(71)内の水を加熱する運転を行う。単純湯沸かし運転中に給湯装置(70)が行う運転は、第1蓄冷運転中に給湯装置(70)が行う運転と同じである。
   〈湯沸かし蓄熱運転〉
 湯沸かし蓄熱運転について、図22を参照しながら説明する。給湯空調システム(10)では、給湯装置(70)が貯湯槽(71)内の水を加熱する運転を行い、蓄熱装置(90)が温熱を蓄える運転を行う。また、給湯空調システム(10)では、室外ファン(11)が作動し、各室内ファンが停止する。
 冷媒回路(15)は、給湯側熱交換器(26)と蓄熱側熱交換器(31)の両方が凝縮器(即ち、放熱器)となり、熱源側熱交換器(21)が蒸発器となる冷凍サイクルを行う。冷媒回路(15)では、圧縮機(16)が作動し、四方切換弁(17)が第2状態に設定される。給湯側膨張弁(29)及び蓄熱側膨張弁(34)は全開状態に保持され、利用側膨張弁(37a~37c)は全閉状態に保持される。熱源側膨張弁(22)は、熱源側熱交換器(21)の出口における冷媒の過熱度が所定の目標値となるように、その開度が調節される。第1電磁弁(101)、第2電磁弁(102)、第4電磁弁(104)、及び第5電磁弁(105)は開状態となり、第3電磁弁(103)、第6電磁弁(106)、第7電磁弁(107)、及び第8電磁弁(108)は閉状態となる。
 冷媒回路(15)における冷媒の流れを説明する。圧縮機(16)から吐出された冷媒は、その一部が給湯側配管(25)へ流入し、残りが四方切換弁(17)を通過して蓄熱側配管(30)へ流入する。給湯側配管(25)へ流入した冷媒は、給湯側熱交換器(26)の一次側流路(27)を通過する間に放熱して凝縮する。一方、蓄熱側配管(30)へ流入した冷媒は、蓄熱側熱交換器(31)へ流入し、蓄熱槽(91)内の水へ放熱して凝縮する。給湯側配管(25)から流出した冷媒と、蓄熱側配管(30)から流出した冷媒とは、合流後に熱源側膨張弁(22)を通過し、その際に減圧される。その後、冷媒は、熱源側熱交換器(21)へ流入し、室外空気から吸熱して蒸発する。熱源側熱交換器(21)から流出した冷媒は、四方切換弁(17)を通過し、その後に圧縮機(16)へ吸入される。圧縮機(16)は、吸入した冷媒を圧縮してから吐出する。
 湯沸かし蓄熱運転中において、給湯装置(70)は、貯湯槽(71)内の水を加熱する運転を行う。湯沸かし蓄熱運転中に給湯装置(70)が行う運転は、第1蓄冷運転中に給湯装置(70)が行う運転と同じである。
 湯沸かし蓄熱運転中には、蓄熱槽(91)内の水が蓄熱側熱交換器(31)を流れる冷媒によって加熱される。その結果、蓄熱槽(91)に温熱が蓄えられてゆく。
   〈単純蓄熱運転〉
 単純蓄熱運転について、図23を参照しながら説明する。給湯空調システム(10)では、蓄熱装置(90)が温熱を蓄える運転を行い、給湯装置(70)が停止する。また、給湯空調システム(10)では、室外ファン(11)が作動し、各室内ファンが停止する。
 冷媒回路(15)は、蓄熱側熱交換器(31)が凝縮器(即ち、放熱器)となり、熱源側熱交換器(21)が蒸発器となる冷凍サイクルを行う。冷媒回路(15)では、圧縮機(16)が作動し、四方切換弁(17)が第2状態に設定される。蓄熱側膨張弁(34)は全開状態に保持され、給湯側膨張弁(29)及び各利用側膨張弁(37a~37c)は全閉状態に保持される。熱源側膨張弁(22)は、熱源側熱交換器(21)の出口における冷媒の過熱度が所定の目標値となるように、その開度が調節される。第1電磁弁(101)、第2電磁弁(102)、及び第5電磁弁(105)は開状態となり、第3電磁弁(103)、第4電磁弁(104)、第6電磁弁(106)、第7電磁弁(107)、及び第8電磁弁(108)は閉状態となる。
 冷媒回路(15)における冷媒の流れを説明する。圧縮機(16)から吐出された冷媒は、四方切換弁(17)を通過して蓄熱側配管(30)へ流入する。蓄熱側配管(30)へ流入した冷媒は、蓄熱側熱交換器(31)へ流入し、蓄熱槽(91)内の水へ放熱して凝縮する。蓄熱側配管(30)から流出した冷媒は、熱源側膨張弁(22)を通過する際に減圧され、その後に熱源側熱交換器(21)へ流入し、室外空気から吸熱して蒸発する。熱源側熱交換器(21)から流出した冷媒は、四方切換弁(17)を通過し、その後に圧縮機(16)へ吸入される。圧縮機(16)は、吸入した冷媒を圧縮してから吐出する。
 単純蓄熱運転中には、蓄熱槽(91)内の水が蓄熱側熱交換器(31)を流れる冷媒によって加熱される。その結果、蓄熱槽(91)に温熱が蓄えられてゆく。
   〈利用暖房運転〉
 利用暖房運転について、図24を参照しながら説明する。利用暖房運転では、蓄熱槽(91)に蓄えられた温熱だけを用いて室内の暖房が行われる。給湯空調システム(10)では、給湯装置(70)が停止する。また、給湯空調システム(10)では、室外ファン(11)が停止し、各室内ファンが作動する。
 冷媒回路(15)は、各利用側熱交換器(36a~36c)が凝縮器(即ち、放熱器)となり、蓄熱側熱交換器(31)が蒸発器となる冷凍サイクルを行う。冷媒回路(15)では、圧縮機(16)が作動し、四方切換弁(17)が第2状態に設定される。熱源側膨張弁(22)及び給湯側膨張弁(29)は、全開状態に保持される。各利用側膨張弁(37a~37c)は、対応する利用側熱交換器(36a~36c)の出口における冷媒の過冷却度が所定の目標値となるように、その開度が調節される。蓄熱側膨張弁(34)は、蓄熱側熱交換器(31)の出口における冷媒の過熱度が所定の目標値となるように、その開度が調節される。第1電磁弁(101)、第3電磁弁(103)、及び第7電磁弁(107)は開状態となり、第2電磁弁(102)、第4電磁弁(104)、第5電磁弁(105)、第6電磁弁(106)、及び第8電磁弁(108)は閉状態となる。
 冷媒回路(15)における冷媒の流れを説明する。圧縮機(16)から吐出された冷媒は、四方切換弁(17)を通過した後に、三つの利用側配管(35a~35c)へ分かれて流入する。各利用側配管(35a~35c)において、冷媒は、利用側熱交換器(36a~36c)へ流入し、室内空気へ放熱して凝縮する。各利用側熱交換器(36a~36c)において加熱された室内空気は、室内へ供給される。各利用側配管(35a~35c)から流出した冷媒は、合流後に蓄熱側膨張弁(34)を通過し、その際に減圧される。減圧された冷媒は、蓄熱側熱交換器(31)へ流入し、蓄熱槽(91)内の水から吸熱して蒸発する。蓄熱側熱交換器(31)から流出した冷媒は、第2接続用配管(47)を通って圧縮機(16)へ吸入される。圧縮機(16)は、吸入した冷媒を圧縮してから吐出する。
 利用暖房運転中には、蓄熱側熱交換器(31)を流れる冷媒が蓄熱槽(91)内の水から吸熱する。つまり、蓄熱槽(91)に蓄えられた温熱が、蓄熱側熱交換器(31)を流れる冷媒に付与される。
   〈単純暖房運転〉
 単純暖房運転について、図25を参照しながら説明する。実施形態1と同様に、単純暖房運転では、冷媒回路(15)が行う冷凍サイクルによって得られた温熱だけを用いて室内の暖房が行われる。給湯空調システム(10)では、給湯装置(70)及び蓄熱装置(90)が停止する。また、給湯空調システム(10)では、室外ファン(11)及び各室内ファンが作動する。
 冷媒回路(15)は、各利用側熱交換器(36a~36c)が凝縮器(即ち、放熱器)となり、熱源側熱交換器(21)が蒸発器となる冷凍サイクルを行う。冷媒回路(15)では、圧縮機(16)が作動し、四方切換弁(17)が第2状態に設定される。給湯側膨張弁(29)及び蓄熱側膨張弁(34)は、全閉状態に保持される。各利用側膨張弁(37a~37c)は、対応する利用側熱交換器(36a~36c)の出口における冷媒の過冷却度が所定の目標値となるように、その開度が調節される。熱源側膨張弁(22)は、熱源側熱交換器(21)の出口における冷媒の過熱度が所定の目標値となるように、その開度が調節される。第1電磁弁(101)、第2電磁弁(102)、第3電磁弁(103)、及び第7電磁弁(107)は開状態となり、第4電磁弁(104)、第5電磁弁(105)、第6電磁弁(106)、及び第8電磁弁(108)は閉状態となる。
 冷媒回路(15)における冷媒の流れを説明する。圧縮機(16)から吐出された冷媒は、四方切換弁(17)を通過した後に、三つの利用側配管(35a~35c)へ分かれて流入する。各利用側配管(35a~35c)において、冷媒は、利用側熱交換器(36a~36c)へ流入し、室内空気へ放熱して凝縮する。各利用側熱交換器(36a~36c)において加熱された室内空気は、室内へ供給される。各利用側配管(35a~35c)から流出した冷媒は、合流後に熱源側膨張弁(22)を通過し、その際に減圧される。その後、冷媒は、熱源側熱交換器(21)へ流入し、室外空気から吸熱して蒸発する。熱源側熱交換器(21)から流出した冷媒は、四方切換弁(17)を通過し、その後に圧縮機(16)へ吸入される。圧縮機(16)は、吸入した冷媒を圧縮してから吐出する。
   〈湯沸かし暖房運転〉
 湯沸かし暖房運転について、図26を参照しながら説明する。湯沸かし暖房運転では、冷媒回路(15)が行う冷凍サイクルによって得られた温熱だけを用いて室内の暖房が行われる。給湯空調システム(10)では、給湯装置(70)が貯湯槽(71)内の水を加熱する運転を行い、蓄熱装置(90)が停止する。また、給湯空調システム(10)では、室外ファン(11)及び各室内ファンが作動する。
 冷媒回路(15)は、給湯側熱交換器(26)及び各利用側熱交換器(36a~36c)が凝縮器(即ち、放熱器)となり、熱源側熱交換器(21)が蒸発器となる冷凍サイクルを行う。冷媒回路(15)では、圧縮機(16)が作動し、四方切換弁(17)が第2状態に設定される。蓄熱側膨張弁(34)は、全閉状態に保持される。各利用側膨張弁(37a~37c)は、対応する利用側熱交換器(36a~36c)の出口における冷媒の過冷却度が所定の目標値となるように、その開度が調節される。給湯側膨張弁(29)は、給湯側熱交換器(26)の一次側流路(27)の出口における冷媒の過冷却度が所定の目標値となるように、その開度が調節される。熱源側膨張弁(22)は、熱源側熱交換器(21)の出口における冷媒の過熱度が所定の目標値となるように、その開度が調節される。第1電磁弁(101)、第2電磁弁(102)、第3電磁弁(103)、第4電磁弁(104)、及び第7電磁弁(107)は開状態となり、第5電磁弁(105)、第6電磁弁(106)、及び第8電磁弁(108)は閉状態となる。
 冷媒回路(15)における冷媒の流れを説明する。圧縮機(16)から吐出された冷媒は、その一部が給湯側配管(25)へ流入し、残りが四方切換弁(17)を通過後に三つの利用側配管(35a~35c)へ分かれて流入する。給湯側配管(25)へ流入した冷媒は、給湯側熱交換器(26)の一次側流路(27)を通過する間に放熱して凝縮する。一方、各利用側配管(35a~35c)へ流入した冷媒は、利用側熱交換器(36a~36c)へ流入し、室内空気へ放熱して凝縮する。各利用側熱交換器(36a~36c)において加熱された室内空気は、室内へ供給される。給湯側配管(25)から流出した冷媒と、各利用側配管(35a~35c)から流出した冷媒とは、合流後に熱源側膨張弁(22)を通過し、その際に減圧される。減圧された冷媒は、熱源側熱交換器(21)へ流入し、室外空気から吸熱して蒸発する。熱源側熱交換器(21)から流出した冷媒は、四方切換弁(17)を通過し、その後に圧縮機(16)へ吸入される。圧縮機(16)は、吸入した冷媒を圧縮してから吐出する。
 湯沸かし暖房運転中において、給湯装置(70)は、貯湯槽(71)内の水を加熱する運転を行う。湯沸かし暖房運転中に給湯装置(70)が行う運転は、第1蓄冷運転中に給湯装置(70)が行う運転と同じである。
   〈利用除霜運転〉
 利用除霜運転について説明する。利用除霜運転において、給湯空調システム(10)は、図14に示す第2蓄冷運転と同じ運転を行う。ただし、第2蓄冷運転中とは異なり、利用除霜運転中には、室外ファン(11)が停止する。この利用除霜運転は、単純湯沸かし運転、単純暖房運転、及び湯沸かし暖房運転の実行中に熱源側熱交換器(21)に付着した霜を、蓄熱槽(91)に蓄えられた温熱を利用して融かすための運転である。
 冷媒回路(15)において、圧縮機(16)から吐出された冷媒は、熱源側熱交換器(21)へ流入して放熱する。その結果、熱源側熱交換器(21)に付着している霜が融解する。熱源側熱交換器(21)において凝縮した冷媒は、蓄熱側膨張弁(34)を通過する際に減圧された後に蓄熱側熱交換器(31)へ流入し、蓄熱槽(91)内の水から吸熱して蒸発する。蓄熱側熱交換器(31)から流出した冷媒は、圧縮機(16)へ吸入されて圧縮される。
   〈冷房シーズンにおける運転動作〉
 夏季等の冷房シーズンにおいて、本実施形態の給湯空調システム(10)は、第1蓄冷運転と、第2蓄冷運転と、第3蓄冷運転と、第1利用冷房運転と、第2利用冷房運転と、湯沸かし利用冷房運転と、単純冷房運転と、湯沸かし冷房運転とを行う。
 第1蓄冷運転、第2蓄冷運転、及び第3蓄冷運転は、電力料金が安い深夜に行われる。一方、第1利用冷房運転、第2利用冷房運転、湯沸かし利用冷房運転、単純冷房運転、及び湯沸かし冷房運転は、主に日中から夕方にかけて行われる。
 冷房シーズンの深夜において、給湯空調システム(10)は、第1蓄冷運転と第3蓄冷運転の少なくとも一方を必ず行う。上述したように、第1蓄冷運転中と第3蓄冷運転中の給湯空調システム(10)では、冷媒回路(15)が冷凍サイクルを行い、給湯装置(70)が貯湯槽(71)内の水を加熱し、冷媒回路(15)が行う冷凍サイクルによって得られた冷熱が蓄熱装置(90)の蓄熱槽(91)に蓄えられる。第1蓄冷運転は、例えば翌日の給湯需要が比較的多いと見込まれる場合に行われる。一方、第3蓄冷運転は、例えば翌日の給湯需要が比較的少ないと見込まれる場合に行われる。
 貯湯槽(71)内の水のほぼ全てが80~90℃程度の高温水になるか、貯湯槽(71)内の高温水の量が翌日の給湯需要を賄える量に達すると、第1蓄冷運転や第3蓄冷運転は停止する。このため、給湯需要が比較的少なくて冷房負荷の高い夏季には、第1蓄冷運転や第3蓄冷運転によって蓄熱槽(91)に蓄えられた冷熱だけでは、日中の冷房負荷を処理しきれない場合が多い。そこで、この場合、給湯空調システム(10)は、第1蓄冷運転の終了後に第2蓄冷運転を行う。
 上述したように、第2蓄冷運転中の給湯空調システム(10)では、冷媒回路(15)の冷媒が蓄熱媒体から吸収した熱を室外空気へ放出しているため、貯湯槽(71)内の高温水の量とは無関係に蓄熱槽(91)に冷熱を蓄えることができる。そこで、本実施形態の給湯空調システム(10)は、深夜にこれらの蓄冷運転を行うことによって、蓄熱槽(91)に蓄えられた冷熱量を充分に確保している。
 第1利用冷房運転と第2利用冷房運転は、第1~第3蓄冷運転転によって蓄熱槽(91)に蓄えられた冷熱を利用して、室内を冷房する運転である。第1利用冷房運転や第2利用冷房運転における給湯空調システム(10)の消費電力は、冷媒回路(15)が行う冷凍サイクルによって得られた冷熱だけを利用して冷房を行う単純冷房運転中の給湯空調システム(10)の消費電力に比べて少なくなる。このため、電力料金の高い日中から夕方にかけての給湯空調システム(10)の消費電力が減少し、給湯空調システム(10)のランニングコストが低減される。
 ここで、蓄熱槽(91)に蓄えられた冷熱を使い切った後においても、室内の冷房が必要な場合がある。その場合、給湯空調システム(10)は、単純冷房運転を行う。
 また、第1~第2利用冷房運転中や単純冷房運転中に、給湯需要が予想よりも多くて貯湯槽(71)内の高温水の量が足りなくなることもあり得る。この場合、給湯空調システム(10)は、湯沸かし利用冷房運転や湯沸かし冷房運転を行う。
   〈暖房シーズンにおける運転動作〉
 冬季等の暖房シーズンにおいて、給湯空調システム(10)は、単純湯沸かし運転と、湯沸かし蓄熱運転と、単純蓄熱運転と、利用暖房運転と、単純暖房運転と、湯沸かし暖房運転と、利用除霜運転とを行う。
 単純湯沸かし運転、湯沸かし蓄熱運転、及び単純蓄熱運転は、電力料金が安い深夜に行われる。一方、利用暖房運転、単純暖房運転、及び湯沸かし暖房運転は、主に日中から夕方にかけて行われる。
 暖房シーズンの深夜において、給湯空調システム(10)は、単純湯沸かし運転と湯沸かし蓄熱運転の少なくとも一方を必ず行う。また、給湯空調システム(10)は、必要に応じて単純蓄熱運転を行う。つまり、深夜において給湯空調システム(10)は、貯湯槽(71)内の水を加熱する運転と、蓄熱槽(91)に温熱を蓄えるための運転とを行う。
 利用暖房運転は、湯沸かし蓄熱運転や単純蓄熱運転によって蓄熱槽(91)に蓄えられた温熱を利用して、室内を暖房する運転である。利用暖房運転における給湯空調システム(10)の消費電力は、冷媒回路(15)が行う冷凍サイクルによって得られた冷熱だけを利用して暖房を行う単純暖房運転中の給湯空調システム(10)の消費電力に比べて少なくなる。このため、電力料金の高い日中から夕方にかけての給湯空調システム(10)の消費電力が減少し、給湯空調システム(10)のランニングコストが低減される。
 ここで、蓄熱槽(91)に蓄えられた温熱を使い切った後においても、室内の暖房が必要な場合がある。その場合、給湯空調システム(10)は、単純暖房運転を行う。
 また、単純暖房運転中に、給湯需要が予想よりも多くて貯湯槽(71)内の高温水の量が足りなくなることもあり得る。この場合、給湯空調システム(10)は、湯沸かし暖房運転を行う。
 また、単純湯沸かし運転、単純暖房運転、及び湯沸かし暖房運転の実行中には、蒸発器として機能する熱源側熱交換器(21)に霜が付着する場合がある。また、そのときに、蓄熱槽(91)に温熱が残存していることがある。そのような場合、給湯空調システム(10)は、利用除霜運転を行う。
 以上説明したように、本発明は、給湯装置と蓄熱装置と冷媒回路とを備えた給湯空調システムについて有用である。
 10  給湯空調システム
 15  冷媒回路
 20  熱源側配管(熱源側通路)
 21  熱源側熱交換器
 22  熱源側膨張弁
 25  給湯側配管(給湯側通路)
 26  給湯側熱交換器
 29  給湯側膨張弁
 31  蓄熱側熱交換器
 36  利用側熱交換器
 41  第1バイパス通路(バイパス通路)
 70  給湯装置
 71  貯湯槽
 90  蓄熱装置
 91  蓄熱槽

Claims (3)

  1.  給湯用の温水を蓄える貯湯槽(71)が設けられた給湯装置(70)と、
     蓄熱媒体を貯留する蓄熱槽(91)が設けられた蓄熱装置(90)と、
     上記給湯装置(70)が接続された給湯側熱交換器(26)、上記蓄熱装置(90)が接続された蓄熱側熱交換器(31)、冷媒を室外空気と熱交換させる熱源側熱交換器(21)、及び室内を空気調和するための利用側熱交換器(36)を有する冷媒回路(15)とを備え、
     上記冷媒回路(15)は上記蓄熱側熱交換器(31)が蒸発器となる冷凍サイクルを行い、上記蓄熱装置(90)は上記蓄熱側熱交換器(31)を流れる冷媒によって上記蓄熱槽(91)内の蓄熱媒体を冷却する蓄冷運転と、
     上記冷媒回路(15)は冷媒を上記蓄熱側熱交換器(31)から上記利用側熱交換器(36)へ流れるように循環させ、上記蓄熱装置(90)は上記蓄熱側熱交換器(31)を流れる冷媒を上記蓄熱槽(91)内の蓄熱媒体によって冷却する利用冷房運転とを行う一方、
     上記蓄冷運転中に、
      上記給湯側熱交換器(26)が放熱器となって上記給湯装置(70)が冷媒から放出された熱を利用して上記貯湯槽(71)内の水を加熱する第1動作と、
      上記熱源側熱交換器(21)が放熱器となる第2動作とを実行可能となっている
    ことを特徴とする給湯空調システム。
  2.  請求項1において、
     上記冷媒回路(15)は、
      上記給湯側熱交換器(26)が設けられた給湯側通路(25)と、
      上記熱源側熱交換器(21)が設けられた熱源側通路(20)と、
      上記給湯側通路(25)の両端と上記熱源側通路(20)の両端とに接続し、冷媒が上記給湯側通路(25)を流れ且つ上記熱源側通路(20)をバイパスする第1状態と、冷媒が上記給湯側通路(25)をバイパスし且つ熱源側通路(20)を流れる第2状態と、冷媒が上記給湯側通路(25)と上記熱源側通路(20)の両方をバイパスする第3状態とに切り換わるバイパス通路(41)とを備えている
    ことを特徴とする給湯空調システム。
  3.  請求項2において、
     上記給湯側通路(25)は、上記給湯側熱交換器(26)の液側に配置された給湯側膨張弁(29)を備え、
     上記熱源側通路(20)は、上記熱源側熱交換器(21)の液側に配置された熱源側膨張弁(22)を備えている
    ことを特徴とする給湯空調システム。
PCT/JP2012/006252 2011-09-30 2012-09-28 給湯空調システム WO2013046720A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/348,394 US20140230477A1 (en) 2011-09-30 2012-09-28 Hot water supply air conditioning system
EP12836201.9A EP2767773A4 (en) 2011-09-30 2012-09-28 HOT WATER SUPPLY SYSTEM, AIR CONDITIONING
CN201280047396.4A CN103842733A (zh) 2011-09-30 2012-09-28 热水供应空调系统

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-216736 2011-09-30
JP2011216736 2011-09-30
JP2011-289974 2011-12-28
JP2011289974A JP5327308B2 (ja) 2011-09-30 2011-12-28 給湯空調システム

Publications (1)

Publication Number Publication Date
WO2013046720A1 true WO2013046720A1 (ja) 2013-04-04

Family

ID=47994794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/006252 WO2013046720A1 (ja) 2011-09-30 2012-09-28 給湯空調システム

Country Status (5)

Country Link
US (1) US20140230477A1 (ja)
EP (1) EP2767773A4 (ja)
JP (1) JP5327308B2 (ja)
CN (1) CN103842733A (ja)
WO (1) WO2013046720A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014111061A1 (zh) * 2013-01-21 2014-07-24 深圳市庄合智能产业科技有限公司 一种冷热内平衡机组
JP2015210027A (ja) * 2014-04-25 2015-11-24 ダイキン工業株式会社 空気調和機
EP2966382A1 (en) * 2014-07-07 2016-01-13 LG Electronics Inc. Regenerative air-conditioning apparatus and method of controlling the same
EP3001123A1 (en) * 2013-08-02 2016-03-30 O.Y.L. Research & Development Centre Sdn Bhd Heat reclaim for a multifunction heat pump and a muntifunction air conditioner
WO2016189663A1 (ja) * 2015-05-26 2016-12-01 三菱電機株式会社 ヒートポンプ給湯システム
WO2017085812A1 (ja) * 2015-11-18 2017-05-26 三菱電機株式会社 ヒートポンプ給湯装置

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8511109B2 (en) * 2009-07-15 2013-08-20 Whirlpool Corporation High efficiency refrigerator
US9389000B2 (en) 2013-03-13 2016-07-12 Rheem Manufacturing Company Apparatus and methods for pre-heating water with air conditioning unit or heat pump
US10006670B2 (en) * 2013-05-02 2018-06-26 Carrier Corporation Method for managing a refrigerant charge in a multi-purpose HVAC system
US20150040841A1 (en) * 2013-08-06 2015-02-12 Carrier Corporation System and method for improving a water heating cycle in a multi-purpose hvac system
JP5867539B2 (ja) * 2014-04-25 2016-02-24 ダイキン工業株式会社 蓄熱タンクユニットならびに空調システム
US9746190B2 (en) * 2014-06-06 2017-08-29 Intellihot, Inc. Combined heating system capable of bi-directional heating
LU92502B1 (fr) * 2014-07-22 2016-01-25 Regandsy & Hates Sarl Installation de production de froid comprenant desmoyens de condensation à la fois par air et par e au, ainsi que son procédé de mise en oeuvre
US20160061462A1 (en) 2014-09-02 2016-03-03 Rheem Manufacturing Company Apparatus and method for hybrid water heating and air cooling and control thereof
WO2016112275A1 (en) * 2015-01-09 2016-07-14 Trane International Inc. Heat pump
CN204665734U (zh) * 2015-06-04 2015-09-23 特灵空调系统(中国)有限公司 同时提供不同出水温度的冷水机
WO2017085859A1 (ja) * 2015-11-20 2017-05-26 三菱電機株式会社 空気調和装置
CN107421161B (zh) * 2016-05-23 2020-10-30 三花亚威科电器设备(芜湖)有限公司 热泵式饮水系统及其控制方法、热泵式饮水装置
CN105953337B (zh) * 2016-05-30 2019-10-01 珠海格力电器股份有限公司 冰蓄热空调机组及其控制方法
US10458678B2 (en) 2016-07-06 2019-10-29 Rheem Manufacturing Company Apparatus and methods for heating water with refrigerant and phase change material
US11105544B2 (en) * 2016-11-07 2021-08-31 Trane International Inc. Variable orifice for a chiller
JP6625242B2 (ja) * 2016-12-21 2019-12-25 三菱電機株式会社 空気調和装置
CN208170588U (zh) * 2017-01-26 2018-11-30 特灵国际有限公司 具备冰蓄冷的冷水机组
US11668476B2 (en) 2017-03-16 2023-06-06 Therma-Stor LLC Heat modulation dehumidification system
US11573016B2 (en) 2017-03-16 2023-02-07 Therma-Stor LLC Water cooled dehumidification system
JP2018155452A (ja) * 2017-03-17 2018-10-04 ダイキン工業株式会社 冷凍装置
NL2018840B1 (nl) * 2017-05-03 2018-11-14 Itho Daalderop Nederland B V Gecombineerd tapwater/klimaat warmtepompsysteem
DE102017214672A1 (de) * 2017-08-22 2019-02-28 Hochschule für angewandte Wissenschaften München Betriebsverfahren für ein Kühl- und/oder Heizsystem und Kühl- und/oder Heizsystem
JPWO2019064332A1 (ja) * 2017-09-26 2020-04-16 三菱電機株式会社 冷凍サイクル装置
CA3082309C (en) * 2017-11-10 2022-07-12 Hussmann Corporation Subcritical co2 refrigeration system using thermal storage
GB2591352B (en) * 2018-08-27 2022-06-08 Mitsubishi Electric Corp Refrigeration apparatus and heat source-side unit
CN109798688A (zh) * 2019-01-15 2019-05-24 合肥美的暖通设备有限公司 空调及其控制方法
US11416013B2 (en) * 2019-08-26 2022-08-16 Conry Tech Holdings Pty. Ltd. Micro chiller-based heating, ventilation and air conditioning system
US11320179B2 (en) * 2019-09-26 2022-05-03 Randy Prohaska Fluid or gas cooling and/or condensing apparatus, system and method
KR20210109844A (ko) * 2020-02-28 2021-09-07 엘지전자 주식회사 공기 조화 장치 및 그의 물 충전 방법
CN111595001B (zh) * 2020-05-18 2022-07-19 广东美的暖通设备有限公司 空调系统及其控制方法、控制装置和可读存储介质
EP3961127A1 (en) * 2020-08-31 2022-03-02 Mitsubishi Electric R&D Centre Europe B.V. Air conditioning system and method for its control
EP4056909A1 (en) * 2021-03-10 2022-09-14 Therma-Stor LLC Water cooled dehumidification system
EP4056911A1 (en) * 2021-03-10 2022-09-14 Therma-Stor LLC Heat modulation dehumidification system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005257127A (ja) 2004-03-10 2005-09-22 Kansai Electric Power Co Inc:The 自然冷媒ヒートポンプシステム
JP2006023006A (ja) * 2004-07-07 2006-01-26 Sanyo Electric Co Ltd 冷凍設備
JP2007010207A (ja) * 2005-06-29 2007-01-18 Daikin Ind Ltd 給湯装置
JP2009281641A (ja) * 2008-05-21 2009-12-03 Daikin Ind Ltd 空調システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3087745B2 (ja) * 1998-12-01 2000-09-11 ダイキン工業株式会社 冷凍装置
JP3654017B2 (ja) * 1998-12-10 2005-06-02 大成建設株式会社 多機能ヒートポンプシステム
JP2005299935A (ja) * 2004-04-06 2005-10-27 Fujitsu General Ltd 空気調和装置
DE102010010357A1 (de) * 2010-03-05 2011-09-08 Wärmetechnik Quedlinburg Klimabau GmbH Wärmepumpenanlage für Heiz- und Kühlzwecke
CN102022791B (zh) * 2010-09-09 2013-04-03 江苏天舒电器有限公司 蓄能型空调冷热水机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005257127A (ja) 2004-03-10 2005-09-22 Kansai Electric Power Co Inc:The 自然冷媒ヒートポンプシステム
JP2006023006A (ja) * 2004-07-07 2006-01-26 Sanyo Electric Co Ltd 冷凍設備
JP2007010207A (ja) * 2005-06-29 2007-01-18 Daikin Ind Ltd 給湯装置
JP2009281641A (ja) * 2008-05-21 2009-12-03 Daikin Ind Ltd 空調システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2767773A4

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014111061A1 (zh) * 2013-01-21 2014-07-24 深圳市庄合智能产业科技有限公司 一种冷热内平衡机组
EP3001123A1 (en) * 2013-08-02 2016-03-30 O.Y.L. Research & Development Centre Sdn Bhd Heat reclaim for a multifunction heat pump and a muntifunction air conditioner
JP2015210027A (ja) * 2014-04-25 2015-11-24 ダイキン工業株式会社 空気調和機
EP2966382A1 (en) * 2014-07-07 2016-01-13 LG Electronics Inc. Regenerative air-conditioning apparatus and method of controlling the same
JP2016017738A (ja) * 2014-07-07 2016-02-01 エルジー エレクトロニクス インコーポレイティド 蓄熱式空調装置及びその制御方法
US9970688B2 (en) 2014-07-07 2018-05-15 Lg Electronics Inc. Regenerative air-conditioning apparatus and method of controlling the same
AU2015395825B2 (en) * 2015-05-26 2018-11-08 Mitsubishi Electric Corporation Heat pump hot-water supply system
WO2016189663A1 (ja) * 2015-05-26 2016-12-01 三菱電機株式会社 ヒートポンプ給湯システム
JPWO2016189663A1 (ja) * 2015-05-26 2018-01-11 三菱電機株式会社 ヒートポンプ給湯システム
WO2017085812A1 (ja) * 2015-11-18 2017-05-26 三菱電機株式会社 ヒートポンプ給湯装置
GB2559496A (en) * 2015-11-18 2018-08-08 Mitsubishi Electric Corp Heat pump hot-water supply device
JPWO2017085812A1 (ja) * 2015-11-18 2018-07-12 三菱電機株式会社 ヒートポンプ給湯装置
GB2559496B (en) * 2015-11-18 2020-04-29 Mitsubishi Electric Corp Heat pump hot water supply apparatus

Also Published As

Publication number Publication date
JP2013083421A (ja) 2013-05-09
EP2767773A1 (en) 2014-08-20
EP2767773A4 (en) 2015-07-08
CN103842733A (zh) 2014-06-04
US20140230477A1 (en) 2014-08-21
JP5327308B2 (ja) 2013-10-30

Similar Documents

Publication Publication Date Title
JP5327308B2 (ja) 給湯空調システム
KR101366986B1 (ko) 히트 펌프 시스템
US6170270B1 (en) Refrigeration system using liquid-to-liquid heat transfer for warm liquid defrost
EP2410249B1 (en) Heat pump-type hot water feeding apparatus
JP5380226B2 (ja) 空調給湯システム及びヒートポンプユニット
CN102597657B (zh) 空气调节装置
US9395107B2 (en) Combined cascade refrigeration cycle apparatus
JP5455521B2 (ja) 空調給湯システム
JP4298990B2 (ja) 二酸化炭素を冷媒として用いた冷凍装置
JP2013083439A (ja) 給湯空調システム
JP2013083439A5 (ja)
JP2007010288A (ja) 既設ヒートポンプ式空調装置の冷暖房能力増強方法、蓄熱ユニット装置および該装置を用いたヒートポンプ式空調装置
KR20120125857A (ko) 이원냉동사이클을 갖는 축열장치 및 그 운전방법
CN107110544A (zh) 蓄热式空调机
KR101864636B1 (ko) 폐열회수형 하이브리드 히트펌프시스템
JP5904628B2 (ja) デフロスト運転用の冷媒管を備えた冷凍サイクル
JP2003172523A (ja) ヒートポンプ床暖房空調装置
JP2014081180A (ja) ヒートポンプ装置
WO2016103702A1 (ja) 蓄熱式空気調和機
JP5333557B2 (ja) 給湯空調システム
JP2006170536A (ja) 蒸気圧縮式ヒートポンプ
KR101649447B1 (ko) 도시가스를 이용한 지열히트펌프 시스템
CN114992851A (zh) 空气源热泵热水器系统
JP3896705B2 (ja) 冷凍サイクルおよび冷凍サイクルの制御方法
KR101272021B1 (ko) 이원 사이클 히트펌프 냉난방 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12836201

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14348394

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012836201

Country of ref document: EP