WO2013046640A1 - プラズマ処理装置及びプラズマ処理方法 - Google Patents

プラズマ処理装置及びプラズマ処理方法 Download PDF

Info

Publication number
WO2013046640A1
WO2013046640A1 PCT/JP2012/006086 JP2012006086W WO2013046640A1 WO 2013046640 A1 WO2013046640 A1 WO 2013046640A1 JP 2012006086 W JP2012006086 W JP 2012006086W WO 2013046640 A1 WO2013046640 A1 WO 2013046640A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
plasma
frequency
application method
processing
Prior art date
Application number
PCT/JP2012/006086
Other languages
English (en)
French (fr)
Inventor
光 渡邉
昌伸 本田
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to US14/347,033 priority Critical patent/US20140256147A1/en
Priority to KR1020147007790A priority patent/KR101957348B1/ko
Publication of WO2013046640A1 publication Critical patent/WO2013046640A1/ja
Priority to US15/283,703 priority patent/US9852922B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32137Radio frequency generated discharge controlling of the discharge by modulation of energy
    • H01J37/32155Frequency modulation
    • H01J37/32165Plural frequencies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31144Etching the insulating layers by chemical or physical means using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76816Aspects relating to the layout of the pattern or to the size of vias or trenches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching

Definitions

  • the present invention relates to a plasma process used for fine processing of a substrate to be processed such as a semiconductor wafer, and more particularly to a capacitively coupled plasma processing apparatus and a plasma processing method.
  • RF radio frequency
  • microwaves are used to discharge or ionize a processing gas in a vacuum processing container.
  • an upper electrode and a lower electrode are arranged in parallel in a processing container, and typically a substrate to be processed (semiconductor wafer, glass substrate, etc.) on the lower electrode.
  • a high frequency with a frequency suitable for plasma generation (usually 13.56 MHz or more) is applied to the upper electrode or the lower electrode. Electrons are accelerated by the high frequency electric field generated between the two electrodes facing each other by the application of the high frequency, and plasma is generated by impact ionization of the electrons and the processing gas.
  • a thin film is deposited on the substrate or a material or thin film on the substrate surface is shaved by a gas phase reaction or surface reaction of radicals and ions contained in the plasma.
  • Patent Document 1 a technique for applying a negative DC (direct current) voltage to a counter electrode (usually an upper electrode) facing a substrate across a processing space has attracted attention.
  • the upper DC application method as described above is often used for HARC (High Aspect Ratio Contact) processes.
  • the HARC process is a technique for forming thin and deep contact holes or via holes by plasma etching in an oxide film (usually a silicon oxide film) of an insulating layer in a wiring formation process of LSI manufacturing.
  • a fluorocarbon-based gas is used as an etching gas
  • the upper electrode A silicon-containing material such as silicon or SiC is used as the base material.
  • anisotropy and selectivity can be greatly improved based on the effects (1) and (3). More specifically, due to the effect (1), deposits (mainly fluorocarbon polymer films) sputtered on the surface of the upper electrode accumulate on the surface of the resist mask to prevent the surface of the resist mask from being rough. Furthermore, the silicon sputtered from the base material of the upper electrode reacts with the fluorine radicals and is exhausted as a highly volatile reaction product (SiF 4 ), thereby reducing fluorine that lowers anisotropy and selectivity. Can be reduced (fluorine scavenging effect). In addition, due to the effect (3) above, high-energy electrons are injected into the resist mask on the substrate surface, so that the composition of the resist mask surface layer is modified and the etching resistance (plasma resistance) is enhanced.
  • the effect of the above (4) by the upper DC application method is the control of the direction in which the plasma potential is lowered. That is, in order to bring out any of the other effects (1) to (3), (5), and (6) as desired, the larger the absolute value of the negative DC voltage applied to the upper electrode, the closer to the chamber sidewall. The plasma potential of becomes low. However, this reduces the effect of removing deposits adhering to the chamber sidewall by ion irradiation sputtering. This is also an issue.
  • the present invention solves the problems of the prior art as described above, and provides a plasma processing apparatus and a plasma processing method that follow the advantages of the upper DC application method and can eliminate the disadvantages of the upper DC application method. .
  • the plasma processing apparatus of the present invention includes a processing container that can be evacuated, a first electrode that is placed in the processing container and supports a substrate to be processed, and the first electrode in the processing container and a predetermined electrode.
  • a second electrode arranged in parallel with a gap therebetween, a processing gas supply unit for supplying a desired processing gas to a processing space between the first and second electrodes in the processing container, and the processing gas
  • a first high-frequency power source that applies a first high-frequency wave having a frequency suitable for generating plasma to discharge plasma to the first electrode, and a low-frequency or high-frequency wave having a frequency that ions in the plasma can follow
  • An AC power source for applying an AC current to the second electrode; and a blocking capacitor connected between the AC power source and the second electrode.
  • the ion energy is maximized when the AC voltage level is minimized, and the ion energy is minimized when the AC voltage level is maximized.
  • the ion energy distribution is a distribution in which there are many ions near the maximum energy and the minimum energy because many ions are incident on the electrode in a time zone where the time change of the voltage is small (around the maximum or minimum).
  • the frequency of the alternating current applied to the second electrode is higher than the ion plasma frequency, the followability of ions decreases, and the higher the alternating frequency, the narrower the energy band width in the ion energy distribution. Go. That is, the ion energy is reduced in fluctuation and averaged toward the center value corresponding to the self-bias voltage. As a result, the maximum value of ion energy decreases.
  • the sputtering rate is more dependent on the magnitude (maximum value) of ion energy than the number of incident ions. Therefore, even when the absolute value or amplitude of the power supply voltage applied to the second electrode is the same, the method of the present invention (AC application method) is more effective than the conventional upper DC application method. Since the maximum energy of ions incident on the electrode is remarkably large, the sputtering rate in the second electrode can be improved more efficiently.
  • the potential of the second electrode becomes higher than the self-bias voltage, and the plasma potential is raised accordingly, and the chamber The plasma potential in the vicinity of the side wall becomes high on a time average.
  • the sputtering effect for removing deposits adhering to the chamber side wall is also improved, and deposits on the chamber side wall can be efficiently removed.
  • the plasma etching method of the present invention is a plasma etching method for forming a high aspect ratio hole in a silicon oxide film on a substrate to be processed, wherein a first electrode and a second electrode are spaced apart from each other at a predetermined interval. And placing the substrate to be processed on the first electrode in a vacuumable processing vessel disposed in parallel, evacuating the processing vessel to a predetermined pressure, and Fluorocarbon-based etching gas is supplied to a processing space between one electrode and the second electrode, and a first high frequency is applied to the first electrode to generate plasma of the etching gas in the processing space. And a step of applying a low-frequency or high-frequency alternating current having a frequency that can be followed by ions in plasma to the second electrode via a blocking capacitor.
  • the in-plane uniformity of the etching rate can be improved while ensuring a mask selection ratio equivalent to that of the conventional upper DC application method. Can do.
  • the above-described configuration and operation can follow the advantages of the conventional DC application method and can eliminate the disadvantages of the DC application method.
  • FIG. 6 is a plot diagram showing the correlation between the top CD and the Low-k damage amount obtained from the result of the first experiment.
  • FIG. 10 is a plot diagram showing the correlation between the top CD and the Low-k damage amount obtained from the result of the second experiment.
  • Is a diagram illustrating a - (lower V L characteristic N e) correlation between self-bias voltage V L generated in the electron density N e and the lower electrode in the processing space in the upper DC application type.
  • Is a diagram illustrating a - (lower V L characteristic N e) correlation between self-bias voltage V L generated in the electron density N e and the lower electrode in the processing space in the upper AC application type.
  • It is a plot figure which shows the correlation of the upper electrode applied voltage or electric power obtained by experiment of one Example, and plasma potential.
  • It is a figure (SEM photograph) which shows the experimental result of the ArF resist modification process in an upper AC application system and an upper DC application system.
  • FIG. 1 shows the configuration of a plasma processing apparatus in one embodiment of the present invention.
  • This plasma processing apparatus is configured as a capacitive coupling type (parallel plate type) plasma etching apparatus of a lower two high-frequency superimposition application method, for example, a cylindrical vacuum chamber made of aluminum whose surface is anodized (anodized). (Processing container) 10 is provided. The chamber 10 is grounded.
  • a cylindrical susceptor support 14 is disposed at the bottom of the chamber 10 via an insulating plate 12 such as ceramic, and a susceptor 16 made of, for example, aluminum is provided on the susceptor support 14.
  • the susceptor 16 constitutes a lower electrode, on which, for example, a semiconductor wafer W is placed as a substrate to be processed.
  • An electrostatic chuck 18 for holding the semiconductor wafer W is provided on the upper surface of the susceptor 16.
  • the electrostatic chuck 18 is obtained by sandwiching an electrode 20 made of a conductive film between a pair of insulating layers or insulating sheets, and a DC power source 22 is electrically connected to the electrode 20.
  • the semiconductor wafer W can be held on the electrostatic chuck 18 by an electrostatic attraction force by a direct current voltage from the direct current power source 22.
  • a focus ring 24 made of, for example, silicon is disposed on the upper surface of the susceptor 16 around the electrostatic chuck 18 to improve etching uniformity.
  • a cylindrical inner wall member 25 made of, for example, quartz is attached to the side surfaces of the susceptor 16 and the susceptor support base 14.
  • a refrigerant chamber 26 extending in the circumferential direction is provided.
  • a refrigerant of a predetermined temperature for example, cooling water
  • the processing temperature of the semiconductor wafer W on the susceptor 16 can be controlled by the temperature of the refrigerant.
  • a heat transfer gas such as He gas from a heat transfer gas supply mechanism (not shown) is supplied between the upper surface of the electrostatic chuck 18 and the back surface of the semiconductor wafer W via the gas supply line 28.
  • the susceptor 16 is electrically connected to first and second high-frequency power sources 30 and 32 via matching units 34 and 36, blocking capacitors 38 and 40, and power feeding rods 42 and 44, respectively.
  • the power feeding rods 42 and 44 are individually shown in FIG. 1, they may be common or the same power feeding rod.
  • the first high frequency power supply 30 outputs a high frequency RF H of a certain frequency, for example, 40 MHz, mainly contributing to plasma generation.
  • the second high frequency power supply 32 outputs a high frequency RF L of a certain frequency, for example, 13 MHz, which mainly contributes to the drawing of ions into the semiconductor wafer W on the susceptor 16.
  • the upper electrode 46 is provided above the susceptor 16 so as to face the susceptor in parallel.
  • the upper electrode 46 includes an electrode plate 48 made of a silicon-containing material such as Si or SiC having a large number of gas ejection holes 48a, and a conductive material that detachably supports the electrode plate 48, such as aluminum whose surface is anodized. And is attached to the chamber 10 in an electrically floating state via a ring-shaped insulator 52.
  • a plasma generation space or a processing space PS is formed between the upper electrode 46 and the susceptor 16.
  • the ring-shaped insulator 52 is made of, for example, alumina (Al 2 O 3 ), and is attached so as to hermetically close a gap between the outer peripheral surface of the upper electrode 46 and the side wall of the chamber 10, and physically connects the upper electrode 34. I support it.
  • the electrode support 50 has a gas buffer chamber 54 therein, and a plurality of gas vent holes 50a communicating from the gas buffer chamber 54 to the gas ejection holes 48a of the electrode plate 48 on the lower surface thereof.
  • a processing gas supply source 58 is connected to the gas buffer chamber 54 via a gas supply pipe 56.
  • the gas supply pipe 56 is provided with a mass flow controller (MFC) 60 and an open / close valve 62.
  • MFC mass flow controller
  • etching gas etching gas
  • the processing gas enters the processing space PS from the gas ejection holes 48 a of the electrode plate 48 toward the semiconductor wafer W on the susceptor 16. Is ejected like a shower.
  • the upper electrode 34 also serves as a shower head for supplying the processing gas to the processing space PS.
  • a passage (not shown) through which a coolant such as cooling water flows is provided inside the electrode support 50, and the entire upper electrode 46, in particular, the electrode plate 48 is kept at a predetermined temperature via the coolant by an external chiller unit. It is supposed to adjust the temperature. Further, in order to further stabilize the temperature control for the upper electrode 46, a configuration in which a heater (not shown) made of a resistance heating element is attached to the inside or the upper surface of the electrode support 50 is also possible.
  • This capacitively coupled plasma processing apparatus includes an AC power supply 64 outside the chamber 10.
  • An output terminal of the AC power supply 64 is electrically connected to the upper electrode 46 via a matching unit 66, a blocking capacitor 68, and a DC power supply line or power supply rod 70.
  • the AC power supply 64 outputs an AC having a frequency f that can be followed by ions in the plasma, that is, a low frequency or a high frequency AC AC lower than the ion plasma frequency, so that the power, voltage peak value, or effective value can be varied. It has become.
  • a ring-shaped DC ground part made of a conductive member such as Si or SiC is used. (Not shown) is attached. This DC ground part is always grounded via a ground line (not shown).
  • An annular space formed between the susceptor 16 and the susceptor support 14 and the side wall of the chamber 10 is an exhaust space, and an exhaust port 72 of the chamber 10 is provided at the bottom of the exhaust space.
  • An exhaust device 76 is connected to the exhaust port 72 via an exhaust pipe 74.
  • the exhaust device 76 has a vacuum pump such as a turbo molecular pump, and can depressurize the interior of the chamber 10, particularly the processing space PS, to a desired degree of vacuum.
  • a gate valve 80 for opening and closing the loading / unloading port 78 for the semiconductor wafer W is attached to the side wall of the chamber 10.
  • the control unit 82 includes a microcomputer, and in accordance with software (program) and recipe information stored in an external memory or internal memory, each unit in the apparatus, in particular, the high frequency power supplies 30 and 32, the AC power supply 64, and the matching units 34 and 36. , 66, MFC 60, opening / closing valve 62, exhaust device 76, and the like, and the overall operation (sequence) of the device.
  • processing gas that is, etching gas (generally mixed gas) is introduced into the chamber 10 from the processing gas supply source 58 at a predetermined flow rate and flow rate ratio, and the pressure in the chamber 10 is set to a set value by vacuum evacuation by the exhaust device 76.
  • etching gas generally mixed gas
  • the first and second high frequency power sources 30 and 32 superimpose the first high frequency (40 MHz) and the second high frequency (13 MHz) on the susceptor 16 with predetermined power, respectively.
  • a DC voltage is applied from the DC power source 22 to the electrode 20 of the electrostatic chuck 18 to fix the semiconductor wafer W on the electrostatic chuck 18.
  • the etching gas discharged from the shower head of the upper electrode 46 is discharged under a high-frequency electric field between the electrodes 46 and 16, and plasma is generated in the processing space PS.
  • the film to be processed on the main surface of the semiconductor wafer W is etched by radicals and ions contained in the plasma.
  • this capacitively coupled plasma etching apparatus by applying a first high frequency having a relatively high frequency suitable for plasma generation to the susceptor 12, the plasma is densified in a preferable dissociation state, and the high density plasma is obtained even under lower pressure conditions. Can be formed.
  • anisotropic etching can be performed on the film to be processed of the semiconductor wafer W by applying a second high frequency wave having a relatively low frequency suitable for ion attraction to the susceptor 12.
  • a blocking capacitor 68 is supplied from an AC power supply 64 in a lower two high frequency superimposing application method in which two high frequency RF H and RF L for generating a plasma and for attracting ions are applied to a lower electrode (susceptor) 16.
  • the AC AC has a frequency f that the ions in the plasma can follow, that is, a frequency f lower than the ion plasma frequency, and the AC power source 64 can vary its power, voltage peak value, or effective value.
  • the ion plasma frequency f pi is given by the following equation (1).
  • f pi (e 2 n o / ⁇ 0 m i) 1/2 / 2 ⁇ ⁇ (1)
  • e electron charge amount
  • n o the plasma density
  • epsilon 0 the dielectric constant in vacuum
  • m i the mass of the ion.
  • n o is 1 ⁇ 10 9 cm -3
  • ion plasma frequency f pi is approximately 1 MHz.
  • n o is the time of 4 ⁇ 10 9 cm -3
  • f pi is about 2MHz.
  • n o is 1 ⁇ 10 10 cm -3
  • f pi is approximately 3 MHz.
  • FIG. 2 shows the potential distribution between the upper electrode 46 and the lower electrode (susceptor) 16 and the ion energy distribution of ions incident on the upper electrode 46 in this capacitively coupled plasma etching apparatus.
  • a negative DC voltage that is, a self-bias voltage V B is generated in the upper electrode 46, and this self-bias voltage is generated.
  • the AC AC voltage (instantaneous value) is superimposed on V B.
  • the self-bias voltage V B becomes a value close to the voltage peak value of the AC AC.
  • the potential of the upper electrode 46 changes periodically with the AC AC voltage level (instantaneous value) overlapping the self-bias voltage V B.
  • the ion energy distribution is a distribution in which there are many ions near the maximum energy and the minimum energy because many ions are incident on the electrode in a time zone where the time change of the voltage is small (around the maximum or minimum). become.
  • the maximum negative potential is obtained by adding the self-bias voltage V B and the AC AC voltage peak value. Many corresponding maximum energy ions are incident on the upper electrode 46.
  • the frequency f of AC AC is higher than the ion plasma frequency f pi , the followability of ions decreases, and as the AC frequency f is increased, the energy in the ion energy distribution (IED) as shown in FIG. The band becomes narrower. That is, the ion energy is reduced in fluctuation and averaged toward the center value corresponding to the self-bias voltage V B. As a result, the maximum value of ion energy decreases.
  • FIG. 3 shows a potential distribution when a negative DC voltage V dc is applied to the upper electrode 46 by the DC power source 84 according to the conventional upper DC application method as a comparative example with respect to the AC application method, and is incident on the upper electrode 46.
  • the ion energy distribution of ions is shown.
  • the ion energy distribution (IED) has a profile in which the energy of all incident ions is within an energy band having a local width corresponding to the DC voltage V dc . Therefore, during the plasma process, ions that fall in a constant and constant energy band are incident on the upper electrode 46 at a substantially constant rate.
  • the sputtering rate largely depends on the magnitude (maximum value) of ion energy rather than the number of incident ions. Therefore, even if the absolute value or amplitude of the power supply voltage applied to the upper electrode 46 is the same, the upper AC application method of the present invention causes ions having higher energy to be generated in the upper electrode than the upper DC application method. 46 is incident. Therefore, the upper AC application method of the present invention can improve the sputtering rate in the upper electrode 46 more efficiently.
  • the plasma potential is lowered to the lower side.
  • the potential of the upper electrode 46 in the half cycle in which the AC AC voltage level is positive, the potential of the upper electrode 46 becomes higher than the self-bias voltage V B , and the plasma is accordingly increased. Potential is also raised. In particular, the plasma potential near the side wall of the chamber rises to a considerably high value near the voltage level of the AC AC.
  • the plasma potential in the vicinity of the side wall of the chamber 10 is considerably higher in time average than the upper DC application method, and ions incident on the side wall of the chamber 10 from the plasma Energy will be greatly increased.
  • the sputtering effect which removes the deposit adhering to the chamber side wall is also greatly improved.
  • the process reproducibility and the mass productivity of the apparatus can be improved.
  • the present inventor conducted an experiment comparing the upper AC application method of the present invention with the conventional upper DC application method in the HARC process using the plasma etching apparatus of this embodiment (FIG. 1).
  • 5A and 5B show the in-wafer distribution characteristics of the etching rate (E / R) of the silicon oxide film (film to be etched) and the photoresist (mask) as the results of the upper AC application method, respectively.
  • FIGS. 6A and 6B show the in-wafer distribution characteristics of the etching rate (E / R) of the silicon oxide film and the photoresist as the experimental results of the upper DC application method, respectively.
  • the main process conditions in this HARC process experiment are as follows.
  • the etching rate distribution characteristics of the photoresist (PR) are not significantly different between the upper AC application method and the upper DC application method, and both have a low and flat profile.
  • the upper AC application method exhibits the above effects (1) and (3) sufficiently even in the HARC process, and the upper DC application method also applies the upper AC application. The same effects (1) and (3) as the system are achieved.
  • the profiles of the silicon oxide film (SiO 2 ) are clearly different from each other with respect to the etching rate distribution characteristics. That is, in the profile of the upper DC application method, as the absolute value of the DC voltage V dc is increased, the etching rate at the wafer center is higher than the etching rate at the wafer edge, and the wafer center is remarkably increased. . In short, as the applied voltage (absolute value) of the upper DC is increased, the in-plane uniformity of the SiO 2 etching rate is deteriorated.
  • the higher the AC AC power the higher the etching rate at the wafer center part becomes higher than the etching rate at the wafer edge part, but the wafer center part relatively increases. Not so high. That is, the in-plane uniformity of the SiO 2 etching rate is improved.
  • the difference in the in-plane uniformity of the SiO 2 etching rate in the HARC process between the upper DC application method and the upper AC application method is considered to be due to the difference in the effect (6). That is, in the upper DC application method, the effect of the above (6) is undesirably enhanced by increasing the absolute value of the DC voltage V dc , whereas in the upper AC application method, the above-described effect can be obtained even if the AC power is increased. It is considered that the effect of (6) is not as strong as the upper DC application method.
  • the main adjustment knob can control the etching rate characteristics.
  • the selectivity is such that the voltage value (absolute value) of the DC voltage V dc is the upper DC application method as described above, and the AC power (or AC voltage peak value, effective value, etc.) is the upper AC application method.
  • the first adjustment knob and the second adjustment knob are as independent as possible. Therefore, when the mask selection ratio is changed using the second adjustment knob, even if the etching rate characteristic (for example, in-plane uniformity) changes under the influence, the change amount is as small as possible. preferable.
  • the independence between the first and second adjustment knobs it can be seen that the upper AC application method is superior to the upper DC application method, as shown in FIG.
  • FIG. 8 shows an SEM photograph used for measuring the etching shape.
  • FIG. 9 shows the correlation between the mask selection ratio and the bowing amount by comparing the upper AC application method and the upper DC application method.
  • the bowing amount is a difference between the maximum diameter (Boeing CD) in the fine hole formed in the silicon oxide film and the top end diameter (Top CD). The smaller the bowing amount, the better the vertical machining shape.
  • the present inventor conducted two experiments using the plasma etching apparatus of this embodiment (FIG. 1) to compare the upper AC application method of the present invention with the conventional upper DC application method in the BEOL process.
  • the BEOL process is a technique for forming a relatively shallow via hole in an interlayer insulating film by plasma etching in a wiring formation process of LSI manufacturing.
  • an organic low-k film is often used as an interlayer insulating film to be processed.
  • the damage amount of the organic low-k films 92 and 94 is added to the evaluation items of the first and second experiments.
  • the SiOC organic film is damaged by plasma etching, the composition of the portion is changed to SiO and becomes soluble in the HF solution. Therefore, after the etching is completed, the sample semiconductor wafer is immersed in an HF solution for 30 seconds, whereby the dimension (increase amount of the bowing CD) in which the inner walls of the organic low-k films 92 and 94 are formed in the etching hole 100 is set to Low. -Measured as k damage.
  • FIG. 11 shows a cross-sectional view (SEM photograph) of patterns obtained in the first experiment of the BEOL process and measured values of various evaluation items.
  • the top CD decreases and the amount of low-k damage increases as the absolute value of the DC voltage V dc increases in the upper DC application method and as the AC power increases in the upper AC application method.
  • the tendency is stronger in the upper AC application method than in the upper DC application method.
  • the amount of low-k damage allowed in this type of BEOL process is 5 nm or less, both systems use a low voltage (low power) region.
  • FIG. 12 shows a cross-sectional view (SEM photograph) of the pattern obtained in the second experiment of the BEOL process and measured values of various evaluation items.
  • the top CD decreases as the absolute value of the DC voltage V dc increases in the upper DC application method, and the AC power increases in the upper AC application method. The amount increases.
  • the depth is 155 nm
  • the top CD is 51 nm
  • the Boeing CD is 51 nm.
  • Another plasma etching experiment was performed under the same process conditions as in the first experiment. Then, based on the experimental results, as shown in FIGS. 15 and 16, and the electron density in the processing space PS generated (plasma density) N e and the lower electrode 16 self-bias voltage V L (lower V L) Correlation, that is, the N e -lower VL characteristic was obtained.
  • the upper AC application method has a lower N e / It can be seen that the process margin can be expanded in the region of the lowered portion V L.
  • a region of the low N e / reduction portion V L is suitable for a process of etching an insulator thin film of, for example, an MRAM (Magnetroresistive Random Access Memory) at a low speed.
  • FIG. 17 shows the experimental results.
  • the plasma potential near the side wall of the chamber decreases as the absolute value of the DC voltage V dc increases, whereas the upper AC application method increases the AC AC power. It was verified that the plasma potential in the vicinity of the side wall of the chamber increases as the time increases. This is because, as described above, in the upper DC application method, the potential of the upper electrode 46 is fixed to the negative DC voltage V dc and the plasma potential is lowered.
  • the potential of the upper electrode 46 in the half cycle in which the AC AC voltage level is positive, the potential of the upper electrode 46 becomes higher than the self-bias voltage V B , thereby raising the plasma potential. As a result, the plasma potential near the side wall of the chamber rises.
  • the inventor conducted an experiment comparing the upper AC application method of the present invention with the conventional upper DC application method for the effect of modifying the ArF resist as an etching mask under plasma.
  • the main process conditions are as follows.
  • High frequency power: 40MHz / 13MHz 300 / 0W
  • AC frequency: AC 380 kHz
  • FIG. 18 shows the experimental results of the ArF resist modification process as SEM photographs.
  • the upper AC application method of the present invention follows the advantages of the conventional upper DC application method in the BEOL process and the ArF resist modification effect, for example, and eliminates the disadvantages of the upper DC application method in the HARC process, for example. can do.
  • the value of AC AC frequency f (380 kHz) in the above embodiment is an example, and an arbitrary frequency f that can be followed by ions can be used for AC AC. Therefore, the frequency f of the AC AC in the present invention may be a frequency higher than 380 kHz in the above-described embodiment, and is generally a limit of a frequency that can be followed by ions (a frequency that can give energy to ions from another viewpoint).
  • the frequency region up to 13 MHz can be used.
  • the matching unit 66 is used to apply the AC AC output from the AC power source 64 to the upper electrode 46 with the maximum power transmission efficiency.
  • the matching unit 66 can be omitted.
  • a configuration in which the second high-frequency RF L is not applied to the lower electrode (susceptor) 16, that is, a configuration in which the high-frequency power source 32, the matching unit 40, and the blocking capacitor 40 are omitted is possible.
  • the showerhead structure in the upper electrode 46 can be arbitrarily modified.
  • the present invention is not limited to a capacitively coupled plasma etching apparatus, but can be applied to a capacitively coupled plasma processing apparatus that performs an arbitrary plasma process such as plasma CVD, plasma ALD, plasma oxidation, plasma nitridation, and sputtering.
  • the substrate to be treated in the present invention is not limited to a semiconductor wafer, and a flat panel display, organic EL, various substrates for solar cells, a photomask, a CD substrate, a printed substrate, and the like are also possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)

Abstract

【課題】従来技術の上部DC印加方式の長所を踏襲し、かつ上部DC印加方式の不利点を解消すること。 【解決手段】この容量結合型プラズマ処理装置において、サセプタ(下部電極)16には、プラズマの生成に主として寄与する第1の高周波RFHとイオンの引き込みに主として寄与する第2の高周波RFLが重畳して印加される。一方、上部電極46には、交流電源64より整合器66およびブロッキングコンデンサ68を介して一定周波数の交流ACが印加される。この交流ACは、プラズマ中のイオンが追従できる周波数を有し、交流電源64において交流ACのパワー、電圧波高値または実効値を可変できるようになっている。

Description

プラズマ処理装置及びプラズマ処理方法
 本発明は、半導体ウエハ等の被処理基板の微細加工に用いるプラズマプロセスに係り、特に容量結合型のプラズマ処理装置およびプラズマ処理方法に関する。
 半導体デバイスやFPD(Flat Panel Display)等の製造プロセスにおけるエッチング、堆積、酸化、スパッタリング等の処理では、処理ガスに比較的低温で良好な反応を行わせるためにプラズマが多く利用されている。この種のプラズマプロセスにおいては、真空の処理容器内で処理ガスを放電または電離させるために、高周波(RF)やマイクロ波が使用されている。
 高周波(RF)を用いる容量結合型のプラズマ処理装置は、処理容器内に上部電極と下部電極とを平行に配置し、典型的には下部電極の上に被処理基板(半導体ウエハ、ガラス基板等)を載置し、上部電極もしくは下部電極にプラズマ生成に適した周波数(通常13.56MHz以上)の高周波を印加する。この高周波の印加によって相対向する2つの電極間に生成された高周波電界により電子が加速され、電子と処理ガスとの衝突電離によってプラズマが発生する。そして、このプラズマに含まれるラジカルやイオンの気相反応あるいは表面反応によって、基板上に薄膜が堆積され、あるいは基板表面の素材または薄膜が削られる。
 近年、容量結合型のプラズマ処理装置の性能を飛躍的に高める技法として、処理空間を挟んで基板と向き合う対向電極(通常は上部電極)に負極性のDC(直流)電圧を印加する技術が注目されている(特許文献1)。この上部DC印加方式によれば、(1)上部電極の自己バイアス電圧の絶対値を大きくして上部電極におけるスパッタリングを強める効果、(2)上部電極におけるプラズマシースを拡大させ、形成されるプラズマが縮小化される効果、(3)上部電極の近傍に生じた電子を被処理基板上に照射させる効果、(4)プラズマポテンシャルを制御できる効果、(5)電子密度(プラズマ密度)を上昇させる効果、(6)中心部のプラズマ密度を上昇させる効果の少なくとも1つが奏される。
特開2006-270019号公報
 上記のような上部DC印加方式は、HARC(High Aspect Ratio Contact)プロセスによく用いられている。HARCプロセスは、LSI製造の配線形成工程において絶縁層の酸化膜(通常シリコン酸化膜)に細くて深いコンタクトホールまたはビアホールをプラズマエッチングによって形成する技術である。HARCプロセスでは、高アスペクト比の微細孔を形成するために、高精度の異方性形状とマスクおよび下地膜に対する高い選択比が要求され、エッチングガスにはフルオロカーボン系のガスが用いられ、上部電極の母材にはシリコンまたはSiC等のシリコン含有物質が用いられる。
 上部DC印加方式によれば、上記(1)(3)の効果に基づいて,異方性および選択性を大きく向上させることができる。より詳しくは、上記(1)の効果により、上部電極の表面でスパッタされた堆積物(主にフロロカーボン重合膜)がレジストマスクの表面に積もってレジストマスクの表面荒れを防ぐ。さらに、上部電極の母材からスパッタされたシリコンがフッ素ラジカルと反応して揮発性の高い反応生成物(SiF4)となって排気されることにより、異方性および選択性を低下させるフッ素を減らすことができる(フッ素スカベンジ効果)。また、上記(3)の効果により、基板表面のレジストマスクに高エネルギーの電子が打ち込まれることで、レジストマスク表層部の組成が改質して、エッチング耐性(プラズマ耐性)が強化される。
 しかしながら、HARCプロセスにおいては、上部DC印加方式により上部電極に印加する負極性DC電圧の絶対値を大きくしていくと、上記のような微細加工性(特に選択性)が向上する一方で、加工均一性(特にエッチングレートの面内均一性)の悪化することが課題となっている。
 また、上部DC印加方式による上記(4)の効果は、プラズマポテンシャルを低下させる方向の制御である。すなわち、他の効果(1)~(3),(5)(6)のいずれかを望み通りに引き出すために、上部電極に印加する負極性DC電圧の絶対値を大きくするほど、チャンバ側壁付近のプラズマポテンシャルが低くなる。しかし、それによって、チャンバ側壁に付着している堆積物をイオン照射のスパッタリングによって除去する効果が低下する。このことも、課題になっている。
 本発明は、上記のような従来技術の課題を解決するものであり、上部DC印加方式の長所を踏襲し、かつ上部DC印加方式の不利点を解消できるプラズマ処理装置およびプラズマ処理方法を提供する。
 本発明のプラズマ処理装置は、真空排気可能な処理容器と、前記処理容器内に配置され、被処理基板を載せて支持する第1の電極と、前記処理容器内に前記第1の電極と所定の間隔を空けて平行に配置される第2の電極と、前記処理容器内の前記第1および第2の電極間の処理空間に所望の処理ガスを供給する処理ガス供給部と、前記処理ガスを放電させてプラズマを生成するのに適した周波数を有する第1の高周波を前記第1の電極に印加する第1の高周波電源と、プラズマ中のイオンが追従できる周波数を有する低周波または高周波の交流を前記第2の電極に印加する交流電源と、前記交流電源と前記第2の電極との間に接続されるブロッキング用のコンデンサとを有する。
 上記の構成においては、プラズマプロセス中に交流電源からの交流がブロッキングコンデンサを介して第2の電極に印加されると、第2の電極には負の直流電圧つまり自己バイアス電圧が発生し、この自己バイアス電圧に交流の電圧(瞬時値)が重畳される。つまり、第2の電極の電位は、自己バイアス電圧に交流の電圧レベル(瞬時値)が重なって周期的に変化する。これにより、交流の周波数に追従してプラズマから上部電極に入射するイオンのエネルギーは、第2の電極の負電位方向の深さ(絶対値)に比例し、周期的に変化する。したがって、各サイクルの中で、交流の電圧レベルが極小になる時にイオンエネルギーは最大になり、交流の電圧レベルが極大になる時にイオンエネルギーは最小になる。この場合、イオンエネルギー分布は、電圧の時間変化が小さい時間帯(極大または極小になる辺り)で多くのイオンが電極に入射するため、最大エネルギー付近および最小エネルギー付近にイオンが多い分布になる。
  なお、第2の電極に印加する交流の周波数がイオンプラズマ周波数よりも高い場合は、イオンの追従性が低下し、交流の周波数を高くするほど、イオンエネルギー分布においてエネルギーバンドの幅が狭くなっていく。すなわち、イオンエネルギーは、振れが小さくなって、自己バイアス電圧に対応する中心値に向かって平均化されていく。それによって、イオンエネルギーの最大値は小さくなっていく。
  一般に、イオンエネルギーEiとスパッタ率SYとの間にはSY∝Ei 1/2の関係がある。したがって、スパッタ率は入射イオンの個数よりもイオンエネルギーの大きさ(最大値)に大きく依存する。このことから、第2の電極に印加する電源電圧の絶対値または振幅が同じであっても、従来技術の上部DC印加方式よりも本発明の方式(AC印加方式)の方が、第2の電極に入射するイオンの最大エネルギーが格段に大きいことから、第2の電極におけるスパッタ率をより効率的に向上させることができる。
  また、本発明のAC印加方式によれば、交流の電圧レベルが正極性になる半サイクルでは、第2の電極の電位が自己バイアス電圧よりも高くなって、それにつれてプラズマポテンシャルも引き上げられ、チャンバ側壁付近のプラズマポテンシャルが時間平均で高くなる。これにより、チャンバ側壁に付着している堆積物を除去するスパッタリング効果も向上し、チャンバ側壁の堆積物を効率よく除去することができる。
  本発明のプラズマエッチング方法は、被処理基板上のシリコン酸化膜に高アスペクト比の孔を形成するプラズマエッチング方法であって、室内に第1の電極と第2の電極とを所定の間隔を空けて平行に配置している真空可能な処理容器内で前記第1の電極の上に被処理基板を載せて支持する工程と、前記処理容器内を所定の圧力に真空排気する工程と、前記第1の電極と前記第2の電極との間の処理空間にフルオロカーボン系のエッチングガスを供給し、前記第1の電極に第1の高周波を印加して前記処理空間で前記エッチングガスのプラズマを生成する工程と、プラズマ中のイオンが追従できる周波数を有する低周波または高周波の交流をブロッキング用のコンデンサを介して前記第2の電極に印加する工程とを有する。
  本発明のプラズマエッチング方法によれば、上記のようなAC印加方式を用いることにより、従来技術の上部DC印加方式と同等のマスク選択比を確保しつつエッチングレートの面内均一性を向上させることができる。
  本発明によれば、上記のような構成及び作用により、従来技術のDC印加方式の長所を踏襲し、かつDC印加方式の不利点を解消することができる。
本発明の一実施形態における容量結合型プラズマエッチング装置の構成を示す縦断面図である。 実施形態の上部AC印加方式における両電極間のポテンシャル分布および上部電極に入射するイオンのイオンエネルギー分布を示す図である。 比較例の上部DC印加方式における両電極間のポテンシャル分布および上部電極に入射するイオンのイオンエネルギー分布を示す図である。 イオンエネルギーとスパッタ率との間の相関関係を示す図である。 上部AC印加方式を適用したHARCプロセスの実験で得られたシリコン酸化膜のエッチングレートのウエハ面内分布図である。 上部AC印加方式を適用したHARCプロセスの実験で得られたフォトレジストのエッチングレートのウエハ面内分布図である。 上部DC印加方式を適用したHARCプロセスの実験で得られたシリコン酸化膜のエッチングレートのウエハ面内分布図である。 上部DC印加方式を適用したHARCプロセスの実験で得られたフォトレジストのエッチングレートのウエハ面内分布図である。 上部AC印加方式および上部DC印加方式におけるマスク選択比とエッチングレート面内均一性との相関関係を示すプロット図である。 実施例におけるHARCプロセスの実験で得られたエッチング形状を示す図(SEM写真)である。 上部AC印加方式および上部DC印加方式におけるマスク選択比とボーイング量との相関関係を示す図である。 実施例におけるBEOLプロセスを説明するための図である。 実施例におけるBEOLプロセスの第1実験で得られたパターンの断面図(SEM写真)および各種評価項目の測定値を示す図である。 実施例におけるBEOLプロセスの第2実験で得られたパターンの断面図(SEM写真)および各種評価項目の測定値を示す図である。 上記第1実験の結果から得られたトップCDとLow-kダメージ量との相関関係を示すプロット図である。 上記第2実験の結果から得られたトップCDとLow-kダメージ量との相関関係を示すプロット図である。 上部DC印加方式における処理空間内の電子密度Neと下部電極に発生する自己バイアス電圧VLとの相関関係(Ne-下部VL特性)を示す図である。 上部AC印加方式における処理空間内の電子密度Neと下部電極に発生する自己バイアス電圧VLとの相関関係(Ne-下部VL特性)を示す図である。 一実施例の実験によって得られた上部電極印加電圧または電力とプラズマポテンシャルとの相関関係を示すプロット図である。 上部AC印加方式および上部DC印加方式におけるArFレジスト改質処理の実験結果を示す図(SEM写真)である。
 以下、添付図を参照して本発明の好適な実施の形態を説明する。
 
[プラズマ処理装置の構成]
 図1に、本発明の一実施形態におけるプラズマ処理装置の構成を示す。このプラズマ処理装置は、下部2高周波重畳印加方式の容量結合型(平行平板型)プラズマエッチング装置として構成されており、たとえば表面がアルマイト処理(陽極酸化処理)されたアルミニウムからなる円筒形の真空チャンバ(処理容器)10を有している。チャンバ10は接地されている。
 チャンバ10の底部には、セラミックなどの絶縁板12を介して円柱状のサセプタ支持台14が配置され、このサセプタ支持台14の上にたとえばアルミニウムからなるサセプタ16が設けられている。サセプタ16は下部電極を構成し、この上に被処理基板としてたとえば半導体ウエハWが載置される。
 サセプタ16の上面には半導体ウエハWを保持するための静電チャック18が設けられている。この静電チャック18は導電膜からなる電極20を一対の絶縁層または絶縁シートの間に挟み込んだものであり、電極20には直流電源22が電気的に接続されている。直流電源22からの直流電圧により、半導体ウエハWを静電吸着力で静電チャック18に保持できるようになっている。静電チャック18の周囲でサセプタ16の上面には、エッチングの均一性を向上させるためのたとえばシリコンからなるフォーカスリング24が配置されている。サセプタ16およびサセプタ支持台14の側面にはたとえば石英からなる円筒状の内壁部材25が貼り付けられている。
 サセプタ支持台14の内部には、たとえば円周方向に延びる冷媒室26が設けられている。この冷媒室26には、外付けのチラーユニット(図示せず)より配管27a,27bを介して所定温度の冷媒たとえば冷却水が循環供給される。冷媒の温度によってサセプタ16上の半導体ウエハWの処理温度を制御できるようになっている。さらに、伝熱ガス供給機構(図示せず)からの伝熱ガスたとえばHeガスが、ガス供給ライン28を介して静電チャック18の上面と半導体ウエハWの裏面との間に供給される。
 サセプタ16には、第1および第2の高周波電源30,32がそれぞれ整合器34,36、ブロッキングコンデンサ38,40および給電棒42,44を介して電気的に接続されている。なお、給電棒42,44は、図1では個別に示しているが、共通または同一の給電棒であってもよい。第1の高周波電源30は、プラズマの生成に主として寄与する一定の周波数たとえば40MHzの高周波RFHを出力する。一方、第2の高周波電源32は、サセプタ16上の半導体ウエハWに対するイオンの引き込みに主として寄与する一定の周波数たとえば13MHzの高周波RFLを出力する。
 サセプタ16の上方には、このサセプタと平行に対向して上部電極46が設けられている。この上部電極46は、多数のガス噴出孔48aを有するたとえばSi、SiCなどのシリコン含有材質からなる電極板48と、この電極板48を着脱可能に支持する導電材料たとえば表面がアルマイト処理されたアルミニウムからなる電極支持体50とで構成されており、チャンバ10にリング状の絶縁体52を介して電気的に浮いた状態で取り付けられている。この上部電極46とサセプタ16との間にプラズマ生成空間または処理空間PSが形成されている。リング状絶縁体52は、たとえばアルミナ(Al23)からなり、上部電極46の外周面とチャンバ10の側壁との間の隙間を気密に塞ぐように取り付けられ、上部電極34を物理的に支持している。
 電極支持体50は、その内部にガスバッファ室54を有するとともに、その下面にガスバッファ室54から電極板48のガス噴出孔48aに連通する多数のガス通気孔50aを有している。ガスバッファ室54にはガス供給管56を介して処理ガス供給源58が接続されている。ガス供給管56には、マスフローコントローラ(MFC)60および開閉バルブ62が設けられている。処理ガス供給源58より所定の処理ガス(エッチングガス)がガスバッファ室54に導入されると、電極板48のガス噴出孔48aよりサセプタ16上の半導体ウエハWに向けて処理空間PSに処理ガスがシャワー状に噴出されるようになっている。このように、上部電極34は、処理空間PSに処理ガスを供給するためのシャワーヘッドを兼ねている。
 また、電極支持体50の内部には冷媒たとえば冷却水を流す通路(図示せず)も設けられており、外部のチラーユニットにより冷媒を介して上部電極46の全体、特に電極板48を所定温度に温調するようになっている。さらに、上部電極46に対する温度制御をより安定化させるために、電極支持体50の内部または上面にたとえば抵抗発熱素子からなるヒータ(図示せず)を取り付ける構成も可能である。
 この容量結合型プラズマ処理装置は、チャンバ10の外に交流電源64を備えている。交流電源64の出力端子は、整合器66、ブロッキングコンデンサ68および直流給電ラインまたは給電棒70を介して上部電極46に電気的に接続されている。交流電源64は、プラズマ中のイオンが追従できる周波数fを有する交流、つまりイオンプラズマ周波数よりも低い低周波または高周波の交流ACを出力し、そのパワー、電圧波高値または実効値を可変できるようになっている。
 また、チャンバ10内で処理空間PSに面する適当な箇所としてたとえば内壁部材25の頂部付近あるいは上部電極46の半径方向外側に、たとえばSi,SiC等の導電性部材からなるリング状のDCグランドパーツ(図示せず)が取り付けられている。このDCグランドパーツは、接地ライン(図示せず)を介して常時接地されている。プラズマエッチング中に交流電源64よりブロッキングコンデンサ68を介して上部電極46に交流ACを印加すると、自己バイアス電圧が発生する上部電極46とDCグランドパーツとの間でプラズマを介して直流の電子電流が流れるようになっている。
 サセプタ16およびサセプタ支持台14とチャンバ10の側壁との間に形成される環状の空間は排気空間となっており、この排気空間の底にはチャンバ10の排気口72が設けられている。この排気口72に排気管74を介して排気装置76が接続されている。排気装置76は、ターボ分子ポンプなどの真空ポンプを有しており、チャンバ10の室内、特に処理空間PSを所望の真空度まで減圧できるようになっている。また、チャンバ10の側壁には半導体ウエハWの搬入出口78を開閉するゲートバルブ80が取り付けられている。
 制御部82は、マイクロコンピュータを含み、外部メモリまたは内部メモリに格納されるソフトウェア(プログラム)およびレシピ情報にしたがって、装置内の各部、特に高周波電源30,32、交流電源64、整合器34,36,66、MFC60、開閉バルブ62、排気装置76等の個々の動作および装置全体の動作(シーケンス)を制御する。
 この容量結合型プラズマエッチング装置において、エッチングを行なうには、先ずゲートバルブ80を開状態にして加工対象の半導体ウエハWをチャンバ10内に搬入して、静電チャック18の上に載置する。そして、処理ガス供給源58より処理ガスつまりエッチングガス(一般に混合ガス)を所定の流量および流量比でチャンバ10内に導入し、排気装置76による真空排気でチャンバ10内の圧力を設定値にする。さらに、第1および第2の高周波電源30,32よりそれぞれ所定のパワーで第1高周波(40MHz)および第2高周波(13MHz)を重畳してサセプタ16に印加する。また、直流電源22より直流電圧を静電チャック18の電極20に印加して、半導体ウエハWを静電チャック18上に固定する。上部電極46のシャワーヘッドより吐出されたエッチングガスは両電極46,16間の高周波電界の下で放電し、処理空間PS内にプラズマが生成される。このプラズマに含まれるラジカルやイオンによって半導体ウエハWの主面の被加工膜がエッチングされる。
 この容量結合型プラズマエッチング装置は、サセプタ12にプラズマ生成に適した比較的高い周波数の第1高周波を印加することにより、プラズマを好ましい解離状態で高密度化し、より低圧の条件下でも高密度プラズマを形成することができる。それと同時に、サセプタ12にイオン引き込みに適した比較的低い周波数の第2高周波を印加することにより、半導体ウエハWの被加工膜に対して異方性のエッチングを施すことができる。
 
[実施形態における上部AC印加方式の基本的作用]
 この容量結合型プラズマエッチング装置は、下部電極(サセプタ)16にプラズ生成用とイオン引き込み用の2つの高周波RFH,RFLを印加する下部2高周波重畳印加方式において、交流電源64よりブロッキングコンデンサ68を介して交流ACを上部電極46に印加する上部AC印加方式の構成および機能を有している。ここで、交流ACは、プラズマ中のイオンが追従できる周波数、つまりイオンプラズマ周波数よりも低い周波数fを有しており、交流電源64においてそのパワー、電圧波高値または実効値を可変できるようになっている。なお、イオンプラズマ周波数fpiは次の式(1)で与えられる。
  fpi=(e2o/ε0i1/2/2π  ・・・・(1)
 ただし、eは電子の電荷量、noはプラズマ密度、ε0は真空中の誘電率、miはイオンの質量である。
 たとえば、Arイオンの場合、プラズマ密度noが1×109cm-3のときは、イオンプラズマ周波数fpiは約1MHzである。noが4×109cm-3のときは、fpiは約2MHzである。noが1×1010cm-3のときは、fpiは約3MHzである。
 図2に、この容量結合型プラズマエッチング装置において、上部電極46および下部電極(サセプタ)16間のポテンシャル分布および上部電極46に入射するイオンのイオンエネルギー分布を示す。エッチングプロセス中に交流電源64からの交流ACがブロッキングコンデンサ68を介して上部電極46に印加されると、上部電極46には負の直流電圧つまり自己バイアス電圧VBが発生し、この自己バイアス電圧VBに交流ACの電圧(瞬時値)が重畳される。ここで、交流ACの周波数fがイオンプラズマ周波数fpiよりも低く、上部電極46付近の電子温度は低いので、自己バイアス電圧VBは交流ACの電圧波高値に近い値になる。こうして、上部電極46の電位は、自己バイアス電圧VBに交流ACの電圧レベル(瞬時値)が重なって周期的に変化する。
 一方で、上部電極46には、プラズマから正電荷のイオンが上部電極46の電位に応じたシース内の電界により加速されて入射する。この上部電極46に入射するイオンのエネルギーは、上部電極46の負電位方向の深さ(絶対値)に比例し、周期的に変化する。したがって、各サイクルの中で、交流ACの電圧レベルが極小になる時にイオンエネルギーは最大になり、交流ACの電圧レベルが極大になる時にイオンエネルギーは最小になる。この場合、イオンエネルギー分布(IED)は、電圧の時間変化が小さい時間帯(極大または極小になる辺り)で多くのイオンが電極に入射するため、最大エネルギー付近および最小エネルギー付近にイオンが多い分布になる。本発明の上部AC印加方式によれば、交流ACの電圧レベルが各サイクルの中で極小になる度に、自己バイアス電圧VBと交流ACの電圧波高値とを足し合わせた最大の負電位に対応する最大エネルギーのイオンが上部電極46に多数入射する。
 なお、交流ACの周波数fがイオンプラズマ周波数fpiよりも高い場合は、イオンの追従性が低下し、ACの周波数fを高くするほど、図2に示すようにイオンエネルギー分布(IED)においてエネルギーバンドの幅が狭くなっていく。すなわち、イオンエネルギーは、振れが小さくなって、自己バイアス電圧VBに対応する中心値に向かって平均化されていく。それによって、イオンエネルギーの最大値は小さくなっていく。
 図3に、AC印加方式に対する比較例として、従来技術の上部DC印加方式にしたがいDC電源84により上部電極46に負極性のDC電圧Vdcを印加した場合のポテンシャル分布および上部電極46に入射するイオンのイオンエネルギー分布を示す。この場合、イオンエネルギー分布(IED)は、DC電圧Vdcに対応する局所幅のエネルギー帯の中に全ての入射イオンのエネルギーが収まるようなプロファイルになる。したがって、プラズマプロセス中は、定常的に一定の狭いエネルギー帯に収まるイオンが上部電極46に略一定のレートで入射する。
 一般に、イオンエネルギーEiとスパッタ率SYとの間にはSY∝Ei 1/2の関係がある。したがって、図4に示すように、スパッタ率は入射イオンの個数よりもイオンエネルギーの大きさ(最大値)に大きく依存する。このことから、上部電極46に印加する電源電圧の絶対値または振幅が同じであっても、上部DC印加方式よりも本発明の上部AC印加方式の方が、より高いエネルギーを持つイオンが上部電極46に入射する。よって、本発明の上部AC印加方式は、上部電極46におけるスパッタ率をより効率的に向上させることができる。
 また、上部DC印加方式によれば、上部電極46の電位が負極性のDC電圧Vdcに固定されるため、プラズマのポテンシャルが低い方へ引き下げられる。これに対して、本発明の上部AC印加方式によれば、交流ACの電圧レベルが正極性になる半サイクルでは、上部電極46の電位が自己バイアス電圧VBよりも高くなって、それにつれてプラズマポテンシャルも引き上げられる。特に、交流ACの電圧レベルが極大になる辺りでは、チャンバ側壁付近のプラズマポテンシャルが相当高い値に上昇する。
 このように、本発明の上部AC印加方式によれば、上部DC印加方式に比して、チャンバ10の側壁付近のプラズマポテンシャルが時間平均でも相当高く、プラズマからチャンバ10の側壁に入射するイオンのエネルギーが格段に大きくなる。これにより、チャンバ側壁に付着している堆積物を除去するスパッタリング効果も大きく向上する。そして、チャンバ側壁の堆積物を効率よく除去することにより、プロセスの再現性および装置の量産性を向上させることができる。
 
[HARCプロセスに関する実施例]
 本発明者は、この実施形態のプラズマエッチング装置(図1)を用いて、HARCプロセスにおいて本発明の上部AC印加方式と従来技術の上部DC印加方式とを比較する実験を行った。図5Aおよび図5Bに、上部AC印加方式の実験結果としてシリコン酸化膜(被エッチング膜)およびフォトレジスト(マスク)のエッチングレート(E/R)のウエハ面内分布特性をそれぞれ示す。図6Aおよび図6Bに、上部DC印加方式の実験結果としてシリコン酸化膜およびフォトレジストのエッチングレート(E/R)のウエハ面内分布特性をそれぞれ示す。このHARCプロセスの実験における主なプロセス条件は次のとおりである。
  レジスト : アクリレートベース用のArFレジスト
  処理ガス: C46/C48/Ar/O2=20/35/500/36sccm
  チャンバ内の圧力 : 20mTorr
  温度 : 上部電極/チャンバ側壁/下部電極=60/60/40℃
  高周波電力 : 40MHz/13MHz=1000/4500W
  交流周波数 : AC=380kHz
  交流電力: AC=0W,250W,500W,1000W
  直流電圧: Vdc=0V,-150V,-300V,-450V,-600V
 図5Bおよび図6Bに示すように、フォトレジスト(PR)のエッチングレート分布特性に関しては、上部AC印加方式と上部DC印加方式とで大して違わず、両者とも低くて平坦なプロファイルが得られている。すなわち、フォトレジスト(PR)のプラズマ耐性を強化する点については、HARCプロセスでも上部AC印加方式は上記(1)(3)の効果を十分に発揮しており、上部DC印加方式も上部AC印加方式と同等に上記(1)(3)の効果を奏する。
 しかし、図5Aおよび図6Aに示すように、シリコン酸化膜(SiO2)のエッチングレート分布特性に関しては、両者のプロファイルが明らかに異なる。すなわち、上部DC印加方式のプロファイルは、DC電圧Vdcの絶対値を大きくするほど、ウエハ中心部のエッチングレートがウエハエッジ部のエッチングレートよりも高くなる度合いが増し、ウエハ中心部が目立って高くなる。要するに、上部DCの印加電圧(絶対値)を大きくするほど、SiO2エッチングレートの面内均一性が悪化する。これに対して、上部AC印加方式のプロファイルは、交流ACのパワーを大きくするほど、ウエハ中心部のエッチングレートがウエハエッジ部のエッチングレートよりも高くなる度合いは増すものの、相対的にウエハ中心部がそれほど高くはならない。つまり、SiO2エッチングレートの面内均一性が改善する。
 このようにHARCプロセスにおけるSiO2エッチングレートの面内均一性について、上部DC印加方式と上部AC印加方式とで違いが生じるのは、上記(6)の効果の違いに因るものと考えられる。すなわち、上部DC印加方式ではDC電圧Vdcの絶対値を大きくすることによって上記(6)の効果も不所望に強められるのに対して、上部AC印加方式ではACのパワーを大きくしても上記(6)の効果が上部DC印加方式ほど強くはないと考えられる。
 上記HARCプロセスの実験では、図5Aの酸化膜エッチング特性および図5Bのレジストエッチング特性から、ACのパワーをパラメータとして、上部AC印加方式におけるマスク選択比とSiO2エッチングレート面内均一性との相関関係FACを求めた。また、図6Aの酸化膜エッチング特性および図6Bのレジストエッチング特性から、DC電圧Vdcの電圧値(絶対値)をパラメータとして、上部DC印加方式におけるマスク選択比とSiO2エッチングレート面内均一性との相関関係FDCを求めた。図7に、それぞれの相関関係FAC,FDCをプロットで対比して示す。
 この実施形態のプラズマエッチング装置のように、下部電極(サセプタ)16にプラズ生成用とイオン引き込み用の2つの高周波RFH,RFLを印加する場合は、両高周波RFH,RFLのパワーが主たる調整ノブ(第1の調整ノブ)になってエッチングレート特性を制御できるようになっている。一方、選択性の方は、上記のように上部DC印加方式ではDC電圧Vdcの電圧値(絶対値)が、上部AC印加方式では交流ACのパワー(またはACの電圧波高値、実効値等)がそれぞれ調整ノブ(第2の調整ノブ)になり得る。ここで、エッチングレート特性と選択性とを同時に最適化するには、第1の調整ノブと第2の調整ノブが出来るだけ互いに独立していることが望ましい。したがって、第2の調整ノブを用いてマスク選択比を変えたときに、エッチングレート特性(たとえば面内均一性)がその影響を受けて変化するにしても、その変化量は出来るだけ小さいのが好ましい。このような第1および第2の調整ノブ間の独立性に関しては、図7に示すように、上部AC印加方式の方が上部DC印加方式よりも優れていることがわかる。
 上記HARCプロセスの実験では、エッチング形状についても調べた。図8に、エッチング形状の測定に用いたSEM写真を示す。図9に、上部AC印加方式と上部DC印加方式とを対比させて、マスク選択比とボーイング量との相関関係を示す。なお、ボーイング量は、シリコン酸化膜に形成される微細孔における孔内の最大の口径(ボーイングCD)と最上端の口径(トップCD)との差分である。ボーイング量が少ないほど、垂直加工形状が優れている。
 図8に示すように、上部DC印加方式では、DC電圧Vdcの絶対値を大きくするほど、マスク選択比およびボーイング量のどちらも向上する。一方、上部AC印加方式でも、ACのパワーを大きくするほど、マスク選択比およびボーイング量のどちらも向上する。しかし、図9に示すように、ボーイング量が同等のときは、上部AC印加方式の方が上部DC印加方式よりも大きなマスク選択比が得られることがわかる。つまり、エッチング形状とマスク選択との両立を図る上で、上部DC印加方式よりも上部AC印加方式の方が優れている。
 
[BEOLプロセスに関する実施例]
 本発明者は、この実施形態のプラズマエッチング装置(図1)を用いて、BEOLプロセスにおいて本発明の上部AC印加方式と従来技術の上部DC印加方式とを比較する2つの実験を行った。BEOLプロセスは、LSI製造の配線形成工程において層間絶縁膜に比較的浅いビアホールをプラズマエッチングによって形成する技術であり、近年は加工対象の層間絶縁膜に有機Low-k膜が多く用いられている。
 このBEOLプロセスの実験では、図10に示すように、下地層またはエッチング停止層としてのSiC膜90、被エッチング材料としての2層の有機Low-k膜92,94、ハードマスクとしてのTEOS膜96、最上層パターンマスクとしてのフォトレジスト98をこの順序で下から重ねて形成した半導体ウエハWを被処理基板に用いた。有機Low-k膜92,94には、Si,O,CおよびHを含むSiOC系の有機膜を用いた。なお、図10の(a)に示すように、実験に先立ち、前工程のプラズマエッチングによってTEOS膜96に途中の深さまで孔100を予め形成しておいた。そして、図10の(b)に示すように、第1および第2実験によりエッチング孔100を下層Low-k膜92の底近くまで堀り下げた。
 この種のBEOLプロセスでは、物理的かつ化学的に損傷しやすい有機Low-k膜にダメージを極力与えないことが重要である。このため、第1および第2実験の評価項目に、有機Low-k膜92,94のダメージ量を加えた。SiOC系の有機膜は、プラズマエッチングによりダメージを受けると、その部分の組成がSiOに変質して、HF溶液に溶けるようになる。そこで、エッチングの終了後に試料の半導体ウエハをHF溶液に30秒間浸漬し、それによってエッチング孔100内で有機Low-k膜92,94の内壁が抉られた寸法(ボーイングCDの増加量)をLow-kダメージ量として測定した。
 第1実験は、下部電極(サセプタ)16に印加する第1および第2高周波RFH,RFLのパワーをそれぞれ630W,160Wに固定した。第2実験は、電子密度Neおよび下部電極(サセプタ)16の自己バイアス電圧VL(下部VL)をそれぞれ4×1010cm-3、300Vに固定した。他のプロセス条件は、第1および第2実験で共通しており、次のとおりである。
  処理ガス: C48/Ar/N2/O2=30/1200/70/17sccm
  チャンバ内の圧力 : 80mTorr
  温度 : 上部電極/チャンバ側壁/下部電極=60/60/60℃
  交流周波数 : AC=380kHz
  交流電力: AC=0W,250W,500W
  直流電圧: Vdc=0V,-300V,-700V
 図11に、BEOLプロセスの第1実験で得られたパターンの断面図(SEM写真)および各種評価項目の測定値を示す。図示のように、上部DC印加方式ではDC電圧Vdcの絶対値を大きくするほど、上部AC印加方式ではACのパワーを大きくするほど、トップCDは減少し、Low-kダメージ量は増大する。特に、高電圧(高パワー)領域では、上部DC印加方式よりも上部AC印加方式の方がその傾向が強い。
 もっとも、この種のBEOLプロセスにおいて許容されるLow-kダメージ量は5nm以下であるから、両方式とも低電圧(低パワー)領域を用いることになる。たとえば、上部DC印加方式では、Vdc=-300Vの場合に、Low-kダメージ量が4nmである。このとき、エッチング深さは160nm、トップCDは47nm、ボーイングCDは49nmである。一方、上部AC印加方式では、AC=250Wの場合に、Low-kダメージ量は5nmである。このとき、エッチング深さは150nm、トップCD=46nm、ボーイングCD=46nmである。このように、第1実験の結果として、有機Low-k膜を被エッチング膜とする実用上のBEOLプロセスにおいては、本発明の上部AC印加方式と従来技術の上部DC印加方式との間に実質的な差はないことがわかった。
 図12に、BEOLプロセスの第2実験で得られたパターンの断面図(SEM写真)および各種評価項目の測定値を示す。図示のように、第2実験でも、上部DC印加方式ではDC電圧Vdcの絶対値を大きくするほど、上部AC印加方式ではACのパワーを大きくするほど、トップCDは減少し、Low-kダメージ量は増大する。Low-kダメージ量が許容値(5nm以下)になる低電圧領域(低パワー領域)について比較すると、上部DC印加方式では、Low-kダメージ量が2nmになるVdc=-300Vの場合、エッチング深さは155nm、トップCDは51nm、ボーイングCDは51nmである。一方、上部AC印加方式では、Low-kダメージ量が5nmになるAC=250Wの場合、エッチング深さは150nm、トップCDは46nm、ボーイングCD=46nmである。このように、第2実験においても、本発明の上部AC印加方式と従来技術の上部DC印加方式との間に実質的な差はないことがわかった。
 図13および図14に、上記第1および第2実験の結果から得られたトップCDとLow-kダメージ量との相関関係(プロット図)をそれぞれ示す。これらの相関関係から、Low-kダメージ量が許容値(5nm以下)になる領域では、上部AC印加方式と上部DC印加方式との間でトップCDに実質的な差は生じないことがわかる。なお、上部AC印加方式においてAC=0Wの場合は、上部DC印加方式においてDC電圧Vdc=0Vの場合に相当する。
 
[その他の実施例]
 本発明者は、第1および第2高周波RFH,RFLのパワーをパラメータとして(RFH,RFL=200,400,800W)、上部DC印加方式および上部AC印加方式の各々について上記BEOLプロセスの第1実験と同じプロセス条件で別のプラズマエッチングの実験を行った。そして、その実験結果に基づいて、図15および図16に示すように、処理空間PS内の電子密度(プラズマ密度)Neと下部電極16に発生する自己バイアス電圧VL(下部VL)との相関関係、つまりNe-下部VL特性を取得した。
 上部DC印加方式のNe-下部VL特性(図15)と上部AC印加方式のNe-下部VL特性(図16)とを比較すると、上部AC印加方式の方がより低Ne/低下部VLの領域にプロセスマージンを広げられることがわかる。因みに、このような低Ne/低下部VLの領域は、たとえばMRAM(Magnetroresistive Random Access Memory)の絶縁体薄膜を低速度でエッチングするプロセスに向いている。
 さらに、本発明者は、上部AC印加方式における交流ACのパワーをAC=0W、100W、125W、250W、500Wの値に可変し、上部DC印加方式における直流電圧Vdcの絶対値をVdc=0V、150V、300Vの値に可変する以外は上記BEOLプロセスの第1実験と同じプロセス条件で別のプラズマエッチングの実験を行い、その実験の中で各パラメータ値毎にチャンバ10の側壁付近のプラズマポテンシャルを測定した。
 図17にその実験結果を示す。図示のように、上部DC印加方式によれば直流電圧Vdcの絶対値を大きくするほどチャンバ側壁付近のプラズマポテンシャルが低下するのに対して、上部AC印加方式によれば交流ACのパワーを大きくするほどチャンバ側壁付近のプラズマポテンシャルが上昇することが検証された。これは、上述したように、上部DC印加方式では、上部電極46の電位が負極性のDC電圧Vdcに固定され、プラズマのポテンシャルが引き下げられるためである。一方、上部AC印加方式では、交流ACの電圧レベルが正極性になる半サイクルでは、上部電極46の電位が自己バイアス電圧VBよりも高くなり、それによってプラズマのポテンシャルが引き上げられるため、時間平均でチャンバ側壁付近のプラズマポテンシャルが上昇する。
 本発明者は、エッチングマスクとしてのArFレジストをプラズマの下で改質させる効果について本発明の上部AC印加方式と従来技術の上部DC印加方式とを比較する実験を行った。主なプロセス条件は次の通りである。
  処理ガス: H2/Ar=100/800sccm
  チャンバ内の圧力 : 50mTorr
  温度 : 上部電極/チャンバ側壁/下部電極=60/60/30℃
  高周波電力 : 40MHz/13MHz=300/0W
  交流周波数 : AC=380kHz
  交流電力: AC=0W,250W,500W
  直流電圧: Vdc=0V,-300V,-700V
  処理時間 : 30秒
 図18に、上記ArFレジスト改質処理の実験結果をSEM写真で示す。図示のように、上部DC印加方式を用いた場合の改質層の厚さは、Vdc=0Vのときは16.7nm、Vdc=-300Vのときは21.4nm、Vdc=-700Vのときは40.8nmであった。一方、上部AC印加方式を用いた場合の改質層の厚さは、AC=0Wのときは16.7nm、AC=250Wのときは26.6nm、AC=500Wのときは50.6nmであった。このように、上部DC印加方式ではDC電圧Vdcの絶対値を大きくするほど、上部AC印加方式ではACのパワーを大きくするほど、改質層の厚さが増大し、その増大率は両方式であまり変わらないことがわかった。
 上記したように、本発明の上部AC印加方式は、たとえばBEOLプロセスやArFレジスト改質効果では従来技術の上部DC印加方式の長所を踏襲し、たとえばHARCプロセスでは上部DC印加方式の不利点を解消することができる。
 以上本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、その技術思想の範囲内で種種の変形が可能である。
 たとえば、上記実施例における交流ACの周波数fの値(380kHz)は一例であり、イオンが追従できる任意の値の周波数fを交流ACに用いることができる。したがって、本発明における交流ACの周波数fとしては、上記実施形態における380kHzより高い周波数であってもよく、一般にイオンが追従できる周波数(別な見方をすればイオンにエネルギーを付与できる周波数)の限界とされる13MHzまでの周波数領域を使用することができる。
 また、上記実施形態では交流電源64より出力される交流ACを最大の電力伝送効率で上部電極46に印加するために整合器66を用いたが、整合器66を省くことも可能である。また、下部電極(サセプタ)16に対して第2高周波RFLを印加しない構成、つまり高周波電源32、整合器40、ブロッキングコンデンサ40を省く構成も可能である。その他、上部電極46におけるシャワーヘッド構造等において任意の変形が可能である。
 本発明は、容量結合型プラズマエッチング装置に限定されず、プラズマCVD、プラズマALD、プラズマ酸化、プラズマ窒化、スパッタリングなど任意のプラズマプロセスを行う容量結合型プラズマ処理装置に適用可能である。本発明における被処理基板は半導体ウエハに限るものではなく、フラットパネルディスプレイ、有機EL、太陽電池用の各種基板や、フォトマスク、CD基板、プリント基板等も可能である。
 10  チャンバ
 16  サセプタ(下部電極)
 30  (プラズマ生成用の)高周波電源
 32  (イオン引き込み用の)高周波電源
 46  上部電極
 58  処理ガス
 64  交流電源
 68  ブロッキングコンデンサ
 82  制御部

Claims (8)

  1.  真空排気可能な処理容器と、
     前記処理容器内に配置され、被処理基板を載せて支持する第1の電極と、
     前記処理容器内に前記第1の電極と所定の間隔を空けて平行に配置される第2の電極と、
     前記処理容器内の前記第1および第2の電極間の処理空間に所望の処理ガスを供給する処理ガス供給部と、
     前記処理ガスを放電させてプラズマを生成するのに適した周波数を有する第1の高周波を前記第1の電極に印加する第1の高周波電源と、
     プラズマ中のイオンが追従できる周波数を有する低周波または高周波の交流を前記第2の電極に印加する交流電源と、
     前記交流電源と前記第2の電極との間に接続されるブロッキング用のコンデンサと
     を有するプラズマ処理装置。
  2.  前記交流の周波数は、前記イオンのイオンプラズマ周波数よりも低い、請求項1に記載のプラズマ処理装置。
  3.  イオンの引き込みに適した周波数を有する第2の高周波を前記第2の電極に印加する第2の高周波電源を更に備える、請求項1に記載のプラズマ処理装置。
  4.  前記第1の高周波の周波数は40MHz以上であり、前記第2の高周波の周波数は13MHz以下で前記イオンのイオンプラズマ周波数よりも高い、請求項3に記載のプラズマ処理装置。
  5.  被処理基板上のシリコン酸化膜に高アスペクト比の孔を形成するプラズマエッチング方法であって、
     室内に第1の電極と第2の電極とを所定の間隔を空けて平行に配置している真空可能な処理容器内で前記第1の電極の上に被処理基板を載せて支持する工程と、
     前記処理容器内を所定の圧力に真空排気する工程と、
     前記第1の電極と前記第2の電極との間の処理空間にフルオロカーボン系のエッチングガスを供給し、前記第1の電極に第1の高周波を印加して前記処理空間で前記エッチングガスのプラズマを生成する工程と、
     プラズマ中のイオンが追従できる周波数を有する低周波または高周波の交流をブロッキング用のコンデンサを介して前記第2の電極に印加する工程と
     を有するプラズマエッチング方法。
  6.  前記第1の電極にイオンの引き込みに適した周波数を有する第2の高周波を印加する、請求項5に記載のプラズマエッチング方法。
  7.  前記エッチングガスが、フルオロカーボンガスとアルゴンガスと酸素ガスとを含む、請求項5に記載のプラズマエッチング方法。
  8.  前記第2の電極の母材がシリコンを含む、請求項5に記載のプラズマエッチング方法。
PCT/JP2012/006086 2011-09-26 2012-09-25 プラズマ処理装置及びプラズマ処理方法 WO2013046640A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/347,033 US20140256147A1 (en) 2011-09-26 2012-09-25 Plasma processing apparatus and plasma processing method
KR1020147007790A KR101957348B1 (ko) 2011-09-26 2012-09-25 플라즈마 처리 장치 및 플라즈마 처리 방법
US15/283,703 US9852922B2 (en) 2011-09-26 2016-10-03 Plasma processing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011209133 2011-09-26
JP2011-209133 2011-09-26
US201161544331P 2011-10-07 2011-10-07
US61/544,331 2011-10-07

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/347,033 A-371-Of-International US20140256147A1 (en) 2011-09-26 2012-09-25 Plasma processing apparatus and plasma processing method
US15/283,703 Division US9852922B2 (en) 2011-09-26 2016-10-03 Plasma processing method

Publications (1)

Publication Number Publication Date
WO2013046640A1 true WO2013046640A1 (ja) 2013-04-04

Family

ID=47994723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/006086 WO2013046640A1 (ja) 2011-09-26 2012-09-25 プラズマ処理装置及びプラズマ処理方法

Country Status (5)

Country Link
US (2) US20140256147A1 (ja)
JP (2) JPWO2013046640A1 (ja)
KR (1) KR101957348B1 (ja)
TW (1) TWI611454B (ja)
WO (1) WO2013046640A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020026802A1 (ja) * 2018-07-30 2020-02-06 東京エレクトロン株式会社 制御方法及びプラズマ処理装置
JP2020025083A (ja) * 2018-07-30 2020-02-13 東京エレクトロン株式会社 制御方法及びプラズマ処理装置
WO2024080022A1 (ja) * 2022-10-11 2024-04-18 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105206494B (zh) * 2014-06-18 2017-06-06 北京北方微电子基地设备工艺研究中心有限责任公司 脉冲射频电源的阻抗匹配方法及等离子体设备的匹配方法
JP2016157793A (ja) * 2015-02-24 2016-09-01 東京エレクトロン株式会社 エッチング方法
JP2017098478A (ja) * 2015-11-27 2017-06-01 東京エレクトロン株式会社 エッチング方法
KR101800321B1 (ko) * 2016-04-18 2017-11-22 최상준 건식 에칭장치
KR101913684B1 (ko) * 2016-10-21 2018-11-01 주식회사 볼트크리에이션 건식 에칭장치 및 그 제어방법
JP7008474B2 (ja) * 2016-11-30 2022-01-25 東京エレクトロン株式会社 プラズマエッチング方法
JP6886940B2 (ja) * 2018-04-23 2021-06-16 東京エレクトロン株式会社 プラズマ処理方法
KR20220010648A (ko) 2020-07-16 2022-01-26 삼성전자주식회사 플라즈마 식각 장치, 플라즈마 식각 방법 및 그를 포함하는 반도체 소자의 제조 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006286791A (ja) * 2005-03-31 2006-10-19 Tokyo Electron Ltd プラズマ処理装置
JP2006286813A (ja) * 2005-03-31 2006-10-19 Tokyo Electron Ltd プラズマ処理装置およびプラズマ処理方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3080055B2 (ja) * 1997-12-10 2000-08-21 日本電気株式会社 ドライエッチング方法
JP3621900B2 (ja) * 2000-09-12 2005-02-16 株式会社日立製作所 プラズマ処理装置および方法
JP2002110650A (ja) * 2000-10-03 2002-04-12 Tokyo Electron Ltd プラズマエッチング方法およびプラズマエッチング装置
US7988816B2 (en) * 2004-06-21 2011-08-02 Tokyo Electron Limited Plasma processing apparatus and method
CN102256431B (zh) * 2004-06-21 2014-09-17 东京毅力科创株式会社 等离子体处理装置和方法
JP4672456B2 (ja) 2004-06-21 2011-04-20 東京エレクトロン株式会社 プラズマ処理装置
JP2006086325A (ja) * 2004-09-16 2006-03-30 Tokyo Electron Ltd クリーニングの終点検出方法
JP4928832B2 (ja) * 2006-05-25 2012-05-09 東京エレクトロン株式会社 エッチング方法及びコンピュータ読み取り可能な記録媒体
JP5199595B2 (ja) * 2007-03-27 2013-05-15 東京エレクトロン株式会社 プラズマ処理装置及びそのクリーニング方法
JP4577328B2 (ja) * 2007-04-16 2010-11-10 株式会社日立製作所 半導体装置の製造方法
JP5165993B2 (ja) * 2007-10-18 2013-03-21 東京エレクトロン株式会社 プラズマ処理装置
JP5371238B2 (ja) * 2007-12-20 2013-12-18 東京エレクトロン株式会社 プラズマ処理装置およびプラズマ処理方法
JP5578782B2 (ja) * 2008-03-31 2014-08-27 東京エレクトロン株式会社 プラズマ処理方法及びコンピュータ読み取り可能な記憶媒体
JP5674280B2 (ja) * 2009-03-02 2015-02-25 東京エレクトロン株式会社 プラズマ処理装置
US8586484B2 (en) * 2009-03-04 2013-11-19 Fuji Electric Co., Ltd. Film forming method and film forming apparatus
JP2011029475A (ja) * 2009-07-28 2011-02-10 Shibaura Mechatronics Corp プラズマ処理装置及びプラズマ処理方法
JP5496568B2 (ja) * 2009-08-04 2014-05-21 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
JP5323628B2 (ja) * 2009-09-17 2013-10-23 東京エレクトロン株式会社 プラズマ処理装置
US8901935B2 (en) * 2009-11-19 2014-12-02 Lam Research Corporation Methods and apparatus for detecting the confinement state of plasma in a plasma processing system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006286791A (ja) * 2005-03-31 2006-10-19 Tokyo Electron Ltd プラズマ処理装置
JP2006286813A (ja) * 2005-03-31 2006-10-19 Tokyo Electron Ltd プラズマ処理装置およびプラズマ処理方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020026802A1 (ja) * 2018-07-30 2020-02-06 東京エレクトロン株式会社 制御方法及びプラズマ処理装置
JP2020025083A (ja) * 2018-07-30 2020-02-13 東京エレクトロン株式会社 制御方法及びプラズマ処理装置
JP7306886B2 (ja) 2018-07-30 2023-07-11 東京エレクトロン株式会社 制御方法及びプラズマ処理装置
WO2024080022A1 (ja) * 2022-10-11 2024-04-18 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法

Also Published As

Publication number Publication date
KR101957348B1 (ko) 2019-03-12
JPWO2013046640A1 (ja) 2015-03-26
TW201334018A (zh) 2013-08-16
JP6431557B2 (ja) 2018-11-28
US9852922B2 (en) 2017-12-26
JP2017108159A (ja) 2017-06-15
US20170092509A1 (en) 2017-03-30
US20140256147A1 (en) 2014-09-11
KR20140068090A (ko) 2014-06-05
TWI611454B (zh) 2018-01-11

Similar Documents

Publication Publication Date Title
JP6431557B2 (ja) プラズマ処理装置及びプラズマ処理方法
TWI743072B (zh) 蝕刻方法及蝕刻裝置
JP4827081B2 (ja) プラズマエッチング方法およびコンピュータ読み取り可能な記憶媒体
JP5916056B2 (ja) プラズマ処理方法及びプラズマ処理装置
US9034198B2 (en) Plasma etching method
TWI665726B (zh) 電漿蝕刻方法及電漿蝕刻裝置
KR102260339B1 (ko) 반도체 장치의 제조 방법
US20200381263A1 (en) Method of processing target object
EP2911187A1 (en) Etching method
US9607811B2 (en) Workpiece processing method
US20070068798A1 (en) Structure for plasma processing chamber, plasma processing chamber, plasma processing apparatus, and plasma processing chamber component
JP6438831B2 (ja) 有機膜をエッチングする方法
JP6339961B2 (ja) エッチング方法
KR101858324B1 (ko) 플라즈마 에칭 방법
US9418863B2 (en) Method for etching etching target layer
KR20080006457A (ko) 플라즈마 에칭 방법 및 컴퓨터 판독 가능한 기억 매체
JP2007273596A (ja) プラズマ処理用の電極板及びプラズマ処理装置
JP2020088174A (ja) エッチング方法及び基板処理装置
US10607835B2 (en) Etching method
JP6045646B2 (ja) プラズマエッチング方法
WO2022031475A1 (en) Deposition of low-stress carbon-containing layers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12835964

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013535899

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147007790

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14347033

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12835964

Country of ref document: EP

Kind code of ref document: A1