WO2013045181A1 - Verfahren zur herstellung eines optoelektronischen halbleiterchips und optoelektronischer halbleiterchip - Google Patents
Verfahren zur herstellung eines optoelektronischen halbleiterchips und optoelektronischer halbleiterchip Download PDFInfo
- Publication number
- WO2013045181A1 WO2013045181A1 PCT/EP2012/066459 EP2012066459W WO2013045181A1 WO 2013045181 A1 WO2013045181 A1 WO 2013045181A1 EP 2012066459 W EP2012066459 W EP 2012066459W WO 2013045181 A1 WO2013045181 A1 WO 2013045181A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- growth
- nucleation
- growth substrate
- semiconductor
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 101
- 230000005693 optoelectronics Effects 0.000 title claims abstract description 19
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 239000000758 substrate Substances 0.000 claims abstract description 107
- 238000010899 nucleation Methods 0.000 claims abstract description 80
- 230000006911 nucleation Effects 0.000 claims abstract description 79
- 238000000034 method Methods 0.000 claims abstract description 64
- 239000000463 material Substances 0.000 claims abstract description 22
- 238000004544 sputter deposition Methods 0.000 claims description 37
- 230000000873 masking effect Effects 0.000 claims description 23
- 230000005855 radiation Effects 0.000 claims description 16
- 238000007788 roughening Methods 0.000 claims description 13
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 12
- 239000001301 oxygen Substances 0.000 claims description 12
- 229910052760 oxygen Inorganic materials 0.000 claims description 12
- 229910002704 AlGaN Inorganic materials 0.000 claims description 7
- 229910052733 gallium Inorganic materials 0.000 claims description 7
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 6
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- 238000004581 coalescence Methods 0.000 claims description 4
- 238000000407 epitaxy Methods 0.000 claims description 4
- 239000007789 gas Substances 0.000 claims description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 4
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 3
- 239000012298 atmosphere Substances 0.000 claims description 2
- 230000007423 decrease Effects 0.000 claims description 2
- 239000000395 magnesium oxide Substances 0.000 claims description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims 1
- 239000000377 silicon dioxide Substances 0.000 claims 1
- 239000010410 layer Substances 0.000 description 320
- 229910002601 GaN Inorganic materials 0.000 description 18
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 13
- 229910052782 aluminium Inorganic materials 0.000 description 11
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 10
- 239000002019 doping agent Substances 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 229910002804 graphite Inorganic materials 0.000 description 6
- 239000010439 graphite Substances 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 229910052732 germanium Inorganic materials 0.000 description 4
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 4
- 238000000927 vapour-phase epitaxy Methods 0.000 description 4
- 238000000231 atomic layer deposition Methods 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000003631 wet chemical etching Methods 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- PWKWDCOTNGQLID-UHFFFAOYSA-N [N].[Ar] Chemical compound [N].[Ar] PWKWDCOTNGQLID-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000002144 chemical decomposition reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- -1 nitride compound Chemical class 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000007704 wet chemistry method Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0062—Processes for devices with an active region comprising only III-V compounds
- H01L33/0075—Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/14—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
- H01L33/145—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure with a current-blocking structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/0242—Crystalline insulating materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02455—Group 13/15 materials
- H01L21/02458—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02488—Insulating materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02631—Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02656—Special treatments
- H01L21/02664—Aftertreatments
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/0004—Devices characterised by their operation
- H01L33/0008—Devices characterised by their operation having p-n or hi-lo junctions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0062—Processes for devices with an active region comprising only III-V compounds
- H01L33/0066—Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0062—Processes for devices with an active region comprising only III-V compounds
- H01L33/0066—Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
- H01L33/007—Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0093—Wafer bonding; Removal of the growth substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/025—Physical imperfections, e.g. particular concentration or distribution of impurities
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/04—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
- H01L33/06—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/12—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/20—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
- H01L33/22—Roughened surfaces, e.g. at the interface between epitaxial layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/20—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
- H01L33/24—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate of the light emitting region, e.g. non-planar junction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/26—Materials of the light emitting region
- H01L33/30—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
- H01L33/32—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Definitions
- An object to be solved is to provide a method for the efficient production of an optoelectronic
- this comprises the step of producing a III-nitride
- Nucleation layer over a growth substrate is produced by means of sputtering.
- the nucleation layer is not generated via a gas phase epitaxy such as metalorganic vapor phase epitaxy, in English Metal Organic Chemical Vapor Phase Epitaxy, MOVPE for short.
- a III-nitride semiconductor layer sequence with an active layer is formed over the nucleation layer
- the active layer of the semiconductor layer sequence is set up to generate electromagnetic radiation, in particular in the ultraviolet or in the visible spectral range.
- one wavelength of the generated radiation is between 430 nm and 680 nm inclusive.
- the active layer preferably comprises one or more pn junctions or one or more quantum well structures.
- the semiconductor material is preferably a nitride compound semiconductor material such as Al n I Ni n - m Ga m N, where 0 ⁇ n ⁇ l, 0 ⁇ m ⁇ 1 and n + m ⁇ 1. In this case, the
- Substances may be replaced and / or supplemented.
- n and m are preferably valid for all partial layers of
- Semiconductor layer sequence has one or more middle layers, for which deviated from said values for n, m and instead that
- this includes the step of providing the
- the growth substrate is based on a material system that is different from a material of the nucleation layer and / or the semiconductor layer sequence.
- the growth substrate is a so-called foreign substrate. For example, that is
- Growth substrate a silicon substrate, a sapphire substrate with an r-surface or c-surface as a growth surface, a
- Germanium substrate a gallium arsenide substrate, a molybdenum substrate, a silicon carbide substrate, or a metal alloy substrate.
- a thermal differs Coefficient of expansion of the growth substrate of a thermal expansion coefficient to be grown
- Semiconductor layer sequence by at most 50% or at most 20%.
- this is set up for producing an optoelectronic semiconductor chip, in particular a light-emitting diode.
- the process comprises at least the following steps, preferably in the order given:
- a material of the growth substrate is in this case of a material of the nucleation layer and / or the
- the subsequent MOVPE process can be shortened and / or simplified. In particular, it is possible to dispense with an additional nucleation step.
- substrate holders typically become graphite holders
- the graphite holder can be made of a thin,
- white aluminum-containing and / or gallium-containing layer are occupied in the MOVPE, which changes a thermal radiation behavior and a heating behavior of the graphite holder.
- the occupancy of the graphite holder with aluminum and / or gallium is significantly reduced and parameters for the subsequent MOVPE process are more easily adjustable.
- oxygen is added during sputtering of the nucleation layer.
- a weight fraction of the oxygen at the nucleation layer which is based in particular on aluminum nitride, is preferably at least 0.1% or at least 0.2% or at least 0.5%. Furthermore, a weight fraction of
- Oxygen at the nucleation layer preferably at most 10% or at most 5% or at most 1.5%.
- the introduction of oxygen in nucleation layers is also in the
- an oxygen content in the nucleation layer is monotonously or strictly monotonically reduced in a direction away from the growth substrate.
- the oxygen content can decrease stepwise or linearly.
- the nucleation layer is grown to a thickness of at least 10 nm or at least 30 nm or at least 50 nm. Alternatively or additionally, the thickness of the
- Nucleation layer at most 1000 nm or at most 200 nm or at most 150 nm.
- the growth substrate is removed by a
- the growth substrate and the nucleation layer are permeable to a laser radiation used in the lift-off method. In other words, then absorb the materials of the
- the laser radiation causes material decomposition at an interface between the nucleation layer and the nucleation layer
- Semiconductor layer sequence leads from the growth substrate, Thus, it preferably does not take place in the immediate vicinity of the growth substrate.
- a sacrificial layer is produced between the nucleation layer and the growth substrate.
- the sacrificial layer is preferably in direct contact with both the growth substrate and the nucleation layer.
- the sacrificial layer can be produced, for example, by means of atomic layer deposition, in English atomic layer deposition or short ALD, or by means of
- the sacrificial layer is formed by a material which can be decomposed by wet chemistry, wherein in the wet-chemical decomposition the growth substrate and the semiconductor layer sequence and / or the growth layer are not or not significantly decomposed.
- the sacrificial layer comprises or consists of an alumina such as Al 2 O 3 .
- Sacrificial layer is, for example, between 50 nm and 200 nm inclusive.
- the growth substrate in particular on one of the
- a growth layer is applied directly to the nucleation layer. In other words, then eliminates one
- Interlayer which is formed for example by AlGaN with an aluminum content decreasing in the direction away from the growth substrate.
- the growth layer is preferably a doped or undoped GaN layer.
- Growth layer is in particular between 50 nm and 300 nm inclusive.
- the growth layer is preferably produced by sputtering or by MOVPE.
- the masking layer is formed of, for example, a silicon nitride, a silicon oxide, a silicon oxynitride, or boron nitride or magnesium oxide.
- a thickness of the masking layer is preferably at most 2 nm or at most 1 nm or at most 0.5 nm.
- the masking layer is produced with a thickness which is on average one or two monolayers.
- the masking layer may be formed by sputtering or by MOVPE.
- the masking layer is applied to the underlying layer at a coverage of at least 20% or at least 50% or at least 55%.
- the degree of coverage is at most 90% or at most 80% or at most 70%. In other words, that's it
- the growth layer and the masking layer are introduced by a
- the nucleation layer and the growth layer as well as the masking layer can be produced in the same sputtering deposition system.
- the coalescing layer is preferably based on undoped or substantially undoped GaN.
- the coalescing layer grows on the locally exposed growth layer and thus in openings of the masking layer. Starting from these openings in the masking layer, the coalescing layer grows into a closed,
- the coalescing layer is grown to a thickness of at least 300 nm or at least 400 nm. Alternatively or additionally, the thickness is at most 3 ⁇ or at most 1.2 ⁇ .
- the coalescence layer is applied, in particular directly
- the middle layer is preferably an AlGaN layer having an aluminum content of between 5% and 15% inclusive or between 75% and 100% inclusive.
- Middle layer is preferably between 5 nm and 50 nm inclusive, in particular between 10 nm and 10 nm inclusive 20 nm or between 30 nm and 100 nm inclusive, or between 10 nm and 200 nm inclusive
- Middle layer to be doped.
- a plurality of middle layers are grown, wherein the middle layers each in the context of manufacturing tolerances equal
- Middle layers is preferably each a GaN layer, which may be doped or undoped.
- the GaN layer is further preferably in direct contact with the two
- a thickness of the GaN layer is then preferably at least 20 nm or at least 50 nm or at least 500 nm and may alternatively or additionally be at most 3000 nm or at most 2000 nm or at most 1000 nm.
- the middle layer or one of the middle layers, which is farthest from the growth substrate is
- the semiconductor layer sequence is preferably in direct contact with the middle layer and is based on AlInGaN or InGaN.
- a layer of the semiconductor layer sequence adjoining the middle layer is preferably n-doped.
- An n-doping is carried out, for example, with silicon and / or with germanium.
- One Pressure during sputtering is also particularly between 10 ⁇ 3 mbar and once 10 ⁇ 2 mbar.
- a growth rate during sputtering of the nucleation layer or of the other layers produced by sputtering is
- Sputtering is preferably carried out under an atmosphere of argon and nitrogen.
- a ratio of argon to nitrogen is preferably 1: 2, with a tolerance of at most 15% or at most 10%.
- the method on a side opposite the growth substrate, the
- the carrier substrate is, for example, a carrier made of one
- the nucleation layer is produced in a sputter deposition apparatus and the semiconductor layer sequence becomes in one of them
- the sputter deposition system is free of gallium and / or free of graphite.
- an optoelectronic semiconductor chip is specified.
- the optoelectronic semiconductor chip can with a method as specified in one or more of the embodiments described above. Features of the method are therefore also disclosed for the optoelectronic semiconductor chip and vice versa.
- the optoelectronic semiconductor chip has a semiconductor layer sequence with an active layer provided for generating radiation.
- the semiconductor layer sequence furthermore comprises at least one n-doped layer and at least one p-doped layer, wherein these doped layers preferably directly adjoin the active layer.
- the semiconductor chip comprises a carrier substrate on a p-side of the semiconductor layer sequence.
- the carrier substrate side facing away from the n-doped layer of the semiconductor layer sequence is a middle layer based on AlGaN and having a high aluminum content and grown with a thickness between 5 nm and 50 nm inclusive.
- middle layers may be formed with gallium nitride layers between them.
- Middle layer or one of the middle layers is a coalescence layer of doped or undoped GaN with a thickness between 300 nm inclusive and 1.5 ⁇ . Furthermore, the semiconductor chip is provided with a roughening, which extends from the coalescing layer to or into the n-doped layer
- Radiation exit surface of the semiconductor layer sequence is partially formed by the coalescence.
- the or At least one of the middle layers is exposed in places by the roughening.
- FIGS. 3 to 6 and 8 schematic sectional representations of exemplary embodiments of optoelectronic semiconductor chips described here.
- FIG. 1 schematically illustrates a method for producing an optoelectronic semiconductor chip 10.
- a growth substrate 1 is provided in a sputter deposition apparatus A.
- the growth substrate 1 is, for example, a sapphire substrate.
- a growth medium is applied to the growth substrate 1
- Nucleation layer 3 sputtered on.
- the nucleation layer 3 is an AIN layer, which is preferably provided with oxygen.
- a temperature during sputtering of the nucleation layer 3 is, for example, at about 760 ° C.
- a pressure in the sputtering deposition system A is in particular about 5 x 10 -2 mbar, wherein an argon-nitrogen atmosphere is present.
- a deposition rate during sputtering of the nucleation layer 3 is about 0.15 nm / s.
- a sputtering power can be between 0.5 kW and 1.5 kW, in particular at approximately 0.5 kW.
- the nucleation layer 3 is produced to a thickness of approximately 100 nm.
- the sputter deposition system A is free of gallium.
- the growth substrate 1 with the nucleation layer 3 from the sputter deposition system A is brought into an MOVPE reactor B.
- the growth substrate 1 is located on a substrate holder b, which is preferably formed from graphite. Characterized in that the AlN nucleation layer 3 is generated in the sputtering deposition system A and not in the MOVPE reactor B, a
- the growth substrate 1 with the nucleation layer 3 remains in the MOVPE reactor B.
- the semiconductor layer sequence 2 is thus applied epitaxially to the sputtered nucleation layer 3.
- a laser radiation L is irradiated to the semiconductor layer sequence 2 by the growth substrate 1 and the nucleation layer 3.
- the laser radiation L has a wavelength of, for example, about 355 nm.
- aluminum nitride as a material for the
- Nucleation layer 3 has an absorption edge at approximately 210 nm and is thus transparent to the laser radiation L. Absorption of the laser radiation L therefore takes place on the side of the nucleation layer 3 facing the
- Nucleation layer 3 can be realized by sputtering.
- the residues of the nucleation layer 3 are removed from the growth substrate 1. This removal can be done by a wet chemical etching, which selectively removes a material of the nucleation layer 3 and a material of the
- Growth substrate 1 does not attack or does not significantly attack.
- the growth substrate 1 is thus generally high
- the method according to FIG. 1 preferably takes place in the wafer composite. Further method steps, such as the division into individual semiconductor chips 10 or the creation of additional functional layers, are not shown in the figures to simplify the illustration.
- FIGS. 2A and 2B show alternative method steps for removing the growth substrate 1. According to Figure 2A is between the growth substrate 1 and the
- This sacrificial layer 31 is wet-chemically decomposable, whereby the growth substrate 1 can be separated from the semiconductor layer sequence 2, compare FIG. 2B.
- the sacrificial layer 31 is removed, the growth substrate 1 and / or the nucleation layer 3 remain undestroyed or largely undestroyed. This is a repeated use of the
- Growth substrate 1 is the sputtered
- nucleation layer 3 may also comprise indium and / or silicon.
- the nucleation layer 3 is optionally followed by a
- the intermediate layer 4, which is applied directly to the nucleation layer 3, preferably has several layers, not in FIG.
- the layers each have thicknesses of about 50 nm and exhibit an aluminum content decreasing in the direction away from the growth substrate 1, wherein the aluminum content of the individual layers may be about 95%, 60%, 30% and 15%, in particular with a tolerance not more than ten percentage points or not more than five percentage points.
- the optional intermediate layer 4 is directly followed by a growth layer 8 of doped or undoped GaN. If the intermediate layer 4 does not exist, the growth layer 8 preferably follows directly onto the
- a thickness of the growth layer 8 is preferably about 200 nm. If the growth layer 8 is doped, a dopant concentration is preferably at least a factor of 2 below one
- the growth layer 8 In a direction away from the growth substrate 1, the growth layer 8 directly follows a masking layer 6.
- the masking layer 6 preferably covers the growth layer 8 to about 60% or about 70%. It is the Growth layer 8, for example, from a few monolayers
- Silicon nitride formed.
- the thickness of the coalescing layer 7 is, for example, between 0.5 ⁇ and 1.0 ⁇ .
- the coalescing layer 7 follows directly after a middle layer 9.
- the middle layer 9 is an AlGaN layer having an aluminum content of about 10% and a thickness of about 30 nm or about 60 nm.
- the middle layer 9 may optionally also be dispensed with.
- the middle layer 9 is followed by the n-doped layer 2b of the semiconductor layer sequence 2, which adjoins an active layer 2a. At least one p-doped layer 2c is located on a side of the active layer 2a facing away from the growth substrate 1.
- Semiconductor layer sequence 2 are preferably based on InGaN. 2b may have a dopant concentration of the n-doped layer is between 5 x "10 J / cm""J and 1 x 10Vcm or between 1 x 10 / cm" or 6 x lO 13 / cm
- the doping of the n-doped layer 2b is preferably carried out with germanium and / or with silicon.
- the p-doped layer 2c is preferably doped with magnesium.
- a thickness D of the n-doped layer 2b is, for example, between 1.0 ⁇ and 4 ⁇ , in particular
- a dopant concentration is optionally lowered and in this range is, for example, between inclusive
- the growth substrate 1 as well as the nucleation layer 3 and the intermediate layer 4 are removed, as also shown in FIG. 4
- a thickness of the carrier substrate 11 is preferably between 50 ⁇ and 1 mm.
- a roughening 13 is generated.
- the roughening 13 extends to or into the n-doped layer 2 b of the semiconductor layer sequence 2.
- the roughening therefore exposes the n-doped layer 2 b and the middle layer 9 in places.
- Particularly preferred is the
- a further contact layer 12b is attached to the side facing away from the carrier substrate, via which the
- Semiconductor chip 10 can be electrically contacted and energized, such as by means of a bonding wire. Further optional
- FIG. 5 A further exemplary embodiment of the semiconductor chip 10 can be seen in FIG.
- the semiconductor chip 10 according to FIG. 5 has two middle layers 9, between which a GaN layer 5 is located. Unlike in FIG. 5, it is also possible for more than two middle layers 9, which in each case are the same or different from one another, to be present.
- the roughening 13 extends through both middle layers 5 through into the n-doped layer 2b. Unlike drawn, it is possible that one of the middle layers 9 is not affected by the roughening. Furthermore, it is possible for the middle layer 9 closest to the active layer 2 a to be formed as an etching stop layer for producing the roughening 13.
- FIG. 6 shows a further exemplary embodiment of the invention
- the semiconductor layer sequence 2 is fastened to the carrier substrate 11 via a connection means 18, which is for example a solder.
- the connection means 18 which is for example a solder.
- Semiconductor layer sequence 2 is via a first electrical
- Terminal layer 14 and electrically contacted via the carrier substrate 11.
- the semiconductor layer sequence 2 is further contacted via a second electrical connection layer 16.
- the second connection layer 16 penetrates the active layer 2 a, seen from the carrier substrate 11, and is laterally adjacent to the Semiconductor layer sequence 2 out.
- the second connection layer 16 may be laterally adjacent to
- the roughening 13 is not enough to the second
- Connection layer 16 zoom. Furthermore, the
- a separation layer 15 for example, of silicon oxide or a silicon nitride, electrically isolated from each other.
- the semiconductor chip 10 can thus be designed in a similar manner as stated in the publication US 2010/0171135 Al, the disclosure content of which is incorporated by reference.
- FIG. 7 shows first method steps for producing the semiconductor chip 10, for example as in FIG. 3
- the nucleation layer 3 is produced directly on the growth substrate 1.
- the nucleation layer 3 is applied directly to the nucleation layer 3
- Growth layer 8 grown. On the growth layer 8, which may have a thickness of about 1 ym is
- a defect density of the GaN may be in the range of about 3 ⁇ 10 9 cm -2 .
- FIG. 7D illustrates how the coalescing layer 7, starting from openings in the masking layer 6,
- a degree of coverage with the masking layer 6 is, for example, about 70%.
- the coalescing layer 7 is not yet complete
- a thickness of the coalesced coalescing layer 7 may be about 1.2 ⁇ m.
- the method steps 7A to 7C are preferably in
- a MOVPE is preferably used.
- FIG. 10 Another embodiment of the semiconductor chip 10 is shown in FIG.
- the semiconductor chip 10 is preferably produced by means of processes as illustrated in FIGS. 1 and 7. Electrical contact structures such as conductor tracks or bonding wires are not shown in FIG.
- Semiconductor layer sequence 2 with the p-doped layer 2c, the active layer 2a and the n-doped layer 2b.
- an electron barrier layer 2d is located between the active layer 2a and the p-doped layer 2c, as in all other embodiments.
- the n-doped layer 2b has, for example, a thickness of between 100 nm and 300 nm, in particular approximately 200 nm.
- a dopant concentration of the n-doped layer 2b is preferably below
- the first middle layer 9a preferably has a thickness
- a thickness of the second middle layer 9b is larger and in particular between 25 nm and 100 nm inclusive, for example at approximately 60 nm.
- Middle layers 9a, 9b are formed of AlGaN having an Al content of preferably 5% to 15% inclusive. Such optional middle layers 9a, 9b and also
- GaN layers 5a, 5b may also be present in all other embodiments.
- the roughening 13 can in places until the first
- Middle layer 9a penetrates the first
- middle layer 9a and the layers closer to the carrier substrate 11 are preferably not. Unlike drawn, the roughening 13 can not reach to the middle layer 9a.
- the second GaN layer 5b preferably has a thickness of between 0.5 ⁇ m and 2 ⁇ m or between 0.8 ⁇ m and 1.2 ⁇ m, for example about 1 ⁇ m.
- Dopant concentration of the second GaN layer 5b is preferably at least 1 x 10 19 cm 3 D e first GaN layer 5a has a maximum thickness of, in particular more than 4 or more than 3 ym ym and / or of at least 1 ym or of at least 2 ym.
- the first GaN layer 5a is on one, for example
- Coalescing layer 7 with a thickness of about 1.2 ym grown see Figure 7D.
- the layers 1, 3, 8, 6, 7 illustrated in FIG. 7 are removed from the semiconductor chip 10 according to FIG. 8 after the attachment of the carrier substrate 11.
- the invention is not limited by the description with reference to the embodiments. Rather, the includes
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Led Devices (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Recrystallisation Techniques (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/345,852 US9343615B2 (en) | 2011-09-30 | 2012-08-23 | Method for producing an optoelectronic semiconductor chip and optoelectronic semiconductor chip |
KR1020187024403A KR101997416B1 (ko) | 2011-09-30 | 2012-08-23 | 광전자 반도체 칩을 생성하기 위한 방법 및 광전자 반도체 칩 |
JP2014532294A JP2015501526A (ja) | 2011-09-30 | 2012-08-23 | オプトエレクトロニクス半導体チップの製造方法およびオプトエレクトロニクス半導体チップ |
CN201280048248.4A CN103843161B (zh) | 2011-09-30 | 2012-08-23 | 用于制造光电子半导体芯片的方法和光电子半导体芯片 |
KR1020147007971A KR102009535B1 (ko) | 2011-09-30 | 2012-08-23 | 광전자 반도체 칩을 생성하기 위한 방법 및 광전자 반도체 칩 |
US15/098,779 US9647174B2 (en) | 2011-09-30 | 2016-04-14 | Optoelectronic semiconductor chip |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102011114671A DE102011114671A1 (de) | 2011-09-30 | 2011-09-30 | Verfahren zur Herstellung eines optoelektronischen Halbleiterchips und optoelektronischer Halbleiterchip |
DE102011114671.0 | 2011-09-30 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/345,852 A-371-Of-International US9343615B2 (en) | 2011-09-30 | 2012-08-23 | Method for producing an optoelectronic semiconductor chip and optoelectronic semiconductor chip |
US15/098,779 Division US9647174B2 (en) | 2011-09-30 | 2016-04-14 | Optoelectronic semiconductor chip |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013045181A1 true WO2013045181A1 (de) | 2013-04-04 |
Family
ID=46727217
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2012/066459 WO2013045181A1 (de) | 2011-09-30 | 2012-08-23 | Verfahren zur herstellung eines optoelektronischen halbleiterchips und optoelektronischer halbleiterchip |
Country Status (7)
Country | Link |
---|---|
US (2) | US9343615B2 (de) |
JP (2) | JP2015501526A (de) |
KR (2) | KR101997416B1 (de) |
CN (1) | CN103843161B (de) |
DE (1) | DE102011114671A1 (de) |
TW (1) | TWI499086B (de) |
WO (1) | WO2013045181A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016202853A1 (de) * | 2015-06-18 | 2016-12-22 | Osram Opto Semiconductors Gmbh | Verfahren zur herstellung eines nitrid-halbleiterbauelements und nitrid-halbleiterbauelement |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011115299B4 (de) * | 2011-09-29 | 2023-04-27 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Optoelektronischer Halbleiterchip und Verfahren zur Herstellung eines optoelektronischen Halbleiterchips |
DE102012101211A1 (de) | 2012-02-15 | 2013-08-22 | Osram Opto Semiconductors Gmbh | Verfahren zur Herstellung eines strahlungsemittierenden Halbleiterbauelements |
DE102012107001A1 (de) | 2012-07-31 | 2014-02-06 | Osram Opto Semiconductors Gmbh | Verfahren zur Herstellung eines optoelektronischen Halbleiterchips und optoelektronischer Halbleiterchip |
DE102013100818B4 (de) * | 2013-01-28 | 2023-07-27 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Optoelektronischer Halbleiterchip und Verfahren zur Herstellung eines optoelektronischen Halbleiterchips |
DE102014101966A1 (de) | 2014-02-17 | 2015-08-20 | Osram Opto Semiconductors Gmbh | Verfahren zur Herstellung eines elektronischen Halbleiterchips und elektronischer Halbleiterchip |
DE102014116999A1 (de) | 2014-11-20 | 2016-05-25 | Osram Opto Semiconductors Gmbh | Verfahren zur Herstellung eines optoelektronischen Halbleiterchips und optoelektronischer Halbleiterchip |
DE102015107661B4 (de) * | 2015-05-15 | 2021-03-18 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Verfahren zur Herstellung eines Nitridverbindungshalbleiter-Bauelements |
DE102017106888A1 (de) | 2017-03-30 | 2018-10-04 | Osram Opto Semiconductors Gmbh | Verfahren zur Herstellung von Leuchtdiodenchips und Leuchtdiodenchip |
US20230124414A1 (en) * | 2021-10-14 | 2023-04-20 | Applied Materials, Inc. | SUBSTRATE PROCESSING FOR GaN GROWTH |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1041609A1 (de) * | 1999-03-31 | 2000-10-04 | Toyoda Gosei Co., Ltd. | Halbleitervorrichtung aus einer Nitridverbindung der Grupe III und Herstellungsverfahren |
US20070190676A1 (en) * | 2005-01-11 | 2007-08-16 | Chen-Fu Chu | Light emitting diodes (leds) with improved light extraction by roughening |
DE10034263B4 (de) | 2000-07-14 | 2008-02-28 | Osram Opto Semiconductors Gmbh | Verfahren zur Herstellung eines Quasisubstrats |
US20080054296A1 (en) * | 2006-09-06 | 2008-03-06 | Samsung Electronics Co., Ltd. | Nitride-based semiconductor light emitting device and method of manufacturing the same |
EP2056339A1 (de) * | 2006-08-18 | 2009-05-06 | Showa Denko K.K. | Verfahren zum herstellen eines gruppe-iii-nitrid-verbund-halbleiter-leuchtbauelements, gruppe-iii-nitrid-verbund-halbleiter-leuchtbauelement und lampe |
US20090289270A1 (en) * | 2008-05-23 | 2009-11-26 | Showa Denko K.K. | Group iii nitride semiconductor multilayer structure and production method thereof |
US20100171135A1 (en) | 2007-04-26 | 2010-07-08 | Karl Engl | Optoelectronic Semiconductor Body and Method for Producing the Same |
Family Cites Families (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5741724A (en) | 1996-12-27 | 1998-04-21 | Motorola | Method of growing gallium nitride on a spinel substrate |
DE19882202B4 (de) | 1998-01-21 | 2007-03-22 | Rohm Co. Ltd., Kyoto | Lichtemittierende Halbleitervorrichtung und Verfahren zu ihrer Herstellung |
JP3994623B2 (ja) * | 2000-04-21 | 2007-10-24 | 豊田合成株式会社 | Iii族窒化物系化合物半導体素子の製造方法 |
JP3509709B2 (ja) | 2000-07-19 | 2004-03-22 | 株式会社村田製作所 | 圧電薄膜共振子及び圧電薄膜共振子の製造方法 |
JP4276135B2 (ja) * | 2004-06-14 | 2009-06-10 | 日本電信電話株式会社 | 窒化物半導体成長用基板 |
JP4468744B2 (ja) | 2004-06-15 | 2010-05-26 | 日本電信電話株式会社 | 窒化物半導体薄膜の作製方法 |
CN101124353B (zh) * | 2004-09-27 | 2011-12-14 | 盖利姆企业私人有限公司 | 生长第(ⅲ)族金属氮化物薄膜的方法和装置、以及第(ⅲ)族金属氮化物薄膜 |
EP1809788A4 (de) | 2004-09-27 | 2008-05-21 | Gallium Entpr Pty Ltd | Verfahren und vorrichtung zum wachsenlassen eines gruppe-(iii)-metallnitrid-films und gruppe-(iii)-metallnitrid-film |
JP4535935B2 (ja) * | 2005-05-19 | 2010-09-01 | 日本電信電話株式会社 | 窒化物半導体薄膜およびその製造方法 |
JP2007095845A (ja) * | 2005-09-27 | 2007-04-12 | Oki Data Corp | 半導体複合基板とそれを用いた半導体装置の製造方法 |
JP2009519202A (ja) | 2005-12-12 | 2009-05-14 | キーマ テクノロジーズ, インク. | Iii族窒化物製品及び同製品の作製方法 |
DE102006008929A1 (de) * | 2006-02-23 | 2007-08-30 | Azzurro Semiconductors Ag | Nitridhalbleiter-Bauelement und Verfahren zu seiner Herstellung |
EP1875523B1 (de) | 2006-02-23 | 2010-09-29 | Azzurro Semiconductors AG | Nitridhalbleiter-bauelement und verfahren zu seiner herstellung |
KR100756841B1 (ko) | 2006-03-13 | 2007-09-07 | 서울옵토디바이스주식회사 | AlxGa1-xN 버퍼층을 갖는 발광 다이오드 및 이의제조 방법 |
JPWO2007129773A1 (ja) | 2006-05-10 | 2009-09-17 | 昭和電工株式会社 | Iii族窒化物化合物半導体積層構造体 |
JP2007329382A (ja) | 2006-06-09 | 2007-12-20 | Mitsubishi Cable Ind Ltd | GaN系発光ダイオード素子 |
JP2008047762A (ja) * | 2006-08-18 | 2008-02-28 | Showa Denko Kk | Iii族窒化物化合物半導体発光素子の製造方法、及びiii族窒化物化合物半導体発光素子、並びにランプ |
JP5186093B2 (ja) | 2006-09-26 | 2013-04-17 | スタンレー電気株式会社 | 半導体発光デバイス |
US7825432B2 (en) | 2007-03-09 | 2010-11-02 | Cree, Inc. | Nitride semiconductor structures with interlayer structures |
TWI377703B (en) * | 2007-05-02 | 2012-11-21 | Showa Denko Kk | Production method of group iii nitride semiconductor light-emitting device |
JP5041883B2 (ja) * | 2007-06-07 | 2012-10-03 | 昭和電工株式会社 | Iii族窒化物半導体層の製造方法、iii族窒化物半導体発光素子の製造方法 |
WO2009129353A1 (en) | 2008-04-15 | 2009-10-22 | Purdue Research Foundation | Metallized silicon substrate for indium gallium nitride light-emitting diode |
WO2010059131A1 (en) | 2008-11-19 | 2010-05-27 | Agency For Science, Technology And Research | Method of at least partially releasing an epitaxial layer |
JP5237780B2 (ja) | 2008-12-17 | 2013-07-17 | スタンレー電気株式会社 | 半導体発光素子の製造方法 |
US8299473B1 (en) * | 2009-04-07 | 2012-10-30 | Soraa, Inc. | Polarized white light devices using non-polar or semipolar gallium containing materials and transparent phosphors |
DE102009036843A1 (de) * | 2009-08-10 | 2011-02-17 | Osram Opto Semiconductors Gmbh | Verfahren zur Herstellung einer Leuchtdiode und Leuchtdiode |
WO2011055774A1 (ja) | 2009-11-06 | 2011-05-12 | 日本碍子株式会社 | 半導体素子用エピタキシャル基板、半導体素子、および半導体素子用エピタキシャル基板の製造方法 |
JP5496623B2 (ja) * | 2009-11-26 | 2014-05-21 | スタンレー電気株式会社 | 光半導体装置 |
EP2544250B1 (de) | 2010-03-01 | 2020-01-08 | Sharp Kabushiki Kaisha | Verfahren zur herstellung eines nitridhalbleiterelements, lichtemittierendes nitridhalbleiterelement und lichtemittierende vorrichtung |
JP2011082570A (ja) | 2011-01-11 | 2011-04-21 | Showa Denko Kk | Iii族窒化物半導体発光素子の製造方法 |
US9012921B2 (en) * | 2011-09-29 | 2015-04-21 | Kabushiki Kaisha Toshiba | Light emitting devices having light coupling layers |
-
2011
- 2011-09-30 DE DE102011114671A patent/DE102011114671A1/de active Pending
-
2012
- 2012-08-23 US US14/345,852 patent/US9343615B2/en active Active
- 2012-08-23 WO PCT/EP2012/066459 patent/WO2013045181A1/de active Application Filing
- 2012-08-23 CN CN201280048248.4A patent/CN103843161B/zh active Active
- 2012-08-23 KR KR1020187024403A patent/KR101997416B1/ko active IP Right Grant
- 2012-08-23 KR KR1020147007971A patent/KR102009535B1/ko active IP Right Grant
- 2012-08-23 JP JP2014532294A patent/JP2015501526A/ja active Pending
- 2012-09-27 TW TW101135504A patent/TWI499086B/zh active
-
2016
- 2016-04-14 US US15/098,779 patent/US9647174B2/en active Active
- 2016-04-28 JP JP2016091826A patent/JP6148756B2/ja active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1041609A1 (de) * | 1999-03-31 | 2000-10-04 | Toyoda Gosei Co., Ltd. | Halbleitervorrichtung aus einer Nitridverbindung der Grupe III und Herstellungsverfahren |
DE10034263B4 (de) | 2000-07-14 | 2008-02-28 | Osram Opto Semiconductors Gmbh | Verfahren zur Herstellung eines Quasisubstrats |
US20070190676A1 (en) * | 2005-01-11 | 2007-08-16 | Chen-Fu Chu | Light emitting diodes (leds) with improved light extraction by roughening |
EP2056339A1 (de) * | 2006-08-18 | 2009-05-06 | Showa Denko K.K. | Verfahren zum herstellen eines gruppe-iii-nitrid-verbund-halbleiter-leuchtbauelements, gruppe-iii-nitrid-verbund-halbleiter-leuchtbauelement und lampe |
US20080054296A1 (en) * | 2006-09-06 | 2008-03-06 | Samsung Electronics Co., Ltd. | Nitride-based semiconductor light emitting device and method of manufacturing the same |
US20100171135A1 (en) | 2007-04-26 | 2010-07-08 | Karl Engl | Optoelectronic Semiconductor Body and Method for Producing the Same |
US20090289270A1 (en) * | 2008-05-23 | 2009-11-26 | Showa Denko K.K. | Group iii nitride semiconductor multilayer structure and production method thereof |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016202853A1 (de) * | 2015-06-18 | 2016-12-22 | Osram Opto Semiconductors Gmbh | Verfahren zur herstellung eines nitrid-halbleiterbauelements und nitrid-halbleiterbauelement |
TWI636580B (zh) * | 2015-06-18 | 2018-09-21 | 歐斯朗奧托半導體股份有限公司 | 製造氮化物半導體組件的方法以及氮化物半導體組件 |
US10475959B2 (en) | 2015-06-18 | 2019-11-12 | Osram Opto Semiconductors Gmbh | Method for producing a nitride semiconductor component, and a nitride semiconductor component |
DE102015109761B4 (de) | 2015-06-18 | 2022-01-27 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Verfahren zur Herstellung eines Nitrid-Halbleiterbauelements und Nitrid-Halbleiterbauelement |
Also Published As
Publication number | Publication date |
---|---|
TW201322487A (zh) | 2013-06-01 |
JP6148756B2 (ja) | 2017-06-14 |
JP2016184747A (ja) | 2016-10-20 |
JP2015501526A (ja) | 2015-01-15 |
US9647174B2 (en) | 2017-05-09 |
KR20140069037A (ko) | 2014-06-09 |
TWI499086B (zh) | 2015-09-01 |
CN103843161A (zh) | 2014-06-04 |
US20160225952A1 (en) | 2016-08-04 |
KR102009535B1 (ko) | 2019-08-09 |
DE102011114671A1 (de) | 2013-04-04 |
US9343615B2 (en) | 2016-05-17 |
KR101997416B1 (ko) | 2019-07-05 |
CN103843161B (zh) | 2017-05-03 |
KR20180100246A (ko) | 2018-09-07 |
US20140346541A1 (en) | 2014-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1920469B1 (de) | Verfahren zum lateralen zertrennen eines halbleiterwafers und optoelektronisches bauelement | |
WO2013045181A1 (de) | Verfahren zur herstellung eines optoelektronischen halbleiterchips und optoelektronischer halbleiterchip | |
EP1327267B1 (de) | Verfahren zur herstellung eines halbleiterbauelements auf gan-basis | |
EP1314209B1 (de) | Verfahren zum herstellen eines strahlungsemittierenden halbleiterchips auf iii-v-nitridhalbleiter-basis und strahlungsemittierender halbleiterchip | |
EP1920508B1 (de) | Verfahren zum lateralen zertrennen eines halbleiterstapelwafers | |
DE112004002809B9 (de) | Verfahren zum Herstellen eines strahlungsemittierenden Halbleiterchips und durch dieses Verfahren hergestellter Halbleiterchip | |
EP0903792B1 (de) | Verfahren zum Herstellen einer Mehrzahl von Halbleiterlasern | |
EP1636836A1 (de) | Verfahren zum herstellen von halbleiterchips | |
DE102008026828A1 (de) | Bildung von nitrid-basierten optoelektronischen und elektronischen Bauteilstrukturen auf gitterangepassten Substraten | |
WO2009155897A1 (de) | Verfahren zur herstellung eines optoelektronischen bauelementes und ein optoelektronisches bauelement | |
DE102013111496A1 (de) | Verfahren zum Herstellen von optoelektronischen Halbleiterbauelementen und optoelektronisches Halbleiterbauelement | |
EP2013917A1 (de) | Strahlungsemittierender halbleiterkörper mit trägersubstrat und verfahren zur herstellung eines solchen | |
EP2332183A1 (de) | Verfahren zur herstellung eines optoelektronischen halbleiterbauelements und optoelektronisches halbleiterbauelement | |
DE102010048617A1 (de) | Verfahren zur Herstellung einer Halbleiterschichtenfolge, strahlungsemittierender Halbleiterchip und optoelektronisches Bauteil | |
EP1675189A2 (de) | Verfahren zur Herstellung eines Halbleiterchips | |
EP1794816B1 (de) | Verfahren zur Herstellung eines Dünnfilmhalbleiterchips | |
WO2013045190A1 (de) | Verfahren zur herstellung eines optoelektronischen halbleiterchips und entsprechender optoelektronischer halbleiterchip | |
DE102005061346A1 (de) | Optoelektronischer Halbleiterchip | |
DE10355600B4 (de) | Halbleiterchip und Verfahren zur Herstellung von Halbleiterchips | |
WO2015169554A1 (de) | Verfahren zur herstellung einer halbleiterschichtenfolge | |
DE19838810A1 (de) | Verfahren zum Herstellen einer Mehrzahl von Ga(In,Al)N-Leuchtdiodenchips | |
DE102011113775B9 (de) | Verfahren zur Herstellung eines optoelektronischen Bauelements | |
WO2013135526A1 (de) | Optoelektronischer halbleiterchip und verfahren zur herstellung eines optoelektronischen halbleiterchips | |
DE10243757A1 (de) | Verfahren zur Herstellung von Halbleiterchips | |
DE10303977A1 (de) | Verfahren zur Herstellung eines Halbleiterbauelements |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12750760 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20147007971 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2014532294 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14345852 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12750760 Country of ref document: EP Kind code of ref document: A1 |